WorldWideScience

Sample records for birdcage coil design

  1. A fast and accurate simulator for the design of birdcage coils in MRI.

    Science.gov (United States)

    Giovannetti, Giulio; Landini, Luigi; Santarelli, Maria Filomena; Positano, Vincenzo

    2002-11-01

    The birdcage coils are extensively used in MRI systems since they introduce a high signal to noise ratio and a high radiofrequency magnetic field homogeneity that guarantee a large field of view. The present article describes the implementation of a birdcage coil simulator, operating in high-pass and low-pass modes, using magnetostatic analysis of the coil. Respect to other simulators described in literature, our simulator allows to obtain in short time not only the dominant frequency mode, but also the complete resonant frequency spectrum and the relevant magnetic field pattern with high accuracy. Our simulator accounts for all the inductances including the mutual inductances between conductors. Moreover, the inductance calculation includes an accurately birdcage geometry description and the effect of a radiofrequency shield. The knowledge of all the resonance modes introduced by a birdcage coil is twofold useful during birdcage coil design: --higher order modes should be pushed far from the fundamental one, --for particular applications, it is necessary to localize other resonant modes (as the Helmholtz mode) jointly to the dominant mode. The knowledge of the magnetic field pattern allows to a priori verify the field homogeneity created inside the coil, when varying the coil dimension and mainly the number of the coil legs. The coil is analyzed using equivalent circuit method. Finally, the simulator is validated by implementing a low-pass birdcage coil and comparing our data with the literature. Copyright 2002 Elsevier Science B.V.

  2. Design and Simulation of a Birdcage Coil using CST Studio Suite for Application at 7T

    International Nuclear Information System (INIS)

    Tomas, Bernat Palau; Li, Houmin; Anjum, M R

    2013-01-01

    This work describes the study of coils for Magnetic Resonance Imaging (MRI) applications. The principal objective is the design of a birdcage Radio Frequency (RF) coil to use in a 7 Tesla (7T) scanner. Higher strength field generates a better SNR and increased chemical shift effect, improving spectral fat suppression and spectroscopy. Moreover, a better SNR increases the spatial resolution or reduces the imaging time. This research work presented recent developments based on high field 7T design using CST studio. The birdcage coil achieves circular polarization and generates a high homogeneous radio frequency magnetic field under many conditions. Design of a Birdcage coil for a 7T to obtain the images from s mall animals (i.e. mouse). It opens the door to design and construct a Birdcage coil for a 7T to obtain human brain images. Firstly we design a birdcage coil then the results are obtained with simulator CST Wave Studio, creating a 3D model and generating a simulation. Finally the parameters are re adjusted to obtain our desired Larmor frequency 298.2 MHz for a correct operation in 7T. This research work demonstrates the theoretical results from our design and shows the designed antenna behavior

  3. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A.; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N. Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.

  4. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T.

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1 H (400 MHz) and inner low-pass coil for 23 Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1 H and -27 dB for 23 Na. Signal-to-noise ratios (SNRs) were calculated and 23 Na flip angle maps were acquired. 23 Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo 1 H and 23 Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23 Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An Antenna-Theory Method for Modeling High-Frequency RF Coils: A Segmented Birdcage Example

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2008-01-01

    Full Text Available We suggest that center-fed dipole antenna analytics can be employed in the optimized design of high-frequency MRI RF coil applications. The method is illustrated in the design of a single-segmented birdcage model and a short multisegmented birdcage model. As a byproduct, it is shown that for a long single-segmented birdcage model, the RF field within it is essentially a TEM mode and has excellent planar uniformity. For a short shielded multisegmented birdcage model, the RF field is optimized with a target-field approach with an average SAR functional. The planar homogeneity of the optimized RF field is significantly improved compared with that of a single-segmented birdcage model with the same geometry. The accuracy of the antenna formulae is also verified with numerical simulations performed via commercial software. The model discussed herein provides evidence for the effectiveness of antenna methods in future RF coil analysis.

  6. A virtually 1H-free birdcage coil for zero echo time MRI without background signal.

    Science.gov (United States)

    Weiger, Markus; Brunner, David O; Schmid, Thomas; Froidevaux, Romain; Rösler, Manuela B; Gross, Simon; Pruessmann, Klaas P

    2017-07-01

    MRI of tissues with rapid transverse relaxation can be performed efficiently using the zero echo time (ZTE) technique. At high bandwidths leading to large relative initial radiofrequency (RF) dead times, the method becomes increasingly sensitive to artifacts related to signal stemming from outside the field of view, particularly from the RF coils. Therefore, in this work, a birdcage coil was designed that is virtually free of 1H signal. A transmit-receive birdcage RF coil for MRI of joints at 7T was designed by rigorously avoiding materials containing 1H nuclei, by using purely mechanical connections without glue, and by spoiling of unwanted signal by application of ferromagnetic materials. The coil was tested for residual 1H signal using ZTE phantom and in vivo joint imaging. In standard ZTE imaging, no 1H signal was detected above noise level. Only at extreme averaging, residual signal was observed close to conductors associated with 1H-containing molecules at adjacent glass surfaces. Phantom images with dead times up to 3.8 Nyquist dwells were obtained with only negligible background artifacts. Furthermore, high-quality ZTE images of human joints were acquired. A virtually 1H-free birdcage coil is presented, thus enabling in vivo ZTE MRI practically free of background signal, even at high bandwidths. Magn Reson Med 78:399-407, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. A Birdcage Coil Tuned by RF Shielding for Application at 9.4 T

    Science.gov (United States)

    Dardzinski, Bernard J.; Li, Shizhe; Collins, Christopher M.; Williams, Gerald D.; Smith, Michael B.

    1998-03-01

    The design and performance of an inductively fed low-pass birdcage radiofrequency (RF) coil for applications at 9.4 T are described where tuning is accomplished by mechanically moving a concentric RF shield about the longitudinal axis of an RF coil. Moving the shield about the RF coil effectively changes the mutual inductance of the system, providing a mechanism for adjusting the resonant frequency. RF shield tuning eliminates adjustable capacitors on the legs of the RF coil, eliminates current imbalances and field distortions, and results in improvedB1field homogeneity and high quality (Q) factors. RF shield tuning and inductive matching provide an isolated resonance structure which is both physically and electrically unattached. Experimental analysis of shield position on bothB1field homogeneity and resonant frequency is provided. Computer simulations ofB1field homogeneity as a function of shield position and shield diameter are also presented. Magnetic resonance microimaging substantiates the usefulness of this design.

  8. Reduction of the radiofrequency heating of metallic devices using a dual-drive birdcage coil.

    Science.gov (United States)

    Eryaman, Yigitcan; Turk, Esra Abaci; Oto, Cagdas; Algin, Oktay; Atalar, Ergin

    2013-03-01

    In this work, it is demonstrated that a dual-drive birdcage coil can be used to reduce the radiofrequency heating of metallic devices during magnetic resonance imaging. By controlling the excitation currents of the two channels of a birdcage coil, the radiofrequency current that is induced near the lead tip could be set to zero. To monitor the current, the image artifacts near the lead tips were measured. The electric field distribution was controlled using a dual-drive birdcage coil. With this method, the lead currents and the lead tip temperatures were reduced substantially [4.9 °C using quadrature excitation], as demonstrated by phantom and animal experiments. The homogeneity of the flip angle distribution was preserved, as shown by volunteer experiments. The normalized root-mean-square error of the flip angle distribution was less than 10% for all excitations. The average specific absorption rate increased as a trade-off for using different excitation patterns. Copyright © 2012 Wiley Periodicals, Inc.

  9. Coil Sensitivity Estimation with Perturbing Sphere Method: Application to 13C Birdcages

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Menichetti, L.

    2012-01-01

    Radiofrequency coils in magnetic resonance systems are used to irradiate nuclear spins and to pick up the signals emitted by the nuclei with high signal-to-noise ratio and large sensitivity region. The quality of the obtained images strongly depends upon the coil performance. When used at low...... frequencies, a number of drawbacks arise that drastically reduce their overall performances. In this work, we describe and verify the accuracy of a coil sensitivity estimation method based on the perturbing sphere theory which permits characterization of coil performance in a short time and that can be useful...... for periodical coil quality controls. In particular, we describe the application of the method by testing two 13C birdcage coils tuned at 32.13 MHz and verifying its accuracy using theoretical and experimental approaches....

  10. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets: Ex and in vivo applications at 21.1 T

    Science.gov (United States)

    Qian, Chunqi; Masad, Ihssan S.; Rosenberg, Jens T.; Elumalai, Malathy; Brey, William W.; Grant, Samuel C.; Gor'kov, Peter L.

    2012-08-01

    A tunable 900 MHz transmit/receive volume coil was constructed for 1H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T.

  11. Efficiency evaluation of a 13C Magnetic Resonance birdcage coil: Theory and comparison of four methods

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Hartwig, Valentina

    2013-01-01

    .Coil efficiency, defined as the B1 magnetic field induced at a given point on the square root of supplied power P, is an important parameter that characterizes coil performance, since by maximizing efficiency will also maximize the signal-to-noise ratio.This work describes and compares four methods for coil...... efficiency estimation, based on different theoretical approaches. Three methods allow efficiency measurement by using “probe techniques” (perturbing loop, perturbing sphere and pick-up coil), which can be used both on the bench and inside the scanner, while an “NMR technique” has been employed for comparison...

  12. A novel method for coil efficiency estimation: Validation with a 13C birdcage

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Hartwig, Valentina

    2012-01-01

    -to-noise ratio. In this work, we propose a novel method for RF coil efficiency estimation based on the use of a perturbing loop. The proposed method consists of loading the coil with a known resistor by inductive coupling and measuring the quality factor with and without the load. We tested the method...

  13. In Vivo Radiofrequency Heating in Swine in a 3T (123.2 MHz) Birdcage Whole-Body Coil

    Science.gov (United States)

    Shrivastava, Devashish; Utecht, Lynn; Tian, Jinfeng; Hughes, John; Vaughan, J. Thomas

    2014-01-01

    Purpose To study in vivo radiofrequency (RF) heating produced due to power deposition from a 3T (Larmour frequency = 123.2 MHz), birdcage, whole-body coil. Methods The RF heating was simulated in a digital swine by solving the mechanistic generic bioheat transfer model (GBHTM) and the conventional, empirical Pennes bioheat transfer equation for the following two cases: (1) when the porcine head was in the isocenter, and (2) when the porcine trunk was in the isocenter. The simulation results were validated by making direct fluoroptic temperature measurements in the skin, brain, simulated hot regions, and rectum of ten swine (Case 1, N= 5, mean animal weight = 84.03 ± 6.85 kg, Whole-body average SAR = 2.65 ± 0.22 W/kg; Case 2, N= 5, mean animal weight = 81.59 ± 6.23 kg, Whole-body average SAR = 2.77 ± 0.26 W/kg) during one hour of exposure to a turbo spin echo sequence. Results The GBHTM simulated the RF heating more accurately compared to the Pennes equation. In vivo temperatures exceeded safe temperature thresholds with allowable SAR exposures. Hot regions may be produced deep inside the body, away from the skin. Conclusion SAR exposures to produce safe temperature thresholds may need re-investigation. PMID:24259413

  14. In vivo radiofrequency heating in swine in a 3T (123.2-MHz) birdcage whole body coil.

    Science.gov (United States)

    Shrivastava, Devashish; Utecht, Lynn; Tian, Jinfeng; Hughes, John; Vaughan, J Thomas

    2014-10-01

    To study in vivo radiofrequency (RF) heating produced due to power deposition from a 3T (Larmour frequency = 123.2 MHz), birdcage, whole body coil. The RF heating was simulated in a digital swine by solving the mechanistic generic bioheat transfer model (GBHTM) and the conventional, empirical Pennes bioheat transfer equation for two cases: 1) when the swine head was in the isocenter and 2) when the swine trunk was in the isocenter. The simulation results were validated by making direct fluoroptic temperature measurements in the skin, brain, simulated hot regions, and rectum of 10 swine (case 1: n = 5, mean animal weight = 84.03 ± 6.85 kg, whole body average SAR = 2.65 ± 0.22 W/kg; case 2: n = 5, mean animal weight = 81.59 ± 6.23 kg, whole body average SAR = 2.77 ± 0.26 W/kg) during 1 h of exposure to a turbo spin echo sequence. The GBHTM simulated the RF heating more accurately compared with the Pennes equation. In vivo temperatures exceeded safe temperature thresholds with allowable SAR exposures. Hot regions may be produced deep inside the body, away from the skin. SAR exposures that produce safe temperature thresholds need reinvestigation. Copyright © 2013 Wiley Periodicals, Inc.

  15. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  16. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The design...... constituted by the butterfly and a circular loop both in receive (RX) mode while using a birdcage coil as transmitter (TX). The performance of this coils configuration was compared with the single TX/RX birdcage coil, in order to verify the advantage of the proposed configuration over the volume coil...... throughout the volume of interest for cardiac imaging in pig. Experimental SNR-vs-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), permitted to highlight the performance of the proposed coils configuration. © 2013 Elsevier Ltd. All rights reserved....

  17. Local SAR in High Pass Birdcage and TEM Body Coils for Multiple Human Body Models in Clinical Landmark Positions at 3T

    Science.gov (United States)

    Yeo, Desmond TB; Wang, Zhangwei; Loew, Wolfgang; Vogel, Mika W; Hancu, Ileana

    2011-01-01

    Purpose To use EM simulations to study the effects of body type, landmark position, and RF body coil type on peak local SAR in 3T MRI. Materials and Methods Numerically computed peak local SAR for four human body models (HBMs) in three landmark positions (head, heart, pelvic) were compared for a high-pass birdcage and a transverse electromagnetic 3T body coil. Local SAR values were normalized to the IEC whole-body average SAR limit of 2.0 W/kg for normal scan mode. Results Local SAR distributions were highly variable. Consistent with previous reports, the peak local SAR values generally occurred in the neck-shoulder area, near rungs, or between tissues of greatly differing electrical properties. The HBM type significantly influenced the peak local SAR, with stockier HBMs, extending extremities towards rungs, displaying the highest SAR. There was also a trend for higher peak SAR in the head-centric and heart-centric positions. The impact of the coil-types studied was not statistically significant. Conclusion The large variability in peak local SAR indicates the need to include more than one HBM or landmark position when evaluating safety of body coils. It is recommended that a HBM with arms near the rungs be included, to create physically realizable high-SAR scenarios. PMID:21509880

  18. Disruption of Bcr-Abl coiled coil oligomerization by design.

    Science.gov (United States)

    Dixon, Andrew S; Pendley, Scott S; Bruno, Benjamin J; Woessner, David W; Shimpi, Adrian A; Cheatham, Thomas E; Lim, Carol S

    2011-08-05

    Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention.

  19. Design of Correction Coil for ITER

    International Nuclear Information System (INIS)

    Kubo, Hiroatsu; Yoshida, Kiyoshi; Omine, Takeshi

    1998-11-01

    ITER (International Thermonuclear Experimental Reactor) project is under way among EU, Japan, Russia and US. In order to shut plasma, the magnetic field is applied by the superconducting coils in ITER. The coils which are called 'Poloidal field (PF-coil)' are installed to control the location and the cross-section shape for plasma in the vacuum vessel. Incorrect position of Magnetic field (Magnetic error) is occurred by the manufacture tolerance for PF-coil. The coils which are called 'Correction-Coil' are installed in order to correct these magnetic error around the PF-coil. The Correction Coils are consist of the 3-sets of the superconducting coil. The stress analysis for the correction coils is performed and the supporting structure of the coils are designed. The bolts for clamps and the position for clamps are examined from this analysis. (J.P.N.)

  20. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  1. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  2. Development of SMART CRDM Coil Design

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Tae Wan; Choi, Suhn; Park, Hee June

    2011-01-01

    A control rod drive mechanism (CRDM) is an electromagnetic device which drives a control rod assembly linearly to regulate reactivity of a nuclear core. Driving force is electromagnetic force generated from coils installed outside of a motor housing. The magnetic parts of a motor assembly installed inside of a motor housing are magnetized when a coil is activated, and adhere to each other to produce latching or driving force as a result. A coil assembly consists of a lifting coil, a movable latch coil and a stationary latch coil as shown in Fig. 1. The latch coils make a drive shaft engaged with or released from latches, and the lift coil makes a drive shaft and a control rod assembly move up or drop. A CRDM control system supplies controlled electric current to a specified coil in order, and then a control rod assembly moves up or down. The coil assembly for SMART CRDM has been developed based on the design concept of a coil assembly for control element drive mechanism (CEDM) of the OPR1000, and modified to satisfy dedicated design requirements for SMART reactor. Some of representative design requirements are the lifting capacity of 3200N which is greater, the lifting step of 15.875mm which is longer than that for CEDM, and one step driving instead of two step driving. Design process through an electromagnetic analysis for a lift coil is described herein as a representative example, and representative results of the analysis are presented

  3. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  4. Engineering Design of A Gang Drilling Machine Equipped with Jig and Fixtures to Make A Prototype Machine in Birdcage Production

    Directory of Open Access Journals (Sweden)

    Eddy Widiyono

    2011-11-01

    Full Text Available This paper is dealing with the engineering design of a gang drilling machine with jig & fixtures to make a prototype machine. This effort has been done in order to solve the problem which aroused in small business enterprises producing birdcages. The problem was how to minimize the production time in making a lot of holes that have same distance and straightness. Hopefully, the prototype machine can help the small business enterprises to increase their production rate.The design engineering process has been carried out by variant approximation on dowel pin modular fixtures in order to simplify fixtures design. CAD CAM software has also been used as fixtures synthesized method including geometric analysis and three dimensional fixtures assembling. The resulting prototype machine can be well operated and based on the running test, it can be concluded that the greater the motor rotation the greater the power needed. As for teak wood, at 250 rpm motor rotation the power needed is 26.5 watt, and at 400 rpm the motor needs power of 43.6 watt while at 600 rpm the motor needs power of 600 watt. The power consumption is also depends on the type of material, the better the mechanical properties of the materials, the higher the power consumption. For cast iron, the 400 rpm motor rotation needs power as high as 569.7 watt. This prototype of gang drilling machine needs power of 350 watt to make five holes on teak wood while ordinary drilling machine needs total power of 1350 watt.

  5. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can...... suitable for use in high density arrays. These findings show the potential of parasitic scatterers as an effective method to improve the performance of existing radiative MRI coils....

  6. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  7. Designed Coiled Coils Promote Folding of a Recombinant Bacterial Collagen*

    Science.gov (United States)

    Yoshizumi, Ayumi; Fletcher, Jordan M.; Yu, Zhuoxin; Persikov, Anton V.; Bartlett, Gail J.; Boyle, Aimee L.; Vincent, Thomas L.; Woolfson, Derek N.; Brodsky, Barbara

    2011-01-01

    Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat. PMID:21454493

  8. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  9. A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla.

    Science.gov (United States)

    Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2011-07-01

    To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.

  10. ISX toroidal field coil design and analysis

    International Nuclear Information System (INIS)

    Hussung, R.O.; Lousteau, D.C.; Johnson, N.E.; Weed, R.A.

    1975-01-01

    Structural design and analysis aspects of the toroidal field coils for the Impurity Study Experiment (ISX) tokamak are discussed. The overall mechanical design of ISX is predicated on the ability to remove the upper segment of the toroidal field coils to allow access to the toroidal vacuum vessel. The high current, 120 kA, capability of the new 74 MW power supply, coupled with the modest field requirement of ISX, allows the use of room temperature copper coils. Seventy-two turns, grouped into 18 coils, generate a magnet field of 18 kG at the major radius of 90 cm. Finite element structural analysis codes were utilized to determine the distribution of stresses and deflections around a typical turn. Initial material distribution on a coil was sized using the two-dimensional program FEATS. The resulting coil design was then coupled to the center bucking and out-of-plane restraint systems utilizing the NASTRAN code. The boundary conditions for the analytical models used in the two programs were then iterated, reaching satisfactory agreement as to stress contours and location for the joints

  11. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    DEFF Research Database (Denmark)

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich

    2016-01-01

    both targets. In this study, a 16-channel receive surface coil was designed for 13C hyperpolarized studies of the pig heart with a clinical 3-T scanner. The coil performance was characterized by phantom experiments and compared with that of a birdcage coil used in transmit/receive mode. Segmental...... signal distribution in the left ventricle (LV) was assessed by experiments on six healthy mini pigs. The proposed coil showed a significant increase in SNR for the LV wall close to the coil surface with respect to that for the birdcage but also significant segmental inhomogeneity. Hence, the use...... of the 16-channel coil is recommended for studies of septal and anterior LV walls....

  12. Large coil test facility instrumentation system design

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Fletcher, W.M.; Goddard, J.S.; Murphy, J.L.

    1979-01-01

    The design of the instrumentation system for the Large Coil Test Facility (LCTF) is described. Sensors are divided into two categories: coil diagnostic sensors, installed in the test coils; and facility sensors, installed in the various systems of the test facility in order to monitor their performance. After signal conditioning, data from the ''fast'' channels are multiplexed, digitized, and stored in four microcomputer systems programmed to be used in a ring buffer mode to record data before and after receipt of a random trigger from the normal zone detection circuitry. ''Slow'' channels are digitized by a scanner and buffered by a microcomputer. Selected data channels are continuously displayed on digital or recorded on strip chart recorders. The microcomputer systems are interfaced to a central minicomputer system for display and archival storage. Facility variables are digitized by a separate scanner system. Certain critical fault variables are compared with set point values, and if they are out of range, cause a programmable logic controller to initiate an emergency coil energy dump. 2 refs

  13. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit.

    Science.gov (United States)

    Negron, Christopher; Keating, Amy E

    2014-11-26

    Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.

  14. Analytical solutions to SSC coil end design

    International Nuclear Information System (INIS)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Fulton, H.J.; Lee, G.C.; Cook, J.M.

    1989-03-01

    As part of the SCC magnet effort, Fermilab will build and test a series of one meter model SSC magnets. The coils in these magnets will be constructed with several different end configurations. These end designs must satisfy both mechanical and magnetic criteria. Only the mechanical problem will be addressed. Solutions will attempt to minimize stresses and provide internal support for the cable. Different end designs will be compared in an attempt to determine which is most appropriate for the SSC dipole. The mathematics required to create each end configuration will be described. The computer aided design, programming and machine technology needed to make the parts will be reviewed. 2 refs., 10 figs

  15. Design description of the Large Coil Test Facility pulse-coil support and transport system

    International Nuclear Information System (INIS)

    Queen, C.C.

    1981-01-01

    In order to simulate the transient fields which would be imposed on superconducting toroidal field coils in an operating tokamak reactor, the Large Coil Test Facility (LCTF) test stand includes a set of pulse coils. This set of pulse coils is designed to be moved from one test location to another within the LCTF vacuum vessel while the vessel is operating under vacuum and the test stand and test coils are at an operating temperature of 4.2K. This operating environment and the extremely high magnetic loads have necessitated some unique design features for the pulse coil support and transport system. The support structure for the pulse coil must react high overturning moments and axial loads induced on the pulse coil by the interaction of the pulse field with the field generated by the large test coils. These loads are reacted into the test stand support structure or spider frame by an arrangement of six pedestals and a support beam. In order to move the pulse coil set from one test location to another, the support beam containing the pulse coils must be driven across rollers mounted on the pedestals, then clamped securely to react the loads. Because these operations must be performed in a vacuum environment at cryogenic tmperature, special consideration was given to component design

  16. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  17. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    Science.gov (United States)

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  18. Improving Coil Designs for the HSX Stellarator with FOCUS

    Science.gov (United States)

    Kruger, Thomas; Zhu, Caoxiang; Bader, Aaron; Singh, Luquant; Anderson, David

    2017-10-01

    We use the FOCUS code to generate improved coil sets for the HSX stellarator. FOCUS produces curves in 3D space to best reproduce a target plasma equilibrium. Unlike similar codes, the curves in FOCUS are not constrained to lie on a user-defined 2D surface. Therefore FOCUS can inherently solve problems such as determining the optimum coil-plasma distance for a given equilibrium. By adjusting the relative weights between a) the match to the plasma boundary, and b) the average coil length. We present the results from FOCUS where we attempt to improve the coil set by moving coils further away to reduce coil ripple, decreasing the number of coils to improve accessibility, and better matching the target plasma surface. We also present results of alternative coil designs with helical and saddle coils. Work supported by the US DOE under Grant DE-FG02-93ER54222 and UW Sorden account 233PRJ65ZM.

  19. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  20. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A

    1997-01-01

    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....

  1. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide

    NARCIS (Netherlands)

    Pagel, K; Seeger, K; Seiwert, B; Villa, Alessandra; Mark, AE; Berger, S; Koksch, B

    2005-01-01

    We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modi. cation of two hydrophobic

  2. Magnetic coil design considerations for functional magnetic stimulation.

    Science.gov (United States)

    Lin, V W; Hsiao, I N; Dhaka, V

    2000-05-01

    Our studies have demonstrated effective stimulation of the bladder, bowel, and expiratory muscles in patients with spinal cord injury using functional magnetic stimulation. However, one limitation of the magnetic coils (MC) is related to their inability to specifically stimulate the target tissue without activation of surrounding tissue. The primary goal of this study was to determine the governing parameters in the MC design, such as coil configuration, diameter, and number of turns in one loop of the coil. By varying these parameters, our approach was to design, construct, and evaluate the induced electric field distributions of two sets of novel MC's. Based on the slinky coil design, the first set of coils was constructed to compare their abilities in generating induced electric fields for focal nerve excitation. The second set of coils was built to determine the effect that changes in two parameters, coil diameter and number of turns in one loop, had on field penetration. The results showed that the slinky coil design produced more focalized stimulation when compared to the planar round coils. The primary-to-secondary peak ratios of the induced electric field from slinky 1 to 5 were 1.00, 2.20, 2.85, 2.62, and 3.54. We also determined that coils with larger diameters had better penetration than those with smaller diameters. Coils with less number of turns in one loop had higher initial field strengths; when compared to coils that had more turns per loop, initial field strengths remained higher as distance from the coil increased. In our attempt to customize MC design according to each functional magnetic stimulation application and patients of different sizes, the parameters of MC explored in this study may facilitate designing an optimal MC for a certain clinical application.

  3. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  4. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  5. U-shaped Ladder TEM-Coil Structure with Truncated Sensitivity Profile in z-Direction for High Field MRI

    NARCIS (Netherlands)

    Leussler, C.; Wirtz, D.; Wuelbern, J.H.; Vernickel, P.; Forthmann, P.

    2012-01-01

    Conventional TEM-coils [1] come with a sensitivity profile and field-of view (FOV) that is largely extended in the z-direction comparedwith birdcage coils (BC) [2]. There is an analog situation when comparing TEM coil arrays [3] and degenerate birdcages (DBC) [4]. The excess z-FOV leads to safety

  6. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  7. New head gradient coil design and construction techniques.

    Science.gov (United States)

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2014-05-01

    To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.

  8. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    Science.gov (United States)

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  9. Coil end design for the LHC dipole magnet

    International Nuclear Information System (INIS)

    Brandt, J.S.

    1996-01-01

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  10. Parametric design of tri-axial nested Helmholtz coils.

    Science.gov (United States)

    Abbott, Jake J

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  11. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    Science.gov (United States)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  12. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  13. Design of the pancake-winding central solenoid coil

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Nishi, Masataka; Tsuji, Hirosi

    1995-01-01

    There was a debate over whether a pancake-winding or layer-winding technique is more appropriate for the Central Solenoid (CS) coil for ITER superconducting magnet. The layer-winding CS has the advantage of homogeneous winding supporting the TF centering force without weak joints, but has many difficulties during manufacturing and quality control. On other hand, the pancake-winding has the advantage of better quality control during manufacturing and module testing but has difficulties with joints and feeders, and pipes located in the load path of the bucking force from the toroidal field coils. The compact joints, reinforcement by preformed amour, sharp bending, and double seals are applied to the design of pancake-winding CS coil and demonstrated by hardware developments. The pancake-winding CS coil by using modified existing technology is compatible with the bucking concept of the ITER magnet system. (author)

  14. A hybrid optimization method for biplanar transverse gradient coil design

    International Nuclear Information System (INIS)

    Qi Feng; Tang Xin; Jin Zhe; Jiang Zhongde; Shen Yifei; Meng Bin; Zu Donglin; Wang Weimin

    2007-01-01

    The optimization of transverse gradient coils is one of the fundamental problems in designing magnetic resonance imaging gradient systems. A new approach is presented in this paper to optimize the transverse gradient coils' performance. First, in the traditional spherical harmonic target field method, high order coefficients, which are commonly ignored, are used in the first stage of the optimization process to give better homogeneity. Then, some cosine terms are introduced into the series expansion of stream function. These new terms provide simulated annealing optimization with new freedoms. Comparison between the traditional method and the optimized method shows that the inhomogeneity in the region of interest can be reduced from 5.03% to 1.39%, the coil efficiency increased from 3.83 to 6.31 mT m -1 A -1 and the minimum distance of these discrete coils raised from 1.54 to 3.16 mm

  15. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  16. Design features of the KSTAR in-vessel control coils

    International Nuclear Information System (INIS)

    Kim, H.K.; Yang, H.L.; Kim, G.H.; Kim, Jin-Yong; Jhang, Hogun; Bak, J.S.; Lee, G.S.

    2009-01-01

    In-vessel control coils (IVCCs) are to be used for the fast plasma position control, field error correction (FEC), and resistive wall mode (RWM) stabilization for the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The IVCC system comprises 16 segments to be unified into a single set to achieve following remarkable engineering advantages; (1) enhancement of the coil system reliability with no welding or brazing works inside the vacuum vessel, (2) simplification in fabrication and installation owing to coils being fabricated outside the vacuum vessel and installed after device assembly, and (3) easy repair and maintenance of the coil system. Each segment is designed in 8 turns coil of 32 mm x 15 mm rectangular oxygen free high conductive copper with a 7 mm diameter internal coolant hole. The conductors are enclosed in 2 mm thick Inconel 625 rectangular welded vacuum jacket with epoxy/glass insulation. Structural analyses were implemented to evaluate structural safety against electromagnetic loads acting on the IVCC for the various operation scenarios using finite element analysis. This paper describes the design features and structural analysis results of the KSTAR in-vessel control coils.

  17. Novel TMS coils designed using an inverse boundary element method

    Science.gov (United States)

    Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David

    2017-01-01

    In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.

  18. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  19. Design of superconducting toroidal magnet coils and testing facility in the USA

    International Nuclear Information System (INIS)

    Luton, J.N.; Haubenreich, P.N.; Thompson, P.B.

    1977-01-01

    In the U.S. Large Coil Program, three industrial teams are presently designing test coils to general specifications prepared by the Oak Ridge National Laboratory with guidance from USERDA. Each test coil is approximately half the bore size of reactor coils, being oval or D-shaped, with a bore of 2.5 x 3.5 m. The dimensions and operating requirements of the coils are identical for all test coils. The coils are designed to produce a peak field of at least 8 tesla at the winding of a selected coil operated at its design current. This condition is met when the selected coil is operated in a compact toroidal array of 6 coils, with the other five coils being operated at 0.8 of their design current. The six coils are of three different designs. Both pool boiling and forced flow designs are included. The coils are housed in a single large vacuum chamber for economy and testing convenience. Auxiliary coils provide a pulse field over the test coil winding volume. This auxiliary system is designed to produce a pulse field which rises to a peak of 0.14 T in 1 sec. With the exception of material damage due to neutron irradiation, all reactor requirements and environments will be either duplicated, approximated, or simulated. The test facility is being designed to accept coils producing up to 12 tesla in later phases of the program

  20. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G; Sandalidis, Harilaos G; Aletras, Anthony H

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R=0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Structural design of superconducting magnets for the large coil program

    International Nuclear Information System (INIS)

    Gray, W.H.; Long, C.J.; Stoddart, W.C.T.

    1979-09-01

    The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the USA, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns that are being investigated with the LCP are presented

  2. Structure design of the Westinghouse superconducting magnet for the Large Coil Program

    International Nuclear Information System (INIS)

    Domeisen, F.N.; Hackworth, D.T.; Stuebinger, L.R.

    1978-01-01

    In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin

  3. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  4. Coil End Parts Development Using BEND and Design for MQXF by LARP

    CERN Document Server

    Yu, Miao; Izquierdo Bermudez, S; Bossert, R; Ferracin, P; Krave, S

    2016-01-01

    End parts are critical components for saddle-shaped coils. They have a structural function where the cables are deformed in order to cross over the magnet aperture. Based on the previous design of the US LARP program for 90 mm aperture quadrupoles (TQ/LQ) and 120 mm aperture quadrupoles (HQ/LHQ) using BEND, the coil ends of the low-β quadruples (MQXF) for the HiLumi LHC upgrade were developed. This paper shows the design of the MQXF coil ends, the analysis of the coil ends during the coil fabrication, the autopsy analysis of the coil ends and the feedback to BEND parameters.

  5. Coil End Parts Development Using BEND and Design for MQXF by LARP

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao [Fermilab; Ambrosio, G. [Fermilab; Bermudez, S. Izquierdo [CERN; Bossert, R. [Fermilab; Ferracin, P. [CERN; Krave, S. [Fermilab

    2016-09-06

    End parts are critical components for saddle-shaped coils. They have a structural function where the cables are deformed in order to cross over the magnet aperture. Based on the previous design of the US LARP program for 90 mm aperture quadrupoles (TQ/LQ) and 120 mm aperture quadrupoles (HQ/LHQ) using BEND, the coil ends of the low-β quadruples (MQXF) for the HiLumi LHC upgrade were developed. This paper shows the design of the MQXF coil ends, the analysis of the coil ends during the coil fabrication, the autopsy analysis of the coil ends and the feedback to BEND parameters.

  6. Design, Analysis, Prototyping, and Experimental Evaluation of an Efficient Double Coil Magnetorheological Valve

    Directory of Open Access Journals (Sweden)

    Guoliang Hu

    2014-05-01

    Full Text Available A double coil magnetorheological (MR valve with an outer annular resistance gap was designed and prototyped. The finite element modeling and analysis of double coil MR valve were carried out using ANSYS/Emag software, and the optimal magnetic field distribution and magnetic flux density of the double coil MR valve were achieved. The mechanism of the pressure drop was studied by building a mathematical model of pressure drop in the double coil MR valve. The proposed double coil MR valve was prototyped and its performance was experimentally evaluated. The new MR valve design has improved the efficiency of double coil MR valve significantly.

  7. Structural design of the superconducting Poloidal Field coils for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Zbasnik, J.P.

    1993-01-01

    The Tokamak Physics Experiment concept design uses superconducting coils made from cable-in-conduit conductor to accomplish both magnetic confinement and plasma initiation. The Poloidal Field (PF) magnet system is divided into two subsystems, the central solenoid and the outer ring coils, the latter is focus of this paper. The eddy current heating from the pulsed operation is excessive for a case type construction; therefore, a ''no case'' design has been chosen. This ''no case'' design uses the conductor conduit as the primary structure and the electrical insulation (fiberglass/epoxy wrap) as a structural adhesive. The model integrates electromagnetic analysis and structural analysis into the finite element code ANSYS to solve the problem. PF coil design is assessed by considering a variety of coil current wave forms, corresponding to various operating modes and conditions. The structural analysis shows that the outer ring coils are within the requirements of the fatigue life and fatigue crack growth requirements. The forces produced by the Toroidal Field coils on the PF coils have little effect on the maximum stresses in the PF coils. In addition in an effort to reduce the cost of the coils new elongated PF coils design was proposed which changes the aspect ratio of the outer ring coils to reduce the number of turns in the coils. The compressive stress in the outer ring coils is increased while the tensile stress is decreased

  8. 30 MJ superconducting coil design and fabrication. Report No. GA-A16104

    International Nuclear Information System (INIS)

    Purcell, J.R.

    1980-09-01

    The Bonneville 30 MJ superconducting stabilizing coil is being constructed by General Atomic under contract to LASL. Upon completion of the design, General Atomic began the procurement of materials and is now ready to start coil winding

  9. Lightweight Design of an HTS Coil for the VASIMR Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tai-Yang Research of Delaware proposes to design and fabricate an HTS double-pancake coil in support of the VASIMR experiment. The proposed HTS coil will implement...

  10. Poloidal field coil design for known plasma equilibrium states

    International Nuclear Information System (INIS)

    Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.

    1986-01-01

    The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions

  11. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.

    2013-01-01

    This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model...... for coil performance evaluation in terms of coil resistance, sample-induced resistance and magnetic field pattern. Experimental SNR-vs.-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), showed good agreement with the theoretical SNR-vs.-depth profiles. Moreover......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...

  12. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  13. Design of self-correction coils in a superferric dipole magnet

    Indian Academy of Sciences (India)

    Design of self-correction coils in a superferric dipole magnet is carried out. By adopting the self-correction coil (SCC) scheme, we can do online correction of unwanted fields inside the magnet aperture during the whole operating cycle irrespective of their origin. The self-correction coils are short-circuited superconducting ...

  14. Design of self-correction coils in a superferric dipole magnet

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Design of self-correction coils in a superferric dipole magnet is carried out. By adopting the self-correction coil (SCC) scheme, we can do online correction of unwanted fields inside the magnet aperture during the whole operating cycle irrespective of their origin. The self-correction coils are short-circuited ...

  15. An improved asymmetric gradient coil design for high-resolution MRI head imaging

    Science.gov (United States)

    Tang, Fangfang; Liu, Feng; Freschi, Fabio; Li, Yu; Repetto, Maurizio; Giaccone, Luca; Wang, Yaohui; Crozier, Stuart

    2016-12-01

    For head magnetic resonance imaging, local gradient coils are often used to achieve high solution images. To accommodate the human head and shoulder, the head gradient coils are usually designed in an asymmetric configuration, allowing the region-of-uniformity (ROU) close to the coil’s patient end. However, the asymmetric configuration leads to technical difficulties in maintaining a high gradient performance for the insertable head coil with very limited space. In this work, we present a practical design configuration of an asymmetric insertable gradient head coil offering an improved performance. In the proposed design, at the patient end, the primary and secondary coils are connected using an additional radial surface, thus allowing the coil conductors distributed on the flange to ensure an improvement in the coil performance. At the service end, the primary and shielding coils are not connected, to permit access to shim trays, cooling system piping, cabling, and so on. The new designs are compared with conventional coil configurations and the simulation results show that, with a similar field quality in the ROU, the proposed coil pattern has improved construction characteristics (open service end, well-distributed wire pattern) and offers a better coil performance (lower inductance, higher efficiency, etc) than conventional head coil configurations.

  16. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2013-01-01

    Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. To quantify the electric field focality and depth of penetration of various TMS coils. The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d(1/2), and focality by the tangential spread, S(1/2), defined as the half-value volume (V(1/2)) divided by the half-value depth, S(1/2) = V(1/2)/d(1/2). The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth-focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d(1/2) are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0-3.5 cm and 0.9-3.4 cm, respectively. However, figure-8 field coils are more focal, having S(1/2) as low as 5 cm(2) compared to 34 cm(2) for circular field coils. For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d(1/2) and S(1/2). Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Development work for the Japanese LCT coil and its design and construction

    International Nuclear Information System (INIS)

    Shimamoto, Susumu; Ando, Toshinari; Tsuji, Hiroshi; Yasukochi, Ko

    1984-01-01

    This paper describes design, verification tests, and construction of the Japanese test coil for the Large Coil Task (LCT). Japan Atomic Energy Research Institute (JAERI) signed on the LCT international agreement under the International Energy Agency (IEA) in 1978, and since then JAERI has been working to develop the Japanese LCT coil to explore the problems of design and construction of tokamak toroidal coil. Based on the common requirements of the LCT, the Japanese LCT coil was designed to be a pool-cooled NbTi fully-stabilized coil whose operating current is 10,220 A at 8 T. Through research and development of the Japanese LCT coil, new advances in the super-conducting coil technology were obtained, such as mechanically and chemically treated conductor surface that has high heat transfer about four times as much as usual ones, nitrogen-strengthened stainless steel that has the yield strength twice as much as usual stainless steel, NbTi filaments those have the critical current density twice as much as those before LCT, and so on. These advances have enabled to construct the Japanese LCT coil and it was completed in the spring of 1982. During the construction of the coil, new fabrication techniques were obtained to wind large current conductor into a mechanically rigid coil and thus to construct a totally stable large coil. (author)

  18. Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    Science.gov (United States)

    Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish

    2018-04-18

    Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.

  19. Design study for superconducting main field coils for the Oak Ridge Isochronous Cyclotron

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Litherland, P.S.; Ballou, J.K.

    1981-01-01

    The design study described here demonstrated the feasibility of replacing the existing ORIC coils with superconducting magnets. The design is quite conservative, requires no unusual technology, and should result in a coil system with good reliability and durability. The operating regime of ORIC will be considerably extended, and running costs should be reduced. A proposal to continue with detailed design and coil fabrication is currently under review and has been submitted to the Nuclear Science Advisory Committee

  20. Mirror power reactor magnet coil system: a technically and economically feasible design

    International Nuclear Information System (INIS)

    Peterson, M.A.

    1977-01-01

    The design and preliminary engineering analysis of a ''Yin Yang'' coil system utilizing several original design concepts to achieve technical and economic feasibility will be presented. The design analysis is begun with a general description of the constraints and prerequisites which define the problem of designing a satisfactory coil system for a mirror power reactor. This description includes a discussion of the coil conductor geometry required by plasma physics considerations, and also a description of the magnitude and direction of the magnetic force system distributed over the conductor geometry. In addition, the important design constraints which all mirror coil system designs must satisfy if they are to successfully interface with the other reactor components are reviewed. After considering the basic constraints that Yin Yong coil systems must be developed around, a survey of the various design concepts that were developed and explored in search of a satisfactory coil system design is discussed. From this extensive preliminary investigation of potential coil system configurations, a coil system design was developed which appears to offer by far the best combination of technical and economic feasibility of any other coil system design developed thus far

  1. Transcranial Magnetic Stimulation-coil design with improved focality

    Science.gov (United States)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  2. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.

    2013-01-01

    This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...... by acquiring metabolic maps with hyperpolarized [1-13C]pyruvate injected i.v. in a pig. © 2013 Wiley Periodicals, Inc....

  3. Mechanical-Stress Analytical Modeling for the Design of Coils in Power Applications

    Directory of Open Access Journals (Sweden)

    Bellan D.

    2014-12-01

    Full Text Available Modern electrical-power systems are often exploited for transmitting high-frequency carrier signals for communications purposes. Series-connected air-core coils represent the fundamental component allowing such applications by providing a proper filtering in the frequency domain. They must be designed, however, to withstand also the line short-circuit current. When a high-magnitude current flows through a coil, strong mechanical stresses are produced within the conductor, leading to possible damage of the coil. In this paper, an approximate analytical model is derived for the relationship between the maximum mechanical stress and the electrical/geometrical parameters of the coil. Such a model provides the guidelines for a fast and safe coil design, whereas numerical simulations are only needed for the design refinement. The presented approach can be extended to other applications such as, for example, the mechanical stress resulting from the inrush currents in the coils of power transformers.

  4. Experience highlights from the design and manufacture of US LCT coils

    International Nuclear Information System (INIS)

    Kibbe, R.K.; Amonett, C.M.; Benson, R.D.; Hussung, R.O.; Shipley, W.D.

    1984-01-01

    The international Large Coil Task (LCT) is a major activity in the development of superconducting toroidal field (TF) coils for tokamak fusion reactors. The technical objective of this program is to design, build, and test six large TF coils, thereby producing information and data that can be used directly by program planners and designers of tokamak reactors. After an intensive competitive bidding cycle, contracts were awarded in 1977 to three US industrial firms for the design and manufacture of test coils. Subsequently Japan, EURATOM, and Switzerland agreed to supply one coil each. External dimensions and minimum performance requirements are identical but freedom was allowed in the choice of internal design and manufacturing techniques. All six coils will be tested in a compact toroidal array in the Large Coil Test Facility (LCTF) in Oak Ridge, Tennessee. With the coil fabrication phase approaching completion, it is an appropriate time to review the major technical challenges and lessons from the design and manufacture of the three US LCT coils

  5. Structural specificity in coiled-coil interactions

    OpenAIRE

    Grigoryan, Gevorg; Keating, Amy E.

    2008-01-01

    Coiled coils have a rich history in the field of protein design and engineering. Novel structures, such as the first 7-helix coiled coil, continue to provide surprises and insights. Large-scale data sets quantifying the influence of systematic mutations on coiled-coil stability are a valuable new asset to the area. Scoring methods based on sequence and/or structure can predict interaction preferences in coiled-coil-mediated bZIP transcription factor dimerization. Experimental and computationa...

  6. Design of an 18 Tesla, tandem mirror, fusion reactor, hybrid choke coil

    International Nuclear Information System (INIS)

    Parmer, J.F.; Agarwal, K.; Gurol, H.; Mancuso, A.; Michels, P.H.; Peck, S.D.; Burgeson, J.; Dalder, E.N.

    1987-01-01

    A hybrid, part normal part superconducting 18-Tesla solenoid choke coil is designed for a tandem mirror fusion reactor. The present state of the art is represented by the 12-Tesla, superconducting NbSn coil. Future applications other than tandem mirror fusion devices needing high field solenoids might require hybrid magnets of the type described herein. The hybrid design was generated because of critical field performance limitations on present, practical superconducting wires. A hybrid design might be required (due to structural limits) even if the critical field were higher. Also, hybrids could be a cost-effective way of getting very high fields for certain applications. The 18-Tesla solenoid described is composed of an inner coil made of water-cooled, high-strength zirconium copper which generates 3 Tesla. A superconducting NbSn background coil contributes the remaining 15 Tesla. The focus of the design study was on the inner coil. Demonstration fabrication and testing was performed

  7. NSTX-U Digital Coil Protection System Software Detailed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  8. Design of a coil sensor for time domain electromagnetic system for uranium exploration

    International Nuclear Information System (INIS)

    Keshwani, R.T.; Bhattacharya, S.

    2011-01-01

    Time domain electromagnetic system is used for exploration of deep seated deposits under the Earth surface. The basic principle is to set up eddy currents in conductors using pulsed excited transmitter coil during on time of a pulse. The decay time of eddy currents during off time of a pulse is a function conductivity, permeability and depth of conductor located under the Earth surface. The technology is being developed to carry out exploration of mineral deposits (basically uranium) under the Earth surface. The decay of eddy currents is eddy using J coil sensor located coplanar with the transmitter coil. The depth upto which successful exploration can be carried is strong function of design of receiver coil. The design parameters include number of turns, bandwidth, stray capacitance and resistance of a coil. This paper describes various designs tried out and their characterization results. Field results for a ground based system developed are also described. (author)

  9. A polygonal double-layer coil design for high-efficiency wireless power transfer

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.

  10. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  11. Design and field testing of solar-assisted Earth coils

    Science.gov (United States)

    Bose, J. E.

    A nominal 1000-foot, 4-inch, PVC coil buried in a serpentine pattern is the heat source/sink for two commercial heat pump systems. This system is vented which allows the easy placement of thermocouples down its length to measure changes in temperature as well as changes in overall U values as a function of length. Integral to the earth coil is a 1000-gallon uninsulated water storage tank in which solar energy from 210 sq ft of solar collectors (single-glazed, metal absorber) can be added directly to the heat pump, circulated through the 1000-foot earth coil system, or added to an insulated storage tank for direct transfer. Temperature ranges for this type of system at the four-foot level are from a nominal range of 780F to a low of 420F in the absence of heat rejection of absorption. The second type of earth coil was a vertical coil approximately 240 feet in length. The vertical heat exchanger consists of a 5-inch PVC pipe which is capped at both ends and pressurized at approximately 15 PSIG. This sealed and pressurized heat exchanger allows a low power pump to circulate water through both the heat pump and vertical heat exchanger system.

  12. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Michael P.; Ajay, Gautam; Gellings, Jaclyn A.; Rayment, Ivan (UW)

    2017-12-01

    X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 – Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.

  13. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod.

    Science.gov (United States)

    Andreas, Michael P; Ajay, Gautam; Gellings, Jaclyn A; Rayment, Ivan

    2017-12-01

    X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 - Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Design of PCB search coils for AC magnetic flux density measurement

    Science.gov (United States)

    Ulvr, Michal

    2018-04-01

    This paper presents single-layer, double-layer and ten-layer planar square search coils designed for AC magnetic flux density amplitude measurement up to 1 T in the low frequency range in a 10 mm air gap. The printed-circuit-board (PCB) method was used for producing the search coils. Special attention is given to a full characterization of the PCB search coils including a comparison between the detailed analytical design method and the finite integration technique method (FIT) on the one hand, and experimental results on the other. The results show very good agreement in the resistance, inductance and search coil constant values (the area turns) and also in the frequency dependence of the search coil constant.

  15. Optimum Design of a Coil Spring for Improving the Performance of a Spring -Operated Mechanism

    International Nuclear Information System (INIS)

    Lee, Dae Woo; Sohn, Jeong Hyun; Yoo, Wan Suk

    2016-01-01

    In this study, a release test bed is designed to evaluate the dynamic behaviors of a coil spring. From the release tests, the dynamic behaviors of a coil spring are analyzed. A lumped parameter spring model was established for numerical simulation of a spring. The design variables of a coil spring are optimized by using the design of experiments approach. Two-level factorial designs are used for the design optimization, and the primary effects of the design variables are analyzed. Based on the results of the interaction analysis and design sensitivity analysis, the level of the design variables is rearranged. Finally, the mixed-level factorial design is used for the optimum design process. According to the optimum design of the opening spring, the dynamic performance of the spring-operated mechanism increases by 2.90

  16. Design of magnetic probe coils in the EAST tokamak

    International Nuclear Information System (INIS)

    Xi Weibin; Wu Songtao; Shen Biao; Wan Baonan; Song Yuntao

    2008-01-01

    A detailed description of measurement theory, magnetic probes geometry, fabrication, calibration, and frequency response is introduced. The calibration error of the magnetic probe and the frequency response of Mirnov coil are given. The EAST experiments show that magnetic sensors could provide sufficient information for machine operation and plasma control. (authors)

  17. Hyperpolarized 13C MRS surface coil: design and signal-to-noise ratio estimation.

    Science.gov (United States)

    Giovannetti, Giulio; Frijia, Francesca; Menichetti, Luca; Milanesi, Matteo; Ardenkjaer-Larsen, Jan Henrik; De Marchi, Daniele; Hartwig, Valentina; Positano, Vincenzo; Landini, Luigi; Lombardi, Massimo; Santarelli, Maria Filomena

    2010-10-01

    Hyperpolarized carbon-13 magnetic resonance spectroscopy is a novel and powerful tool for exploring the metabolic state of tissue, but a number of technological problems still limit this technology and need innovative solutions. In particular, the low molar concentration of derivate metabolites give rise to low signal-to-noise ratio (SNR), which makes the design and development of dedicated RF coils a task of fundamental importance. In this article, the authors describe the simulation and the design of a dedicated 13C surface coil for cardiac metabolism assessment in pig models. A SNR model for a circular loop is presented and applied to the design of a 13C coil which guarantees the desired field-of-view and provides high SNR with a good penetration in deep sample regions. The coil resistance was calculated from Ohm's law and the magnetic field pattern was calculated using Biot-Savart law, while the sample induced resistance was calculated using a numerical finite-difference time-domain algorithm. Successively, a prototype of the coil was built and tested on the workbench and by acquisition of MR data. The comparison of SNR-vs-depth profiles between the theoretical SNR model and the experimental SNR extracted from the phantom chemical shift image (CSI) showed the accuracy of the authors' model. Moreover, the authors demonstrated the use of the coil for the acquisition of a CSI of a hyperpolarized [1-13C] pyruvate phantom. The results demonstrated the design trade-offs to successfully design a dedicated coil for cardiac imaging in the pig with hyperpolarized 13C by developing a SNR model which allows the prediction of the coil performance. This approach can be employed for deriving SNR formulations for coil with more complex geometries.

  18. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  19. A novel electric design for electromagnetic stimulation--the Slinky coil.

    Science.gov (United States)

    Ren, C; Tarjan, P P; Popović, D B

    1995-09-01

    A novel coil design for inductive electromagnetic stimulation of neural cells has been simulated and experimentally tested. This coil improves the focal effect of a magnetic stimulator, and it reduces its inductance, hence the efficiency of the system is improved. The basic structure of the device is derived from the popular "Slinky" toy. The actual device is formed by winding different numbers of loops forming a helical coil on a half torus. The loops are bunched at the axis of the torus. The coil, due to its geometry, generates a unique distribution of eddy currents in nearby tissues which is favorable compared to a solenoid type stimulator. This renders the Slinky coil more selective than conventional coils used for magnetic stimulation. The distribution of eddy currents was analyzed using Matlab, following Faraday's Law of Induction. Improved focality permits the current through the coil to be reduced for the same effect. In addition, the reduced inductance of the Slinky coil decreases the power requirement; thus, the improved efficiency of the system may allow the generation of bursts of pulses, and expand the utilization of the system to possible functional activation of certain neuro-muscular structures when peripheral nerves are stimulated.

  20. Designability landscape reveals sequence features that define axial helix rotation in four-helical homo-oligomeric antiparallel coiled-coil structures.

    Science.gov (United States)

    Szczepaniak, Krzysztof; Lach, Grzegorz; Bujnicki, Janusz M; Dunin-Horkawicz, Stanislaw

    2014-11-01

    Coiled coils are widespread protein domains comprising α-helices wound around each other in a regular fashion. Owing to their regularity, coiled-coil structures can be fully described by parametric equations. This in turn makes them an excellent model for studying sequence-structure relationships in proteins. Here, we used computational design to identify sequence features that determine the degree of helix axial rotation in four-helical homo-oligomeric antiparallel coiled coils. We designed 135,000 artificial sequences for a repertoire of backbone models representing all theoretically possible axial rotation states. Analysis of the designed sequences revealed features that precisely define the rotation of the helices. Based on these features we implemented a bioinformatic tool, which given a coiled-coil sequence, predicts the rotation of the helices in its structure. Moreover, we showed that another structural parameter, helix axial shift, is coupled to helix axial rotation and that dependence between these two parameters narrows the number of possible axial rotation states. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. DEVELOPMENT OF A CHEST FREEZER – OPTIMUM DESIGN OF AN EVAPORATOR COIL

    OpenAIRE

    K. Kalyani Radha; S. Naga Sarada; K. Rajagopal

    2012-01-01

    In a country such as India, food grains, fruit, vegetables, meat, poultry and fish, are very susceptible to microbial contamination and spoilage and require stringent preservation methods. One such method is by the use of a chest freezer for the storage of frozen food. This investigation considers different loads and design parameters for the development of a chest freezer using R134a as the working fluid. Experimental designs of an evaporator coil, condenser coil and capillary tube are inves...

  2. Progress on the Design of the Coupling coils for MICE and MUCOOL

    International Nuclear Information System (INIS)

    Green, M.A.; Li, D.; Virostek, Steve P.; Wang, L.; Wu, H.; Li, L.K.; Li, S.Y.; Xu, F.Y.; Guo, X.L.; Liu, C.S.; Han, G.; Liu, X.K.; Jia, L.X.

    2007-01-01

    The Muon Ionization Cooling Experiment (MICE) [1]will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. The MICE RF and Coupling Coil (RFCC) Module consists of a superconducting solenoid mounted around four normal conducting 201.25-MHzRF cavities. The coil package that surrounds the RF cavities is to be mounted in a 1.4 m diameter vacuum vessel. The coupling coil confines the beam in the RFCC module within the radius of the RF cavity beam windows. Each coupling magnet will be powered by a 300 A, 10 V power supply. The maximum design longitudinal force that will be carried by the cold mass support system is 0.5 MN. The detailed design and analysis of the coupling magnet has been completed by ICST. The primary magnetic and mechanical design features of the coils are presented in this paper

  3. DESIGN, FABRICATION AND TEST OF THE REACT AND WIND, NB(3)SN, LDX FLOATING COIL CONDUCTOR

    International Nuclear Information System (INIS)

    SMITH, B.A.; MICHAEL, P.C.; MINERVINI, J.V.; TAKAYASU, M.; SCHULTZ, J.H.; GREGORY, E.; PYON, T.; SAMPSON, W.B.; GHOSH, A.; SCANLAN, R.

    2000-01-01

    The Levitated Dipole Experiment (LDX) is a novel approach for studying magnetic confinement of a fusion plasma. In this approach, a superconducting ring coil is magnetically levitated for up to 8 hours a day in the center of a 5 meter diameter vacuum vessel. The levitated coil, with on-board helium supply, is called the gloating Coil (F-Coil). Although the maximum field at the coil is only 5.3 tesla, a react-and-wind Nb 3 Sn conductor was selected because the relatively high critical temperature will enable the coil to remain levitated while it warms from 5 K to 10 K. Since pre-reacted Nb 3 Sn tape is no longer commercially available, a composite conductor was designed that contains an 18 strand Nb 3 Sn Rutherford cable. The cable was reacted and then soldered into a structural copper channel that completes the conductor and also provides quench protection. The strain state of the cable was continuously controlled during fabrication steps such as: soldering into the copper channel, spooling, and coil winding, to prevent degradation of the critical current. Measurements of strand and cable critical currents are reported, as well as estimates of the effect of fabrication, winding and operating strains on critical current

  4. Some aspects of the design of the ITER NBI Active Correction and Compensation Coils

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Javier, E-mail: javier.alonso@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Barrera, Germán; Cabrera, Santiago; Rincón, Esther; Ríos, Luis; Soleto, Alfonso [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; Graceffa, Joseph; Shah, Darshan; Urbani, Marc [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Water cooled coil design. • Magnetic shielding of the plasma heating Neutral Beam Injection System. • Active coils for magnetic field compensation. - Abstract: The neutral beam system for ITER consists of two heating and current drive injectors plus a diagnostic neutral beam injector. The proposed physical plant layout allows for a possible third heating injector to be installed later. For correct operation of the beam source, and to avoid deflections of the charged fraction of the beam, the magnetic field along the beam path must be very low. To minimize the stray ITER field in critical areas (ion source, acceleration grids, neutralizer, residual ion dump), a Magnetic Field Reduction System will envelop the beam vessels and the high voltage transmission lines to ion source. This whole system comprises the Passive Magnetic Shield, a set of thick steel plates, and the Active Correction and Compensation Coils, a set of coils carrying currents which depend on the tokamak stray field. This paper describes the status of the coil design, terminals and support structures, as well as a description of the calculations carried out. Most coils are suitable for removal from their final position to be replaced in case of a fault. Conclusions of the chosen design highlight the strategy for the system feasibility.

  5. Coil Designs for Novel Magnetic Geometries to Cure the Divertor Heat Flux Problem for Reactors

    Science.gov (United States)

    Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J. C.; Strickler, D.

    2004-11-01

    Coil designs are developed for novel magnetic divertor geometries with a second axi-symmetric x-point and flux expansion region along the separatrix. Adjacent posters describe how these lead to spreading of heat flux and the possibility of stable, complete detachment to overcome serious physics and engineering problems in reactors. The principal feasibility issue is creating, with simple coils, additional X-points on the separatrix without extensively deforming the magnetic field in the main plasma. For the spherical tokamak NSTX, we show that adding one or two poloidal coils suffices to create a divergent flux at the divertor, i.e., a new x-point. The currents and forces for the extra coils are small. We also modify ARIES ST design to show reactor feasibility. Optimized coil designs for PEGASUS, ARIES RS/AT, and a modular ITER retrofit are also being developed. For our calculations we used self consistent code FBEQ, which was used to design NSTX. We also use NCSX tools for optimization of designs with competing physics and engineering constraints.

  6. New coil end design for the RHIC Arc dipole

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.H.; Morgillo, A.; Power, K.; Thompson, P.

    1994-06-01

    To simplify production, the number of parts in the ends, about 64 in each coil end, was reduced by using thicker spacers between the turns, to about 23. A new computer program was written which gives a description of each turn closely resembling the turn as made. The output of this program is processed by newly written computer programs which change the parts descriptions into forms which are used by a computer-controlled, 5-axis milling machine. The solid spacers replace spacers assembled from laminations and improve the fit as well. The parts will be molded during production. The calculated harmonic content of the ends is compared with measurements on the first magnets built with the new ends.

  7. MICE - Absorber and focus coil safety working group design document: Preliminary design and assessments

    International Nuclear Information System (INIS)

    Barr, Giles; Baynham, Elwyn; Black, Edgar; Bradshaw, Tom; Cummings, Mary Anne; Green, Michael A.; Ishimoto, Shigeru; Ivanyushenkov, Yury; Lau, Wing; Zisman, Michael

    2003-01-01

    A Neutrino Factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly the discovery of leptonic CP violation. it is also the first step toward a muon collider. To develop a stored-muon-beam facility to serve as a Neutrino Factory, it is necessary to ''cool'' a muon beam (decrease its phase-space volume). The short lifetime of the muon, 2.2 (micro)s at rest, eliminates all currently demonstrated cooling techniques and requires that a new, heretofore untried, technique--ionization cooling--be employed. Although ionization cooling of muons has never been demonstrated in practice, it has been shown by end-to-end simulation and design studies to be an important factor both for the performance and for the cost of a Neutrino Factory. This motivates an international program of R and D, including an experimental demonstration at Rutherford Appleton Laboratory (RAL). The aims of the international Muon Ionization Cooling Experiment are: (1) to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; and (2) to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling. The MICE collaboration has designed an experiment in which a section of an ionization cooling channel is exposed to a muon beam. This cooling channel assembles liquid-hydrogen absorbers providing energy loss and high-gradient radio frequency (RF) cavities to re-accelerate the particles, all tightly contained in a magnetic channel. It reduces the beam transverse emittance by > 10% for muon momenta between 140 and 240 MeV/c. The layout of the experiment is shown. They utilize one complete magnetic cell of the cooling channel, comprising three absorber-focus-coil (AFC) modules and two RF-coupling-coil (RFCC) modules. Spectrometers placed before and after the

  8. Symmetry-Directed Self-Assembly of a Tetrahedral Protein Cage Mediated by de Novo-Designed Coiled Coils.

    Science.gov (United States)

    Badieyan, Somayesadat; Sciore, Aaron; Eschweiler, Joseph D; Koldewey, Philipp; Cristie-David, Ajitha S; Ruotolo, Brandon T; Bardwell, James C A; Su, Min; Marsh, E Neil G

    2017-10-05

    The organization of proteins into new hierarchical forms is an important challenge in synthetic biology. However, engineering new interactions between protein subunits is technically challenging and typically requires extensive redesign of protein-protein interfaces. We have developed a conceptually simple approach, based on symmetry principles, that uses short coiled-coil domains to assemble proteins into higher-order structures. Here, we demonstrate the assembly of a trimeric enzyme into a well-defined tetrahedral cage. This was achieved by genetically fusing a trimeric coiled-coil domain to its C terminus through a flexible polyglycine linker sequence. The linker length and coiled-coil strength were the only parameters that needed to be optimized to obtain a high yield of correctly assembled protein cages. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils

    DEFF Research Database (Denmark)

    Ruckthong, Leela; Peacock, Anna F.A.; Pascoe, Cherilyn E.

    2017-01-01

    Although metal ion binding to naturally occurring l-amino acid proteins is well documented, understanding the impact of the opposite chirality (d-)amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a d-configuration cysteine within a designed l...... by comparison of the structure of ZnIICl(CSL16DC)3 2- to the published structure of ZnII(H2O)(GRAND-CSL12AL16LC)3 -. Moreover, spectroscopic analysis indicates that the CdII geometry observed by using l-Cys ligands (a mixture of three- and four-coordinate CdII) is altered to a single four-coordinate species...

  10. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils

    Science.gov (United States)

    Yang, Dongsheng; Won, Sokhui; Hong, Huan

    2017-05-01

    Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.

  11. Design features of the A-cell and transition coils of MFTF-B

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Ring, D.S.

    1981-01-01

    The MFTF-B transition coil and A-cell magnet designs use variations of the copper-stabilized NbTi conductor developed by LLNL for the MFTF Yin-Yang magnets. This conductor will be wound on the one inch thick (12.7 mm) stainless steel coil forms using a two-axis winding machine similar to the existing LLNL Yin-Yang winding machine. After winding, covers will be placed over the coil and welded to the coil form to form a helium-tight jacket around the conductor. These jacketed coils are then enclosed in thick structural cases that react the large Lorentz forces on the magnets. The space between the coil jacket and case will be filled by a stainless steel bladder that will be injected with urethane. The injection bladder will provide cooling passages during cooldown as well as transmitting the Lorentz forces between the jacket and the case. The large self-equilibrating lobe-spreading forces on the magnets (29.10 6 lb, 127.0 MN) for the A-cell are reacted primarily through the thick 304 LN case into the external superstructure. The net Lorentz forces and the inertial forces on the magnet are reacted through support systems into the LLNL vacuum vessel structure

  12. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    International Nuclear Information System (INIS)

    Weber, C.M.

    1995-01-01

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: 'Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented

  13. Mechanical performance evaluation of the CFETR central solenoid model coil design

    Science.gov (United States)

    Liu, Xiaogang; Wang, Zhaoliang; Ren, Yong; Li, Junjun; Yin, Dapeng; Li, Lei; Gao, Xiang; Wu, Yu

    2018-01-01

    The Chinese Fusion Engineering Test Reactor (CFETR) Central Solenoid Model Coil is being fabricated by the Institute of Plasma Physics Chinese Academy of Sciences. The Model Coil is comprised of Nb3Sn and NbTi modules held together by a preload structure. It will operate at 4.5 K to produce a peak field of 12 T at 48 kA. In order to investigate the feasibility and integrity of the Model Coil design before its manufacturing, the mechanical performance has been evaluated for the room temperature preload, 4.5 K stand-by and 48 kA operating conditions. A 1/15 3D detailed model that consists of jackets, insulations, bladders, buffers and preload structure, is constructed and simulated using the coupled structural-thermal-electromagnetic solver of ANSYS. In contrary to a smeared winding pack model, our analysis with the detailed model can directly and precisely simulate the differential thermal contraction effect of the preload structure, jacket and insulations, as well as the electromagnetic load acting on the jacket. The detailed deformation and stress behaviors of the Model Coil are illustrated and discussed. The results indicate that the final design of the CFETR Central Solenoid Model Coil is reasonably conservative and satisfy the design criteria.

  14. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Malik, Leila; Nygaard, Jesper; Christensen, Niels Johan

    2013-01-01

    , they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical...

  15. Second Generation Coil Design of the Nb3Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Ballarino, A; Cavanna, E; Bossert, R; Cheng, D; Dietderich, D; Ferracin, P; Ghosh, A; Hagen,P; Holik, E; Perez, J C; Rochepault, E; Schmalzle, J; Todesco, E; Yu, M

    2016-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this paper we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.

  16. LCT-coil design: Mechanical interaction between composite winding and steel casing under various test conditions

    International Nuclear Information System (INIS)

    Dolensky, B.; Messemer, G.; Zehlein, H.; Erb, J.

    1981-01-01

    Finite element computations for the structural design of the large superconducting toroidal field coil contributed by EURATOM to the Large Coil Test Facility (LCTF) at ORNL, USA were performed at KfK, using the ASKA code. The layout of the coil must consider different types of requirements: firstly, an optimal D-shaped contour minimizing circumferential stress gradients under normal operation in the toroidal arrangement must be defined. Secondly, the three-dimensional real design effects due to the actual support conditions, manufacturing tolerances etc. must be mastered for different basic operational and failure load cases. And, thirdly, the design must stand a single coil qualification test in the TOSKA-facility at KfK, Karlsruhe, FRG, before it is plugged into the LCTF. The emphasis of the paper is three-pronged according to these requirements: i) the 3D magnetic body forces as well as the underlying magnetic fields as computed by the HEDO-code are described. ii) The mechanical interaction between casing and winding as given elsewhere in terms of high stress regions, gaps, slide movements and contact forces for various load cases representing the LCTF test conditions is illustrated here by a juxtaposition of the operational deformations and stresses within the LCTF and the TOSKA. iii) Particular effects like the restraint imposed by a corset-type reinforcement of the coil in the TOSKA test facility to limit the breathing deformation are parametrically studied. Moreover, the possibilities to derive scaling laws which make essential results transferable to larger coils by extracting a 1D mechanical response from the 3D finite element model is also demonstrated. (orig./GG)

  17. Design and application of surface coils for MR imaging with consideration of patient safety

    International Nuclear Information System (INIS)

    Bader, R.; Zabel, H.J.; Gehrig, J.; Lorenz, W.J.

    1987-01-01

    Problems concerning the safety of the patient have arisen by increasing the magnetic field for MR imaging and MR spectroscopy up to 2 T. High electric potentials result on the radio frequency (RF) that antennas in some cases are situated directly on or even inside the body. Transmit pulses can induce high voltages and currents in a separate receiver coil being resonant. Intensive RF fields emerging from the receiver coil may severely heat the conductive body tissue. Principles for suppressing the induced voltages and for detuning the antenna are described. General rules for the design of antennas and their application are discussed

  18. Condition Monitoring System Designing of GIS Based on Trip/close Coil Current

    Science.gov (United States)

    Wei, Dongliang; Wang, Zhi; Xue, Feng; Li, Haitao

    2017-05-01

    In this article, the types and characteristics of the faults from GIS were analyzed that the major failures were caused by its operating mechanism and auxiliary control circuits. While a useful parameter to effectively diagnose the mechanical failures of GIS is the trip/close coil current which is accessible and easy-to-measure. A portable system has been design to monitor the condition of GIS by detecting the coil current. This system was fulfilled with functions like signal sampling, processing, transmitting and performing. DSP and ARM11 carrying WINCE 6.0 have been used to construct the system. The feasibility and reliability were validated through several repeated experiments.

  19. A design for a high voltage magnet coil ringer test set

    International Nuclear Information System (INIS)

    Koska, W.; Sims, R.E.

    1992-01-01

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ring the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed

  20. A design for a high voltage magnet coil ringer test set

    International Nuclear Information System (INIS)

    Koska, W.; Sims, R.E.

    1992-04-01

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ''ring'' the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed

  1. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  2. Design of a low temperature superconducting coil to be applied to current regulators

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Grau Carles, A

    1998-05-01

    We study the magnetic design and the cryogenic stability of a superconducting coil cooled with liquid helium, which works both in DC and AC modes. In DC mode, we obtain the maximum quench current; while in AC mode, we analyze Joule losses produced by the superconductor magnetization and the generation of eddy currents inside the copper matrix. (Author)

  3. Structural-design considerations for the FED 50-kA equilibrium field coils

    International Nuclear Information System (INIS)

    Buchanan, G.; Bennett, J.G.

    1983-01-01

    The structural support system for two equilibrium field coil conductor concepts is considered for the fusion energy design (FED) 8/10T baseline magnetic-fusion system. Both conductor concepts are discussed. Results indicate that regardless of the conductor concept employed, an external support beam/frame structural system is required to equilibrate the accumulative loadings

  4. Study and Design of a Linear Compressor of Voice-Coil Typ

    Directory of Open Access Journals (Sweden)

    VADAN, I.

    2009-06-01

    Full Text Available The paper presents the design and Finite Element (FEM analysis of a Linear compressor of voice coil type (LCVCT. This kind of linear compressor will be used in a refrigerator equipment. It is well-known that the replacing of the rotating compressor from a classical refrigerator by a linear compressor leads to an efficiency improving wit about 5% by avoiding the piston side friction, which is very important because of the huge number of refrigerators in operation world-wide. The linear compressor refrigerator is already commercially available in South Korea, equipped with an electromagnetic (fix coil and moving permanent magnet linear compressor. This paper presents a new type of linear compressor - a voice-coil type (fixed permanent magnet and moving coil. The operation principle is the same as for electrodynamic vibrator or electro-dynamic loud-speaker. The designing with rare earth permanent magnet is not a simple problem, because of the nonlinear characteristic of rare earth magnets. A magneto-static FEM analysis has been performed in order to validate the design methodology proposed in the paper.

  5. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  6. Detailed design studies at CEA for JT-60SA TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Decool, P., E-mail: patrick.decool@cea.fr [CEA, IRFM F-13108 St-Paul-Lez-Durance Cedex (France); Marechal, J.L.; Portafaix, C.; Lacroix, B.; Gros, G.; Verger, J.M. [CEA, IRFM F-13108 St-Paul-Lez-Durance Cedex (France)

    2011-10-15

    Following a first conceptual design activity in which the general design of the JT-60SA TF system was defined and frozen in agreement with all the participants in the project (CEA, ENEA, F4E), a second phase had to be launched to deal with the detailed design. In this paper, we present the work performed at CEA on the TF coil design during this second phase. Part of this work, concerns the determination of conductor hydraulic performances during operation as well as in factory. The thermohydraulic of the conductor was also assessed to confirm the need of helium inlets and a specific design was developed and qualified to be compatible with the available hydraulic performance of the cryoplant. The mechanical behavior is still to be assessed and qualified. Last but not least, the inner electrical joints of the coil have been modified with respect to the original twin-box design developed by CEA for the ITER coils in order to simplify the fabrication process. A dedicated qualification program for their manufacture is ongoing.

  7. Detailed design studies at CEA for JT-60SA TF coils

    International Nuclear Information System (INIS)

    Decool, P.; Marechal, J.L.; Portafaix, C.; Lacroix, B.; Gros, G.; Verger, J.M.

    2011-01-01

    Following a first conceptual design activity in which the general design of the JT-60SA TF system was defined and frozen in agreement with all the participants in the project (CEA, ENEA, F4E), a second phase had to be launched to deal with the detailed design. In this paper, we present the work performed at CEA on the TF coil design during this second phase. Part of this work, concerns the determination of conductor hydraulic performances during operation as well as in factory. The thermohydraulic of the conductor was also assessed to confirm the need of helium inlets and a specific design was developed and qualified to be compatible with the available hydraulic performance of the cryoplant. The mechanical behavior is still to be assessed and qualified. Last but not least, the inner electrical joints of the coil have been modified with respect to the original twin-box design developed by CEA for the ITER coils in order to simplify the fabrication process. A dedicated qualification program for their manufacture is ongoing.

  8. Uniting polypeptides with sequence-designed peptides: synthesis and assembly of poly(gamma-benzyl L-glutamate)-b-coiled-coil peptide copolymers.

    Science.gov (United States)

    Marsden, Hana Robson; Handgraaf, Jan-Willem; Nudelman, Fabio; Sommerdijk, Nico A J M; Kros, Alexander

    2010-02-24

    A new class of peptide has been created, polypeptide-b-designed peptides, which unites the useful qualities of the two constituent peptide types. We demonstrate the synthesis and self-assembly possibilities of this class of peptide chimera with a series of amphiphilic polypeptide-b-designed peptides in which the hydrophobic block is poly(gamma-benzyl l-glutamate) (PBLG) and the hydrophilic block is a coiled-coil forming peptide (denoted E). The synthetic approach was to synthesize the coiled-coil forming peptide on the solid phase, followed by the ring-opening polymerization of gamma-benzyl l-glutamate N-carboxyanhydride, initiated from the N-terminal amine of the peptide E on the solid support. The polypeptide-b-peptide was then cleaved from the resin, requiring no further purification. Peptide E contains 22 amino acids, while the average length of the PBLG block ranged from 36 to 250 residues. This new class of peptide was applied to create a modular system, which relied on juxtaposing the properties of the component peptide types, namely the broad size range and structure-inducing characteristics of the polypeptide PBLG blocks, and the complex functionality of the sequence-designed peptide. Specifically, the different PBLG block lengths could be connected noncovalently with various hydrophilic blocks via the specific coiled-coil folding of E with K or K-poly(ethylene glycol), where K is a peptide of complementary amino acid sequence to E. In this way, nanostructures could be formed in water at neutral pH over the entire compositional range, which has not been demonstrated previously with such large PBLG blocks. It was found that the size, morphology (polymersomes or bicelles), and surface functionality could be specified by combining the appropriate modular building blocks. The self-assembled structures were characterized by dynamic light scattering, circular dichroism, scanning electron microscopy, cryogenic-transmission electron microscopy, fluorescence

  9. DEVELOPMENT OF A CHEST FREEZER – OPTIMUM DESIGN OF AN EVAPORATOR COIL

    Directory of Open Access Journals (Sweden)

    K. Kalyani Radha

    2012-06-01

    Full Text Available In a country such as India, food grains, fruit, vegetables, meat, poultry and fish, are very susceptible to microbial contamination and spoilage and require stringent preservation methods. One such method is by the use of a chest freezer for the storage of frozen food. This investigation considers different loads and design parameters for the development of a chest freezer using R134a as the working fluid. Experimental designs of an evaporator coil, condenser coil and capillary tube are investigated through the development of storage periods in terms of steady state and cyclic performance, by optimising the quantity of refrigerant charge, with strict adherence to the standards and requirement for maintaining an internal temperature of -23 °C at 43 °C ambient. Cyclic load performance tests optimise the performance of individual components selected for the design of a chest freezer. The system selection has a highly balanced performance with R134a and showed 118 kJ/kg cooling capacity with 8.42 coefficient of performance (COP. By the replacement of R134a, temperatures of -23 °C are maintained inside the freezer cabinet with low power consumption and an increase in the net refrigerating effect, which in turn increases the COP. The system design has optimum efficiency with moderate costs by optimising the length and diameter of the evaporator coil, i.e., 34.15 m and 7.94 mm, respectively.

  10. Design, fabrication, and calibration of a cryogenic search-coil array for harmonic analysis of quadrupole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Barale, P.J.; Hassenzahl, W.V.; Nelson, D.H.; O'Neill, J.W.; Schafer, R.V.; Taylor, C.E.

    1987-09-01

    A cryogenic search-coil array has been fabricated at LBL for harmonic error analysis of SSC model quadrupoles. It consists of three triplets of coils; the center-coil triplet is 10 cm long, and the end coil triplets are 70 cm long. Design objectives are a high bucking ratio for the dipole and quadrupole signals and utility at cryogenic operating currents (∼6 kA) with sufficient sensitivity for use at room-temperature currents (∼10 A). the design and fabrication are described. Individual coils are mechanically measured to +-5 μm, and their magnetic areas measured to 0.05%. A computer program has been developed to predict the quadrupole and dipole bucking ratios from the mechanical and magnetic measurements. The calibration procedure and accuracy of the array are specified. Results of measurements of SSC model quadrupoles are presented. 1 ref., 4 figs

  11. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    Science.gov (United States)

    Chung, D. C.; Choi, H. S.; Lee, N. Y.; Nam, G. Y.; Cho, Y. S.; Sung, T. H.; Han, Y. H.; Kim, B. S.; Lim, S. H.

    2007-10-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 × 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 × 2 MFCL module and a 3 × 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m × n MFCL.

  12. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    International Nuclear Information System (INIS)

    Chung, D.C.; Choi, H.S.; Lee, N.Y.; Nam, G.Y.; Cho, Y.S.; Sung, T.H.; Han, Y.H.; Kim, B.S.; Lim, S.H.

    2007-01-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 x 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 x 2 MFCL module and a 3 x 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m x n MFCL

  13. Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor.

    Science.gov (United States)

    Zhang, Yang; Teng, Fei; Li, Suhang; Wan, Ling; Lin, Tingting

    2017-10-27

    The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR). Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/(Hz) 1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system.

  14. Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2017-10-01

    Full Text Available The magnetic resonance sounding (MRS technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN. The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR. Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit of 1030 Hz, 4.6 dB, 1.78 nV/(Hz1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system.

  15. Geometrical Design of a Scalable Overlapping Planar Spiral Coil Array to Generate a Homogeneous Magnetic Field.

    Science.gov (United States)

    Jow, Uei-Ming; Ghovanloo, Maysam

    2012-12-21

    We present a design methodology for an overlapping hexagonal planar spiral coil (hex-PSC) array, optimized for creation of a homogenous magnetic field for wireless power transmission to randomly moving objects. The modular hex-PSC array has been implemented in the form of three parallel conductive layers, for which an iterative optimization procedure defines the PSC geometries. Since the overlapping hex-PSCs in different layers have different characteristics, the worst case coil-coupling condition should be designed to provide the maximum power transfer efficiency (PTE) in order to minimize the spatial received power fluctuations. In the worst case, the transmitter (Tx) hex-PSC is overlapped by six PSCs and surrounded by six other adjacent PSCs. Using a receiver (Rx) coil, 20 mm in radius, at the coupling distance of 78 mm and maximum lateral misalignment of 49.1 mm (1/√3 of the PSC radius) we can receive power at a PTE of 19.6% from the worst case PSC. Furthermore, we have studied the effects of Rx coil tilting and concluded that the PTE degrades significantly when θ > 60°. Solutions are: 1) activating two adjacent overlapping hex-PSCs simultaneously with out-of-phase excitations to create horizontal magnetic flux and 2) inclusion of a small energy storage element in the Rx module to maintain power in the worst case scenarios. In order to verify the proposed design methodology, we have developed the EnerCage system, which aims to power up biological instruments attached to or implanted in freely behaving small animal subjects' bodies in long-term electrophysiology experiments within large experimental arenas.

  16. Superconductor design and loss analysis for a 20 MJ induction heating coil

    International Nuclear Information System (INIS)

    Walker, M.S.; Declercq, J.G.; Zeitlin, B.A.

    1980-01-01

    The design of a 50 k Ampere conductor for use in a 20 MJ Induction Heating Coil is described. The conductor is a wide flat cable of 36 subcables, each of which contains six NbTi strands around a stainless steel core strand. The 2.04 mm (0.080'') diameter monolithic strands allow bubble clearing for cryostable operation at a pool boiling heat transfer from the unoccluded strand surface of 0.26 Watts/cm 2 . A thin, tough polyester amide-imide (Westinghouse Omega) insulation provides a rugged coating that will resist flaking and chipping during the cabling and compaction operations and provide (1) a reliable adherent surface for enhanced heat transfer, and (2) a low voltage standoff preventing interstrand coupling losses. The strands are uniquely configured using CuNi elements to provide low ac losses with NbTi filaments in an all-copper matrix. AC losses are expected to be approximately 0.3% of 20 MJ for a -7.5 T to 7.5 T one-second 1/2-cosinusoidal bipolar operation in a 20 MJ coil. They will be approximately 0.1% of 100 MJ for 1.8 second -8 T and +8 T ramped operation in a 100 MJ coil. The design is firmly based on the results of tests performed on prototype strands and subcables

  17. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1

    International Nuclear Information System (INIS)

    Caldino H, U.; Francois L, J. L.

    2014-10-01

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  18. Optimal design of a novel configuration of MR brake with coils placed on the side housings

    Science.gov (United States)

    Nguyen, Quoc Hung; Nguyen, Ngoc Diep; Choi, Seung-Bok

    2014-03-01

    It is well known that in design of traditional magneto-rheological brake (MRB), coils are placed on the cylindrical housing of the brake. In this study, a new configuration of MR brake with coils placed on the side housings of the brake is proposed and analyzed. After briefly explaining the operating principle of the proposed configuration, the braking torque of the MR brake is analyze based on Bingham-plastic rheological model of MR fluid. The optimization of the proposed and conventional MR brakes is then performed considering maximum braking torque and mass of the brake. Based on the optimal results, a comparison between the proposed MR brakes and the conventional ones is undertaken. In addition, experimental test of the MR brakes is conducted and the results are presented in order to validate the performance characteristics of the proposed MR brake.

  19. Progress on the design development and prototype manufacturing of the ITER In-vessel coils

    NARCIS (Netherlands)

    Encheva, A.; Omran, H.; Devred, A.; Vostner, A.; Mitchell, N.; Mariani, N.; Jun, CH H.; Long, F.; Zhou, C.; Macklin, B.; Marti, H. P.; Sborchia, C.; della Corte, A. Della; Di Zenobio, A.; Anemona, A.; Righetti, R.; Wu, Y.; Jin, H.; Xu, A.; Jin, J.

    2017-01-01

    ITER is incorporating two types of In-Vessel Coils (IVCs): ELM Coils to mitigate Edge Localized Modes and VS Coils to provide a reliable Vertical Stabilization of the plasma. Strong coupling with the plasma is required in order that the ELM and VS Coils can meet their performance requirements.

  20. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    Science.gov (United States)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  1. Design of two-dimensional coils for wireless power transmission to in vivo robotic capsule.

    Science.gov (United States)

    Lee, Seon-Woo; Kim, Jong-Dae; Son, Ju-Hyun; Ryu, Mun-Ho; Kim, Jongwon

    2005-01-01

    This paper presents a design of two dimensional receiving coils to provide hundreds of milli-watt power via inductive link to in vivo robotic capsules, whose orientation are practically undetermined. The wireless power transmission system consists of a transmitter powered by class E power amplifier, and receiver with 2-dimensional antenna, rectifier, and voltage regulator. Two types of 2-dimensional antennas are designed and evaluated by theoretic and experimental analysis. Experimental results show that the proposed 2-D receiving antenna could deliver the power homogeneously against its orientation, with less than 20% of variation of the possible maximum power.

  2. Design of MgB2 Superconducting coils for the Ignitor Experiment*

    Science.gov (United States)

    Grasso, G.; Penco, R.; Berta, S.; Coppi, B.; Giunchi, G.

    2009-11-01

    A feasibility study for the adoption of MgB2 superconducting cables for the largest (about 5 m in diameter) of the poloidal field coils of the Ignitor machine is being carried out. This initiative was prompted by the progress made in the fabrication of MgB2 long cables, and related superconducting magnets of relatively large dimensions. These magnets will be cryocooled at the operating temperature of 10-15 K that is compatible with the He-gas cryogenic cooling system of Ignitor as well as with the projected superconducting current density of the MgB2 material, at the magnetic field values (˜4-5 T) in which these coils are designed to operate. The optimal cable configuration has been identified that can provide an efficient cooling of the MgB2 conductors over times compatible with the machine duty cycles. MgB2 superconductors hold the promise of becoming suitable for high field magnets by appropriate doping of the material and of replacing gradually the normal conducting coils adopted, by necessity, in high field experiments. Therefore, an appropriate R&D program on the development of improved MgB2 material and related superconducting cabling options has been undertaken, involving different institutions.

  3. Application of engineering analysis techniques to the design of magnetic resonance imaging (MRI) coils

    International Nuclear Information System (INIS)

    Marin, L; Power, H; Becker, A A; Jones, I A; Bowtell, R W; Sanchez, C C; Glover, P

    2008-01-01

    In this paper, we develop a new approach to analysing and designing the gradient coils for magnetic resonance imaging (MRI) scanners for medical applications. More specifically, a novel higher-order BEM which satisfies the continuity equation for the current density is proposed. We also present solution procedures for applying this method to the inverse problem whereby the divergence-free surface current distribution in the gradient coil is deduced from knowledge of the magnetic flux density in a prescribed region of interest. The novel BEM proposed is a non-traditional one, in the sense that the collocation points are given by the vertices of the triangular elements only and not all the BEM nodes used to define the boundary elements. Furthermore, the degree of the interpolation is one degree less than that of the geometry of the triangular elements employed, so that (for example) the linear boundary elements involve constant interpolation for the surface current density. Moreover, the present method can be easily extended in order to obtain any desired degree of the interpolation for the surface current density. Within the inverse problem, care must be taken to employ the optimal value of the Tikhonov regularisation parameter. Results are presented relating to various geometries of coil, obtained using linear, quadratic and cubic variants of the boundary element formulation; those obtained using the quadratic and cubic elements agree almost precisely, while those from the linear elements exhibit small differences from those of the higher-order formulations

  4. Application of engineering analysis techniques to the design of magnetic resonance imaging (MRI) coils

    Science.gov (United States)

    Marin, L.; Power, H.; Bowtell, R. W.; Sanchez, C. C.; Becker, A. A.; Glover, P.; Jones, I. A.

    2008-03-01

    In this paper, we develop a new approach to analysing and designing the gradient coils for magnetic resonance imaging (MRI) scanners for medical applications. More specifically, a novel higher-order BEM which satisfies the continuity equation for the current density is proposed. We also present solution procedures for applying this method to the inverse problem whereby the divergence-free surface current distribution in the gradient coil is deduced from knowledge of the magnetic flux density in a prescribed region of interest. The novel BEM proposed is a non-traditional one, in the sense that the collocation points are given by the vertices of the triangular elements only and not all the BEM nodes used to define the boundary elements. Furthermore, the degree of the interpolation is one degree less than that of the geometry of the triangular elements employed, so that (for example) the linear boundary elements involve constant interpolation for the surface current density. Moreover, the present method can be easily extended in order to obtain any desired degree of the interpolation for the surface current density. Within the inverse problem, care must be taken to employ the optimal value of the Tikhonov regularisation parameter. Results are presented relating to various geometries of coil, obtained using linear, quadratic and cubic variants of the boundary element formulation; those obtained using the quadratic and cubic elements agree almost precisely, while those from the linear elements exhibit small differences from those of the higher-order formulations.

  5. Design, Fabrication and Testing of an Insertable Double-Imaging-Region Gradient Coil.

    Science.gov (United States)

    Goodrich, K Craig; Hadley, J Rock; Moon, Sung M; Chronik, Blaine A; Scholl, Timothy J; Debever, Joshua T; Parker, Dennis L

    2009-04-01

    We have constructed a small-bore insertable gradient coil with two linear gradient imaging regions and interfaced it with an MRI scanner. We have also constructed an RF system capable of transmitting or receiving in both regions simultaneously.Designs for conductor placement for two-region X-, Y- and Z-gradient coils were optimized by simulated annealing. Wire patterns for each axis were chosen that gave low inductance, reasonable homogeneity over a large imaging volume and high efficiency (gradient field per-unit-current).Imaging was performed on a Siemens 3T TIM Trio scanner equipped with three additional gradient amplifier channels and a second RF/gradient array controller. Phantoms were placed in the two imaging regions as well as the central non-imaging region to test gradient homogeneity and crosstalk between regions. Images acquired simultaneously in the two regions showed very little signal crosstalk between imaging regions and even less signal from the central, non-imaging region.When combined with an overlapping single-region gradient insert, extended field-of-view (FOV) imaging will be possible without moving the table or the subject and without increasing nerve stimulation. Construction and testing of a two-region gradient coil insert is a necessary intermediate step as a proof of concept for an extended field of view, contiguous, three-region human-sized gradient system.

  6. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    Science.gov (United States)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  7. A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging.

    Science.gov (United States)

    Ha, Seunghoon; Hamamura, Mark J; Nalcioglu, Orhan; Muftuler, L Tugan

    2010-05-07

    MR imaging of nuclei other than hydrogen has been used to investigate metabolism in humans and animals. However, MRI observable nuclei other than hydrogen are not as abundant and as a result the image SNR is lower. Dual-tuned radio frequency (RF) coils are developed for these studies in which high-resolution structural images are acquired using hydrogen and metabolic information is acquired by exciting the other nucleus. Using a dual-tuned coil, the experimenter avoids the inconvenience of moving the patient out and replacing the RF coil for imaging different nuclei. This also eliminates image registration problems. However, the common scheme of using trap circuits for dual-tuned operation results in increased coil losses as well as problems in obtaining optimal tuning and matching at both frequencies. Here, a new approach is presented using PIN diodes to switch the coil between two resonance frequencies. This design eliminates the need for the trap circuit and associated losses from the self-resistance of the trap circuit inductors. At the operating frequencies we used, the equivalent series resistance of an inductor is higher than that of the PIN diodes. In order to test the efficacy of this new approach, we first built two surface coils of identical geometry, one with the conventional trap circuits and one with the PIN diode switches. We also studied the performances of both coils when the coils are divided into shorter conductors segments by adding more tuning elements. It is known that dividing the coil into shorter conductor segments helps reduce radiation and electric field losses. We explored this effect for both coils at both operating frequencies. Finally, a dual-tuned receive-only phased array was designed and built with the PIN diode circuit to switch between two resonance frequencies. A conventional dual-tuned birdcage coil was designed and built to transmit RF power. A unique feature of this coil is that the RF power is fed through two separate sets

  8. A form-fitted three channel (31) P, two channel (1) H transceiver coil array for calf muscle studies at 7 T.

    Science.gov (United States)

    Goluch, Sigrun; Kuehne, Andre; Meyerspeer, Martin; Kriegl, Roberta; Schmid, Albrecht I; Fiedler, Georg B; Herrmann, Tim; Mallow, Johannes; Hong, Suk-Min; Cho, Zang-Hee; Bernarding, Johannes; Moser, Ewald; Laistler, Elmar

    2015-06-01

    To enhance sensitivity and coverage for calf muscle studies, a novel, form-fitted, three-channel phosphorus-31 ((31) P), two-channel proton ((1) H) transceiver coil array for 7 T MR imaging and spectroscopy is presented. Electromagnetic simulations employing individually generated voxel models were performed to design a coil array for studying nonpathological muscle metabolism. Static phase combinations of the coil elements' transmit fields were optimized based on homogeneity and efficiency for several voxel models. The best-performing design was built and tested both on phantoms and in vivo. Simulations revealed that a shared conductor array for (31) P provides more robust interelement decoupling and better homogeneity than an overlap array in this configuration. A static B1 (+) shim setting that suited various calf anatomies was identified and implemented. Simulations showed that the (31) P array provides signal-to-noise ratio (SNR) benefits over a single loop and a birdcage coil of equal radius by factors of 3.2 and 2.6 in the gastrocnemius and by 2.5 and 2.0 in the soleus muscle. The performance of the coil in terms of B1 (+) and achievable SNR allows for spatially localized dynamic (31) P spectroscopy studies in the human calf. The associated higher specificity with respect to nonlocalized measurements permits distinguishing the functional responses of different muscles. © 2014 Wiley Periodicals, Inc.

  9. An EM Simulation-Based Design Flow for Custom-Built MR Coils Incorporating Signal and Noise.

    Science.gov (United States)

    Horneff, Andreas; Eder, Michael; Hell, Erich; Ulrici, Johannes; Felder, Jorg; Rasche, Volker; Anders, Jens

    2018-02-01

    Developing custom-built MR coils is a cumbersome task, in which an a priori prediction of the coils' SNR performance, their sensitivity pattern, and their depth of penetration helps to greatly speed up the design process by reducing the required hardware manufacturing iterations. The simulation-based design flow presented in this paper takes the entire MR imaging process into account. That is, it includes all geometric and material properties of the coil and the phantom, the thermal noise as well as the target MR sequences. The proposed simulation-driven design flow is validated using a manufactured prototype coil, whose performance was optimized regarding its SNR performance, based on the presented design flow, by comparing the coil's measured performance against the simulated results. In these experiments, the mean and the standard deviation of the relative error between the simulated and measured coil sensitivity pattern were found to be and . Moreover, the peak deviation between the simulated and measured voxel SNR was found to be less than 4%, indicating that simulations are in good accordance with the measured results, validating the proposed software-based design approach.

  10. Design and field testing of solar-assisted earth coils. Final report, August 1, 1978-January 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bose, J E

    1981-01-01

    Two types of earth coils were designed, constructed, and are operational on the Oklahoma State University campus. A nominal 1000-foot, 4-inch, PVC coil buried in a serpentine pattern is the heat source/sink for two commercial heat pump systems. This system is vented which allows the easy placement of thermocouples down its length to measure changes in temperature as well as changes in overall U values as a function of length. Integral to the earth coil is a 1000-gallon uninsulated water storage tank in which solar energy from 210 ft/sup 2/ of solar collectors (single-glazed, metal absorber) can be added directly to the heat pump, circulated through the 1000-foot earth coil system, or added to an insulated storage tank for direct transfer. Temperature ranges for this type of system at the four-foot level are from a nominal range of 78/sup 0/F in mid-September to a low of 42/sup 0/F in mid-February in the absence of heat rejection or absorption. The second type of earth coil under study was a vertical coil approximately 240 feet in length. Placement of the coil is with a conventional water well drilling machine. The vertical heat exchanger consists of a 5-inch PVC pipe which is capped at both ends and pressurized at approximately 15 PSIG. This sealed and pressurized heat exchanger allows a low power pump to circulate water through both the heat pump and vertical heat exchanger system.

  11. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-body SAR, maximum temperature, and CEM43 °C due to RF irradiation in an MR body coil of birdcage type at 123 MHz.

    Science.gov (United States)

    Nadobny, Jacek; Klopfleisch, Robert; Brinker, Gerhard; Stoltenburg-Didinger, Gisela

    2015-06-01

    This study is an investigation of the relationship between several characteristic parameters and acute thermal damage in porcine skeletal muscle. Fourteen pigs under injection anaesthesia were placed into a magnetic resonance body coil and exposed for different time durations to different specific energy absorption rate (SAR) levels at 123 MHz. Local temperatures were measured using four temperature sensors. Sensors 1-3 were placed in skeletal muscle and one sensor was placed in the rectum. Sensors 1 and 2 were placed in hot-spot areas and sensor 3 was placed at the periphery of the animals. The pigs were exposed to whole-body SAR (SAR-wb) between 2.5 W/kg and 5.2 W/kg for 30 or 60 min. Three animals received no SAR. After each experiment, muscle samples adjacent to the positions of sensors 1-3 were taken for frozen section analysis. Three characteristic parameters were chosen for investigation: SAR-wb, maximum sensor temperature (T-max), and cumulative equivalent minutes at 43 °C (CEM43 °C). Histopathological criteria were established to detect acute thermal tissue damage in frozen sections such as widening of intercellular space between the muscle fibres and loss of glycogen. Clear tissue damage thresholds were found for T-max and CEM43 °C, though not for SAR-wb. For all animals with high thermal exposure, damage was also found for muscle samples adjacent to the peripheral sensor 3. Both T-max and CEM43, are able to predict thermal damage in porcine muscle. However, CEM43 is the less ambiguous parameter. The reasons for the occurrence of the aforementioned damage at low local temperatures at the animals' periphery remain unclear and further investigations are needed.

  12. Design and evaluation of a novel magnetorheological brake with coils placed on the side housings

    International Nuclear Information System (INIS)

    Hung Nguyen, Quoc; Diep Nguyen, Ngoc; Bok Choi, Seung

    2015-01-01

    In the design of a traditional magnetorheological brake (MRB), coils are often placed on the cylindrical housing of the brake. This results in many disadvantages such as a ‘bottle-neck’ problem of magnetic flux. Moreover, in this design a nonmagnetic bobbin is required, and difficulties in manufacturing and maintenance exist. In order to resolve this problem, in this study a new configuration of MRB with coils placed on the side housings of the brake is proposed, optimally designed and experimentally evaluated. After describing an introduction of the proposed configuration, braking torque of the MRB is analyzed based on the Bingham-plastic rheological model of magnetorheological fluid (MRF). The optimization of the proposed and conventional MRBs is then performed considering maximum braking torque and mass of the brakes. In the optimization, both rectangular and polygonal shapes of the brake housing are considered. Based on the optimal results, a comparison of the performance characteristics of the proposed MRB and the conventional one is undertaken. In addition, an experimental test of the MRBs is conducted, and the results are presented in order to validate the performance characteristics of the proposed MRB. (technical note)

  13. Design and evaluation of a novel magnetorheological brake with coils placed on the side housings

    Science.gov (United States)

    Nguyen, Quoc Hung; Diep Nguyen, Ngoc; Bok Choi, Seung

    2015-04-01

    In the design of a traditional magnetorheological brake (MRB), coils are often placed on the cylindrical housing of the brake. This results in many disadvantages such as a ‘bottle-neck’ problem of magnetic flux. Moreover, in this design a nonmagnetic bobbin is required, and difficulties in manufacturing and maintenance exist. In order to resolve this problem, in this study a new configuration of MRB with coils placed on the side housings of the brake is proposed, optimally designed and experimentally evaluated. After describing an introduction of the proposed configuration, braking torque of the MRB is analyzed based on the Bingham-plastic rheological model of magnetorheological fluid (MRF). The optimization of the proposed and conventional MRBs is then performed considering maximum braking torque and mass of the brakes. In the optimization, both rectangular and polygonal shapes of the brake housing are considered. Based on the optimal results, a comparison of the performance characteristics of the proposed MRB and the conventional one is undertaken. In addition, an experimental test of the MRBs is conducted, and the results are presented in order to validate the performance characteristics of the proposed MRB.

  14. Design of the superconducting coil system in JT-60 modification program aimed at achieving high performance plasmas

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Kizu, K.; Tamai, H.; Matsukawa, M.; Ando, T.

    2006-01-01

    The modification program of the JT-60 tokamak progresses to establish scientific and technological bases of an economically and environmentally attractive DEMO by achieving steady-state high-beta plasma. For the economical feasibility, a aspect ratio of a fusion power plant tends to become lower to achieve high mass power density. Therefore, the design of future experiment device is required to have a capability of covering the broad operational space of the aspect ratio and the plasma shape parameter, which strongly correlate to enhance the critical beta value for the ideal MHD limit. In the modified JT-60 tokamak, the system of superconducting coils is also designed to consider this concept. In this device, the toroidal field (TF) coil system consists of 18 coils, and the poloidal field (PF) coil system has 4 modules of central solenoids (CS) and 7 equilibrium field (EF) coils. In the latest design of superconducting coil system, the number of EF coil is increased from 6, and the position of EF coils are optimized to realize the operation space broader. Consequently, flexibility of triangularity becomes broader in order to cover the ITER configuration, so that we obtain the flexibility of plasma configuration, e.g. ITER similarity operation or high plasma current (I P = 5.5 MA) operation in the lowest aspect ratio (A = 2.6). CS design is also revised to supply the sufficient flux for the designed time duration. Under the condition of the designed space for CS, it is found that 17.3 Wb of the flux will be provided with 10 T of the maximum field. Therefore, the conductor should be designed to adopt the strand with 2.8 of Cu/non-Cu ratio Nb 3 Sn for the conductor of CS. For the conductor of the superconducting coils in this device, the cable-in-conduit (CIC) type conductor is adopted. In particular, CS is operated under the condition of variable coil current in the strong magnetic field, so that the evaluation of the fatigue appeared at the conduit in order to

  15. Structural design and analysis for the ISX-C/ATF tokamak of the vacuum vessel, coil joints, and supports

    International Nuclear Information System (INIS)

    Mayhall, J.A.; Cain, W.D.; Hammonds, C.J.; Johnson, R.L.; Gray, W.H.

    1981-01-01

    The ISX-C/ATF is being designed as a test bed for advanced toroidal concepts. Because of numerous design concepts being evaluated, a flexible, easily changeable structural-design math-model was needed to afford quick evalution of the structural feasibility of the many proposed concepts. To satisfy this need, the NASTRAN Automated Multi-Stage Substructures technique was used to build a quick-changeable math model. This technique was especially needed because all the coils, first wall and diagnostic devices are to be supported by the vacuum vessel, requiring the entire structure to be analyzed as a system. Without the use of the substructuring technique, the required man hours and computer core would have made timely design analysis impossible. To illustrate the technique, the detailed design analysis of the concept Torsatron (with helical coils and T.F. coils) is presented

  16. Thermal analysis of the forced cooled conductor for the TF [toroidal field] superconducting coils in the TIBER II ETR design

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1987-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) is being designed to provide nuclear testing capabilities for first wall and blanket design concepts. The baseline design for TIBER II is to provide steady-state nuclear burn capabilities. These objectives must be met using reactor relevant components, such as state-of-the-art current drive schemes coupled with superconducting toroidal field (TF) and poloidal field (PF) coils. The design is also constrained to be cost effective, which forces the machine to be as small as possible. This last constraint limits the nuclear shielding in TIBER. Therefore, the TF coils will have a high nuclear heat load of up to 4.5 kW per coil. The cooling scheme and the thermal analysis for this design are presented

  17. Toroidal field coil design concept and structural support system for CTHR

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, R. B.; Kelly, J. L.; Ruck, G. W.

    1980-09-01

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report.

  18. High-sensitivity TMS/fMRI of the Human Motor Cortex Using a Dedicated Multichannel MR Coil.

    Science.gov (United States)

    Navarro de Lara, Lucia I; Tik, Martin; Woletz, Michael; Frass-Kriegl, Roberta; Moser, Ewald; Laistler, Elmar; Windischberger, Christian

    2017-04-15

    To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments. Copyright

  19. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  20. ROXIE the Routine for the Optimization of Magnet X-sections, Inverse Field Computation and Coil End Design

    CERN Document Server

    Russenschuck, Stephan

    1999-01-01

    The ROXIE software program package has been developed for the design of the superconducting magnets for the LHC at CERN. The software is used as an approach towards the integrated design of superconducting magnets including feature-based coil geometry creation, conceptual design using genetic algorithms, optimization of the coil and iron cross-sections using a reduced vector-potential formulation, 3-D coil end geometry and field optimization using deterministic vector- optimization techniques, tolerance analysis, production of drawings by means of a DXF interface, end-spacer design with interfaces to CAD-CAM for the CNC machining of these pieces, and the tracing of manufacturing errors using field quality measurements. This paper gives an overview of the methods applied in the ROXIE program. (9 refs).

  1. Stability Studies of a New Design Au/Pt Thermocouple Without a Strain Relieving Coil

    Science.gov (United States)

    Jahan, Ferdouse; Ballico, Mark

    2007-12-01

    The performance of a simple, new design Au/Pt thermocouple developed by NMIA is assessed. This thermocouple is proposed as a more accurate replacement, over the temperature range from 0 to 1,000°C, for the commonly used Type R and S industrial transfer standards, in a robust form familiar to industrial calibration laboratories. Due to the significantly different thermal expansions of the Au and Pt thermoelements, reported designs of the Au/Pt thermocouple incorporate a strain-relieving coil or bridge at the thermocouple junction. As the strain relieving coil is mechanically delicate, these thermocouples are usually mounted in a protective quartz tube assembly, like a standard platinum resistance thermometer (SPRT). Although providing uncertainties at the mK level, they are more delicate than the commonly used Type R and S thermocouples. A new and simple design of the Au/Pt thermocouple was developed in which the differential thermal expansion between Au and Pt is accommodated in the thermocouple leads, facilitated by a special head design. The resulting thermocouple has the appearance and robustness of the traditional Type R and S thermocouples, while retaining stability better than 10 mK up to 961°C. Three thermocouples of this design were calibrated at fixed points and by comparison to SPRTs in a stirred salt bath. In order to assess possible impurity migration, strain effects, and mechanical robustness, sequences of heat treatment up to a total of 500 h together with over 50 thermal cycles from 900°C to ambient were performed. The effect of these treatments on the calibration was assessed, demonstrating the sensors to be robust and stable to better than 10 mK. The effects on the measured inhomogeneity of the thermocouple were assessed using the NMIA thermocouple scanning bath.

  2. The coiled coil motif in polymer drug delivery systems.

    Science.gov (United States)

    Pechar, Michal; Pola, Robert

    2013-01-01

    The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. MHD equilibrium methods for ITER [International Thermonuclear Experimental Reactor] PF [poloidal field] coil design and systems analysis

    International Nuclear Information System (INIS)

    Strickler, D.J.; Galambos, J.D.; Peng, Y.K.M.

    1989-03-01

    Two versions of the Fusion Engineering Design Center (FEDC) free-boundary equilibrium code designed to computer the poloidal field (PF) coil current distribution of elongated, magnetically limited tokamak plasmas are demonstrated and applied to the systems analysis of the impact of plasma elongation on the design point of the International Thermonuclear Experimental Reactor (ITER). These notes were presented at the ITER Specialists' Meeting on the PF Coil System and Operational Scenario, held at the Max Planck Institute for Plasma Physics in Garching, Federal Republic of Germany, May 24--27, 1988. 8 refs., 6 figs., 4 tabs

  4. Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.

  5. Technical design and commissioning of the KATRIN large-volume air coil system

    Science.gov (United States)

    Erhard, M.; Behrens, J.; Bauer, S.; Beglarian, A.; Berendes, R.; Drexlin, G.; Glück, F.; Gumbsheimer, R.; Hergenhan, J.; Leiber, B.; Mertens, S.; Osipowicz, A.; Plischke, P.; Reich, J.; Thümmler, T.; Wandkowsky, N.; Weinheimer, C.; Wüstling, S.

    2018-02-01

    The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.

  6. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  7. Design and Fabrication of a Supporting Structure for 3.6m Long Nb3Sn Racetrack Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Anerella, M.; Barzi, E.; Caspi, Shlomo; Cheng, Daniel; Dietderich, Daniel; Gourlay, Steve; Hafalia, A. Ray; Hannaford, Charles; Lietzke, Alan; Nobrega, A.R.; Sabbi, GianLuca; Schmalzle, J.; Wanderer, R. J; Zlobin, A.V.; Ferracin, P.

    2007-06-01

    As part of the LHC Accelerator Research Program (LARP), three US national laboratories (BNL, FNAL, and LBNL) are currently engaged in the development of superconducting magnets for the LHC Interaction Regions (IR) beyond the current design. As a first step towards the development of long Nb{sub 3}Sn quadrupole magnets, a 3.6 m long structure, based on the LBNL Subscale Common-Coil Magnet design, will be fabricated, assembled, and tested with aluminum-plate 'dummy coils'. The structure features an aluminum shell pre-tensioned over iron yokes using pressurized bladders and locking keys (bladder and key technology). Pre-load homogeneity and mechanical responses are monitored with pressure sensitive films and strain gauges mounted on the aluminum shell and the dummy coils. The details of the design and fabrication are presented and discussed, and the expected mechanical behavior is analyzed with finite element models.

  8. Engineering design and integration of in-vessel single turn segmental coil in vacuum vessel of SST-1

    Science.gov (United States)

    Jayswal, Snehal; Chauhan, P.; Santra, P.; Vasava, K.; Perekh, T.; Patel, H.; Biswas, P.; Pradhan, S.

    2017-04-01

    SST-1 tokamak is having the error field due to unsymmetrical positioning of Toroidal field coils which push the plasma to inner side from its major radius of 1100 mm. hence it is required to install the In-vessel Coil (PF6) at a location of 1350 mm radius and elevation of 350 mm above and below the mid plane of the toroidal field coils. The In-Vessel coil was decided to make in eight segments for futuristic use, to control the individual localized error field correction by supplying the different current. A single turn, eight segments, copper conductor with 18 mm diameter with GFRP insulation and in housed in SS304 L casing to carry 8000 A current for 10 s was designed and installed in vacuum vessel of SST-1. This paper will present the design drivers, material selection, advantages and constraints of the in-vessel coils, its conceptual and engineering design, CAD models, finite element analysis using ANSYS, its fabrication, quality assurance/control and assembly/integration aspects inside vacuum vessel of SST-1.

  9. ARCIMBOLDO on coiled coils.

    Science.gov (United States)

    Caballero, Iracema; Sammito, Massimo; Millán, Claudia; Lebedev, Andrey; Soler, Nicolas; Usón, Isabel

    2018-03-01

    ARCIMBOLDO solves the phase problem by combining the location of small model fragments using Phaser with density modification and autotracing using SHELXE. Mainly helical structures constitute favourable cases, which can be solved using polyalanine helical fragments as search models. Nevertheless, the solution of coiled-coil structures is often complicated by their anisotropic diffraction and apparent translational noncrystallographic symmetry. Long, straight helices have internal translational symmetry and their alignment in preferential directions gives rise to systematic overlap of Patterson vectors. This situation has to be differentiated from the translational symmetry relating different monomers. ARCIMBOLDO_LITE has been run on single workstations on a test pool of 150 coiled-coil structures with 15-635 amino acids per asymmetric unit and with diffraction data resolutions of between 0.9 and 3.0 Å. The results have been used to identify and address specific issues when solving this class of structures using ARCIMBOLDO. Features from Phaser v.2.7 onwards are essential to correct anisotropy and produce translation solutions that will pass the packing filters. As the resolution becomes worse than 2.3 Å, the helix direction may be reversed in the placed fragments. Differentiation between true solutions and pseudo-solutions, in which helix fragments were correctly positioned but in a reverse orientation, was found to be problematic at resolutions worse than 2.3 Å. Therefore, after every new fragment-placement round, complete or sparse combinations of helices in alternative directions are generated and evaluated. The final solution is once again probed by helix reversal, refinement and extension. To conclude, density modification and SHELXE autotracing incorporating helical constraints is also exploited to extend the resolution limit in the case of coiled coils and to enhance the identification of correct solutions. This study resulted in a specialized mode

  10. Programming protein self assembly with coiled coils

    Science.gov (United States)

    Dietz, Hendrik; Bornschlögl, Thomas; Heym, Roland; König, Frauke; Rief, Matthias

    2007-11-01

    The controlled assembly of protein domains into supramolecular structures will be an important prerequisite for the use of functional proteins in future nanotechnology applications. Coiled coils are multimerization motifs whose dimerization properties can be programmed by amino acid sequence. Here, we report programmed supramolecular self-assembly of protein molecules using coiled coils and directly demonstrate its potential on the single molecule level by AFM force spectroscopy. We flanked two different model proteins, Ig27 from human cardiac titin and green fluorescent protein (GFP), by coiled coil binding partners and studied the capability of these elementary building blocks to self-assemble into linear chains. Simple sterical constraints are shown to control the assembly process, providing evidence that many proteins can be assembled with this method. An application for this technique is the design of polyproteins for single molecule force spectroscopy with an integrated force-calibration standard.

  11. Magnetic Design and Code Benchmarking of the SMC (Short Model Coil) Dipole Magnet

    CERN Document Server

    Manil, P; Rochford, J; Fessia, P; Canfer, S; Baynham, E; Nunio, F; de Rijk, G; Védrine, P

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 to complement the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb3Sn dipole magnet. In 2009, the EuCARD/HFM (High Field Magnets) program took over these programs. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet is designed to reach a peak field of about 13 Tesla (T) on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb3Sn cable, by applying different levels of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has been realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. The goal of the magnetic design presented in this paper is to match the high field region with the high stress region, located alo...

  12. A novel analytical description of periodic volume coil geometries in MRI

    Science.gov (United States)

    Koh, D.; Felder, J.; Shah, N. J.

    2018-03-01

    MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.

  13. Comparison of 2-D Magnetic Designs of Selected Coil Configurations for the Next European Dipole (NED)

    CERN Document Server

    Toral, F; Felice, H; Fessia, Paolo; Loveridge, P W; Regis, Federico; Rochford, J; Sanz, S; Schwerg, Nikolai; Védrine, P; Völlinger, Christine

    2007-01-01

    The Next European Dipole (NED) activity is developing a high-performance Nb3Sn wire (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T), within the framework of the Coordinated Accelerator Research in Europe (CARE) project. This activity is expected to lead to the fabrication of a large aperture, high field dipole magnet. In preparation for this phase, a Working Group on Magnet Design and Optimization (MDO) has been established to propose an optimal design. Other parallel Work Packages are concentrating on relevant topics, such as quench propagation simulation, innovative insulation techniques, and heat transfer measurements. In a first stage, the MDO Working Group has selected a number of coil configurations to be studied, together with salient parameters and features to be considered during the evaluation: the field quality, the superconductor efficiency, the conductor peak field, the stored magnetic energy, the Lorentz Forces and the fabrication difficulties. 2-D magnetic calc...

  14. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  15. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    Directory of Open Access Journals (Sweden)

    Haghnegahdar A

    2014-09-01

    Full Text Available Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF. Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field. This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series which were separated from each other by a distance equal to the radius of one coil (12.5 cm. The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator. Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis.

  16. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  17. Development of a new RF coil and {gamma}-ray radiation shielding assembly for improved MR image quality in SPECT/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seunghoon; Hamamura, Mark J; Roeck, Werner W; Muftuler, L Tugan; Nalcioglu, Orhan [Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA (United States)], E-mail: seunghoh@uci.edu

    2010-05-07

    Magnetic resonance (MR)-based multimodality imaging systems, such as single-photon emission tomography (SPECT)/magnetic resonance imaging (MRI) or positron emission tomography (PET)/MRI, face many difficulties because of problems with the compatibility of the nuclear detector system with the MR system. However, several studies have reported on the design considerations of MR-compatible nuclear detectors for combined SPECT/MRI. In this study, we developed a new radiofrequency (RF) coil and {gamma}-ray radiation shielding assembly to advance the practical implementation of SPECT/MRI in providing high sensitivity while minimizing the interference between the MRI and SPECT systems. The proposed assembly consists of a three-channel receive-only RF coil and {gamma}-ray radiation shields made of a specialized lead composite powder designed to reduce conductivity and thus minimizing any effect on the magnetic field arising from the induced eddy currents. A conventional birdcage RF coil was also tested for comparison with the proposed RF coil. Quality (Q)-factors were measured using both RF coils without any shielding, with solid lead shielding, and with our composite lead shielding. Signal-to-noise ratios (SNRs) were calculated using 4 T MR images of phantoms both with and without the new {gamma}-ray radiation shields. The Q-factor and SNR measurements demonstrate the improved MRI performance due to the new RF coil/{gamma}-ray radiation shield assembly designed for SPECT/MRI, making it a useful addition to multimodality imaging technology not only for animal studies but also for in vivo study of humans.

  18. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    Science.gov (United States)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  19. A DT fusion reactor design in field-reversed configuration using normal conductive coils

    Science.gov (United States)

    Hirano, Y.; Sekiguchi, J.; Matsumoto, T.; Asai, T.; Nogi, Y.; Watanabe, M.; Takahashi, T.

    2018-01-01

    Assuming continued stability, favorable energy confinement time scaling, and an effective current drive and maintenance methods, a feasible DT fusion reactor design is proposed for field-reversed configuration (FRC) which uses normal conductive copper magnetic field coils at room temperature. The reactor has 3 GW fusion power, 1.5 MW m‑2 neutron wall loading at the first wall, and thermal loading less than 1 MW m‑2 at diverter plates. Plasma has an almost straight cylindrical shape of 40 m in length and 8.6 m in diameter. FRC can obtain very high beta (over 0.7 in average) and the magnetic field strength of the reactor will be 1.215 T, which can be produced by normal conductive coils having 70 m in length, 17.6 m in diameter, and 1.5 m in thickness with 0.6 effective conductive area ratio. Its Ohmic power loss is ~74 MW, which is less than 10% of the expected electric power output. A scenario to reach ignition from the initial formation is considered. At first, two FRCs are formed at the both ends of the reactor by fast theta-pinch with a negative bias magnetic field 6 m in length and 0.5 m in diameter. The FRCs are accelerated up to 250 km s‑1 by the gradient of magnetic field strength towards the center of the burning region, collide with each other, and form a single large FRC. Their kinetic energy is converted to thermal energy, and the merged FRC is 10 m in length and 1.8 m in diameter. This FRC plasma is brought to ignition by intensive neutral beam injection (NBI) heating and particle supply. Given 200 s heating duration, the maximum NBI power is ~250 MW before alpha particle heating becomes significant. After ignition, NBI heating is not required, but there is a possibility that some part of equilibrium current must be supplied by the NBI in the MeV region.

  20. Design and evaluation of a 1.1-GHz surface coil resonator for electron paramagnetic resonance-based tooth dosimetry.

    Science.gov (United States)

    Sugawara, Hirotaka; Hirata, Hiroshi; Petryakov, Sergey; Lesniewski, Piotr; Williams, Benjamin B; Flood, Ann Barry; Swartz, Harold M

    2014-06-01

    This paper describes an optimized design of a surface coil resonator for in vivo electron paramagnetic resonance (EPR)-based tooth dosimetry. Using the optimized resonator, dose estimates with the standard error of the mean of approximately 0.5 Gy were achieved with irradiated human teeth. The product of the quality factor and the filling factor of the resonator was computed as an index of relative signal intensity in EPR tooth dosimetry by the use of 3-D electromagnetic wave simulator and radio frequency circuit design environment (ANSYS HFSS and Designer). To verify the simulated results of the signal intensity in our numerical model of the resonator and a tooth sample, we experimentally measured the radiation-induced signals from an irradiated tooth with an optimally designed resonator. In addition to the optimization of the resonator design, we demonstrated the improvement of the stability of EPR spectra by decontamination of the surface coil resonator using an HCl solution, confirming that contamination of small magnetic particles on the silver wire of the surface coil had degraded the stability of the EPR spectral baseline.

  1. Sodium-immersed electromagnetic pump design and development of large coil under high temperature

    International Nuclear Information System (INIS)

    Naohara, Nobuyuki; Ohto, Akihiro; Ishida, Masayoshi; Kuroki, Toshitaka; Katsuki, Kenji; Kumazawa, Ryoji.

    1993-01-01

    A sodium-immersed electromagnetic pump (EMP) has special features of high reliability, high maintainability and nonrestrictions for installation, in comparison with a mechanical pump. This type of EMP has the potential to simplify the FBR plant system by its application to the primary system. In this paper, a study on practical EMP application focusing on an EMP system and the structural concept, and a development of a coil under high temperature focusing on the electrical insulation system of a large coil are described. For practical EMP application, the system components and the structural concept for the modular double pool reactor are established. For development of a coil, heat cycle testing from the point of view of mechanical and electrical characteristics under high temperature is first carried out. It is confirmed that the electrical insulation characteristics for the first-step heat cycle test are adequate. (author)

  2. Heat load characteristics and new design using one-coil model superconducting magnets

    Science.gov (United States)

    Jizo, Yoshihiro; Akagi, Hidenari; Yamaguchi, Takashi; Terai, Motoaki; Shinobu, Masatoshi

    Superconducting magnets (SCM) for Maglev trains are vibrated by the electromagnetic force arising from the magnetic field of higher harmonics, which is due to the arrangement of the ground coils. The heat load within the liquid helium temperature region increases by the vibration of the magnets. This paper reports a heat load generation estimation mechanism due to the above-mentioned vibration, as well as effective measures of reducing heat load generation. In addition, we show how a one-coil type SCM can reduce the heat load generation in electromagnetic disturbance tests.

  3. Design Aspects on Winding of an MgB2 Superconducting Generator Coil

    DEFF Research Database (Denmark)

    Magnusson, N.; Eliassen, J.C.; Abrahamsen, Asger Bech

    2015-01-01

    by the thickness of the turn-to-turn electrical insulation. Here we discuss the impact of the insulation and suggest the use of a one-step winding process, employing wet-winding, where the applied epoxy also constitutes the insulation layer between turns. In this way the coil is densified by approximately 10......% compared to the use of an additional, dedicated, electrical insulation like Kapton for wet-winding or glass-fibre for dry-winding followed by vacuum impregnation. We show the results of a trial winding of 500 m of MgB2 superconducting wire into a double pancake coil using the wet-winding technique...

  4. AAFreqCoil: a new classifier to distinguish parallel dimeric and trimeric coiled coils.

    Science.gov (United States)

    Wang, Xiaofeng; Zhou, Yuan; Yan, Renxiang

    2015-07-01

    Coiled coils are characteristic rope-like protein structures, constituted by one or more heptad repeats. Native coiled-coil structures play important roles in various biological processes, while the designed ones are widely employed in medicine and industry. To date, two major oligomeric states (i.e. dimeric and trimeric states) of a coiled-coil structure have been observed, plausibly exerting different biological functions. Therefore, exploration of the relationship between heptad repeat sequences and coiled coil structures is highly important. In this paper, we develop a new method named AAFreqCoil to classify parallel dimeric and trimeric coiled coils. Our method demonstrated its competitive performance when benchmarked based on 10-fold cross validation and jackknife cross validation. Meanwhile, the rules that can explicitly explain the prediction results of the test coiled coil can be extracted from the AAFreqCoil model for a better explanation of user predictions. A web server and stand-alone program implementing the AAFreqCoil algorithm are freely available at .

  5. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  6. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    Science.gov (United States)

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  7. Design and operation of a novel Faraday-magnetometer using superconducting coils

    International Nuclear Information System (INIS)

    Koebler, U.; Deloie, F.

    1976-06-01

    This report gives a detailed description of the construction and operating procedures of a novel Faraday balance system which uses separate superconducting coils for field and field gradient. Special attention is given to all calibration problems, and hence to the limitations of accuracy with which magnetization measurements can be performed. (orig./WBU) [de

  8. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  9. Antenna and coil design for wireless signal detection and charging of embedded power active contact lens.

    Science.gov (United States)

    Ng, Benny; Heckler, Paul; Do, Alex; Azar, Phillip; Leon, Errol; Smilkstein, Tina

    2014-01-01

    This paper presents a screen printed 2.4 GHz antenna and induction charging coil for an active contact lens with a single large pixel user display and on-board 3.8 V 5 uAh rechargeable battery. The antenna traces are printed using silver conductive paste on a 25 um polyethylene terephthalate (PET) substrate. The incoming signal from the antenna feeds into an IC that amplifies and rectifies the signal. The coil provides wireless energy transfer to inductively charge a thin film battery [1] located on the contact lens. The printed antenna achieved a S11 of -4 dB at 2.4 GHz and a gain of -13 dB.

  10. Design developments for the ITER in-Vessel equilibrium pick-up Coils and Halo current Sensors

    International Nuclear Information System (INIS)

    Chitarin, G; Grando, L.; Pomaro, N.; Peruzzo, S.; Taccon, C.

    2006-01-01

    The ITER magnetic diagnostics must provide essential information to be used both for plasma diagnostic purposes, and as feedback signals for the machine control loops. Some of the sensors have to be installed in a hostile environment characterized by severe neutron irradiation and plasma heat loads, which can reduce the sensor lifetime (due to mechanical and electrical damage) and also generate undesired DC signals, which might compromise the accuracy of the measurements obtained by time-integration. The paper is focused on the design development and optimization of a typical in-vessel tangential pick-up Coil. The work is aimed to achieve the required measurement precision in spite of Radiation Induced Electromotive Force (RIEMF) and Radiation Induced Thermo-Electric Sensitivity (RITES), which have recently been documented to take place in Mineral Insulated Cables (MIC). To this purpose, a substantial reduction of the thermal gradient and the maximum temperature due to nuclear heating in the pick-up coils is considered necessary. Within the limits of several heavy engineering constraints, a new concept of magnetic pick up coil has been developed. A winding made of a ceramic-coated conductor (instead of a MIC) and '' impregnated '' with ceramic filler is proposed. Different material choices for the coil support structure have been investigated. Similar issues are related to the Halo Sensor design. The possibility of replacing the circular tubes used as support of the Rogowski coils with a ceramic support in order to avoid the non-linear effect of the magnetic material has also been studied. The replacement of the MIC of the winding with a ceramic-coated wire is also investigated in order to increase of the effective area of the sensor. The paper includes also a critical review of each stage of the measurement chain (probes, cabling, conditioning electronics and data acquisition) in order to assess the compliance with the overall system precision that is required for

  11. ROXIE: Routine for the optimization of magnet X-sections, inverse field calculation and coil end design. Proceedings

    International Nuclear Information System (INIS)

    Russenschuck, S.

    1999-01-01

    The Large Hadron Collider (LHC) will provide proton-proton collisions with a center-of-mass energy of 14 TeV which requires high field superconducting magnets to guide the counter-rotating beams in the existing LEP tunnel with a circumference of about 27 km. The LHC magnet system consists of 1232 superconducting dipoles and 386 main quadrupoles together with about 20 different types of magnets for insertions and correction. The design and optimization of these magnets is dominated by the requirement of a extremely uniform field which is mainly defined by the layout of the superconducting coils. The program package ROXIE (Routine for the Optimization of magnet X-sections, Inverse field calculation and coil End design) has been developed for the design and optimization of the coil geometries in two and three dimensions. Recently it has been extended in a collaboration with the University of Graz, Austria, to the calculation of saturation induced effects using a reduced vector-potential FEM formulation. With the University of Stuttgart, Germany, a collaboration exists fro the application of the BEM-FEM coupling method for the 2D and 3D field calculation. ROXIE now also features a TCL-TK user interface. The growing number of ROXIE users inside and outside CERN gave rise to the idea of organizing the 'First International ROXIE Users Meeting and Workshop' at CERN, March 16-18, 1998 which brought together about 50 researchers in the field. This report contains the contributions to the workshop and describes the features of the program, the mathematical optimization techniques applied and gives examples of the recent design work carried out. It also gives the theoretical background for the field computation methods and serves as a handbook for the installation and application of the program. (orig.)

  12. Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil

    Directory of Open Access Journals (Sweden)

    Yunsuo Duan

    2008-01-01

    Full Text Available Computational methods such as the finite difference time domain (FDTD play an important role in simulating radiofrequency (RF coils used in magnetic resonance imaging (MRI. The choice of absorbing boundary conditions affects the final outcome of such studies. We have used FDTD to assess the Berenger's perfectly matched layer (PML as an absorbing boundary condition for computation of the resonance patterns and electromagnetic fields of RF coils. We first experimentally constructed a high-pass birdcage head coil, measured its resonance pattern, and used it to acquire proton (1H phantom MRI images. We then computed the resonance pattern and B1 field of the coil using FDTD with a PML as an absorbing boundary condition. We assessed the accuracy and efficiency of PML by adjusting the parameters of the PML and comparing the calculated results with measured ones. The optimal PML parameters that produce accurate (comparable to the experimental findings FDTD calculations are then provided for the birdcage head coil operating at 127.72 MHz, the Larmor frequency of 1H at 3 Tesla (T.

  13. Design, Realization and Experiments with a new RF Head Probe Coil for Human Vocal Tract Imaging in an NMR device

    Science.gov (United States)

    Přibil, J.; Gogola, D.; Dermek, T.; Frollo, I.

    2012-01-01

    Magnetic resonance imaging (MRI) is nowadays widely used in medicine for diagnostic imaging and in research studies. The modeling of the human vocal tract acoustics has recently attracted considerable interest. This paper describes the design, realization and first MR scan experiments with a new head probe coil for vocal tract imaging in the open-air MRI equipment working in a weak magnetic field up to 0.2 T. The paper also describes an experimental setting for sound recording during the MR imaging.

  14. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per

    2015-01-01

    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time...... is designed for such valves using transient finite-element analysis of the electromagnetic circuit. The valve dynamics are coupled to the fluid restrictive forces, which significantly influence the effective actuator force. Fluid forces are modeled based on transient computational fluid dynamics models.......5 bar at 600 L/min flow rate, enabling efficient operation of digital hydraulic pumps and motors....

  15. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.

    Science.gov (United States)

    Lim, Hyung-Gyu; Kim, Jong Hoon; Shin, Dong Ho; Woo, Seong Tak; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Wei, Qun; Cho, Jin-Ho

    2015-01-01

    Many types of fully implantable hearing aids have been developed. Most of these devices are implanted behind the ear. To maintain the implanted device for a long period of time, a rechargeable battery and wireless power transmission are used. Because inductive coupling is the most renowned method for wireless power transmission, many types of fully implantable hearing aids are transcutaneously powered using inductively coupled coils. Some patients with an implantable hearing aid require a method for conveniently charging their hearing aid while they are resting or sleeping. To address this need, a wireless charging pillow has been developed that employs a circular array coil as one of its primary parts. In this device, all primary coils are simultaneously driven to maintain an effective charging area regardless of head motion. In this case, however, there may be a magnetic weak zone that cannot be charged at the specific secondary coil's location on the array coil. In this study, assuming that a maximum charging distance is 4 cm, a circular array coil-serving as a primary part of the charging pillow-was designed using finite element analysis. Based on experimental results, the proposed device can charge an implantable hearing aid without a magnetic weak zone within 4 cm of the perpendicular distance between the primary and secondary coils.

  16. A birdcage model for the Chinese meridian system: Part V: Applications to animals and plants.

    Science.gov (United States)

    Yung, Kaung-Ti

    2005-01-01

    Since we all belong to the Kingdom Animalia, it is not surprising that animals in general benefit from the healing art of acupuncture that helps humans. Consequently, any proposed mechanism of Qi and acupuncture for humans based on animal physiology is probably applicable to animals as well, yet none is capable of explaining most of the complicated physiological effects observed. Not much attention was paid to the effects of Qi and acupuncture on plants (Kingdom Plantae) and on enoki mushrooms (Kingdom Fungi) by the TCM community, probably because they cannot be explained in terms of neurochemistry or connective tissue structures. However, our transmission and birdcage model is in principle applicable across Kingdom boundaries, because it is based on physical properties underlying the biological structure, thus its explanatory power is not restricted by categories of biology. We estimate several possible parameters of the birdcage model for animals and plants and give a possible interpretation for the sound fertilization phenomenon.

  17. Rope coiling

    Indian Academy of Sciences (India)

    Sitichoke Amnuanpol

    2017-10-19

    Oct 19, 2017 ... In rope coiling the centre of the circle is static. How- ever, it evolves in time as seen in the curling of .... friction force between the rope and the plane, because no significant changes in the coiling radius R and ... friction force relative to the axial compressive forces,. i.e. gravitational force and inertial force, ...

  18. Rope coiling

    Indian Academy of Sciences (India)

    We present the results of the combined experimental and theoretical investigation of rope coiling arising from the buckling instability. The shape of the rope is perfectly circular in the coiling region and is straight in the region below the feeding point. In between these two distant regions, the rope assumes a catenary-like ...

  19. Conceptual design of plasma position control of SST-1 tokamak using vertical field coil

    International Nuclear Information System (INIS)

    Gulati, Hitesh Kumar; Patel, Kiritkumar B.; Dhongde, Jasraj

    2015-01-01

    SST-1 (Steady State Superconducting Tokamak) is a plasma confinement device in Institute for Plasma Research (IPR) India. SST-1 has been commissioned successfully and has been carrying out plasma experiments since the beginning of 2014 achieved a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼ 500 ms. SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1s. Based on the solution of Grad-Shafranov equation the shift of plasma column center from geometrical centre of vacuum chamber is measured using various magnetic probes and flux loops installed in the machine. The closed feedback loop uses plasma current (Ip), Delta R as feedback signal and manipulate the vertical field current (Ivf). The discharge starts with feed forward loop using initially provided reference then the active feedback starts after discharge by few msec once plasma column is completely formed. The feedback loop time is of the order of 10 msec. The primary objective is to acquire plasma position control related signals, compute plasma position and generate position correction signal for VF coil power supply, communicate correction to VF coil power supply and modify VF power supply output in a deterministic time span. In this we present the methodology used for plasma horizontal displacement control using vertical field and discuss the preliminary results. (author)

  20. A 2-in-1 single-element coil design for transcranial magnetic stimulation and magnetic resonance imaging.

    Science.gov (United States)

    Lu, Hai; Wang, Shumin

    2018-01-01

    To demonstrate the feasibility of turning transcranial magnetic stimulation (TMS) coil for MRI signal reception. A critically coupled network was formed by using a resonated turn of TMS coil as the secondary and a regular radiofrequency (RF) coil as the primary. A third coil was positioned between the two coils for detuning during RF transmission. Bench measurement, numerical simulation, and MRI experiment were performed for validation. The signal-to-noise ratio of the proposed 2-in-1 coil is 35% higher in its field of view, compared with a MRI-only reference coil of the same size, made by the same material, and backed up by an untuned TMS coil, but lower than a RF surface coil of the same size without any TMS coil nearby. Spin-echo images of the human brain further validated its performance. The proposed method can transform TMS coil for MRI signal acquisition with virtually no modifications on the TMS side. It not only enables flexible and close positioning of TMS coil inside MRI scanner, but also improves the signal-to-noise ratio compared with conventional implementations. It can be applied as a building block for developing advanced concurrent TMS/MRI hardware. Magn Reson Med 79:582-587, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix A: energy storage coil and superconductor

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1979-09-01

    The technical aspects of a 1-GWh Superconducting Magnetic Energy Storage (SMES) coil for use as a diurnal load-leveling device in an electric utility system are presented. The superconductor for the coil is analyzed, and costs for the entire coil are developed

  2. α/β coiled coils

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-01

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold. DOI: http://dx.doi.org/10.7554/eLife.11861.001 PMID:26771248

  3. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  4. Design of a 28 MW pulse facility for testing superconducting coils to several hundred megajoules capacity

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1980-01-01

    Railway traction motors are available in unit sizes convenient for installation and series-parallel grouping. They are rugged. Industry builds and refurbishes them with good economy and in quantities replenishing the rolling stock. We find them well suited for reversing the current in a superconducting winding. We focus on a pulsed energy of 20 to 100 MJ, discussing our analysis and facility planning. Limitations are imposed by the following maximum numbers tolerated by the motor - pulsed current of 3.0 to 3.5 kA, current change of 40 kA/s, and pulsed voltage of 1.8 kV. Hence, the number of machines needed in parallel follows from the coil current and its rate of change. The number in series is determined by the voltage. The power transfer is limited by the torsional strength of the motor shaft to a value affected by the flywheel mass

  5. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T.

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (B o ) inhomogeneity, RF field (B 1 ) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the B o inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B 1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B 1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil

  6. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255 mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200 mm and axial-length of 100 mm), an increase of about a maximum of 3 μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system

  7. Design and optimization of a 3-coil resonance-based wireless power transfer system for biomedical implants

    KAUST Repository

    Yi, Ying

    2014-09-01

    This paper presents a resonance-based wireless power transfer system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. We theoretically analyzed the system and characterized it by measuring its inductance, self-resonant frequency, and quality factor Q. In our resonance-based wireless power transfer prototype, we proposed a 3-coil system, using two 15-mm radius implantable coils, with a resonance frequency of 6.76MHz. This system can effectively transfer power for a distance of up to 50mm. Moreover, our proposed 3-coil system can achieve a high Q-factor and has a comparable power transfer efficiency (PTE) to previously reported works about 3-coil and 4-coil systems. The experimental PTE can achieve 82.4% at a separation distance of 20mm and more than 10% PTE at a distance of 40mm.

  8. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  10. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  11. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  12. Nested Surface Coils for Multinuclear NMR

    OpenAIRE

    Magill, Arthur; Gruetter, Rolf

    2011-01-01

    This article introduces the design of surface coils for multinuclear applications. The relative sensitivities of several NMR-visible nuclei of biological interest are considered, and the motivations to operate an RF coil at multiple frequencies, both sequentially and simultaneously, are reviewed. The design of nested surface coils is then developed. Magnetic fields generated by planar loop and butterfly coils are first introduced. The benefits of quadrature design are briefly considered, and ...

  13. Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils.

    Science.gov (United States)

    Park, Won Min; Bedewy, Mostafa; Berggren, Karl K; Keating, Amy E

    2017-09-05

    Synthetic protein assemblies that adopt programmed shapes would support many applications in nanotechnology. We used a rational design approach that exploits the modularity of orthogonally interacting coiled coils to create a self-assembled protein nanotriangle. Coiled coils have frequently been used to construct nanoassemblies and materials, but rarely with successful prior specification of the resulting structure. We designed a heterotrimer from three pairs of heterodimeric coiled coils that mediate specific interactions while avoiding undesired crosstalk. Non-associating pairs of coiled-coil units were strategically fused to generate three chains that were predicted to preferentially form the heterotrimer, and a rational annealing process led to the desired oligomer. Extensive biophysical characterization and modeling support the formation of a molecular triangle, which is a shape distinct from naturally occurring supramolecular nanostructures. Our approach can be extended to design more complex nanostructures using additional coiled-coil modules, other protein parts, or templated surfaces.

  14. Ejector COIL

    Science.gov (United States)

    Nikolaev, Valeriy D.; Svistun, Michael I.; Zagidullin, Marsel V.

    2004-06-01

    The historical ejector-like chemical oxygen iodine laser (COIL) contribution at the Lebedev Physical Institute, Samara Branch is briefly presented. Two possible schemes of such COIL which provide the high exhaust pressure are considered. The high-pressure hot driver nitrogen is carrier of iodine vapor in the first scheme. In the second version the additional nozzles with the low-pressure secondary nitrogen are employed for injection iodine vapor but the pure high-pressure driver nitrogen has the room temperature. The last COIL version was investigated in Lebedev Physical Institute in more detail and results of these investigations are presented. This ejector nozzle bank generates gain medium with high Mach number, low temperature and high gain. A high chemical efficiency up to 25% and the potential pressure recovery up to 90 torr have been achieved simultaneously.

  15. Design and construction of a novel1H/19F double-tuned coil system using PIN-diode switches at 9.4T.

    Science.gov (United States)

    Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N Jon

    2017-06-01

    A double-tuned 1 H/ 19 F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19 F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1 H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19 F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19 F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4 T

    Science.gov (United States)

    Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N. Jon

    2017-06-01

    A double-tuned 1H/19F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4 T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei.

  17. "Slinky" coils for neuromagnetic stimulation.

    Science.gov (United States)

    Zimmermann, K P; Simpson, R K

    1996-04-01

    Future advances in neuromagnetic stimulation depend significantly on the design of coils with improved focality. Although in the absence of internal current sources, no true focusing of magnetically induced currents is possible, improvements in the focality of current concentrations passing through an area of biologic tissue are achievable through variations of the shape, orientation and size of neuromagnetic stimulating coils. The "butterfly" and the "4-leaf" coils are two examples of planar designs which achieve improved focality through centralization of the maximum coil current and peripheral distribution of the return currents. We introduce the "slinky" coil design as a 3-dimensional generalization of the principle of peripheral distribution of return currents and demonstrate its advantages over planar designs.

  18. Large coil test structural analysis

    International Nuclear Information System (INIS)

    Clinard, J.A.; Hammonds, C.J.

    1986-01-01

    The International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is being utilized for testing of 2.5 x 3.5-m bore superconducting 8-T magnets produced by four international agencies (U.S., Euratom, Japan, and Switzerland). The definitive tests in the design configuration, six coils arranged in a compact torus, will begin in late 1985. Partial-array tests involving one US coil and the Japanese coil were completed in the fall of 1984. This presentation describes structural analysis using NASTRAN, with symmetry and superelement techniques, to predict the IFSMTF test stand and coil responses to various combinations of in-plane and out-of-plane loading conditions for both the partial-array and six-coil test configurations. Comparison to partial-array displacement and strain measurements are presented and discussed. Six-coil results and their utilization for determining safe levels of operation of the system are likewise discussed

  19. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  20. Lightweight Design of an HTS Coil for the VASIMR Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR contract Tai-Yang Research Company of Tennessee proposes to design, fabricate, and test an ultra-lightweight High Temperature Superconducting...

  1. Lightweight Design of an HTS Coil for the VASIMR Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR contract Tai-Yang Research Company of Tennessee proposes to design, fabricate, and test an ultra-lightweight High Temperature Superconducting...

  2. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  3. A birdcage model for the Chinese meridian system: part III. Possible mechanism of magnetic therapy.

    Science.gov (United States)

    Yung, Kaung-Ti

    2005-01-01

    Based on the electromagnetic model of the transmission line for the channel and the birdcage resonator for the meridian network, we interpret two effects, seemingly incomprehensible in terms of current Western physiology, the lasting effect and the remote effect. For the lasting effect, acupuncture enhances the amplitude of the Qi standing wave, and this increased amplitude is retained and thus is able to sustain a gradual remodeling of the extracellular matrix in interstitial connective tissues, resulting in a lasting therapeutic effect. For the remote effect (acupuncture effect far from the site of needle insertion), our model puts the mechanism of magnetic therapy on an equal footing with that of acupuncture. It may not be a coincidence that accounts of investigators in both acupuncture and magnetotherapy about the depth of the effective site--along cleavage planes between muscles, or between muscle and bone or tendon--are in accord with that of the Huang Di Nei Jing about the course of channels: "they are embedded and travel between interstitial muscles, deep and invisible." A possible magnetic field generated outside the birdcage may be manipulated to produce local areas of higher temperature or very strong fields.

  4. The clear and dark sides of water: influence on the coiled coil folding domain.

    Science.gov (United States)

    Vajda, Tamás; Perczel, András

    2016-06-01

    The essential role of water in extra- and intracellular coiled coil structures of proteins is critically evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the stability of this conformer type; ii) the water's paradox iii) design of coiled coil motifs and iv) expert opinion and outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman 'Janus-face' which means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal processes of oligomerization and amyloidosis of the very same polypeptide chain.

  5. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  6. Design, construction, and quality tests of the large Al-alloy mandrels for the CMS coil

    CERN Document Server

    Sgobba, Stefano; Fabbricatore, P; Farinon, S; Gaddi, A; Lauro, A; Levesy, B; Loche, L; Rondeaux, F; Sequeira-Lopes-Tavares, S; Valle, N

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Almost all large indirectly cooled solenoids constructed to date (e.g., Zeus, Aleph, Delphi, Finuda, Babar) comprise Al-alloy mandrels fabricated by welding together plates bent to the correct radius. The external cylinder of CMS will consist of five modules having an inner diameter of 6.8 m, a thickness of 50 mm and an individual length of 2.5 m. It will be manufactured by bending and welding thick plates (75 mm) of the strain hardened aluminum alloy EN AW-5083-H321. The required high geometrical tolerances and mechanical strength (a yield strength of 209 MPa at 4.2 K) impose a critical appraisal of the design, the fabrication techniques, the welding procedures and the quality controls. The thick flanges at both ends of each module will be fabricated as seamless rolled rings, circu...

  7. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Gräßl, Andreas, E-mail: Andreas.Graessl@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Winter, Lukas, E-mail: Lukas.Winter@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Thalhammer, Christof, E-mail: Christof.Thalhammer@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Renz, Wolfgang, E-mail: Wolfgang.Renz@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Siemens Healthcare, 91052 Erlangen (Germany); Kellman, Peter, E-mail: kellmanp@mail.nih.gov [Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, MD (United States); Martin, Conrad, E-mail: Conrad.Martin@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Knobelsdorff-Brenkenhoff, Florian von, E-mail: florian.von-knobelsdorff@charite.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, 13125 Berlin (Germany); Experimental and Clinical Research Center (ECRC), Charité – University Medicine Campus Berlin Buch, 13125 Berlin (Germany); Tkachenko, Valeriy, E-mail: v.o.tkachenko@googlemail.com [Experimental and Clinical Research Center (ECRC), Charité – University Medicine Campus Berlin Buch, 13125 Berlin (Germany); and others

    2013-05-15

    The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R = 4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R = 3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T.

  8. Large magnetic coils-design accompanying calculation and optimization. Regarding orthotropic interlayers, temperature and elastic supports-derivation of a special finite element

    International Nuclear Information System (INIS)

    Stelzer, J.F.; Sievers, A.; Welzel, R.

    1976-10-01

    This paper deals with finite element calculations of large coils as they are used as main coils in Tokamaks. They consist of copper layers with glass fibre reinforced resin interlayers inbedded in a strong steel ring. In a first analysis model the several epoxy layers are condensed to only one the tickness of which is equal to the sum of the single sizes. This fictitious layer is assumed to lie in the middle of the copper and is treated as an orthotropic material. In a following changed model the epoxy layer is situated between the steel ring and the copper. In this location the epoxy was suspected to suffer from the highest shear stresses. Both models employ springy trusses as supporting features which simulate the real elastic behaviour of a sustaining vault. Special attentions are given a) to the shear stresses in the epoxy, b) to the hot and cold states of the coils, and c) to the forces transferred from the coils to the sustaining vault. An optimal structure design is carried out concerning the steel ring. (orig./GG) [de

  9. Open design eight-channel transmit/receive coil for high-resolution and real-time ankle imaging at 7 T.

    Science.gov (United States)

    Orzada, Stephan; Bitz, Andreas K; Schäfer, Lena C; Ladd, Susanne C; Ladd, Mark E; Maderwald, Stefan

    2011-03-01

    At 1.5 T, real-time MRI of joint movement has been shown to be feasible. However, 7 T, provides higher SNR and thus an improved potential for parallel imaging acceleration. The purpose of this work was to build an open, U-shaped eight-channel transmit/receive microstrip coil for 7 T MRI to enable high-resolution and real-time imaging of the moving ankle joint. A U-shaped eight-channel transmit/receive array for the human ankle was built. S-parameters and g-factor were measured. SAR calculations of different ankle postures were performed to ensure patient safety. Inhomogeneities in the transmit field consequent to the open design were compensated for by the use of static RF shimming. High-resolution and real-time imaging was performed in human volunteers. The presented array showed good performance with regard to patient comfort and image quality. High acceleration factors of up to 4 are feasible without visible acceleration artifacts. Reasonable image homogeneity was achieved with RF shimming. Open, noncylindrical designs for transmit/receive coils are practical at 7 T and real-time imaging of the moving joint is feasible with the presented coil design.

  10. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces.

    Science.gov (United States)

    Fletcher, Jordan M; Bartlett, Gail J; Boyle, Aimee L; Danon, Jonathan J; Rush, Laura E; Lupas, Andrei N; Woolfson, Derek N

    2017-02-17

    The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.

  11. Crystallographic study on oligonucleotide coiled-coils

    OpenAIRE

    Luchi, Daniela de

    2008-01-01

    En la presente tesis doctoral se han realizado estudios estructurales de DNA. Estudios previos han demostrado que los coiled-coils de d(ATATATATATAT) y d(ATATATATAT) tienen unos parámetros geométricos muy diferentes. El objetivo de esta tesis es aclarar las propiedades de los coiled-coils.Con esta finalidad se han estudiado por cristalografía de Rayos X oligonucleótidos con diferentes secuencias y con extremos cohesivos que fijen la geometría de los coiled-coils. Se han utilizado oligonucleót...

  12. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  13. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1; Diseno mecanico del encapsulado de las bobinas de campo toroidal del Tokamak TPM1

    Energy Technology Data Exchange (ETDEWEB)

    Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  14. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-02-01

    Homomeric coiled-coils can self-assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled-coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled-coils. Collectively, our results demonstrate that high-resolution structure of coiled-coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled-coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled-coils. The computational methods developed here should be broadly applicable to studies of sequence-structure relationships in coiled-coils and the design of higher order assemblies with improved oligomerization specificity. © 2014 Wiley Periodicals, Inc.

  15. Effects of five-membered ring amino acid incorporation into peptides for coiled coil formation.

    Science.gov (United States)

    Oba, Makoto; Ito, Chika; Tanaka, Masakazu

    2018-03-01

    A five-membered ring amino acid (Ac 5 c), the peptides of which exhibit a preference for helical secondary structures, was introduced into peptides for the purpose of designing coiled coil peptides with high binding affinities. We prepared five types of peptides containing Ac 5 c with different numbers or at different positions. The incorporation of Ac 5 c into peptides enhanced their α-helicities; however, in contrast to our expectations, it did not result in stable coiled coil formation. The structures of side chains in hydrophobic amino acids, not α-helicities appeared to be important for stable hydrophobic interactions between peptides. Although we were unable to develop coiled coil peptides with high binding affinities, the present results will be useful for designing novel coiled coil peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  17. Coiled Coils - A Model System for the 21st Century.

    Science.gov (United States)

    Lupas, Andrei N; Bassler, Jens

    2017-02-01

    α-Helical coiled coils were described more than 60 years ago as simple, repetitive structures mediating oligomerization and mechanical stability. Over the past 20 years, however, they have emerged as one of the most diverse protein folds in nature, enabling many biological functions beyond mechanical rigidity, such as membrane fusion, signal transduction, and solute transport. Despite this great diversity, their structures can be described by parametric equations, making them uniquely suited for rational protein design. Far from having been exhausted as a source of structural insight and a basis for functional engineering, coiled coils are poised to become even more important for protein science in the coming decades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modulation of Coiled-Coil Dimer Stability through Surface Residues while Preserving Pairing Specificity.

    Science.gov (United States)

    Drobnak, Igor; Gradišar, Helena; Ljubetič, Ajasja; Merljak, Estera; Jerala, Roman

    2017-06-21

    The coiled-coil dimer is a widespread protein structural motif and, due to its designability, represents an attractive building block for assembling modular nanostructures. The specificity of coiled-coil dimer pairing is mainly based on hydrophobic and electrostatic interactions between residues at positions a, d, e, and g of the heptad repeat. Binding affinity, on the other hand, can also be affected by surface residues that face away from the dimerization interface. Here we show how design of the local helical propensity of interacting peptides can be used to tune the stabilities of coiled-coil dimers over a wide range. By designing intramolecular charge pairs, regions of high local helical propensity can be engineered to form trigger sequences, and dimer stability is adjusted without changing the peptide length or any of the directly interacting residues. This general principle is demonstrated by a change in thermal stability by more than 30 °C as a result of only two mutations outside the binding interface. The same approach was successfully used to modulate the stabilities in an orthogonal set of coiled-coils without affecting their binding preferences. The stability effects of local helical propensity and peptide charge are well described by a simple linear model, which should help improve current coiled-coil stability prediction algorithms. Our findings enable tuning the stabilities of coiled-coil-based building modules match a diverse range of applications in synthetic biology and nanomaterials.

  19. Predicting coiled coils by use of pairwise residue correlations.

    OpenAIRE

    Berger, B; Wilson, D B; Wolf, E; Tonchev, T; Milla, M; Kim, P S

    1995-01-01

    A method is presented that predicts coiled-coil domains in protein sequences by using pairwise residue correlations obtained from a (two-stranded) coiled-coil database of 58,217 amino acid residues. A program called PAIRCOIL implements this method and is significantly better than existing methods at distinguishing coiled coils from alpha-helices that are not coiled coils. The database of pairwise residue correlations suggests structural features that stabilize or destabilize coiled coils.

  20. Evolutionary patterns in coiled-coils.

    Science.gov (United States)

    Surkont, Jaroslaw; Pereira-Leal, Jose B

    2015-01-10

    Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  2. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    Science.gov (United States)

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    Science.gov (United States)

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-05

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens.

  4. Thomson's Jumping Ring Over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-03-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to jump upward or downward, depending on the starting position of the ring. These features shed significant light on the study of the force that causes the ring to jump.

  5. Design, construction and test of a corrector coil set for magnetic field homogenization of a dipolar magnet

    International Nuclear Information System (INIS)

    Pires, L.R.

    1987-01-01

    A method to improve the homogeneity of the distribution of the magnetic flux density in the gap of a dipole magnet. It is based on correcting the magnetic field by means of a system of coils, which employs etching thin copper foils, similarly as those for electronic circuits, is presented. The advantage of this method lies on its simplicity, its small space use, and its low price. The method was applied to correct the field of a dipole magnet, and it worked properly. (author) [pt

  6. Toroidal field coils for the PDX machine

    International Nuclear Information System (INIS)

    Bushnell, C.W.

    1975-01-01

    This paper describes the engineering design features of the TF coils for the PDX machine. Included are design details of the electrical insulation, water cooling, and coil segment joint which allows access to the central machine area. A discussion of the problems anticipated in the manufacture and the planned solutions are presented

  7. DESIGNING A COMPETITIVE ADVANTAGE MODEL WITH TECHNOLOGY ORIENTED APPROACH USING FAHP TECHNIQUE: A CASE STUDY IN COIL INDUSTRY

    Directory of Open Access Journals (Sweden)

    ABDOLHAMID S. GHADIKOLAEI

    2013-04-01

    Full Text Available One of the distinctive attributes of today’s successful companies is having at least one competitive advantage in one known area. Technological competency is an important advantage which helps improve the firm’s competitiveness. In fact, suitable use of new technologies can dramatically influence the innovation speed, decrease the time of product development cycle and also increase the rate of new product introduction. Firm-specific technological competencies help explain why a firm is different, how it changes over time, and whether it is capable of remaining competitive. In this study, technological competency factors (technology management, process technology, product technology are prioritized according to the competitive advantage levels(customer satisfaction, brand reputation, new product introduction, market share and competitive priorities (cost, price, quality, flexibility, time using fuzzy Analytic hierarchy process (FAHP with the aim of maximizing the nonfinancial performance at coil manufacture industry. The results indicate that within Iran coil industry, process technology is of greater importance than technology management and product technology.

  8. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  9. Coiled-coil driven membrane fusion: zipper-like vs. non-zipper-like peptide orientation.

    Science.gov (United States)

    Versluis, Frank; Dominguez, Juan; Voskuhl, Jens; Kros, Alexander

    2013-01-01

    Membrane fusion plays a central role in biological processes such as neurotransmission and exocytosis. An important class of proteins that induce membrane fusion are called SNARE (soluble N-ethyl malemeide sensitive factor attachment protein receptors) proteins. To induce membrane fusion, two SNARE proteins embedded in opposing membranes form a four-helix coiled-coil motif together with a third, cytoplasmic, SNARE protein. Coiled-coil formation brings the two membranes into close proximity allowing fusion to occur. Importantly, structural investigations have demonstrated that native membrane fusion only occurs when the orientation of the coiled-coil motif resembles that of a zipper. The zipper orientation arises when parallel coiled-coil formation takes place between peptides that are anchored into apposing membranes at identical termini, thereby forcing the membranes into close contact. Recently, we have designed a synthetic model for membrane fusion, which is based on a set of lipidated coiled-coil forming peptide pairs which are denoted E-K. When incorporated into liposomal membranes, coiled-coil formation between these lipidated peptides induces targeted and efficient membrane fusion of liposomes. Our model system mimics SNARE-driven membrane fusion, as it contains a coiled-coil motif which has a zipper-like orientation, similar to that of the SNARE proteins. Here we investigate whether the zipper-like orientation of the coiled-coil motifs is a prerequisite for membrane fusion in our model system. Our strategy is based on conjugation of the transmembrane anchor to either the N- or the C-terminus of peptides E and K. Whereas the use of a set of complementary peptides with the membrane anchor on identical peptide termini yields the zipper-like orientation of the coiled-coil complex, membrane anchors on opposite peptide termini results in a non-zipper-like coiled-coil orientation. Surprisingly, it was observed that efficient and targeted membrane fusion was

  10. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  11. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  12. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  13. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  14. Coil geometry effects on scanning single-coil magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  15. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  16. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed...

  17. Optimization of modular coils for stellarator fields

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1982-02-01

    Introduction of a non-sinusoidal deformation can enhance the efficacy of modular coils for generating magnetic fields with a built-in rotational transform. Techniques are developed that provide an understanding of how specific deformations affect the harmonic content of the magnetic field and thus the properties of the vacuum configuration. This provides an optimization procedure for coil design

  18. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  19. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  20. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  1. Exploiting Oligo(amido amine) Backbones for the Multivalent Presentation of Coiled-Coil Peptides.

    Science.gov (United States)

    Gerling-Driessen, Ulla I M; Mujkic-Ninnemann, Nina; Ponader, Daniela; Schöne, Daniel; Hartmann, Laura; Koksch, Beate; Gerling-Driessen, U I M; Schöne, D; Koksch, B; Ponader, D; Mujkic-Ninnemann, N; Hartmann, L

    2015-08-10

    The investigation of coiled coil formation for one mono- and two divalent peptide-polymer conjugates is presented. Through the assembly of the full conjugates on solid support, monodisperse sequence-defined conjugates are obtained with defined positions and distances between the peptide side chains along the polymeric backbone. A heteromeric peptide design was chosen, where peptide K is attached to the polymer backbone, and coiled-coil formation is only expected through complexation with the complementary peptide E. Indeed, the monovalent peptide K-polymer conjugate displays rapid coiled-coil formation when mixed with the complementary peptide E sequence. The divalent systems show intramolecular homomeric coiled-coil formation on the polymer backbone despite the peptide design. Interestingly, this intramolecular assembly undergoes a conformational rearrangement by the addition of the complementary peptide E leading to the formation of heteromeric coiled coil-polymer aggregates. The polymer backbone acts as a template bringing the covalently bound peptide strands in close proximity to each other, increasing the local concentration and inducing the otherwise nonfavorable formation of intramolecular helical assemblies.

  2. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  3. Computational analysis of residue contributions to coiled-coil topology

    Science.gov (United States)

    Ramos, Jorge; Lazaridis, Themis

    2011-01-01

    A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a–a′ or d–d′ repulsions but due to interactions with e′ and g′ residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e′ residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure. PMID:21858887

  4. The coil array method for creating a dynamic imaging volume.

    Science.gov (United States)

    Smith, Elliot; Freschi, Fabio; Repetto, Maurizio; Crozier, Stuart

    2017-08-01

    Gradient strength and speed are limited by peripheral nerve stimulation (PNS) thresholds. The coil array method allows the gradient field to be moved across the imaging area. This can help reduce PNS and provide faster imaging for image-guided therapy systems such as the magnetic resonance imaging-guided linear accelerator (MRI-linac). The coil array is designed such that many coils produce magnetic fields, which combine to give the desired gradient profile. The design of the coil array uses two methods: either the singular value decomposition (SVD) of a set of field profiles or the electromagnetic modes of the coil surface. Two whole-body coils and one experimental coil were designed to investigate the method. The field produced by the experimental coil was compared to simulated results. The experimental coil region of uniformity (ROU) was moved along the z axis as shown in simulation. The highest observed field deviation was 16.9% at the edge of the ROU with a shift of 35 mm. The whole-body coils showed a median field deviation across all offsets below 5% with an eight-coil basis when using the SVD design method. Experimental results show the feasibility of a moving imaging region within an MRI with a low number of coils in the array. Magn Reson Med 78:784-793, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants.

    Science.gov (United States)

    Golestanirad, Laleh; Iacono, Maria Ida; Keil, Boris; Angelone, Leonardo M; Bonmassar, Giorgio; Fox, Michael D; Herrington, Todd; Adalsteinsson, Elfar; LaPierre, Cristen; Mareyam, Azma; Wald, Lawrence L

    2017-02-15

    Post-operative MRI of patients with deep brain simulation (DBS) implants is useful to assess complications and diagnose comorbidities, however more than one third of medical centers do not perform MRIs on this patient population due to stringent safety restrictions and liability risks. A new system of reconfigurable magnetic resonance imaging head coil composed of a rotatable linearly-polarized birdcage transmitter and a close-fitting 32-channel receive array is presented for low-SAR imaging of patients with DBS implants. The novel system works by generating a region with low electric field magnitude and steering it to coincide with the DBS lead trajectory. We demonstrate that the new coil system substantially reduces the SAR amplification around DBS electrodes compared to commercially available circularly polarized coils in a cohort of 9 patient-derived realistic DBS lead trajectories. We also show that the optimal coil configuration can be reliably identified from the image artifact on B 1 + field maps. Our preliminary results suggest that such a system may provide a viable solution for high-resolution imaging of DBS patients in the future. More data is needed to quantify safety limits and recommend imaging protocols before the novel coil system can be used on patients with DBS implants. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development of a computer code for thermal–hydraulic design and analysis of helically coiled tube once-through steam generator

    Directory of Open Access Journals (Sweden)

    Yaoli Zhang

    2017-10-01

    Full Text Available The Helically coiled tube Once-Through Steam Generator (H-OTSG is a key piece of equipment for compact small reactors. The present study developed and verified a thermal–hydraulic design and performance analysis computer code for a countercurrent H-OTSG installed in a small pressurized water reactor. The H-OTSG is represented by one characteristic tube in the model. The secondary side of the H-OTSG is divided into single-phase liquid region, nucleate boiling region, postdryout region, and single-phase vapor region. Different heat transfer correlations and pressure drop correlations are reviewed and applied. To benchmark the developed physical models and the computer code, H-OTSGs developed in Marine Reactor X and System-integrated Modular Advanced ReacTor are simulated by the code, and the results are compared with the design data. The overall characteristics of heat transfer area, temperature distributions, and pressure drops calculated by the code showed general agreement with the published data. The thermal–hydraulic characteristics of a typical countercurrent H-OTSG are analyzed. It is demonstrated that the code can be utilized for design and performance analysis of an H-OTSG.

  7. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  8. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  9. Treatment of unruptured intracranial aneurysms using internally expanding coils

    Science.gov (United States)

    Suri, M. Fareed K.; Memon, Muhammad Zeeshan; Qureshi, Adnan I.

    2008-01-01

    Background and Purpose The International Subarachnoid Aneurysm Trial (ISAT) showed that patients with intracranial aneurysms treated with coil embolization have better clinical outcomes than those undergoing neurosurgical clipping. However some patients treated endovascularly have recurrence of aneurysms. Low packing density is often cited as a reason for recurrence. Coiling with hydrogel covered coils significantly improves the packing density. We report our initial experience in using a newly introduced design of hydrogel coils. Methods: Three consecutive patients with unruptured aneurysms were treated with hydrogel coated coils. During embolization, a stable framework was first established with bare metal coils, and gel coated coils were used subsequently to increase the packing density. After the procedure, packing density was estimated by calculating the compaction ratio using an online calculator. Results: Successful coil embolization was achieved in all 3 patients. Hydrogel coated coils comprised 11, 63 and 72% of the total coils deployed. One patient had coil herniation that required stent deployment. All patients remained neurologically intact during and after the procedure. Follow-up angiography in 2 patients at 6 months revealed aneurysm stability without any residual neck remnant. Conclusions: The softness of the hydrogel allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce any neck remnant and potentially inhibit recurrence. PMID:22518218

  10. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  11. Open-coil retraction spring.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2011-01-01

    Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR)/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. "Open Coil Retraction Spring (OCRS)" is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.). A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  12. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  13. Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis

    Science.gov (United States)

    Saharan, Lokesh; Sharma, Ashvath; Jung de Andrade, Monica; Baughman, Ray H.; Tadesse, Yonas

    2017-04-01

    Partial or total upper extremity impairment affects the quality of life of a vast number of people due to stroke, neuromuscular disease, or trauma. Many researchers have presented hand orthosis to address the needs of rehabilitation or assistance on upper extremity function. Most of the devices available commercially and in literature are powered by conventional actuators such as DC motors, servomotors or pneumatic actuators. Some prototypes are developed based on shape memory alloy (SMA) and dielectric elastomers (DE). This study presents a customizable, 3D printed, a lightweight exoskeleton (iGrab) based on recently reported Twisted and Coiled Polymer (TCP) muscles, which are lightweight, provide high power to weight ratio and large stroke. We used silver coated nylon 6, 6 threads to make the TCP muscles, which can be easily actuated electrothermally. We reviewed briefly hand orthosis created with various actuation technologies and present our design of tendon-driven exoskeleton with the muscles confined in the forearm area. A single muscle is used to facilitate the motion of all three joints namely DIP (Distal interphalangeal), PIP (Proximal Interphalangeal) and MCP (Metacarpophalangeal) using passive tendons though circular rings. The grasping capabilities, along with TCP muscle properties utilized in the design such as life cycle, actuation under load and power inputs are discussed.

  14. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  15. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices.

    Science.gov (United States)

    Li, Chen; Wang, Xiao-Feng; Chen, Zhen; Zhang, Ziding; Song, Jiangning

    2015-02-01

    The coiled-coil, which consists of two or more α-helices winding around each other, is a ubiquitous and the most frequently observed protein-protein interaction motif in nature. The coiled-coil is known for its straightforward heptad repeat pattern and can be readily recognized based on protein primary sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interaction formed between their α-helices, coiled-coils have been under close scrutiny to design novel protein structures for potential applications in the fields of material science, synthetic biology and medicine. However, their broader application requires an in-depth and systematic analysis of the sequence-to-structure relationship of coiled-coil folding and oligomeric formation. In this article, we propose a new oligomerization state predictor, termed as RFCoil, which exploits the most useful and non-redundant amino acid indices combined with the machine learning algorithm - random forest (RF) - to predict the oligomeric states of coiled-coil regions. Benchmarking experiments show that RFCoil achieves an AUC (area under the ROC curve) of 0.849 on the 10-fold cross-validation test using the training dataset and 0.855 on the independent test using the validation dataset, respectively. Performance comparison results indicate that RFCoil outperforms the four existing predictors LOGICOIL, PrOCoil, SCORER 2.0 and Multicoil2. Furthermore, we extract a number of predominant rules from the trained RF model that underlie the oligomeric formation. We also present two case studies to illustrate the applicability of the extracted rules to the prediction of coiled-coil oligomerization state. The RFCoil web server, source codes and datasets are freely available for academic users at http://protein.cau.edu.cn/RFCoil/.

  16. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  17. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  18. Divertor coil device

    International Nuclear Information System (INIS)

    Hanai, Satoru.

    1990-01-01

    The present invention concerns a divertor coil device used in a tokamak type thermonuclear device and the object thereof is to reduce thermal loads in the heat receiving portion. An auxiliary power source is disposed, in addition to a main power source, for supplying main electric current for changing electric current ratio between each of the divertor coils. Then, the null point for forming plasmas is made controllable. As a result, a power source for a part of coils connected to the auxiliary power source of the divertor coils can be changed by controlling the voltage of the auxiliary power source. Accordingly, the electric current distribution in the divertor coils is changed and the position for the null point high thermal load region can be moved laterally. The area of the heat receiving portion can be increased by moving the high thermal load region, thereby decreasing the thermal load density. (I.S.)

  19. The IEA large coil task test results in IFSMTF

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Dresner, L.

    1987-01-01

    The Large Coil Task (LCT) is an international collaboration of the United States, EURATOM, Japan, and Switzerland to develop large superconducting magnets for fusion reactors. The testing phase of LCT was completed on September 3, 1987. All six coils exceeded the design goals, both as single coils and in six-coil toroidal tests. In addition, a symmetric torus test was performed in which a maximum field of 9 T was reached in all coils simultaneously. These are by far the largest magnets (either in size, weight, or stored energy) ever to achieve such a field. 6 refs., 6 figs., 3 tabs

  20. Design and performance of the helically coiled boilers of two AGR power stations in the United Kingdom

    International Nuclear Information System (INIS)

    El-Nagdy, M.; Papa, A.D.

    1988-01-01

    The Hartlepool and Heysham-I AGR stations have been commissioned and operating since 1983. The main features, of the design of the helical once-through boilers raising the steam for power generation, are outlined. The modifications to the feed inlet flow ferrules, necessary to improve the boiler performance and optimize the power output, have been described. Comparisons between the thermal and hydrodynamic performance of the boilers before and following these alterations are given. The improvements in the computer code predictions of the plant performance have also been presented. (author)

  1. Force generation by orthodontic coil springs.

    Science.gov (United States)

    von Fraunhofer, J A; Bonds, P W; Johnson, B E

    1993-01-01

    Nickel titanium (NiTi) coil springs are a new development in orthodontics, designed to produce light continuous forces. This study compares the force delivery by NiTi open and closed coil springs during unloading (de-activation) to that provided by comparable stainless steel (SS) springs. Open-coil springs (0.010 x 0.035 inch) were compressed from their initial length of 15 mm to 6 mm and the forces generated with spring recovery recorded. Closed-coil springs (0.009 x 0.035 inch) were distracted from their initial length of 3 mm to 9 mm and the force recorded as the spring recovered. The closed-coil NiTi springs produced light continuous forces of 75-90 g over the distraction range of 6 mm while the open-coil springs produced forces of 55-70 g within the 9 mm compression range. SS springs produced heavier forces, ca. 200 g, for an activation of 1 mm and the generated force increased rapidly as the activation was increased. The findings indicate that NiTi coil springs deliver optimal forces for orthodontic tooth movement over a longer activation range than comparable SS springs.

  2. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  3. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  4. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  5. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  6. Coiled-coils: The long and short of it.

    Science.gov (United States)

    Truebestein, Linda; Leonard, Thomas A

    2016-09-01

    Coiled-coils are found in proteins throughout all three kingdoms of life. Coiled-coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled-coil. Other coiled-coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled-coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled-coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled-coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled-coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  7. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  8. Structural analysis (Siemens) of the Euratom coil for the large coil task

    International Nuclear Information System (INIS)

    Maurer, A.

    1981-01-01

    The structural analysis of coil and casing of large superconducting magnets is essential to ensure the safety in the design and is important for the concept of even larger magnet units in future projects. For the Large Coil Task calculations are performed by the finite element computer code NASTRAN to obtain the stress on the various structural parts under thermal and magnetic loads. The mechanical behavior of the coil and casing under normal as well as alternative load conditions is discussed. Plots demonstrate the state of deformation belonging to the single structure parts. The results for the components of normal and shear stresses in the coil as well as for the equivalent stresses in the casing are summarized. The finite element model used is presented. The assumptions relating to the material properties, the force transmitted between coil and casing, the loading conditions, and the boundary conditions are discussed. 2 refs

  9. Coil in coil - components for the high voltage superconducting resistive current limiter CULT 110

    Science.gov (United States)

    Elschner, S.; Stemmle, M.; Breuer, F.; Walter, H.; Frohne, C.; Noe, M.; Bock, J.

    2008-02-01

    The German government (BMBF/VDI) funded project CULT 110 is presently the largest European current limiter project and aims at the development of a one-phase resistive limiter for the voltage level of 110 kV. The contribution presents the actual state of development of the superconducting components. As in the successful predecessor project CURL 10 these are made of melt cast processed BSCCO 2212 bulk material, however monofilar instead of bifilar coils are used. The electrical protection concept is based on a normal conducting coil arranged around a superconducting coil and connected in parallel. Simultaneously this coil serves as an electrical bypass and, under fault conditions, generates a magnetic field for quench homogenisation. Since no continuously connected shunt is needed, a much higher voltage during faults can be applied. The rules for an optimum superconductor and coil design are given and the viability of the whole concept is demonstrated by both, experiment and numerical simulation.

  10. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  11. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  12. Structural analysis of the NET toroidal field coils and conductor

    International Nuclear Information System (INIS)

    Mitchell, N.; Collier, D.; Gori, R.

    1989-01-01

    The NET toroidal field coils will utilise A15-type superconductor at 4.2 K to generate fields up to 11.5 T. The superconductor strands themselves are sensitive to strain, which causes degradation of their current carrying capacity, and thus the detailed behaviour of the coil conductor must be analysied so that the strian can be minimised. This analysis must include the manufacturing processes of the conductor as well as the normal and abnormal loperational loads. The conductor will be insulated and bonded by glass fibre reinforced epoxy resin, with limited bonding shear strength, and the overall support of the complete coil system must be designed to reduce these shear stresses. The coils will be subjected to pulse loads form the poloidal field coils, and analysis of the slip between the various coil components, such as conductors and the coil case, giving rise to frictional heating and possible loss of superconducting properties is another important factor, which has been investigated by a number of stress analyses. The manufacturing, thermal and normal magnetic loads on the coils and the analysis leading to the proposed structural design are described. In addition to the normal operating conditions, there is a range of abnormal load conditions which could result from electrical or mechanical faults on the coils. The effect of these potential faults has been analysed and the coil design modified to prevent catastrophic structural failure. (author). 13 refs.; 8 figs.; 1 tab

  13. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  14. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  15. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  16. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  17. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    Science.gov (United States)

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  19. Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping.

    Science.gov (United States)

    Hamed, Elham; Keten, Sinan

    2014-07-15

    Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  1. Moving coil-based actuators

    Science.gov (United States)

    Neff, Edward A.

    2002-09-01

    SMAC Corporation manufactures a wide variety of moving coil based electric servo actuators. These actuators were developed with a specific purpose in mind: To produce tools that would make the automation of assembly easier to accomplish, tools that could perform work in much the same manner as fingers but with more precision. The design targets were: A. Variable programmable accurate positioning down to sub-micron level. B. Variable programmable accurately controlled speeds. C. Variable programmable forces from grams to kilograms. D. Multiple axis configurations to increase degrees of freedom hence flexibility. E. The ability to perform work and verify its success at the same time. F. A low cost design that could eventually compete with pneumatic devices. (SMAC is related to two large pneumatic manufacturers: SMC Corp. and Mac Valve, Inc.) It should be noted that in the past a number of designers have developed voice coil based actuators, the Stout design and patent, with its discussion of programmable force was an early inspiration. SMAC's basic electro/mechanical and software design patents number 20.

  2. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  3. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  4. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  5. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  6. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  7. TESLA Coil Research

    Science.gov (United States)

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  8. A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results.

    Science.gov (United States)

    Kraff, Oliver; Bitz, Andreas K; Breyer, Tobias; Kruszona, Stefan; Maderwald, Stefan; Brote, Irina; Gizewski, Elke R; Ladd, Mark E; Quick, Harald H

    2011-04-01

    To develop a transmit/receive radiofrequency (RF) array for magnetic resonance imaging (MRI) of the carotid arteries at 7 T. The prototype is characterized in numerical simulations and bench measurements, and the feasibility of plaque imaging at 7 T is demonstrated in first in vivo images. The RF phased array coil consists of 8 surface loop coils. To allow imaging of both sides of the neck, the RF array is divided into 2 coil clusters, each with 4 overlapping loop elements. For safety validation, numerical computations of the RF field distribution and the corresponding specific absorption rate were performed on the basis of a heterogeneous human body model. To validate the coil model, maps of the transmit B1(+) field were compared between simulation and measurement. In vivo images of a healthy volunteer and a patient (ulcerating plaque and a 50% stenosis of the right internal carotid artery) were acquired using a 3-dimensional FLASH sequence with a high isotropic spatial resolution of 0.54 mm as well as using pulse-triggered proton density (PD)/T2-weighted turbo spin echo sequences. Measurements of the S-parameters yielded a reflection and isolation of the coil elements of better than -18 and -13 dB, respectively. Measurements of the g-factor indicated good image quality for parallel imaging acceleration factors up to 2.4. A similar distribution and a very good match of the absolute values were found between the measured and simulated B1(+) transmit RF field for the validation of the coil model. In vivo images revealed good signal excitation of both sides of the neck and a high vessel-to-background image contrast for the noncontrast-enhanced 3-dimensional FLASH sequence. Imaging at 7 T could depict the extent of stenosis, and revealed the disruption and ulcer of the plaque. This study demonstrates that 2 four-channel transmit/receive RF arrays for each side of the neck is a suitable concept for in vivo MRI of the carotid arteries at 7 Tesla. Further studies are

  9. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  10. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  11. Relationship between voice coil fill factor and loudspeaker efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2016-01-01

    -mode technology, can be designed to much lower loads. A thorough analysis of the loudspeaker efficiency is presented and its relation to the voice coil fill factor is described. In addition to this the influence of the driver’s mass ratio is investigated and it is found that high mass ratios is beneficial...... for the efficiency of drivers using high fill factor voice coils. Different voice coil winding strategies are described and their fill factors analysed. It is found that by lowering the nominal resistance of a voice coil, using rectangular wire, one can increase the fill factor. However a practical realization...

  12. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels

    2017-05-01

    MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  14. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  15. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  16. Study on Pole Arrangement of the CEDM Coils

    International Nuclear Information System (INIS)

    Park, Jin Seok; Lee, Myoung Goo; Kim, Hyun Min; Cho, Yeon Ho; Choi, Taek Sang

    2013-01-01

    The coil stack assembly is important for reliable operation of the CEDM, there have been efforts to improve the design by optimizing the design parameters such as dimensions and winding turns. However, magnetic forces of the CEDM can also change by different pole arrangement even if their design parameters are the same. Since the latch coil and lift coil are installed connected to each other, they produce magnetically coupled field when they are energized at the same time. This coupling field can affect the magnetic force of the CEDM significantly. In this paper, coil pole arrangement effects are studied. Electro-magnetic analysis is performed for the different pole arrangements of the CEDM coils to calculate the magnetic forces. Pole arrangement effects on magnetic forces were studied by static analysis of the CEDM magnetic field. Magnetic forces were calculated and compared for the two different pole arrangements of the coils. The results show that the magnetic poles of the lift coil and latch coil shall be arranged to have the same magnetic pole direction to achieve higher magnetic force

  17. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  18. Pressure rise analysis in superconducting coils during dumping

    International Nuclear Information System (INIS)

    Tada, E.; Shimamoto, S.

    1984-01-01

    This chapter describes the ALPHE computer code, whose purpose is to calculate transient helium behavior in a poolboiling coil and to determine suitable characteristics of safety devices to minimize the maximum pressure and the liquid helium lost during dumping due to quench, or when discharging without normalcy. The analysis is compared with the measurements obtained in the domestic test of the Japanese LCT coil. Topics considered include basic equations (helium behavior, heat generation), manual dump without quench, and dumping due to quench. It is demonstrated that the transient behavior, calculated by ALPHE assuming quasi-static equilibrium between helium and coil, is in good agreement with the experimental measurements observed in the domestic test of the Japanese LCT coil. The engineering technique required for the design criteria of superconducting coils and safety device during dumping is established. ALPHE can be used to design an emergency safety system for a helium refrigerator during dumping

  19. Cooling of BITTER-type electromagnetic coils with intense field

    International Nuclear Information System (INIS)

    Fournier, Jacques

    1966-01-01

    After having outlined the various problems faced when designing BITTER-type electromagnetic coils with axial cooling (evacuation of the power dissipated in the coil, electromagnetic forces, fabrication and machining technologies, corrosion and erosion due to the presence of water and to potential differences), the author of this research thesis reports the study of the cooling of such an electromagnetic coil. In order to know the heat power to be evacuated for a given field, both the power and the field must be computed, but the influence of cooling holes on these both values is not well known. Thus, the author reports the study of the influence of these holes on the power to be dissipated by these holes, and on the magnetic field. Then, he studies how this power is evacuated, and determines heat exchange relationships for the coil canals. He finally discusses how the obtained results can be used to design an advanced electromagnetic coil [fr

  20. Preferred side-chain constellations at antiparallel coiled-coil interfaces.

    Science.gov (United States)

    Hadley, Erik B; Testa, Oliver D; Woolfson, Derek N; Gellman, Samuel H

    2008-01-15

    Reliable predictive rules that relate protein sequence to structure would facilitate postgenome predictive biology and the engineering and de novo design of peptides and proteins. Through a combination of experiment and analysis of the protein data bank (PDB), we have deciphered and rationalized new rules for helix-helix interfaces of a common protein-folding and association motif, the antiparallel dimeric coiled coil. These interfaces are defined by a specific pattern of interactions among largely hydrophobic side chains often referred to as knobs-into-holes (KIH) packing: a knob from one helix inserts into a hole formed by four residues on the partner. Previous work has focused on lateral interactions within the KIH motif, for example, between an a position on one helix and a d' position on the other in an antiparallel coiled coil. We show that vertical interactions within the KIH motif, such as a'-a-a', are energetically important as well. The experimental and database analyses concur regarding preferred vertical combinations, which can be rationalized as leading to favorable side-chain interactions that we call constellations. The findings presented here highlight an unanticipated level of complexity in coiled-coil interactions, and our analysis of a few specific constellations illustrates a general, multipronged approach to addressing this complexity.

  1. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  2. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  3. Coiled-coil networking shapes cell molecular machinery

    Science.gov (United States)

    Wang, Yongqiang; Zhang, Xinlei; Zhang, Hong; Lu, Yi; Huang, Haolong; Dong, Xiaoxi; Chen, Jinan; Dong, Jiuhong; Yang, Xiao; Hang, Haiying; Jiang, Taijiao

    2012-01-01

    The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications. PMID:22875988

  4. Heterodimeric coiled-coil interactions of human GABAB receptor.

    Science.gov (United States)

    Burmakina, Svetlana; Geng, Yong; Chen, Yan; Fan, Qing R

    2014-05-13

    Metabotropic GABAB receptor is a G protein-coupled receptor that mediates inhibitory neurotransmission in the CNS. It functions as an obligatory heterodimer of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits. The association between GBR1 and GBR2 masks an endoplasmic reticulum (ER) retention signal in the cytoplasmic region of GBR1 and facilitates cell surface expression of both subunits. Here, we present, to our knowledge, the first crystal structure of an intracellular coiled-coil heterodimer of human GABAB receptor. We found that polar interactions buried within the hydrophobic core determine the specificity of heterodimer pairing. Disruption of the hydrophobic coiled-coil interface with single mutations in either subunit impairs surface expression of GBR1, confirming that the coiled-coil interaction is required to inactivate the adjacent ER retention signal of GBR1. The coiled-coil assembly buries an internalization motif of GBR1 at the heterodimer interface. The ER retention signal of GBR1 is not part of the core coiled-coil structure, suggesting that it is sterically shielded by GBR2 upon heterodimer formation.

  5. Electrospun Buckling Coils

    Science.gov (United States)

    Xin, Yu; Reneker, Darrell

    2009-03-01

    Electrospinning offers a useful way to produce fibers with micron and nanometer scale diameter. The present work deals with the buckling phenomenon characteristic of a jet impinging upon the surface of collector. A viscous jet may have either tensile or compressive forces along its axis. The periodic buckling that is often observed is attributed to the occurrence of compressive forces as the jet decelerates at the collector. With the increase of axial compressive stresses along the jet, a jet with circular cross sections first buckles by formation of sharp folds, and then by formation of coils. The resulting buckling patterns include zigzag patterns and coils that which can be controlled by changing parameters, such as density, viscosity, conductivity, voltage, polymer concentration, distance and volumetric flow rate. Uniformly buckled polymer fibers can be made at a rate of one turn per microsecond. An experimental apparatus was built to continuously collect buckling coils of nylon 6, from a water surface, into a multilayer sheet. These small ``springs'' and sheets will be tested for mechanical properties needed in biomedical applications.

  6. A method for estimating tokamak poloidal field coil currents which incorporates engineering constraints

    International Nuclear Information System (INIS)

    Stewart, W.A.

    1990-05-01

    This thesis describes the development of a design tool for the poloidal field magnet system of a tokamak. Specifically, an existing program for determining the poloidal field coil currents has been modified to: support the general case of asymmetric equilibria and coil sets, determine the coil currents subject to constraints on the maximum values of those currents, and determine the coil currents subject to limits on the forces those coils may carry. The equations representing the current limits and coil force limits are derived and an algorithm based on Newton's method is developed to determine a set of coil currents which satisfies those limits. The resulting program allows the designer to quickly determine whether or not a given coil set is capable of supporting a given equilibrium. 25 refs

  7. Rogowski coils for studies of detonator initiation

    Science.gov (United States)

    Tasker, Douglas

    2017-06-01

    The Rogowski coil dates back to 1887 and it has commonly been employed to measure rapid changes of electrical currents without direct contact with the circuits, especially in high energy density applications. Recently, it has been used to measure currents in relatively low energy devices such as semiconductor circuits; here we report its utility in the analysis of detonator initiation. From an electrical perspective, the coil is essentially an air-cored transformer and measures the temporal rate of change of current dI/dt. Following a careful characterization of the circuit, an accurate measurement of this derivative is shown to provide a complete solution of the detonator circuit, including current, voltage, power and energy delivered to the detonator. The dependence of the electrical sensitivity, accuracy and bandwidth on coil design will be discussed and a new printed circuit design will be presented. Interesting features in the initiation of exploding bridgewire detonators have been observed with this coil and the results of various experiments will be discussed.

  8. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  9. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    Science.gov (United States)

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  10. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  11. Optimization of gradient coil technology for human magnetic resonance imaging

    Science.gov (United States)

    Chronik, Blaine Alexander

    The general problem of identifying the optimal gradient coil design for any given application is addressed in this thesis. The problem is divided into stages. The first step is the development of an optimal mathematical solution for single designs conforming to some set of constraints. The second step is the systematic implementation of the mathematical algorithm to search for the optimal set of design constraints for an intended application, two examples of which are investigated. The final step is the consideration of gradient coil dependent physiological limits specific to the application of strong gradient fields in human subjects. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is developed. This constrained current minimum inductance (CCMI) method is derived in the context of previous target field methods. The method has been fully implemented on computer and applied to the design of both central and edge uniformity gradient coils. A three axis gradient coil set that utilizes interleaved, multilayer axes to achieve maximum gradient strengths of over 2000mT/m in rise times of less than 50μs with an inner coil diameter of 5cm was designed. Water cooling was incorporated into the coil to assist in thermal management. The duty cycle for the most extreme cases of single shot EPI is limited by the thermal response and expressions for maximum rates of image collection are given for burst and continuous modes of operation. A three axis gradient coil set with an imaging region extending outside the physical edge of the coil was designed, constructed, and tested. The configuration is compatible with both neck and brain imaging in humans. The coil produces a cylindrical imaging region 16cm in diameter and 16cm in length. The coil axes produce gradient strengths between 80mT/m and 100mT/m at 250A peak current, with minimum rise times of approximately 400μs. Heating tests were performed

  12. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  13. The coil of the MBI bending magnets for the LHC injection transfer lines

    CERN Document Server

    Labutsky, S A; Pupkov, Yu A; Rouvinsky, E; Sukhina, B

    2002-01-01

    All MBI bending magnets in each of the two LHC injection transfer lines will be powered in series. The limited output voltage of existing power converters lead to an unusual coil design avoiding external return bus-bars by combining two overlapping half-coils, electrically separated, with 3 1/2 turns each in a monolithic structure. The voltage between turns in one coil can reach up-to 3.6 kV. The coil has been designed with particular care for obtaining high interturn and ground insulation. Flux-free soldering of connections with plug-in cone sleeves is applied, allowing to execute water cooled current connections as prolongation of the coil conductor. Epoxy compound polymerization in the impregnation mould is obtained by passing overheated water in regulated cycles through the water circuit of the coil conductor. We describe the design basics as well as various test results of pre-series and series produced coils. (4 refs).

  14. An improvement of airflow and heat transfer performance of multi-coil condensers by different coil configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzong-Shing; Wu, Wu-Chieh; Chuah, Yew-Khoy; Wang, Sheng-Kai [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Sec.3, Chung-Hsiao E. Rd., Taipei 106 (China)

    2010-11-15

    Mal-distribution of airflow is an important factor for the performance of air-cooled multi-coil air-cooled condensers. This study is an attempt to investigate the effects of different included angles between the coils of the condenser. It has been found in this study that it can be a mean to improve the performance of multi-coil condensers without using larger heat transfer surfaces. A commercially used four-coil condenser of an air-cooled water chiller was used as the base case in the tests and analysis. The results show that the variation of the included angle can increase the airflow rate by 7.85%, which corresponds to 5.29% increase in heat transfer. The improvements were found to be due to the reduction of the stagnant flow regions of the heat exchanger coils, and more even flow distribution through the coils. Test data were used to verify the computer model of the four-coil heat exchanger. The same tested fan performance characteristic was used in all of the analyses. The research results are important as air-cooled condensing units can be designed to better performance merely by changing the configuration of the coil arrangements. (author)

  15. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  16. High-resolution structures of a heterochiral coiled coil.

    Science.gov (United States)

    Mortenson, David E; Steinkruger, Jay D; Kreitler, Dale F; Perroni, Dominic V; Sorenson, Gregory P; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R; Mahanthappa, Mahesh K; Forest, Katrina T; Gellman, Samuel H

    2015-10-27

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.

  17. Coiled Coils Ensure the Physiological Ectodomain Shedding of Collagen XVII*

    Science.gov (United States)

    Nishie, Wataru; Jackow, Joanna; Hofmann, Silke C.; Franzke, Claus-Werner; Bruckner-Tuderman, Leena

    2012-01-01

    α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context. PMID:22761443

  18. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  19. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection.

    Science.gov (United States)

    Vavra, Kevin C; Xia, Youlin; Rock, Ronald S

    2016-06-07

    Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Manufacturing Development of the NCSX Modular Coil Windings

    International Nuclear Information System (INIS)

    Chrzanowski, JH; Fogarty, PJ; Heitzenroeder, PJ; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-01-01

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R and D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including ''Keystoning'' concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented

  1. Self-assembled nanocages based on the coiled coil bundle motif

    Science.gov (United States)

    Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin

    Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.

  2. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...

  3. Composite Coiled Tubing for Extended Reach in Horizontal Oil Wells

    DEFF Research Database (Denmark)

    Costache, Andrei; Berggreen, Christian

    2017-01-01

    Conventional steel coiled tubing cannot reach along the entire length of very long horizontal oil wells. A lighter and more buoyant coiled tube is made possible using composite materials. The high stiffness to weight ratio of fiber reinforced polymers, coupled with a lower coefficient of friction......, has the potential of greatly extending the reach in horizontal oil wells. This study shows how to design composite coiled tubing and gives a comprehensive discussion about the most influential parameters. Several solutions, using glass-fiber and carbon are considered. Finite element models are used...

  4. Resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1980-11-01

    This paper analyzes the optimization of the geometry of resistive TF coils of rectangular bore for tokamak fusion test reactors and practical neutron generators. In examining the trade-offs between geometric parameters and magnetic field for reactors giving a specified neutron wall loading, either the resistive power loss or the lifetime coil cost can be minimized. Aspects of cooling, magnetic stress, and construction are addressed for several reference designs. Bending moment distributions in closed form have been derived for rectangular coils on the basis of the theory of rigid frames. Candidate methods of fabrication and of implementing demountable joints are summarized

  5. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  6. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... cycle using a single chamber Digital Displacement lumped parameter model. The optimization results shows that efficient operation is achievable using all of the proposed moving coil geometries, however some geometries require more space and actuator power. The most appealing of the optimized actuator...

  7. Thermal analysis of COIL

    Science.gov (United States)

    Takeuchi, Noriyuki; Sugimoto, Daichi; Tei, Kazuyoku; Fujioka, Tomoo

    2004-05-01

    Analysis of heat release into operative gas of Chemical Oxygen Iodine Laser (COIL) is discussed. Pooling reaction of oxygen molecules in the excited state, the iodine dissociation process and the interaction of them with water vapor release energy of in the excited state oxygen molecules as heat energy. As results of heat release in the plenum, a rise of the total pressure as a rise of the total temperature is observed, and in the supersonic region a rise of static pressure and a decrease of total pressure as a rise of total temperature are observed. By following our analysis technique regarding pressure data of three different nozzles, the evaluations such as energy loss in a duct from a Singlet delta Oxygen Generator (SOG) and the number of dissipated oxygen molecules for the iodine dissociation can be estimated.

  8. HydroCoils, occlusion rates, and outcomes: a large single-center study.

    LENUS (Irish Health Repository)

    O'Hare, A M

    2010-11-01

    The HydroCoil is an expansile hydrogel coil designed to produce a greater degree of volumetric packing within cerebral aneurysms when compared with bare platinum coils. This increased packing is, in turn, believed to decrease the risk of recurrence within aneurysms and hence the risk of their rupture in the long term. The aim of this work was to assess whether the use of HydroCoils and the proportion of HydroCoil used have any influence on the subsequent occlusion and recurrence rates of treated aneurysms.

  9. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  10. Productive international collaboration in the large coil task

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Komarek, P.; Shimamoto, S.; Vecsey, G.

    1987-01-01

    The Large Coil Task (LCT), initiated in 1977, has been very productive of useful technical information about superconducting toroidal field (TF) coil design and manufacture. Moreover, it has demonstrated close international collaboration in fusion technology development, including integration of large components built in four different countries. Each of six 40-t test coils was designed and produced by a major industrial team, with government laboratory guidance, to a common set of specifications. The six were assembled into a toroidal array for testing in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge. Testing was done by a team of representatives of EURATOM, Japan, Switzerland, and the United States, with each participant having full access to all data. Coils were thoroughly instrumented, enabling penetrating analysis of behavior

  11. Optically induced inductance modulation of a Nb coil

    International Nuclear Information System (INIS)

    Nam, S.W.; Park, G.S.; Cabrera, B.; Huber, M.E.

    1994-01-01

    The authors have designed and tested an optically driven inductance modulator, for use as part of a 1/f noise reduction scheme for SQUID magnetometers. The modulated element is a Nb coil photolithographically patterned on a 6x6 nm silicon chip. The coil is covered by three concentric superconducting washers, patterned from a layer of PbInAu deposited above the Nb. Leads from the washers extend to a meander region directly below an optical fiber, which is coupled to a diode laser. With the laser off, the superconducting washer loops diamagnetically shield the coil, and the coil has a low effective inductance. With the laser on, the meander is driven normal and the superconducting washer loops are open, greatly reducing the shielding. The coil then has a high effective inductance. The inductance is measured using a SQUID connected to the coil. Using this method, they have modulated the coil inductance from 2 μH to nearly 20 μH. By using four of these inductance modulators, they plan to fabricate a low-noise chopping network at the input of a SQUID, which can be used to reduce the 1/f noise in SQUID measurements

  12. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  13. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  14. Is umbilical coiling genetically determined?

    Science.gov (United States)

    Ayala, Nina K; Ernst, Linda M; Miller, Emily S

    2018-02-21

    Abnormal umbilical cord coiling is associated with adverse perinatal outcomes; however, the etiology of the umbilical coiling pattern is poorly understood. Retrospective cohort of all twin deliveries >20 weeks in 2014. Pregnancies were dichotomized by chorionicity and the umbilical coiling index (UCI) and placental cord insertion location were compared. In cases with one or both cords hypercoiled, the direction and pattern of coiling were compared by chorionicity. A similar analysis was performed stratified by zygosity. Three hundred sisty two twin pairs were included; 26 (7.2%) monochorionic and 174 (87.0%) definitively dizygotic. Concordance in the UCI and coiling category were similar between dichorionic and monochorionic as well as dizygous and monozygous gestations, (73.2% vs 80.8%, p = 0.399 and 71.4% vs 80.8%, p = 0.399, respectively). Analyses of the coiling direction and pattern also demonstrated no difference by chorionicity or zygosity. These data do not support a genetic basis for umbilical cord coiling.

  15. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  16. Cross-linking reveals laminin coiled-coil architecture

    Science.gov (United States)

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  17. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  18. Study of a 5-Tesla large aperture coil for the CLIC detector

    CERN Document Server

    Cure, B

    2011-01-01

    The present design of a CLIC detector foresees a large solenoid magnet with a 6 m aperture and a magnetic induction of 5 T at the interaction point. This can be achieved by a thin superconducting coil. This report gives the typical main parameters of such a coil and presents the feasibility based on and compared with the CMS and Atlas solenoid coil designs, indicating the limits on the conductor and the identified R&D prospects.

  19. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    International Nuclear Information System (INIS)

    Zhao, X.; Ramakrishnan, S.; Lawson, J.; Neumeyer, C.; Marsala, R.; Schneider, H.

    2009-01-01

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  20. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S

    2005-01-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi (2-x) Pb x Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio

  1. A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins.

    Science.gov (United States)

    Matityahu, Avi; Onn, Itay

    2018-02-01

    The higher-order organization of chromosomes ensures their stability and functionality. However, the molecular mechanism by which higher order structure is established is poorly understood. Dissecting the activity of the relevant proteins provides information essential for achieving a comprehensive understanding of chromosome structure. Proteins of the structural maintenance of chromosome (SMC) family of ATPases are the core of evolutionary conserved complexes. SMC complexes are involved in regulating genome dynamics and in maintaining genome stability. The structure of all SMC proteins resembles an elongated rod that contains a central coiled-coil domain, a common protein structural motif in which two α-helices twist together. In recent years, the imperative role of the coiled-coil domain to SMC protein activity and regulation has become evident. Here, we discuss recent advances in the function of the SMC coiled coils. We describe the structure of the coiled-coil domain of SMC proteins, modifications and interactions that are mediated by it. Furthermore, we assess the role of the coiled-coil domain in conformational switches of SMC proteins, and in determining the architecture of the SMC dimer. Finally, we review the interplay between mutations in the coiled-coil domain and human disorders. We suggest that distinctive properties of coiled coils of different SMC proteins contribute to their distinct functions. The discussion clarifies the mechanisms underlying the activity of SMC proteins, and advocates future studies to elucidate the function of the SMC coiled coil domain.

  2. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  3. Coil for LEAR extraction septum

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  4. A review of the structural aspects of the Large Coil Task

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.

    1987-01-01

    The Large Coil Task (LCT) was initiated a decade ago by the United States (US), EURATOM (EU), Japan (JA), and Switzerland (CH) under the auspices of the International Energy Agency (IEA) to develop superconducting magnets for toroidal field coils for tokamak fusion reactors. Under the IEA agreement, EU, JA, and CH each fabricated one coil and shipped it to the Oak Ridge National Laboratory (ORNL), where the coils were assembled, along with three US coils (GD, GE, and WH), in the International Fusion Superconducting Magnet Test Facility (IFSMTF) which was designed and built at ORNL. In addition to the fact that six widely varying designs are being tested under similar conditions in the same test facility, the LCT project is unique in at least two other aspects. First, these are the largest superconducting (SC) coils fabricated and tested to date for research and development of SC magnets. Second, as the magnets themselves are the experiment, they are each heavily instrumented; consequently, detailed information on thermal, electrical, and mechanical performance has been obtained, some for the first time on SC magnets of any size. This paper concentrates on those aspects of the tests most relevant for fusion reactor magnets: the structural measurements and simulated nuclear heating tests. Data on the US PB coils (GD and GE) and the US FF coil (WH) are used to illustrate the results. All six coils have achieved 100% design current at 8-T field and that in a symmetric torus arrangement all six coils have been simultaneously energized to 8 T

  5. Fields and coupling between coils embedded in conductive environments

    Science.gov (United States)

    Chu, Son; Vallecchi, Andrea; Stevens, Christopher J.; Shamonina, Ekaterina

    2018-02-01

    An approximate solution is developed for the mutual inductance of two circular coils enclosed by insulating cavities in a conducting medium. This solution is used to investigate the variation of the mutual inductance upon the conductivity of the background (e.g., soil, seawater or human body), as well as upon other parameters such as the vertical of the coils and the displacement of one of the coils in the horizontal plane. Our theoretical results are compared with full wave simulations and a previous solution valid when a conductive slab is inserted between two coupled resonant coils. The proposed approach can have direct impact on the design and optimisation of magnetoinductive waveguides and wireless power transfer for underground/underwater networks and embedded biomedical systems.

  6. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  7. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  8. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  9. A large stellarator based on modular coils

    International Nuclear Information System (INIS)

    Hamberger, S.M.; Sharp, L.E.; Petersen, L.F.

    1979-06-01

    Although stellarators offer some considerable advantages over tokamaks, difficulties arise in designing large devices due, for instance, to poor plasma access as well as to constructional electromechanical and maintenance problems associated with continous helical windings. This paper describes a design for a fairly large device (major radius 2.1m), based on a set of discrete coil modules arranged in a toroidal configuration to provide the required closed magnetic surfaces, having gaps for unobstructed access to the plasma for diagnostics, etc, and allowing for easy removal for maintenance

  10. Electromagnetic-thermal-structural coupling analysis of the ITER edge localized mode coil with flexible supports

    Science.gov (United States)

    Zhang, Shanwen; Song, Yuntao; Tang, Linlin; Wang, Zhongwei; Ji, Xiang; Du, Shuangsong

    2017-05-01

    In a fusion reactor, the edge localized mode (ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature, high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil (with flexible supports) of ITER (the International Thermonuclear Fusion Reactor), an electromagnetic-thermal-structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.

  11. A switch from parallel to antiparallel strand orientation in a coiled-coil X-ray structure via two core hydrophobic mutations.

    Science.gov (United States)

    Malashkevich, Vladimir N; Higgins, Chelsea D; Almo, Steven C; Lai, Jonathan R

    2015-05-01

    The coiled-coil is one of the most ubiquitous and well studied protein structural motifs. Significant effort has been devoted to dissecting subtle variations of the typical heptad repeat sequence pattern that can designate larger topological features such as relative α-helical orientation and oligomer size. Here we report the X-ray structure of a model coiled-coil peptide, HA2-Del-L2seM, which forms an unanticipated core antiparallel dimer with potential sites for discrete higher-order multimerization (trimer or tetramer). In the X-ray structure, a third, partially-ordered α-helix is weakly associated with the antiparallel dimer and analytical ultracentrifugation experiments indicate the peptide forms a well-defined tetramer in solution. The HA2-Del-L2seM sequence is closely related to a parent model peptide, HA2-Del, which we previously reported adopts a parallel trimer; HA2-Del-L2seM differs by only hydrophobic leucine to selenomethione mutations and thus this subtle difference is sufficient to switch both relative α-helical topology and number of α-helices participating in the coiled-coil. Comparison of the X-ray structures of HA2-Del-L2seM (reported here) with the HA2-Del parent (reported previously) reveals novel interactions involving the selenomethionine residues that promote antiparallel coiled-coil configuration and preclude parallel trimer formation. These novel atomic insights are instructive for understanding subtle features that can affect coiled-coil topology and provide additional information for design of antiparallel coiled-coils. © 2015 Wiley Periodicals, Inc.

  12. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  13. A new moving-coil microelectrode puller.

    Science.gov (United States)

    Ensor, D R

    1979-03-01

    This paper describes an improved electrode puller for the manufacture of glass microelectrodes or micropipettes. The instrument resembles a conventional horizontal two-stage, solenoid-powered electrode puller but the pull is now developed by a light moving-coil and a fixed permanent magnet, using the principle of the moving-coil loudspeaker. In a conventional puller the force is generated by a solenoid with a massive moving-iron core. In this new puller the moving-coil solenoid responds much more rapidly to changing currents because of its greatly reduced inductance, and a substantial reduction in mass to 25 g, gives more acceleration from a comparable force. The sudden discharge of a capacitor bank through the coil accelerates the glass quickly during the last stage of the pull. This rapid acceleration is of importance in the formation of good electrodes with fine tips. For the prototype, an electronic control unit was constructed which allows the parameters necessary for the manufacture of electrodes to be set and regulated accurately and repeatedly, so that series of electrodes of constant shapes can be made. The length of the electrode shank may be predetermined over a wide range and tip diameters down to 0.08 micron have already been measured. The angle of the taper that supports the tip may be varied from less than 1 to over 6 degrees. The mechanical design of the instrument is comparatively simple, as it has only one moving part, while the relative complexity of the electronic control section should not present any manufacturing difficulties. Although this puller has been used mainly to make single-barrel fine electrodes from borosilicate glass, it is adaptable for other purposes. The extent of the control over the shape of the shank of the electrode renders it particularly suitable for the manufacture of composite, ion-sensitive electrodes.

  14. Calculated E-I characteristics of HTS pancakes and coils exposed to inhomogeneous magnetic fields

    Science.gov (United States)

    Adanny, Y.; Wolfus, Y.; Friedman, A.; Kopansky, F.; Yeshurun, Y.; Bar-Haim, Z.; Ron, Z.; Pundak, N.

    2006-06-01

    The upper limit of the operating current of LTS solenoids can be estimated as the coordinate of the crossing point of its load line with IC (B) line of the superconductor. For HTS coils this approach seems to underestimate the allowable operating current of the coil. A better approach is to obtain a full electric field distribution over the coil and to use it as the base for a more sophisticated coil design criteria. We developed an algorithm and a Matlab program for calculating distributions of the current density, magnetic field and electric field in HTS solenoids made of pancakes, considering the inhomogeneous current density distribution inside the anisotropic tape. I-V curves of several Bi-2223 coils are calculated and good agreeement of the calculated and measured critical currents, IC, and indexes, n, are attained. One can utilize the program in the coil design choosing his own criteria of coil's critical current, e.g., 1) The average electric field 10-4 V/m over the coil, 2) The electric field 10-4 V/m at the weak point of the coil, 3) The energy dissipation in the entire coil, 4) Distribution of local energy dissipation.

  15. Innovative mutually inductively coupled radiofrequency coils for magnetic resonance imaging and spectroscopy

    International Nuclear Information System (INIS)

    Tomanek, B.

    2006-01-01

    The paper presents the author's thesis based on the work carried out at the Institute for Bio diagnostics in Canada and published in years 2000-2006. A patented new generation of the RF coils were introduced to MRI and MRS techniques what significantly reduced SNR and improved image resolution of MR diagnostic procedure. Examples of the applications of the RF coils are presented. The intraoperative MRI system with a movable magnet used during the brain surgery included RF probe. This coil was efficiently used for breast screening and detection of submillimeter tumors. Quantification of the tissue metabolites by combining MRT with 31 P MRS can be achieved using dual - frequency RF coils. It was successfully tested on a rat liver. The innovative RF coil design was supported by the theoretical analysis and performed experiments. As an extension of the design an idea and the theory construction of multi - frequency multi - ring coil and its possible applications are also considered

  16. Results of the international Large Coil Task: a milestone for superconducting magnets in fusion power

    International Nuclear Information System (INIS)

    Dresner, L.; Fietz, W.A.; Gauss, S.

    1989-01-01

    The aim of the Large Coil Task (LCT) was to demonstrate the reliable operation of large superconducting toroidal field coils and to prove the design principles and fabrication techniques to be applied for the magnets in a tokamak experimental power reactor. This has been achieved by an international development effort involving the US DOE, EURATOM, JAERI and the Swiss government. Six different D-shaped test coils were separately designed, developed and constructed by the LCT participants, then extensively tested together in a compact toroidal array. Detailed information on coil design and manufacture and all test data were shared among the LCT participants. The full six-coil array tests were carried out in a continuous period from the beginning of 1986 until September 1987. Beside the originally planned tests to reach an 8 T design point performance, the tests went well beyond this goal, reaching 9 T peak field in each coil. The experiments also delineated the limits of operability and demonstrated the coil safety under abnormal conditions. For fusion application the transient a.c. field behaviour in the coils was also of great interest. Three of the coils have been tested in this respect and showed excellent performance, with loss values in agreement with the theoretical predictions. (author)

  17. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding

    Science.gov (United States)

    Xi, Zhiqun; Gao, Ying; Sirinakis, George; Guo, Honglian; Zhang, Yongli

    2012-01-01

    The biological functions of coiled coils generally depend on efficient folding and perfect pairing of their α-helices. Dynamic changes in the helical registry that lead to staggered helices have only been proposed for a few special systems and not found in generic coiled coils. Here, we report our observations of multiple staggered helical structures of two canonical coiled coils. The partially folded structures are formed predominantly by coiled coil misfolding and occasionally by helix sliding. Using high-resolution optical tweezers, we characterized their energies and transition kinetics at a single-molecule level. The staggered states occur less than 2% of the time and about 0.1% of the time at zero force. We conclude that dynamic changes in helical registry may be a general property of coiled coils. Our findings should have broad and unique implications in functions and dysfunctions of proteins containing coiled coils. PMID:22451899

  18. Modelling of flexi-coil springs with rubber-metal pads in a locomotive running gear

    OpenAIRE

    Michálek T.; Zelenka J.

    2015-01-01

    Nowadays, flexi-coil springs are commonly used in the secondary suspension stage of railway vehicles. Lateral stiffness of these springs is influenced by means of their design parameters (number of coils, height, mean diameter of coils, wire diameter etc.) and it is often suitable to modify this stiffness in such way, that the suspension shows various lateral stiffness in different directions (i.e., longitudinally vs. laterally in the vehicle-related coordinate system). Therefore, these sprin...

  19. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  20. Toroidal field coil torque structure

    International Nuclear Information System (INIS)

    Gaines, A.L.

    1983-01-01

    A torque structure is disclosed particularly suitable for utilization in a power reactor of the Tokamak-type, and operable therein for purposes of providing support for the toroidal field (TF) coils that comprise one of the major operating components of such a Tokamak power reactor. The subject torque structure takes the form of a frame structure that is operable to enable torque loads acting on the TF coils to be equilibrated as close to the area of force application as feasible. The aforesaid torque structure includes an intercoil structure composed of spacer wedges that are interposed between each adjacent pair of TF coils. The spacer wedges, in turn, consist of bearing plates positioned between the TF coils so as to be in contacting relation therewith and a number of cross plates that are cooperatively associated with the bearing plates so as to form therewith a rigid assembly. The intercoil structure is affixed to a segmented, membrane shell that surrounds, encloses and supports the TF coil frames. Access is had to the interior of the shell through an opening formed for this purpose in a reinforced portion of the shell. Eddy current losses are minimized by insulating the joints formed at the juncture of adjoining segments of the shell

  1. 18-12 Salient-Pole structure Brushless dc Motor with an assisted dc Field coil: Design Optimization and Numerical Analysis on the Magnetic Field

    Directory of Open Access Journals (Sweden)

    Hassan Moradi CheshmehBeigi

    2015-12-01

    Full Text Available Abstract. This paper presents the design optimization and accurate electromagnetic field analysis of an 18-12 there phase Brushless dc motor (BLDCM by using a three-dimensional Finite-Element analysis. Proposed motor will provide a wide range of air-gap flux control by a dc assisted field winding which is replaced with the permanent magnet in the rotor structure. In proposed BLDCM a simple dc current control is used and no brushes or slip rings are required to perform this control. To achieve the required performance within a specified space envelope, the physical dimensions of the proposed configuration were optimized; subject to maximize the average output power. Proposed 18-12 BLDCM configuration has been compared with a 9-6 BLDCM configuration. To evaluate the motor performance, the numerical techniques have been utilized. In the numerical part, 3-D Finite Element (FE analysis has been carried out using a MagNet CAD package (Infolytica Corporation Ltd. for two type of BLDCM to confirm the accuracy and the efficacy of the proposed design procedure. The analysis results demonstrate the effectiveness of the proposed machine design methodology. Keywords: FE Analysis; Field analysis; Brushless Dc Motor ­­­

  2. Self-assembled artificial viral capsids bearing coiled-coils at the surface.

    Science.gov (United States)

    Fujita, Seiya; Matsuura, Kazunori

    2017-06-14

    In order to construct artificial viral capsids bearing complementary dimeric coiled-coils on the surface, a β-annulus peptide bearing a coiled-coil forming sequence at the C-terminus (β-annulus-coiled-coil-B) was synthesized by a native chemical ligation of a β-annulus-SBn peptide with a Cys-containing coiled-coil-B peptide. Dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM) images revealed that the β-annulus-coiled-coil-B peptide self-assembled into spherical structures of about 50 nm in 10 mM Tris-HCl buffer. Circular dichroism (CD) spectra indicated the formation of the complementary coiled-coil structure on the spherical assemblies. Addition of 0.25 equivalent of the complementary coiled-coil-A peptide to the β-annulus-coiled-coil-B peptide showed the formation of spherical assemblies of 46 ± 14 nm with grains of 5 nm at the surface, whereas addition of 1 equivalent of the complementary coiled-coil-A peptide generated fibrous assemblies.

  3. Coiled-coil domains enhance the membrane association of Salmonella type III effectors.

    Science.gov (United States)

    Knodler, Leigh A; Ibarra, J Antonio; Pérez-Rueda, Ernesto; Yip, Calvin K; Steele-Mortimer, Olivia

    2011-10-01

    Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors. Published 2011. This article is a US Government work and is in the public domain in the USA.

  4. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  5. A tokamak with nearly uniform coil stress based on virial theorem

    International Nuclear Information System (INIS)

    Tsutsui, H.

    2002-01-01

    A novel tokamak concept with a new type of toroidal field (TF) coils and a central solenoid (CS) whose stress is much reduced to a theoretical limit determined by the virial theorem has been devised. Recently, we had developed a tokamak with force-balanced coils (FBCs) which are multi-pole helical hybrid coils combining TF coils and a CS coil. The combination reduces the net electromagnetic force in the direction of major radius. In this work, we have extended the FBC concept using the virial theorem. High-field coils should accordingly have same averaged principal stresses in all directions, whereas conventional FBC reduces stress in the toroidal direction only. Using a shell model, we have obtained the poloidal rotation number of helical coils which satisfy the uniform stress condition, and named the coil as virial-limited coil (VLC). VLC with circular cross section of aspect ratio A=2 reduces maximum stress to 60% compared with that of TF coils. In order to prove the advantage of VLC concept, we have designed a small VLC tokamak Todoroki-II. The plasma discharge in Todoroki-II will be presented. (author)

  6. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  7. JT-60SA Toroidal Field Coils test cryostat development

    Energy Technology Data Exchange (ETDEWEB)

    Jamotton, Pierre, E-mail: pjamotton@ulg.ac.be [Centre Spatial de Liège (CSL), Université de Liège Avenue du Pré-Aily, B-4031 Angleur (Belgium); Wanner, Manfred [F4E Broader Fusion Development Dept., Boltzmannstr. 2, D-85748 Garching (Germany); Massaut, Vincent [SCK/CEN, Boeretang 200 2400 Mol (Belgium); Génini, Laurent; Maksoud, Walid Abdel [CEA/DSM/IRFU CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Collin, Bill; Delrez, Christophe [Ateliers de la Meuse (ALM), Rue Ernest Solvay, 107, B-4000 Sclessin (Belgium)

    2013-10-15

    Highlights: ► Large vacuum vessels. ► FEM mechanical design. ► Cryogenic thermal design. ► Full development process: design, manufacturing, assembly, test. -- Abstract: Within the Broader Approach Agreement, Fusion for Energy will deliver to the Japanese Atomic Energy Association, amongst other components, the 18 Toroidal Field Coils (TFCs) for the superconducting Tokamak JT-60SA [1]. These coils will be individually tested at cryogenic temperatures and at the nominal current in a test cryostat. This cryostat is provided as an in-kind contribution by Belgium and is being developed jointly with CEA-Saclay/France. The vessel is large, oval shaped with an overall length of 11 m, a width of 7.2 m and a height of 6.5 m. To reduce the heat load to the coils the cryostat is covered by LN{sub 2} cooled thermal shields. In addition to the cryostat, three test frames for the coils, the valve box vessel and the insulation vacuum system are also provided by Belgium. The Belgian contribution is design, manufacturing, assembly and test of the vacuum chamber, thermal shield and test frames by the Belgian company Ateliers de la Meuse (ALM), with the support of Centre Spatial de Liège (CSL). The TF coil test facility is assembled and the coil tests are performed by CEA/Saclay. The Belgian contribution, namely the design, manufacturing, assembly and test of the vacuum vessel, the thermal shields, and the test frames as well as of the vacuum pumping system are described in the presentation.

  8. Remote replacement of TF [toroidal field] and PF [poloidal field] coils for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.; Watkin, D.C.; Hollis, M.J.; DePew, R.E.; Kuban, D.P.

    1990-01-01

    The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure

  9. A new controller for the JET error field correction coils

    International Nuclear Information System (INIS)

    Zanotto, L.; Sartori, F.; Bigi, M.; Piccolo, F.; De Benedetti, M.

    2005-01-01

    This paper describes the hardware and the software structure of a new controller for the JET error field correction coils (EFCC) system, a set of ex-vessel coils that recently replaced the internal saddle coils. The EFCC controller has been developed on a conventional VME hardware platform using a new software framework, recently designed for real-time applications at JET, and replaces the old disruption feedback controller increasing the flexibility and the optimization of the system. The use of conventional hardware has required a particular effort in designing the software part in order to meet the specifications. The peculiarities of the new controller will be highlighted, such as its very useful trigger logic interface, which allows in principle exploring various error field experiment scenarios

  10. Defining intrinsic hydrophobicity of amino acids' side chains in random coil conformation. Reversed-phase liquid chromatography of designed synthetic peptides vs. random peptide data sets.

    Science.gov (United States)

    Shamshurin, Dmitry; Spicer, Vic; Krokhin, Oleg V

    2011-09-16

    The two leading RP-HPLC approaches for deriving hydrophobicity values of amino acids utilize either sets of designed synthetic peptides or extended random datasets often extracted from proteomics experiments. We find that the best examples of these two methods provide virtually identical results--with exception of Lys, Arg, and His. The intrinsic hydrophobicity values of the remaining residues as determined by Kovacs et al. (Biopolymers 84 (2006) 283) correlates with an R(2)-value of 0.995+ against amino acid retention coefficients from our Sequence Specific Retention Calculator model (Anal. Chem. 78 (2006) 7785). This novel finding lays the foundation for establishing consensus amino acids hydrophobicity scales as determined by RP-HPLC. Simultaneously, we find the assignment of hydrophobicity values for charged residues (Lys, Arg and His at pH 2) is ambiguous; their retention contribution is strongly affected by the overall peptide hydrophobicity. The unique behavior of the basic residues is related to the dualistic character of the RP peptide retention mechanism, where both hydrophobic and ion-pairing interactions are involved. We envision the introduction of "sliding" hydrophobicity scales for charged residues as a new element in peptide retention prediction models. We also show that when using a simple additive retention prediction model, the "correct" coefficient value optimization (0.98+ correlation against values determined by synthetic peptide approach) requires a training set of at least 100 randomly selected peptides. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  12. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  13. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  14. Wedding ring shaped excitation coil

    Science.gov (United States)

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  15. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.

    Science.gov (United States)

    Bañares-Hidalgo, A; Pérez-Gil, J; Estrada, P

    2014-07-01

    Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK=4.8±0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide ((60)W-E(85)) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w=0.55S; Mr~3kDa) and peptide association (s20, w=1.735S; Mr=~14kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N=6 and M=4 (Mr=14692Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. E-coil: an inverse boundary element method for a quasi-static problem

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)

    2010-06-07

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  17. Lung volume reduction coil treatment for patients with severe emphysema : a European multicentre trial

    NARCIS (Netherlands)

    Deslee, Gaetan; Klooster, Karin; Hetzel, Martin; Stanzel, Franz; Kessler, Romain; Marquette, Charles-Hugo; Witt, Christian; Blaas, Stefan; Gesierich, Wolfgang; Herth, Felix J. F.; Hetzel, Juergen; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2014-01-01

    Background The lung volume reduction (LVR) coil is a minimally invasive bronchoscopic nitinol device designed to reduce hyperinflation and improve elastic recoil in severe emphysema. We investigated the feasibility, safety and efficacy of LVR coil treatment in a prospective multicentre cohort trial

  18. Development work on superconducting coils for a Large Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Cornish, D.N.; Deis, D.W.; Harvey, A.R.; Hirzel, D.G.; Johnston, J.E.; Leber, R.L.; Nelson, R.L.; Zbasnik, J.P.

    1977-01-01

    This article has summarized development work directed toward obtaining the data required to design and build the superconducting coils for MFTF. The methods for fabricating the conductor and joining lengths of the conductor are almost finalized, and the building of the test coil and associated equipment is now well under way

  19. ITER central solenoid model coil heat treatment complete and assembly started

    International Nuclear Information System (INIS)

    Thome, R.J.; Okuno, K.

    1998-01-01

    A major R and D task in the ITER program is to fabricate a Superconducting Model Coil for the Central Solenoid to establish the design and fabrication methods for ITER size coils and to demonstrate conductor performance. Completion of its components is expected in 1998, to be followed by assembly with structural components and testing in a facility at JAERI

  20. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  1. Are coiled-coils of dimeric kinesins unwound during their walking on microtubule?

    Science.gov (United States)

    Duan, Zhao-Wen; Xie, Ping; Li, Wei; Wang, Peng-Ye

    2012-01-01

    Dimeric kinesin motor proteins such as homodimeric kinesin-1, homodimeric Ncd and heterodimeric Kar3/Vik1are composed of two head domains which are connected together by a rod-shaped, coiled-coil stalk. Despite the extensive and intensive studies on structures, kinetics, dynamics and walking mechanism of the dimers, whether their coiled-coils are unwound or not during their walking on the microtubule is still an unclear issue. Here, we try to clarify this issue by using molecular dynamics simulations. Our simulation results showed that, for Ncd, a large change in potential of mean force is required to unwind the coiled-coil by only several pairs of residues. For both Ncd and kinesin-1, the force required to initiate the coiled-coil unwinding is larger than that required for unfolding of the single [Formula: see text]-helix that forms the coiled-coil or is larger than that required to unwind the DNA duplex, which is higher than the unbinding force of the kinesin head from the microtubule in strong microtubule-binding states. Based on these results and the comparison of the sequence between the coiled-coil of Kar3/Vik1 and those of Ncd and kinesin-1, it was deduced that the coiled-coil of the Kar3/Vik1 should also be very stable. Thus, we concluded that the coiled-coils of kinesin-1, Ncd and Kar3/Vik1 are almost impossible to unwind during their walking on the microtubule.

  2. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  3. The umbilical coiling index in normal pregnancy

    NARCIS (Netherlands)

    van Diik, C. C.; Franx, A.; de Laat, M. W. M.; Bruinse, H. W.; Visser, G. H. A.; Nikkels, P. G. J.

    2002-01-01

    To provide reference values for the umbilical coiling index in uncomplicated pregnancy. Umbilical cords were collected from livebom singleton infants born after uncomplicated pregnancies. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in

  4. The umbilical coiling index in complicated pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; van Alderen, Elise D.; Franx, Arie; Visser, Gerard H. A.; Bots, Michiel L.; Nikkels, Peter G. J.

    2007-01-01

    To evaluate umbilical cord coiling in pregnancies with adverse outcome. Umbilical cords and hospital records of 565 consecutive cases with an indication for histological examination of the placenta were studied. The umbilical coiling index (UCI) was determined as the number of complete coils divided

  5. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins.

    Science.gov (United States)

    Rose, A; Meier, I

    2004-08-01

    Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.

  6. Large coil test facility

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  7. Flexibility of LHD configuration with multi-layer helical coils

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji; Motojima, Osamu; Yamazaki, Kozo; Nakajima, Noriyoshi; Okamoto, Masao

    1995-11-01

    The Large Helical Device (LHD) is a heliotron device with two helical coils, each of which has a structure of three current layers. It is designed so that the current in each layer should be controlled independently. By changing the combination of the coil current in the layers, it is possible to vary the effective minor radius of the helical coils, which enlarges the flexibility of the configuration. The properties of the plasmas for several combinations of the layers are investigated numerically. In the vacuum configuration, it is obtained that the combination of the layers corresponding to a large effective coil radius has a large outermost surface. In this case, the rotational transform decreases and the magnetic hill is reduced compared with the configuration with all three layers. The large Shafranov shift which is due to the small rotational transform enhances the magnetic well and the magnetic shear to stabilize the Mercier mode, however, it degrades the equilibrium beta limit. In the case of the combination for a small effective coil radius, the Mercier mode is destabilized, because the magnetic hill is enhanced. The effect on the bootstrap current is also studied. (author).

  8. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Mai Lu

    Full Text Available Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8 coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  9. Role of the large coil program in the development of superconducting magnets for fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.

    1978-01-01

    Three U.S. industrial teams are designing and will build one coil each to a common set of specifications. Coil specifications and test conditions were chosen to insure maximum relevance to fusion program needs. Each test coil will have a 2.5 x 3.5 m D-shape bore, will contain about 7 MA-turns, and must operate at a peak field of 8 T while subjected to pulsed fields up to 0.14 T in a test stand that can accommodate up to 6 coils in a compact toroidal array. Coils by General Dynamics/Convair and General Electric will use different NbTi conductors cooled by pool-boiling helium. The Westinghouse coil will use Nb 3 Sn cooled by a forced flow of supercritical helium. These coils will be delivered in 1980 and 1981 for testing in the Large Coil Test Facility at Oak Ridge in a compact toroidal array with three coils from outside the U.S. These will be produced by EURATOM, Japan, and Switzerland for testing under an International Energy Agency agreement

  10. Magnetic lumbosacral motor root stimulation with a flat, large round coil.

    Science.gov (United States)

    Matsumoto, Hideyuki; Octaviana, Fitri; Hanajima, Ritsuko; Terao, Yasuo; Yugeta, Akihiro; Hamada, Masashi; Inomata-Terada, Satomi; Nakatani-Enomoto, Setsu; Tsuji, Shoji; Ugawa, Yoshikazu

    2009-04-01

    The aim of this paper is to develop a reliable method for supramaximal magnetic spinal motor root stimulation (MRS) for lower limb muscles using a specially devised coil. For this study, 42 healthy subjects were recruited. A 20-cm diameter coil designated as a Magnetic Augmented Translumbosacral Stimulation (MATS) coil was used. Compound muscle action potentials (CMAPs) were recorded from the abductor hallucis muscle. Their CMAPs were compared with those obtained by MRS using a conventional round or double coil and with those obtained using high-voltage electrical stimulation. The MATS coil evoked CMAPs to supramaximal stimulation in 80 of 84 muscles, although round and double coils elicited supramaximal CMAPs in only 15 and 18 of 84 muscles, respectively. The CMAP size to the MATS coil stimulation was the same as that to high-voltage electrical motor root stimulation. MATS coil achieved supramaximal stimulation of the lumbosacral spinal nerves. The CMAPs to supramaximal stimulation are necessary for measurement of the amplitude and area for the detection of conduction blocks. The MATS coil stimulation of lumbosacral motor roots is a reliable method for measuring the CMAP size from lower limb muscles in spinal motor root stimulation.

  11. Readout Distance Enhancement of the Passive Wireless Multi-Parameter Sensing System Using a Repeater Coil

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2018-01-01

    Full Text Available A repeater coil is used to extend the detection distance of a passive wireless multi-parameter sensing system. The passive wireless sensing system has the ability of simultaneously monitoring three parameters by using backscatter modulation together with channel multiplexing. Two different repeater coils are designed and fabricated for readout distance enhancement of the sensing system: one is a PCB (printed circuit board repeater coil, and the other is a copper wire repeater coil. Under the conditions of fixed voltage and adjustable voltage, the maximum readout distance of the sensing system with and without a repeater coil is measured. Experimental results show that larger power supply voltage can help further increase the readout distance. The maximum readout distance of the sensing system with a PCB repeater coil has been extended 2.3 times, and the one with a copper wire repeater coil has been extended 3 times. Theoretical analysis and experimental results both indicate that the high Q factor repeater coil can extend the readout distance more. With the copper wire repeater coil as well as a higher power supply voltage, the passive wireless multi-parameter sensing system finally achieves a maximum readout distance of 13.5 cm.

  12. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dregely, Isabel [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Department of Radiological Sciences, Los Angeles, CA (United States); Lanz, Titus; Mueller, Matthias F. [Rapid Biomedical GmbH, Rimpar (Germany); Metz, Stephan [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer diagnostische und interventionelle Radiologie, Munich (Germany); Kuschan, Marika [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); IMETUM, Technische Universitaet Muenchen, Munich (Germany); Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Bundschuh, Ralph A. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Universitaetsklinikum Bonn, Nuklearmedizinische Klinik, Bonn (Germany); Haase, Axel [IMETUM, Technische Universitaet Muenchen, Munich (Germany)

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative {sup 18} F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  13. Principles Governing the Self-Assembly of Coiled-Coil Protein Nanoparticles.

    Science.gov (United States)

    Indelicato, Giuliana; Wahome, Newton; Ringler, Philippe; Müller, Shirley A; Nieh, Mu-Ping; Burkhard, Peter; Twarock, Reidun

    2016-02-02

    Self-assembly refers to the spontaneous organization of individual building blocks into higher order structures. It occurs in biological systems such as spherical viruses, which utilize icosahedral symmetry as a guiding principle for the assembly of coat proteins into a capsid shell. In this study, we characterize the self-assembling protein nanoparticle (SAPN) system, which was inspired by such viruses. To facilitate self-assembly, monomeric building blocks have been designed to contain two oligomerization domains. An N-terminal pentameric coiled-coil domain is linked to a C-terminal coiled-coil trimer by two glycine residues. By combining monomers with inherent propensity to form five- and threefold symmetries in higher order agglomerates, the supposition is that nanoparticles will form that exhibit local and global symmetry axes of order 3 and 5. This article explores the principles that govern the assembly of such a system. Specifically, we show that the system predominantly forms according to a spherical core-shell morphology using a combination of scanning transmission electron microscopy and small angle neutron scattering. We introduce a mathematical toolkit to provide a specific description of the possible SAPN morphologies, and we apply it to characterize all particles with maximal symmetry. In particular, we present schematics that define the relative positions of all individual chains in the symmetric SAPN particles, and provide a guide of how this approach can be generalized to nonspherical morphologies, hence providing unprecedented insights into their geometries that can be exploited in future applications. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Tesla coil discharges guided by femtosecond laser filaments in air

    OpenAIRE

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-01-01

    International audience; A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  15. Modelling of a Coil Steam Generator for CSP applications

    DEFF Research Database (Denmark)

    Pelagotti, Leonardo; Sørensen, Kim; Condra, Thomas Joseph

    2014-01-01

    The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator (CSG). This system allows faster start-ups and therefore higher daily energy production from the Sun. An analytical thermodynamic simulation model of the evaporator and a mechanical analysis...

  16. Low Impedance Voice Coils for Improved Loudspeaker Efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    -mode technology, can be designed to much lower loads. A thorough analysis of the loudspeaker efficiency is presented and its relation to the voice coil fill factor is described. A new parameter, the drivers mass ratio, is introduced and it indicates how much a fill factor optimization will improve a driver’s...

  17. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  18. Voice Coil Percussive Mechanism Concept for Hammer Drill

    Science.gov (United States)

    Okon, Avi

    2009-01-01

    A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.

  19. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  20. Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI

    Directory of Open Access Journals (Sweden)

    Mahmood Nazarpoor

    2014-11-01

    Full Text Available Introduction Signal intensity uniformity in a magnetic resonance (MR image indicates how well the MR imaging (MRI system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to determine the best clinical coil for future clinical application. Materials and Methods A phantom was designed to investigate the non-uniformity of coils. All evaluations were carried out using a 1.5 T clinical MRI scanner. T1-weighted inversion recovery sequence (linear phase encoding and turbo fast low angle shot (TurboFLASH images were used to find non-uniformity in the clinical coils. For testing the uniformity of coils, signal intensity profiles in parts of the coronal image of phantom were measured over X and Y axes. Results The results showed that body coil was the most uniform coil of all; in addition, the head and neck coil was more uniform than the head coil. The results also indicated that signal-to-noise ratio (SNR of the head and neck coil was higher than the head and body coils. Moreover, SNR of the head coil was higher than that of the body coil. Conclusion In order to accurately find or apply an image signal intensity for measuring organ blood flow or perfusion, coil non-uniformity corrections are required.

  1. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  2. Head fixed field coil system for measuring eye movements in freely moving monkeys.

    Science.gov (United States)

    Ogorodnikov, Dmitri; Tarasenko, Sergey; Yakushin, Sergei; Cohen, Bernard; Raphan, Theodore

    2006-01-01

    Coil systems have been a standard for measuring eye movements since they were first introduced. These systems, which have been designed to work at low frequencies (20 KHz), generally require large field coils so that a uniform field can be established at the eye coil site. This configuration makes it virtually impossible to study eye movements in freely moving animals. In this paper, we describe the design of a coil system, which operates at radio frequencies (10 MHz). This system allows the use of compact coils with radii of 10 mm that are capable of accurately measuring eye movements in three dimensions during head free locomotion. This system opens the possibility for studying eye movements in freely moving monkeys under a wide range of conditions.

  3. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  4. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  5. submitter 16 T $Nb_{3}Sn$ Racetrack Model Coil Test Result

    CERN Document Server

    Perez, J C; Bajko, M; Bottura, L; Bordini, B; Chiuchiolo, A; De Rijk, G; Ferracin, P; Feuvrier, J; Grosclaude, P; Juchno, M; Rochepault, E; Rysti, J; Sarasola, X

    2016-01-01

    In the framework of the European project EuCARD, the High Field Magnet project, led by a CERN-CEA collaboration, implied the development of a large aperture $Nb_{3}Sn$ dipole magnet called FRESCA2. The magnet uses four double-pancake block-type coils, each about 1.5 m long. In order to characterize strand and cable properties, as well as to qualify the coil fabrication process, CERN started in 2012 the design and fabrication of the Racetrack Model Coil (RMC) magnet, a short model magnet using the same cable as FRESCA2 magnet with only two flat double-pancake coils about 0.8 m long. In 2013, two superconducting coils have been fabricated, making use of two different types of superconductor. In 2014 and 2015, the coils were tested both in a single and in a double-coil configuration in a support structure based on an external aluminum shell pre-loaded with water-pressurized bladders. In this paper, we describe the design of the RMC magnet and its coils, provide the main parameters of the superconductor, and repo...

  6. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Steiner, D.; Mohanti, R.; Duggan, W.

    1987-01-01

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  7. Multi-turn transmit coil to increase b1 efficiency in current source amplification.

    Science.gov (United States)

    Gudino, N; Griswold, M A

    2013-04-01

    A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Three different coil designs driven by an on-coil current-mode class-D amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost 3-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated field-effect transistor to the multi-turn coil. In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of field-effect transistors with lower current ratings and lower port capacitances, which could improve the overall performance of the on-coil current source transmit system. Copyright © 2013 Wiley Periodicals, Inc.

  8. Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins.

    Science.gov (United States)

    Sutherland, Tara D; Trueman, Holly E; Walker, Andrew A; Weisman, Sarah; Campbell, Peter M; Dong, Zhaoming; Huson, Mickey G; Woodhead, Andrea L; Church, Jeffrey S

    2014-06-01

    The use of coiled coil proteins as the basis of silk materials is an engineering solution that has evolved convergently in at least five insect lineages-the stinging hymenopterans (ants, bees, hornets), argid sawflies, fleas, lacewings, and praying mantises-and persisted throughout large radiations of these insect families. These coiled coil silk proteins share a characteristic distinct from other coiled coil proteins, in that they are fabricated into solid materials after accumulating as highly concentrated solutions within dedicated glands. Here, we relate the amino acid sequences of these proteins to the secondary and tertiary structural information available from biophysical methods such as X-ray scattering, nuclear magnetic resonance and Raman spectroscopy. We investigate conserved and convergently evolved features within these proteins and compare these to the features of classic coiled coil proteins including tropomyosin and leucine zippers. Our analysis finds that the coiled coil domains of insect silk proteins have several common structural anomalies including a high prevalence of alanine residues in core positions. These atypical features of the coiled coil fibrous proteins - which likely produce deviations from canonical coiled-coil structure - likely exist due to selection pressures related to the process of silk fabrication and the final function of the proteins. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. Structural implications of conserved aspartate residues located in tropomyosin's coiled-coil core.

    Science.gov (United States)

    Moore, Jeffrey R; Li, Xiaochuan; Nirody, Jasmine; Fischer, Stefan; Lehman, William

    2011-09-01

    Polar residues lying between adjacent α-helical chains of coiled-coils often contribute to coiled-coil curvature and flexibility, while more typical core hydrophobic residues anneal the chains together. In tropomyosins, ranging from smooth and skeletal muscle to cytoplasmic isoforms, a highly conserved Asp at residue 137 places negative charges within the tropomyosin coiled-coil core in a position which may affect the conformation needed for tropomyosin binding and regulatory movements on actin. Proteolytic susceptibility suggested that substituting a canonical Leu for the naturally occurring Asp at residue 137 increases inter-chain rigidity by stabilizing the tropomyosin coiled-coil. Using molecular dynamics, we now directly assess changes in coiled-coil curvature and flexibility caused by such mutants. Although the coiled-coil flexibility is modestly diminished near the residue 137 mutation site, as expected, a delocalized increase in flexibility along the overall coiled-coil is observed. Even though the average shape of the D137L tropomyosin is straighter than that of wild-type tropomyosin, it is still capable of binding actin due to this increase in flexibility. We conclude that the conserved, non-canonical Asp-137 destabilizes the local structure resulting in a local flexible region in the middle of tropomyosin that normally is important for tropomyosin steady-state equilibrium position on actin.

  10. Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region.

    Science.gov (United States)

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-06-18

    Binding of transforming growth factor α (TGF-α) to the epidermal growth factor receptor (EGFR) extracellular domain is encoded through the formation of a unique antiparallel coiled coil within the juxtamembrane segment. This new coiled coil is an "inside-out" version of the coiled coil formed in the presence of epidermal growth factor (EGF). A third, intermediary coiled-coil interface is formed in the juxtamembrane region when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane region correlates with cell state. The observation that coiled-coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled-coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A repeated coiled-coil interruption in the Escherichia coli condensin MukB.

    Science.gov (United States)

    Weitzel, Christopher S; Waldman, Vincent M; Graham, Travis A; Oakley, Martha G

    2011-12-09

    MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function. Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  13. Cryogenic structures of superconducting coils for fusion experimental reactor 'ITER'

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu; Shimamoto, Susumu

    2013-01-01

    This paper describes both structural materials and structural design of the Toroidal Field (TF) coil and Central Solenoid (CS) for the International Thermonuclear Experimental Reactor (ITER). All the structural materials used in the superconducting coil system of the ITER are austenitic stainless steels. Although 316LN is used in the most parts of the superconducting coil system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by the Japan Atomic Energy Agency (JAEA) and Japanese steel companies, are used in the highest stress area of the TF coil case and the whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. Structural materials are classified into five grades depending on stress distribution in the TF coil case. JAEA made an industrial specification for mass production based on the ITER requirements. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)' issued by the Japan Society of Mechanical Engineers (JSME) in October 2008, which was established using an extrapolation method of 4 K material strengths from room temperature strength and chemical compositions developed by JAEA. It enables steel suppliers to easily control the quality of products at room temperature. JAEA has already started actual production with several manufacturing companies. The first JJ1 product to be used in the TF coil case and the first JK2LB jackets for CS were completed in October and September 2013, respectively. (author)

  14. submitter Electromagnetic Study of a Round Coil Superferric Magnet

    CERN Document Server

    Volpini, Giovanni; Statera, Marco

    2016-01-01

    A novel type of superferric magnets suitable to arbitrary multipole orders was proposed by I. F. Malyshev and later by V. Kashikhin. This new topology, which we refer to as round coil superferric magnets (RCSM), allows a great simplification of the superconducting part, which in the simplest case may be composed by a single round coil, which has intrinsically a rather large bending radius allowing the use of strain-sensitive superconductors. INFN is designing and building a prototype of a multipolar corrector magnet based on this geometry and using MgB2 tapes. In this paper, we investigate a number of issues pertaining to the electromagnetic characteristics of RCSM. The RCSM magnetic has inherently even harmonics, in addition to usual odd ones and a solenoidal component. Either (but not both) disappears when integrated using a one-coil or a two-coil specular design. We investigate the effect of saturation on the multipolar components and on the load line, since in RCSM, saturation plays a role that differs bo...

  15. Status report of the CMS superconducting coil project

    CERN Document Server

    Campi, D; Hervé, A; Horváth, I L; Kircher, F

    2001-01-01

    The CMS superconducting coil is designed for one of the two large experiments of LHC at CERN. This coil 12.5 m long, 6 m diameter and 2.7 GJ stored energy is a common project of the CMS Collaboration. It is a four-layer coil, equipped with a self-supporting conductor capable of carrying 20 kA to reach the maximum potential field of 4 T. It has been designed with a considerable contribution from CEA- Saclay for the engineering, ETH-Zurich for the conductor, INFN-Genova for the winding and CERN for the general coordination and construction of the ancillaries. The project entered the construction phase one year ago. The civil engineering is well advanced and ready to accept part of the yoke components already built. The coil itself has finished the pre-industrialization phase and the construction is beginning in industry. Most of the important contracts have been awarded and the foreseen schedule is now based on contractual engagements. A quick overview of the features of the project as well as a status report o...

  16. Coil-springs used as mechanical filter. Modification of the bottom tie plate of a fuel assembly

    International Nuclear Information System (INIS)

    Nylund, O.

    1993-01-01

    Describes an improved design of the bottom tie plate of a fuel assembly. The improvement of the design is an arrangement of horizontal channels holding coil-springs and crossing the vertical channels for the cooling water. The coil-springs work as strainers for the cooling water

  17. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface.Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods.SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence divergence.

  18. Photoelastic and analytical investigation of stress in toroidal magnetic field coils

    International Nuclear Information System (INIS)

    Pih, H.; Gray, W.H.

    1975-01-01

    A series of two-dimensional photoelastic stress analyses on circular and oval toroidal magnetic field coils for fusion reactors were made. The circumferential variation of the coil's magnetic force was simulated by applying different pressures to sixteen segmented regions of the inner surface of the models. Isochromatics and isoclinics were measured at selected points on the loaded model in a transmission polariscope using a microphotometer. Separate principal stresses were obtained using the combination of photoelastic information and isopachic data measured from the solution of Laplace's equation by the electrical analog method. Analysis of the same coil geometries, loadings, and boundary conditions were made using the finite element method. General agreement between theory and experiment was realized. From this investigation several variations of coil geometry and methods of support were evaluated. Based upon this experiment, suggestions for optimum structural design of toroidal field coils are presented

  19. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    Science.gov (United States)

    Martin, N.; Wagner, J. N.; Dogu, M.; Fuchs, C.; Kredler, L.; Böni, P.; Häußler, W.

    2014-07-01

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  20. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    International Nuclear Information System (INIS)

    Martin, N.; Kredler, L.; Häußler, W.; Wagner, J. N.; Dogu, M.; Fuchs, C.; Böni, P.

    2014-01-01

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE

  1. Development of a device for measuring the sensitivity area of coil arrays for magnetic induction measurements.

    Science.gov (United States)

    Cordes, Axel; Santos, Susana Aguiar; Leonhardt, Steffen

    2011-01-01

    Combining single coils to form a coil array provide advantages for magnetic induction measurements of breathing or heart activity. The main goal for such combination could be a coil configuration which makes the whole measurement system less sensitive for moving artifacts of the patient due to the capability of using many coils for signal acquisition. Such setup could be designed and tested with FEM software. But in most cases, the technical realization differs from theoretical, for instance due to cable effects or the presence of amplifiers attached very close to the coils. Thus, a measurement system for detecting the sensitive area of real arrays is required. In this article, such a device is presented. Based on a crane construction, it is well suited for testing arrays which are built for an integration under a bed or within an incubator for vital parameter monitoring. We will describe the construction as well as first example measurements of a test array.

  2. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  3. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  4. Making an Inexpensive Electromagnetic Wiggler Using Sheet Materials for the Coils

    CERN Document Server

    Herman-Biallas, George; Hiatt, Thomas; Neil, George; Snyder, Michael

    2004-01-01

    An inexpensive electromagnetic wiggler, made with twenty-eight, 4 cm periods with a K of 1 and gap of 2.6 cm was made within 10 weeks after receipt of order by an industrial machine shop. The coil design used sheet and plate materials cut to shapes using water jet cutting and was assembled in a simple stack design. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The coils are conduction cooled to imbedded cooling plates. The wiggler features graded end pole fields, trim coil compensation for end field errors and mirror plates on the ends to avoid three dimensional end field effects. Details of the methods used in construction and the wiggler performance are presented.

  5. Review of selected coil and collared-coil assembly data from 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    International Nuclear Information System (INIS)

    Devred, A.

    1999-02-01

    In 1991, the Laboratoire Europeen pour la Physique des Particules (CERN) has launched the fabrication in industry of seven 10 m long, 50 mm twin aperture dipole magnet prototypes for the Large Hadron Collider (LHC). The design and specific features of these magnets have been described elsewhere. In this paper, we review some of the coil and collared-coil assembly data and we analyze the influence of tooling imperfections on magnet assembly. (author)

  6. Status report on the 12T split coil test facility SULTAN

    International Nuclear Information System (INIS)

    Blau, B.; Aebli, E.; Jakob, B.; Pasztor, G.; Vecsey, G.; della Corte, A.; Pasotti, G.; Sacchetti, N.; Spadoni, M.

    1992-01-01

    The third phase of upgrading of the superconductor test facility SULTAN into a split coil system (SULTAN III) is in progress. SULTAN III a join project of ENEA (Italy) and PSI (Switzerland) consists of two coil packages, each containing three concentrically mounted superconducting solenoids. Together they will produce a field of nearly 12T between the two coil packages, inside a solenoid bore of 58 cm. The outermost 6T coils have NbTi conductors, whereas the inner 9T and 12T coils are made of A-15 cables. All Nb 3 Sn coils are manufactured by the react-and-wind technique. The split coil arrangement, in connection with a sophisticated sample insert containing a 50 kA superconducting transformer, will allow testing of short samples of high current carrying superconductors, e.g. for fusion applications. The sample insert was designed to allow changing the samples within a few hours without warming up the whole magnet system. This paper deals with the present status and potential of the Split Coil Test Facility SULTAN III

  7. Enhanced MR angiography of the lower extremities with synergy spine coil

    International Nuclear Information System (INIS)

    Takashima, Hiroyuki; Watanabe, Naoki

    2002-01-01

    A synergy spine coil is a phased-array coil designed for spine imaging. The coil's sensitive area is narrow in both the x-axis and y-axis directions but very wide in the z-axis direction. It is therefore suitable for using in long parts of the body, such as the spine. We used the coil for enhanced MR angiography in the lower extremities, which requires a very long field of view on the z-axis direction. Using on the NEMA (National Electrical Manufacturers Association) standard test for special-purpose coils, the sensitive volume of the synergy spine coil was first measured by using a phantom. It was found that the sensitive lengths along x-axis and y-axis were 300 mm and 120 mm, respectively, while that along z-axis could set at any length required for the examination by modifying the element number. The above area was confirmed to be sufficient for obtaining enhanced MR angiograms of the lower extremities. The results of this study showed the use of the synergy spine coil in enhanced MR angiography of the lower extremities is superior to the use of a conventional whole body coil for obtaining good MR angiograms with a good single-to-noise ratio (SNR). (author)

  8. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins.

    Science.gov (United States)

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-11-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  9. Thermal analysis of toroidal field coil in EAST at 3.7 K

    International Nuclear Information System (INIS)

    Yi, Shi; Wu, Yu; Liu, Bo.; Long, Feng; Hao, Qiang W.

    2014-01-01

    Highlights: • In this study, the thermal performance of toroidal field (TF) coil is studied at 3.7 K in Experimental Advanced Superconducting Tokamak device (EAST) to obtain the higher stability. • The structure and cooling process design of TF coil and case is described and the helium temperature in the cable-in-conduit conductor (CICC) and case is evaluated during the 1.5 MA plasma disruptions. • Then, the experimental results of TF coil cooled at 3.7 K and discharged in 10 kA are shown including the thermal loss evaluation. • Finally, the thermal stability performance of TF coil is analyzed at 1.5 MA plasma current operations. - Abstract: The thermal performance of toroidal field (TF) coil is studied at 3.7 K in Experimental Advanced Superconducting Tokamak device (EAST) to obtain the higher stability for the higher plasma parameters operation. It is a good way to lower the operating temperature of TF coil to acquire the higher stability margin. This paper describes the structure and cooling process design of TF coil and case firstly. Based on the thermal load in the case, the thermal performance of the TF coil is performed at the plasma disruption state. The helium temperature in the cable-in-conduit conductor (CICC) and case is evaluated during the 1.5 MA plasma disruptions. Then, the experimental results of TF coil which has been cooled at 3.7 K and discharged in 10 kA are shown including the thermal loss evaluation. Finally, the thermal stability performance of TF coil is analyzed according to the 3.7 K experimental results and the stability prediction is performed at 1.5 MA plasma current operations

  10. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  11. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action.

    Science.gov (United States)

    Cheung, Pak-Yan P; Pfeffer, Suzanne R

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.

  12. CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Erich Hansen, E

    2008-05-23

    The Tank Closure and Technology Development Groups are developing a strategy for closing the High Level Waste (HLW) tanks at the Savannah River Site (SRS). Two Type IV tanks, 17 and 20 in the F-Area Tank Farm, have been successfully filled with grout. Type IV tanks at SRS do not contain cooling coils; on the other hand, the majority of the tanks (Type I, II, III and IIIA) do contain cooling coils. The current concept for closing tanks equipped with cooling coils is to pump grout into the cooling coils to prevent pathways for infiltrating water after tank closure. This task addresses the use of grout to fill intact cooling coils present in most of the remaining HLW tanks on Site. The overall task was divided into two phases. Phase 1 focused on the development of a grout formulation (mix design) suitable for filling the HLW tank cooling coils. Phase 2 will be a large-scale demonstration of the filling of simulated cooling coils under field conditions using the cooling coil grout mix design recommended from Phase 1. This report summarizes the results of Phase 1, the development of the cooling coil grout formulation. A grout formulation is recommended for the full scale testing at Clemson Environmental Technology Laboratory (CETL) that is composed by mass of 90% Masterflow (MF) 816 (a commercially available cable grout) and 10% blast furnace slag, with a water to cementitious material (MF 816 + slag) ratio of 0.33. This formulation produces a grout that meets the fresh and cured grout requirements detailed in the Task Technical Plan (2). The grout showed excellent workability under continuous mixing with minimal change in rheology. An alternative formulation using 90% MF 1341 and 10% blast furnace slag with a water to cementitious material ratio of 0.29 is also acceptable and generates less heat per gram than the MF 816 plus slag mix. However this MF 1341 mix has a higher plastic viscosity than the MF 816 mix due to the presence of sand in the MF 1341 cable grout and a

  13. A Comparative Study of Orthodontic Coil Springs

    OpenAIRE

    Deepak Kumar Agarwal; Anup Razdan; Abhishek Agarwal; Preeti Bhattacharya; Ankur Gupta; D N Kapoor

    2011-01-01

    Several types of force delivering system are used to carry out tooth movement in orthodontics. Coil springs being one of them are used for the same thus requiring minimal operator manipulation. Aims and objectives : The purpose of this study was to determine the effect of wire diameter, lumen size and length of coil spring on the load produced as a function of displacement of SS and NiTi coil spring. Materials and methods : The study consisted of 60 samples of open and closed coil sprin...

  14. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  15. A resonant biaxial Helmholtz coil employing a fractal capacitor bank.

    Science.gov (United States)

    Martin, James E

    2013-09-01

    The design and construction of a series resonant biaxial Helmholtz coil for the production of magnetic fields as large as 500 G in the range of 100-2500 Hz is described. Important aspects of ac coil design are discussed, including: minimizing power losses due to the expected Joule heating, self-induced eddy currents, and skin resistance; controlling the stray capacitance; maximizing field homogeneity; and keeping peak voltages at acceptable levels. The design and construction of a computer-controlled, optically isolated fractal capacitor bank is then treated, and various aspects of capacitor selection and characterization were discussed. The system performance is demonstrated, including stability and the possibility of field component dephasing with typical magnetic samples.

  16. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  17. Multicoil2: Predicting Coiled Coils and Their Oligomerization States from Sequence in the Twilight Zone

    Science.gov (United States)

    Trigg, Jason; Gutwin, Karl; Keating, Amy E.; Berger, Bonnie

    2011-01-01

    The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices) of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs) in a Markov Random Field (MRF). The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu. PMID:21901122

  18. Natural templates for coiled-coil biomaterials from praying mantis egg cases.

    Science.gov (United States)

    Walker, Andrew A; Weisman, Sarah; Kameda, Tsunenori; Sutherland, Tara D

    2012-12-10

    Whereas there is growing interest in producing biomaterials containing coiled-coils, relatively few studies have made use of naturally occurring fibrous proteins. In this study, we have characterized fibrous proteins used by mother praying mantises to produce an extensive covering for their eggs called an ootheca and demonstrate the production of artificial ootheca using recombinantly produced proteins. Examination of natural oothecae by infrared spectroscopy and solid-state nuclear magnetic resonance revealed the material to consist of proteins organized predominately as coiled-coils. Two structural proteins, Mantis Fibroin 1 and Mantis Fibroin 2, were identified in ootheca from each of three species. Between species, the primary sequences of both proteins had diverged considerably, but other features were tightly conserved, including low molecular weight, high abundance of Ala, Glu, Lys, and Ser, and a triblock-like architecture with extensive central coiled-coil domain. Mantis fibroin hydrophobic cores had an unusual composition containing high levels of alanine and aromatic residues. Recombinantly produced mantis fibroins folded into coiled-coils in solution and could be fabricated into solid materials with high coiled-coil content. The structural features of mantis fibroins and their straightforward recombinant production make them promising templates for the production of coiled-coil biomimetics materials.

  19. LOGICOIL--multi-state prediction of coiled-coil oligomeric state.

    Science.gov (United States)

    Vincent, Thomas L; Green, Peter J; Woolfson, Derek N

    2013-01-01

    The coiled coil is a ubiquitous α-helical protein-structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, the coiled coil is readily recognized via a conspicuous heptad repeat of hydrophobic and polar residues. However, structurally coiled coils are more complicated, existing in a wide range of oligomer states and topologies. As a consequence, predicting these various states from sequence remains an unmet challenge. This work introduces LOGICOIL, the first algorithm to address the problem of predicting multiple coiled-coil oligomeric states from protein-sequence information alone. By covering >90% of the known coiled-coil structures, LOGICOIL is a net improvement compared with other existing methods, which achieve a predictive coverage of ∼31% of this population. This leap in predictive power offers better opportunities for genome-scale analysis, and analyses of coiled-coil containing protein assemblies. LOGICOIL is available via a web-interface at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code, training sets and supporting information can be downloaded from the same site.

  20. Coiled-coil formation on lipid bilayers--implications for docking and fusion efficiency.

    Science.gov (United States)

    Pähler, Gesa; Panse, Cornelia; Diederichsen, Ulf; Janshoff, Andreas

    2012-12-05

    Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Coiled-Coil Formation on Lipid Bilayers—Implications for Docking and Fusion Efficiency

    Science.gov (United States)

    Pähler, Gesa; Panse, Cornelia; Diederichsen, Ulf; Janshoff, Andreas

    2012-01-01

    Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking. PMID:23283228

  2. Structural characteristics of the redox-sensing coiled coil in the voltage-gated H+ channel.

    Science.gov (United States)

    Fujiwara, Yuichiro; Takeshita, Kohei; Nakagawa, Atsushi; Okamura, Yasushi

    2013-06-21

    Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H(+) (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.

  3. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  4. Considerations of a ship defense with a pulsed COIL

    Science.gov (United States)

    Takehisa, K.

    2015-10-01

    Ship defense system with a pulsed COIL (Chemical Oxygen-Iodine Laser) has been considered. One of the greatest threats for battle ships and carriers in warfare are supersonic anti-ship cruise missiles (ASCMs). A countermeasure is considered to be a supersonic RAM (Rolling Airframe Missile) at first. A gun-type CIWS (Close-In Weapon System) should be used as the last line of defense. However since an ASCM can be detected at only 30-50km away due to radar horizon, a speed-of-light weapon is desirable as the first defense especially if the ASCM flies at >Mach 6. Our previous report explained several advantages of a giant pulse from a chemical oxygen laser (COL) to shoot down supersonic aircrafts. Since the first defense has the target distance of ~30km, the use of COIL is better considering its beam having high transmissivity in air. Therefore efficient operation of a giant-pulsed COIL has been investigated with rate-equation simulations. The simulation results indicate that efficient single-pass amplification can be expected. Also a design example of a giant-pulsed COIL MOPA (master oscillator and power amplifier) system has been shown, in which the output energy can be increased without limit.

  5. Practical considerations for coil-wrapped Distributed Temperature Sensing setups

    Science.gov (United States)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick

    2015-04-01

    Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.

  6. Photoelastic analyses of stresses in toroidal magnetic field coils

    International Nuclear Information System (INIS)

    Pih, H.

    1977-02-01

    Several two-dimensional photoelastic stress analyses were made on models of circular and oval toroidal magnetic field coils for fusion reactors. The circumferential variation of each coil's in-plane magnetic force was simulated by applying different pressures to 16 segmented regions of the inner surface of the models. One special loading fixture was used for the model of each shape and size. Birefringence and isoclinic angles were measured in a transmission polariscope at selected points on the loaded model. Boundary stresses in the cases of known boundary conditions were determined directly from the isochromatics. Separate principal stresses were calculated using the combination of photoelastic information and isopachic data obtained by the electrical analogy method from the solution of Laplace's equation. Comparisons were made between experimental results and those computed using the finite element method. The stress distribution between theoretical and experimental agrees very well, although the finite element method yielded slightly higher stresses than the photoelastic method; further work is needed to resolve this difference. In this investigation several variations of coil geometry and methods of support were evaluated. Based on experimental results, optimum structural designs of toroidal field coils were recommended

  7. Electromagnetic flat sheet forming by spiral type actuator coil

    Science.gov (United States)

    Akbar, S.; Aleem, M. A.; Sarwar, M. N.; Zillohu, A. U.; Awan, M. S.; Haider, A.; Ahmad, Z.; Akhtar, S.; Farooque, M.

    2016-08-01

    Focus of present work is to develop a setup for high strain rate electromagnetic forming of thin aluminum sheets (0.5, 1.0, 1.5 and 2.0 mm) and optimization of forming parameters. Flat spiral coil of 99.9% pure Cu strip (2.5x8.0 mm) with self-inductance 11 μH, 13 no. of turns and resultant outer diameter of 130mm has been fabricated and was coupled to a capacitor bank of energy, voltage and capacitance of 9 kJ, 900 V and 22.8 mF, respectively. To optimize the coil design, a commercially available software FEMM-4.2 was used to simulate the electromagnetic field profile generated by the coils of different pitch but same number of turns. Results of electromagnetic field intensity proposed by simulation agree in close proximity with those of theoretical as well as experimental data. The calculation of electromagnetic force and magnetic couplings between the coil and metal sheet are made. Forming parameters were optimized for different sheet thicknesses. Electromagnetic field intensity's profile plays a principal role in forming of typical shapes and patterns in sheets.

  8. Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil

    Directory of Open Access Journals (Sweden)

    Tommaso Campi

    2018-02-01

    Full Text Available This study deals with the design and the optimization of a wireless power transfer (WPT charging system based on magnetic resonant coupling applied to an electric vertical take-off and landing Unmanned Aerial Vehicle (UAV. In this study, a procedure for primary and secondary coil design is proposed. The primary circuit in the ground station consists of an array of coils in order to mitigate the negative effects on the coupling factor produced by the possible misalignment between the coils due to an imperfect landing. Key aspects for the design of the secondary coil onboard the UAV are the lightness and compactness of the WPT system components. A demonstrative prototype of the WPT system is applied to a commercial drone. The WPT electrical performances are calculated and measured. Finally, an automatic battery recharge station is built where the drone can autonomously land, recharge the battery and take off to continue its flight mission.

  9. Development and Manufacture of the Coil End Spacers of the LHC Pre-series Dipoles

    CERN Document Server

    Farina, E; Perini, D; Schiappapietra, A; Seneé, L

    2002-01-01

    The coil end spacers play an important role in the performance of superconducting coils, as their shape and location determine the mechanical stability of the conductors in the coil ends (and hence the overall coil training performance) and the local field quality. The dipole end spacers are often of a size and a geometry difficult to be industrially series manufactured and measured. Efficiency of the production and related costs are a key issue to achieve the required production rate of the LHC main dipoles at an affordable price. For the latter reasons, a design approach integrating state-of-the-art CAD/CAM optimization techniques allowing to considerably decrease design and machining time was implemented. This paper gives examples and describes the design criteria, the computation methods, the machining and measuring procedures adopted to carry out the pre-series production.

  10. Development of a full-ring ;add-on PET; prototype: A head coil with DOI-PET detectors for integrated PET/MRI

    Science.gov (United States)

    Nishikido, F.; Fujiwara, M.; Tashima, H.; Akram, M. S. H.; Suga, M.; Obata, T.; Yamaya, T.

    2017-08-01

    We developed a full-ring ;add-on PET; prototype which is brain-dedicated and consists of a RF-head coil with four-layer depth-of-interaction (DOI) PET detectors for integrated PET/MRI in order to evaluate performance of our previously proposed add-on PET system and to investigate the mutual influences between the individual PET and MRI modalities when they are integrated in simultaneous measurements. In this add-on PET prototype, the DOI detectors are mounted on the head coil and close to the patient head. As a result, higher sensitivity and higher spatial resolution can be achieved for the integrated PET/MRI, compared with conventional whole body PET/MRI systems. In addition, implementation cost can be reduced, tuning of the RF-coil can be optimized and PET and MRI images can be obtained simultaneously in exactly the same positions. Specifically, the full-ring prototype consists of eight DOI-PET detectors and a birdcage type head coil of a 3T MRI. The radius of the PET ring is 123.9 mm. The distance from the center to the RF-coil elements is 130.5 mm. The scintillator blocks consist of lutetium-yttrium oxyorthosilicate scintillators arranged in 19×6×4 layers with reflectors inserted between them. The size of each crystal element is 2.0 mm×2.0 mm ×5.0 mm. We evaluated performance of the full-ring prototype in simultaneous measurements of the integrated PET/MRI. We obtained spatial resolutions of 2.3 mm at the center of the field-of-view (FOV) and lower than 3.5 mm in the whole FOV. The energy resolution of 19.4% was obtained for 511 keV gamma-rays. In addition, we observed no degradation of PET performance caused by the MRI measurement. The signal-to-noise ratio (SNR) of the MRI image was 209.4 in simultaneous measurements with the PET. The maximum ΔB0 and maximum difference of the secondary magnetic field due to the eddy current effect were smaller than 0.8 ppm and ±5.0 μT, respectively. We concluded that sufficient spatial resolution and detector

  11. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  12. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  13. Theoretical Analysis of Planar Spiral Coils between Two Multilayer Media for Electric Vehicle Wireless Charging

    Directory of Open Access Journals (Sweden)

    Zhichao Luo

    2018-03-01

    Full Text Available Square and circular coils are two typical topologies for coupling coils and are applied to wireless charging. However, most of the research on coupling coils is based on the finite element model (FEM, which is a time-consuming process for 3-D structure coils. In this paper, on the basis of Fourier–Bessel transformation and Dual Fourier transformation, two theoretical models of square and circular coils between two multilayer media are proposed. With the proposed models, we consider several important parameters such as the size of the coils, thickness, and permeability of each layer. Thus, both the self-inductance and mutual inductance of two planar coils can be calculated without much computational time. Additionally, these theoretical models can help designers figure out the different trends of self-inductance and mutual inductance, which has plenty of benefits for the preliminary pad design. Lastly, a prototype with a size of 600 mm × 600 mm and a 200 mm air gap was built in order to verify the proposed models.

  14. Heterochiral Jun and Fos bZIP peptides form a coiled-coil heterodimer that is competent for DNA binding.

    Science.gov (United States)

    Kamada, Rui; Nakagawa, Natsumi; Oyama, Taiji; Sakaguchi, Kazuyasu

    2017-07-01

    Coiled coils, consisting of at least two α-helices, have important roles in the regulation of transcription, cell differentiation, and cell growth. Peptides composed of d-amino acids (d-peptides) have received great attention for their potential in biomedical applications, because they give large diversity for the design of peptidyl drug and are more resistant to proteolytic digestion than l-peptides. However, the interactions between l-peptides/l-protein and d-peptides in the formation of complex are poorly understood. In this study, stereoisomer-specific peptides were constructed corresponding to regions of the basic-leucine-zipper domains of Jun and Fos proteins. basic-leucine-zipper domains consist of an N-terminal basic domain, which is responsible for DNA binding, and a C-terminal domain that enables homodimerization or heterodimerization via formation of a coiled-coil. By combining peptides with different stereochemistries, the d-l heterochiral Jun-Fos heterodimer formation induced DNA binding by the basic domains of Jun-Fos. Our study provides new insight into the interaction between l-peptide and d-peptide enantiomers for developing d-peptide materials and drugs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  15. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).

    Science.gov (United States)

    Jelesarov, I; Dürr, E; Thomas, R M; Bosshard, H R

    1998-05-19

    The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1).

  16. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  17. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  18. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  19. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sowmya Venkatakrishnan

    Full Text Available We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL. PICC (147 kDa and PICL (87 kDa are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC, with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI. The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  20. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana.

    Science.gov (United States)

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  1. Functional Investigation of the Plant-Specific Long Coiled-Coil Proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana

    Science.gov (United States)

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199

  2. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  3. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  4. Current ripple in the coils of the TJ-II Spanish stellarator

    International Nuclear Information System (INIS)

    Perez, A.; Acero, J.; Alberdi, B.; Del Rio, J.M.; Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P.

    1995-01-01

    High precision coil current control, stability and ripple content are very important aspects for a stellarator design. The TJ-II coils will be supplied by network commutated current converters and therefore the coil currents will contain harmonics which have to be kept to a very low level. An analytical investigation as well as numerous simulations with EMTP, SABER reg-sign and other softwares, have been done in order to predict the harmonic currents and to verify the completion with the specified maximum levels. The calculations and the results are presented

  5. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  6. Construction of a 13 kG magnetic coil system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Aso, Y.; Castro, P.J.; Barroso, J.J.; Ludwig, G.O.; Montes, A.; Nono, M.C.A.; Correa, R.A.

    1991-08-01

    The construction of magnetic coil system for a 35 GHz gyrotron is reported in great detail. This system is designed to generate a magnetic induction of 13,2 kG over an extension of 13 cm. By using an operating current of about 100 A, it was verified that both the axial magnetic field profile and the spatial non-uniformity are in close agreement with those theoretically predicted. (author)

  7. 'Investigation on the heat dissipation characteristics of electromagnetic coil for high temperature applications

    International Nuclear Information System (INIS)

    Saran, Shiv Raj; Taly, Y. K.; Mahapatra, U.; Chandraker, D.K.

    2011-01-01

    Full text: Function of electromagnetic coil is to generate magnetic flux for electromechanical devices like linear actuator, motor etc. Electromagnetic coils are used in the Advanced Magnetic Jack Mechanism (AMJM) and In-Vessel Control Rod Drive Mechanism (IV CRDM) to control the motion of the rod in the reactor. This paper describes results of the thermal analysis with several candidate materials to design the electromagnetic coil for desired high temperature (∼ 350 deg C) service life by using well established software to study the thermal design for in-vessel control rod drive mechanism. A test model of electromagnetic coil is fabricated and tested at room temperature (30 deg C). The measured temperatures from the test model at selected locations (along radial and axial direction) have been used to validate the design methodology by finite element analysis. Various candidate materials (Ceramic fiber, glass fiber, mineral insulated conductors) for electromagnetic coil have been analyzed to investigate the suitability for high temperature (∼ 350 deg C) applications. This study will be useful for designing electromagnetic coils for in-vessel control rod drive mechanism

  8. Test of Optimized 120-mm LARP $Nb_{3}S_n$ Quadrupole Coil Using Magnetic Mirror Structure

    CERN Document Server

    Chlachidze, G; Andreev, N; Anerella, M; Barzi, E; Bossert, R; Caspi, S; Cheng, D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Kashikhin, V V; Lamm, M; Marchevsky, M; Nobrega, A; Novitski, I; Orris, D; Sabbi, G L; Schmalzle, J; Wanderer, P; Zlobin, A V

    2013-01-01

    The US LHC accelerator research program (LARP) is developing a new generation of large - aperture high - field quadrupoles based on Nb 3 Sn conductor for the High luminosity upgrade of Large Hadron Collider (HiLumi - LHC). Tests of the first series of 120 - mm aperture HQ coils revealed the necessity for further optimization of the coil design and fabrication process. Modifications in coil design were gradually implemented in two HQ coils previously tested at Fermi National Accelerato r Laboratory (Fermilab) using a magnetic mirror structure (HQM01 and HQM02). This paper describes the construction and test of an HQ mirror model with a coil of optimized design and with an interlayer resistive core in the conductor. The cable for this co il was made of a smaller diameter strand, providing more room for coil expansion during reaction. The 0.8 - mm strand, used in all previous HQ coils was replaced with a 0.778 - mm Nb 3 Sn strand of RRP 108/127 sub - element design. The coil was instrumented with voltage taps, h...

  9. A 25 kA, 2T, 78 kJ, 52 litre superconducting test coil. Strength calculations and construction

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Holtslag, A.H.M.; Knoben, J.; Steffens, H.A.; van de Klundert, L.J.M.

    1983-01-01

    Within the scope of our research program for a 25 kA superconducting rectifier, we have built a 25 kA s.c. coil being a single layer solenoid with a bore of 0.45 meter and a volume of 52 litre. The starting point for the design was to avoid any metallic structural material. This unique coil consists

  10. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A.

    Science.gov (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V

    2011-04-22

    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact. Copyright © 2011. Published by Elsevier Ltd.

  11. Neutron Resonance Spin Flippers: Static Coils Manufactured by Electrical Discharge Machining

    OpenAIRE

    Martin, N.; Wagner, J. N.; Dogú, M.; Fuchs, C.; Kredler, L.; Böni, P.; Häussler, W.

    2014-01-01

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient fea...

  12. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  13. The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria.

    Science.gov (United States)

    Karch, Christopher P; Doll, Tais A P F; Paulillo, Sara M; Nebie, Issa; Lanar, David E; Corradin, Giampietro; Burkhard, Peter

    2017-09-06

    The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine.

  14. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    2011-03-01

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  15. Routine phasing of coiled-coil protein crystal structures with AMPLE.

    Science.gov (United States)

    Thomas, Jens M H; Keegan, Ronan M; Bibby, Jaclyn; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J

    2015-03-01

    Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallo-graphic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  16. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani.

    Science.gov (United States)

    Srivastava, Vijay Kumar; Rana, Ajay Kumar; Sahasrabuddhe, Amogh A; Gupta, C M; Pratap, J V

    2013-05-01

    Leishmania donovani coronin CRN12 is an actin-binding protein which consists of two domains: an N-terminal WD repeat domain and a C-terminal coiled-coil domain. The coiled-coil domain is 53 residues in length. Helix-helix interactions in general and coiled coils in particular are ubiquitous in the structure of proteins and play a significant role in the association among proteins, including supramolecular assemblies and transmembrane receptors that mediate cellular signalling, transport and actin dynamics. The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed, purified to homogeneity and the N-terminal 6×His tag was successfully removed by thrombin cleavage. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Diffraction-quality crystals were obtained and data extending to 2.46 Å resolution were collected at 100 K on BM14, ESRF, Grenoble, France. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 118.0, b = 50.6, c = 46.0 Å, β = 111.0°. Matthews coefficient (VM) calculations suggested the presence of 4-6 molecules in the asymmetric unit, corresponding to a solvent content of ∼33-55%, and are consistent with self-rotation function calculations.

  17. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    Science.gov (United States)

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    López Terrones, Marcos Alonso, E-mail: malt.marcos@gmail.com [Ingeniería Biomédica, Dirección de Planeación, Servicios de Salud de Durango. Cuauhtémoc 225 Norte, Durango, Durango 34000 (Mexico); Solís-Nájera, Sergio Enrique, E-mail: solisnajera@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico)

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  19. CS model coil experimental log book

    International Nuclear Information System (INIS)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  20. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de