WorldWideScience

Sample records for bird-borne camera shows

  1. From the eye of the albatrosses: a bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean.

    Science.gov (United States)

    Sakamoto, Kentaro Q; Takahashi, Akinori; Iwata, Takashi; Trathan, Philip N

    2009-01-01

    Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently 'featureless' ocean, with a minimal requirement for energetically costly diving or landing activities. PMID:19809497

  2. A bird's eye view of discard reforms: bird-borne cameras reveal seabird/fishery interactions.

    Directory of Open Access Journals (Sweden)

    Stephen C Votier

    Full Text Available Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here we use bird-borne cameras, in tandem with GPS loggers, to provide a unique view of seabird/fishery interactions. 20,643 digital images (one min(-1 from ten bird-borne cameras deployed on central place northern gannets Morus bassanus revealed that all birds photographed fishing vessels. These were large (>15 m boats, with no small-scale vessels. Virtually all vessels were trawlers, and gannets were almost always accompanied by other scavenging birds. All individuals exhibited an Area-Restricted Search (ARS during foraging, but only 42% of ARS were associated with fishing vessels, indicating much 'natural' foraging. The proportion of ARS behaviours associated with fishing boats were higher for males (81% than females (30%, although the reasons for this are currently unclear. Our study illustrates that fisheries form a very important component of the prey-landscape for foraging gannets and that a discard ban, such as that proposed under reforms of the EU Common Fisheries Policy, may have a significant impact on gannet behaviour, particularly males. However, a continued reliance on 'natural' foraging suggests the ability to switch away from scavenging, but only if there is sufficient food to meet their needs in the absence of a discard subsidy.

  3. A bird's eye view of discard reforms: bird-borne cameras reveal seabird/fishery interactions.

    Science.gov (United States)

    Votier, Stephen C; Bicknell, Anthony; Cox, Samantha L; Scales, Kylie L; Patrick, Samantha C

    2013-01-01

    Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here we use bird-borne cameras, in tandem with GPS loggers, to provide a unique view of seabird/fishery interactions. 20,643 digital images (one min(-1)) from ten bird-borne cameras deployed on central place northern gannets Morus bassanus revealed that all birds photographed fishing vessels. These were large (>15 m) boats, with no small-scale vessels. Virtually all vessels were trawlers, and gannets were almost always accompanied by other scavenging birds. All individuals exhibited an Area-Restricted Search (ARS) during foraging, but only 42% of ARS were associated with fishing vessels, indicating much 'natural' foraging. The proportion of ARS behaviours associated with fishing boats were higher for males (81%) than females (30%), although the reasons for this are currently unclear. Our study illustrates that fisheries form a very important component of the prey-landscape for foraging gannets and that a discard ban, such as that proposed under reforms of the EU Common Fisheries Policy, may have a significant impact on gannet behaviour, particularly males. However, a continued reliance on 'natural' foraging suggests the ability to switch away from scavenging, but only if there is sufficient food to meet their needs in the absence of a discard subsidy. PMID:23483906

  4. Activity profiles and hook-tool use of New Caledonian crows recorded by bird-borne video cameras.

    Science.gov (United States)

    Troscianko, Jolyon; Rutz, Christian

    2015-12-01

    New Caledonian crows are renowned for their unusually sophisticated tool behaviour. Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds. To obtain first estimates of activity budgets, as well as close-up observations of tool-assisted foraging, we equipped 19 wild crows with self-developed miniature video cameras, yielding more than 10 h of analysable video footage for 10 subjects. While only four crows used tools during recording sessions, they did so extensively: across all 10 birds, we conservatively estimate that tool-related behaviour occurred in 3% of total observation time, and accounted for 19% of all foraging behaviour. Our video-loggers provided first footage of crows manufacturing, and using, one of their most complex tool types--hooked stick tools--under completely natural foraging conditions. We recorded manufacture from live branches of paperbark (Melaleuca sp.) and another tree species (thought to be Acacia spirorbis), and deployment of tools in a range of contexts, including on the forest floor. Taken together, our video recordings reveal an 'expanded' foraging niche for hooked stick tools, and highlight more generally how crows routinely switch between tool- and bill-assisted foraging. PMID:26701755

  5. A Bird’s Eye View of Discard Reforms: Bird-Borne Cameras Reveal Seabird/Fishery Interactions

    OpenAIRE

    Votier, Stephen C.; Bicknell, Anthony; Cox, Samantha L.; Scales, Kylie L.; Patrick, Samantha C

    2013-01-01

    Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here w...

  6. Development of a safe ultraviolet camera system to enhance awareness by showing effects of UV radiation and UV protection of the skin (Conference Presentation)

    Science.gov (United States)

    Verdaasdonk, Rudolf M.; Wedzinga, Rosaline; van Montfrans, Bibi; Stok, Mirte; Klaessens, John; van der Veen, Albert

    2016-03-01

    The significant increase of skin cancer occurring in the western world is attributed to longer sun expose during leisure time. For prevention, people should become aware of the risks of UV light exposure by showing skin damage and the protective effect of sunscreen with an UV camera. An UV awareness imaging system optimized for 365 nm (UV-A) was develop using consumer components being interactive, safe and mobile. A Sony NEX5t camera was adapted to full spectral range. In addition, UV transparent lenses and filters were selected based on spectral characteristics measured (Schott S8612 and Hoya U-340 filters) to obtain the highest contrast for e.g. melanin spots and wrinkles on the skin. For uniform UV illumination, 2 facial tanner units were adapted with UV 365 nm black light fluorescent tubes. Safety of the UV illumination was determined relative to the sun and with absolute irradiance measurements at the working distance. A maximum exposure time over 15 minutes was calculate according the international safety standards. The UV camera was successfully demonstrated during the Dutch National Skin Cancer day and was well received by dermatologists and participating public. Especially, the 'black paint' effect putting sun screen on the face was dramatic and contributed to the awareness of regions on the face what are likely to be missed applying sunscreen. The UV imaging system shows to be promising for diagnostics and clinical studies in dermatology and potentially in other areas (dentistry and ophthalmology)

  7. Short on camera geometry and camera calibration

    OpenAIRE

    Magnusson, Maria

    2010-01-01

    We will present the basic theory for the camera geometry. Our goal is camera calibration and the tools necessary for this. We start with homogeneous matrices that can be used to describe geometric transformations in a simple manner. Then we consider the pinhole camera model, the simplified camera model that we will show how to calibrate. A camera matrix describes the mapping from the 3D world to a camera image. The camera matrix can be determined through a number of corresponding points measu...

  8. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....

  9. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  10. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  11. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  12. Scintillation camera and positron camera

    International Nuclear Information System (INIS)

    A short description is given of earlier forms of the gamma-ray camera. The principle of operation of the scintillation camera is reviewed. Here the locations of scintillations occurring in a flat thallium-activated sodium iodide crystal are determined from the amount of light picked up by a number of phototubes simultaneously viewing the crystal. The signals from the phototubes are fed to a deflection computor circuit which reproduces the scintillations on a cathode-ray tube screen. There they are photographed by a conventional scope camera. Examples are shown of the resolution now obtained as shown by test phantoms. A discussion is presented of the camera's use in visualizing the thyroid in clinical practice. (author)

  13. The BCAM Camera

    CERN Document Server

    Hashemi, K S

    2000-01-01

    The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the BCAM to the ATLAS forward muon detector alignment system. We show that the camera's performance is only weakly dependent upon the brightness, focus and diameter of the source image. Its resolution is dominated by turbulence along the external light path. The camera electronics is radiation-resistant. With a field of view of ± 10 mrad, it tracks the bearing of a light source 16 m away with better than 3 µrad accuracy, well within the ATLAS requirements.

  14. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  15. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  16. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  17. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  18. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...... be efficiently profiled in dissimilar clusters according to camera control as part of their game- play behaviour....

  19. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  20. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  1. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  2. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  3. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  4. Stereoscopic camera design

    Science.gov (United States)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  5. Snobbish Show

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The State Administration of Radio,Film and Television (SARFT),China's media watchdog,issued a new set of mles on June 9 that strictly regulate TV match-making shows,which have been sweeping the country's primetime programming. "Improper social and love values such as money worship should not be presented in these shows.Humiliation,verbal attacks and sex-implied vulgar content are not allowed" the new roles said.

  6. Aerial camera auto focusing system

    Science.gov (United States)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  7. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    cameras of both blocks have the same trend, but as usual for block adjustments with self calibration, they still show significant differences. Based on the very high number of image points the remaining image residuals can be safely determined by overlaying and averaging the image residuals corresponding to their image coordinates. The size of the systematic image errors, not covered by the used additional parameters, is in the range of a square mean of 0.1 pixels corresponding to 0.6μm. They are not the same for both blocks, but show some similarities for corresponding cameras. In general the bundle block adjustment with a satisfying set of additional parameters, checked by remaining systematic errors, is required for use of the whole geometric potential of the penta camera. Especially for object points on facades, often only in two images and taken with a limited base length, the correct handling of systematic image errors is important. At least in the analyzed data sets the self calibration of sub-cameras by bundle block adjustment suffers from the correlation of the inner to the exterior calibration due to missing crossing flight directions. As usual, the systematic image errors differ from block to block even without the influence of the correlation to the exterior orientation.

  8. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  9. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  10. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  11. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  12. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  13. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  14. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  15. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  16. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas...... detection, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  17. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  18. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... researchers, cameras, and filmed subjects already inherently comprise analytical decisions. It is these ethnographic qualities inherent in audiovisual and photographic imagery that make it of particular value to a participatory anthropological enterprise that seeks to resist analytic closure and seeks instead...

  19. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  20. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  1. Gamma ray camera

    International Nuclear Information System (INIS)

    An improved Anger-type gamma ray camera utilizes a proximity-type image intensifier tube. It has a greater capability for distinguishing between incident and scattered radiation, and greater spatial resolution capabilities

  2. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  3. TOUCHSCREEN USING WEB CAMERA

    Directory of Open Access Journals (Sweden)

    Kuntal B. Adak

    2015-10-01

    Full Text Available In this paper we present a web camera based touchscreen system which uses a simple technique to detect and locate finger. We have used a camera and regular screen to achieve our goal. By capturing the video and calculating position of finger on the screen, we can determine the touch position and do some function on that location. Our method is very easy and simple to implement. Even our system requirement is less expensive compare to other techniques.

  4. Gamma camera system

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  5. Spacecraft camera image registration

    Science.gov (United States)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  6. Close-range photogrammetry with video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  7. Neural network method for characterizing video cameras

    Science.gov (United States)

    Zhou, Shuangquan; Zhao, Dazun

    1998-08-01

    This paper presents a neural network method for characterizing color video camera. A multilayer feedforward network with the error back-propagation learning rule for training, is used as a nonlinear transformer to model a camera, which realizes a mapping from the CIELAB color space to RGB color space. With SONY video camera, D65 illuminant, Pritchard Spectroradiometer, 410 JIS color charts as training data and 36 charts as testing data, results show that the mean error of training data is 2.9 and that of testing data is 4.0 in a 2563 RGB space.

  8. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  9. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  10. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  11. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    In this project, radiation tolerant camera which tolerates 106 - 108 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  12. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  13. Extrinsic recalibration in camera networks

    OpenAIRE

    Hermans, Chris; Dumont, Maarten; Bekaert, Philippe

    2007-01-01

    This work addresses the practical problem of keeping a camera network calibrated during a recording session. When dealing with real-time applications, a robust calibration of the camera network needs to be assured, without the burden of a full system recalibration at every (un)intended camera displacement. In this paper we present an efficient algorithm to detect when the extrinsic parameters of a camera are no longer valid, and reintegrate the displaced camera into the previously calibrated ...

  14. Selective-imaging camera

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  15. Artificial human vision camera

    Science.gov (United States)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  16. The Star Formation Camera

    OpenAIRE

    Scowen, Paul A.; Jansen, Rolf; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and ...

  17. Determining Vision Graphs for Distributed Camera Networks Using Feature Digests

    Directory of Open Access Journals (Sweden)

    Cheng Zhaolin

    2007-01-01

    Full Text Available We propose a decentralized method for obtaining the vision graph for a distributed, ad-hoc camera network, in which each edge of the graph represents two cameras that image a sufficiently large part of the same environment. Each camera encodes a spatially well-distributed set of distinctive, approximately viewpoint-invariant feature points into a fixed-length "feature digest" that is broadcast throughout the network. Each receiver camera robustly matches its own features with the decompressed digest and decides whether sufficient evidence exists to form a vision graph edge. We also show how a camera calibration algorithm that passes messages only along vision graph edges can recover accurate 3D structure and camera positions in a distributed manner. We analyze the performance of different message formation schemes, and show that high detection rates ( can be achieved while maintaining low false alarm rates ( using a simulated 60-node outdoor camera network.

  18. Action selection for single-camera SLAM.

    Science.gov (United States)

    Vidal-Calleja, Teresa A; Sanfeliu, Alberto; Andrade-Cetto, Juan

    2010-12-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionally, the system has been ported to a mobile robotic platform, thus closing the control-estimation loop. To show the viability of the approach, simulations and experiments are presented for the unconstrained motion of a handheld camera and for the motion of a mobile robot with nonholonomic constraints. When combined with a path planner, the technique safely drives to a marked goal while, at the same time, producing an optimal estimated map. PMID:20350845

  19. Contrail study with ground-based cameras

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2013-08-01

    Full Text Available Photogrammetric methods and analysis results for contrails observed with wide-angle cameras are described. Four cameras of two different types (view angle −1. With this information, the aircraft causing the contrails are identified by comparison to traffic waypoint data. The observations are compared with synthetic camera pictures of contrails simulated with the contrail prediction model CoCiP, a Lagrangian model using air traffic movement data and numerical weather prediction (NWP data as input. The results provide tests for the NWP and contrail models. The cameras show spreading and thickening contrails suggesting ice-supersaturation in the ambient air. The ice-supersaturated layer is found thicker and more humid in this case than predicted by the NWP model used. The simulated and observed contrail positions agree up to differences caused by uncertain wind data. The contrail widths, which depend on wake vortex spreading, ambient shear and turbulence, were partly wider than simulated.

  20. Advanced Virgo phase cameras

    Science.gov (United States)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  1. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  2. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  3. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  4. The LSST Camera Overview

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O' Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  5. The world's fastest camera

    CERN Multimedia

    Piquepaille, Roland

    2006-01-01

    This image processor is not your typical digital camera. It took 6 years to 20 people and $6 million to build the "Regional Calorimeter Trigger"(RCT) which will be a component of the Compact Muon Solenoid (CMS) experiment, one of the detectors on the Large Hadron Collider (LHC) in Geneva, Switzerland (1 page)

  6. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  7. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter...

  8. Performance comparison of streak camera recording systems

    International Nuclear Information System (INIS)

    Streak camera based diagnostics are vital to the inertial confinement fusion program at Sandia National Laboratories. Performance characteristics of various readout systems coupled to an EGG-AVO streak camera were analyzed and compared to scaling estimates. The purpose of the work was to determine the limits of the streak camera performance and the optimal fielding conditions for the Amador Valley Operations (AVO) streak camera systems. The authors measured streak camera limitations in spatial resolution and sensitivity. Streak camera limits on spatial resolution are greater than 18 lp/mm at 4% contrast. However, it will be difficult to make use of any resolution greater than this because of high spatial frequency variation in the photocathode sensitivity. They have measured a signal to noise of 3,000 with 0.3 mW/cm2 of 830 nm light at a 10 ns/mm sweep speed. They have compared lens coupling systems with and without micro-channel plate intensifiers and systems using film or charge coupled device (CCD) readout. There were no conditions where film was found to be an improvement over the CCD readout. Systems utilizing a CCD readout without an intensifier have comparable resolution, for these source sizes and at a nominal cost in signal to noise of 3, over those with an intensifier. Estimates of the signal-to-noise for different light coupling methods show how performance can be improved

  9. MEDIUM-FORMAT CAMERAS AND THEIR USE IN TOPOGRAPHIC MAPPING

    Directory of Open Access Journals (Sweden)

    J. Höhle

    2012-07-01

    Full Text Available Based on practical experiences with large-format aerial cameras the impact of new medium-format digital cameras on topographic mapping tasks is discussed. Two new medium-format cameras are investigated with respect to elevation accuracy, area coverage and image quality. The produced graphs and tables show the potential of these cameras for general mapping tasks. Special attention is given to the image quality of the selected cameras. Applications for the medium-format cameras are discussed. The necessary tools for selected applications are described. The impact of sensors for georeferencing, multi-spectral images, and new matching algo-rithms is also dealt with. Practical investigations are carried out for the production of digital elevation models. A comparison with large-format frame cameras is carried out. It is concluded that the medium-format cameras have a potential for mapping of smaller areas and will be used in future in true orthoimage production, corridor mapping, and updating of maps. Their small dimensions and low weight allow installation in small airplanes, helicopters, and high-end UAVs. The two investigated medium-format cameras are low-cost alternatives for standard mapping tasks and special applications. The detection of changes in topographic databases and DTMs can be carried out by means of those medium-format cameras which can image the same area in four bands of the visible and invisible spectrum of light. Medium-format cameras will play an important role in future mapping tasks.

  10. Calibration Procedures on Oblique Camera Setups

    Science.gov (United States)

    Kemper, G.; Melykuti, B.; Yu, C.

    2016-06-01

    Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager) is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna -IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first step with the help of

  11. Gamma ray camera

    International Nuclear Information System (INIS)

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  12. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  13. Camera Surveillance Quadrotor

    OpenAIRE

    Hjelm, Emil; Yousif, Robert

    2015-01-01

    A quadrotor is a helicopter with four rotors placed at equal distance from the crafts centre of gravity, controlled by letting the different rotors generate different amount of thrust. It uses various sensors to stay stable in the air, correct readings from these sensors are therefore critical. By reducing vibrations, electromagnetic interference and external disturbances the quadrotor’s stability can increase. The purpose of this project is to analyse the feasibility of a quadrotor camera su...

  14. The DRAGO gamma camera

    International Nuclear Information System (INIS)

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated 57Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  15. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  16. The DRAGO gamma camera

    Science.gov (United States)

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strüder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-01

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated C57o source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45° with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  17. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  18. Movement-based interaction in camera spaces: a conceptual framework

    DEFF Research Database (Denmark)

    Eriksson, Eva; Hansen, Thomas Riisgaard; Lykke-Olesen, Andreas

    2007-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movementbased projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  19. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  20. Phase camera experiment for Advanced Virgo

    Science.gov (United States)

    Agatsuma, Kazuhiro; van Beuzekom, Martin; van der Schaaf, Laura; van den Brand, Jo

    2016-07-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO2 lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance.

  1. Camera Calibration with Radial Variance Component Estimation

    Science.gov (United States)

    Mélykuti, B.; Kruck, E. J.

    2014-11-01

    Camera calibration plays a more and more important role in recent times. Beside real digital aerial survey cameras the photogrammetric market is dominated by a big number of non-metric digital cameras mounted on UAVs or other low-weight flying platforms. The in-flight calibration of those systems has a significant role to enhance the geometric accuracy of survey photos considerably. It is expected to have a better precision of photo measurements in the center of images then along the edges or in the corners. With statistical methods the accuracy of photo measurements in dependency of the distance of points from image center has been analyzed. This test provides a curve for the measurement precision as function of the photo radius. A high number of camera types have been tested with well penetrated point measurements in image space. The result of the tests led to a general consequence to show a functional connection between accuracy and radial distance and to give a method how to check and enhance the geometrical capability of the cameras in respect to these results.

  2. Comment on ‘From the pinhole camera to the shape of a lens: the camera-obscura reloaded’

    Science.gov (United States)

    Grusche, Sascha

    2016-09-01

    In the article ‘From the pinhole camera to the shape of a lens: the camera-obscura reloaded’ (Phys. Educ. 50 706), the authors show that a prism array, or an equivalent lens, can be used to bring together multiple camera obscura images from a pinhole array. It should be pointed out that the size of the camera obscura images is conserved by a prism array, but changed by a lens. To avoid this discrepancy in image size, the prism array, or the lens, should be made to touch the pinhole array.

  3. Distribution and Parameter's Calculations of Television Cameras Inside a Nuclear Facility

    International Nuclear Information System (INIS)

    In this work, a distribution of television cameras and parameter's calculation inside and outside a nuclear facility is presented. Each of exterior and interior camera systems will be described and explained. The work shows the overall closed circuit television system. Fixed and moving cameras with various lens format and different angles of view are used. The calculations of width of images sensitive area and Lens focal length for the cameras will be introduced. The work shows the camera locations and distributions inside and outside the nuclear facility. The technical specifications and parameters for cameras selection are tabulated

  4. Novel gamma cameras

    International Nuclear Information System (INIS)

    The gamma-ray cameras described are based on radiation imaging devices which permit the direct recording of the distribution of radioactive material from a radiative source, such as a human organ. They consist in principle of a collimator, a converter matrix converting gamma photons to electrons, and an electron image multiplier producing a multiplied electron output, and means for reading out the information. The electron image multiplier is a device which produces a multiplied electron image. It can be in principle, either gas avalanche electron multiplier or a multi-channel plate. The multi-channel plate employed is a novel device, described elsewhere. The three described embodiments, in which the converter matrix can be either of metal type or of scintillation crystal type, were designed and are being developed

  5. Neutron Imaging Camera

    Science.gov (United States)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  6. Focussed radiographic camera

    International Nuclear Information System (INIS)

    A radiographic camera of the form employing a scintillator for producing optical photons in response to incident gamma and x-radiation is described. A collimator is positioned between a subject emitting such radiation and the scintillator for guiding the radiation to the scintillator and a detector of optical photons for signaling the positions of points of impingement of quanta of the incident radiation upon the scintillator to produce an image of the subject. A Fresnel focussing means is located alongside the scintillator for directing the optical photons to the detector. The Fresnel focussing means takes the form of a segmented mirror at the front surface of the scintillator and a Fresnel lens at the back surface of the scintillator

  7. Calibration of a Stereo Radiation Detection Camera Using Planar Homography

    Directory of Open Access Journals (Sweden)

    Seung-Hae Baek

    2016-01-01

    Full Text Available This paper proposes a calibration technique of a stereo gamma detection camera. Calibration of the internal and external parameters of a stereo vision camera is a well-known research problem in the computer vision society. However, few or no stereo calibration has been investigated in the radiation measurement research. Since no visual information can be obtained from a stereo radiation camera, it is impossible to use a general stereo calibration algorithm directly. In this paper, we develop a hybrid-type stereo system which is equipped with both radiation and vision cameras. To calibrate the stereo radiation cameras, stereo images of a calibration pattern captured from the vision cameras are transformed in the view of the radiation cameras. The homography transformation is calibrated based on the geometric relationship between visual and radiation camera coordinates. The accuracy of the stereo parameters of the radiation camera is analyzed by distance measurements to both visual light and gamma sources. The experimental results show that the measurement error is about 3%.

  8. LISS-4 camera for Resourcesat

    Science.gov (United States)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  9. Gamma camera system

    International Nuclear Information System (INIS)

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  10. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    Science.gov (United States)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced

  11. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  12. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  13. Laboratory geometric calibration of areal digital aerial camera

    International Nuclear Information System (INIS)

    Digital aerial camera is non-metric camera. Geometric calibration, including the determination of interior orientation elements and distortion parameters, is the base of high precision photogrammetry. In this paper, a laboratory geometric calibration system of areal digital aerial cameras is developed. This system uses a collimator and a star tester as the target generator. After measurement of the coordinates of targets on the CCD plane and corresponding angles of parallel lights, the geometric calibration of digital aerial camera can be realized according to the geometric calibration model of this paper. Geometric calibration experiments are taken out based on this system using two kinds of mainstream digital aerial cameras, Cannon EOS 5D Mark II and Hasselblad H3D. Experiment results show that this system can satisfy the calibration requirements of aerial photogrammetric application and prove the correctness and the reliability of this calibration method

  14. A liquid xenon radioisotope camera.

    Science.gov (United States)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  15. Exposure interlock for oscilloscope cameras

    Science.gov (United States)

    Spitzer, C. R.; Stainback, J. D. (Inventor)

    1973-01-01

    An exposure interlock has been developed for oscilloscope cameras which cuts off ambient light from the oscilloscope screen before the shutter of the camera is tripped. A flap is provided which may be selectively positioned to an open position which enables viewing of the oscilloscope screen and a closed position which cuts off the oscilloscope screen from view and simultaneously cuts off ambient light from the oscilloscope screen. A mechanical interlock is provided between the flap to be activated to its closed position before the camera shutter is tripped, thereby preventing overexposure of the film.

  16. On Single-scanline Camera Calibration

    OpenAIRE

    Horaud, Radu; Mohr, Roger; Lorecki, Boguslaw

    1993-01-01

    A method for calibrating single scanline CCD cameras is described. It is shown that the more classical 2D camera calibration techniques are necessary but not sufficient for solving the 1D camera calibration problem. A model for single scanline cameras is proposed, and a two-step procedure for estimating its parameters is provided. It is also shown how the extrinsic camera parameters can be determined geometrically without making explicit the intrinsic camera parameters. The accuracy of the ca...

  17. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  18. Fundus camera systems: a comparative analysis

    OpenAIRE

    DeHoog, Edward; Schwiegerling, James

    2009-01-01

    Retinal photography requires the use of a complex optical system, called a fundus camera, capable of illuminating and imaging the retina simultaneously. The patent literature shows two design forms but does not provide the specifics necessary for a thorough analysis of the designs to be performed. We have constructed our own designs based on the patent literature in optical design software and compared them for illumination efficiency, image quality, ability to accommodate for patient refract...

  19. Wide Dynamic Range CCD Camera

    Science.gov (United States)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  20. Determining Vision Graphs for Distributed Camera Networks Using Feature Digests

    Directory of Open Access Journals (Sweden)

    Richard J. Radke

    2007-01-01

    Full Text Available We propose a decentralized method for obtaining the vision graph for a distributed, ad-hoc camera network, in which each edge of the graph represents two cameras that image a sufficiently large part of the same environment. Each camera encodes a spatially well-distributed set of distinctive, approximately viewpoint-invariant feature points into a fixed-length “feature digest” that is broadcast throughout the network. Each receiver camera robustly matches its own features with the decompressed digest and decides whether sufficient evidence exists to form a vision graph edge. We also show how a camera calibration algorithm that passes messages only along vision graph edges can recover accurate 3D structure and camera positions in a distributed manner. We analyze the performance of different message formation schemes, and show that high detection rates (>0.8 can be achieved while maintaining low false alarm rates (<0.05 using a simulated 60-node outdoor camera network.

  1. A universal method for camera calibration in UITS scenes

    Institute of Scientific and Technical Information of China (English)

    Zhaoxue Chen; Pengfei Shi

    2005-01-01

    @@ A universal approach to camera calibration based on features of some representative lines on traffic ground is presented. It uses only a set of three parallel edges with known intervals and one of their intersected lines with known slope to gain the focal length and orientation parameters of a camera. A set of equations that computes related camera parameters has been derived from geometric properties of the calibration pattern. With accurate analytical implementation, precision of the approach is only decided by accuracy of the calibration target selecting. Final experimental results have showed its validity by a snapshot from real automatic visual traffic surveillance (AVTS) scenes.

  2. Non-iterative method for camera calibration.

    Science.gov (United States)

    Hong, Yuzhen; Ren, Guoqiang; Liu, Enhai

    2015-09-01

    This paper presents a new and effective technique to calibrate a camera without nonlinear iteration optimization. To this end, the centre-of-distortion is accurately estimated firstly. Based on the radial distortion division model, point correspondences between model plane and its image were used to compute the homography and distortion coefficients afterwards. Once the homographies of calibration images are obtained, the camera intrinsic parameters are solved analytically. All the solution techniques applied in this calibration process are non-iterative that do not need any initial guess, with no risk of local minima. Moreover, estimation of the distortion coefficients and intrinsic parameters could be successfully decoupled, yielding the more stable and reliable result. Both simulative and real experiments have been carried out to show that the proposed method is reliable and effective. Without nonlinear iteration optimization, the proposed method is computationally efficient and can be applied to real-time online calibration. PMID:26368490

  3. Declarative camera control for automatic cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, D.B.; Anderson, S.E.; Li-wei He [Univ. of Washington, Seattle, WA (United States)] [and others

    1996-12-31

    Animations generated by interactive 3D computer graphics applications are typically portrayed either from a particular character`s point of view or from a small set of strategically-placed viewpoints. By ignoring camera placement, such applications fail to realize important storytelling capabilities that have been explored by cinematographers for many years. In this paper, we describe several of the principles of cinematography and show how they can be formalized into a declarative language, called the Declarative Camera Control Language (DCCL). We describe the application of DCCL within the context of a simple interactive video game and argue that DCCL represents cinematic knowledge at the same level of abstraction as expert directors by encoding 16 idioms from a film textbook. These idioms produce compelling animations, as demonstrated on the accompanying videotape.

  4. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps

    Directory of Open Access Journals (Sweden)

    Xingfeng Si

    2014-05-01

    Full Text Available Camera traps is an important wildlife inventory tool for estimating species diversity at a site. Knowing what minimum trapping effort is needed to detect target species is also important to designing efficient studies, considering both the number of camera locations, and survey length. Here, we take advantage of a two-year camera trapping dataset from a small (24-ha study plot in Gutianshan National Nature Reserve, eastern China to estimate the minimum trapping effort actually needed to sample the wildlife community. We also evaluated the relative value of adding new camera sites or running cameras for a longer period at one site. The full dataset includes 1727 independent photographs captured during 13,824 camera days, documenting 10 resident terrestrial species of birds and mammals. Our rarefaction analysis shows that a minimum of 931 camera days would be needed to detect the resident species sufficiently in the plot, and c. 8700 camera days to detect all 10 resident species. In terms of detecting a diversity of species, the optimal sampling period for one camera site was c. 40, or long enough to record about 20 independent photographs. Our analysis of evaluating the increasing number of additional camera sites shows that rotating cameras to new sites would be more efficient for measuring species richness than leaving cameras at fewer sites for a longer period.

  5. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    Science.gov (United States)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  6. A miniature VGA SWIR camera using MT6415CA ROIC

    Science.gov (United States)

    Eminoglu, Selim; Yilmaz, S. Gokhan; Kocak, Serhat

    2014-06-01

    This paper reports the development of a new miniature VGA SWIR camera called NanoCAM-6415, which is developed to demonstrate the key features of the MT6415CA ROIC such as high integration level, low-noise, and low-power in a small volume. The NanoCAM-6415 uses an InGaAs Focal Plane Array (FPA) with a format of 640 × 512 and pixel pitch of 15 μm built using MT6415CA ROIC. MT6415CA is a low-noise CTIA ROIC, which has a system-on-chip architecture, allows generation of all the required timing and biases on-chip in the ROIC without requiring any external components or inputs, thus enabling the development of compact and low-noise SWIR cameras, with reduced size, weight, and power (SWaP). NanoCAM-6415 camera supports snapshot operation using Integrate-Then-Read (ITR) and Integrate-While-Read (IWR) modes. The camera has three gain settings enabled by the ROIC through programmable Full-Well-Capacity (FWC) values of 10.000 e-, 20.000 e-, and 350.000 e- in the very high gain (VHG), high-gain (HG), and low-gain (LG) modes, respectively. The camera has an input referred noise level of 10 e- rms in the VHG mode at 1 ms integration time, suitable for low-noise SWIR imaging applications. In order to reduce the size and power of the camera, only 2 outputs out of 8 of the ROIC are connected to the external Analog-to-Digital Converters (ADCs) in the camera electronics, providing a maximum frame rate of 50 fps through a 26-pin SDR type Camera Link connector. NanoCAM-6415 SWIR camera without the optics measures 32 mm × 32 mm × 35 mm, weighs 45gr, and dissipates less than 1.8 W using a 5 V supply. These results show that MT6415CA ROIC can successfully be used to develop cameras for SWIR imaging applications where SWaP is a concern. Mikro-Tasarim has also developed new imaging software to demonstrate the functionality of this miniature VGA camera. Mikro-Tasarim provides tested ROIC wafers and also offers compact and easy-to-use test electronics, demo cameras, and hardware

  7. Prism-based single-camera system for stereo display

    Science.gov (United States)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  8. Global Calibration of Multiple Cameras Based on Sphere Targets

    Directory of Open Access Journals (Sweden)

    Junhua Sun

    2016-01-01

    Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.

  9. Global Calibration of Multiple Cameras Based on Sphere Targets.

    Science.gov (United States)

    Sun, Junhua; He, Huabin; Zeng, Debing

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007

  10. Global Calibration of Multiple Cameras Based on Sphere Targets

    Science.gov (United States)

    Sun, Junhua; He, Huabin; Zeng, Debing

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007

  11. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  12. Cameras for semiconductor process control

    Science.gov (United States)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  13. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  14. EDICAM (Event Detection Intelligent Camera)

    International Nuclear Information System (INIS)

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator

  15. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Sicart, Sergi; Paredes, Pilar [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain); Institut d' Investigacio Biomedica Agusti Pi Sunyer (IDIBAPS), Barcelona (Spain); Vermeeren, Lenka; Valdes-Olmos, Renato A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Nuclear Medicine Department, Amsterdam (Netherlands); Sola, Oriol [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain)

    2011-04-15

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ({sup 99m}Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  16. Temporal characteristics calibration for an X-ray streak camera

    International Nuclear Information System (INIS)

    X-ray streak cameras are very important in inertial confinement fusion experiments. The characterization of the cameras should be carried out to ensure the reliability and accuracy of the experimental data. The temporal characteristics of the X-ray streak camera, such as sweep speed and temporal resolution, were calibrated for the first time on the 20 TW laser facility at High Power Laser and Physics Joint Laboratory of Shanghai. Results of the calibration experiments show that some of the specifications of the X-ray camera have changed compared with their nominal values. With these calibration data, the processing and the analysis of the ICF experimental results are turned out to be more creditable. (authors)

  17. Experimental calibration of sweep speed for optic streak camera

    International Nuclear Information System (INIS)

    In order to accurately measure the velocity of shock waves, an optic streak camera was calibrated. In the different period of time, the sweep speed of the camera was measured at different sweep grade and different position. Results of the calibration experiments obviously show that the initial sweep speed was slower than the terminal sweep speed at 10 ns/15mm and 5ns/15mm grade, but the terminal sweep speed was slower at 2ns/15mm grade. The sweep speed of the camera was unequal in the different period of time. It indicated that analyzing data by average sweep speed and sweep nonlinearity was inapplicable because of the camera's aging. (authors)

  18. Epipolar rectification method for a stereovision system with telecentric cameras

    Science.gov (United States)

    Liu, Haibo; Zhu, Zhaokun; Yao, Linshen; Dong, Jin; Chen, Shengyi; Zhang, Xiaohu; Shang, Yang

    2016-08-01

    3D metrology of a stereovision system requires epipolar rectification to be performed before dense stereo matching. In this study, we propose an epipolar rectification method for a stereovision system with two telecentric lens-based cameras. Given the orthographic projection matrices of each camera, the new projection matrices are computed by determining the new camera coordinates system in affine space and imposing some constraints on the intrinsic parameters. Then, the transformation that maps the old image planes on to the new image planes is achieved. Experiments are performed to validate the performance of the proposed rectification method. The test results show that the perpendicular distance and 3D reconstructed deviation obtained from the rectified images is not significantly higher than the corresponding values obtained from the original images. Considering the roughness of the extracted corner points and calibrated camera parameters, we can conclude that the proposed method can provide sufficiently accurate rectification results.

  19. Posture metrology for aerospace camera in the assembly of spacecraft

    Science.gov (United States)

    Yang, ZaiHua; Yang, Song; Wan, Bile; Pan, Tingyao; Long, Changyu

    2016-01-01

    During the spacecraft assembly process, the posture of the aerospace camera to the spacecraft coordinate system needs to be measured precisely, because the posture data are very important for the earth observing. In order to measure the angles between the camera optical axis and the spacecraft coordinate system's three axes x, y, z, a measurement scheme was designed. The scheme was based on the principle of space intersection measurement with theodolites. Three thodolites were used to respectively collimate the camera axis and two faces of a base cube. Then, through aiming at each other, a measurement network was built. Finally, the posture of the camera was measured. The error analysis and measurement experiments showed that the precision can reach 6″. This method has been used in the assembly of satellite GF-2 with satisfactory results.

  20. Full Stokes polarization imaging camera

    Science.gov (United States)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  1. Camera assisted multimodal user interaction

    Science.gov (United States)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  2. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    A gamma camera is described with a plurality of photodetectors arranged for locating flashes of light produced by a scintillator in response to incident radiation. Masking material is arranged in a radially symmetric pattern on the front face of the scintillator about the axis of each photodetector to reduce the amount of internal reflection of optical photons induced by gamma ray photons

  3. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  4. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    Just like art historians have focused on e.g. composition or lighting, this dissertation takes a single stylistic parameter as its object of study: camera movement. Within film studies this localized avenue of middle-level research has become increasingly viable under the aegis of a perspective k...

  5. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  6. Replacing 16-mm film cameras with high-definition digital cameras

    Science.gov (United States)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  7. Stereo Calibration and Rectification for Omnidirectional Multi-camera Systems

    Directory of Open Access Journals (Sweden)

    Yanchang Wang

    2012-10-01

    Full Text Available Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish‐eye cameras and cannot be applied directly to multi‐camera systems. In this work, we propose an easy calibration method with closed‐form initialization and iterative optimization for omnidirectional multi‐camera systems. The method only requires image pairs of the 2D target plane in a few different views. A method based on the spherical camera model is also proposed for rectifying omnidirectional stereo pairs. Using real data captured by Ladybug3, we carry out some experiments, including stereo calibration, rectification and 3D reconstruction. Statistical analyses and comparisons of the experimental results are also presented. As the experimental results show, the calibration results are precise and the effect of rectification is promising.

  8. Simulation research of neutron scatter camera with five units

    International Nuclear Information System (INIS)

    As a neutron detecting and imaging device used for detection of special nuclear material (SNM), the newly reported neutron scatter camera can acquire the neutron position and energy information simultaneously. In this paper, the particle transport code MCNP was used together with the program MATLAB and Fortran to simulate a five-units prototype of a neutron scatter camera, and to reconstruct the image and energy of a 252Cf neutron source. The calculation results show that the camera's energy resolution is about 9% and its angular resolution is related to the size of the scintillators; when the neutron energy equals 2 MeV, the detection efficiency reaches a maximum; the distance of the source, the size of the scintillators, the distance between the front and rear surfaces of the detectors, and the number of the events have influence on the resolution of the image to a certain extent; the scatter camera can measure the fission neutron energy spectrum, but the factors such as the camera's structure and detection threshold could result in some inaccuracy of the measurement. This simulation work lays a foundation for further experimental research, and its conclusion can be generalized to the neutron scatter camera with much units. (authors)

  9. Inspecting rapidly moving surfaces for small defects using CNN cameras

    Science.gov (United States)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  10. Development and application of an automatic system for measuring the laser camera

    International Nuclear Information System (INIS)

    Objective: To provide an automatic system for measuring imaging quality of laser camera, and to make an automatic measurement and analysis system. Methods: On the special imaging workstation (SGI 540), the procedure was written by using Matlab language. An automatic measurement and analysis system of imaging quality for laser camera was developed and made according to the imaging quality measurement standard of laser camera of International Engineer Commission (IEC). The measurement system used the theories of digital signal processing, and was based on the characteristics of digital images, as well as put the automatic measurement and analysis of laser camera into practice by the affiliated sample pictures of the laser camera. Results: All the parameters of imaging quality of laser camera, including H-D and MTF curve, low and middle and high resolution of optical density, all kinds of geometry distort, maximum and minimum density, as well as the dynamic range of gray scale, could be measured by this system. The system was applied for measuring the laser cameras in 20 hospitals in Beijing. The measuring results showed that the system could provide objective and quantitative data, and could accurately evaluate the imaging quality of laser camera, as well as correct the results made by manual measurement based on the affiliated sample pictures of the laser camera. Conclusion: The automatic measuring system of laser camera is an effective and objective tool for testing the quality of the laser camera, and the system makes a foundation for the future research

  11. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  12. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  13. Television Quiz Show Simulation

    Science.gov (United States)

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  14. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  15. Electronographic cameras for space astronomy.

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  16. The Dark Energy Survey Camera

    Science.gov (United States)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  17. Sky camera geometric calibration using solar observations

    OpenAIRE

    Urquhart, B.; Kurtz, B; J. Kleissl

    2016-01-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun positio...

  18. Securing Embedded Smart Cameras with Trusted Computing

    OpenAIRE

    Thomas Winkler; Bernhard Rinner

    2011-01-01

    Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only ...

  19. Filter characterization in digital cameras

    OpenAIRE

    Solli, Martin

    2004-01-01

    The use of spectrophotometers for color measurements on printed substrates is widely spread among paper producers as well as within the printing industry. Spectrophotometer measurements are precise, but time-consuming procedures and faster methods are desirable. Previously presented work on color calibration of flatbed scanners has shown that they can be used for fast color measurements with acceptable results. Furthermore, the rapid development of digital cameras has made it possible to tran...

  20. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  1. Solid-state array cameras.

    Science.gov (United States)

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  2. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  3. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  4. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  5. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  6. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    Science.gov (United States)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  7. Single Camera Calibration in 3D Vision

    OpenAIRE

    Caius SULIMAN; Puiu, Dan; Moldoveanu, Florin

    2009-01-01

    Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.). In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment M...

  8. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  9. A Holographic Road Show.

    Science.gov (United States)

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  10. 3D camera tracking from disparity images

    Science.gov (United States)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  11. Characterization of the Series 1000 Camera System

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  12. Video clustering using camera motion

    OpenAIRE

    Tort Alsina, Laura

    2012-01-01

    Com el moviment de càmera en un clip de vídeo pot ser útil per a la seva classificació en termes semàntics. [ANGLÈS] This document contains the work done in INP Grenoble during the second semester of the academic year 2011-2012, completed in Barcelona during the first months of the 2012-2013. The work presented consists in a camera motion study in different types of video in order to group fragments that have some similarity in the content. In the document it is explained how the data extr...

  13. Jacques : Your underwater camera companion

    OpenAIRE

    Edlund, Martin

    2014-01-01

    300 million pictures are uploaded everyday on Facebook alone. We live in a society where photography, filming and self-documentation are a natural part of our lives. But how does it inflict on our experiences when we always are considering camera angles, filters and compositions? We might very well ruin the experiences we so badly want to save. Scuba diving is a special experience. We enter a world with another space of movement, surroundings and animal life. An experience that can only be ex...

  14. Far-infrared cameras for automotive safety

    Science.gov (United States)

    Lonnoy, Jacques; Le Guilloux, Yann; Moreira, Raphael

    2005-02-01

    Far Infrared cameras used initially for the driving of military vehicles are slowly coming into the area of commercial (luxury) cars while providing with the FIR imagery a useful assistance for driving at night or in adverse conditions (fog, smoke, ...). However this imagery needs a minimum driver effort as the image understanding is not so natural as the visible or near IR one. A developing field of FIR cameras is ADAS (Advanced Driver Assistance Systems) where FIR processed imagery fused with other sensors data (radar, ...) is providing a driver warning when dangerous situations are occurring. The communication will concentrate on FIR processed imagery for object or obstacles detection on the road or near the road. FIR imagery highlighting hot spots is a powerful detection tool as it provides a good contrast on some of the most common elements of the road scenery (engines, wheels, gas exhaust pipes, pedestrians, 2 wheelers, animals,...). Moreover FIR algorithms are much more robust than visible ones as there is less variability in image contrast with time (day/night, shadows, ...). We based our detection algorithm on one side on the peculiar aspect of vehicles, pedestrians in FIR images and on the other side on the analysis of motion along time, that allows anticipation of future motion. We will show results obtained with FIR processed imagery within the PAROTO project, supported by the French Ministry of Research, that ended in spring 04.

  15. Show-Bix &

    DEFF Research Database (Denmark)

    2014-01-01

    made from digital scans of the original dias slides located in the collection of the Museum of Contemporary Art in Roskilde. In front of the audience entering the space and placed on it’s own stand, is an original 60s style telephone with turning dial. Action begins when the audience lift the phone and......The anti-reenactment 'Show-Bix &' consists of 5 dias projectors, a dial phone, quintophonic sound, and interactive elements. A responsive interface will enable the Dias projectors to show copies of original dias slides from the Show-Bix piece ”March på Stedet”, 265 images in total. The copies are...... dial a number. Any number will make the Dias change. All numbers are also assigned to specific sound documents: clips form rare interviews and the complete sound-re-enactment of the Show-Bix piece ‘Omringning’ (‘Surrounding’) in five channels (a quintophonie). This was originally produced in...

  16. Violence and TV Shows

    OpenAIRE

    ÖZTÜRK, Yrd. Doç. Dr. Şinasi

    2008-01-01

    This study aims to discuss theories on theviolent effects of TV shows on viewers, especiallyon children. Therefore, this study includes a briefdiscussion of definitions of violence, discussionof violence theories, main results of researcheson televised violence, measuring TV violence,perception of televised violence, individualdifferences and reactions to TV violence,aggressiveness and preferences for TV violence.

  17. Accuracy Assessment of GO Pro Hero 3 (black) Camera in Underwater Environment

    Science.gov (United States)

    Helmholz, , P.; Long, J.; Munsie, T.; Belton, D.

    2016-06-01

    Modern digital cameras are increasing in quality whilst decreasing in size. In the last decade, a number of waterproof consumer digital cameras (action cameras) have become available, which often cost less than 500. A possible application of such action cameras is in the field of Underwater Photogrammetry. Especially with respect to the fact that with the change of the medium to below water can in turn counteract the distortions present. The goal of this paper is to investigate the suitability of such action cameras for underwater photogrammetric applications focusing on the stability of the camera and the accuracy of the derived coordinates for possible photogrammetric applications. For this paper a series of image sequences was capture in a water tank. A calibration frame was placed in the water tank allowing the calibration of the camera and the validation of the measurements using check points. The accuracy assessment covered three test sets operating three GoPro sports cameras of the same model (Hero 3 black). The test set included the handling of the camera in a controlled manner where the camera was only dunked into the water tank using 7MP and 12MP resolution and a rough handling where the camera was shaken as well as being removed from the waterproof case using 12MP resolution. The tests showed that the camera stability was given with a maximum standard deviation of the camera constant σc of 0.0031mm for 7MB (for an average c of 2.720mm) and 0.0072 mm for 12MB (for an average c of 3.642mm). The residual test of the check points gave for the 7MB test series the largest rms value with only 0.450mm and the largest maximal residual of only 2.5 mm. For the 12MB test series the maximum rms value is 0. 653mm.

  18. Shanghai Shows Its Heart

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The city known as China’s economic powerhouse showed a more caring face as host of the Special Olympic Games Between October 2 and 11,the Special Olympics Summer Games were hosted in Shanghai,the first time the 40-year-old athletic com- petition for people with intellectual disabilities came to a developing country. This Special Olympics was also larger than all previous games in temps of the number of athletes.

  19. Three-Dimensional Object Motion and Velocity Estimation Using a Single Computational RGB-D Camera

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2015-01-01

    Full Text Available In this paper, a three-dimensional (3D object moving direction and velocity estimation method is presented using a dual off-axis color-filtered aperture (DCA-based computational camera. Conventional object tracking methods provided only two-dimensional (2D states of an object in the image for the target representation. The proposed method estimates depth information in the object region from a single DCA camera that transforms 2D spatial information into 3D model parameters of the object. We also present a calibration method of the DCA camera to estimate the entire set of camera parameters for a practical implementation. Experimental results show that the proposed DCA-based color and depth (RGB-D camera can calculate the 3D object moving direction and velocity of a randomly moving object in a single-camera framework.

  20. Camera Mouse Including “Ctrl-Alt-Del” Key Operation Using Gaze, Blink, and Mouth Shape

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available This paper presents camera mouse system with additional feature: "CTRL - ALT - DEL" key. The previous gaze-based camera mouse systems are only considering how to obtain gaze and making selection. We proposed gaze-based camera mouse with "CTRL - ALT - DEL" key. Infrared camera is put on top of display while user looking ahead. User gaze is estimated based on eye gaze and head pose. Blinking and mouth detections are used to create "CTR - ALT - DEL" key. Pupil knowledge is used to improve robustness of eye gaze estimation against different users. Also, Gabor filter is used to extract face features. Skin color information and face features are used to estimate head pose. The experiments of each method have done and the results show that all methods work perfectly. By implemented this system, troubleshooting of camera mouse can be done by user itself and makes camera mouse be more sophisticated.

  1. Lens assemblies for multispectral camera

    Science.gov (United States)

    Lepretre, Francois

    1994-09-01

    In the framework of a contract with the Indian Space Research Organization (ISRO), MATRA DEFENSE - DOD/UAO have developed, produced and tested 36 types LISS 1 - LISS 2 lenses and 12 LISS 3 lenses equipped with their interferential filters. These lenses are intended to form the optical systems of multispectral imaging sensors aboard Indian earth observation satellites IRS 1A, 1B, 1C, and 1D. It should be noted that the multispectrum cameras of the IRS 1A - 1B satellite have been in operation for two years and have given very satisfactory results according to ISRO. Each of these multispectrum LISS 3 cameras consists of lenses, each working in a different spectral bandwidth (B2: 520 - 590 nm; B3: 620 - 680 nm; B4: 770 - 860 nm; B5: 1550 - 1700 nm). In order to superimpose the images of each spectral band without digital processing, the image formats (60 mm) of the lenses are registered better that 2 micrometers and remain as such throughout all the environmental tests. Similarly, due to the absence of precise thermal control aboard the satellite, the lenses are as athermal as possible.

  2. The Dark Energy Camera (DECam)

    CERN Document Server

    Honscheid, K; Abbott, T; Annis, J; Antonik, M; Barcel, M; Bernstein, R; Bigelow, B; Brooks, D; Buckley-Geer, E; Campa, J; Cardiel, L; Castander, F; Castilla, J; Cease, H; Chappa, S; Dede, E; Derylo, G; Diehl, T; Doel, P; De Vicente, J; Eiting, J; Estrada, J; Finley, D; Flaugher, B; Gaztañaga, E; Gerdes, D; Gladders, M; Guarino, V; Gutíerrez, G; Hamilton, J; Haney, M; Holland, S; Huffman, D; Karliner, I; Kau, D; Kent, S; Kozlovsky, M; Kubik, D; Kühn, K; Kuhlmann, S; Kuk, K; Leger, F; Lin, H; Martínez, G; Martínez, M; Merritt, W; Mohr, J; Moore, P; Moore, T; Nord, B; Ogando, R; Olsen, J; Onal, B; Peoples, J; Qian, T; Roe, N; Sánchez, E; Scarpine, V; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Selen, M; Shaw, T; Simaitis, V; Slaughter, J; Smith, C; Spinka, H; Stefanik, A; Stuermer, W; Talaga, R; Tarle, G; Thaler, J; Tucker, D; Walker, A; Worswick, S; Zhao, A

    2008-01-01

    In this paper we describe the Dark Energy Camera (DECam), which will be the primary instrument used in the Dark Energy Survey. DECam will be a 3 sq. deg. mosaic camera mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). It consists of a large mosaic CCD focal plane, a five element optical corrector, five filters (g,r,i,z,Y), a modern data acquisition and control system and the associated infrastructure for operation in the prime focus cage. The focal plane includes of 62 2K x 4K CCD modules (0.27"/pixel) arranged in a hexagon inscribed within the roughly 2.2 degree diameter field of view and 12 smaller 2K x 2K CCDs for guiding, focus and alignment. The CCDs will be 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). Production of the CCDs and fabrication of the optics, mechanical structure, mechanisms, and control system for DECam are underway; delivery of the instrument to CTIO is scheduled ...

  3. Detection of the optimal region of interest for camera oximetry.

    Science.gov (United States)

    Karlen, Walter; Ansermino, J Mark; Dumont, Guy A; Scheffer, Cornie

    2013-01-01

    The estimation of heart rate and blood oxygen saturation with an imaging array on a mobile phone (camera oximetry) has great potential for mobile health applications as no additional hardware other than a camera and LED flash enabled phone are required. However, this approach is challenging as the configuration of the camera can negatively influence the estimation quality. Further, the number of photons recorded with the photo detector is largely dependent on the optical path length, resulting in a non-homogeneous image. In this paper we describe a novel method to automatically detect the optimal region of interest (ROI) for the captured image to extract a pulse waveform. We also present a study to select the optimal camera settings, notably the white balance. The experiments show that the incandescent white balance mode is the preferable setting for camera oximetry applications on the tested mobile phone (Samsung Galaxy Ace). Also, the ROI algorithm successfully identifies the frame regions which provide waveforms with the largest amplitudes. PMID:24110175

  4. Soft x-ray streak camera for laser fusion applications

    International Nuclear Information System (INIS)

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown

  5. Decentralized tracking of humans using a camera network

    Science.gov (United States)

    Gruenwedel, Sebastian; Jelaca, Vedran; Niño-Castañeda, Jorge Oswaldo; Van Hese, Peter; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2012-01-01

    Real-time tracking of people has many applications in computer vision and typically requires multiple cameras; for instance for surveillance, domotics, elderly-care and video conferencing. However, this problem is very challenging because of the need to deal with frequent occlusions and environmental changes. Another challenge is to develop solutions which scale well with the size of the camera network. Such solutions need to carefully restrict overall communication in the network and often involve distributed processing. In this paper we present a distributed person tracker, addressing the aforementioned issues. Real-time processing is achieved by distributing tasks between the cameras and a fusion node. The latter fuses only high level data based on low-bandwidth input streams from the cameras. This is achieved by performing tracking first on the image plane of each camera followed by sending only metadata to a local fusion node. We designed the proposed system with respect to a low communication load and towards robustness of the system. We evaluate the performance of the tracker in meeting scenarios where persons are often occluded by other persons and/or furniture. We present experimental results which show that our tracking approach is accurate even in cases of severe occlusions in some of the views.

  6. Camera-trap study of ocelot and other secretive mammals in the northern Pantanal

    Science.gov (United States)

    Trolle, M.; Kery, M.

    2005-01-01

    Reliable information on abundance of the ocelot (Leopardus pardalis) is scarce. We conducted the first camera-trap study in the northern part of the Pantanal wetlands of Brazil, one of the wildlife hotspots of South America. Using capture-recapture analysis, we estimated a density of 0.112 independent individuals per km2 (SE 0.069). We list other mammals recorded with camera traps and show that camera-trap placement on roads or on trails has striking effects on camera-trapping rates.

  7. Camera motion estimation by tracking contour deformation: Precision analysis

    OpenAIRE

    Alenyà, Guillem; Torras, Carme

    2010-01-01

    An algorithm to estimate camera motion from the progressive deformation of a tracked contour in the acquired video stream has been previously proposed. It relies on the fact that two views of a plane are related by an affinity, whose 6 parameters can be used to derive the 6 degrees-of-freedom of camera motion between the two views. In this paper we evaluate the accuracy of the algorithm. Monte Carlo simulations show that translations parallel to the image plane and rotations about the optical...

  8. Iterative reconstruction of detector response of an Anger gamma camera.

    Science.gov (United States)

    Morozov, A; Solovov, V; Alves, F; Domingos, V; Martins, R; Neves, F; Chepel, V

    2015-05-21

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations. PMID:25951792

  9. Robust Visual Control of Parallel Robots under Uncertain Camera Orientation

    Directory of Open Access Journals (Sweden)

    Miguel A. Trujano

    2012-10-01

    Full Text Available This work presents a stability analysis and experimental assessment of a visual control algorithm applied to a redundant planar parallel robot under uncertainty in relation to camera orientation. The key feature of the analysis is a strict Lyapunov function that allows the conclusion of asymptotic stability without invoking the Barbashin‐Krassovsky‐LaSalle invariance theorem. The controller does not rely on velocity measurements and has a structure similar to a classic Proportional Derivative control algorithm. Experiments in a laboratory prototype show that uncertainty in camera orientation does not significantly degrade closed‐loop performance.

  10. Iterative reconstruction of the detector response for medical gamma cameras

    CERN Document Server

    Morozov, A; Alves, F; Domingos, V; Martins, R; Neves, F; Chepel, V

    2015-01-01

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the PMT light response functions. Here we describe an iterative technique which allows to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the technique for medical gamma cameras is demonstrated using both simulated and experimental data. We show that this technique can be used for monitoring of the photomultiplier gain variations. An implementation of the iterative reconstruction technique capable of operating in real-time is also presented.

  11. CCD camera full range pH sensor array.

    Science.gov (United States)

    Safavi, A; Maleki, N; Rostamzadeh, A; Maesum, S

    2007-01-15

    Changes in colors of an array of optical sensors that responds in full pH range were recorded using a CCD camera. The data of the camera were transferred to the computer through a capture card. Simple software was written to read the specific color of each sensor. In order to associate sensor array responses with pH values, a number of different mathematics and chemometrics methods were investigated and compared. The results show that the use of "Microsoft Excel's Solver" provides results which are in very good agreement with those obtained with chemometric methods such as artificial neural network (ANN) and partial least square (PLS) methods. PMID:19071333

  12. Iterative reconstruction of detector response of an Anger gamma camera

    Science.gov (United States)

    Morozov, A.; Solovov, V.; Alves, F.; Domingos, V.; Martins, R.; Neves, F.; Chepel, V.

    2015-05-01

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations.

  13. Obesity in show dogs.

    Science.gov (United States)

    Corbee, R J

    2012-08-11

    Obesity is an important disease with a growing incidence. Because obesity is related to several other diseases, and decreases life span, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain breeds is often suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, we investigated 1379 dogs of 128 different breeds by determining their body condition score (BCS). Overall, 18.6% of the show dogs had a BCS >5, and 1.1% of the show dogs had a BCS>7. There were significant differences between breeds, which could be correlated to the breed standards. It warrants firm discussions with breeders and judges in order to come to different interpretations of the standards to prevent overweight conditions from being the standard of beauty. PMID:22882163

  14. Camera calibration correction in shape from inconsistent silhouette

    Science.gov (United States)

    The use of shape from silhouette for reconstruction tasks is plagued by two types of real-world errors: camera calibration error and silhouette segmentation error. When either error is present, we call the problem the Shape from Inconsistent Silhouette (SfIS) problem. In this paper, we show how sm...

  15. The calibration of video cameras for quantitative measurements

    Science.gov (United States)

    Snow, Walter L.; Childers, Brooks A.; Shortis, Mark R.

    1993-01-01

    Several different recent applications of velocimetry at Langley Research Center are described in order to show the need for video camera calibration for quantitative measurements. Problems peculiar to video sensing are discussed, including synchronization and timing, targeting, and lighting. The extension of the measurements to include radiometric estimates is addressed.

  16. Not a "reality" show.

    Science.gov (United States)

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show. PMID:23631336

  17. Laboratory calibration and characterization of video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Shortis, M. R.; Goad, W. K.

    1990-01-01

    Some techniques for laboratory calibration and characterization of video cameras used with frame grabber boards are presented. A laser-illuminated displaced reticle technique (with camera lens removed) is used to determine the camera/grabber effective horizontal and vertical pixel spacing as well as the angle of nonperpendicularity of the axes. The principal point of autocollimation and point of symmetry are found by illuminating the camera with an unexpanded laser beam, either aligned with the sensor or lens. Lens distortion and the principal distance are determined from images of a calibration plate suitably aligned with the camera. Calibration and characterization results for several video cameras are presented. Differences between these laboratory techniques and test range and plumb line calibration are noted.

  18. MAGIC-II Camera Slow Control Software

    CERN Document Server

    Steinke, B; Tridon, D Borla

    2009-01-01

    The Imaging Atmospheric Cherenkov Telescope MAGIC I has recently been extended to a stereoscopic system by adding a second 17 m telescope, MAGIC-II. One of the major improvements of the second telescope is an improved camera. The Camera Control Program is embedded in the telescope control software as an independent subsystem. The Camera Control Program is an effective software to monitor and control the camera values and their settings and is written in the visual programming language LabVIEW. The two main parts, the Central Variables File, which stores all information of the pixel and other camera parameters, and the Comm Control Routine, which controls changes in possible settings, provide a reliable operation. A safety routine protects the camera from misuse by accidental commands, from bad weather conditions and from hardware errors by automatic reactions.

  19. Showing Value (Editorial

    Directory of Open Access Journals (Sweden)

    Denise Koufogiannakis

    2009-06-01

    Full Text Available When Su Cleyle and I first decided to start Evidence Based Library and Information Practice, one of the things we agreed upon immediately was that the journal be open access. We knew that a major obstacle to librarians using the research literature was that they did not have access to the research literature. Although Su and I are both academic librarians who can access a wide variety of library and information literature from our institutions, we belong to a profession where not everyone has equal access to the research in our field. Without such access to our own body of literature, how can we ever hope for practitioners to use research evidence in their decision making? It would have been contradictory to the principles of evidence based library and information practice to do otherwise.One of the specific groups we thought could use such an open access venue for discovering research literature was school librarians. School librarians are often isolated and lacking access to the research literature that may help them prove to stakeholders the importance of their libraries and their role within schools. Certainly, school libraries have been in decline and the use of evidence to show value is needed. As Ken Haycock noted in his 2003 report, The Crisis in Canada’s School Libraries: The Case for Reform and Reinvestment, “Across the country, teacher-librarians are losing their jobs or being reassigned. Collections are becoming depleted owing to budget cuts. Some principals believe that in the age of the Internet and the classroom workstation, the school library is an artifact” (9. Within this context, school librarians are looking to our research literature for evidence of the impact that school library programs have on learning outcomes and student success. They are integrating that evidence into their practice, and reflecting upon what can be improved locally. They are focusing on students and showing the impact of school libraries and

  20. Action selection for single-camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J

    2010-01-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionall...

  1. Omnidirectional Underwater Camera Design and Calibration

    OpenAIRE

    Josep Bosch; Nuno Gracias; Pere Ridao; David Ribas

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing i...

  2. Camera calibration from road lane markings

    OpenAIRE

    Fung, GSK; Yung, NHC; Pang, GKH

    2003-01-01

    Three-dimensional computer vision techniques have been actively studied for the purpose of visual traffic surveillance. To determine the 3-D environment, camera calibration is a crucial step to resolve the relationship between the 3-D world coordinates and their corresponding image coordinates. A novel camera calibration using the geometry properties of road lane markings is proposed. A set of equations that computes the camera parameters from the image coordinates of the road lane markings a...

  3. Camera calibration from surfaces of revolution

    OpenAIRE

    Wong, KYK; Mendonça, PRS; Cipolla, R.

    2003-01-01

    This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. ...

  4. Increased Automation in Stereo Camera Calibration Techniques

    OpenAIRE

    Brandi House; Kevin Nickels

    2006-01-01

    Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This r...

  5. PIV camera response to high frequency signal: comparison of CCD and CMOS cameras using particle image simulation

    International Nuclear Information System (INIS)

    We present a quantitative comparison between FlowMaster3 CCD and Phantom V9.1 CMOS cameras’ response in the scope of application to particle image velocimetry (PIV). First, the subpixel response is characterized using a specifically designed set-up. The crosstalk between adjacent pixels for the two cameras is then estimated and compared. Then, the camera response is experimentally characterized using particle image simulation. Based on a three-point Gaussian peak fitting, the bias and RMS errors between locations of simulated and real images for the two cameras are accurately calculated using a homemade program. The results show that, although the pixel response is not perfect, the optical crosstalk between adjacent pixels stays relatively low and the accuracy of the position determination of an ideal PIV particle image is much better than expected. (paper)

  6. Decision about buying a gamma camera

    International Nuclear Information System (INIS)

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera

  7. Advanced High-Definition Video Cameras

    Science.gov (United States)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  8. High-speed cameras at Los Alamos

    Science.gov (United States)

    Brixner, Berlyn

    1997-05-01

    In 1943, there was no camera with the microsecond resolution needed for research in Atomic Bomb development. We had the Mitchell camera (100 fps), the Fastax (10 000), the Marley (100 000), the drum streak (moving slit image) 10-5 s resolution, and electro-optical shutters for 10-6 s. Julian Mack invented a rotating-mirror camera for 10-7 s, which was in use by 1944. Small rotating mirror changes secured a resolution of 10-8 s. Photography of oscilloscope traces soon recorded 10-6 resolution, which was later improved to 10-8 s. Mack also invented two time resolving spectrographs for studying the radiation of the first atomic explosion. Much later, he made a large aperture spectrograph for shock wave spectra. An image dissecting drum camera running at 107 frames per second (fps) was used for studying high velocity jets. Brixner invented a simple streak camera which gave 10-8 s resolution. Using a moving film camera, an interferometer pressure gauge was developed for measuring shock-front pressures up to 100 000 psi. An existing Bowen 76-lens frame camera was speeded up by our turbine driven mirror to make 1 500 000 fps. Several streak cameras were made with writing arms from 4 1/2 to 40 in. and apertures from f/2.5 to f/20. We made framing cameras with top speeds of 50 000, 1 000 000, 3 500 000, and 14 000 000 fps.

  9. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  10. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  11. The Great Cometary Show

    Science.gov (United States)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  12. Explosive Transient Camera (ETC) Program

    Science.gov (United States)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  13. Framework for Evaluating Camera Opinions

    Directory of Open Access Journals (Sweden)

    K.M. Subramanian

    2015-03-01

    Full Text Available Opinion mining plays a most important role in text mining applications in brand and product positioning, customer relationship management, consumer attitude detection and market research. The applications lead to new generation of companies/products meant for online market perception, online content monitoring and reputation management. Expansion of the web inspires users to contribute/express opinions via blogs, videos and social networking sites. Such platforms provide valuable information for analysis of sentiment pertaining a product or service. This study investigates the performance of various feature extraction methods and classification algorithm for opinion mining. Opinions expressed in Amazon website for cameras are collected and used for evaluation. Features are extracted from the opinions using Term Document Frequency and Inverse Document Frequency (TDFIDF. Feature transformation is achieved through Principal Component Analysis (PCA and kernel PCA. Naïve Bayes, K Nearest Neighbor and Classification and Regression Trees (CART classification algorithms classify the features extracted.

  14. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  15. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs (RCCT) from the previous time period. It is...

  16. A Linear Approach for Depth and Colour Camera Calibration Using Hybrid Parameters

    Institute of Scientific and Technical Information of China (English)

    Ke-Li Cheng; Xuan Ju; Ruo-Feng Tong; Min Tang; Jian Chang; Jian-Jun Zhang

    2016-01-01

    Many recent applications of computer graphics and human computer interaction have adopted both colour cameras and depth cameras as input devices. Therefore, an effective calibration of both types of hardware taking different colour and depth inputs is required. Our approach removes the numerical difficulties of using non-linear optimization in previous methods which explicitly resolve camera intrinsics as well as the transformation between depth and colour cameras. A matrix of hybrid parameters is introduced to linearize our optimization. The hybrid parameters offer a transformation from a depth parametric space (depth camera image) to a colour parametric space (colour camera image) by combining the intrinsic parameters of depth camera and a rotation transformation from depth camera to colour camera. Both the rotation transformation and intrinsic parameters can be explicitly calculated from our hybrid parameters with the help of a standard QR factorisation. We test our algorithm with both synthesized data and real-world data where ground-truth depth information is captured by Microsoft Kinect. The experiments show that our approach can provide comparable accuracy of calibration with the state-of-the-art algorithms while taking much less computation time (1/50 of Herrera’s method and 1/10 of Raposo’s method) due to the advantage of using hybrid parameters.

  17. High-Speed Edge-Detecting Line Scan Smart Camera

    Science.gov (United States)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  18. Modeling of the over-exposed pixel area of CCD cameras caused by laser dazzling

    Science.gov (United States)

    Benoist, Koen W.; Schleijpen, Ric H. M. A.

    2014-10-01

    A simple model has been developed and implemented in Matlab code, predicting the over-exposed pixel area of cameras caused by laser dazzling. Inputs of this model are the laser irradiance on the front optics of the camera, the Point Spread Function (PSF) of the used optics, the integration time of the camera, and camera sensor specifications like pixel size, quantum efficiency and full well capacity. Effects of the read-out circuit of the camera are not incorporated. The model was evaluated with laser dazzle experiments on CCD cameras using a 532 nm CW laser dazzler and shows good agreement. For relatively low laser irradiance the model predicts the over-exposed laser spot area quite accurately and shows the cube root dependency of spot diameter on laser irradiance, caused by the PSF as demonstrated before for IR cameras. For higher laser power levels the laser induced spot diameter increases more rapidly than predicted, which probably can be attributed to scatter effects in the camera. Some first attempts to model scatter contributions, using a simple scatter power function f(θ), show good resemblance with experiments. Using this model, a tool is available which can assess the performance of observation sensor systems while being subjected to laser countermeasures.

  19. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many ca

  20. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial relationsh

  1. Camera self-calibration from translation by referring to a known camera.

    Science.gov (United States)

    Zhao, Bin; Hu, Zhaozheng

    2015-09-01

    This paper presents a novel linear method for camera self-calibration by referring to a known (or calibrated) camera. The method requires at least three images, with two images generated by the uncalibrated camera from pure translation and one image generated by the known reference camera. We first propose a method to compute the infinite homography from scene depths. Based on this, we use two images generated by translating the uncalibrated camera to recover scene depths, which are further utilized to linearly compute the infinite homography between an arbitrary uncalibrated image, and the image from the known camera. With the known camera as reference, the computed infinite homography is readily decomposed for camera calibration. The proposed self-calibration method has been tested with simulation and real image data. Experimental results demonstrate that the method is practical and accurate. This paper proposes using a "known reference camera" for camera calibration. The pure translation, as required in the method, is much more maneuverable, compared with some strict motions in the literature, such as pure rotation. The proposed self-calibration method has good potential for solving online camera calibration problems, which has important applications, especially for multicamera and zooming camera systems. PMID:26368906

  2. Centering mount for a gamma camera

    International Nuclear Information System (INIS)

    A device for centering a γ-camera detector in case of radionuclide diagnosis is described. It permits the use of available medical coaches instead of a table with a transparent top. The device can be used for centering a detector (when it is fixed at the low end of a γ-camera) on a required area of the patient's body

  3. Case Camera obscura 1995–2014

    OpenAIRE

    Inkinen, Ari

    2015-01-01

    Sininauhaliitossa kehitettiin vuonna 1995 elämyksellinen arvo- ja päihdekasvatusohjelma Camera obscura. Toimintamallin toimintakonsepti ja sen sisältö ovat ainutlaatuisia. Sosiaaliseen vahvistamiseen perustuva toimintamalli integroitiin osaksi koulun opetusohjelmaa ja toteutettiin yhteistyössä paikallisten nuorisoalan toimijoiden kanssa. Vuorovaikutukseen, kokemusoppimiseen ja nuoren kohtaamiseen perustuvaa toimintamallia on toteutettu ja kehitetty erilaisten hankkeiden avulla. Camera obscura...

  4. Creating and Using a Camera Obscura

    Science.gov (United States)

    Quinnell, Justin

    2012-01-01

    The camera obscura (Latin for "darkened room") is the earliest optical device and goes back over 2500 years. The small pinhole or lens at the front of the room allows light to enter and this is then "projected" onto a screen inside the room. This differs from a camera, which projects its image onto light-sensitive material. Originally images were…

  5. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  6. Matching image color from different cameras

    Science.gov (United States)

    Fairchild, Mark D.; Wyble, David R.; Johnson, Garrett M.

    2008-01-01

    Can images from professional digital SLR cameras be made equivalent in color using simple colorimetric characterization? Two cameras were characterized, these characterizations were implemented on a variety of images, and the results were evaluated both colorimetrically and psychophysically. A Nikon D2x and a Canon 5D were used. The colorimetric analyses indicated that accurate reproductions were obtained. The median CIELAB color differences between the measured ColorChecker SG and the reproduced image were 4.0 and 6.1 for the Canon (chart and spectral respectively) and 5.9 and 6.9 for the Nikon. The median differences between cameras were 2.8 and 3.4 for the chart and spectral characterizations, near the expected threshold for reliable image difference perception. Eight scenes were evaluated psychophysically in three forced-choice experiments in which a reference image from one of the cameras was shown to observers in comparison with a pair of images, one from each camera. The three experiments were (1) a comparison of the two cameras with the chart-based characterizations, (2) a comparison with the spectral characterizations, and (3) a comparison of chart vs. spectral characterization within and across cameras. The results for the three experiments are 64%, 64%, and 55% correct respectively. Careful and simple colorimetric characterization of digital SLR cameras can result in visually equivalent color reproduction.

  7. Fazendo 3d com uma camera so

    CERN Document Server

    Lunazzi, J J

    2010-01-01

    A simple system to make stereo photography or videos based in just two mirrors was made in 1989 and recently adapted to a digital camera setup. Um sistema simples para fazer fotografia ou videos em estereo baseado em dois espelhos que dividem o campo da imagem foi criado no ano 1989, e recentemente adaptado para camera digital.

  8. Thermal Cameras in School Laboratory Activities

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal cameras offer real-time visual access to otherwise invisible thermal phenomena, which are conceptually demanding for learners during traditional teaching. We present three studies of students' conduction of laboratory activities that employ thermal cameras to teach challenging thermal concepts in grades 4, 7 and 10-12. Visualization of…

  9. CCD Color Camera Characterization for Image Measurements

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2007-01-01

    In this article, we will analyze a range of different types of cameras for its use in measurements. We verify a general model of a charged coupled device camera using experiments. This model includes gain and offset, additive and multiplicative noise, and gamma correction. It is shown that for sever

  10. AIM: Ames Imaging Module Spacecraft Camera

    Science.gov (United States)

    Thompson, Sarah

    2015-01-01

    The AIM camera is a small, lightweight, low power, low cost imaging system developed at NASA Ames. Though it has imaging capabilities similar to those of $1M plus spacecraft cameras, it does so on a fraction of the mass, power and cost budget.

  11. Cameras Monitor Spacecraft Integrity to Prevent Failures

    Science.gov (United States)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  12. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  13. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose a...

  14. SHOW

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    鞋如其人,由一个人对鞋的选择,便可知道他的兴趣与品位所在。无论是球星、艺人还是任何一位你可以叫得出名字的人,无论是在球场上、秀场上还是随处可以偶遇的街头巷尾,你都可以见到NIKE、adidas抑或是奢侈的LV.

  15. SHOW

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    鞋如其人,由一个人对鞋的选择,便可知道他的兴趣与品位所在。无论是球星、艺人还是任何一位你可以叫得出名字的人,无论是在球场上、秀场上还是随处可以偶遇的等着巷尾,你都可以见到NIKE、adidas抑或是奢侈的LV.

  16. SHOW

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    鞋如其人,由一个人对鞋的选择,便可知道他的兴趣与品位所在。无论是球星、艺人还是任何一位你可以叫得出名字的人,无论是在球场上、秀场上还是随处可以偶遇的街头巷尾,你都可以见到NIKE、adidas抑或是奢侈的LV。

  17. Flow visualization by mobile phone cameras

    Science.gov (United States)

    Cierpka, Christian; Hain, Rainer; Buchmann, Nicolas A.

    2016-06-01

    Mobile smart phones were completely changing people's communication within the last ten years. However, these devices do not only offer communication through different channels but also devices and applications for fun and recreation. In this respect, mobile phone cameras include now relatively fast (up to 240 Hz) cameras to capture high-speed videos of sport events or other fast processes. The article therefore explores the possibility to make use of this development and the wide spread availability of these cameras in the terms of velocity measurements for industrial or technical applications and fluid dynamics education in high schools and at universities. The requirements for a simplistic PIV (particle image velocimetry) system are discussed. A model experiment of a free water jet was used to prove the concept and shed some light on the achievable quality and determine bottle necks by comparing the results obtained with a mobile phone camera with data taken by a high-speed camera suited for scientific experiments.

  18. New two-dimensional photon camera

    Science.gov (United States)

    Papaliolios, C.; Mertz, L.

    1982-01-01

    A photon-sensitive camera, applicable to speckle imaging of astronomical sources, high-resolution spectroscopy of faint galaxies in a crossed-dispersion spectrograph, or narrow-band direct imaging of galaxies, is presented. The camera is shown to supply 8-bit by 8-bit photon positions (256 x 256 pixels) for as many as 10 to the 6th photons/sec with a maximum linear resolution of approximately 10 microns. The sequence of photon positions is recorded digitally with a VHS-format video tape recorder or formed into an immediate image via a microcomputer. The four basic elements of the camera are described in detail: a high-gain image intensifier with fast-decay output phosphor, a glass-prism optical-beam splitter, a set of Gray-coded masks, and a photomultiplier tube for each mask. The characteristics of the camera are compared to those of other photon cameras.

  19. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  20. True three-dimensional camera

    Science.gov (United States)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  1. Cloud Computing with Context Cameras

    Science.gov (United States)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  2. Extrinsic Calibration of Camera Networks Using a Sphere

    Directory of Open Access Journals (Sweden)

    Junzhi Guan

    2015-08-01

    Full Text Available In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use.

  3. Characterization of the latest Birmingham modular positron camera

    International Nuclear Information System (INIS)

    Positron imaging techniques rely on the detection of the back-to-back annihilation photons arising from positron decay within the field of view of a positron camera. A standard technique, called positron emitting particle tracking (PEPT), uses a number of these detected events to rapidly determine the position of a positron emitting tracer particle introduced into the system under study. Conventionally, PEPT is performed using a positron camera with fixed geometry. Recently, however, a more flexible detection system (the modular positron camera) has been developed which allows customization of the detection geometry (i.e. allowed field-of-view) tailored for specific applications. Typically, PEPT is used to study particle dynamics, granular systems and multiphase flows. Presented in this paper are studies into the performance of the modular camera system, performed using a mixture of both Monte Carlo techniques and experimental validation. Studies of the stored event rate (and therefore particle location rate and location precision) have been performed and show a maximum data rate of 2.5 MHz, leading to particle location rates of 10 kHz with location precision of 0.5 mm in three dimensions

  4. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  5. A Robust Camera-Based Interface for Mobile Entertainment.

    Science.gov (United States)

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user's head by processing the frames provided by the mobile device's front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device's orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user's perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  6. Acceptance tests of a new gamma camera

    International Nuclear Information System (INIS)

    For best patient service, a QA programme is needed to produce quantitative/qualitative data and keep records of the results and equipment faults. Gamma cameras must be checked against the manufacturer's specifications.The service manual is usually useful to achieve this goal. Acceptance tests are very important not only to accept a new gamma camera system for routine clinical use but also to have a role in a reference for future measurements. In this study, acceptance tests were performed for a new gamma camera in our department. It is a General Electric MG system with two detectors, two collimators. They are low energy general purpose (LEGP) and medium energy general purpose (MEGP). All intrinsic calibrations and corrections were done by the service engineer at installation (PM tune, dynamic correction, energy calibration, geometric calibration, energy correction, linearity correction and second order corrections).After installation, calibrations and corrections, a close physical inspection of the mechanical and electrical safety aspects of the cameras were done by the responsible physicist of the department. The planar system is based on measurement of system uniformity, resolution/linearity and multiple window spatial registration. All test procedures were performed according to NEMA procedures developed by the manufacturer. Intrinsic uniformity: NEMA uniformity was done first by using service manual and then other isotope uniformities were acquired with 99mTc, 131I, 201Tl and 67Ga. They were evaluated qualitatively and quantitatively, but non-uniformities were observed, especially for detector II, The service engineers repeated all tests and made necessary corrections. We repeated all the intrinsic uniformity tests. 99mTc intrinsic images were also performed at 'no correction', 'no energy correction', 'no linearity correction', 'all correction' and '±10% off peak', and compared. Extrinsic uniformity: At the beginning, collimators were checked for defects

  7. New camera systems for fuel services

    International Nuclear Information System (INIS)

    AREVA NP Fuel Services have many years of experience in visual examination and measurements on fuel assemblies and associated core components by using state of the art cameras and measuring technologies. The used techniques allow the surface and dimensional characterization of materials and shapes by visual examination. New enhanced and sophisticated technologies for fuel services f. e. are two shielded color camera systems for use under water and close inspection of a fuel assembly. Nowadays the market requirements for detecting and characterization of small defects (lower than the 10th of one mm) or cracks and analyzing surface appearances on an irradiated fuel rod cladding or fuel assembly structure parts have increased. Therefore it is common practice to use movie cameras with higher resolution. The radiation resistance of high resolution CCD cameras is in general very low and it is not possible to use them unshielded close to a fuel assembly. By extending the camera with a mirror system and shielding around the sensitive parts, the movie camera can be utilized for fuel assembly inspection. AREVA NP Fuel Services is now equipped with such kind of movie cameras. (orig.)

  8. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  9. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (''bang-bang'') closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator ''seasickness'' caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator System SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system

  10. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-20 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  11. Multi-Kinect v2 Camera Based Monitoring System for Radiotherapy Patient Safety.

    Science.gov (United States)

    Santhanam, Anand P; Min, Yugang; Kupelian, Patrick; Low, Daniel

    2016-01-01

    3D kinect camera systems are essential for real-time imaging of 3D treatment space that consists of both the patient anatomy as well as the treatment equipment setup. In this paper, we present the technical details of a 3D treatment room monitoring system that employs a scalable number of calibrated and coregistered Kinect v2 cameras. The monitoring system tracks radiation gantry and treatment couch positions, and tracks the patient and immobilization accessories. The number and positions of the cameras were selected to avoid line-of-sight issues and to adequately cover the treatment setup. The cameras were calibrated with a calibration error of 0.1 mm. Our tracking system evaluation show that both gantry and patient motion could be acquired at a rate of 30 frames per second. The transformations between the cameras yielded a 3D treatment space accuracy of < 2 mm error in a radiotherapy setup within 500mm around the isocenter. PMID:27046604

  12. The suitability of lightfield camera depth maps for coordinate measurement applications

    Science.gov (United States)

    Rangappa, Shreedhar; Tailor, Mitul; Petzing, Jon; Kinnell, Peter; Jackson, Michael

    2015-12-01

    Plenoptic cameras can capture 3D information in one exposure without the need for structured illumination, allowing grey scale depth maps of the captured image to be created. The Lytro, a consumer grade plenoptic camera, provides a cost effective method of measuring depth of multiple objects under controlled lightning conditions. In this research, camera control variables, environmental sensitivity, image distortion characteristics, and the effective working range of two Lytro first generation cameras were evaluated. In addition, a calibration process has been created, for the Lytro cameras, to deliver three dimensional output depth maps represented in SI units (metre). The novel results show depth accuracy and repeatability of +10.0 mm to -20.0 mm, and 0.5 mm respectively. For the lateral X and Y coordinates, the accuracy was +1.56 μm to -2.59 μm and the repeatability was 0.25 μm.

  13. A new depth measuring method for stereo camera based on converted relative extrinsic parameters

    Science.gov (United States)

    Song, Xiaowei; Yang, Lei; Wu, Yuanzhao; Liu, Zhong

    2013-08-01

    This paper presents a new depth measuring method for the dual-view stereo camera based on the converted relative extrinsic parameters. The relative extrinsic parameters between left and right cameras, which obtained by the stereo camera calibration, can indicate the geometric relationships among the left principle point, right principle point and convergent point. Furthermore, the geometry which consists of the corresponding points and the object can be obtained by making conversion between the corresponding points and principle points. Therefore, the depth of the object can be calculated based on the obtained geometry. The correctness of the proposed method has been proved in 3ds Max, and the validity of the method has been verified on the binocular stereo system of flea2 cameras. We compared our experimental results with the popular RGB-D camera (e.g. Kinect). The comparison results show that our method is reliable and efficient, without epipolar rectification.

  14. NUCAM3 - A Gamma Camera Using Segmented CdZnTe Detectors

    International Nuclear Information System (INIS)

    NUCAM3 is the latest generation of solid-state Pixellated gamma cameras developed at Soreq NRC. The NUCAM3 head is based on segmented pad monolithic CdZnTe detectors that currently provide a useful field of view of 18.5 cmx20.1 cm. The camera is designed for cardiac SPECT, breast scintimammography, thyroid and other small organ evaluation. We present the physical and imaging characteristics of the NUCAM3 camera and their comparison to state of the art Anger cameras. We show the advantages of CdZnTe technology, which are due to the camera pixel structure and superior energy resolution. These advantages lead to better detectability of small size cold and hot lesions in a scatter environment

  15. A Benchmark for Virtual Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Automatically animating and placing the virtual camera in a dynamic environment is a challenging task. The camera is expected to maximise and maintain a set of properties — i.e. visual composition — while smoothly moving through the environment and avoiding obstacles. A large number of different...... this reason, in this paper, we propose a benchmark for the problem of virtual camera control and we analyse a number of different problems in different virtual environments. Each of these scenarios is described through a set of complexity measures and, as a result of this analysis, a subset of...

  16. Multi-Camera Calibration Using a Globe

    OpenAIRE

    Shen, Rui; Cheng, Irene; Basu, Anup

    2008-01-01

    The need for calibration of multiple cameras working together in a network, or for the acquisition of free viewpoint video for 3D TV, is becoming increasingly important in recent years. In this paper we present a novel approach for calibrating multiple cameras using an ordinary globe that is usually available in every household. This method makes it possible to reduce multi-camera calibration to a level that is attainable by non-technical users. Our technique requires only one view of the glo...

  17. Calibration of detector sensitivity in positron cameras

    International Nuclear Information System (INIS)

    An improved method for calibrating detector sensitivities in a positron camera has been developed. The calibration phantom is a cylinder of activity placed near the center of the camera and fully within the field of view. The calibration data is processed in such a manner that the following two important properties are achieved. The estimate of a detector sensitivity is unaffected by the sensitivities of the other detectors. The estimates are insensitive to displacements of the calibrating phantom from the camera center. Both of these properties produce a more accurate detector calibration

  18. Uncertainty of temperature measurement with thermal cameras

    Science.gov (United States)

    Chrzanowski, Krzysztof; Matyszkiel, Robert; Fischer, Joachim; Barela, Jaroslaw

    2001-06-01

    All main international metrological organizations are proposing a parameter called uncertainty as a measure of the accuracy of measurements. A mathematical model that enables the calculations of uncertainty of temperature measurement with thermal cameras is presented. The standard uncertainty or the expanded uncertainty of temperature measurement of the tested object can be calculated when the bounds within which the real object effective emissivity (epsilon) r, the real effective background temperature Tba(r), and the real effective atmospheric transmittance (tau) a(r) are located and can be estimated; and when the intrinsic uncertainty of the thermal camera and the relative spectral sensitivity of the thermal camera are known.

  19. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  20. Screen-Camera Calibration Using Gray Codes

    OpenAIRE

    FRANCKEN, Yannick; Hermans, Chris; Bekaert, Philippe

    2009-01-01

    In this paper we present a method for efficient calibration of a screen-camera setup, in which the camera is not directly facing the screen. A spherical mirror is used to make the screen visible to the camera. Using Gray code illumination patterns, we can uniquely identify the reflection of each screen pixel on the imaged spherical mirror. This allows us to compute a large set of 2D-3D correspondences, using only two sphere locations. Compared to previous work, this means we require less manu...

  1. Inspection focus technology of space tridimensional mapping camera based on astigmatic method

    Science.gov (United States)

    Wang, Zhi; Zhang, Liping

    2010-10-01

    The CCD plane of the space tridimensional mapping camera will be deviated from the focal plane(including the CCD plane deviated due to camera focal length changed), under the condition of space environment and vibration, impact when satellite is launching, image resolution ratio will be descended because defocusing. For tridimensional mapping camera, principal point position and focal length variation of the camera affect positioning accuracy of ground target, conventional solution is under the condition of vacuum and focusing range, calibrate the position of CCD plane with code of photoelectric encoder, when the camera defocusing in orbit, the magnitude and direction of defocusing amount are obtained by photoelectric encoder, then the focusing mechanism driven by step motor to compensate defocusing amount of the CCD plane. For tridimensional mapping camera, under the condition of space environment and vibration, impact when satellite is launching, if the camera focal length changes, above focusing method has been meaningless. Thus, the measuring and focusing method was put forward based on astigmation, a quadrant detector was adopted to measure the astigmation caused by the deviation of the CCD plane, refer to calibrated relation between the CCD plane poison and the asrigmation, the deviation vector of the CCD plane can be obtained. This method includes all factors caused deviation of the CCD plane, experimental results show that the focusing resolution of mapping camera focusing mechanism based on astigmatic method can reach 0.25 μm.

  2. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  3. A method and results of color calibration for the Chang'e-3 terrain camera and panoramic camera

    International Nuclear Information System (INIS)

    The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission respectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image quality has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncorrected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively

  4. Self-calibration of Large Scale Camera Networks

    OpenAIRE

    Goorts, Patrik; MAESEN, Steven; Liu, Yunjun; Dumont, Maarten; Bekaert, Philippe; Lafruit, Gauthier

    2014-01-01

    In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in sport scenes. The calibration process determines precise camera parameters, both within each camera (focal length, principal point, etc) and inbetween the cameras (their relative position and orientation). To this end, we first extract candidate image correspondences over adjacent cameras, without using any calibration object, solely relying on existing feature matching...

  5. CALIBRATION AND EPIPOLAR GEOMETRY OF GENERIC HETEROGENOUS CAMERA SYSTEMS

    OpenAIRE

    Luber, A.; Rueß, D; Manthey, K.; Reulke, R.

    2012-01-01

    The application of perspective camera systems in photogrammetry and computer vision is state of the art. In recent years nonperspective and especially omnidirectional camera systems were increasingly used in close-range photogrammetry tasks. In general perspective camera model, i. e. pinhole model, cannot be applied when using non-perspective camera systems. However, several camera models for different omnidirectional camera systems are proposed in literature. Using different types o...

  6. Towards Adaptive Virtual Camera Control In Computer Games

    OpenAIRE

    Burelli, Paolo; Yannakakis, Georgios N.

    2011-01-01

    Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platf...

  7. Teacher training for using digital video camera in primary education

    Directory of Open Access Journals (Sweden)

    Pablo García Sempere

    2011-12-01

    Full Text Available This paper shows the partial results of a research carried out in primary schools, which evaluates the ability of teachers in the use of digital video camera. The study took place in the province of Granada, Spain. Our purpose was to know the level of knowledge, interest, difficulties and training needs so as to improve the teaching practice. The work has been done from a descriptive and ecletic approach. Quantitative (questionnaire and qualitative techniques (focus group have been used in this research. The information obtained shows that most of the teachers have a lack of knowledge in the use of video camera and digital edition. On the other hand, the majority agrees to include initial and permanent training on this subject. Finally, the most important conclusions are presented.

  8. Performance characteristics of ZLC 37 Siemens gamma camera

    International Nuclear Information System (INIS)

    The relationships between the ZLC 37 Siemens γ camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens γ cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author)

  9. Traffic Cameras, MDTA Cameras, Camera locations at MDTA, Camera location inside the tunnel (SENSITIVE), Published in 2010, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Traffic Cameras dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2010. It is described as...

  10. The twisted cubic and camera calibration

    OpenAIRE

    Buchanan, Thomas

    1988-01-01

    We state a uniqueness theorem for camera calibration in terms of the twisted cubic. The theorem assumes the general linear model and is essentially a reformulation of Seydewitz's star generation theorem.

  11. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  12. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  13. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  14. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    Science.gov (United States)

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  15. A Survey of Catadioptric Omnidirectional Camera Calibration

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-02-01

    Full Text Available For dozen years, computer vision becomes more popular, in which omnidirectional camera has a larger field of view and widely been used in many fields, such as: robot navigation, visual surveillance, virtual reality, three-dimensional reconstruction, and so on. Camera calibration is an essential step to obtain three-dimensional geometric information from a two-dimensional image. Meanwhile, the omnidirectional camera image has catadioptric distortion, which need to be corrected in many applications, thus the study of such camera calibration method has important theoretical significance and practical applications. This paper firstly introduces the research status of catadioptric omnidirectional imaging system; then the image formation process of catadioptric omnidirectional imaging system has been given; finally a simple classification of omnidirectional imaging method is given, and we discussed the advantages and disadvantages of these methods.

  16. Portable mini gamma camera for medical applications

    CERN Document Server

    Porras, E; Benlloch, J M; El-Djalil-Kadi-Hanifi, M; López, S; Pavon, N; Ruiz, J A; Sánchez, F; Sebastiá, A

    2002-01-01

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed.

  17. Portable mini gamma camera for medical applications

    International Nuclear Information System (INIS)

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed

  18. Aviation spectral camera infinity target simulation system

    Science.gov (United States)

    Liu, Xinyue; Ming, Xing; Liu, Jiu; Guo, Wenji; Lv, Gunbo

    2014-11-01

    With the development of science and technology, the applications of aviation spectral camera becoming more widely. Developing a test system of dynamic target is more important. Aviation spectral camera infinity target simulation system can be used to test the resolution and the modulation transfer function of camera. The construction and work principle of infinity target simulation system were introduced in detail. Dynamic target generator based digital micromirror device (DMD) and required performance of collimation System were analyzed and reported. The dynamic target generator based on DMD had the advantages of replacing image convenient, size small and flexible. According to the requirement of tested camera, by rotating and moving mirror, has completed a full field infinity dynamic target test plan.

  19. Color correction algorithms for digital cameras

    OpenAIRE

    Bianco,

    2010-01-01

    The image recorded by a digital camera mainly depends on three factors: the physical content of the scene, the illumination incident on the scene, and the characteristics of the camera. This leads to a problem for many applications where the main interest is in the color rendition accuracy of the scene acquired. It is known that the color reproduction accuracy of a digital imaging acquisition device is a key factor to the overall perceived image quality, and that there are mainly two modules ...

  20. Imaging camera with multiwire proportional chamber

    International Nuclear Information System (INIS)

    The camera for imaging radioisotope dislocations for use in nuclear medicine or for other applications, claimed in the patent, is provided by two multiwire lattices for the x-coordinate connected to a first coincidence circuit, and by two multiwire lattices for the y-coordinate connected to a second coincidence circuit. This arrangement eliminates the need of using a collimator and increases camera sensitivity while reducing production cost. (Ha)

  1. Adaptive visual servoing by simultaneous camera calibration

    OpenAIRE

    Pomares, J.; Chaumette, François; Torres, F.

    2007-01-01

    Calibration techniques allow the estimation of the intrinsic parameters of a camera. This paper describes an adaptive visual servoing scheme which employs the visual data measured during the task to determine the camera intrinsic parameters. This approach is based on the virtual visual servoing approach. However, in order to increase the robustness of the calibration several aspects have been introduced in this approach with respect to the previous developed virtual vi...

  2. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations

  3. Calibration of multi-camera photogrammetric systems

    OpenAIRE

    I. Detchev; M. Mazaheri; Rondeel, S.; Habib, A

    2014-01-01

    Due to the low-cost and off-the-shelf availability of consumer grade cameras, multi-camera photogrammetric systems have become a popular means for 3D reconstruction. These systems can be used in a variety of applications such as infrastructure monitoring, cultural heritage documentation, biomedicine, mobile mapping, as-built architectural surveys, etc. In order to ensure that the required precision is met, a system calibration must be performed prior to the data collection campaign. ...

  4. Mercuric iodide X-ray camera

    Science.gov (United States)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  5. Mercuric iodide x-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs

  6. Mercuric iodide X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  7. Mercuric iodide x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1985-01-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs.

  8. Mercuric iodide X-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV

  9. CMOS Camera Array With Onboard Memory

    Science.gov (United States)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  10. AUTOMATIC THEFT SECURITY SYSTEM (SMART SURVEILLANCE CAMERA)

    OpenAIRE

    Veena G.S; Chandrika Prasad; Khaleel K

    2013-01-01

    The proposed work aims to create a smart application camera, with the intention of eliminating the need for a human presence to detect any unwanted sinister activities, such as theft in this case. Spread among the campus, are certain valuable biometric identification systems at arbitrary locations. The application monitosr these systems (hereafter referred to as “object”) using our smart camera system based on an OpenCV platform. By using OpenCV Haar Training, employing the Vio...

  11. Image noise induced errors in camera positioning

    OpenAIRE

    G. Chesi; Hung, YS

    2007-01-01

    The problem of evaluating worst-case camera positioning error induced by unknown-but-bounded (UBB) image noise for a given object-camera configuration is considered. Specifically, it is shown that upper bounds to the rotation and translation worst-case error for a certain image noise intensity can be obtained through convex optimizations. These upper bounds, contrary to lower bounds provided by standard optimization tools, allow one to design robust visual servo systems. © 2007 IEEE.

  12. Camera identification with deep convolutional networks

    OpenAIRE

    Baroffio, Luca; Bondi, Luca; Bestagini, Paolo; Tubaro, Stefano

    2016-01-01

    The possibility of detecting which camera has been used to shoot a specific picture is of paramount importance for many forensics tasks. This is extremely useful for copyright infringement cases, ownership attribution, as well as for detecting the authors of distributed illicit material (e.g., pedo-pornographic shots). Due to its importance, the forensics community has developed a series of robust detectors that exploit characteristic traces left by each camera on the acquired images during t...

  13. The TNG Near Infrared Camera Spectrometer

    OpenAIRE

    Baffa, C.; Comoretto, G.; Gennari, S.; F. Lisi; Oliva, E; Biliotti, V.; Checcucci, A.; Gavrioussev, V.; Giani, E; Ghinassi, F.; Hunt, L. K.; Maiolino, R.; Mannuci, F.; Marcucci, G.; Sozzi, M.

    2001-01-01

    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limi...

  14. An imaging system for a gamma camera

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  15. Localization and Optimization Problems for Camera Networks

    OpenAIRE

    Borra, Domenica

    2013-01-01

    In the framework of networked control systems, we focus on networks of autonomous PTZ cameras. A large set of cameras communicating each other through a network is a widely used architecture in application areas like video surveillance, tracking and motion. First, we consider relative localization in sensor networks, and we tackle the issue of investigating the error propagation, in terms of the mean error on each component of the optimal estimator of the position vector. The relative error i...

  16. The Large APEX Bolometer Camera LABOCA

    OpenAIRE

    Siringo, G.; Kreysa, E.; Kovacs, A.; Schuller, F.; Weiss, A; Esch, W.; Gemuend, H. P.; Jethava, N.; Lundershausen, G.; Colin, A.; Guesten, R.; Menten, K. M.; Beelen, A; Bertoldi, F.; Beeman, J.W.

    2009-01-01

    The Large APEX Bolometer Camera, LABOCA, has been commissioned for operation as a new facility instrument t the Atacama Pathfinder Experiment 12m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 micron atmospheric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.

  17. A stereoscopic lens for digital cinema cameras

    Science.gov (United States)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  18. Monitoring rotating gamma camera performance for emission tomography

    International Nuclear Information System (INIS)

    The procedure for assessing and correcting the uniformity of the gamma camera image in emission tomography is briefly outlined. The gantry condition is another parameter affecting the tomographic image. Centre of rotation calibration data are presented to illustrate the gantry checking procedure and to show how faults can be diagnosed from the data. A calibration procedure for checking the alignment of the X, Y image axis with the axis of rotation is also briefly described. (U.K.)

  19. Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns

    Science.gov (United States)

    Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.

    2012-07-01

    Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.

  20. On the accuracy potential of focused plenoptic camera range determination in long distance operation

    Science.gov (United States)

    Sardemann, Hannes; Maas, Hans-Gerd

    2016-04-01

    Plenoptic cameras have found increasing interest in optical 3D measurement techniques in recent years. While their basic principle is 100 years old, the development in digital photography, micro-lens fabrication technology and computer hardware has boosted the development and lead to several commercially available ready-to-use cameras. Beyond their popular option of a posteriori image focusing or total focus image generation, their basic ability of generating 3D information from single camera imagery depicts a very beneficial option for certain applications. The paper will first present some fundamentals on the design and history of plenoptic cameras and will describe depth determination from plenoptic camera image data. It will then present an analysis of the depth determination accuracy potential of plenoptic cameras. While most research on plenoptic camera accuracy so far has focused on close range applications, we will focus on mid and long ranges of up to 100 m. This range is especially relevant, if plenoptic cameras are discussed as potential mono-sensorial range imaging devices in (semi-)autonomous cars or in mobile robotics. The results show the expected deterioration of depth measurement accuracy with depth. At depths of 30-100 m, which may be considered typical in autonomous driving, depth errors in the order of 3% (with peaks up to 10-13 m) were obtained from processing small point clusters on an imaged target. Outliers much higher than these values were observed in single point analysis, stressing the necessity of spatial or spatio-temporal filtering of the plenoptic camera depth measurements. Despite these obviously large errors, a plenoptic camera may nevertheless be considered a valid option for the application fields of real-time robotics like autonomous driving or unmanned aerial and underwater vehicles, where the accuracy requirements decrease with distance.

  1. High Resolution Camera for Mapping Titan Surface

    Science.gov (United States)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  2. Toward Long Distance, Sub-diffraction Imaging Using Coherent Camera Arrays

    CERN Document Server

    Holloway, Jason; Sharma, Manoj Kumar; Matsuda, Nathan; Horstmeyer, Roarke; Cossairt, Oliver; Veeraraghavan, Ashok

    2015-01-01

    In this work, we propose using camera arrays coupled with coherent illumination as an effective method of improving spatial resolution in long distance images by a factor of ten and beyond. Recent advances in ptychography have demonstrated that one can image beyond the diffraction limit of the objective lens in a microscope. We demonstrate a similar imaging system to image beyond the diffraction limit in long range imaging. We emulate a camera array with a single camera attached to an X-Y translation stage. We show that an appropriate phase retrieval based reconstruction algorithm can be used to effectively recover the lost high resolution details from the multiple low resolution acquired images. We analyze the effects of noise, required degree of image overlap, and the effect of increasing synthetic aperture size on the reconstructed image quality. We show that coherent camera arrays have the potential to greatly improve imaging performance. Our simulations show resolution gains of 10x and more are achievabl...

  3. Lag Camera: A Moving Multi-Camera Array for Scene-Acquisition

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2007-04-01

    Full Text Available Many applications, such as telepresence, virtual reality, and interactive walkthroughs, require a three-dimensional (3Dmodel of real-world environments. Methods, such as lightfields, geometric reconstruction and computer vision use cameras to acquire visual samples of the environment and construct a model. Unfortunately, obtaining models of real-world locations is a challenging task. In particular, important environments are often actively in use, containing moving objects, such as people entering and leaving the scene. The methods previously listed have difficulty in capturing the color and structure of the environment while in the presence of moving and temporary occluders. We describe a class of cameras called lag cameras. The main concept is to generalize a camera to take samples over space and time. Such a camera, can easily and interactively detect moving objects while continuously moving through the environment. Moreover, since both the lag camera and occluder are moving, the scene behind the occluder is captured by the lag camera even from viewpoints where the occluder lies in between the lag camera and the hidden scene. We demonstrate an implementation of a lag camera, complete with analysis and captured environments.

  4. Self-Calibration of a Moving Camera by Pre-Calibration

    OpenAIRE

    Sturm, Peter

    1996-01-01

    We consider the problem of self-calibrating a moving camera which is equipped with a zoom lens. This consists essentially in estimating the 5 intrinsic parameters of the pinhole camera model. However, these parameters are not independent. Thus, we propose to do a pre-calibration of the camera, with the aim to model the interdependence of the intrinsic parameters. We show that self-calibration then comes down to the estimation of only 1 intrinsic parameter. We propose a method which exploits t...

  5. Video Summarization Based on Camera Motion and a Subjective Evaluation Method

    Directory of Open Access Journals (Sweden)

    Guironnet M

    2007-01-01

    Full Text Available We propose an original method of video summarization based on camera motion. It consists in selecting frames according to the succession and the magnitude of camera motions. The method is based on rules to avoid temporal redundancy between the selected frames. We also develop a new subjective method to evaluate the proposed summary and to compare different summaries more generally. Subjects were asked to watch a video and to create a summary manually. From the summaries of the different subjects, an "optimal" one is built automatically and is compared to the summaries obtained by different methods. Experimental results show the efficiency of our camera motion-based summary.

  6. "Calibration-on-the-spot'': How to calibrate an EMCCD camera from its images

    DEFF Research Database (Denmark)

    Mortensen, Kim; Flyvbjerg, Henrik

    In localization-based microscopy, super-resolution is obtained by analyzing isolated diffraction-limited spots imaged, typically, with EMCCD cameras. To compare experiments and calculate localization precision, the photon-to-signal amplification factor is needed but unknown without a calibration of...... the camera. Here we show how this can be done post festum from just a recorded image. We demonstrate this (i) theoretically, mathematically, (ii) by analyzing images recorded with an EMCCD camera, and (iii) by analyzing simulated EMCCD images for which we know the true values of parameters. In summary...

  7. Traffic monitoring with distributed smart cameras

    Science.gov (United States)

    Sidla, Oliver; Rosner, Marcin; Ulm, Michael; Schwingshackl, Gert

    2012-01-01

    The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. Today the automated analysis of traffic situations is still in its infancy--the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully captured and interpreted by a vision system. 3In this work we present steps towards a visual monitoring system which is designed to detect potentially dangerous traffic situations around a pedestrian crossing at a street intersection. The camera system is specifically designed to detect incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system has been field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in a weatherproof housing. Two cameras run vehicle detection and tracking software, one camera runs a pedestrian detection and tracking module based on the HOG dectection principle. All 3 cameras use sparse optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. Geometric calibration of the cameras allows us to estimate the real-world co-ordinates of detected objects and to link the cameras together into one common reference system. This work describes the foundation for all the different object detection modalities (pedestrians, vehicles), and explains the system setup, tis design, and evaluation results which we have achieved so far.

  8. Design and fabrication of endoscope-type Compton camera

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y., E-mail: nakamura@sophie.q.t.u-tokyo.ac.jp [Department of Bio Engineering, The University of Tokyo (Japan); Shimazoe, K. [Department of Bio Engineering, The University of Tokyo (Japan); Takahashi, H. [Department of Bio Engineering, The University of Tokyo (Japan); Department of Nuclear Engineering and Management, The University of Tokyo (Japan)

    2013-12-11

    We are constructing an endoscope coupled with a Compton camera to intra-operatively inspect early stage cancer and metastatic lymph node (5 mm–10 mm). The radiation imaging system is composed of pixelated semiconductor detectors, which are Si array and CdTe array, whose sizes are less than 10 mm×10 mm, and a digital signal-processing unit with ASIC and FPGA and reconstruction algorithm using spherical harmonics that can compute in real time. In this paper, we show some simulation results on the performance of the proposed prototype detector using EGS5, Monte Carlo simulation code. The FWHM of 1 mm spatial resolution for an object located 10 mm away from the detector surface and the intrinsic efficiency of 0.05% were observed. Imaging and data acquisition time to take fine images are just 1 min. It therefore can be considered that the endoscopic Compton camera is useful for intra-operative inspection.

  9. Large-format microchannel plate gated framing camera

    International Nuclear Information System (INIS)

    An X-ray framing camera using a large-format microchannel plate (MCP) is reported. The diameter of the MCP is 106 mm and the width of each microstrip line cathode deposited on the MCP is 12 mm. The temporal record length of the camera is about 3 ns. The photocathode is driven by a gating electrical pulse having a width of 175 ps and an amplitude of −2.5 kV plus −300 V bias, while the exposure time is about 69 ps. Finally the gain uniformity of the microstrip line photocathode is measured, showing that there is a 8.9× drop in gain along the pulse propagation direction, whereas the variations in the gain transverse to the pulse propagation direction are within 16.7%.

  10. Pedestrian Counting with Occlusion Handling Using Stereo Thermal Cameras

    Directory of Open Access Journals (Sweden)

    Miklas S. Kristoffersen

    2016-01-01

    Full Text Available The number of pedestrians walking the streets or gathered in public spaces is a valuable piece of information for shop owners, city governments, event organizers and many others. However, automatic counting that takes place day and night is challenging due to changing lighting conditions and the complexity of scenes with many people occluding one another. To address these challenges, this paper introduces the use of a stereo thermal camera setup for pedestrian counting. We investigate the reconstruction of 3D points in a pedestrian street with two thermal cameras and propose an algorithm for pedestrian counting based on clustering and tracking of the 3D point clouds. The method is tested on two five-minute video sequences captured at a public event with a moderate density of pedestrians and heavy occlusions. The counting performance is compared to the manually annotated ground truth and shows success rates of 95.4% and 99.1% for the two sequences.

  11. Energy Sharing in the 2-Electron Attosecond Streak Camera

    CERN Document Server

    Price, H; Emmanouilidou, A

    2011-01-01

    Using the recently developed concept of the 2-electron streak camera (see NJP 12, 103024 (2010)), we have studied the energy-sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We find that the most symmetric and asymmetric energy sharings correspond to different ionization dynamics with the ion's Coulomb potential significantly influencing the latter. This different dynamics for the two extreme energy sharings gives rise to different patterns in asymptotic observables and different time-delays between the emission of the two electrons. We show that the 2-electron streak camera resolves the time-delays between the emission of the two electrons for different energy sharings.

  12. Design and fabrication of endoscope-type Compton camera

    International Nuclear Information System (INIS)

    We are constructing an endoscope coupled with a Compton camera to intra-operatively inspect early stage cancer and metastatic lymph node (5 mm–10 mm). The radiation imaging system is composed of pixelated semiconductor detectors, which are Si array and CdTe array, whose sizes are less than 10 mm×10 mm, and a digital signal-processing unit with ASIC and FPGA and reconstruction algorithm using spherical harmonics that can compute in real time. In this paper, we show some simulation results on the performance of the proposed prototype detector using EGS5, Monte Carlo simulation code. The FWHM of 1 mm spatial resolution for an object located 10 mm away from the detector surface and the intrinsic efficiency of 0.05% were observed. Imaging and data acquisition time to take fine images are just 1 min. It therefore can be considered that the endoscopic Compton camera is useful for intra-operative inspection

  13. Energy sharing in the two-electron attosecond streak camera

    International Nuclear Information System (INIS)

    Using the recently developed concept of the two-electron streak camera (see Emmanouilidou et al 2010 New J. Phys. 12 103024), we studied the energy sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We found that the most symmetric and asymmetric energy sharings correspond to different ionization dynamics with the ion's Coulomb potential significantly influencing the latter. This different dynamics for the two extreme energy sharings gives rise to different patterns in asymptotic observables and different time delays between the emission of the two electrons. We show that the two-electron streak camera resolves the time delays between the emission of the two electrons for different energy sharings.

  14. Energy sharing in the two-electron attosecond streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Price, H; Emmanouilidou, A [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Staudte, A, E-mail: a.emmanouilidou@ucl.ac.uk [Joint Laboratory for Attosecond Science, University of Ottawa and National Research Council, 100 Sussex Drive, Ottawa, ON K1A 0R6 (Canada)

    2011-09-15

    Using the recently developed concept of the two-electron streak camera (see Emmanouilidou et al 2010 New J. Phys. 12 103024), we studied the energy sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We found that the most symmetric and asymmetric energy sharings correspond to different ionization dynamics with the ion's Coulomb potential significantly influencing the latter. This different dynamics for the two extreme energy sharings gives rise to different patterns in asymptotic observables and different time delays between the emission of the two electrons. We show that the two-electron streak camera resolves the time delays between the emission of the two electrons for different energy sharings.

  15. A novel SPECT camera for molecular imaging of the prostate

    Science.gov (United States)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  16. D Animation Reconstruction from Multi-Camera Coordinates Transformation

    Science.gov (United States)

    Jhan, J. P.; Rau, J. Y.; Chou, C. M.

    2016-06-01

    Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  17. On camera-based smoke and gas leakage detection

    Energy Technology Data Exchange (ETDEWEB)

    Nyboe, Hans Olav

    1999-07-01

    Gas detectors are found in almost every part of industry and in many homes as well. An offshore oil or gas platform may host several hundred gas detectors. The ability of the common point and open path gas detectors to detect leakages depends on their location relative to the location of a gas cloud. This thesis describes the development of a passive volume gas detector, that is, one than will detect a leakage anywhere in the area monitored. After the consideration of several detection techniques it was decided to use an ordinary monochrome camera as sensor. Because a gas leakage may perturb the index of refraction, parts of the background appear to be displaced from their true positions, and it is necessary to develop algorithms that can deal with small differences between images. The thesis develops two such algorithms. Many image regions can be defined and several feature values can be computed for each region. The value of the features depends on the pattern in the image regions. The classes studied in this work are: reference, gas, smoke and human activity. Test show that observation belonging to these classes can be classified fairly high accuracy. The features in the feature set were chosen and developed for this particular application. Basically, the features measure the magnitude of pixel differences, size of detected phenomena and image distortion. Interesting results from many experiments are presented. Most important, the experiments show that apparent motion caused by a gas leakage or heat convection can be detected by means of a monochrome camera. Small leakages of methane can be detected at a range of about four metres. Other gases, such as butane, where the densities differ more from the density of air than the density of methane does, can be detected further from the camera. Gas leakages large enough to cause condensation have been detected at a camera distance of 20 metres. 59 refs., 42 figs., 13 tabs.

  18. 16 CFR 1025.45 - In camera materials.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false In camera materials. 1025.45 Section 1025.45... PROCEEDINGS Hearings § 1025.45 In camera materials. (a) Definition. In camera materials are documents... excluded from the public record. (b) In camera treatment of documents and testimony. The Presiding...

  19. Plenoptic processing methods for distributed camera arrays

    Science.gov (United States)

    Boyle, Frank A.; Yancey, Jerry W.; Maleh, Ray; Deignan, Paul

    2011-05-01

    Recent advances in digital photography have enabled the development and demonstration of plenoptic cameras with impressive capabilities. They function by recording sub-aperture images that can be combined to re-focus images or to generate stereoscopic pairs. Plenoptic methods are being explored for fusing images from distributed arrays of cameras, with a view toward applications in which hardware resources are limited (e.g. size, weight, power constraints). Through computer simulation and experimental studies, the influences of non-idealities such as camera position uncertainty are being considered. Component image rescaling and balancing methods are being explored to compensate. Of interest is the impact on precision passive ranging and super-resolution. In a preliminary experiment, a set of images from a camera array was recorded and merged to form a 3D representation of a scene. Conventional plenoptic refocusing was demonstrated and techniques were explored for balancing the images. Nonlinear methods were explored for combining the images limited the ghosting caused by sub-sampling. Plenoptic processing was explored as a means for determining 3D information from airborne video. Successive frames were processed as camera array elements to extract the heights of structures. Practical means were considered for rendering the 3D information in color.

  20. Testing of capsules used in radiography cameras

    International Nuclear Information System (INIS)

    The C-182 non-radioactive (dummy) radiography capsules manufactured by Atomic Energy of Canada Limited were mechanically tested by performing a prescribed number of cycles under preset conditions in a Model 100-3 Pneumat- A-Ray radiography camera. The capsules were observed throughout the cycling trials and tested for changes in dimension, weight, and leakage. After completion of the prescribed cycling trials each capsule was further tested for potential leakage by dye penetrant examination, sectioned at the equator and each half tested by dye penetrant examination, then sectioned again longitudinally and metallurgically examined. The results indicate that the capsules cycled under typical field conditions can become significantly deformed, and that deformation is generally related to the number of cycles that the capsules undergo. The deformation occurs almost exclusively on the end of the capsule entering the camera first. When the headhose cushion is removed the deformation occurs on both ends of the capsule. The deformation is related only to the pneumatic operating mode of the camera and there was no evidence for deformation when the camera was used under pipeline mode of operation. The only leak observed in this series of tests was not related to the deformed end of the capsule, but rather to the weld end of the capsule when the non weld end of the capsule was deformed from entering the camera. The leak was shown by dye penetrant examination and by photomicrographs of the cross section of the affected capsule

  1. Advanced system for Gamma Cameras modernization

    International Nuclear Information System (INIS)

    Analog and digital gamma cameras still largely used in developing countries. Many of them rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. Consequently, there are different worldwide companies that produce medical equipment engaged into a partial or total Gamma Cameras modernization. Present work has demonstrated the possibility of substitution of almost entire signal processing electronics placed at inside a Gamma Camera detector head by a digitizer PCI card. this card includes four 12 Bits Analog-to-Digital-Converters of 50 MHz speed. It has been installed in a PC and controlled through software developed in Lab View. Besides, there were done some changes to the hardware inside the detector head including redesign of the Orientation Display Block (ODA card). Also a new electronic design was added to the Microprocessor Control Block (MPA card) which comprised a PIC micro controller acting as a tuning system for individual Photomultiplier Tubes. The images, obtained by measurement of 99mTc point radioactive source, using modernized camera head demonstrate its overall performance. The system was developed and tested in an old Gamma Camera ORBITER II SIEMENS GAMMASONIC at National Institute of Oncology and Radiobiology (INOR) under CAMELUD project supported by National Program PNOULU and IAEA . (Author)

  2. Calibration of Action Cameras for Photogrammetric Purposes

    Directory of Open Access Journals (Sweden)

    Caterina Balletti

    2014-09-01

    Full Text Available The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a easy to handle, (b capable of performing under extreme conditions and more importantly (c able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  3. Calibration of action cameras for photogrammetric purposes.

    Science.gov (United States)

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  4. Modulated CMOS camera for fluorescence lifetime microscopy.

    Science.gov (United States)

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  5. Gamma cameras - a method of evaluation

    International Nuclear Information System (INIS)

    Full text: With the sophistication and longevity of the modern gamma camera it is not often that the need arises to evaluate a gamma camera for purchase. We have recently been placed in the position of retiring our two single headed cameras of some vintage and replacing them with a state of the art dual head variable angle gamma camera. The process used for the evaluation consisted of five parts: (1) Evaluation of the technical specification as expressed in the tender document; (2) A questionnaire adapted from the British Society of Nuclear Medicine; (3) Site visits to assess gantry configuration, movement, patient access and occupational health, welfare and safety considerations; (4) Evaluation of the processing systems offered; (5) Whole of life costing based on equally configured systems. The results of each part of the evaluation were expressed using a weighted matrix analysis with each of the criteria assessed being weighted in accordance with their importance to the provision of an effective nuclear medicine service for our centre and the particular importance to paediatric nuclear medicine. This analysis provided an objective assessment of each gamma camera system from which a purchase recommendation was made. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. Design of Endoscopic Capsule With Multiple Cameras.

    Science.gov (United States)

    Gu, Yingke; Xie, Xiang; Li, Guolin; Sun, Tianjia; Wang, Dan; Yin, Zheng; Zhang, Pengfei; Wang, Zhihua

    2015-08-01

    In order to reduce the miss rate of the wireless capsule endoscopy, in this paper, we propose a new system of the endoscopic capsule with multiple cameras. A master-slave architecture, including an efficient bus architecture and a four level clock management architecture, is applied for the Multiple Cameras Endoscopic Capsule (MCEC). For covering more area of the gastrointestinal tract wall with low power, multiple cameras with a smart image capture strategy, including movement sensitive control and camera selection, are used in the MCEC. To reduce the data transfer bandwidth and power consumption to prolong the MCEC's working life, a low complexity image compressor with PSNR 40.7 dB and compression rate 86% is implemented. A chipset is designed and implemented for the MCEC and a six cameras endoscopic capsule prototype is implemented by using the chipset. With the smart image capture strategy, the coverage rate of the MCEC prototype can achieve 98% and its power consumption is only about 7.1 mW. PMID:25376042

  7. Hidden cameras everything you need to know about covert recording, undercover cameras and secret filming

    CERN Document Server

    Plomin, Joe

    2016-01-01

    Providing authoritative information on the practicalities of using hidden cameras to expose abuse or wrongdoing, this book is vital reading for anyone who may use or encounter secret filming. It gives specific advice on using phones or covert cameras and unravels the complex legal and ethical issues that need to be considered.

  8. Mobile phone camera benchmarking: combination of camera speed and image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-01-01

    When a mobile phone camera is tested and benchmarked, the significance of quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. For example, ISO 15781 defines several measurements to evaluate various camera system delays. However, the speed or rapidity metrics of the mobile phone's camera system have not been used with the quality metrics even if the camera speed has become more and more important camera performance feature. There are several tasks in this work. Firstly, the most important image quality metrics are collected from the standards and papers. Secondly, the speed related metrics of a mobile phone's camera system are collected from the standards and papers and also novel speed metrics are identified. Thirdly, combinations of the quality and speed metrics are validated using mobile phones in the market. The measurements are done towards application programming interface of different operating system. Finally, the results are evaluated and conclusions are made. The result of this work gives detailed benchmarking results of mobile phone camera systems in the market. The paper defines also a proposal of combined benchmarking metrics, which includes both quality and speed parameters.

  9. Development of broad-view camera unit for laparoscopic surgery.

    Science.gov (United States)

    Kawahara, Tomohiro; Takaki, Takeshi; Ishii, Idaku; Okajima, Masazumi

    2009-01-01

    A disadvantage of laparoscopic surgery is the narrow operative field provided by the endoscope camera. This paper describes a newly developed broad-view camera unit for use with the Broad-View Camera System, which is capable of providing a wider view of the internal organs during laparoscopic surgery. The developed camera unit is composed of a miniature color CMOS camera, an indwelling needle, and an extra-thin connector. The specific design of the camera unit and the method for positioning it are shown. The performance of the camera unit has been confirmed through basic and animal experiments. PMID:19963983

  10. In-plane displacement and strain measurements using a camera phone and digital image correlation

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2014-05-01

    In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.

  11. Rover mast calibration, exact camera pointing, and camara handoff for visual target tracking

    Science.gov (United States)

    Kim, Won S.; Ansar, Adnan I.; Steele, Robert D.

    2005-01-01

    This paper presents three technical elements that we have developed to improve the accuracy of the visual target tracking for single-sol approach-and-instrument placement in future Mars rover missions. An accurate, straightforward method of rover mast calibration is achieved by using a total station, a camera calibration target, and four prism targets mounted on the rover. The method was applied to Rocky8 rover mast calibration and yielded a 1.1-pixel rms residual error. Camera pointing requires inverse kinematic solutions for mast pan and tilt angles such that the target image appears right at the center of the camera image. Two issues were raised. Mast camera frames are in general not parallel to the masthead base frame. Further, the optical axis of the camera model in general does not pass through the center of the image. Despite these issues, we managed to derive non-iterative closed-form exact solutions, which were verified with Matlab routines. Actual camera pointing experiments aver 50 random target image paints yielded less than 1.3-pixel rms pointing error. Finally, a purely geometric method for camera handoff using stereo views of the target has been developed. Experimental test runs show less than 2.5 pixels error on high-resolution Navcam for Pancam-to-Navcam handoff, and less than 4 pixels error on lower-resolution Hazcam for Navcam-to-Hazcam handoff.

  12. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Lampert, Máté, E-mail: lampert.mate@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Un Nam, Yong, E-mail: yunam@nfri.re.kr [NFRI, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2015-01-11

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  13. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  14. Acceptance/Operational Test Report for Tank 241-AN-104 camera and camera purge control system

    International Nuclear Information System (INIS)

    This Acceptance/Operational Test Procedure (ATP/OTP) will document the satisfactory operation of the camera purge panel, purge control panel, color camera system and associated control components destined for installation. The final acceptance of the complete system will be performed in the field. The purge panel and purge control panel will be tested for its safety interlock which shuts down the camera and pan-and-tilt inside the tank vapor space during loss of purge pressure and that the correct purge volume exchanges are performed as required by NFPA 496. This procedure is separated into seven sections. This Acceptance/Operational Test Report documents the successful acceptance and operability testing of the 241-AN-104 camera system and camera purge control system

  15. The roles of time, place, value and relationships in collocated photo sharing with camera phones

    OpenAIRE

    Stelmaszewska, Hanna; Fields, Bob; Blandford, Ann

    2008-01-01

    Photo sharing on camera phones is becoming a common way to maintain closeness and relationships with friends and family. How people share their photos in collocated settings using camera phones, with whom they share, and what factors influence their sharing experience were the themes explored in this study. Results showed that people exhibit different photo sharing behaviour depending on who they share photos with, where the sharing takes place and what value a picture represents to its owner...

  16. Camera Calibration Method of Medical Robot Positioning System Based on Binocular Vision

    OpenAIRE

    Dong Feng; Sun Li-Ning; Ru Chang-Hai

    2013-01-01

    The medical robot positioning system plays an important role in the precise radiotherapy, so the study proposes the measure system based binocular vision to reduce the patient=s setup errors for the initial positioning rapidly and accurately. In order to get higher positioning accuracy, the study proposes a new non-contact camera calibration method based on planar and 3D checkerboard calibration templates. The experimental results show that camera calibrati...

  17. Multi-camera open space human activity discovery for anomaly detection

    OpenAIRE

    Emonet R.; Varadarajan J.; Odobez J.-M.

    2011-01-01

    We address the discovery of typical activities in video stream contents and its exploitation for estimating the abnormality levels of these streams. Such estimates can be used to select the most interesting cameras to show to a human operator. Our contributions come from the following facets: i) the method is fully unsupervised and learns the activities from long term data; ii) the method is scalable and can efficiently handle the information provided by multiple un-calibrated cameras, jointl...

  18. Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

    OpenAIRE

    Bylow, Erik; Sturm, Jürgen; Kerl, Christian; Kahl, Fredrik; Cremers, Daniel

    2013-01-01

    The ability to quickly acquire 3D models is an essential capability needed in many disciplines including robotics, computer vision, geodesy, and architecture. In this paper we present a novel method for real-time camera tracking and 3D reconstruction of static indoor environments using an RGB-D sensor. We show that by representing the geometry with a signed distance function (SDF), the camera pose can be efficiently estimated by directly minimizing the error of the depth images on the SDF....

  19. Global Calibration of Multiple Cameras Based on Sphere Targets

    OpenAIRE

    Junhua Sun; Huabin He; Debing Zeng

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphe...

  20. Mobile Camera Array Calibration for Light Field Acquisition

    OpenAIRE

    Xu, Yichao; Maeno, Kazuki; Nagahara, Hajime; Taniguchi, Rin-ichiro

    2014-01-01

    The light field camera is useful for computer graphics and vision applications. Calibration is an essential step for these applications. After calibration, we can rectify the captured image by using the calibrated camera parameters. However, the large camera array calibration method, which assumes that all cameras are on the same plane, ignores the orientation and intrinsic parameters. The multi-camera calibration technique usually assumes that the working volume and viewpoints are fixed. In ...

  1. Results of the prototype camera for FACT

    International Nuclear Information System (INIS)

    The maximization of the photon detection efficiency (PDE) is a key issue in the development of cameras for Imaging Atmospheric Cherenkov Telescopes. Geiger-mode Avalanche Photodiodes (G-APD) are a promising candidate to replace the commonly used photomultiplier tubes by offering a larger PDE and in addition a facilitated handling. The FACT (First G-APD Cherenkov Telescope) project evaluates the feasibility of this change by building a camera based on 1440 G-APDs for an existing small telescope. As a first step towards a full camera, a prototype module using 144 G-APDs was successfully built and tested. The strong temperature dependence of G-APDs is compensated using a feedback system, which allows to keep the gain of the G-APDs constant to 0.5%.

  2. The Calibration of the FACT Camera

    International Nuclear Information System (INIS)

    Full text: The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera for an Imaging Atmospheric Cherenkov Telescope which is based on G-APDs and a readout using the Domino Ring Sampling (DRS4) chip. The amplitude calibration of the readout chain must account for a wide variety of effects specific to this design of the camera, eg. the strong temperature dependence of the G-APDs, the quality of the gluing between the optical components as well as the characteristics of the DRS4 chip. The basis for this calibration are an online feedback system to stabilize the gain of the G-APDs, laboratory measurements and special runs during data taking. In this talk, the calibration system for FACT is presented including the current experience with the camera in laboratory measurements. (author)

  3. PEOPLE REIDENTIFCATION IN A DISTRIBUTED CAMERA NETWORK

    Directory of Open Access Journals (Sweden)

    Icaro Oliveira de Oliveira

    2010-06-01

    Full Text Available This paper presents an approach to the object reidentification problem in a distributed camera network system. The reidentification or reacquisition problem consists essentially on the matching process of images acquired from different cameras. This work is applied in a monitored environment by cameras. This application is important to modern security systems, in which the targets presence identification in the environment expands the capacity of action by security agents in real time and provides important parameters like localization for each target. We used target’s interest points and target’s color with features for reidentification. The satisfactory results were obtained from real experiments in public video datasets and synthetic images with noise.

  4. Camera placement in integer lattices (extended abstract)

    Science.gov (United States)

    Pocchiola, Michel; Kranakis, Evangelos

    1990-09-01

    Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).

  5. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  6. Progress in gamma-camera quality control

    International Nuclear Information System (INIS)

    The latest developments in the art of quality control of gamma cameras are emphasized in a simple historical manner. The exhibit describes methods developed by the Bureau of Radiological Health (BRH) in comparison with previously accepted techniques for routine evaluation of gamma-camera performance. Gamma cameras require periodic testing of their performance parameters to ensure that their optimum imaging capability is maintained. Quality control parameters reviewed are field uniformity, spatial distortion, intrinsic and spatial resolution, and temporal resolution. The methods developed for the measurement of these parameters are simple, not requiring additional electronic equipment or computers. The data has been arranged in six panels as follows: schematic diagrams of the most important test patterns used in nuclear medicine; field uniformity; regional displacements in transmission pattern image; spatial resolution using the BRH line-source phantom; instrinsic resolution using the BRH Test Pattern; and Temporal resolution and count losses at high counting rates

  7. Lights, camera, A&E.

    Science.gov (United States)

    Gould, Mark

    Channel 4 series 24 Hours in A&E was one of the television highlights of 2011. Filmed at King's College Hospital in London, it showed the reality of life in an A&E department and may have improved the public's understanding of nursing. PMID:22324233

  8. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  9. Lightweight, Compact, Long Range Camera Design

    Science.gov (United States)

    Shafer, Donald V.

    1983-08-01

    The model 700 camera is the latest in a 30-year series of LOROP cameras developed by McDonnell Douglas Astronautics Company (MDAC) and their predecessor companies. The design achieves minimum size and weight and is optimized for low-contrast performance. The optical system includes a 66-inch focal length, f/5.6, apochromatic lens and three folding mirrors imaging on a 4.5-inch square format. A three-axis active stabilization system provides the capability for long exposure time and, hence, fine grain films can be used. The optical path forms a figure "4" behind the lens. In front of the lens is a 45° pointing mirror. This folded configuration contributed greatly to the lightweight and compact design. This sequential autocycle frame camera has three modes of operation with one, two, and three step positions to provide a choice of swath widths within the range of lateral coverage. The magazine/shutter assembly rotates in relationship with the pointing mirror and aircraft drift angle to maintain film format alignment with the flight path. The entire camera is angular rate stabilized in roll, pitch, and yaw. It also employs a lightweight, electro-magnetically damped, low-natural-frequency spring suspension for passive isolation from aircraft vibration inputs. The combined film transport and forward motion compensation (FMC) mechanism, which is operated by a single motor, is contained in a magazine that can, depending on accessibility which is installation dependent, be changed in flight. The design also stresses thermal control, focus control, structural stiffness, and maintainability. The camera is operated from a remote control panel. This paper describes the leading particulars and features of the camera as related to weight and configuration.

  10. Robust camera calibration for sport videos using court models

    Science.gov (United States)

    Farin, Dirk; Krabbe, Susanne; de With, Peter H. N.; Effelsberg, Wolfgang

    2003-12-01

    We propose an automatic camera calibration algorithm for court sports. The obtained camera calibration parameters are required for applications that need to convert positions in the video frame to real-world coordinates or vice versa. Our algorithm uses a model of the arrangement of court lines for calibration. Since the court model can be specified by the user, the algorithm can be applied to a variety of different sports. The algorithm starts with a model initialization step which locates the court in the image without any user assistance or a-priori knowledge about the most probable position. Image pixels are classified as court line pixels if they pass several tests including color and local texture constraints. A Hough transform is applied to extract line elements, forming a set of court line candidates. The subsequent combinatorial search establishes correspondences between lines in the input image and lines from the court model. For the succeeding input frames, an abbreviated calibration algorithm is used, which predicts the camera parameters for the new image and optimizes the parameters using a gradient-descent algorithm. We have conducted experiments on a variety of sport videos (tennis, volleyball, and goal area sequences of soccer games). Video scenes with considerable difficulties were selected to test the robustness of the algorithm. Results show that the algorithm is very robust to occlusions, partial court views, bad lighting conditions, or shadows.

  11. Real-time optimizations for integrated smart network camera

    Science.gov (United States)

    Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois

    2005-02-01

    We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.

  12. Medium Format Camera Evaluation Based on the Latest Phase One Technology

    Science.gov (United States)

    Tölg, T.; Kemper, G.; Kalinski, D.

    2016-06-01

    In early 2016, Phase One Industrial launched a new high resolution camera with a 100 MP CMOS sensor. CCD sensors excel at ISOs up to 200, but in lower light conditions, exposure time must be increased and Forward Motion Compensation (FMC) has to be employed to avoid smearing the images. The CMOS sensor has an ISO range of up to 6400, which enables short exposures instead of using FMC. This paper aims to evaluate the strengths of each of the sensor types based on real missions over a test field in Speyer, Germany, used for airborne camera calibration. The test field area has about 30 Ground Control Points (GCPs), which enable a perfect scenario for a proper geometric evaluation of the cameras. The test field includes both a Siemen star and scale bars to show any blurring caused by forward motion. The result of the comparison showed that both cameras offer high accuracy photogrammetric results with post processing, including triangulation, calibration, orthophoto and DEM generation. The forward motion effect can be compensated by a fast shutter speed and a higher ISO range of the CMOS-based camera. The results showed no significant differences between cameras.

  13. Scintillating track image camera-SCITIC

    CERN Document Server

    Sato, Akira; Ieiri, Masaharu; Iwata, Soma; Kadowaki, Tetsuhito; Kurosawa, Maki; Nagae, Tomohumi; Nakai, Kozi

    2004-01-01

    A new type of track detector, scintillating track image camera (SCITIC) has been developed. Scintillating track images of particles in a scintillator are focused by an optical lens system on a photocathode on image intesifier tube (IIT). The image signals are amplified by an IIT-cascade and stored by a CCD camera. The performance of the detector has been tested with cosmic-ray muons and with pion- and proton-beams from the KEK 12-GeV proton synchrotron. Data of the test experiments have shown promising features of SCITIC as a triggerable track detector with a variety of possibilities. 7 Refs.

  14. A multidetector scintillation camera with 254 channels

    DEFF Research Database (Denmark)

    Sveinsdottir, E; Larsen, B; Rommer, P;

    1977-01-01

    A computer-based scintillation camera has been designed for both dynamic and static radionuclide studies. The detecting head has 254 independent sodium iodide crystals, each with a photomultiplier and amplifier. In dynamic measurements simultaneous events can be recorded, and 1 million total counts...... per second can be accommodated with less than 0.5% loss in any one channel. This corresponds to a calculated deadtime of 5 nsec. The multidetector camera is being used for 133Xe dynamic studies of regional cerebral blood flow in man and for 99mTc and 197 Hg static imaging of the brain....

  15. Analysis of Brown camera distortion model

    Science.gov (United States)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  16. Performance assessment of gamma cameras. Part 1

    International Nuclear Information System (INIS)

    The Dept. of Health and Social Security and the Scottish Home and Health Dept. has sponsored a programme of measurements of the important performance characteristics of 15 leading types of gamma cameras providing a routine radionuclide imaging service in hospitals throughout the UK. Measurements have been made of intrinsic resolution, system resolution, non-uniformity, spatial distortion, count rate performance, sensitivity, energy resolution and shield leakage. The main aim of this performance assessment was to provide sound information to the NHS to ease the task of those responsible for the purchase of gamma cameras. (U.K.)

  17. Scintillating track image camera-SCITIC

    International Nuclear Information System (INIS)

    A new type of track detector, scintillating track image camera (SCITIC) has been developed. Scintillating track images of particles in a scintillator are focused by an optical lens system on a photocathode on image intensifier tube (IIT). The image signals are amplified by an IIT-cascade and stored by a CCD camera. The performance of the detector has been tested with cosmic-ray muons and with pion- and proton-beams from the KEK 12-GeV proton synchrotron. Data of the test experiments have shown promising features of SCITIC as a triggerable track detector with a variety of possibilities. (author)

  18. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  19. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  20. Evaluation of mobile phone camera benchmarking using objective camera speed and image quality metrics

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-11-01

    When a mobile phone camera is tested and benchmarked, the significance of image quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. However, the speed or rapidity metrics of the mobile phone's camera system has not been used with the quality metrics even if the camera speed has become a more and more important camera performance feature. There are several tasks in this work. First, the most important image quality and speed-related metrics of a mobile phone's camera system are collected from the standards and papers and, also, novel speed metrics are identified. Second, combinations of the quality and speed metrics are validated using mobile phones on the market. The measurements are done toward application programming interface of different operating systems. Finally, the results are evaluated and conclusions are made. The paper defines a solution to combine different image quality and speed metrics to a single benchmarking score. A proposal of the combined benchmarking metric is evaluated using measurements of 25 mobile phone cameras on the market. The paper is a continuation of a previous benchmarking work expanded with visual noise measurement and updates of the latest mobile phone versions.

  1. New gamma cameras in nuclear cardiology: D-SPECT; Les nouvelles gamma cameras en cardiologie nucleaire: D-Spect

    Energy Technology Data Exchange (ETDEWEB)

    Rouzet, F.; Bechara, T.; Ben Ali, K.; Nassar, P.; Grellier, J.F.; Burg, S.; Hyafil, F.; Le Guludec, D. [Service de medecine nucleaire, groupe hospitalier Bichat-Claude-Bernard, AP-HP, 75 - Paris (France)

    2010-08-15

    Over the past few years, advances in nuclear medicine aimed at decreasing both the duration and dosimetry of exams, without decreasing image quality. In this setting, Spectrum Dynamics (D-Spect) is a new generation gamma camera dedicated to cardiac scintigraphy. Its technology includes solid-state detectors based on pixelated semiconductors, region-centric (cardiac area) scanning, high-sensitivity collimators and resolution recovery. An additional particularity is the patient position during scanning. Phantom studies showed an improvement of sensitivity compared to conventional cameras, at the price of a loss in geometric resolution, which is compensated by resolution recovery. Semiconductors detectors provide a better energy resolution than conventional detectors suited to double isotope acquisitions, and a high count rate allowing dynamic acquisitions. Only few clinical studies are available so far, they suggest performances similar to that of conventional cameras obtained with acquisitions duration reduced to few minutes. The next step is to establish a trade-off between acquisition duration and dosimetry reduction. (authors)

  2. One high-accuracy camera calibration algorithm based on computer vision images

    Science.gov (United States)

    Wang, Ying; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    Camera calibration is the first step of computer vision and one of the most active research fields nowadays. In order to improve the measurement precision, the internal parameters of the camera should be accurately calibrated. So one high-accuracy camera calibration algorithm is proposed based on the images of planar targets or tridimensional targets. By using the algorithm, the internal parameters of the camera are calibrated based on the existing planar target at the vision-based navigation experiment. The experimental results show that the accuracy of the proposed algorithm is obviously improved compared with the conventional linear algorithm, Tsai general algorithm, and Zhang Zhengyou calibration algorithm. The algorithm proposed by the article can satisfy the need of computer vision and provide reference for precise measurement of the relative position and attitude.

  3. Region-wide search and pursuit system using networked intelligent cameras

    Science.gov (United States)

    Komiya, Kazumi; Irisawa, Kouji

    2001-11-01

    This paper reports a study on new, region-wide search and pursuit system for missing objects such as stolen cars, wandering people, etc. By using image matching processes on the basis of the object properties such as color and shape, the intelligent camera can search the object. Then the camera transmits the properties to the next camera to pursue the object successively. The experimental results show that the system can judge 2 cars as search object among 40 cars under conditions of changing environment. Based on these data the proposed system can accomplish a fundamental step. Finally, research subjects have been picked up for advancement such as accurate shape extraction processing, camera structure for high speed processing and multimedia attributes such as sound.

  4. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  5. The advantages of using a Lucky Imaging camera for observations of microlensing events

    CERN Document Server

    Sajadian, Sedighe; Dominik, Martin; Hundertmark, Markus

    2016-01-01

    In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky imaging camera. This camera is used at the Danish $1.54$-m follow-up telescope. Using a specific observational strategy, For an Earth-mass planet in the resonance regime, where the detection probability in crowded-fields is smaller, lucky imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.

  6. Comparison of Digital Surface Models for Snow Depth Mapping with Uav and Aerial Cameras

    Science.gov (United States)

    Boesch, R.; Bühler, Y.; Marty, M.; Ginzler, C.

    2016-06-01

    Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  7. Prototype gamma-camera system with CdZnTe semiconductor detectors

    International Nuclear Information System (INIS)

    The CdZnTe semiconductor detector, which works at room temperature, may lead to the development of next-generation gamma-camera systems due to its high spatial resolution and high energy resolution. We fabricated a prototype gamma-camera system with CdZnTe detectors to evaluate the feasibility of such a semiconductor gamma-camera. An energy resolution of 7.35% full width half maximum (FWHM) (at 140 keV) and an intrinsic spatial resolution of 1.8 mm FWHM were achieved. Single photon emission computed tomography (SPECT) images acquired using this gamma-camera system showed that the system can resolve hot and cold rods with a diameter of 3 mm. (author)

  8. The advantages of using a Lucky Imaging camera for observations of microlensing events

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus

    2016-05-01

    In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.

  9. Objective Evaluation Criteria for Shooting Quality of Stereo Cameras over Short Distance

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2015-04-01

    Full Text Available Stereo cameras are the basic tools used to obtain stereoscopic image pairs, which can lead to truly great image quality. However, some inappropriate shooting conditions may cause discomfort while viewing stereo images. It is therefore considerably necessary to establish the perceptual criteria that can be used to evaluate the shooting quality of stereo cameras. This article proposes objective quality evaluation criteria based on the characteristics of parallel and toed-in camera configurations. Considering the different internal structures and basic shooting principles, this paper focuses on short-distance shooting conditions and establishes assessment criteria for both parallel and toed-in camera configurations. Experimental results show that the proposed evaluation criteria can predict the visual perception of stereoscopic images and effectively evaluate stereoscopic image quality.

  10. Towards Adaptive Virtual Camera Control In Computer Games

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2011-01-01

    Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user...... model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platform game, we cluster gaze and camera information to identify camera behaviour profiles and we employ...... machine learning to build predictive models of the virtual camera behaviour. The perfor- mance of the models on unseen data reveals accuracies above 70% for all the player behaviour types identified. The characteristics of the gener- ated models, their limits and their use for creating adaptive automatic...

  11. Digital Camera Project Fosters Communication Skills

    Science.gov (United States)

    Fisher, Ashley; Lazaros, Edward J.

    2009-01-01

    This article details the many benefits of educators' use of digital camera technology and provides an activity in which students practice taking portrait shots of classmates, manipulate the resulting images, and add language arts practice by interviewing their subjects to produce a photo-illustrated Word document. This activity gives…

  12. Teaching Camera Calibration by a Constructivist Methodology

    Science.gov (United States)

    Samper, D.; Santolaria, J.; Pastor, J. J.; Aguilar, J. J.

    2010-01-01

    This article describes the Metrovisionlab simulation software and practical sessions designed to teach the most important machine vision camera calibration aspects in courses for senior undergraduate students. By following a constructivist methodology, having received introductory theoretical classes, students use the Metrovisionlab application to…

  13. Camera Systems Rapidly Scan Large Structures

    Science.gov (United States)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  14. Video Analysis with a Web Camera

    Science.gov (United States)

    Wyrembeck, Edward P.

    2009-01-01

    Recent advances in technology have made video capture and analysis in the introductory physics lab even more affordable and accessible. The purchase of a relatively inexpensive web camera is all you need if you already have a newer computer and Vernier's Logger Pro 3 software. In addition to Logger Pro 3, other video analysis tools such as…

  15. Solutions to the linear camera calibration problem

    Science.gov (United States)

    Grosky, William I.; Tamburino, Louis A.

    1987-01-01

    The general linear camera calibration problem is formulated and several classification schemes for various subcases of this problem are developed. For each subcase, simple solutions are found that satisfy all necessary constraints. The results improve those already in the literature with respect to simplicity, efficiency, and coverage. However, the classification scheme is not exhaustive.

  16. EOD Facilities Manual. Camera Calibration Laboratory Capabilities

    Science.gov (United States)

    1972-01-01

    The tests and equipment are described for measuring the exact performance characteristics of camera systems for earth resources, space, and other applications. The tests discussed include: modulation transfer function, field irradiance, veiling glare, T-number tests, shutter speed, spectral transmission, and focal length.

  17. Camera! Action! Collaborate with Digital Moviemaking

    Science.gov (United States)

    Swan, Kathleen Owings; Hofer, Mark; Levstik, Linda S.

    2007-01-01

    Broadly defined, digital moviemaking integrates a variety of media (images, sound, text, video, narration) to communicate with an audience. There is near-ubiquitous access to the necessary software (MovieMaker and iMovie are bundled free with their respective operating systems) and hardware (computers with Internet access, digital cameras, etc.).…

  18. Lights, Camera, Read! Arizona Reading Program Manual.

    Science.gov (United States)

    Arizona State Dept. of Library, Archives and Public Records, Phoenix.

    This document is the manual for the Arizona Reading Program (ARP) 2003 entitled "Lights, Camera, Read!" This theme spotlights books that were made into movies, and allows readers to appreciate favorite novels and stories that have progressed to the movie screen. The manual consists of eight sections. The Introduction includes welcome letters from…

  19. Face identification in videos from mobile cameras

    NARCIS (Netherlands)

    Mu, Meiru; Spreeuwers, Luuk; Veldhuis, Raymond

    2014-01-01

    It is still challenging to recognize faces reliably in videos from mobile camera, although mature automatic face recognition technology for still images has been available for quite some time. Suppose we want to be alerted when suspects appear in the recording of a police Body-Cam, even a good face

  20. GAMPIX: A new generation of gamma camera

    Science.gov (United States)

    Gmar, M.; Agelou, M.; Carrel, F.; Schoepff, V.

    2011-10-01

    Gamma imaging is a technique of great interest in several fields such as homeland security or decommissioning/dismantling of nuclear facilities in order to localize hot spots of radioactivity. In the nineties, previous works led by CEA LIST resulted in the development of a first generation of gamma camera called CARTOGAM, now commercialized by AREVA CANBERRA. Even if its performances can be adapted to many applications, its weight of 15 kg can be an issue. For several years, CEA LIST has been developing a new generation of gamma camera, called GAMPIX. This system is mainly based on the Medipix2 chip, hybridized to a 1 mm thick CdTe substrate. A coded mask replaces the pinhole collimator in order to increase the sensitivity of the gamma camera. Hence, we obtained a very compact device (global weight less than 1 kg without any shielding), which is easy to handle and to use. In this article, we present the main characteristics of GAMPIX and we expose the first experimental results illustrating the performances of this new generation of gamma camera.

  1. Case on Camera--An Audience Verdict.

    Science.gov (United States)

    Wober, J. M.

    In July 1984, British Channel 4 began televising Case on Camera, a series based on genuine arbitration of civil cases carried out by a retired judge, recorded as it happened, and edited into half hour programs. Because of the Independent Broadcasting Authority's concern for the rights to privacy, a systematic study of public reaction to the series…

  2. Development of a multispectral camera system

    Science.gov (United States)

    Sugiura, Hiroaki; Kuno, Tetsuya; Watanabe, Norihiro; Matoba, Narihiro; Hayashi, Junichiro; Miyake, Yoichi

    2000-05-01

    A highly accurate multispectral camera and the application software have been developed as a practical system to capture digital images of the artworks stored in galleries and museums. Instead of recording color data in the conventional three RGB primary colors, the newly developed camera and the software carry out a pixel-wise estimation of spectral reflectance, the color data specific to the object, to enable the practical multispectral imaging. In order to realize the accurate multispectral imaging, the dynamic range of the camera is set to 14 bits or over and the output bits to 14 bits so as to allow capturing even when the difference in light quantity between the each channel is large. Further, a small-size rotary color filter was simultaneously developed to keep the camera to a practical size. We have developed software capable of selecting the optimum combination of color filters available in the market. Using this software, n types of color filter can be selected from m types of color filter giving a minimum Euclidean distance or minimum color difference in CIELAB color space between actual and estimated spectral reflectance as to 147 types of oil paint samples.

  3. Lightweight Electronic Camera for Research on Clouds

    Science.gov (United States)

    Lawson, Paul

    2006-01-01

    "Micro-CPI" (wherein "CPI" signifies "cloud-particle imager") is the name of a small, lightweight electronic camera that has been proposed for use in research on clouds. It would acquire and digitize high-resolution (3- m-pixel) images of ice particles and water drops at a rate up to 1,000 particles (and/or drops) per second.

  4. Fog camera to visualize ionizing charged particles

    International Nuclear Information System (INIS)

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  5. FPS camera sync and reset chassis

    International Nuclear Information System (INIS)

    The sync and reset chassis provides all the circuitry required to synchronize an event to be studied, a remote free-running focus projection and scanning (FPS) data-acquisition TV camera, and a video signal recording system. The functions, design, and operation of this chassis are described in detail

  6. Increased Automation in Stereo Camera Calibration Techniques

    Directory of Open Access Journals (Sweden)

    Brandi House

    2006-08-01

    Full Text Available Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This research seeks to automate the most labor intensive aspects of a popular calibration technique developed by Jean-Yves Bouguet. His process requires manual selection of the extreme corners of a checkerboard pattern. The modified process uses embedded LEDs in the checkerboard pattern to act as active fiducials. Images are captured of the checkerboard with the LEDs on and off in rapid succession. The difference of the two images automatically highlights the location of the four extreme corners, and these corner locations take the place of the manual selections. With this modification to the calibration routine, upwards of eighty mouse clicks are eliminated per stereo calibration. Preliminary test results indicate that accuracy is not substantially affected by the modified procedure. Improved automation to camera calibration procedures may finally penetrate the barriers to the use of calibration in practice.

  7. Shadowgraph illumination techniques for framing cameras

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.M.; Flurer, R.L.; Frogget, B.C. [Bechtel Nevada, Los Alamos, NM (United States). Los Alamos Operations; Sorenson, D.S.; Holmes, V.H.; Obst, A.W. [Los Alamos National Lab., NM (United States)

    1997-06-01

    Many pulse power applications in use at the Pegasus facility at the Los Alamos National Laboratory require specialized imaging techniques. Due to the short event duration times, visible images are recorded by high speed electronic framing cameras. Framing cameras provide the advantages of high speed movies of back light experiments. These high speed framing cameras require bright illumination sources to record images with 10 ns integration times. High power lasers offer sufficient light for back illuminating the target assemblies; however, laser speckle noise lowers the contrast in the image. Laser speckle noise also limits the effective resolution. This discussion focuses on the use of telescopes to collect images 50 feet away. Both light field and dark field illumination techniques are compared. By adding relay lenses between the assembly target and the telescope, a high resolution magnified image can be recorded. For dark field illumination, these relay lenses can be used to separate the object field from the illumination laser. The illumination laser can be made to focus onto the opaque secondary of a Schmidt telescope. Thus, the telescope only collects scattered light from the target assembly. This dark field illumination eliminates the laser speckle noise and allows high resolution images to be recorded. Using the secondary of the telescope to block the illumination laser makes dark field illumination an ideal choice for the framing camera.

  8. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  9. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  10. Application of colon capsule endoscopy (CCE to evaluate the whole gastrointestinal tract: a comparative study of single-camera and dual-camera analysis

    Directory of Open Access Journals (Sweden)

    Remes-Troche JM

    2013-09-01

    Full Text Available José María Remes-Troche,1 Victoria Alejandra Jiménez-García,2 Josefa María García-Montes,2 Pedro Hergueta-Delgado,2 Federico Roesch-Dietlen,1 Juan Manuel Herrerías-Gutiérrez2 1Digestive Physiology and Motility Lab, Medical Biological Research Institute, Universidad Veracruzana, Veracruz, México; 2Gastroenterology Service, Virgen Macarena University Hospital, Seville, Spain Background and study aims: Colon capsule endoscopy (CCE was developed for the evaluation of colorectal pathology. In this study, our aim was to assess if a dual-camera analysis using CCE allows better evaluation of the whole gastrointestinal (GI tract compared to a single-camera analysis. Patients and methods: We included 21 patients (12 males, mean age 56.20 years submitted for a CCE examination. After standard colon preparation, the colon capsule endoscope (PillCam Colon™ was swallowed after reinitiation from its “sleep” mode. Four physicians performed the analysis: two reviewed both video streams at the same time (dual-camera analysis; one analyzed images from one side of the device (“camera 1”; and the other reviewed the opposite side (“camera 2”. We compared numbers of findings from different parts of the entire GI tract and level of agreement among reviewers. Results: A complete evaluation of the GI tract was possible in all patients. Dual-camera analysis provided 16% and 5% more findings compared to camera 1 and camera 2 analysis, respectively. Overall agreement was 62.7% (kappa = 0.44, 95% CI: 0.373–0.510. Esophageal (kappa = 0.611 and colorectal (kappa = 0.595 findings had a good level of agreement, while small bowel (kappa = 0.405 showed moderate agreement. Conclusion: The use of dual-camera analysis with CCE for the evaluation of the GI tract is feasible and detects more abnormalities when compared with single-camera analysis. Keywords: capsule endoscopy, colon, gastrointestinal tract, small bowel

  11. New nuclear medicine gamma camera systems

    International Nuclear Information System (INIS)

    The acquisition of the Open E.CAM and DIACAM gamma cameras by Makati Medical Center is expected to enhance the capabilities of its nuclear medicine facilities. When used as an aid to diagnosis, nuclear medicine entails the introduction of a minute amount of radioactive material into the patient; thus, no reaction or side-effect is expected. When it reaches the particular target organ, depending on the radiopharmaceutical, a lesion will appear as a decrease (cold) area or increase (hot) area in the radioactive distribution as recorded byu the gamma cameras. Gamma camera images in slices or SPECT (Single Photon Emission Computer Tomography), increase the sensitivity and accuracy in detecting smaller and deeply seated lesions, which otherwise may not be detected in the regular single planar images. Due to the 'open' design of the equipment, claustrophobic patients will no longer feel enclosed during the procedure. These new gamma cameras yield improved resolution and superb image quality, and the higher photon sensitivity shortens imaging acquisition time. The E.CAM, which is the latest generation gamma camera, is featured by its variable angle dual-head system, the only one available in the Philipines, and the excellent choice for Myocardial Perfusion Imaging (MPI). From the usual 45 minutes, the acquisition time for gated SPECT imaging of the heart has now been remarkably reduced to 12 minutes. 'Gated' infers snap-shots of the heart in selected phases of its contraction and relaxation as triggered by ECG. The DIACAM is installed in a room with access outside the main entrance of the department, intended specially for bed-borne patients. Both systems are equipped with a network of high performance Macintosh ICOND acquisition and processing computers. Added to the hardware is the ICON processing software which allows total simultaneous acquisition and processing capabilities in the same operator's terminal. Video film and color printers are also provided. Together

  12. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model.

    Directory of Open Access Journals (Sweden)

    Gonzalo García-Salgado

    Full Text Available Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis as a model for nesting raptors during the period 2007-2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined. In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1-2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts.

  13. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model.

    Science.gov (United States)

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007-2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1-2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts. PMID:25992956

  14. Photogrammetric Applications of Immersive Video Cameras

    Science.gov (United States)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  15. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  16. Measuring rainfall with low-cost cameras

    Science.gov (United States)

    Allamano, Paola; Cavagnero, Paolo; Croci, Alberto; Laio, Francesco

    2016-04-01

    In Allamano et al. (2015), we propose to retrieve quantitative measures of rainfall intensity by relying on the acquisition and analysis of images captured from professional cameras (SmartRAIN technique in the following). SmartRAIN is based on the fundamentals of camera optics and exploits the intensity changes due to drop passages in a picture. The main steps of the method include: i) drop detection, ii) blur effect removal, iii) estimation of drop velocities, iv) drop positioning in the control volume, and v) rain rate estimation. The method has been applied to real rain events with errors of the order of ±20%. This work aims to bridge the gap between the need of acquiring images via professional cameras and the possibility of exporting the technique to low-cost webcams. We apply the image processing algorithm to frames registered with low-cost cameras both in the lab (i.e., controlled rain intensity) and field conditions. The resulting images are characterized by lower resolutions and significant distortions with respect to professional camera pictures, and are acquired with fixed aperture and a rolling shutter. All these hardware limitations indeed exert relevant effects on the readability of the resulting images, and may affect the quality of the rainfall estimate. We demonstrate that a proper knowledge of the image acquisition hardware allows one to fully explain the artefacts and distortions due to the hardware. We demonstrate that, by correcting these effects before applying the image processing algorithm, quantitative rain intensity measures are obtainable with a good accuracy also with low-cost modules.

  17. Analysis of RED ONE Digital Cinema Camera and RED Workflow

    OpenAIRE

    Foroughi Mobarakeh, Taraneh

    2009-01-01

    RED Digital Cinema is a rather new company that has developed a camera that has shaken the world of the film industry, the RED One camera. RED One is a digital cinema camera with the characteristics of a 35mm film camera. With a custom made 12 megapixel CMOS sensor it offers images with a filmic look that cannot be achieved with many other digital cinema cameras. With a new camera comes a new set of media files to work with, which brings new software applications supporting them. RED Digital ...

  18. Fading Supernova Creates Spectacular Light Show

    Science.gov (United States)

    2003-01-01

    This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.

  19. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  20. Control of the movement of a ROV camera; Controle de posicionamento da camera de um ROV

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre S. de; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Reis, Ney Robinson S. dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Santos, Auderi V. dos [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The ROV's (Remotely Operated Vehicles) are used for installation and maintenance of underwater exploration systems in the oil industry. These systems are operated in distant areas thus being of essential importance the use of a cameras for the visualization of the work area. The synchronization necessary in the accomplishment of the tasks when operating the manipulator and the movement of the camera for the operator is a complex task. For the accomplishment of this synchronization is presented in this work the analysis of the interconnection of the systems. The concatenation of the systems is made through the interconnection of the electric signals of the proportional valves of the actuators of the manipulator with the signals of the proportional valves of the actuators of the camera. With this interconnection the approach accompaniment of the movement of the manipulator for the camera, keeping the object of the visualization of the field of vision of the operator is obtained. (author)

  1. High-speed multicolor photometry with CMOS cameras

    CERN Document Server

    Pokhvala, S M; Reshetnyk, V M

    2012-01-01

    We present the results of testing the commercial digital camera Nikon D90 with a CMOS sensor for high-speed photometry with a small telescope Celestron 11" on Peak Terskol. CMOS sensor allows to perform photometry in 3 filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR color system of CMOS sensors is close to the Johnson BVR system. The results of testing show that we can measure the stars up to V $\\simeq$ 14 with the precision of 0.01 mag. Stars up to magnitude V $\\sim$ 10 can shoot at 24 frames per second in the video mode.

  2. Development of Active Pixel Photodiode Sensors for Gamma Camera Application

    CERN Document Server

    Salahuddin, Nur Sultan; Heruseto, Brahmantyo; Parmentier, Michel

    2011-01-01

    We designed new photodiodes sensors including current mirror amplifiers. These photodiodes have been fabricated using a CMOS 0.6 micrometers process from Austria Micro System (AMS). The Photodiode areas are respectiveley 1mm x 1mm and 0.4mm x 0.4mm with fill factor 98 % and total chip area is 2 square millimetres. The sensor pixels show a logarithmic response in illumination and are capable of detecting very low blue light (less than 0.5 lux) . These results allow to use our sensor in new Gamma Camera solid-state concept.

  3. Cluster Tracking with Time-of-Flight Cameras

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Hansen, Mads; Kirschmeyer, Martin;

    2008-01-01

    We describe a method for tracking people using a time-of-flight camera and apply the method for persistent authentication in a smart-environment. A background model is built by fusing information from intensity and depth images. While a geometric constraint is employed to improve pixel cluster...... coherence and reducing the influence of noise, the EM algorithm (expectation maximization) is used for tracking moving clusters of pixels significantly different from the background model. Each cluster is defined through a statistical model of points on the ground plane. We show the benefits of the time-of-flight...

  4. Positioning beacon system using digital camera and LEDs

    OpenAIRE

    Liu, HS; G. Pang

    2003-01-01

    This paper is on a novel use of lighting or signaling devices constructed by light-emitting diodes (LEDs) as a positioning beacon. The idea is that the surface of the LED lighting device is divided into regions and used to show different visual patterns that are not noticeable by the human eye due to the high-frequency switching of the LEDs. A digital camera is used as a receiver to capture a sequence of images of the LED positioning beacon transmitter. Image-processing algorithms are used to...

  5. A study on thermo-camera using liquid crystal

    International Nuclear Information System (INIS)

    Some cholesteric liquid crystals change their color according to temperature and are used to show temperature distribution on a surface qualitatively. The present study developed a quantitative method by which temperature distribution can be displayed just like an infra-red thermo-camera. At first, the theoretical ground is presented. The spectral properties of liquid crystal and optical filters are determined. Calibration methods are described and the accuracy of this method is evaluated as 0.2 deg C, and the order of resolution is 0.01 deg C. For application, temperature distributions on heated surfaces attached by a cylinder are measured in detail. (author)

  6. Automatic target extraction in complicated background for camera calibration

    Science.gov (United States)

    Guo, Xichao; Wang, Cheng; Wen, Chenglu; Cheng, Ming

    2016-03-01

    In order to perform high precise calibration of camera in complex background, a novel design of planar composite target and the corresponding automatic extraction algorithm are presented. Unlike other commonly used target designs, the proposed target contains the information of feature point coordinate and feature point serial number simultaneously. Then based on the original target, templates are prepared by three geometric transformations and used as the input of template matching based on shape context. Finally, parity check and region growing methods are used to extract the target as final result. The experimental results show that the proposed method for automatic extraction and recognition of the proposed target is effective, accurate and reliable.

  7. SIMULTANEOUS RECORDING OF FRINGE PATTERNS WITH ONE CAMERA

    Institute of Scientific and Technical Information of China (English)

    SU Fei; DAI Fulong; CHIAN Kerm Sin; YI Sung

    2004-01-01

    A novel method to separate and simultaneously record the Moiré interferometry fringe patterns of three deformation fields with only one CCD camera is developed; details of its operation principle, key points and error analysis are presented. With this technique, the deformation in U, V and W fields can be measured simultaneously, so dynamic test with comprehensive information can be performed. The advantage of this technique over other similar techniques lies in its simplicity, easy implementation and low cost. An application of this technique is given to show its feasibility. Technical problems that may be caused with this technique are also analyzed.

  8. National Guidelines for Digital Camera Systems Certification

    Science.gov (United States)

    Yaron, Yaron; Keinan, Eran; Benhamu, Moshe; Regev, Ronen; Zalmanzon, Garry

    2016-06-01

    Digital camera systems are a key component in the production of reliable, geometrically accurate, high-resolution geospatial products. These systems have replaced film imaging in photogrammetric data capturing. Today, we see a proliferation of imaging sensors collecting photographs in different ground resolutions, spectral bands, swath sizes, radiometric characteristics, accuracies and carried on different mobile platforms. In addition, these imaging sensors are combined with navigational tools (such as GPS and IMU), active sensors such as laser scanning and powerful processing tools to obtain high quality geospatial products. The quality (accuracy, completeness, consistency, etc.) of these geospatial products is based on the use of calibrated, high-quality digital camera systems. The new survey regulations of the state of Israel specify the quality requirements for each geospatial product including: maps at different scales and for different purposes, elevation models, orthophotographs, three-dimensional models at different levels of details (LOD) and more. In addition, the regulations require that digital camera systems used for mapping purposes should be certified using a rigorous mapping systems certification and validation process which is specified in the Director General Instructions. The Director General Instructions for digital camera systems certification specify a two-step process as follows: 1. Theoretical analysis of system components that includes: study of the accuracy of each component and an integrative error propagation evaluation, examination of the radiometric and spectral response curves for the imaging sensors, the calibration requirements, and the working procedures. 2. Empirical study of the digital mapping system that examines a typical project (product scale, flight height, number and configuration of ground control points and process). The study examine all the aspects of the final product including; its accuracy, the product pixels size

  9. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance

    Science.gov (United States)

    Aasen, Helge; Burkart, Andreas; Bolten, Andreas; Bareth, Georg

    2015-10-01

    This paper describes a novel method to derive 3D hyperspectral information from lightweight snapshot cameras for unmanned aerial vehicles for vegetation monitoring. Snapshot cameras record an image cube with one spectral and two spatial dimensions with every exposure. First, we describe and apply methods to radiometrically characterize and calibrate these cameras. Then, we introduce our processing chain to derive 3D hyperspectral information from the calibrated image cubes based on structure from motion. The approach includes a novel way for quality assurance of the data which is used to assess the quality of the hyperspectral data for every single pixel in the final data product. The result is a hyperspectral digital surface model as a representation of the surface in 3D space linked with the hyperspectral information emitted and reflected by the objects covered by the surface. In this study we use the hyperspectral camera Cubert UHD 185-Firefly, which collects 125 bands from 450 to 950 nm. The obtained data product has a spatial resolution of approximately 1 cm for the spatial and 21 cm for the hyperspectral information. The radiometric calibration yields good results with less than 1% offset in reflectance compared to an ASD FieldSpec 3 for most of the spectral range. The quality assurance information shows that the radiometric precision is better than 0.13% for the derived data product. We apply the approach to data from a flight campaign in a barley experiment with different varieties during the growth stage heading (BBCH 52 - 59) to demonstrate the feasibility for vegetation monitoring in the context of precision agriculture. The plant parameters retrieved from the data product correspond to in-field measurements of a single date field campaign for plant height (R2 = 0.7), chlorophyll (BGI2, R2 = 0.52), LAI (RDVI, R2 = 0.32) and biomass (RDVI, R2 = 0.29). Our approach can also be applied for other image-frame cameras as long as the individual bands of the

  10. Extrinsic calibration of a non-overlapping camera network based on close-range photogrammetry.

    Science.gov (United States)

    Dong, Shuai; Shao, Xinxing; Kang, Xin; Yang, Fujun; He, Xiaoyuan

    2016-08-10

    In this paper, an extrinsic calibration method for a non-overlapping camera network is presented based on close-range photogrammetry. The method does not require calibration targets or the cameras to be moved. The visual sensors are relatively motionless and do not see the same area at the same time. The proposed method combines the multiple cameras using some arbitrarily distributed encoded targets. The calibration procedure consists of three steps: reconstructing the three-dimensional (3D) coordinates of the encoded targets using a hand-held digital camera, performing the intrinsic calibration of the camera network, and calibrating the extrinsic parameters of each camera with only one image. A series of experiments, including 3D reconstruction, rotation, and translation, are employed to validate the proposed approach. The results show that the relative error for the 3D reconstruction is smaller than 0.003%, the relative errors of both rotation and translation are less than 0.066%, and the re-projection error is only 0.09 pixels. PMID:27534480

  11. Non-Metric CCD Camera Calibration Algorithm in a Digital Photogrammetry System

    Institute of Scientific and Technical Information of China (English)

    YANG Hua-chao; DENG Ka-zhong; ZHANG Shu-bi; GUO Guang-li; ZHOU Ming

    2006-01-01

    Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectively, which can meet the requirements of close-range photogrammetry with high accuracy.

  12. Color processing in camera phones: How good does it need to be?

    Science.gov (United States)

    Xiao, Feng; Zhang, Xuemei; Fowler, Boyd

    2005-02-01

    As the fastest-growing consumer electronics device in history, the camera phone has evolved from a toy into a real camera that competes with the compact digital camera in image quality. Due to severe constraints in cost and size, one key question that remains unanswered for camera phones is: how good does the image quality need to be so that resource can be allocated most efficiently. In this paper, we have tried to find the color processing tolerance through a study of 24 digital cameras from six manufacturers under five different light sources. We measured both the inter-brand (across manufacturers) and intra-brand (within manufacturers) mean and standard deviation for white balance and color reproduction. The white balance results showed that most cameras didn"t follow the complete white balance model. The difference between the captured white patch and the display white point increased when the correlated color temperature (CCT) of the illuminant was further away from 6500K. The standard deviation of the red/green and blue/green ratios for the white patch also increased when the illuminant was further away from 6500K. The color reproduction results revealed a similar trend for the inter-brand and intra-brand chromatic difference of the color patches. The average inter-brand chromatic difference increased from 3.87 ΔE units for the Δ65 light (6500K) to 10.13 ΔE units for the Horizon light (2300K).

  13. Multi-camera calibration based on openCV and multi-view registration

    Science.gov (United States)

    Deng, Xiao-ming; Wan, Xiong; Zhang, Zhi-min; Leng, Bi-yan; Lou, Ning-ning; He, Shuai

    2010-10-01

    For multi-camera calibration systems, a method based on OpenCV and multi-view registration combining calibration algorithm is proposed. First of all, using a Zhang's calibration plate (8X8 chessboard diagram) and a number of cameras (with three industrial-grade CCD) to be 9 group images shooting from different angles, using OpenCV to calibrate the parameters fast in the camera. Secondly, based on the corresponding relationship between each camera view, the computation of the rotation matrix and translation matrix is formulated as a constrained optimization problem. According to the Kuhn-Tucker theorem and the properties on the derivative of the matrix-valued function, the formulae of rotation matrix and translation matrix are deduced by using singular value decomposition algorithm. Afterwards an iterative method is utilized to get the entire coordinate transformation of pair-wise views, thus the precise multi-view registration can be conveniently achieved and then can get the relative positions in them(the camera outside the parameters).Experimental results show that the method is practical in multi-camera calibration .

  14. Kinect v2 and RGB Stereo Cameras Integration for Depth Map Enhancement

    Science.gov (United States)

    Ravanelli, R.; Nascetti, A.; Crespi, M.

    2016-06-01

    Today range cameras are widespread low-cost sensors based on two different principles of operation: we can distinguish between Structured Light (SL) range cameras (Kinect v1, Structure Sensor, ...) and Time Of Flight (ToF) range cameras (Kinect v2, ...). Both the types are easy to use 3D scanners, able to reconstruct dense point clouds at high frame rate. However the depth maps obtained are often noisy and not enough accurate, therefore it is generally essential to improve their quality. Standard RGB cameras can be a valuable solution to solve such issue. The aim of this paper is therefore to evaluate the integration feasibility of these two different 3D modelling techniques, characterized by complementary features and based on standard low-cost sensors. For this purpose, a 3D model of a DUPLOTM bricks construction was reconstructed both with the Kinect v2 range camera and by processing one stereo pair acquired with a Canon Eos 1200D DSLR camera. The scale of the photgrammetric model was retrieved from the coordinates measured by Kinect v2. The preliminary results are encouraging and show that the foreseen integration could lead to an higher metric accuracy and a major level of completeness with respect to that obtained by using only separated techniques.

  15. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera’s performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  16. A Prediction Method of TV Camera Image for Space Manual-control Rendezvous and Docking

    Science.gov (United States)

    Zhen, Huang; Qing, Yang; Wenrui, Wu

    Space manual-control rendezvous and docking (RVD) is a key technology for accomplishing the RVD mission in manned space engineering, especially when automatic control system is out of work. The pilot on chase spacecraft manipulates the hand-stick by the image of target spacecraft captured by TV camera. From the TV image, the relative position and attitude of chase and target spacecrafts can be shown. Therefore, the size, the position, the brightness and the shadow of the target on TV camera are key to guarantee the success of manual-control RVD. A method of predicting the on-orbit TV camera image at different relative positions and light conditions during the process of RVD is discussed. Firstly, the basic principle of capturing the image of cross drone on target spacecraft by TV camera is analyzed theoretically, based which the strategy of manual-control RVD is discussed in detail. Secondly, the relationship between the displayed size or position and the real relative distance of chase and target spacecrafts is presented, the brightness and reflection by the target spacecraft at different light conditions are decribed, the shadow on cross drone caused by the chase or target spacecraft is analyzed. Thirdly, a prediction method of on-orbit TV camera images at certain orbit and light condition is provided, and the characteristics of TV camera image during the RVD is analyzed. Finally, the size, the position, the brightness and the shadow of target spacecraft on TV camera image at typical orbit is simulated. The result, by comparing the simulated images with the real images captured by the TV camera on Shenzhou manned spaceship , shows that the prediction method is reasonable

  17. Observation of Einstein-Podolsky-Rosen type correlations with an electron multiplying CCD camera

    CERN Document Server

    Edgar, Matthew P; Izdebski, Frauke; Warburton, Ryan E; Leach, Jonathan; Agnew, Megan; Buller, Gerald S; Boyd, Robert W; Padgett, Miles J

    2012-01-01

    The light produced by parametric down-conversion shows strong spatial entanglement that leads to violations of EPR criteria for separability. Historically, such studies have been performed by scanning a single-element, single-photon detector across a detection plane. Here we show that modern electron-multiplying CCD cameras can measure correlations in both position and momentum across a multi-pixel field of view. This capability allows us to observe entanglement of around 2500 spatial states and demonstrate EPR-type correlations by more than two orders of magnitude. More generally, our work shows that such cameras can lead to important new capabilities in quantum optics and quantum information science.

  18. On the absolute calibration of SO2 cameras

    Directory of Open Access Journals (Sweden)

    J. Zielcke

    2012-09-01

    Full Text Available Sulphur dioxide emission flux measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 305 nm and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. While this approach is simple and delivers valuable insights into the two-dimensional SO2 distribution, absolute calibration has proven to be difficult. An accurate calibration of the SO2 camera (i.e., conversion from optical density to SO2 column density, CD is crucial to obtain correct SO2 CDs and flux measurements that are comparable to other measurement techniques and can be used for volcanological applications. The most common approach for calibrating SO2 camera measurements is based on inserting quartz cells (cuvettes containing known amounts of SO2 into the light path. It has been found, however, that reflections from the windows of the calibration cell can considerably affect the signal measured by the camera. Another possibility for calibration relies on performing simultaneous measurements in a small area of the camera's field-of-view (FOV by a narrow-field-of-view Differential Optical Absorption Spectroscopy (NFOV-DOAS system. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different calibration methods (DOAS and calibration cells. Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (IDOAS, are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The

  19. Time is a sausage (A Show of Shows),

    OpenAIRE

    Kivland, Sharon

    2009-01-01

    A group exhibition over three months at Domo Baal, London, with a series of solo shows therein. 8 autonomous exhibitions that each contribute, be it through gesture or residue, to the exhibition in Gallery 1. 'Time is a Sausage' will not remain static but will evolve in tandem with 'A Show of Shows'. 26/11 – 05/12 Sharon Kivland exhibited photographs from her book Freud and the Gift of Flowers (with Forbes Morlock) and a series of photographs entitled Charaden, from a game of riddles...

  20. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  1. Principle of some gamma cameras (efficiencies, limitations, development)

    International Nuclear Information System (INIS)

    The quality of scintigraphic images is shown to depend on the efficiency of both the input collimator and the detector. Methods are described by which the quality of these images may be improved by adaptations to either the collimator (Fresnel zone camera, Compton effect camera) or the detector (Anger camera, image amplification camera). The Anger camera and image amplification camera are at present the two main instruments whereby acceptable space and energy resolutions may be obtained. A theoretical comparative study of their efficiencies is carried out, independently of their technological differences, after which the instruments designed or under study at the LETI are presented: these include the image amplification camera, the electron amplifier tube camera using a semi-conductor target CdTe and HgI2 detector

  2. Enhancement of document images from cameras

    Science.gov (United States)

    Taylor, Michael J.; Dance, Christopher R.

    1998-04-01

    As digital cameras become cheaper and more powerful, driven by the consumer digital photography market, we anticipate significant value in extending their utility as a general office peripheral by adding a paper scanning capability. The main technical challenges in realizing this new scanning interface are insufficient resolution, blur and lighting variations. We have developed an efficient technique for the recovery of text from digital camera images, which simultaneously treats these three problems, unlike other local thresholding algorithms which do not cope with blur and resolution enhancement. The technique first performs deblurring by deconvolution, and then resolution enhancement by linear interpolation. We compare the performance of a threshold derived from the local mean and variance of all pixel values within a neighborhood with a threshold derived from the local mean of just those pixels with high gradient. We assess performance using OCR error scores.

  3. Camera Raw解读(1)

    Institute of Scientific and Technical Information of China (English)

    张恣宽

    2010-01-01

    Camera Raw是Adobe公司研发的,它是Photoshop软件中的一个RAW格式文件的转换插件。虽然一些大的相机生产商,如尼康、佳能公司各自都有自主开发的RAW格式转换软件,性能也很好,但Adobe以其Photoshop软件开发的优势,将RAW格式转换融合在Photoshop软件中,使RAW格式转换优势更加突出,功能十分强大。特别是PhotoshopCS4中的Camera Raw5,功能更加强大。

  4. SLAM using camera and IMU sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Muguira, Maritza M.

    2007-01-01

    Visual simultaneous localization and mapping (VSLAM) is the problem of using video input to reconstruct the 3D world and the path of the camera in an 'on-line' manner. Since the data is processed in real time, one does not have access to all of the data at once. (Contrast this with structure from motion (SFM), which is usually formulated as an 'off-line' process on all the data seen, and is not time dependent.) A VSLAM solution is useful for mobile robot navigation or as an assistant for humans exploring an unknown environment. This report documents the design and implementation of a VSLAM system that consists of a small inertial measurement unit (IMU) and camera. The approach is based on a modified Extended Kalman Filter. This research was performed under a Laboratory Directed Research and Development (LDRD) effort.

  5. First polarised light with the NIKA camera

    CERN Document Server

    Ritacco, A; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Comis, B; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macías-Pérez, J F; Martino, J; Mauskopf, P; Maury, A; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pisano, G; Ponthieu, N; Rebolo-Iglesias, M; Réveret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Thum, C; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer Half Wave Plate. Then, the signal is analysed by a wire grid and finally absorbed by the LEKIDs. The small time constant (< 1ms ) of the LEKID detectors combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this pa- per we present results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at mm wavelength.

  6. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  7. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  8. AUTOMATIC THEFT SECURITY SYSTEM (SMART SURVEILLANCE CAMERA

    Directory of Open Access Journals (Sweden)

    Veena G.S

    2013-12-01

    Full Text Available The proposed work aims to create a smart application camera, with the intention of eliminating the need for a human presence to detect any unwanted sinister activities, such as theft in this case. Spread among the campus, are certain valuable biometric identification systems at arbitrary locations. The application monitosr these systems (hereafter referred to as “object” using our smart camera system based on an OpenCV platform. By using OpenCV Haar Training, employing the Viola-Jones algorithm implementation in OpenCV, we teach the machine to identify the object in environmental conditions. An added feature of face recognition is based on Principal Component Analysis (PCA to generate Eigen Faces and the test images are verified by using distance based algorithm against the eigenfaces, like Euclidean distance algorithm or Mahalanobis Algorithm. If the object is misplaced, or an unauthorized user is in the extreme vicinity of the object, an alarm signal is raised.

  9. Blind identification of cellular phone cameras

    Science.gov (United States)

    Çeliktutan, Oya; Avcibas, Ismail; Sankur, Bülent

    2007-02-01

    In this paper, we focus on blind source cell-phone identification problem. It is known various artifacts in the image processing pipeline, such as pixel defects or unevenness of the responses in the CCD sensor, black current noise, proprietary interpolation algorithms involved in color filter array [CFA] leave telltale footprints. These artifacts, although often imperceptible, are statistically stable and can be considered as a signature of the camera type or even of the individual device. For this purpose, we explore a set of forensic features, such as binary similarity measures, image quality measures and higher order wavelet statistics in conjunction SVM classifier to identify the originating cell-phone type. We provide identification results among 9 different brand cell-phone cameras. In addition to our initial results, we applied a set of geometrical operations to original images in order to investigate how much our proposed method is robust under these manipulations.

  10. Toward the characterization of infrared cameras

    Science.gov (United States)

    Tzannes, Alexis P.; Mooney, Jonathan M.

    1993-11-01

    This work focuses on characterizing the performance of various staring PtSi infrared cameras, based on estimating their spatial frequency response. Applying a modified knife edge technique, we arrive at an estimate of the edge spread function (ESF), which is used to obtain a profile through the center of the two-dimensional Modulation Transfer Function (MTF). The MTF of various cameras in the horizontal and vertical direction is measured and compared to the ideal system MTF. The influence of charge transfer efficiency (CTE) on the knife edge measurement and resulting MTF is also modeled and discussed. An estimate of the CTE can actually be obtained from the shape of the ESF in the horizontal direction. The effect of pixel fill factor on the estimated MTF in the horizontal and vertical directions is compared and explained.

  11. A detector for submillimeter gamma cameras

    International Nuclear Information System (INIS)

    Anger cameras (SPECT etc.) presently used in nuclear medicine employ as active detector NaI crystals, obtaining intrinsic spatial resolutions ≥3 mm. Arrays made of optically isolated single crystal elements of YAP:Ce, having sub-millimeter aperture size, read out by position sensitive photomultipliers, allow to build active detectors to employ in SPECT systems, with intrinsic spatial resolution below the millimeter, and with time resolution of the order of tens of nanoseconds. In this paper preliminary results of measurements carried out on different kinds of YAP:Ce arrays are reported. The measurements have been performed aiming to optimize the geometrical and physical parameters of the crystals in order to accomplish a SPEM (single photon emission mammography) camera detector. (orig.)

  12. Calibrating a depth camera but ignoring it for SLAM

    OpenAIRE

    Castro, Daniel Herrera

    2014-01-01

    Recent improvements in resolution, accuracy, and cost have made depth cameras a very popular alternative for 3D reconstruction and navigation. Thus, accurate depth camera calibration a very relevant aspect of many 3D pipelines. We explore what are the limits of a practical depth camera calibration algorithm: how to accurately calibrate a noisy depth camera without a precise calibration object and without using brightness or depth discontinuities. We present an algorithm that uses an external ...

  13. Dynamic Vision Sensor Camera Based Bare Hand Gesture Recognition

    OpenAIRE

    kashmera ashish khedkkar safaya; Rekha Lathi

    2012-01-01

    This Paper proposes a method to recognize bare hand gestures using dynamic vision sensor (DVS) camera. DVS camera only responds asynchronously to pixels that have temporal changes in intensity which different from conventional camera. This paper attempts to recognize three different hand gestures rock, paper and scissors and using those hand gestures design mouse free interface.   Keywords: Dynamic vision sensor camera, Hand gesture recognition

  14. Dynamic Vision Sensor Camera Based Bare Hand Gesture Recognition

    Directory of Open Access Journals (Sweden)

    kashmera ashish khedkkar safaya

    2012-05-01

    Full Text Available This Paper proposes a method to recognize bare hand gestures using dynamic vision sensor (DVS camera. DVS camera only responds asynchronously to pixels that have temporal changes in intensity which different from conventional camera. This paper attempts to recognize three different hand gestures rock, paper and scissors and using those hand gestures design mouse free interface.   Keywords: Dynamic vision sensor camera, Hand gesture recognition

  15. Situational Awareness from a Low-Cost Camera System

    Science.gov (United States)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  16. Accurate calibration of stereo cameras for machine vision

    OpenAIRE

    Li, Liangfu; Feng, Zuren; Feng, Yuanjing

    2004-01-01

    Camera calibration is an important task for machine vision, whose goal is to obtain the internal and external parameters of each camera. With these parameters, the 3D positions of a scene point, which is identified and matched in two stereo images, can be determined by the triangulation theory. This paper presents a new accurate estimation of CCD camera parameters for machine vision. We present a fast technique to estimate the camera center with special arrangement of calibration target and t...

  17. Euclidean Reconstruction and Affine Camera Calibration Using Controlled Robot Motions

    OpenAIRE

    Horaud, Radu; Christy, Stéphane; Mohr, Roger

    1997-01-01

    We are addressing the problem of Euclidean reconstruction with an uncalibrated affine camera and the calibration of this camera. We investigate constraints under which the Euclidean shape and motion problem becomes linear. The theoretical study described in this paper leads us to impose some practical constraints that the camera is mounted onto a robot arm and that the robot is executing controlled motions whose parameters are known. The affine camera model considered here is just an approxim...

  18. Indoor PTZ Camera Calibration with Concurrent PT Axes

    OpenAIRE

    Sanchez-Riera, Jordi; Salvador, Jordi; Casas, Josep R.

    2009-01-01

    The introduction of active (pan-tilt-zoom or PTZ) cameras in Smart Rooms in addition to fixed static cameras allows to improve resolution in volumetric reconstruction, adding the capability to track smaller objects with higher precision in actual 3D world coordinates. To accomplish this goal, precise camera calibration data should be available for any pan, tilt, and zoom settings of each PTZ camera. The PTZ calibration method proposed in this paper introduces a novel solution to the problem o...

  19. Sparse Camera Network for Visual Surveillance -- A Comprehensive Survey

    OpenAIRE

    Song, Mingli; Tao, Dachent; Maybank, Stephen J.

    2013-01-01

    Technological advances in sensor manufacture, communication, and computing are stimulating the development of new applications that are transforming traditional vision systems into pervasive intelligent camera networks. The analysis of visual cues in multi-camera networks enables a wide range of applications, from smart home and office automation to large area surveillance and traffic surveillance. While dense camera networks - in which most cameras have large overlapping fields of view - are...

  20. Super-Resolution in Plenoptic Cameras Using FPGAs

    OpenAIRE

    Joel Pérez; Eduardo Magdaleno; Fernando Pérez; Manuel Rodríguez; David Hernández; Jaime Corrales

    2014-01-01

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSI...

  1. A multi-camera framework for interactive video games

    OpenAIRE

    Cuypers, Tom; VANAKEN, Cedric; FRANCKEN, Yannick; Van Reeth, Frank; Bekaert, Philippe

    2008-01-01

    We present a framework that allows for a straightforward development of multi-camera controlled interactive video games. Compared to traditional gaming input devices, cameras provide players with many degrees of freedom and a natural kind of interaction. The use of cameras can even obsolete the need for special clothing or other tracking devices. This partly accounted for the success of the currently popular single-camera video games like the Sony Eyetoy. However, these games are fairly limit...

  2. A useful tool for intraoperative photography: underwater camera case.

    Science.gov (United States)

    Tatlidede, Soner; Egemen, Onur; Bas, Lutfu

    2008-03-01

    The use of cameras in the operating room is increasing. However, there is not always a free person or an assistant who is familiar with your camera. In order to take faster and high quality photographs in the operating room, we use under water camera cases. These cases are produced for each type of camera and can be gas sterilized prior to operation. PMID:18443501

  3. Calibration of omnidirectional cameras in practice: A comparison of methods

    OpenAIRE

    Puig, Luis; Bermúdez, Jesús; Sturm, Peter; Guerrero, Josechu

    2012-01-01

    International audience Omnidirectional cameras are becoming increasingly popular in computer vision and robotics. Camera calibration is a step before performing any task involving metric scene measurement, required in nearly all robotics tasks. In recent years many different methods to calibrate central omnidirectional cameras have been developed, based on different camera models and often limited to a specific mirror shape. In this paper we review the existing methods designed to calibrat...

  4. Real-Time Acquisition of High Quality Face Sequences from an Active Pan-Tilt-Zoom Camera

    DEFF Research Database (Denmark)

    Haque, Mohammad A.; Nasrollahi, Kamal; Moeslund, Thomas B.

    Traditional still camera-based facial image acquisition systems in surveillance applications produce low quality face images. This is mainly due to the distance between the camera and subjects of interest. Furthermore, people in such videos usually move around, change their head poses, and facial......-based real-time high-quality face image acquisition system, which utilizes pan-tilt-zoom parameters of a camera to focus on a human face in a scene and employs a face quality assessment method to log the best quality faces from the captured frames. The system consists of four modules: face detection, camera...... control, face tracking, and face quality assessment before logging. Experimental results show that the proposed system can effectively log the high quality faces from the active camera in real-time (an average of 61.74ms was spent per frame) with an accuracy of 85.27% compared to human annotated data....

  5. Delay in camera-to-display systems

    OpenAIRE

    2011-01-01

    Today we see an increasing number of time dependent visual computer systems, ranging from interactive video installations, via high definition teleconferencing to the high performance computer vision disciplines for example in industry and robotics. Common for all of these are the requirement for low and predictable delays from the system itself and its components. In this thesis, we look into the delay of camera-to-display computer systems to understand the properties of their delay com...

  6. User tracking using a wearable camera

    OpenAIRE

    Redzic, Milan; Brennan, Conor; O'Connor, Noel E.

    2012-01-01

    Abstract—This paper addresses automatic indoor user tracking based on fusion of WLAN and image sensing. Our motivation is the increasing prevalence of wearable cameras, some of which can also capture WLAN data. We propose a novel tracking method that can be employed when using image-based, WLAN-based and fusion-based approach only. The effectiveness of combining the strengths of these two complementary modalities is demonstrated for a very challenging data.

  7. Using a portable holographic camera in cosmetology

    Science.gov (United States)

    Bakanas, R.; Gudaitis, G. A.; Zacharovas, S. J.; Ratcliffe, D. B.; Hirsch, S.; Frey, S.; Thelen, A.; Ladrière, N.; Hering, P.

    2006-07-01

    The HSF-MINI portable holographic camera is used to record holograms of the human face. The recorded holograms are analyzed using a unique three-dimensional measurement system that provides topometric data of the face with resolution less than or equal to 0.5 mm. The main advantages of this method over other, more traditional methods (such as laser triangulation and phase-measurement triangulation) are discussed.

  8. Risk Aversion in Game Shows

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten I.;

    2008-01-01

    We review the use of behavior from television game shows to infer risk attitudes. These shows provide evidence when contestants are making decisions over very large stakes, and in a replicated, structured way. Inferences are generally confounded by the subjective assessment of skill in some games...

  9. Toward standardising gamma camera quality control procedures

    Science.gov (United States)

    Alkhorayef, M. A.; Alnaaimi, M. A.; Alduaij, M. A.; Mohamed, M. O.; Ibahim, S. Y.; Alkandari, F. A.; Bradley, D. A.

    2015-11-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services.

  10. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  11. SPECT detectors: the Anger Camera and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Todd E [Institute of Imaging Science, Department of Radiology and Radiological Sciences, Department of Physics, and Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN (United States); Furenlid, Lars R, E-mail: todd.e.peterson@vanderbilt.edu [Center for Gamma-Ray Imaging, Department of Radiology, and College of Optical Sciences, University of Arizona, Tucson, AZ (United States)

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. (topical review)

  12. Terrain mapping camera for Chandrayaan-1

    Indian Academy of Sciences (India)

    A S Kiran Kumar; A Roy Chowdhury

    2005-12-01

    The Terrain Mapping Camera (TMC)on India ’s first satellite for lunar exploration,Chandrayaan-1, is for generating high-resolution 3-dimensional maps of the Moon.With this instrument,a complete topographic map of the Moon with 5 m spatial resolution and 10-bit quantization will be available for scienti fic studies.The TMC will image within the panchromatic spectral band of 0.4 to 0.9 m with a stereo view in the fore,nadir and aft directions of the spacecraft movement and have a B/H ratio of 1.The swath coverage will be 20 km.The camera is configured for imaging in the push broom-mode with three linear detectors in the image plane.The camera will have four gain settings to cover the varying illumination conditions of the Moon.Additionally,a provision of imaging with reduced resolution,for improving Signal-to-Noise Ratio (SNR)in polar regions,which have poor illumination conditions throughout,has been made.SNR of better than 100 is expected in the ± 60° latitude region for mature mare soil,which is one of the darkest regions on the lunar surface. This paper presents a brief description of the TMC instrument.

  13. Theory and applications of smart cameras

    CERN Document Server

    2016-01-01

    This book presents an overview of smart camera systems, considering practical applications but also reviewing fundamental aspects of the underlying technology.  It introduces in a tutorial style the principles of sensing and signal processing, and also describes topics such as wireless connection to the Internet of Things (IoT) which is expected to be the biggest market for smart cameras. It is an excellent guide to the fundamental of smart camera technology, and the chapters complement each other well as the authors have worked as a team under the auspice of GFP(Global Frontier Project), the largest-scale funded research in Korea.  This is the third of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processi...

  14. Improvement of passive THz camera images

    Science.gov (United States)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  15. Auto convergence for stereoscopic 3D cameras

    Science.gov (United States)

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  16. Single eye or camera with depth perception

    Science.gov (United States)

    Kornreich, Philipp; Farell, Bart

    2012-10-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by a short photoconducting lossi lightguide section at each pixel. The eye or camera lens selects the object point who's range is to be determined at the pixel. Light arriving at an image point trough a convex lens adds constructively only if it comes from the object point that is in focus at this pixel.. Light waves from all other object points cancel. Thus the lightguide at this pixel receives light from one object point only. This light signal has a phase component proportional to the range. The light intensity modes and thus the photocurrent in the lightguides shift in response to the phase of the incoming light. Contacts along the length of the lightguide collect the photocurrent signal containing the range information. Applications of this camera include autonomous vehicle navigation and robotic vision. An interesting application is as part of a crude teleportation system consisting of this camera and a three dimensional printer at a remote location.

  17. Imaging performances of the DRAGO gamma camera

    International Nuclear Information System (INIS)

    In this work, we present the results of the experimental characterization of the DRAGO gamma camera. This camera is based on a monolithic array of 77 Silicon Drift Detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single CsI(Tl) scintillator crystal, 5 mm thick. The use of an array of SDDs provides high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits has been developed. Performances achieved in gamma-ray imaging using this camera are here reported. When imaging a 0.2 mm collimated 57Co source (122 keV) over different points of the active area, a spatial resolution ranging between 0.25 and 0.5 mm has been measured. The depth of interaction capability of the detector, thanks to a maximum likelihood reconstruction algorithm here adopted, has been also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface.

  18. Imaging of gamma emitters using scintillation cameras

    Science.gov (United States)

    Ricard, Marcel

    2004-07-01

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied "on the fly" using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging.

  19. Imaging of gamma emitters using scintillation cameras

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, Marcel E-mail: ricard@igr.fr

    2004-07-11

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied 'on the fly' using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging.

  20. Imaging of gamma emitters using scintillation cameras

    International Nuclear Information System (INIS)

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied 'on the fly' using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging

  1. BAE systems' SMART chip camera FPA development

    Science.gov (United States)

    Sengupta, Louise; Auroux, Pierre-Alain; McManus, Don; Harris, D. Ahmasi; Blackwell, Richard J.; Bryant, Jeffrey; Boal, Mihir; Binkerd, Evan

    2015-06-01

    BAE Systems' SMART (Stacked Modular Architecture High-Resolution Thermal) Chip Camera provides very compact long-wave infrared (LWIR) solutions by combining a 12 μm wafer-level packaged focal plane array (FPA) with multichip-stack, application-specific integrated circuit (ASIC) and wafer-level optics. The key innovations that enabled this include a single-layer 12 μm pixel bolometer design and robust fabrication process, as well as wafer-level lid packaging. We used advanced packaging techniques to achieve an extremely small-form-factor camera, with a complete volume of 2.9 cm3 and a thermal core weight of 5.1g. The SMART Chip Camera supports up to 60 Hz frame rates, and requires less than 500 mW of power. This work has been supported by the Defense Advanced Research Projects Agency's (DARPA) Low Cost Thermal Imager - Manufacturing (LCTI-M) program, and BAE Systems' internal research and development investment.

  2. Scintillating array gamma camera for clinical use

    International Nuclear Information System (INIS)

    Dedicated gamma cameras for specific clinical application are representing a new trend in nuclear medicine. They are based on position sensitive photo multiplier tubes (PSPMT). The main intrinsic limitation of large area PSPMT (5'' diameter) is the photocathode glass window. Coupling to a planar scintillation crystal strongly affects the useful active area and the intrinsic spatial resolution. To overcome this limitation at University of Rome ''La Sapienza'' was developed the first 5'' diameter gamma camera consisting of a Hamamatsu R3292 PSPMT coupled to 50 x 50 YAP:Ce scintillating array. The array pixel size is 2 x 2 mm2 and the overall dimension of multi-crystal is 10 x 10 x 1 cm3. Resistive chains were used to calculate the centroid. The scintillating array produces a focused light spot minimising the spread introduced by PSPMT glass window. The intrinsic spatial resolution varied between 2 and 2.7 mm. The position linearity and useful active area resulted in good agreement with intrinsic one obtained by light spot irradiation. The real limitation was the poor energy resolution of an individual crystal (40%) and the poor uniformity response of PSPMT (within ±15%). A correction matrix was then carried out by which a 57% of total energy resolution was obtained for the whole matrix. The camera is currently operating as single photon emission mammography (SPEM) and it is producing breast functional images for malignant tumour detection using the same geometry as standard X-ray mammography. (orig.)

  3. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides...

  4. 15 CFR 743.3 - Thermal imaging camera reporting.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Thermal imaging camera reporting. 743... REPORTING § 743.3 Thermal imaging camera reporting. (a) General requirement. Exports of thermal imaging cameras must be reported to BIS as provided in this section. (b) Transactions to be reported. Exports...

  5. 39 CFR 3001.31a - In camera orders.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false In camera orders. 3001.31a Section 3001.31a Postal... Applicability § 3001.31a In camera orders. (a) Definition. Except as hereinafter provided, documents and testimony made subject to in camera orders are not made a part of the public record, but are...

  6. 16 CFR 3.45 - In camera orders.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false In camera orders. 3.45 Section 3.45... PRACTICE FOR ADJUDICATIVE PROCEEDINGS Hearings § 3.45 In camera orders. (a) Definition. Except as hereinafter provided, material made subject to an in camera order will be kept confidential and not placed...

  7. LINEAR AND NON-LINEAR CAMERA CALIBRATION TECHNIQUES

    OpenAIRE

    Manoj Gupta

    2011-01-01

    This Paper deals with calibrate a camera to find out the intrinsic and extrinsic camera parameters which are necessary to recover the depth estimation of an object in stereovision system. Keywords: Camera Calibration, Tsai’s algorithm, Stereovision, Linear Calibration, Non-Linear Calibration, Depth estimation

  8. CCD characterization for a range of color cameras

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2005-01-01

    CCD cameras are widely used for remote sensing and image processing applications. However, most cameras are produced to create nice images, not to do accurate measurements. Post processing operations such as gamma adjustment and automatic gain control are incorporated in the camera. When a (CCD) cam

  9. An explanation for camera perspective bias in voluntariness judgment for video-recorded confession: Suggestion of cognitive frame.

    Science.gov (United States)

    Park, Kwangbai; Pyo, Jimin

    2012-06-01

    Three experiments were conducted to test the hypothesis that difference in voluntariness judgment for a custodial confession filmed in different camera focuses ("camera perspective bias") could occur because a particular camera focus conveys a suggestion of a particular cognitive frame. In Experiment 1, 146 juror eligible adults in Korea showed a camera perspective bias in voluntariness judgment with a simulated confession filmed with two cameras of different focuses, one on the suspect and the other on the detective. In Experiment 2, the same bias in voluntariness judgment emerged without cameras when the participants were cognitively framed, prior to listening to the audio track of the videos used in Experiment 1, by instructions to make either a voluntariness judgment for a confession or a coerciveness judgment for an interrogation. In Experiment 3, the camera perspective bias in voluntariness judgment disappeared when the participants viewing the video focused on the suspect were initially framed to make coerciveness judgment for the interrogation and the participants viewing the video focused on the detective were initially framed to make voluntariness judgment for the confession. The results in combination indicated that a particular camera focus may convey a suggestion of a particular cognitive frame in which a video-recorded confession/interrogation is initially represented. Some forensic and policy implications were discussed. PMID:22667808

  10. Measuring performance at trade shows

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2004-01-01

    Trade shows is an increasingly important marketing activity to many companies, but current measures of trade show performance do not adequately capture dimensions important to exhibitors. Based on the marketing literature's outcome and behavior-based control system taxonomy, a model is built that...... captures a outcome-based sales dimension and four behavior-based dimensions (i.e. information-gathering, relationship building, image building, and motivation activities). A 16-item instrument is developed for assessing exhibitors perceptions of their trade show performance. The paper presents evidence of...

  11. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  12. Ultra-miniature catadioptrical system for an omnidirectional camera

    Science.gov (United States)

    Gimkiewicz, C.; Urban, C.; Innerhofer, E.; Ferrat, P.; Neukom, S.; Vanstraelen, G.; Seitz, P.

    2008-04-01

    The restricted field of view of traditional camera technology is increasingly limiting in many relevant applications such as security, surveillance, automotive, robotics, autonomous navigation or domotics. Omnidirectional cameras with their horizontal field of view of 360° would be ideal devices for these applications if they were small, cost-effective, robust and lightweight. Conventional catadioptric system designs require mirror diameters and optical path lengths of several centimeters, often leading to solutions that are too large and too heavy to be practical. We are presenting a novel optical design for an ultra-miniature camera that is so small and lightweight that it can be used as a key navigation aid for an autonomous flying micro-robot. The catadioptrical system consists of two components with a field-stop in-between: the first subsystem consists of a reflecting mirror and two refracting lens surfaces, and the second subsystem contains the imaging lens with two refractive surfaces. The field of view is 10°(upward) and 35°(downward). A field stop diameter of 1 mm and a back focal length of 2.3 mm have been achieved. For low-cost mass fabrication, the lens designs are optimised for production by injection moulding. Measurements of the first omnidirectional lens prototypes with a high-resolution imager show a performance close to the simulated values concerning spot size and image formation. The total weight of the optics is only 2 g including all mechanical mounts. The system's outer dimensions are 14.4 mm in height, with a 11.4 mm × 11.4 mm foot print, including the image sensor and its casing.

  13. Methods for identification of images acquired with digital cameras

    Science.gov (United States)

    Geradts, Zeno J.; Bijhold, Jurrien; Kieft, Martijn; Kurosawa, Kenji; Kuroki, Kenro; Saitoh, Naoki

    2001-02-01

    From the court we were asked whether it is possible to determine if an image has been made with a specific digital camera. This question has to be answered in child pornography cases, where evidence is needed that a certain picture has been made with a specific camera. We have looked into different methods of examining the cameras to determine if a specific image has been made with a camera: defects in CCDs, file formats that are used, noise introduced by the pixel arrays and watermarking in images used by the camera manufacturer.

  14. Readout electronics of physics of accelerating universe camera

    Science.gov (United States)

    de Vicente, Juan; Castilla, Javier; Jiménez, Jorge; Cardiel-Sas, L.; Illa, José M.

    2014-08-01

    The Physics of Accelerating Universe Camera (PAUCam) is a new camera for dark energy studies that will be installed in the William Herschel telescope. The main characteristic of the camera is the capacity for high precision photometric redshift measurement. The camera is composed of eighteen Hamamatsu Photonics CCDs providing a wide field of view covering a diameter of one degree. Unlike the common five optical filters of other similar surveys, PAUCam has forty optical narrow band filters which will provide higher resolution in photometric redshifts. In this paper a general description of the electronics of the camera and its status is presented.

  15. Tokyo Motor Show 2003; Tokyo Motor Show 2003

    Energy Technology Data Exchange (ETDEWEB)

    Joly, E.

    2004-01-01

    The text which follows present the different techniques exposed during the 37. Tokyo Motor Show. The report points out the great tendencies of developments of the Japanese automobile industry. The hybrid electric-powered vehicles or those equipped with fuel cells have been highlighted by the Japanese manufacturers which allow considerable budgets in the research of less polluting vehicles. The exposed models, although being all different according to the manufacturer, use always a hybrid system: fuel cell/battery. The manufacturers have stressed too on the intelligent systems for navigation and safety as well as on the design and comfort. (O.M.)

  16. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  17. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  18. Development for calibration target for infrared thermal imaging camera

    International Nuclear Information System (INIS)

    Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

  19. Calibration Tests of Industrial and Scientific CCD Cameras

    Science.gov (United States)

    Shortis, M. R.; Burner, A. W.; Snow, W. L.; Goad, W. K.

    1991-01-01

    Small format, medium resolution CCD cameras are at present widely used for industrial metrology applications. Large format, high resolution CCD cameras are primarily in use for scientific applications, but in due course should increase both the range of applications and the object space accuracy achievable by close range measurement. Slow scan, cooled scientific CCD cameras provide the additional benefit of additional quantisation levels which enables improved radiometric resolution. The calibration of all types of CCD cameras is necessary in order to characterize the geometry of the sensors and lenses. A number of different types of CCD cameras have been calibrated a the NASA Langley Research Center using self calibration and a small test object. The results of these calibration tests will be described, with particular emphasis on the differences between standard CCD video cameras and scientific slow scan CCD cameras.

  20. Simple method for calibrating omnidirectional stereo with multiple cameras

    Science.gov (United States)

    Ha, Jong-Eun; Choi, I.-Sak

    2011-04-01

    Cameras can give useful information for the autonomous navigation of a mobile robot. Typically, one or two cameras are used for this task. Recently, an omnidirectional stereo vision system that can cover the whole surrounding environment of a mobile robot is adopted. They usually adopt a mirror that cannot offer uniform spatial resolution. In this paper, we deal with an omnidirectional stereo system which consists of eight cameras where each two vertical cameras constitute one stereo system. Camera calibration is the first necessary step to obtain 3D information. Calibration using a planar pattern requires many images acquired under different poses so it is a tedious step to calibrate all eight cameras. In this paper, we present a simple calibration procedure using a cubic-type calibration structure that surrounds the omnidirectional stereo system. We can calibrate all the cameras on an omnidirectional stereo system in just one shot.

  1. Calibration of asynchronous smart phone cameras from moving objects

    Science.gov (United States)

    Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel

    2015-04-01

    Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.

  2. Precision Multiband Photometry with a DSLR Camera

    Science.gov (United States)

    Zhang, M.; Bakos, G. Á.; Penev, K.; Csubry, Z.; Hartman, J. D.; Bhatti, W.; de Val-Borro, M.

    2016-03-01

    Ground-based exoplanet surveys such as SuperWASP, HAT Network of Telescopes (HATNet), and KELT have discovered close to two hundred transiting extrasolar planets in the past several years. The strategy of these surveys is to look at a large field of view and measure the brightnesses of its bright stars to around half a percent per point precision, which is adequate for detecting hot Jupiters. Typically, these surveys use CCD detectors to achieve high precision photometry. These CCDS, however, are expensive relative to other consumer-grade optical imaging devices, such as digital single-lens reflex cameras (DSLRs). We look at the possibility of using a DSLR camera for precision photometry. Specifically, we used a Canon EOS 60D camera that records light in three colors simultaneously. The DSLR was integrated into the HATNet survey and collected observations for a month, after which photometry was extracted for 6600 stars in a selected stellar field. We found that the DSLR achieves a best-case median absolute deviation of 4.6 mmag per 180 s exposure when the DSLR color channels are combined, and 1000 stars are measured to better than 10 mmag (1%). Also, we achieve 10 mmag or better photometry in the individual colors. This is good enough to detect transiting hot Jupiters. We performed a candidate search on all stars and found four candidates, one of which is KELT-3b, the only known transiting hot Jupiter in our selected field. We conclude that the Canon 60D is a cheap, lightweight device capable of useful photometry in multiple colors.

  3. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    Science.gov (United States)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  4. Active control for single camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Davison, Andrew J.; Andrade-Cetto, J.; Murray, David W

    2006-01-01

    In this paper we consider a single hand-held camera performing SLAM at video rate with generic 6DOF motion. The aim is to optimise both the localisation of the sensor and building of the feature map by computing the most appropriate control actions or movements. The actions belong to a discrete set (e.g. go forward, go left, go up, turn right, etc), and are chosen so as to maximise the mutual information gain between posterior states and measurements. Maximising the mutual information helps t...

  5. Thermal imaging cameras characteristics and performance

    CERN Document Server

    Williams, Thomas

    2009-01-01

    The ability to see through smoke and mist and the ability to use the variances in temperature to differentiate between targets and their backgrounds are invaluable in military applications and have become major motivators for the further development of thermal imagers. As the potential of thermal imaging is more clearly understood and the cost decreases, the number of industrial and civil applications being exploited is growing quickly. In order to evaluate the suitability of particular thermal imaging cameras for particular applications, it is important to have the means to specify and measur

  6. Markerless Camera Pose Estimation - An Overview

    OpenAIRE

    Nöll, Tobias; Pagani, Alain; Stricker, Didier

    2011-01-01

    As shown by the human perception, a correct interpretation of a 3D scene on the basis of a 2D image is possible without markers. Solely by identifying natural features of different objects, their locations and orientations on the image can be identified. This allows a three dimensional interpretation of a two dimensional pictured scene. The key aspect for this interpretation is the correct estimation of the camera pose, i.e. the knowledge of the orientation and location a picture was recorded...

  7. Development of a micro-PIXE camera

    International Nuclear Information System (INIS)

    We developed a system of μ-PIXE analysis at the division of Takasaki ion accelerator for advanced radiation application (TIARA) in Japan Atomic Energy Research institute (JAERI), which consists of a microbeam apparatus, a multi-parameter data acquisition system and a personal computer. Elemental analysis in the region of 500 μm x 500 μm can be performed with a spatial resolution of < 0.3 μm and multi-elemental distributions are presented as images on a computer display even during measurement. We call this system a micro-PIXE camera. (author)

  8. A positron camera for industrial application

    International Nuclear Information System (INIS)

    A positron camera for application to flow tracing and measurement in mechanical subjects is described. It is based on two 300 x 600 mm2 hybrid multiwire detectors; the cathodes are in the form of lead strips planted onto printed-circuit board, and delay lines are used to determine the location of photon interactions. Measurements of the positron detection efficiency (30 Hz μCi-1 for a centred unshielded source), the maximum data logging rate (3 kHz) and the spatial resolving power (point source response = 5.7 mm fwhm) are presented and discussed, and results from initial demonstration experiments are shown. (orig.)

  9. Compact optical technique for streak camera calibration

    International Nuclear Information System (INIS)

    To produce accurate data from optical streak cameras requires accurate temporal calibration sources. We have reproduced an older technology for generating optical timing marks that had been lost due to component availability. Many improvements have been made which allow the modern units to service a much larger need. Optical calibrators are now available that produce optical pulse trains of 780 nm wavelength light at frequencies ranging from 0.1 to 10 GHz, with individual pulse widths of approximately 25 ps full width half maximum. Future plans include the development of single units that produce multiple frequencies to cover a wide temporal range, and that are fully controllable via an RS232 interface

  10. Calibrating Images from the MINERVA Cameras

    Science.gov (United States)

    Mercedes Colón, Ana

    2016-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) consists of an array of robotic telescopes located on Mount Hopkins, Arizona with the purpose of performing transit photometry and spectroscopy to find Earth-like planets around Sun-like stars. In order to make photometric observations, it is necessary to perform calibrations on the CCD cameras of the telescopes to take into account possible instrument error on the data. In this project, we developed a pipeline that takes optical images, calibrates them using sky flats, darks, and biases to generate a transit light curve.

  11. HPD camera development for the MAGIC project

    International Nuclear Information System (INIS)

    Today the Hybrid Photon Detector (HPD) is one of the few low light level sensors that can provide an excellent single and multiple photoelectron amplitude resolution. We developed HPDs with a GaAsP photocathode, namely the R9792U-40, together with Hamamatsu photonics. A peak quantum efficiency (QE) exceeds 50% and a pulse width is 2 nsec. In addition, the afterpulsing rate of these tubes is ∝300 times lower compared to that of conventional photomultiplier tubes (PMTs). Here we want to report on the recent progress of the HPD camera development. We also want to discuss the prospects of using it in the MAGIC telescope project

  12. Computational cameras for moving iris recognition

    Science.gov (United States)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  13. An Efficient Image Compressor for Charge Coupled Devices Camera

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Recently, the discrete wavelet transforms- (DWT- based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the lp-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000.

  14. Quantifying photometric observing conditions on Paranal using an IR camera

    CERN Document Server

    Kerber, Florian; Hanuschik, Reinhard

    2014-01-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. In addition to measuring precipitable water vapour (PWV) the instrument also contains an IR camera measuring sky brightness temperature at 10.5 {\\mu}m. Due to its extended operating range down to -100 {\\deg}C it is capable of detecting very cold and very thin, even sub-visual, cirrus clouds. We present a set of instrument flux calibration values as compared with a detrended fluctuation analysis (DFA) of the IR camera zenith-looking sky brightness data measured above Paranal taken over the past two years. We show that it is possible to quantify photometric observing conditions and that the method is highly sensitive to the presence of even very thin clouds but robust against variations of sky brightness caused by effects other than clouds such as variations of precipitable water vapour. Henc...

  15. An efficient image compressor for charge coupled devices camera.

    Science.gov (United States)

    Li, Jin; Xing, Fei; You, Zheng

    2014-01-01

    Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p -norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977

  16. Quantifying photometric observing conditions on Paranal using an IR camera

    Science.gov (United States)

    Kerber, Florian; Querel, Richard R.; Hanuschik, Reinhard

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. In addition to measuring precipitable water vapour (PWV) the instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. Due to its extended operating range down to -100 °C it is capable of detecting very cold and very thin, even sub-visual, cirrus clouds. We present a set of instrument flux calibration values as compared with a detrended fluctuation analysis (DFA) of the IR camera zenith-looking sky brightness data measured above Paranal taken over the past two years. We show that it is possible to quantify photometric observing conditions and that the method is highly sensitive to the presence of even very thin clouds but robust against variations of sky brightness caused by effects other than clouds such as variations of precipitable water vapour. Hence it can be used to determine photometric conditions for science operations. About 60 % of nights are free of clouds on Paranal. More work will be required to classify the clouds using this technique. For the future this approach might become part of VLT science operations for evaluating nightly sky conditions.

  17. Court Reconstruction for Camera Calibration in Broadcast Basketball Videos.

    Science.gov (United States)

    Wen, Pei-Chih; Cheng, Wei-Chih; Wang, Yu-Shuen; Chu, Hung-Kuo; Tang, Nick C; Liao, Hong-Yuan Mark

    2016-05-01

    We introduce a technique of calibrating camera motions in basketball videos. Our method particularly transforms player positions to standard basketball court coordinates and enables applications such as tactical analysis and semantic basketball video retrieval. To achieve a robust calibration, we reconstruct the panoramic basketball court from a video, followed by warping the panoramic court to a standard one. As opposed to previous approaches, which individually detect the court lines and corners of each video frame, our technique considers all video frames simultaneously to achieve calibration; hence, it is robust to illumination changes and player occlusions. To demonstrate the feasibility of our technique, we present a stroke-based system that allows users to retrieve basketball videos. Our system tracks player trajectories from broadcast basketball videos. It then rectifies the trajectories to a standard basketball court by using our camera calibration method. Consequently, users can apply stroke queries to indicate how the players move in gameplay during retrieval. The main advantage of this interface is an explicit query of basketball videos so that unwanted outcomes can be prevented. We show the results in Figs. 1, 7, 9, 10 and our accompanying video to exhibit the feasibility of our technique. PMID:27504515

  18. Measurement of the performance of the gamma camera oscilloscope display

    International Nuclear Information System (INIS)

    In one common type of gamma camera display system, the positions at which the gamma photons are detected in the scintillation crystal are correlated with flashes on the face of a cathode-ray tube. A permanent record is obtained by integrating these flashes on a photographic film. There are problems in assessing the performance of the display system, since the photographic film is a non-linear recording medium, and the gamma camera itself does not always give the correct spatial position of each detected gamma photon. A computer simulation of the display has therefore been used to assess the best possible performance of the display system. The simulated test pattern represented a uniform background distribution of radioisotope on which was superimposed a circular disc of increased radioactivity. The target was imaged so as to have a rectangular count-density profile. Studies of the interaction between the display and different observers showed that an increase in the total number of background counts decreased the detection contrast. The results are compared with predictions from statistical theories. (U.K.)

  19. Picasso on Show in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A staff member of the National Picasso Museum of France checks one of the great Spanish artist Pablo Picasso’s works at the China Pavilion inside the site of the 2010 World Expo in Shanghai on October 12.Sixty-two priceless paintings and statues selected from the works of the renowned artist have been brought to the pavilion for an upcoming exhibition to premiere on October 18.Besides these representative masterpieces,50 valuable photographs showing the artist’s whole life will also be presented.The exhibition’s estimated value is 678 million euros ($934 million).It will be held until January 10,2012.

  20. A study of the behaviour of irradiated or unirradiated grafts in the camera aquosa of irradiated and unirradiated animals

    International Nuclear Information System (INIS)

    Following grafts of new born mice spinal ganglia in the 'camera aquosa' of adult mice, the authors tried hematopoietic tissue grafts in the same conditions. The growth of iso-logous and hetero-logous bone marrow in the 'camera aquosa' showed that this tissue, even after exposure to supralethal doses, was capable of survival and growth. A counter-experiment with non irradiated bone marrow grafts in the 'camera aquosa' of rats delivered 700 rads led to the conclusion that the environment, intoxicated by exposure, acted on the graft so that after vascularization it became unable to grow. (author)

  1. Development of underwater high-definition camera for the confirmation test of core configuration and visual examination of BWR fuel

    International Nuclear Information System (INIS)

    The purpose of this study is to develop underwater High-Definition camera for the confirmation test of core configuration and visual examination of BWR fuels in order to reduce the time of these tests and total cost regarding to purchase and maintenance. The prototype model of the camera was developed and examined in real use condition in spent fuel pool at HAMAOKA-2 and 4. The examination showed that the ability of prototype model was either equaling or surpassing to conventional product expect for resistance to radiation. The camera supposes to be used in the dose rate condition of under about 10 Gy/h. (author)

  2. Analysis of Camera Parameters Value in Various Object Distances Calibration

    International Nuclear Information System (INIS)

    In photogrammetric applications, good camera parameters are needed for mapping purpose such as an Unmanned Aerial Vehicle (UAV) that encompassed with non-metric camera devices. Simple camera calibration was being a common application in many laboratory works in order to get the camera parameter's value. In aerial mapping, interior camera parameters' value from close-range camera calibration is used to correct the image error. However, the causes and effects of the calibration steps used to get accurate mapping need to be analyze. Therefore, this research aims to contribute an analysis of camera parameters from portable calibration frame of 1.5 × 1 meter dimension size. Object distances of two, three, four, five, and six meters are the research focus. Results are analyzed to find out the changes in image and camera parameters' value. Hence, camera calibration parameter's of a camera is consider different depend on type of calibration parameters and object distances

  3. Design of a variable field prototype PET camera

    International Nuclear Information System (INIS)

    A prototype PET camera has been designed and is being constructed to test the concept, and develop the engineering design and production methodology for a variable field PET camera. The long term goal of the design is to develop a lower cost, high resolution PET camera. The camera has eight detector heads which form a closely packed octagon detector ring with an average diameter of 44cm for brain/breast and animal model imaging. The heads can be translated radially to a maximum ring diameter of 70cm for whole body imaging. In the larger diameter modes, the camera rotates 45 degree during imaging. The camera heads can be set to intermediate positions to fit the camera to the subject size to maximize detection sensitivity and sampling uniformity. Special design features for imaging the breast and the axillary metastases have been incorporated. The detector design implemented is the quadrant sharing photomultiplier (PMT) design using circular 19mm PMT. The BGO detector pitch size is 2.7 x 2.7mm. The prototype camera images 27 slices simultaneously with an axial field of view (FOV) of 39mm. The prototype's limited axial FOV, which is appropriate for testing the camera concept, would be expanded in a next-generation clinical camera implementation. Preliminary simulation studies have been performed to evaluate the resolution, sensitivity, and sampling uniformity

  4. The NectarCAM camera project

    CERN Document Server

    Glicenstein, J-F; Barrio, J-A; Blanch, O; Boix, J; Bolmont, J; Boutonnet, C; Cazaux, S; Chabanne, E; Champion, C; Chateau, F; Colonges, S; Corona, P; Couturier, S; Courty, B; Delagnes, E; Delgado, C; Ernenwein, J-P; Fegan, S; Ferreira, O; Fesquet, M; Fontaine, G; Fouque, N; Henault, F; Gascón, D; Herranz, D; Hermel, R; Hoffmann, D; Houles, J; Karkar, S; Khelifi, B; Knödlseder, J; Martinez, G; Lacombe, K; Lamanna, G; LeFlour, T; Lopez-Coto, R; Louis, F; Mathieu, A; Moulin, E; Nayman, P; Nunio, F; Olive, J-F; Panazol, J-L; Petrucci, P-O; Punch, M; Prast, J; Ramon, P; Riallot, M; Ribó, M; Rosier-Lees, S; Sanuy, A; Siero, J; Tavernet, J-P; Tejedor, L A; Toussenel, F; Vasileiadis, G; Voisin, V; Waegebert, V; Zurbach, C

    2013-01-01

    In the framework of the next generation of Cherenkov telescopes, the Cherenkov Telescope Array (CTA), NectarCAM is a camera designed for the medium size telescopes covering the central energy range of 100 GeV to 30 TeV. NectarCAM will be finely pixelated (~ 1800 pixels for a 8 degree field of view, FoV) in order to image atmospheric Cherenkov showers by measuring the charge deposited within a few nanoseconds time-window. It will have additional features like the capacity to record the full waveform with GHz sampling for every pixel and to measure event times with nanosecond accuracy. An array of a few tens of medium size telescopes, equipped with NectarCAMs, will achieve up to a factor of ten improvement in sensitivity over existing instruments in the energy range of 100 GeV to 10 TeV. The camera is made of roughly 250 independent read-out modules, each composed of seven photo-multipliers, with their associated high voltage base and control, a read-out board and a multi-service backplane board. The read-out b...

  5. The Dark Energy Survey Camera (DECam)

    International Nuclear Information System (INIS)

    The Dark Energy Survey (DES) is a next generation optical survey aimed at understanding the expansion rate of the Universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera that will be mounted at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. CCD production has finished, yielding roughly twice the required 62 2k x 4k detectors. The construction of DECam is nearly finished. Integration and commissioning on a 'telescope simulator' of the major hardware and software components, except for the optics, recently concluded at Fermilab. Final assembly of the optical corrector has started at University College, London. Some components have already been received at CTIO. 'First-light' will be sometime in 2012. This oral presentation concentrates on the technical challenges involved in building DECam (and how we overcame them), and the present status of the instrument.

  6. Mars Cameras Make Panoramic Photography a Snap

    Science.gov (United States)

    2008-01-01

    If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape. The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels. Gigapixel images are more than 200 times the size captured by today s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.

  7. FIDO Rover Retracted Arm and Camera

    Science.gov (United States)

    1999-01-01

    The Field Integrated Design and Operations (FIDO) rover extends the large mast that carries its panoramic camera. The FIDO is being used in ongoing NASA field tests to simulate driving conditions on Mars. FIDO is controlled from the mission control room at JPL's Planetary Robotics Laboratory in Pasadena. FIDO uses a robot arm to manipulate science instruments and it has a new mini-corer or drill to extract and cache rock samples. Several camera systems onboard allow the rover to collect science and navigation images by remote-control. The rover is about the size of a coffee table and weighs as much as a St. Bernard, about 70 kilograms (150 pounds). It is approximately 85 centimeters (about 33 inches) wide, 105 centimeters (41 inches) long, and 55 centimeters (22 inches) high. The rover moves up to 300 meters an hour (less than a mile per hour) over smooth terrain, using its onboard stereo vision systems to detect and avoid obstacles as it travels 'on-the-fly.' During these tests, FIDO is powered by both solar panels that cover the top of the rover and by replaceable, rechargeable batteries.

  8. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based (CB) PET. CBPET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CBPET in operation than cPET in the USA. CBPET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  9. Time-of-Flight Microwave Camera

    Science.gov (United States)

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  10. The design of aerial camera focusing mechanism

    Science.gov (United States)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  11. Real-time holographic camera system

    Science.gov (United States)

    Bazhenov, Mikhail Y.; Grabovski, Vitaly V.; Stolyarenko, Alexandr V.; Zahaykevich, George A.

    1997-04-01

    The holographic camera system for surface-relief hologram multiple reversible registration is presented. Photosensitive media is a single-layer photothermoplastic polymer on a glass substrate with conductive layer. This exclude a charges accumulation in the polymer volume and permits to realize an efficient enhancement of latent electrostatic image and its fast pulse heating development. The processes of charging, photogeneration, carriers transport, fast development and erasing, image enhancement were studied in detail and optimized. In order to improve some defects of photothermoplastic recording, originating from influences of circumstances and recording conditions, some new processes were developed: (1) fast charging with pulses corona in closed dielectric volume, (2) optoelectronic enhancement of electrostatic image, and (3) fast pulsed development with automatically controlled temperature rate. The dust-proof recording camera with built-in highvoltage power supply, thermo- and photosensors was designed to meet the needs of real-time or multiple- exposure interferometry, holographic training recording, holographic storage systems, correlation investigations and pattern recognition.

  12. The Mars NetLander panoramic camera

    Science.gov (United States)

    Jaumann, Ralf; Langevin, Yves; Hauber, Ernst; Oberst, Jürgen; Grothues, Hans-Georg; Hoffmann, Harald; Soufflot, Alain; Bertaux, Jean-Loup; Dimarellis, Emmanuel; Mottola, Stefano; Bibring, Jean-Pierre; Neukum, Gerhard; Albertz, Jörg; Masson, Philippe; Pinet, Patrick; Lamy, Philippe; Formisano, Vittorio

    2000-10-01

    The panoramic camera (PanCam) imaging experiment is designed to obtain high-resolution multispectral stereoscopic panoramic images from each of the four Mars NetLander 2005 sites. The main scientific objectives to be addressed by the PanCam experiment are (1) to locate the landing sites and support the NetLander network sciences, (2) to geologically investigate and map the landing sites, and (3) to study the properties of the atmosphere and of variable phenomena. To place in situ measurements at a landing site into a proper regional context, it is necessary to determine the lander orientation on ground and to exactly locate the position of the landing site with respect to the available cartographic database. This is not possible by tracking alone due to the lack of on-ground orientation and the so-called map-tie problem. Images as provided by the PanCam allow to determine accurate tilt and north directions for each lander and to identify the lander locations based on landmarks, which can also be recognized in appropriate orbiter imagery. With this information, it will be further possible to improve the Mars-wide geodetic control point network and the resulting geometric precision of global map products. The major geoscientific objectives of the PanCam lander images are the recognition of surface features like ripples, ridges and troughs, and the identification and characterization of different rock and surface units based on their morphology, distribution, spectral characteristics, and physical properties. The analysis of the PanCam imagery will finally result in the generation of precise map products for each of the landing sites. So far comparative geologic studies of the Martian surface are restricted to the timely separated Mars Pathfinder and the two Viking Lander Missions. Further lander missions are in preparation (Beagle-2, Mars Surveyor 03). NetLander provides the unique opportunity to nearly double the number of accessible landing site data by providing

  13. Women's Creation of Camera Phone Culture

    Directory of Open Access Journals (Sweden)

    Dong-Hoo Lee

    2005-01-01

    Full Text Available A major aspect of the relationship between women and the media is the extent to which the new media environment is shaping how women live and perceive the world. It is necessary to understand, in a concrete way, how the new media environment is articulated to our gendered culture, how the symbolic or physical forms of the new media condition women’s experiences, and the degree to which a ‘post-gendered re-codification’ can be realized within a new media environment. This paper intends to provide an ethnographic case study of women’s experiences with camera phones, examining the extent to which these experiences recreate or reconstruct women’s subjectivity or identity. By taking a close look at the ways in which women utilize and appropriate the camera phone in their daily lives, it focuses not only on women’s cultural practices in making meanings but also on their possible effect in the deconstruction of gendered techno-culture.

  14. Focal Plane Metrology for the LSST Camera

    Energy Technology Data Exchange (ETDEWEB)

    A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC

    2007-01-10

    Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.

  15. An assessment of the effectiveness of high definition cameras as remote monitoring tools for dolphin ecology studies.

    Directory of Open Access Journals (Sweden)

    Estênio Guimarães Paiva

    Full Text Available Research involving marine mammals often requires costly field programs. This paper assessed whether the benefits of using cameras outweighs the implications of having personnel performing marine mammal detection in the field. The efficacy of video and still cameras to detect Indo-Pacific bottlenose dolphins (Tursiops aduncus in the Fremantle Harbour (Western Australia was evaluated, with consideration on how environmental conditions affect detectability. The cameras were set on a tower in the Fremantle Port channel and videos were perused at 1.75 times the normal speed. Images from the cameras were used to estimate position of dolphins at the water's surface. Dolphin detections ranged from 5.6 m to 463.3 m for the video camera, and from 10.8 m to 347.8 m for the still camera. Detection range showed to be satisfactory when compared to distances at which dolphins would be detected by field observers. The relative effect of environmental conditions on detectability was considered by fitting a Generalised Estimation Equations (GEEs model with Beaufort, level of glare and their interactions as predictors and a temporal auto-correlation structure. The best fit model indicated level of glare had an effect, with more intense periods of glare corresponding to lower occurrences of observed dolphins. However this effect was not large (-0.264 and the parameter estimate was associated with a large standard error (0.113. The limited field of view was the main restraint in that cameras can be only applied to detections of animals observed rather than counts of individuals. However, the use of cameras was effective for long term monitoring of occurrence of dolphins, outweighing the costs and reducing the health and safety risks to field personal. This study showed that cameras could be effectively implemented onshore for research such as studying changes in habitat use in response to development and construction activities.

  16. Lights, Camera, AG-Tion: Promoting Agricultural and Environmental Education on Camera

    Science.gov (United States)

    Fuhrman, Nicholas E.

    2016-01-01

    Viewing of online videos and television segments has become a popular and efficient way for Extension audiences to acquire information. This article describes a unique approach to teaching on camera that may help Extension educators communicate their messages with comfort and personality. The S.A.L.A.D. approach emphasizes using relevant teaching…

  17. Imaging of breast cancer with mid- and long-wave infrared camera.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory. PMID:18432466

  18. Development of the radial neutron camera system for the HL-2A tokamak.

    Science.gov (United States)

    Zhang, Y P; Yang, J W; Liu, Yi; Fan, T S; Luo, X B; Yuan, G L; Zhang, P F; Xie, X F; Song, X Y; Chen, W; Ji, X Q; Li, X; Du, T F; Ge, L J; Fu, B Z; Isobe, M; Song, X M; Shi, Z B; Yang, Q W; Duan, X R

    2016-06-01

    A new radial neutron camera system has been developed and operated recently in the HL-2A tokamak to measure the spatial and time resolved 2.5 MeV D-D fusion neutron, enhancing the understanding of the energetic-ion physics. The camera mainly consists of a multichannel collimator, liquid-scintillation detectors, shielding systems, and a data acquisition system. Measurements of the D-D fusion neutrons using the camera have been successfully performed during the 2015 HL-2A experiment campaign. The measurements show that the distribution of the fusion neutrons in the HL-2A plasma has a peaked profile, suggesting that the neutral beam injection beam ions in the plasma have a peaked distribution. It also suggests that the neutrons are primarily produced from beam-target reactions in the plasma core region. The measurement results from the neutron camera are well consistent with the results of both a standard (235)U fission chamber and NUBEAM neutron calculations. In this paper, the new radial neutron camera system on HL-2A and the first experimental results are described. PMID:27370450

  19. Development of the radial neutron camera system for the HL-2A tokamak

    Science.gov (United States)

    Zhang, Y. P.; Yang, J. W.; Liu, Yi; Fan, T. S.; Luo, X. B.; Yuan, G. L.; Zhang, P. F.; Xie, X. F.; Song, X. Y.; Chen, W.; Ji, X. Q.; Li, X.; Du, T. F.; Ge, L. J.; Fu, B. Z.; Isobe, M.; Song, X. M.; Shi, Z. B.; Yang, Q. W.; Duan, X. R.

    2016-06-01

    A new radial neutron camera system has been developed and operated recently in the HL-2A tokamak to measure the spatial and time resolved 2.5 MeV D-D fusion neutron, enhancing the understanding of the energetic-ion physics. The camera mainly consists of a multichannel collimator, liquid-scintillation detectors, shielding systems, and a data acquisition system. Measurements of the D-D fusion neutrons using the camera have been successfully performed during the 2015 HL-2A experiment campaign. The measurements show that the distribution of the fusion neutrons in the HL-2A plasma has a peaked profile, suggesting that the neutral beam injection beam ions in the plasma have a peaked distribution. It also suggests that the neutrons are primarily produced from beam-target reactions in the plasma core region. The measurement results from the neutron camera are well consistent with the results of both a standard 235U fission chamber and NUBEAM neutron calculations. In this paper, the new radial neutron camera system on HL-2A and the first experimental results are described.

  20. Bayesian inference in camera trapping studies for a class of spatial capture-recapture models

    Science.gov (United States)

    Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba

    2009-01-01

    We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.