WorldWideScience

Sample records for bird phenology program

  1. Spring Bird Migration Phenology in Eilat, Israel

    Directory of Open Access Journals (Sweden)

    Reuven Yosef

    2009-12-01

    Full Text Available Analysis of the mean date of first captures and median arrival dates of spring migration for 34 species of birds at Eilat, Israel, revealed that the earlier a species migrates through Eilat, the greater is the inter-annual variation in the total time of its passage. Birds arrive during spring migration in Eilat in four structured and independent waves. The annual fluctuation in the initial arrival dates (initial capture dates and median dates (median date of all captures, not including recaptures, did not depend on the length of the migratory route. This implies that migrants crossing the Sahara desert depart from their winter quarters on different Julian days in different years. We suggest that negative correlations between the median date of the spring migration of early and late migrants depends upon the easterly (Hamsin wind period. Moreover, we believe that the phenology of all birds during spring migration in Eilat is possibly also determined by external factors such as weather conditions on the African continent or global climatic processes in the Northern hemisphere. Orphean Warblers (Sylvia hortensis show a strong positive correlation (rs=-0.502 of initial capture date with calendar years, whereas other species such as Barred Warbler (S. nisoria; rs = -0.391 and Spotted Flycatcher (Muscicapa striata; rs = -0.398 display an insignificant trend. The Dead Sea Sparrow (Passer moabiticus and Red-Backed Shrike (Lanius collurio are positively correlated regarding initial arrival date and medians of spring migration.

  2. Phenological model of bird cherry Padus racemosa with data assimilation

    Science.gov (United States)

    Kalvāns, Andis; Sīle, Tija; Kalvāne, Gunta

    2017-12-01

    The accuracy of the operational models can be improved by using observational data to shift the model state in a process called data assimilation. Here, a data assimilation approach using the temperature similarity to control the extent of extrapolation of point-like phenological observations is explored. A degree-day model is used to describe the spring phenology of the bird cherry Padus racemosa in the Baltic region in 2014. The model results are compared to phenological observations that are expressed on a continuous scale based on the BBCH code. The air temperature data are derived from a numerical weather prediction (NWP) model. It is assumed that the phenology at two points with a similar temperature pattern should be similar. The root mean squared difference (RMSD) between the time series of hourly temperature data over a selected time interval are used to measure the temperature similarity of any two points. A sigmoidal function is used to scale the RMSD into a weight factor that determines how the modelled and observed phenophases are combined in the data assimilation. The parameter space for determining the weight of observations is explored. It is found that data assimilation improved the accuracy of the phenological model and that the value of the point-like observations can be increased through using a weighting function based on environmental parameters, such as temperature.

  3. The USA-National Phenology Network Biophysical Program

    Science.gov (United States)

    Losleben, M. V.; Crimmins, T. M.; Weltzin, J. F.

    2009-12-01

    On January 1, 2009, the USA National Phenology Network (USA-NPN, www.usanpn.org) launched the USA-NPN Biophysical Program. The overarching goal of the Biophysical Program (BP) is to link phenology, the study of recurring plant and animal life cycle stages, with climate through the integration of phenology observations, meteorological, and spectral remote sensing measurements at sites across a broad a spectrum of environments. Phenology is critical for understanding a changing world. Many of the recurring plant and animal life cycle stages such as leafing and flowering of plants, maturation of agricultural crops, emergence of insects, and migration of birds are sensitive to climatic variation and change, and are simple to observe and record. Such changes can effect, for example, timing mismatches between the emergence of food sources and the arrival of migrating populations, or create new disease and invasive species vectors via increasingly suitable growing seasons relative to the climatic life cycle requirements of hosts or the organisms themselves. New vectors or crashing populations can have major repercussions on entire ecosystems and regional economics. Thus, to track phenology and build a national database, the USA-NPN is providing standard phenology monitoring protocols. Further, the integration of weather stations with phenological data provides an opportunity to understand how a changing climate is altering phenology. Thus, the USA-NPN Biophysical Program is developing an integrative biology-climate site template for widespread dissemination, in collaboration with the Rocky Mountain Biological Laboratory (RMBL, http://rmbl.org/rockymountainbiolab/). This poster presents the USA-NPN Biophysical Program, and the results of the collaboration with RMBL during the summer of 2009, including the installation of an elevational network of climate stations. The National Science Foundation’s Major Research Instrumentation (NSF’s MRI) program provides funding

  4. Reviving a Legacy Citizen Science Project to Illuminate Shifts in Bird Phenology

    Directory of Open Access Journals (Sweden)

    Jessica Zelt

    2012-01-01

    Full Text Available Climate change has been of high interest to both the scientific community and the public at large since the phenomenon was first suggested. Subsequently, and with growing evidence of its impending ramifications, numerous studies have attempted to illuminate climate change impacts on bird migration. Migration is a key event in the annual cycle in the reproductive success of birds, and changes in migration in response to climate may indicate that species populations are at risk. Previous studies report earlier arrival dates in response to climate change in many bird species, although specific mechanisms are often difficult to explain at broad spatial and temporal scales. Using a newly revived dataset of historical migration cards for over 870 species and spanning 90 years throughout North America, we are developing an historical baseline of bird arrival dates to compare with contemporary records. Here we chronicle the history and reemergence of the North American Bird Phenology Program. We present two case studies illustrating how data from this program has been used to model historical arrival dates of Ruby-Throated Hummingbird (Archilochus colubris and Purple Martin (Progne subis throughout eastern North America. Our results show the importance of considering spatial and temporal variability in understanding patterns of bird spring arrivals.

  5. Flower power: tree flowering phenology as a settlement cue for migrating birds.

    Science.gov (United States)

    McGrath, Laura J; van Riper, Charles; Fontaine, Joseph J

    2009-01-01

    1. Neotropical migrant birds show a clear preference for stopover habitats with ample food supplies; yet, the proximate cues underlying these decisions remain unclear. 2. For insectivorous migrants, cues associated with vegetative phenology (e.g. flowering, leaf flush, and leaf loss) may reliably predict the availability of herbivorous arthropods. Here we examined whether migrants use the phenology of five tree species to choose stopover locations, and whether phenology accurately predicts food availability. 3. Using a combination of experimental and observational evidence, we show migrant populations closely track tree phenology, particularly the flowering phenology of honey mesquite (Prosopis glandulosa), and preferentially forage in trees with more flowers. Furthermore, the flowering phenology of honey mesquite reliably predicts overall arthropod abundance as well as the arthropods preferred by migrants for food. 4. Together, these results suggest that honey mesquite flowering phenology is an important cue used by migrants to assess food availability quickly and reliably, while in transit during spring migration.

  6. Flower power: Tree flowering phenology as a settlement cue for migrating birds

    Science.gov (United States)

    McGrath, L.J.; van Riper, Charles; Fontaine, J.J.

    2009-01-01

    1. Neotropical migrant birds show a clear preference for stopover habitats with ample food supplies; yet, the proximate cues underlying these decisions remain unclear. 2. For insectivorous migrants, cues associated with vegetative phenology (e.g. flowering, leaf flush, and leaf loss) may reliably predict the availability of herbivorous arthropods. Here we examined whether migrants use the phenology of five tree species to choose stopover locations, and whether phenology accurately predicts food availability. 3. Using a combination of experimental and observational evidence, we show migrant populations closely track tree phenology, particularly the flowering phenology of honey mesquite (Prosopis glandulosa), and preferentially forage in trees with more flowers. Furthermore, the flowering phenology of honey mesquite reliably predicts overall arthropod abundance as well as the arthropods preferred by migrants for food. 4. Together, these results suggest that honey mesquite flowering phenology is an important cue used by migrants to assess food availability quickly and reliably, while in transit during spring migration. ?? 2008 The Authors.

  7. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.

    Science.gov (United States)

    Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C

    2015-11-01

    Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation

  8. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds.

    Science.gov (United States)

    Saino, Nicola; Bazzi, Gaia; Gatti, Emanuele; Caprioli, Manuela; Cecere, Jacopo G; Possenti, Cristina D; Galimberti, Andrea; Orioli, Valerio; Bani, Luciano; Rubolini, Diego; Gianfranceschi, Luca; Spina, Fernando

    2015-04-01

    Dissecting phenotypic variance in life history traits into its genetic and environmental components is at the focus of evolutionary studies and of pivotal importance to identify the mechanisms and predict the consequences of human-driven environmental change. The timing of recurrent life history events (phenology) is under strong selection, but the study of the genes that control potential environmental canalization in phenological traits is at its infancy. Candidate genes for circadian behaviour entrained by photoperiod have been screened as potential controllers of phenological variation of breeding and moult in birds, with inconsistent results. Despite photoperiodic control of migration is well established, no study has reported on migration phenology in relation to polymorphism at candidate genes in birds. We analysed variation in spring migration dates within four trans-Saharan migratory species (Luscinia megarhynchos; Ficedula hypoleuca; Anthus trivialis; Saxicola rubetra) at a Mediterranean island in relation to Clock and Adcyap1 polymorphism. Individuals with larger number of glutamine residues in the poly-Q region of Clock gene migrated significantly later in one or, respectively, two species depending on sex and whether the within-individual mean length or the length of the longer Clock allele was considered. The results hinted at dominance of the longer Clock allele. No significant evidence for migration date to covary with Adcyap1 polymorphism emerged. This is the first evidence that migration phenology is associated with Clock in birds. This finding is important for evolutionary studies of migration and sheds light on the mechanisms that drive bird phenological changes and population trends in response to climate change. © 2015 John Wiley & Sons Ltd.

  9. Phenology and the changing pattern of bird migration in Britain

    Science.gov (United States)

    Sparks, T. H.

    Britain has a huge mass of data on the timing of bird migration, although much of this remains in a form that is inaccessible for immediate scientific study. In this paper, I undertake a preliminary examination of data from a number of historical and current sources. Among these are the Marsham family records from Norfolk, dating back to 1736, and post-World War II records from coastal bird observatories. The majority of the examined time series displayed a negative relationship to temperature indicating a tendency for the earlier arrival of the studied birds in warmer springs. In addition to temperature effects, trends through time and some sampling effects (through population size) have become apparent. Identification and curation of data sources and further analysis is still required to produce a clearer picture of climate effects on bird migration timing and on subsequent bird population dynamics.

  10. Autumn phenology and morphometrics in the Garden Warbler Sylvia borin at the Ottenby Bird Observatory, Sweden

    DEFF Research Database (Denmark)

    Iwajomo, Soladoye B.; Hedenström, Anders; Ottosson, Ulf

    2012-01-01

    Trapping and ringing near ecological barriers can provide useful information about the migration strategies of bird species. In this paper we analyzed ringing data of the Garden Warbler, collected within the period of 1950-2008 at the Ottenby Bird Observatory, south-eastern Sweden, and describe...... patterns in migration phenology, morphometrics and fuel load. A total of 4,351 individuals aged as either adults or juveniles were ringed during the period (yearly averages 7.3 adults and 83.1 juveniles) in addition to 1,514 birds of unknown age. Both age-specific and combined yearly totals did...... not significantly vary over the years. Median passage dates were 24 August, 30 August and 2 September for adults, juveniles and birds of unknown age, respectively. Median passage did not change significantly over the years. Among adults, larger individuals passed the observatory earlier than smaller individuals...

  11. Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds.

    Science.gov (United States)

    La Sorte, Frank A; Fink, Daniel; Hochachka, Wesley M; DeLong, John P; Kelling, Steve

    2014-10-22

    Migration is a common strategy used by birds that breed in seasonal environments. The patterns and determinants of migration routes, however, remain poorly understood. Recent empirical analyses have demonstrated that the locations of two North America migration flyways (eastern and western) shift seasonally, reflecting the influence of looped migration strategies. For the eastern but not western flyway, seasonal variation in atmospheric circulation has been identified as an explanation. Here, we test an alternative explanation based on the phenology of ecological productivity, which may be of greater relevance in western North America, where phenology is more broadly dictated by elevation. Migrants in the western flyway selected lower-elevation spring routes that were wetter, greener and more productive, and higher-elevation autumn routes that were less green and less productive, but probably more direct. Migrants in the eastern flyway showed little season variation but maintained associations with maximum regional greenness. Our findings suggest the annual phenology of ecological productivity is associated with en route timing in both flyways, and the spring phenology of ecological productivity contributes to the use of looped strategies in the western flyway. This fine-tuned spatial synchronization may be disrupted when changing climate induces a mismatch between food availability and needs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Phenological synchrony of bird migration with tree flowering at desert riparian stopover sites

    Science.gov (United States)

    Kellermann, Jherime L.; van Riper, Charles

    2015-01-01

    Small-bodied songbirds replenish fat reserves during migration at stopover sites where they continually encounter novel and often unpredictable environmental conditions. The ability to select and utilize high quality habitats is critical to survival and fitness. Vegetation phenology is closely linked with emergence of insect prey and may provide valid cues of food availability for stopover habitat selection. Climate change is disrupting phenological synchrony across trophic levels with negative impacts on bird populations. However, whether synchrony or mismatch indicates historic or disrupted systems remains unclear. Many Neotropical migratory songbirds of western North America must cross arid regions where drought conditions related to climate change and human water use are expected to increase. We studied migrant abundance and the diversity (niche breadth) and proportional use of vegetation species as foraging substrates and their synchrony with vegetation flowering during spring migration along the lower Colorado River in the Sonoran Desert of the U.S. and Mexico.

  13. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    Science.gov (United States)

    Bussière, Elsa M S; Underhill, Les G; Altwegg, Res

    2015-06-01

    Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not uniform across the globe, we can expect regional disparities in bird phenological responses. It is also likely that they vary across species, as species show differences in the strength of affinities they have with particular habitats and environments. Here, we examine the arrival and departure of nine Palearctic and seven intra-African migratory species in the central Highveld of South Africa, where the former spend their nonbreeding season and the latter their breeding season. Using novel analytical methods based on bird atlas data, we show phenological shifts in migration of five species - red-backed shrike, spotted flycatcher, common sandpiper, white-winged tern (Palearctic migrants), and diederik cuckoo (intra-African migrant) - between two atlas periods: 1987-1991 and 2007-2012. During this time period, Palearctic migrants advanced their departure from their South African nonbreeding grounds. This trend was mainly driven by waterbirds. No consistent changes were observed for intra-African migrants. Our results suggest that the most consistent drivers of migration phenological shifts act in the northern hemisphere, probably at the breeding grounds. © 2015 John Wiley & Sons Ltd.

  14. Phenology MMS: a program to simulate crop phenological responses to water stress

    Science.gov (United States)

    Crop phenology is fundamental for understanding crop growth and development, and increasingly influences many agricultural management practices. Water deficits are one environmental factor that can influence crop phenology through shortening or lengthening the developmental phase, yet the phenologic...

  15. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird

    NARCIS (Netherlands)

    Visser, M.E.; Holleman, L.J.M.; Gienapp, P.

    2006-01-01

    Timing of reproduction has major fitness consequences, which can only be understood when the phenology of the food for the offspring is quantified. For insectivorous birds, like great tits (Parus major), synchronisation of their offspring needs and abundance of caterpillars is the main selection

  16. Evidence of both phenological and range shifts in birds in response to increasing temperature in Ireland

    Science.gov (United States)

    Donnelly, Alison; Cooney, Tom; Stirnemann, Rebecca; O'Halloran, John

    2010-05-01

    It is well established that the timing of arrival of long-distance migrant birds in spring is advancing throughout Europe and that this response is, at least in part, due to an increase in temperature in line with current global warming. In Ireland, we have seen a number of sub-Saharan species, such as, barn swallow (Hirundo rustica), northern wheatear (Oenanthe oenanthe) and sand martin (Riparia riparia) advance their arrival time over a 31-year period. In addition, a medium-distance winter migrant, the whooper swan (Cygnus cygnus), has significantly advanced its spring departure time from its wintering ground in Ireland. Furthermore, a number of species, such as the little egret (Egretta garzetta), more typically associated with a warmer climate than Ireland, was considered to be a ‘rare visitor' up to 1990 and has now begun to breed and to establish a population on the island. All of these phenological and range shifts have been correlated with various temperature variables. The consequences of early arrival at wintering and breeding grounds could result in increased fitness but only if an appropriate food resource is in adequate supply at the new earlier time. If temperatures continue to rise as predicted, the status of some bird species in Ireland may change from ‘rare' to ‘common' or from ‘visitor' to ‘resident' with a possible concurrent increase in population size. Equally, the opposite trend may occur, for birds that prefer cold temperatures, whereby we may see a decrease in population size followed by the loss of certain species.

  17. Species interactions in an Andean bird-flowering plant network: phenology is more important than abundance or morphology.

    Science.gov (United States)

    Gonzalez, Oscar; Loiselle, Bette A

    2016-01-01

    Biological constraints and neutral processes have been proposed to explain the properties of plant-pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers) and flowering plants in high elevation forests (i.e., "elfin" forests) of the Andes, we explore the importance of biological constraints and neutral processes (random interactions) to explain the observed species interactions and network metrics, such as connectance, specialization, nestedness and asymmetry. In cold environments of elfin forests, which are located at the top of the tropical montane forest zone, many plants are adapted for pollination by birds, making this an ideal system to study plant-pollinator networks. To build the network of interactions between birds and plants, we used direct field observations. We measured abundance of birds using mist-nets and flower abundance using transects, and phenology by scoring presence of birds and flowers over time. We compared the length of birds' bills to flower length to identify "forbidden interactions"-those interactions that could not result in legitimate floral visits based on mis-match in morphology. Diglossa flowerpiercers, which are characterized as "illegitimate" flower visitors, were relatively abundant. We found that the elfin forest network was nested with phenology being the factor that best explained interaction frequencies and nestedness, providing support for biological constraints hypothesis. We did not find morphological constraints to be important in explaining observed interaction frequencies and network metrics. Other network metrics (connectance, evenness and asymmetry), however, were better predicted by abundance (neutral process) models. Flowerpiercers, which cut holes and access flowers at their base and, consequently, facilitate nectar access for other hummingbirds, explain why morphological mis-matches were relatively unimportant in this system. Future work should focus on how changes in

  18. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    Science.gov (United States)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  19. Spring leaf phenology, insect abundance and the timing of breeding by birds in a North American temperate forest

    Science.gov (United States)

    Lany, N.; Ayres, M. P.; Stange, E.; Sillett, S.; Rodenhouse, N.; Holmes, R. T.

    2011-12-01

    Climate patterns on planet Earth display conspicuous variation among years and the phenology of biological events, when measured by day of the year, shows correspondingly high interannual variation. For many species, survival and reproductive success is influenced by the timing of their annual rhythms relative to that of other species with which they interact. The historically high interannual variation in climate has selected for adaptive plasticity in the phenology of biological populations, but climate change challenges the ability of populations to maintain appropriate phenology. Understanding the physiological mechanisms by which organisms respond to existing variation will help predict situations where the phenological associations among interacting species may break down. We used a 22-year time series of phenological observations of two foundational deciduous tree species at the Hubbard Brook Experimental Forest in New Hampshire USA to develop and parameterize a mechanistic Bayesian model of spring leaf development . The interannual variation in timing of leafout has been high (range of 31 days since 1960, standard deviation = 6.7 days). For both tree species, thermal sum accounts for more than 80% of the variation in day of leafout for both species but a threshold based on photoperiod or early spring soil temperatures also plays a role after which development progresses as a simple linear function of degree days above 4 C. We also analyzed a corresponding time series of the timing of arrival and nesting of a common, migratory, insectivorous bird (Black-Throated Blue Warbler, Dendroica caerulescens) in the same forest. The arrival of these warblers on their breeding grounds was slightly responsive to interannual variation in leafout; the change in the median date of warbler arrival per change in date of leafout is 0.15 ± 0.08 d. Thus, the timing of warbler arrival has only varied by about one week relative to a range of about one month in the timing of

  20. Modelling of the spring phenological phases of the Silver birch Betula pendula and Bird cherry Padus racemosa in Baltic region

    Science.gov (United States)

    Kalvāns, Andis; Kalvāne, Gunta; Bitāne, Māra; Cepīte-Frišfelde, Daiga; Sīle, Tija; Seņņikovs, Juris

    2014-05-01

    The air temperature is the strongest driving factor of the plant development during spring time in moderate climate conditions. However other factors such as the air temperature during the dormancy period and light conditions can play a role as well. The full potential of the recent and historical phenological observation data can be utilised by modelling tools. We have calibrated seven phenological models described in scientific literature to calculate the likely dates leaf unfolding and start of flowering of the Silver birch Betula pendula and bird cherry Padus racemosa (Kalvāns at al, accepted). Phenological observations are derived from voluntary observation network for period 1960-2009 in Latvia. The number of used observations for each phase range from 149 to 172. Air temperature data measured in meteorological stations closest to the corresponding phenological observation sites are obtained from Latvian Environment, Geology and Meteorology Centre. We used 33 random data subsamples for model calibration to produce a range of model coefficients enabling the estimation of the phenological model uncertainty. It is found that the best reproduction of the observational data are obtained using a simple linear degree day model considering daily minimum and maximum temperature and more complex sigmoidal model honouring the need for low temperatures for dormancy release (UniChill, Chuine, 2000). The median calibration base temperature in the degree day model for the silver birch leaf unfolding is 5.6°C and for start of the flowering 6.7°C; for the bird cherry the corresponding base temperatures are 3.2°C and 3.4°C. The calibrated models and air temperature archive data derived from the Danish Meteorological Institute is used to simulate the respective phase onset in the Estonia, Latvia and Lithuania in 2009. Significant regional differences between modelled phase onset times are observed. There is a wide regional variation of the model uncertainty as well

  1. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds.

    Science.gov (United States)

    Miles, Will T S; Bolton, Mark; Davis, Peter; Dennis, Roy; Broad, Roger; Robertson, Iain; Riddiford, Nick J; Harvey, Paul V; Riddington, Roger; Shaw, Deryk N; Parnaby, David; Reid, Jane M

    2017-04-01

    Phenological changes in key seasonally expressed life-history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long-term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955-2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long-distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross-correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life-history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single

  2. Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.

    Science.gov (United States)

    Haest, Birgen; Hüppop, Ommo; Bairlein, Franz

    2018-04-01

    Many migrant bird species that breed in the Northern Hemisphere show advancement in spring arrival dates. The North Atlantic Oscillation (NAO) index is one of the climatic variables that have been most often investigated and shown to be correlated with these changes in spring arrival. Although the NAO is often claimed to be a good predictor or even to have a marked effect on interannual changes in spring migration phenology of Northern Hemisphere breeding birds, the results on relations between spring migration phenology and NAO show a large variety, ranging from no, over weak, to a strong association. Several factors, such as geographic location, migration phase, and the NAO index time window, have been suggested to partly explain these observed differences in association. A combination of a literature meta-analysis, and a meta-analysis and sliding time window analysis of a dataset of 23 short- and long-distance migrants from the constant-effort trapping garden at Helgoland, Germany, however, paints a completely different picture. We found a statistically significant overall effect size of the NAO on spring migration phenology (coefficient = -0.14, SE = 0.054), but this on average only explains 0%-6% of the variance in spring migration phenology across all species. As such, the value and biological meaning of the NAO as a general predictor or explanatory variable for climate change effects on migration phenology of birds, seems highly questionable. We found little to no definite support for previously suggested factors, such as geographic location, migration phenology phase, or the NAO time window, to explain the heterogeneity in correlation differences. We, however, did find compelling evidence that the lack of accounting for trends in both time series has led to strongly inflated (spurious) correlations in many studies (coefficient = -0.13, SE = 0.019). © 2017 John Wiley & Sons Ltd.

  3. 78 FR 67183 - Proposed Information Collection; Migratory Bird Harvest Information Program and Migratory Bird...

    Science.gov (United States)

    2013-11-08

    ...-91200 FF09M26000] Proposed Information Collection; Migratory Bird Harvest Information Program and Migratory Bird Surveys AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice; request for comments...) or 703- 358-2482 (telephone). SUPPLEMENTARY INFORMATION: I. Abstract The Migratory Bird Treaty Act...

  4. Population growth in a wild bird is buffered against phenological mismatch

    NARCIS (Netherlands)

    Reed, T.; Grotan, V.; Jenouvrier, S.; Saether, B.E.; Visser, M.E.

    2013-01-01

    road-scale environmental changes are altering patterns of natural selection in the wild, but few empirical studies have quantified the demographic cost of sustained directional selection in response to these changes. We tested whether population growth in a wild bird is negatively affected by

  5. A phenology of the evolution of endothermy in birds and mammals.

    Science.gov (United States)

    Lovegrove, Barry G

    2017-05-01

    Recent palaeontological data and novel physiological hypotheses now allow a timescaled reconstruction of the evolution of endothermy in birds and mammals. A three-phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented. In Phase One I propose that the elevation of endothermy - increased metabolism and body temperature (T b ) - complemented large-body-size homeothermy during the Permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land. I propose that Phase Two commenced in the Late Triassic and Jurassic and was marked by extreme body-size miniaturization, the evolution of enhanced body insulation (fur and feathers), increased brain size, thermoregulatory control, and increased ecomorphological diversity. I suggest that Phase Three occurred during the Cretaceous and Cenozoic and involved endothermic pulses associated with the evolution of muscle-powered flapping flight in birds, terrestrial cursoriality in mammals, and climate adaptation in response to Late Cenozoic cooling in both birds and mammals. Although the triphasic model argues for an iterative evolution of endothermy in pulses throughout the Mesozoic and Cenozoic, it is also argued that endothermy was potentially abandoned at any time that a bird or mammal did not rely upon its thermal benefits for parental care or breeding success. The abandonment would have taken the form of either hibernation or daily torpor as observed in extant endotherms. Thus torpor and hibernation are argued to be as ancient as the origins of endothermy itself, a plesiomorphic characteristic observed today in many small birds and mammals. © 2016 Cambridge Philosophical Society.

  6. Understanding the migratory orientation program of birds

    DEFF Research Database (Denmark)

    Thorup, Kasper; Holland, Richard A.; Tøttrup, Anders P.

    2010-01-01

    orient during migration. Despite the difficulties associated with following free-flying birds over long distances, a number of possibilities currently exist for tracking the long distance, sometimes even globe-spanning, journeys undertaken by migrating birds. Birds fitted with radio transmitters can......For many years, orientation in migratory birds has primarily been studied in the laboratory. Although a laboratory-based setting enables greater control over environmental cues, the laboratory-based findings must be confirmed in the wild in free-flying birds to be able to fully understand how birds...... system that enables experienced birds to navigate and guide inexperienced, young birds to their species-specific winter grounds...

  7. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.

    Science.gov (United States)

    Lameris, Thomas K; Scholten, Ilse; Bauer, Silke; Cobben, Marleen M P; Ens, Bruno J; Nolet, Bart A

    2017-10-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  8. American Bird conservancy's approach to the U.S. Important Bird Area Program - identifying the top 500 global sites

    Science.gov (United States)

    Robert M. Chipley

    2005-01-01

    The idea for the Important Bird Area Program originated in a series of studies in the early 1980s conducted by BirdLife International. Recognizing that these studies could become a powerful tool for conservation, BirdLife International began an effort to identify and gather data regarding the most important areas for birds in Europe and to make this information...

  9. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.

    Directory of Open Access Journals (Sweden)

    Grzegorz Orłowski

    Full Text Available Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July, all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August, suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests

  10. Private lands habitat programs benefit California's native birds

    Directory of Open Access Journals (Sweden)

    Ryan T. DiGaudio

    2015-10-01

    Full Text Available To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites.

  11. The need for a North American coordinated bird monitoring program

    Science.gov (United States)

    Jonathan Bart; Ralph C. John

    2005-01-01

    Bird monitoring is at a crossroads. While monitoring programs have existed in North America for nearly a century, recent political, biological, sociological, and economic changes necessitate a new and more efficient approach. Fortunately we now have tools available to meet the demands, including powerful coalitions of the willing within agencies, organizations, and...

  12. The New York State Bird Conservation Area (BCA) Program: A Model for the United States

    Science.gov (United States)

    M. F. Burger; D. J. Adams; T. Post; L. Sommers; B. Swift

    2005-01-01

    The New York State Bird Conservation Area (BCA) Program, modeled after the National Audubon Society?s Important Bird Areas Program, is based on legislation signed by Governor Pataki in 1997. New York is the first state in the nation to enact such a program. The BCA Program seeks to provide a comprehensive, ecosystem approach to conserving birds and their habitats on...

  13. Post construction bird and bat monitoring programs in southern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Edworthy, J. [VisionQuest, Calgary, AB (Canada); Morin, S. [Suncor Energy, Calgary, AB (Canada)

    2005-07-01

    A post construction monitoring methodology for bats and birds was presented for Castle River, Summerview, McBride and Magrath wind farms, which are jointly operated by Suncor Energy and Visionquest. The aim of the on-going program is to gain a better understanding of bird and bat interactions with wind turbines. Surveys occur once a week during non-migratory periods and twice a week during migratory periods. Turbines are surveyed 60 m in each direction. Each mortality is recorded, photographed and collected. Data includes species, date, location in relation to turbine, level of scavenging and cause of death. Species of concern are sent for necropsy. Searcher efficiency and scavenger trials are completed for all sites. Mortality rates for all 4 wind farms were presented separately, with details of species of concern. Additional studies were recommended for long-billed curlew and sharp-tailed grouse, along with details of foraging activity, setbacks from breeding habitats, and impacts observed. Studies for sources of ultrasound and echolocation activity during migration periods and details of participation and monitoring of Bat Wind Energy Consortium activity were also discussed. Details of bird banding program for Swainson Hawks were presented. It was recommended that wind farms avoid rare flora and fauna and critical wildlife habitats. It was concluded that pre-construction wildlife surveys can provide valuable information, and post construction bird and bat mortality surveys are critical to understanding the factors contribute to collisions. refs., tabs., figs.

  14. The Important Bird Areas Program in the United States: building a network of sites for conservation, state by state

    Science.gov (United States)

    Jeffrey V. Wells; Daniel K. Niven; John Cecil

    2005-01-01

    The Important Bird Area (IBA) program is an international effort to identify, conserve, and monitor a network of sites that provide essential habitat for bird populations. BirdLife International began the IBA program in Europe in 1985. Since that time, BirdLife partners in more than 100 countries have joined together to build the global IBA network. Audubon (BirdLife...

  15. Remote sensing of land surface phenology

    Science.gov (United States)

    Meier, G.A.; Brown, Jesslyn F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  16. Phenological Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phenology is the scientific study of periodic biological phenomena, such as flowering, breeding, and migration, in relation to climatic conditions. The few records...

  17. Measuring Phenological Changes due to Defoliation of the Non-Native Species, Saltcedar (Tamarisk) Following Episodic Foliage Removal by the Beetle Diorhabda elongate and Phenological Impacts on Forage Quality for Insectivorous Birds on the Dolores River

    Science.gov (United States)

    Nagler, P. L.; Dennison, P. E.; Hultine, K. R.; van Riper, C.; Glenn, E. P.

    2008-12-01

    Since its introduction to the western U.S. more than a century ago, tamarisk (Tamarix spp.) has become dominant or sub-dominant over many major arid, and semi-arid river systems and their tributaries. The presence of tamarisk has been cited for reducing water availability for human enterprise and biodiversity, displacing native vegetation and for reducing habitat quality for wildlife. With increasing emphasis by public and private sectors on controlling saltcedar (Tamarix chinensis) in the western US, there will likely be a dramatic change in riparian vegetation composition over the course of the next several decades. The rates at which these changes will occur, and the resultant effects on riparian insects and birds that utilize insects for food, are presently unknown. Effects on riparian vegetation communities, resulting from changes in host plant species composition, will likely include changes in plant biomass, microclimate changes, and plant species diversity. These changes could potentially have a profound impact on migratory and breeding birds within riparian corridors throughout the southwest. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. This beetle has successfully defoliated tamarisk where it has been introduced, but there are currently no comprehensive programs in place for monitoring the rapid spread of Diorhabda, the impact of defoliation on habitat and water resources, or the long-term impact of defoliation on tamarisk. We used higher spatial resolution ASTER data and coarser MODIS data for monitoring defoliation caused by Diorhabda elongata and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summers 2007, 2008. We measured stem sap flux, leaf carbon isotope ratios, leaf area, LAI, and vegetation indices from mounted visible and infrared cameras and satellite imagery. The cameras were paired on towers installed 30

  18. Lessons Learned from the First Two Years of Nature's Notebook, the USA National Phenology Network's Plant and Animal Observation Program

    Science.gov (United States)

    Crimmins, T. M.; Rosemartin, A.; Denny, E. G.; Weltzin, J. F.; Marsh, L.

    2010-12-01

    Nature’s Notebook is the USA National Phenology Network’s (USA-NPN) national-scale plant and animal phenology observation program. The program was launched in March 2009 focusing only on plants; 2010 saw the addition of animals and the name and identity “Nature’s Notebook.” Over these two years, we have learned much about how to effectively recruit, train, and retain participants. We have engaged several thousand participants and can report a retention rate, reflected in the number of registered individuals that report observations, of approximately 25%. In 2009, participants reported observations on 133 species of plants on an average of nine days of the year, resulting in over 151,000 records in the USA-NPN phenology database. Results for the 2010 growing season are still being reported. Some of our most valuable lessons learned have been gleaned from communications with our observers. Through an informal survey, participants indicated that they would like to see more regular and consistent communications from USA-NPN program staff; clear, concise, and readily available training materials; mechanisms to keep them engaged and continuing to participate; and quick turn-around on data summaries. We are using this feedback to shape our program into the future. Another key observation we’ve made about our program is the value of locally and regionally-based efforts to implement Nature’s Notebook; some of our most committed observers are participating through partner programs such as the University of California-Santa Barbara Phenology Stewardship Program, Arbor Day Foundation, and the Great Sunflower Project. Future plans include reaching out to more partner organizations and improving our support for locally-based implementations of the Nature’s Notebook program. We have also recognized that the means for reaching and retaining potential participants in Nature’s Notebook vary greatly across generations. As the majority of our participants to

  19. USDA Forest Service goals and programs for monitoring neotropical migratory birds

    Science.gov (United States)

    Patricia Manley

    1993-01-01

    The USDA Forest Service (USFS) developed goals, objectives, and guidelines for monitoring neotropical migratory birds (NTMB) on National Forest System lands in response to the Neotropical Migratory Bird Conservation Program Partners in Flight. A USFS task group developed a hierarchical monitoring framework designed to define priorities for type of monitoring data....

  20. Phylogenetic Conservatism in Plant Phenology

    Science.gov (United States)

    Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; hide

    2013-01-01

    Phenological events defined points in the life cycle of a plant or animal have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism the tendency for closely related species to share similar ecological and biological attributes in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

  1. Toward Phenological Assessments: The USA-National Phenology Network and Plant Phenology

    Science.gov (United States)

    Thomas, K. A.; Weltzin, J. F.; Denny, E. G.

    2009-12-01

    The USA-National Phenology Network (USA-NPN) is a collection of interested individuals, agencies, and organizations that are contributing toward the building of a nation-wide collection of standardized phenology observations. Plant phenology observations are an important component of this effort that can be applied to phenological assessments at multiple scales. The National Coordinating Office (NCO) of the USA-NPN manages a web site (http://www.usanpn.org) that is a portal for standardized phenology monitoring instructions, plant species profiles, observation site registration, and observation data entry. Observers participate by making observations at individual sites, such in their backyard, on plants selected from the 213 currently available on the clearinghouse web site or on cloned lilacs provided through the USA-NPN Cloned Plant Project using phenophase status monitoring. Or, observers can choose to monitor any plant species using the simpler phenological event monitoring described by the USA-NPN program established for K-12 and the general public at Project BudBurst (http://www.windows.ucar.edu/citizen_science/budburst/). All plant data observations are archived within the information core of the USA-NPN, the National Phenology Information Management System (NPIMS). During its first full year of operation in 2009, hundreds of observers submitted plant phenology observation entries through ‘MyNPN’ on the clearinghouse web site.

  2. Agricultural Set-aside Programs and Grassland Birds: Insights from Broad-scale Population Trends

    Directory of Open Access Journals (Sweden)

    S. Riffell

    2008-10-01

    Full Text Available The Conservation Reserve Program (CRP is a voluntary set-aside program in the United States designed to amelioratesoil erosion, control crop overproduction, enhance water quality, and provide wildlife habitat by replacing crops with other forms of land cover. Because CRP includes primarily grass habitats, it has great potential to benefitdeclining North American grassland bird populations. We looked at the change in national and state population trends of grassland birds and related changes to cover-specific CRP variables (previous research grouped all CRP practices. Changes in national trends after the initiation of the CRP were inconclusive, but we observed signficant bird-CRP relations at the state level. Most bird-CRP relations were positive, except for some species associated with habitats that CRP replaced. Practice- and configuration-specific CRP variables were related to grassland bird trends, rather than a generic measure of all CRP types combined. Considering all CRP land as a single, distinct habitat type may obscure actual relations between birds and set-aside characteristics. Understanding and predictingthe effects of set-aside programs (like CRP or agri-environment schemes on grassland birds is complex and difficult. Because available broad-scale datasets are less than adequate, studies should be conducted at a variety of spatial and temporal scales.

  3. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis

    Science.gov (United States)

    Andrew D. Richardson; Ryan S. Anderson; M. Altaf Arain; Alan G. Barr; Gil Bohrer; Guangsheng Chen; Jing M. Chen; Philippe Ciais; Kenneth J. David; Ankur R. Desai; Michael C. Dietze; Danilo Dragoni; Steven R. Garrity; Christopher M. Gough; Robert Grant; David Hollinger; Hank A. Margolis; Harry McCaughey; Mirco Migliavacca; Russel K. Monson; J. William Munger; Benjamin Poulter; Brett M. Raczka; Daniel M. Ricciuto; Alok K. Sahoo; Kevin Schaefer; Hanqin Tian; Rodrigo Vargas; Hans Verbeeck; Jingfeng Xiao; Yongkang. Xue

    2012-01-01

    Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of ecosystem-scale CO

  4. Adaptive temperature regulation in the little bird in winter: predictions from a stochastic dynamic programming model.

    Science.gov (United States)

    Brodin, Anders; Nilsson, Jan-Åke; Nord, Andreas

    2017-09-01

    Several species of small birds are resident in boreal forests where environmental temperatures can be -20 to -30 °C, or even lower, in winter. As winter days are short, and food is scarce, winter survival is a challenge for small endothermic animals. A bird of this size will have to gain almost 10% of its lean body mass in fat every day to sustain overnight metabolism. Birds such as parids (titmice and chickadees) can use facultative hypothermia, a process in which body temperature is actively down-regulated to a specific level, to reduce heat loss and thus save energy. During cold winter nights, these birds may decrease body temperature from the normal from 42 ° down to 35 °C, or even lower in some species. However, birds are unable to move in this deep hypothermic state, making it a risky strategy if predators are around. Why, then, do small northern birds enter a potentially dangerous physiological state for a relatively small reduction in energy expenditure? We used stochastic dynamic programming to investigate this. Our model suggests that the use of nocturnal hypothermia at night is paramount in these biomes, as it would increase winter survival for a small northern bird by 58% over a winter of 100 days. Our model also explains the phenomenon known as winter fattening, and its relationship to thermoregulation, in northern birds.

  5. Environmental Assessment Bird Damage Management in the Wyoming Wildlife Services Program

    OpenAIRE

    United States Department of Agriculture; Animal and Plant Health Inspection Service; Wildlife Services

    2007-01-01

    The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services (WS), U.S. Fish and Wildlife Service (USFWS), Federal Aviation Administration (FAA); Wyoming Game and Fish Department (WGFD), and Wyoming Department of Health (WDH) propose to continue the current bird damage management program in Wyoming. WS, USFWS, FAA, WGFD, and WDH use an adaptive integrated wildlife damage management (IWDM) approach to reduce bird damage to property,...

  6. Pituophis ruthveni (Louisiana pinesnake) Reproduction/breeding phenology

    Science.gov (United States)

    Josh B. Pierce; Craig Rudolph; Christopher A. Melder; Beau B. Gregory

    2016-01-01

    Determing the reproductive phenology of snakes is important since it marks a time period where snakes are particularly vulnerable to predation. In addition, knowledge of reproductive phenology may help captive breeding programs specify appropriate times to pair snakes for reproduction.

  7. From Caprio's lilacs to the USA National Phenology Network

    Science.gov (United States)

    Schwartz, Mark D.; Betancourt, Julio L.; Weltzin, Jake F.

    2012-01-01

    Continental-scale monitoring is vital for understanding and adapting to temporal changes in seasonal climate and associated phenological responses. The success of monitoring programs will depend on recruiting, retaining, and managing members of the public to routinely collect phenological observations according to standardized protocols. Here, we trace the development of infrastructure for phenological monitoring in the US, culminating in the USA National Phenology Network, a program that engages scientists and volunteers.

  8. Climate change impacts: birds

    NARCIS (Netherlands)

    Tomotani, B.M.; Ramakers, J.J.C.; Gienapp, P.

    2016-01-01

    Climate change can affect populations and species in various ways. Rising temperatures can shift geographical distributions and lead to (phenotypic or genetic) changes in traits, mostly phenology, which may affect demography. Most of these effects are well documented in birds. For example, the

  9. DEVELOPING AND IMPLEMENTING A BIRD MIGRATION MONITORING, ASSESSMENT AND PUBLIC OUTREACH PROGRAM FOR YOUR COMMUNITY - THE BIRDCAST PROJECT

    Science.gov (United States)

    The USEPA has developed a technology transfer handbook for the EMPACt BirdCast bird migration monitoring project. The document is essentially a "How-To" Handbook that addresses the planning and implementation steps that were needed to develop, operate and maintain a program simil...

  10. The U.S. Geological Survey Bird Banding Laboratory: an integrated scientific program supporting research and conservation of North American birds

    Science.gov (United States)

    Smith, Gregory J.

    2013-01-01

    The U.S. Geological Survey (USGS) Bird Banding Laboratory (BBL) was established in 1920 after ratification of the Migratory Bird Treaty Act with the United Kingdom in 1918. During World War II, the BBL was moved from Washington, D.C., to what is now the USGS Patuxent Wildlife Research Center (PWRC). The BBL issues permits and bands to permittees to band birds, records bird band recoveries or encounters primarily through telephone and Internet reporting, and manages more than 72 million banding records and more than 4.5 million records of encounters using state-of-the-art technologies. Moreover, the BBL also issues bands and manages banding and encounter data for the Canadian Bird Banding Office (BBO). Each year approximately 1 million bands are shipped from the BBL to banders in the United States and Canada, and nearly 100,000 encounter reports are entered into the BBL systems. Banding data are essential for regulatory programs, especially migratory waterfowl harvest regulations. The USGS BBL works closely with the U.S. Fish and Wildlife Service (USFWS) to develop regulations for the capture, handling, banding, and marking of birds. These regulations are published in the Code of Federal Regulations (CFR). In 2006, the BBL and the USFWS Division of Migratory Bird Management (DMBM) began a comprehensive revision of the banding regulations. The bird banding community has three major constituencies: Federal and State agency personnel involved in the management and conservation of bird populations that include the Flyway Councils, ornithological research scientists, and avocational banders. With increased demand for banding activities and relatively constant funding, a Federal Advisory Committee (Committee) was chartered and reviewed the BBL program in 2005. The final report of the Committee included six major goals and 58 specific recommendations, 47 of which have been addressed by the BBL. Specifically, the Committee recommended the BBL continue to support science

  11. Morphological constraints on changing avian migration phenology.

    Science.gov (United States)

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Teaching change to local youth: Plant phenology, climate change and citizen science at Hakalau Forest National Wildlife Refuge

    Science.gov (United States)

    Litton, C. M.; Laursen, S. C.; Phifer, C.; Giardina, C. P.

    2012-12-01

    Plant phenology is a powerful indicator of how climate change affects native ecosystems, and also provides an experiential outdoor learning opportunity for promoting youth conservation education and awareness. We developed a youth conservation education curriculum, including both classroom and field components, for local middle and high school students from Hawaii. The curriculum is focused on linking plant phenology and climate change, with emphasis on ecologically and culturally important native trees and birds at Hakalau Forest National Wildlife Refuge (NWR), on the Island of Hawaii. In this curriculum, students: (i) visit Hakalau Forest NWR to learn about the ecology of native ecosystems, including natural disturbance regimes and the general concept of change in forest ecosystems; (ii) learn about human-induced climate change and its potential impact on native species; and (iii) collect plant phenology measurements and publish these data on the USA National Phenology Network website. This youth conservation education curriculum represents a close collaboration between Hakalau Forest NWR; the Friends of Hakalau Forest NWR; the College of Tropical Agriculture and Human Resources at the University of Hawaii at Manoa; the USDA Forest Service; and Imi Pono no Ka Aina, an environmental education and outreach program for the Three Mountain Alliance Watershed Partnership. In the Winter and Spring of 2011-2012, we developed classroom and field portions of the curriculum. In the Spring and Summer of 2012, we recruited four groups of participants, with a total of ~40 students, who visited the refuge to participate in the curriculum. Preliminary phenology observations based upon ~4 months of measurements show low to medium levels of flowering, fruiting and leaf flush. However, the real science value of this program will come over years to decades of accumulated student activity. From this, we anticipate the emergence of a unique tropical montane forest dataset on plant

  13. USA National Phenology Network observational data documentation

    Science.gov (United States)

    Rosemartin, Alyssa H.; Denny, Ellen G.; Gerst, Katharine L.; Marsh, R. Lee; Posthumus, Erin E.; Crimmins, Theresa M.; Weltzin, Jake

    2018-04-25

    The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to advance the science of phenology and facilitate ecosystem stewardship by providing phenological information freely and openly. To accomplish these goals, the USA-NPN National Coordinating Office (NCO) delivers observational data on plant and animal phenology in several formats, including minimally processed status and intensity datasets and derived phenometrics for individual plants, sites, and regions. This document describes the suite of observational data products delivered by the USA National Phenology Network, covering the period 2009–present for the United States and accessible via the Phenology Observation Portal (http://dx.doi.org/10.5066/F78S4N1V) and via an Application Programming Interface. The data described here have been used in diverse research and management applications, including over 30 publications in fields such as remote sensing, plant evolution, and resource management.

  14. Phenological changes in the southern hemisphere.

    Directory of Open Access Journals (Sweden)

    Lynda E Chambers

    Full Text Available Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand, South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias, although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially

  15. Phenological Changes in the Southern Hemisphere

    Science.gov (United States)

    Chambers, Lynda E.; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J.; Crawford, Robert J. M.; Durant, Joel M.; Hughes, Lesley; Keatley, Marie R.; Low, Matt; Morellato, Patricia C.; Poloczanska, Elvira S.; Ruoppolo, Valeria; Vanstreels, Ralph E. T.; Woehler, Eric J.; Wolfaardt, Anton C.

    2013-01-01

    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically

  16. Phenological changes in the southern hemisphere.

    Science.gov (United States)

    Chambers, Lynda E; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J; Crawford, Robert J M; Durant, Joel M; Hughes, Lesley; Keatley, Marie R; Low, Matt; Morellato, Patricia C; Poloczanska, Elvira S; Ruoppolo, Valeria; Vanstreels, Ralph E T; Woehler, Eric J; Wolfaardt, Anton C

    2013-01-01

    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically

  17. Two tests of a stochastic dynamic programming model of daily singing routines in birds.

    Science.gov (United States)

    Thomas

    1999-02-01

    Many hypotheses have been put forward to account for the dawn chorus in birds. Few of these, however, are able to account for variation in song output over the whole day, or for differences in daily singing routines between species, individuals, seasons and environmental conditions. One hypothesis that does offer a more general explanation is based on a stochastic dynamic programming (SDP) model of daily singing routines. This model relates the relative costs and benefits of feeding and singing at different times of day to the size of a bird's fat reserves and calculates the optimal daily routines of singing and foraging that will maximize the amount that the bird can sing while avoiding starvation. The use of SDP models in behavioural ecology has become well established, but they remain largely untested empirically. I tested two predictions of the SDP model of daily routines of singing, using free-living European robins Erithacus rubecula. The results supported both predictions: (1) food supplementation causing unpredictable short-term increases in foraging success increased subsequent song output; and (2) changes in ambient temperature were positively associated with changes in subsequent song output. Copyright 1999 The Association for the Study of Animal Behaviour.

  18. Conservation reserve program: benefit for grassland birds in the northern plains

    Science.gov (United States)

    Reynolds, R.E.; Shaffer, T.L.; Sauer, J.R.; Peterjohn, B.G.

    1994-01-01

    During the past few decades numbers of some species of upland-nesting birds in North America have declined. Duck species such as mallard (Anas platyrhynchos), northern pintail (A. acuta) and blue-winged teal (A. discors) have declined since the early 1970s and have remained low since 1985 (Caithamer et al. 1993). Some grassland-dependent nonwaterfowl species also have declined since 1966, as indicated by the North American Breeding Bird Survey (BBS) (Robbins et al. 1986). For prairie-nesting ducks, population declines can be attributed mostly to low recruitment, partially as a result of low nest success. Klett et al. (1988) concluded that nest success (probability of ≥1 egg of clutch hatches) in much of the U.S. Prairie Pothole Region was inadequate to maintain populations of the five most common upland-nesting duck species studied, and that predators were the most important cause of nest failure. Over the years, as grassland areas have been converted to cropland, ducks have concentrated their nesting in the remaining areas of available habitat, where predators such as red fox (Vulpes vulpes), striped skunk (Mephitis mephitis) and badger (Taxidea taxus) forage (Cowardin et al. 1983). The reasons for declining populations of grassland nonwaterfowl birds are not clear but the loss of suitable grassland-nesting habitat probably is an important factor. Currently, approximately 95 percent of the land in North Dakota is used for agricultural purposes, of which over 60 percent is used for annual crop production (Haugse 1990). Of the grassland that remains, 95 percent is used for livestock production. This probably had a severe impact on grassland bird species that seek idle grass cover for nesting. The 1985 and 1990 U.S. Farm Bills include provisions under the Food Security Act to fund a cropland-idling program called the Conservation Reserve Program (CRP). Over 36 million acres have been enrolled nationwide in the CRP since 1985 (Osborn 1993), and up to 25 percent of

  19. Birding for and with People: Integrating Local Participation in Avian Monitoring Programs within High Biodiversity Areas in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Humberto Berlanga

    2012-08-01

    Full Text Available Biological monitoring is a powerful tool for understanding ecological patterns and processes, implementing sound management practices, and determining wildlife conservation strategies. In Mexico, regional long-term bird monitoring has been undertaken only over the last decade. Two comprehensive programs have incorporated bird monitoring as the main tool for assessing the impact of human productive activities on birds and habitats at local and regional levels: the Integrated Ecosystem Management (IEM and the Mesoamerican Biological Corridor Mexico (CBMM. These programs are implemented in supremely important biodiverse regions in the southern and southeastern states of Mexico. Bird monitoring activities are based on the recruitment and participation of local people linked to sustainable productive projects promoted by the CBMM or IEM. Through a series of training workshops delivered by specialists, local monitors receive equipment and coordinate to become part of a large monitoring network that facilitates regional covertures. This data currently being obtained by local people will enable the mid- and long-term assessment of the impacts of sustainable human productive activities on birds and biodiversity. Community-based bird monitoring programs are a promising opportunity for enhancing scientific knowledge, improving sustainable practices, and supporting wildlife conservation in areas of high biodiversity.

  20. Facilitating Phenological Assessments at Local, Regional and National Scales: Year Two Progress of the USA National Phenology Network

    Science.gov (United States)

    Weltzin, J. F.

    2009-12-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although directional climate change has already caused documented shifts in organismal, population, community and ecosystem-level patterns and processes, a national phenological assessment requires a comprehensive suite of standardized methodologies to track phenology across a range of spatial and temporal scales (e.g., organismal to landscapes). The USA National Phenology Network (USA-NPN; www.usanpn.org) is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology as a tool to understand how plants, animals and landscapes respond to climate variation, and as a tool to facilitate human adaptation to ongoing and potential future climate change. USA-NPN will (1) integrate with other formal and informal science observation networks (e.g., NEON, LTER, Ameriflux, NPS I & M, OBFS, GEO, public gardens, conservation groups) including regional phenology networks; (2) utilize and enhance remote sensing products, emerging technologies and data management capabilities; and (3) capitalize on myriad educational opportunities and a new readiness of the public to participate in investigations of nature on a national scale. In its second year of operation, USA-NPN produced many new phenology products and venues for phenology research and citizen involvement that will facilitate local, regional or national assessments of phenology. A new web-page contains an advanced on-line user interface to facilitate entry of contemporary data into the National Phenology Database. The new plant phenology monitoring program provides standardized methodologies and monitoring protocols for 215 local, regional, and nationally distributed plant species

  1. The USA National Phenology Network: Overview and Recent Progress

    Science.gov (United States)

    Weltzin, Jake

    2010-05-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. The USA National Phenology Network (USA-NPN; www.usanpn.org) is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology as a tool to understand how plants, animals and landscapes respond to climate variation, and as a tool to facilitate human adaptation to ongoing and potential future climate change. In its second year of operation, USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. A new web-page contains an advanced on-line user interface to facilitate entry of contemporary data into the National Phenology Database. The new plant phenology monitoring program provides standardized methods and monitoring protocols for 215 local, regional, and nationally distributed plant species. Monitoring methods have been modified to facilitate collection of sampling intensity and absence data for both plants and animals; animal monitoring protocols will be added in March 2010. Coordinated development of regional networks will facilitate focused communication and interaction around regional phenology issues. Future directions include increased integration with national and international formal and informal science networks; enhanced consistency and availability of remote sensing of phenology terminology, methods, products and services; tools for discovery, description, ingestion, curation and distribution of historic phenology datasets; and, improvement of tools for data entry, download and visualization.

  2. ECOLOGY OF CICONIIFORMES BIRDS IN FORESTS OF CRIMEA TIMBER ENTERPRISE OF KRASNODAR TERRITORY

    Directory of Open Access Journals (Sweden)

    A. A. GOJKO

    2010-01-01

    Full Text Available Features of ecology ciconiiformes birds in the conditions of plantings of the Crimean timber enterprise of Krasnodar territory are considered. Biotopes, number, phenology, nested ecology and feed of birds are analyzed.

  3. The European Phenology Network

    NARCIS (Netherlands)

    Vliet, van A.J.H.; Groot, de R.S.; Bellens, Y.; Braun, P.; Bruegger, R.; Bruns, E.; Clevers, J.G.P.W.; Estreguil, C.; Flechsig, M.; Jeanneret, F.; Maggi, M.; Martens, P.; Menne, B.; Menzel, A.; Sparks, T.

    2003-01-01

    The analysis of changes in the timing of life cycle-events of organisms (phenology) has been able to contribute significantly to the assessment of potential impacts of climate change on ecology. These phenological responses of species to changes in climate are likely to have significant relevance

  4. The Phenological Network of Catalonia: an historical perspective

    Science.gov (United States)

    Busto, Montserrat; Cunillera, Jordi; de Yzaguirre, Xavier

    2017-04-01

    The Meteorological Service of Catalonia (SMC) began systematic phenological observation in 1932. Forty-four observers registered the phenophases of 45 plant species, the first or last sighting of six bird species and the first sighting of one species of butterfly. The study First results of phenological observation in Catalonia was published in 1936, showing the different behaviour of the vegetal species and birds according to geographical location. The SMC worked against the military fascist uprising during the Spanish Civil War (1936-1939). Therefore, once the war was finished, the organisation was quickly closed by the Franco dictatorship and the National Meteorological Service became the official institution in Spain. This organization created the Spanish Phenological Network in 1943 following similar standards to the former Catalan network. The reintroduction of democracy and the return of the Catalan self-government structures (1977) allowed the re-foundation of the SMC in 1996. The Climatology Department needed phenological data to complement the study of climatic indicators and realised the fragile situation of phenology observations in Catalonia, with very few operational series. Following a preliminary analysis of the different systems of recording and saving data, the Phenological network of Catalonia (Fenocat) was re-established in 2013. Fenocat is an active partner of the Pan European Phenology Database (PEP725) that uses BBCH-scale coding and the USA National Phenology Network observation system. It is an example of citizen science. As at December 2016, Fenocat had recorded more than 450,000 data. The extension of summer climatic conditions in the Western Mediterranean region has resulted in repetition of phenopases in the same year, such as the second flowering of the holm oak (Quercus ilex), almond tree (Prunus dulcis) and sweet cherry tree (Prunus avium), or the delay in the departure data of the swallow (Hirundo rustica) and hoopoe (Upupa epops

  5. e-phenology: monitoring leaf phenology and tracking climate changes in the tropics

    Science.gov (United States)

    Morellato, Patrícia; Alberton, Bruna; Almeida, Jurandy; Alex, Jefersson; Mariano, Greice; Torres, Ricardo

    2014-05-01

    The e-phenology is a multidisciplinary project combining research in Computer Science and Phenology. Its goal is to attack theoretical and practical problems involving the use of new technologies for remote phenological observation aiming to detect local environmental changes. It is geared towards three objectives: (a) the use of new technologies of environmental monitoring based on remote phenology monitoring systems; (b) creation of a protocol for a Brazilian long term phenology monitoring program and for the integration across disciplines, advancing our knowledge of seasonal responses within tropics to climate change; and (c) provide models, methods and algorithms to support management, integration and analysis of data of remote phenology systems. The research team is composed by computer scientists and biology researchers in Phenology. Our first results include: Phenology towers - We set up the first phenology tower in our core cerrado-savanna 1 study site at Itirapina, São Paulo, Brazil. The tower received a complete climatic station and a digital camera. The digital camera is set up to take daily sequence of images (five images per hour, from 6:00 to 18:00 h). We set up similar phenology towers with climatic station and cameras in five more sites: cerrado-savanna 2 (Pé de Gigante, SP), cerrado grassland 3 (Itirapina, SP), rupestrian fields 4 ( Serra do Cipo, MG), seasonal forest 5 (Angatuba, SP) and Atlantic raiforest 6 (Santa Virginia, SP). Phenology database - We finished modeling and validation of a phenology database that stores ground phenology and near-remote phenology, and we are carrying out the implementation with data ingestion. Remote phenology and image processing - We performed the first analyses of the cerrado sites 1 to 4 phenology derived from digital images. Analysis were conducted by extracting color information (RGB Red, Green and Blue color channels) from selected parts of the image named regions of interest (ROI). using the green color

  6. Experimental Design Considerations for Establishing an Off-Road, Habitat-Specific Bird Monitoring Program Using Point Counts

    Science.gov (United States)

    JoAnn M. Hanowski; Gerald J. Niemi

    1995-01-01

    We established bird monitoring programs in two regions of Minnesota: the Chippewa National Forest and the Superior National Forest. The experimental design defined forest cover types as strata in which samples of forest stands were randomly selected. Subsamples (3 point counts) were placed in each stand to maximize field effort and to assess within-stand and between-...

  7. 77 FR 25192 - Wild Bird Conservation Act; Receipt of Application for Approval of a Cooperative Breeding Program

    Science.gov (United States)

    2012-04-27

    ... Flora (CITES). Under the WBCA, we, the U.S. Fish and Wildlife Service, issue permits for import of... Fish and Wildlife Service Wild Bird Conservation Act; Receipt of Application for Approval of a Cooperative Breeding Program AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of receipt of...

  8. Long-term phenological shifts in raptor migration and climate.

    Directory of Open Access Journals (Sweden)

    Mikaël Jaffré

    Full Text Available Climate change is having a discernible effect on many biological and ecological processes. Among observed changes, modifications in bird phenology have been widely documented. However, most studies have interpreted phenological shifts as gradual biological adjustments in response to the alteration of the thermal regime. Here we analysed a long-term dataset (1980-2010 of short-distance migratory raptors in five European regions. We revealed that the responses of these birds to climate-induced changes in autumn temperatures are abrupt and synchronous at a continental scale. We found that when the temperatures increased, birds delayed their mean passage date of autumn migration. Such delay, in addition to an earlier spring migration, suggests that a significant warming may induce an extension of the breeding-area residence time of migratory raptors, which may eventually lead to residency.

  9. Long-term phenological shifts in raptor migration and climate.

    Science.gov (United States)

    Jaffré, Mikaël; Beaugrand, Grégory; Goberville, Eric; Jiguet, Frédéric; Kjellén, Nils; Troost, Gerard; Dubois, Philippe J; Leprêtre, Alain; Luczak, Christophe

    2013-01-01

    Climate change is having a discernible effect on many biological and ecological processes. Among observed changes, modifications in bird phenology have been widely documented. However, most studies have interpreted phenological shifts as gradual biological adjustments in response to the alteration of the thermal regime. Here we analysed a long-term dataset (1980-2010) of short-distance migratory raptors in five European regions. We revealed that the responses of these birds to climate-induced changes in autumn temperatures are abrupt and synchronous at a continental scale. We found that when the temperatures increased, birds delayed their mean passage date of autumn migration. Such delay, in addition to an earlier spring migration, suggests that a significant warming may induce an extension of the breeding-area residence time of migratory raptors, which may eventually lead to residency.

  10. The Bird.

    Science.gov (United States)

    Hannon, Jean

    2001-01-01

    Students use a dead bird to learn about bird life, anatomy, and death. Students examine a bird body and discuss what happened to the bird. Uses outdoor education as a resource for learning about animals. (SAH)

  11. Tracking global change at local scales: Phenology for science, outreach, conservation

    Science.gov (United States)

    Sharron, Ed; Mitchell, Brian

    2011-06-01

    A Workshop Exploring the Use of Phenology Studies for Public Engagement; New Orleans, Louisiana, 14 March 2011 ; During a George Wright Society Conference session that was led by the USA National Phenology Network (USANPN; http://www.usanpn.org) and the National Park Service (NPS), professionals from government organizations, nonprofits, and higher-education institutions came together to explore the possibilities of using phenology monitoring to engage the public. One of the most visible effects of global change on ecosystems is shifts in phenology: the timing of biological events such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. These shifts are already occurring and reflect biological responses to climate change at local to regional scales. Changes in phenology have important implications for species ecology and resource management and, because they are place-based and tangible, serve as an ideal platform for education, outreach, and citizen science.

  12. Shenandoah National Park Phenology Project-Weather data collection, description, and processing

    Science.gov (United States)

    Jones, John W.; Aiello, Danielle P.; Osborne, Jesse D.

    2010-01-01

    The weather data described in this document are being collected as part of a U.S. Geological Survey (USGS) study of changes in Shenandoah National Park (SNP) landscape phenology (Jones and Osbourne, 2008). Phenology is the study of the timing of biological events, such as annual plant flowering and seasonal bird migration. These events are partially driven by changes in temperature and precipitation; therefore, phenology studies how these events may reflect changes in climate. Landscape phenology is the study of changes in biological events over broad areas and assemblages of vegetation. To study climate-change relations over broad areas (at landscape scale), the timing and amount of annual tree leaf emergence, maximum foliage, and leaf fall for forested areas are of interest. To better link vegetation changes with climate, weather data are necessary. This report documents weather-station data collection and processing procedures used in the Shenandoah National Park Phenology Project.

  13. Review of the USA National Phenology Network

    Science.gov (United States)

    Glynn, Pierre D.; Owen, Timothy W.

    2015-08-24

    In January 2014, leadership from the U.S. Geological Survey (USGS) Ecosystems Mission Area commissioned a review of the USA National Phenology Network (USA–NPN) Program. The Ecosystems Mission Area has a key stake in the USA–NPN, providing both supervision of its Director and most of the appropriated funds. The products and objectives of the program are relevant to six of the seven USGS Mission Areas as well as to at least four Department of the Interior (DOI) bureaus.

  14. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. A Review of Bird Pests and Their Management.

    Science.gov (United States)

    1987-09-01

    Clasification ) A Review of Bird Pests and Their Management (Unclassified) 2 P qSONAL A - oR(S) Krzysik, Anthony J. i(a TrPF P POR: 3h rM[ fO(vF D 14 DARE OF...by the use of overhead’ - stainless steel wire, nylon monofilament line, or netting (see Exclusion, 0 page 35 and Monofilament Line, page 36). 94...overhead canopy of 10-gauge stainless steel wire or 23 to 45 kg test nylon monofilament line has been used successfully for several species of larger birds

  15. 78 FR 58515 - Supplemental Environmental Impact Statement for the Bird Hazard Reduction Program at John F...

    Science.gov (United States)

    2013-09-24

    ..., marking or banding individual birds, and sterilization). Live-capture and relocation is not being proposed... live traps. Non-lethal methods could include live-capture and adoption by private entities with some..., such as shooting, euthanasia, live capture, relocation, etc.? Will the management strategies mentioned...

  16. Coordinating across scales: Building a regional marsh bird monitoring program from national and state Initiatives

    Science.gov (United States)

    Shriver, G.W.; Sauer, J.R.

    2008-01-01

    Salt marsh breeding bird populations (rails, bitterns, sparrows, etc.) in eastern North America are high conservation priorities in need of site specific and regional monitoring designed to detect population changes over time. The present status and trends of these species are unknown but anecdotal evidence of declines in many of the species has raised conservation concerns. Most of these species are listed as conservation priorities on comprehensive wildlife plans throughout the eastern U.S. National Wildlife Refuges, National Park Service units, and other wildlife conservation areas provide important salt marsh habitat. To meet management needs for these areas, and to assist regional conservation planning, survey designs are being developed to estimate abundance and population trends for these breeding bird species. The primary purpose of this project is to develop a hierarchical sampling frame for salt marsh birds in Bird Conservation Region (BCR) 30 that will provide the ability to estimate species population abundances on 1) specific sites (i.e. National Parks and National Wildlife Refuges), 2) within states or regions, and 3) within BCR 30. The entire breeding range of Saltmarsh Sharp-tailed and Coastal Plain Swamp sparrows are within BCR 30, providing an opportunity to detect population trends within the entire breeding ranges of two priority species.

  17. Perspectivs and challenges of phenology research on South America

    Science.gov (United States)

    Patrícia Morellato, Leonor

    2017-04-01

    rarely, but the few published studies have shown the importance of taking phenology into account for forest managment, restoration planning, and to assess plant responses to land-use changes. The main challange remains to establish successfull monitoring programs, which could be partially achieved using near remote phenology digital cameras or phenocams. Phenocams are a relative low-cost tool for taking photographs from vegetation on a daily basis, reducing manual labor. Furthermore, cameras can monitor several sites simultaneously, therefore increasinfg the spatial coverage of phenological moitoring. Phenocams are successfuly detecting leaf changes, but reproductive phenology is still an issue. Networks of phenocams already exist in north America and we are starting the first phenocam network for South America, but consistent financial support and an effective collaboration with the existing networks are to be sought for the success of this endeavour. The integrations of local populations on phenology data collection and observations would be a effective strategy to fill that gap and enroll citzens on scientific activities linked to conservation and education. Still, citizen science is largelly unexplored across South America, and remains as one of the most important goal in penology research for the next decades.

  18. Building a Shared Understanding of Phenology

    Science.gov (United States)

    Rosemartin, A.; Posthumus, E.; Gerst, K.

    2017-12-01

    The USA National Phenology Network (USA-NPN) seeks to advance the science of phenology and support the use of phenology information in decision-making. We envision that natural resource, human health, recreation and land-use decisions, in the context of a variable and changing climate, will be supported by USA-NPN products and tools. To achieve this vision we developed a logic model, breaking down the necessary inputs (e.g., IT infrastructure), participants, activities and the short- to long-term goals (e.g., use of phenological information in adaptive management). Here we compare the ongoing activities and outcomes of three recent collaborations to our logic model, in order to improve the model and inform future collaborations. At Midway Atoll National Wildlife Refuge, resource managers use the USA-NPN's phenology monitoring program to pinpoint the minimum number of days between initial growth and seed set in an invasive species. The data output and calendar visualizations that USA-NPN provides are sufficient to identify the appropriate treatment window. In contrast to a direct relationship with a natural resource manager using USA-NPN tools and products, some collaborations require substantive iterative work between partners. USA-NPN and National Park Service staff, along with academic researchers, assessed advancement in the timing of spring, and delivered the work in a format appropriate for park managers. Lastly, collaborations with indigenous communities reveal a requirement to reconsider the relationship between Western science and indigenous knowledge systems, as well as address ethical considerations and develop trust, before Western science can be meaningfully incorporated into decision-making. While the USA-NPN is a boundary organization, working in between federal agencies, states and universities, and is mandated to support decision-making, we still face challenges in generating usable science. We share lessons learned based on our experience with

  19. Evaluating Gridded Spring Indices Using the USA National Phenology Network's Observational Phenology Data

    Science.gov (United States)

    Crimmins, T. M.; Gerst, K.

    2017-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) produces and freely delivers daily and short-term forecast maps of spring onset dates at fine spatial scale for the conterminous United States and Alaska using the Spring Indices. These models, which represent the start of biological activity in the spring season, were developed using a long-term observational record of four species of lilacs and honeysuckles contributed by volunteer observers. Three of the four species continue to be tracked through the USA-NPN's phenology observation program, Nature's Notebook. The gridded Spring Index maps have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, anticipating allergy outbreaks and planning agricultural harvest dates. However, to date, there has not been a comprehensive assessment of how well the gridded Spring Index maps accurately reflect phenological activity in lilacs and honeysuckles or other species of plants. In this study, we used observational plant phenology data maintained by the USA-NPN to evaluate how well the gridded Spring Index maps match leaf and flowering onset dates in a) the lilac and honeysuckle species used to construct the models and b) in several species of deciduous trees. The Spring Index performed strongly at predicting the timing of leaf-out and flowering in lilacs and honeysuckles. The average error between predicted and observed date of onset ranged from 5.9 to 11.4 days. Flowering models performed slightly better than leaf-out models. The degree to which the Spring Indices predicted native deciduous tree leaf and flower phenology varied by year, species, and region. Generally, the models were better predictors of leaf and flowering onset dates in the Northeastern and Midwestern US. These results reveal when and where the Spring Indices are a meaningful proxy of phenological activity across the United States.

  20. Maryland ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  1. Alabama ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, gulls, and terns...

  2. Forecasting phenology under global warming.

    Science.gov (United States)

    Ibáñez, Inés; Primack, Richard B; Miller-Rushing, Abraham J; Ellwood, Elizabeth; Higuchi, Hiroyoshi; Lee, Sang Don; Kobori, Hiromi; Silander, John A

    2010-10-12

    As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953-2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology.

  3. Forecasting phenology under global warming

    Science.gov (United States)

    Ibáñez, Inés; Primack, Richard B.; Miller-Rushing, Abraham J.; Ellwood, Elizabeth; Higuchi, Hiroyoshi; Lee, Sang Don; Kobori, Hiromi; Silander, John A.

    2010-01-01

    As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953–2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology. PMID:20819816

  4. Improving models to predict phenological responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Andrew D. [Harvard College, Cambridge, MA (United States)

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  5. Using GLOBE Plant Phenology Protocols To Meet the "National Science Education Standards."

    Science.gov (United States)

    Bombaugh, Ruth; Sparrow, Elena; Mal, Tarun

    2003-01-01

    Describes how high school biology teachers can use the Global Learning and Observations to Benefit the Environment (GLOBE) program protocols and data in their classrooms. Includes background information on plant phenology, an overview of GLOBE phenology protocols and materials, and implications for protocols with both deciduous trees and grasses…

  6. Avifauna in southern California chaparral: seasonal distribution, habitat association, reproductive phenology

    Science.gov (United States)

    William O. Wirtz

    1991-01-01

    Dates were obtained between February 1969 and October 1979 on the seasonal occurrence, habitat association, reproductive phenology, and relative abundance of avifauna at two study sites in the chaparral community of the San Gabriel Mountains of southern California. The purpose of the study was to collect information on bird species use of this habitat and to document...

  7. Simulating crop phenological responses to water stress using the phenology mms software component

    Science.gov (United States)

    Crop phenology is fundamental for understanding crop growth and development, and increasingly influences many agricultural management practices. Water deficits are one environmental factor that can influence crop phenology through shortening or lengthening the developmental phase, yet the phenologic...

  8. Screamy Bird

    DEFF Research Database (Denmark)

    Tarby, Sara; Cermak, Daniel

    2016-01-01

    Sara Tarby, Daniel Cermak-Sassenrath. Screamy Bird. Digital game. Kulturnatten 2016, Danish Science Ministry, Copenhagen, DK, Oct 14, 2016.......Sara Tarby, Daniel Cermak-Sassenrath. Screamy Bird. Digital game. Kulturnatten 2016, Danish Science Ministry, Copenhagen, DK, Oct 14, 2016....

  9. First-year Progress and Future Directions of the USA National Phenology Network

    Science.gov (United States)

    Weltzin, J. F.; Losleben, M. V.

    2008-12-01

    Background Periodic plant and animal cycles driven by seasonal variations in climate (i.e., phenology) set the stage for dynamics of ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Phenological data and models have applications related to scientific research, education and outreach, as well as to stakeholders interested in agriculture, tourism and recreation, human health, and natural resource conservation and management. The predictive potential of phenology requires a new data resource-a national network of integrated phenological observations and the tools to access and analyze them at multiple scales. The USA National Phenology Network (USA-NPN) is an emerging and exciting partnership between federal agencies, the academic community, and the general public to monitor and understand the influence of seasonal cycles on the Nation's resources. The USA-NPN will establish a wall-to-wall science and monitoring initiative focused on phenology as a tool to understand how plants, animals and landscapes respond to climate variation, and as a tool to facilitate human adaptation to ongoing and potential future climate change. Results The National Coordinating Office of the USA-NPN began operation in August 2007 at the University of Arizona, Tucson, AZ. This first year of operation produced many new phenology products and venues for phenology research and citizen involvement, as well as identification of future directions for the USA NPN. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 185 vetted local, regional, and national plant species with descriptions and monitoring protocols, as well as

  10. Results of a first look into the Austrian animal phenological records

    Energy Technology Data Exchange (ETDEWEB)

    Scheifinger, H.; Koch, E. [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Winkler, H. [Konrad Lorenz Inst. for Ethology, Vienna (Austria)

    2005-04-01

    The year to year variability and trends of animal phenological phases (honey bee, cockchafer, 3 butterfly species, swallow and cuckoo) of the Austrian phenological observational network were related to each other and to mean monthly temperatures over the time period 1951-1998. Insect phases were well correlated with each other (r{sup 2} = 0.4 to 0.6) and with temperature (r{sup 2} = 0.25 to 0.55), whereas both bird phases were only well correlated with each other (r{sup 2} = 0.57), but showed low common variance values with temperature and with other animal phases. The slope of the temperature-pheno regression, also termed as temperature sensitivity of the phenological phase, was high in the case of the insect phases (-3 to -5 days/ C), but low in the cases of both bird phases (about -1 days/ C). All animal phenological time series showed a trend towards later occurrence dates. The trends of the bird phases were even significant (p<0.1). There was a marked discrepancy between the trends of all animal phenological and temperature time series, especially between the insects and temperature: the mean temperature time series of February, March and April with the highest common variance with the insect phases showed a strongly increasing trend (0.027 C/year), whereas the first appearance dates of the insects tended to occur later (0.06 to 0.15 days/year). Both bird phases correlated weakly with the mean April temperature (r{sup 2} about 0.1). The temperature trend of April was 0.0003 C/year, whereas the trend of the bird phases was 0.2 days/year for the cuckoo and 0.25 days/year for the swallow. From these observations we conclude that a strong temperature sensitivity of the phenological phase based on the year to year variability (in days/ C) does not necessarily result in corresponding trends of temperature and phenological phase. A strong trend of non-atmospheric factors such as population density influencing the animal phases is suspected. Factors other than local

  11. Migrating birds : assessment of impact on 915-MHz radar wind profiler performance at the Atmospheric Radiation Measurement Program's southern great plains

    International Nuclear Information System (INIS)

    Pekour, M. S.

    2002-01-01

    The U. S. Department of Energy's Atmospheric Radiation Measurement Program is running a small network of 915-MHz radar wind profilers (RWPs) at its Southern Great Plains Cloud and Radiation Testbed site in northern Oklahoma and southern Kansas. Seasonal migration of passerines may cause significant interference with the operation of 915-MHz RWPs. The extent of this ''bird jamming'' depends on the radar's parameters, the place of deployment, the season, and the time of day. This poster presents a new diagnostic method for detecting possible bird contamination in RWP data, along with an evaluation of the method using a three-year data set for two RWPs

  12. La Serra d'Almos (Tarragona): an example of phenological data rescue and preservation in Catalonia

    Science.gov (United States)

    Busto, Montserrat; Cunillera, Jordi; de Yzaguirre, Xavi; Borrell, Josep

    2016-04-01

    The interruption of important phenological series and the progressive disappearance of phenological observations in Catalonia led the Meteorological Service of Catalonia (SMC) to design and impulse a new phenological network promoted by the Climate Change Unit of this Met Service. The "Fenocat" network was born in March 2013, and currently has around fifty observers distributed throughout Catalonia that observe plants, birds and butterflies. We are providing data from different plant phenophases to PEP725 database. Besides this new phenological network (Fenocat), one of the aims of SMC is to rescue and preserve historical data from different observation points in Catalonia. We show in this poster the example of rescue and preservation of phenological data from la Serra d'Almos (in Tivissa, near Tarragona, Catalonia, NE Iberian Peninsula), an observation series that began in 1973. After digitalization process and quality control tasks, we show preliminary results of this phenological series, and we compare them with those of similar European series. We show the evolution trends for different observed species, such as almond tree (Prunus dulcis), hazel (Corylus avellana), plum (Prunus domestica), olive tree (Olea europea), apple tree (Malus domestica) or vineyard (Vitis vinifera).

  13. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds.

    Science.gov (United States)

    Boelman, Natalie T; Krause, Jesse S; Sweet, Shannan K; Chmura, Helen E; Perez, Jonathan H; Gough, Laura; Wingfield, John C

    2017-09-01

    Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration, and intensity just as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affects vegetation phenology, while far fewer have examined how the breeding phenology of arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and white-crowned sparrows, Zonotrichia leucophrys gambelii, across five consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, including the timing of arrival on breeding grounds, territory establishment, and clutch initiation. Spring temperatures, precipitation, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover. In response, we found a significant delay in breeding-cycle phenology for both study species in 2013 relative to other study years: the first bird observed was delayed by 6-10 days, with mean arrival by 3-6 days, territory establishment by 6-13 days, and clutch initiation by 4-10 days. Further, snow cover, temperature, and precipitation during the territory establishment period were important predictors of clutch initiation dates for both species. These findings suggest that Arctic-breeding passerine communities may have the flexibility required to adjust breeding phenology in response to the increasingly extreme and unpredictable environmental conditions-although future generations may encounter conditions that exceed their current range of phenological flexibility.

  14. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  15. Use of animal and plant phenology for flight safety

    Science.gov (United States)

    Hild, J.

    1980-09-01

    The relationship between the appearance of small soil animals, number of birds and the season makes it possible to judge flight safety risks. The phenological phase of special plant species also controls the appearance of birds, for particular birds prefer particular states of vegetation, e.g. in pastured areas. This may suggest the possibilities for flight safety in the airfields and their vicinity. During low and high level flights of aircraft it has been necessary to forecast the beginning and course of migration. Beginning of migration is a function of fat deposit in the bird's body which in turn is a function of food uptake. Weather situations and single meteorological parameters influence the course of migration. By observing bird migration by radar and by combining radar data with weather data it has been possible to publish not only medium and long-scale forecasts but also actual warnings. Modern radar technique rendered the observation more difficult but this problem can be solved by introducing new methods.

  16. Mountain birdwatch: developing a coordinated monitoring program for high-elevation birds in the Atlantic northern forest

    Science.gov (United States)

    John D. Lloyd; Julie Hart; J. Dan. Lambert

    2010-01-01

    Birds occupying high-elevation forests in the northeast are perceived to be at risk from a variety of external forces, most notably the potential loss and alteration of habitat associated with global climate change and the increased deployment of wind-energy facilities. However, the Breeding Bird Survey (BBS), a standardized national monitoring scheme widely used to...

  17. Palaearctic-African Bird Migration

    DEFF Research Database (Denmark)

    Iwajomo, Soladoye Babatola

    Bird migration has attracted a lot of interests over past centuries and the methods used for studying this phenomenon has greatly improved in terms of availability, dimension, scale and precision. In spite of the advancements, relatively more is known about the spring migration of trans......-Saharan migrants than autumn migration. Information about the behavior and interactions of migrants during the nonbreeding season in sub-Saharan Africa is also scarce for many species. Furthermore, very little is known about intra-African migration. This thesis summarizes my research on the autumn migration...... of birds from Europe to Africa and opens up the possibility of studying intra-African migration. I have used long-term, standardized autumn ringing data from southeast Sweden to investigate patterns in biometrics, phenology and population trends as inferred from annual trapping totals. In addition, I...

  18. Spring migration of birds in relation to North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2003-01-01

    Roč. 52, č. 3 (2003), s. 287-298 ISSN 0139-7893 Institutional research plan: CEZ:AV0Z6093917 Keywords : bird migration * phenology * climate Subject RIV: EG - Zoology Impact factor: 0.494, year: 2003 http://www.ivb.cz/folia/52/3/287-298.pdf

  19. Co-fluctuation among bird species in their migration timing

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2005-01-01

    Roč. 54, 1-2 (2005), s. 159-164 ISSN 0139-7893 Institutional research plan: CEZ:AV0Z60930519 Keywords : migratory birds * phenology * spring arrival Subject RIV: EG - Zoology Impact factor: 0.585, year: 2005 http://www.ivb.cz/folia/54/1-2/159-164.pdf

  20. Climate change research in Massachusetts, U.S.A.: searching for phenology in the historical record.

    Science.gov (United States)

    Primack, R.; Miller-Rushing, A.

    2009-04-01

    The United States does not have as many large, well-researched sets of phenological records as can be found in Europe. Such phenological research is important both scientifically to investigate the effects of climate change and, just as importantly, for convincing the public that climate change is really happening and is already affecting our environment. Scientists in the United States are currently uncovering a wealth of data from a variety of unconventional sources on the effects of climate on the phenology of a wide range of organisms, with many studies being published on birds and plants. For the past six years, we have been investigating the impact of climate change in Massachusetts, a region with a particularly strong tradition of science and natural history. We are able to use combinations of herbarium specimens, photographs, diaries of individual naturalists, records from research stations, and current observations of our own to document the effects of climate change. Each of these data sources has certain limitations, but the overall message is the same: a warming climate is causing plants to flower earlier and certain migratory birds to arrive earlier. Such data has to be interpreted carefully due to issues of changing population sizes and changing sampling methods and intensity. The single most valuable source of data for our research has been the observations of flowering times of hundreds of plant species from 1852 to 1858 in Concord, Massachusetts, made by Henry David Thoreau. Thoreau is the most famous environmental philosopher in the United States, and most students read his book Walden. Later botanists also recorded flowering times and the abundance of plant species in Concord, and we recorded flowering times and species abundances in Concord starting in 2004. The project has shown that spring flowering species are the most responsive to temperatures, and that these plant species are now flowering seven days earlier than they were in the 1850s

  1. Enhancing Ecological Thought Through Phenological Observation, Research, and Education

    Science.gov (United States)

    Weltzin, J. F.; Losleben, M.; Benton, L. M.

    2008-12-01

    Background The USA National Phenology Network (USA-NPN) is an emerging and exciting partnership between federal agencies, the academic community, and the general public to monitor and understand the influence of seasonal cycles and phenology on the Nation's resources. Phenology is the study of the timing of recurring biological phases, the causes of their timing with regard to biotic and abiotic forces, and the interrelation among phases of same or different species. Phenological data and models developed as part of the network can be applied to scientific research, education and outreach, as well as to stakeholders interested in agriculture, tourism and recreation, human health, and natural resource conservation and management. The goal of the USA-NPN (www.usanpn.org) is to establish a nationwide science and monitoring program to better understand how plants, animals and landscapes respond to climatic variation, and to facilitate human adaptation to ongoing and potential future climate change. Results The NPN has a number of programs through which learners of all ages can observe and interpret their environment using phenology as a platform to facilitate understanding through active learning, engagement, and inquiry-based approaches. For example, since February 2008, the NPN-affiliated network Project BudBurst has registered almost 3000 people who are observing nearly 4000 plants across the continental US and are reporting their observations on-line. In addition, we are developing educational programs, modules, and activities applicable to all stages in the educational process from 'K to gray,' and are partnering with local, state, and federal governmental and non- governmental organizations on education/outreach programming. Dissemination of educational materials and information will be facilitated by the creation of an on-line clearing-house for phenology education and outreach. In sum, the NPN is developing a number of programs and products that will capitalize

  2. Egg laying sequence influences egg mercury concentrations and egg size in three bird species: Implications for contaminant monitoring programs

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Yee, Julie L.; Hartman, C. Alex

    2016-01-01

    Bird eggs are commonly used in contaminant monitoring programs and toxicological risk assessments, but intra-clutch variation and sampling methodology could influence interpretability. We examined the influence of egg laying sequence on egg mercury concentrations and burdens in American avocets, black-necked stilts, and Forster's terns. The average decline in mercury concentrations between the first and last egg laid was 33% for stilts, 22% for terns, and 11% for avocets, and most of this decline occurred between the first and second eggs laid (24% for stilts, 18% for terns, and 9% for avocets). Trends in egg size with egg laying order were inconsistent among species and overall differences in egg volume, mass, length, and width were laying sequence, most of the variance in egg mercury concentrations still occurred among clutches (75%-91%) rather than within clutches (9%-25%). Using simulations, we determined that to accurately estimate a population's mean egg mercury concentration using only a single random egg from a subset of nests, it would require sampling >60 nests to represent a large population (10% accuracy) or ≥14 nests to represent a small colony that contained <100 nests (20% accuracy).

  3. Egg laying sequence influences egg mercury concentrations and egg size in three bird species: Implications for contaminant monitoring programs

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Yee, Julie L.; Hartman, C. Alex

    2016-01-01

    Bird eggs are commonly used in contaminant monitoring programs and toxicological risk assessments, but intra-clutch variation and sampling methodology could influence interpretability. We examined the influence of egg laying sequence on egg mercury concentrations and burdens in American avocets, black-necked stilts, and Forster's terns. The average decline in mercury concentrations between the first and last egg laid was 33% for stilts, 22% for terns, and 11% for avocets, and most of this decline occurred between the first and second eggs laid (24% for stilts, 18% for terns, and 9% for avocets). Trends in egg size with egg laying order were inconsistent among species and overall differences in egg volume, mass, length, and width were mercury concentrations generally declined by 16% between the first and second eggs laid. Despite the strong effect of egg laying sequence, most of the variance in egg mercury concentrations still occurred among clutches (75%-91%) rather than within clutches (9%-25%). Using simulations, we determined that to accurately estimate a population's mean egg mercury concentration using only a single random egg from a subset of nests, it would require sampling >60 nests to represent a large population (10% accuracy) or ≥14 nests to represent a small colony that contained <100 nests (20% accuracy).

  4. Winter rainfall predicts phenology in widely separated populations of a migrant songbird.

    Science.gov (United States)

    McKellar, Ann E; Marra, Peter P; Hannon, Susan J; Studds, Colin E; Ratcliffe, Laurene M

    2013-06-01

    Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east-west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.

  5. Urban phenological studies – Past, present, future

    International Nuclear Information System (INIS)

    Jochner, Susanne; Menzel, Annette

    2015-01-01

    Phenology is believed to be a suitable bio-indicator to track climate change. Based on the strong statistical association between phenology and temperature phenological observations provide an inexpensive means for the temporal and spatial analysis of the urban heat island. However, other environmental factors might also weaken this relationship. In addition, the investigation of urban phenology allows an estimation of future phenology from current information since cities with their amplified temperatures may serve as a proxy for future conditions. Nevertheless, the design of spatial compared to long-term studies might be influenced by different factors which should be taken into consideration when interpreting results from a specific study. In general, plants located in urban areas tend to flush and bloom earlier than in the countryside. What are the consequences of these urban–rural differences? This review will document existing findings on urban phenology and will highlight areas in which further research is needed. - Highlights: • Urban phenology can be used for the estimation of the urban heat island effect. • Confounding factors weaken the phenology–temperature relationship. • Urban phenology is useful as a proxy for climate change impacts on phenology. • Differences in the study design hinder the generalisation of one specific method. • Urban–rural variations in phenology affect vegetation, meteorology, human health. - Studies on urban phenology can be used to detect urban heat islands and to assess climate change impacts but it still remains important to adequately link spatial and long-term data

  6. Environmental structuring of marine plankton phenology.

    Science.gov (United States)

    Boyce, Daniel G; Petrie, Brian; Frank, Kenneth T; Worm, Boris; Leggett, William C

    2017-10-01

    Seasonal cycles of primary production (phenology) critically influence biogeochemical cycles, ecosystem structure and climate. In the oceans, primary production is dominated by microbial phytoplankton that drift with currents, and show rapid turnover and chaotic dynamics, factors that have hindered understanding of their phenology. We used all available observations of upper-ocean phytoplankton concentration (1995-2015) to describe global patterns of phytoplankton phenology, the environmental factors that structure them, and their relationships to terrestrial patterns. Phytoplankton phenologies varied strongly by latitude and productivity regime: those in high-production regimes were governed by insolation, whereas those in low-production regimes were constrained by vertical mixing. In eight of ten ocean regions, our findings contradict the hypothesis that phytoplankton phenologies are coherent at basin scales. Lastly, the spatial organization of phenological patterns in the oceans was broadly similar to those on land, suggesting an overarching effect of insolation on the phenology of primary producers globally.

  7. Bird guard

    Science.gov (United States)

    Fairchild, Dana M [Armour, SD

    2010-03-02

    The bird guard provides a device to protect electrical insulators comprising a central shaft; a clamp attached to an end of the shaft to secure the device to a transmission tower; a top and bottom cover to shield transmission tower insulators; and bearings to allow the guard to rotate in order to frighten birds away from the insulators.

  8. Communicating Research Through Student Involvement in Phenological Investigations

    Science.gov (United States)

    Sparrow, E. B.; Kopplin, M.; Gazal, R. M.; Robin, J. H.; Boger, R. A.

    2011-12-01

    Phenology plays a key role in the environment and ecosystem. Primary and secondary students around the world have been collecting vegetation phenology data and contributing to ongoing scientific investigations. They have increased research capacity by increasing spatial coverage of ground observations that can be useful for validation of remotely sensed data. The green-up and green-down phenology measurement protocols developed at the University of Alaska Fairbanks (UAF) as part of the Global Learning and Observations to Benefit the Environment (GLOBE) program, have been used in more than 250 schools in over 20 countries. In addition to contributing their data, students have conducted their own investigations and presented them at science fairs and symposiums, and international conferences. An elementary school student in Alaska conducted a comprehensive study on the green-down rates of native and introduced trees and shrubs. Her project earned her a one-year college scholarship at UAF. Students from the Model Secondary School for the Deaf in Washington, D. C. and from the Indiana School for the Deaf collaborated on a comparative green-up study, and were chosen to present at an international conference where students from more than 20 countries participated. Similarly, students in Thailand presented at national conferences, their studies such as "The Relationship between Environmental Conditions and Green-down of Teak Trees (Tectona grandis L.)" at Roong Aroon School, Bangkok and "The Comparison of Budburst and Green-up of Leab Trees (Ficus infectoria Roxb.) at Rob Wiang and Mae Khao Tom Sub-district in Chiang Rai Province". Some challenges in engaging students in phenological studies include the mismatch in timing of the start and end of the plant growing season with that of the school year in northern latitudes and the need for scientists and teachers to work with students to ensure accurate measurements. However these are outweighed by benefits to the scientists

  9. Mismatch between birth date and vegetation phenology slows the demography of roe deer.

    Science.gov (United States)

    Plard, Floriane; Gaillard, Jean-Michel; Coulson, Tim; Hewison, A J Mark; Delorme, Daniel; Warnant, Claude; Bonenfant, Christophe

    2014-04-01

    Marked impacts of climate change on biodiversity have frequently been demonstrated, including temperature-related shifts in phenology and life-history traits. One potential major impact of climate change is the modification of synchronization between the phenology of different trophic levels. High phenotypic plasticity in laying date has allowed many bird species to track the increasingly early springs resulting from recent environmental change, but although changes in the timing of reproduction have been well studied in birds, these questions have only recently been addressed in mammals. To track peak resource availability, large herbivores like roe deer, with a widespread distribution across Europe, should also modify their life-history schedule in response to changes in vegetation phenology over time. In this study, we analysed the influence of climate change on the timing of roe deer births and the consequences for population demography and individual fitness. Our study provides a rare quantification of the demographic costs associated with the failure of a species to modify its phenology in response to a changing world. Given these fitness costs, the lack of response of roe deer birth dates to match the increasingly earlier onset of spring is in stark contrast with the marked phenotypic responses to climate change reported in many other mammals. We suggest that the lack of phenotypic plasticity in birth timing in roe deer is linked to its inability to track environmental cues of variation in resource availability for the timing of parturition.

  10. Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer

    Science.gov (United States)

    Plard, Floriane; Gaillard, Jean-Michel; Coulson, Tim; Hewison, A. J. Mark; Delorme, Daniel; Warnant, Claude; Bonenfant, Christophe

    2014-01-01

    Marked impacts of climate change on biodiversity have frequently been demonstrated, including temperature-related shifts in phenology and life-history traits. One potential major impact of climate change is the modification of synchronization between the phenology of different trophic levels. High phenotypic plasticity in laying date has allowed many bird species to track the increasingly early springs resulting from recent environmental change, but although changes in the timing of reproduction have been well studied in birds, these questions have only recently been addressed in mammals. To track peak resource availability, large herbivores like roe deer, with a widespread distribution across Europe, should also modify their life-history schedule in response to changes in vegetation phenology over time. In this study, we analysed the influence of climate change on the timing of roe deer births and the consequences for population demography and individual fitness. Our study provides a rare quantification of the demographic costs associated with the failure of a species to modify its phenology in response to a changing world. Given these fitness costs, the lack of response of roe deer birth dates to match the increasingly earlier onset of spring is in stark contrast with the marked phenotypic responses to climate change reported in many other mammals. We suggest that the lack of phenotypic plasticity in birth timing in roe deer is linked to its inability to track environmental cues of variation in resource availability for the timing of parturition. PMID:24690936

  11. Mismatch between birth date and vegetation phenology slows the demography of roe deer.

    Directory of Open Access Journals (Sweden)

    Floriane Plard

    2014-04-01

    Full Text Available Marked impacts of climate change on biodiversity have frequently been demonstrated, including temperature-related shifts in phenology and life-history traits. One potential major impact of climate change is the modification of synchronization between the phenology of different trophic levels. High phenotypic plasticity in laying date has allowed many bird species to track the increasingly early springs resulting from recent environmental change, but although changes in the timing of reproduction have been well studied in birds, these questions have only recently been addressed in mammals. To track peak resource availability, large herbivores like roe deer, with a widespread distribution across Europe, should also modify their life-history schedule in response to changes in vegetation phenology over time. In this study, we analysed the influence of climate change on the timing of roe deer births and the consequences for population demography and individual fitness. Our study provides a rare quantification of the demographic costs associated with the failure of a species to modify its phenology in response to a changing world. Given these fitness costs, the lack of response of roe deer birth dates to match the increasingly earlier onset of spring is in stark contrast with the marked phenotypic responses to climate change reported in many other mammals. We suggest that the lack of phenotypic plasticity in birth timing in roe deer is linked to its inability to track environmental cues of variation in resource availability for the timing of parturition.

  12. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change.

    Directory of Open Access Journals (Sweden)

    Allen H Hurlbert

    Full Text Available A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3-6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing.

  13. Root phenology in a changing climate.

    Science.gov (United States)

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email

  14. Challenging claims in the study of migratory birds and climate change

    OpenAIRE

    Knudsen, Endre; Linden, Andreas; Both, Christiaan; Jonzen, Niclas; Pulido, Francisco; Saino, Nicola; Sutherland, William J.; Bach, Lars A.; Coppack, Timothy; Ergon, Torbjorn; Gienapp, Phillip; Gill, Jennifer A.; Gordo, Oscar; Hedenstrom, Anders; Lehikoinen, Esa

    2011-01-01

    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrum...

  15. Threatened bird valuation in Australia.

    Directory of Open Access Journals (Sweden)

    Kerstin K Zander

    Full Text Available Threatened species programs need a social license to justify public funding. A contingent valuation survey of a broadly representative sample of the Australian public found that almost two thirds (63% supported funding of threatened bird conservation. These included 45% of a sample of 645 respondents willing to pay into a fund for threatened bird conservation, 3% who already supported bird conservation in another form, and 15% who could not afford to pay into a conservation fund but who nevertheless thought that humans have a moral obligation to protect threatened birds. Only 6% explicitly opposed such payments. Respondents were willing to pay about AUD 11 annually into a conservation fund (median value, including those who would pay nothing. Highest values were offered by young or middle aged men, and those with knowledge of birds and those with an emotional response to encountering an endangered bird. However, the prospect of a bird going extinct alarmed almost everybody, even most of those inclined to put the interests of people ahead of birds and those who resent the way threatened species sometimes hold up development. The results suggest that funding for threatened birds has widespread popular support among the Australian population. Conservatively they would be willing to pay about AUD 14 million per year, and realistically about AUD 70 million, which is substantially more than the AUD 10 million currently thought to be required to prevent Australian bird extinctions.

  16. Forecasting plant phenology: evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia.

    Science.gov (United States)

    Kalvāns, Andis; Bitāne, Māra; Kalvāne, Gunta

    2015-02-01

    A historical phenological record and meteorological data of the period 1960-2009 are used to analyse the ability of seven phenological models to predict leaf unfolding and beginning of flowering for two tree species-silver birch Betula pendula and bird cherry Padus racemosa-in Latvia. Model stability is estimated performing multiple model fitting runs using half of the data for model training and the other half for evaluation. Correlation coefficient, mean absolute error and mean squared error are used to evaluate model performance. UniChill (a model using sigmoidal development rate and temperature relationship and taking into account the necessity for dormancy release) and DDcos (a simple degree-day model considering the diurnal temperature fluctuations) are found to be the best models for describing the considered spring phases. A strong collinearity between base temperature and required heat sum is found for several model fitting runs of the simple degree-day based models. Large variation of the model parameters between different model fitting runs in case of more complex models indicates similar collinearity and over-parameterization of these models. It is suggested that model performance can be improved by incorporating the resolved daily temperature fluctuations of the DDcos model into the framework of the more complex models (e.g. UniChill). The average base temperature, as found by DDcos model, for B. pendula leaf unfolding is 5.6 °C and for the start of the flowering 6.7 °C; for P. racemosa, the respective base temperatures are 3.2 °C and 3.4 °C.

  17. Novel methods reveal shifts in migration phenology of barn swallows in South Africa.

    Science.gov (United States)

    Altwegg, Res; Broms, Kristin; Erni, Birgit; Barnard, Phoebe; Midgley, Guy F; Underhill, Les G

    2012-04-22

    Many migratory bird species, including the barn swallow (Hirundo rustica), have advanced their arrival date at Northern Hemisphere breeding grounds, showing a clear biotic response to recent climate change. Earlier arrival helps maintain their synchrony with earlier springs, but little is known about the associated changes in phenology at their non-breeding grounds. Here, we examine the phenology of barn swallows in South Africa, where a large proportion of the northern European breeding population spends its non-breeding season. Using novel analytical methods based on bird atlas data, we show that swallows first arrive in the northern parts of the country and gradually appear further south. On their north-bound journey, they leave South Africa rapidly, resulting in mean stopover durations of 140 days in the south and 180 days in the north. We found that swallows are now leaving northern parts of South Africa 8 days earlier than they did 20 years ago, and so shortened their stay in areas where they previously stayed the longest. By contrast, they did not shorten their stopover in other parts of South Africa, leading to a more synchronized departure across the country. Departure was related to environmental variability, measured through the Southern Oscillation Index. Our results suggest that these birds gain their extended breeding season in Europe partly by leaving South Africa earlier, and thus add to scarce evidence for phenology shifts in the Southern Hemisphere.

  18. Engage the Public in Phenology Monitoring: Lessons Learned from the USA National Phenology Network

    Science.gov (United States)

    Crimmins, T. M.; Lebuhn, G.; Miller-Rushing, A. J.

    2009-12-01

    The USA National Phenology Network (USA-NPN) is a recently established network that brings together citizen scientists, government agencies, non-profit groups, educators and students of all ages to monitor the impacts of climate change on plants and animals in the United States. Though a handful of observers participated in the USA-NPN monitoring program in 2008, 2009 was the first truly operational year for the program. With a goal of 100,000 observers for this nationwide effort, we are working to engage participants both directly and through established organizations and agencies. The first year of operational monitoring and program advertisement has yielded many insights that are shaping how we move forward. In this presentation, we will highlight some of our most prominent “lessons learned” from our experience engaging participants, mainly through partnerships with organizations and agencies. One successful partnership that the USA-NPN established in 2009 was with the Great Sunflower Project, a citizen science effort focused on tracking bee activity. By piggy-backing on this established program, we were able to invite tens of thousands of self-selected individuals to learn about plant phenology and to contribute to the program. A benefit to the Great Sunflower Project was that monitoring phenology of their sunflowers gave observers something to do while waiting for the plant to attract bees. Observers’ experiences, data, and comments from the 2009 season are yielding insights into how this partnership can be strengthened and USA-NPN and GSP goals can more effectively be met. A second partnership initiated in 2009 was with the US National Park Service (NPS). Partnering with federal and state agencies offers great opportunities for data collection and education. In return, agencies stand to gain information that can directly influence management decisions. However, such efforts necessitate careful planning and execution. Together the USA-NPN and NPS drafted

  19. Hawaii ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for endangered waterbirds and passerine birds, migratory shorebirds and waterfowl, gulls and terns,...

  20. Declining effect of warm temperature on spring phenology of tree species at low elevation in the Alps

    Science.gov (United States)

    Asse, Daphné; Randin, Christophe; Chuine, Isabelle

    2017-04-01

    Mountain regions are particularly exposed to climate change and temperature. In the Alps increased twice faster than in the northern hemisphere during the 20th century. As an immediate response, spring phenological phases of plant species such as budburst and flowering, have tended to occur earlier. In 2004, the CREA (Centre de Recherches sur les Ecosystèmes d'Altitude, Chamonix, France) initiated the citizen science program Phenoclim, which aims at assessing the long-term effects of climate changes on plant phenology over the entire French Alps. Sixty sites with phenological observations were equipped with temperature stations across a large elevational gradient. Here we used phenological records for five tree species (birch, ash, hazel, spruce and larch) combined with measurements or projections of temperature. We first tested the effects of geographic and topo-climatic factors on the timing of spring phenological phases. We then tested the hypothesis that a lack of chilling temperature during winter delayed dormancy release and subsequently spring phenological phases. Our data are currently being used to calibrate process-based phenological models to test to which extent soil temperature and photoperiod affect the timing of spring phenological phases. We found that growing degree-days was the best predictor of the timing of spring phenological phases, with a significant contribution of chilling. Our results also suggest that spring phenological phases were consistently delayed at low elevation by a lack of chilling in fall during warm years for the three deciduous species. Key words: Spring phenology, elevation gradients, citizen science, empirical and process-based modeling

  1. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow.

    Directory of Open Access Journals (Sweden)

    Manuela Caprioli

    Full Text Available In diverse taxa, photoperiodic responses that cause seasonal physiological and behavioural shifts are controlled by genes, including the vertebrate Clock orthologues, that encode for circadian oscillator mechanisms. While the genetic network behind circadian rhythms is well described, relatively few reports exist of the phenological consequences of and selection on Clock genes in the wild. Here, we investigated variation in breeding phenology in relation to Clock genetic diversity in a long-distance migratory bird, the barn swallow (Hirundo rustica.In a sample of 922 adult barn swallows from a single population breeding in Italy we found one very common (Q(7 and three rare (Q(5, Q(6, Q(8 length variants of a functionally significant polyglutamine repeat. Rare (2.9% Q(7/Q(8 heterozygous females, but not males, bred significantly later than common (91.5% Q(7/Q(7 females, consistent with the expectation that 'long' alleles cause late breeding, as observed in a resident population of another bird species. Because breeding date depends on arrival date from migration, present results suggest that the association between breeding date and Clock might be mediated by migration phenology. In addition, fecundity selection appears to be operating against Q(7/Q(8 because late migrating/breeding swallows have fewer clutches per season, and late breeding has additional negative selection effects via reduced offspring longevity. Genotype frequencies varied marginally non-significantly with age, as Q(7/Q(8 frequency showed a 4-fold reduction in old individuals. This result suggests negative viability selection against Q(7/Q(8, possibly mediated by costs of late breeding.This is the first study of migratory birds showing an association between breeding phenology and Clock genotype and suggesting that negative selection occurs on a phenologically deviant genotype. Low polymorphism at Clock may constrain microevolutionary phenological response to changing climate

  2. The North Sea Bird Club

    International Nuclear Information System (INIS)

    Doyle, P.A.T.; Gorman, M.L.; Patterson, I.J.; Howe, S.

    1991-01-01

    This paper reports that the creation of a club for the purpose of encouraging oil and gas workers to watch birds may not at first seem a viable proposition. To the layperson, birds offshore conjures up an image of hundreds of seagulls following fishing boats, and very little else. Also, the act of birdwatching is not seen as a typical offshore worker's activity. Anyone who has worked on an installation offshore and who has any interest in wildlife will be aware of the occasional presence of land-birds. Two decades ago, prompted by some keen offshore workers, a single oil company set up a monitoring program, which quickly became popular with a number of its employees. Birds seem offshore were recorded on data forms and collected together. At this stage the club was purely another recreation facility; however, when the data were collated it was soon realized that installations offshore were being used as staging posts by birds on migration, and that the information being collected would be of great interest in the study of bird movements. All over Britain, at strategic points on the coastline, there are bird observatories which record the arrival and departure of migrating birds. The presence of several hundred solid structures up and down the North Sea, which are used by birds en route, represents a huge, unique bird observatory, capable of uncovering facts about bird migration which have long eluded land-based scientists. Eleven years ago, the North Sea Bird Club began, composed of eight member companies, a recorder from Aberdeen University and a representative from the Nature Conservancy Council. The club received data from 41 installations, and the recorder collated these on Aberdeen University's computer and produced an annual report of sightings

  3. Columbia River ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, diving birds, seabirds, passerine birds, gulls, and terns in...

  4. Phenology of Pacific Northwest tree species

    Science.gov (United States)

    Connie Harrington; Kevin Ford; Brad St. Clair

    2016-01-01

    Phenology is the study of the timing of recurring biological events. For foresters, the most commonly observed phenological events are budburst, flowering, and leaf fall, but other harder to observe events, such as diameter-growth initiation, are also important. Most events that occur in the spring are influenced by past exposure to cool (chilling) temperatures and...

  5. Birds Kept as Pets

    Science.gov (United States)

    ... of pet birds. Because of the risk of avian influenza (bird flu), USDA restricts the importation of pet birds from ... or look dirty may be ill. Learn the signs of illness in a bird, which include appearing ...

  6. Developing and Delivering National-Scale Gridded Phenology Data Products

    Science.gov (United States)

    Marsh, L.; Crimmins, M.; Crimmins, T. M.; Gerst, K.; Rosemartin, A.; Switzer, J.; Weltzin, J. F.

    2016-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) is now producing and freely delivering daily maps and short-term forecasts of accumulated growing degree days and spring onset dates (based on the Extended Spring Indices) at fine spatial scale for the conterminous United States. These data products have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, determining planting dates, anticipating allergy outbreaks and planning agricultural harvest dates. Accumulated growing degree day (AGDD) maps were selected because accumulated temperature is a strong driver of phenological transitions in plants and animals, including leaf-out, flowering, fruit ripening and migration. The Extended Spring Indices (SI-x) are based on predictive climate models for lilac and honeysuckle leaf and bloom; they have been widely used to summarize changes in the timing of spring onset. The SI-x is used as a national indicator of climate change impacts by the US Global Change Research Program and the Environmental Protection Agency. The USA-NPN is a national-scale program that supports scientific advancement and decision-making by collecting, storing, and sharing phenology data and information. To best serve various audiences, the AGDD and SI-x gridded maps are available in various formats through a range of access tools, including the USA-NPN online visualization tool as well as industry standards compliant web services. We plan to expand the suite of gridded map products offered by the USA-NPN to include predictive maps of phenological transitions for additional plant and animal species at fine spatial and temporal resolution in the near future. USA-NPN invites you to use freely available daily and short-term forecast maps of accumulated growing degree days and spring onset dates at fine spatial scale for the conterminous United States.

  7. Changes in the apparent survival of a tropical bird in response to the El Niño Southern Oscillation in mature and young forest in Costa Rica

    Science.gov (United States)

    J.D. Wolfe; C.J. Ralph; P. Elizondo

    2015-01-01

    The effects of habitat alteration and climatic instability have resulted in the loss of bird populations throughout the globe. Tropical birds in particular may be sensitive to climate and habitat change because of their niche specialization, often sedentary nature, and unique life-cycle phenologies. Despite the potential influence of habitat and climatic interactions...

  8. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  9. Birds of a feather stay active together: a case study of an all-male older adult exercise program.

    Science.gov (United States)

    Dunlop, William L; Beauchamp, Mark R

    2013-04-01

    In this article, the authors report the results of a case study examining a group-based exercise program for older adult men. The purpose of the investigation was to identify the elements of this program responsible for its appeal. Interviews, conducted with a purposely sampled subset of program members, were subject to content-analytic procedures. Participants identified social connectedness (reflected by themes of demographic homogeneity, support and care, customs and traditions, and interpersonal comparisons) and supportive leadership behaviors (constituted by communication, the provision of choice, and individualized attention) as major attractions in the program. A few participants also noted the challenge that exists when a program is seen by some as being a social program that provides opportunities for exercise and by others as an exercise program that provides opportunities for socializing. Findings are discussed in relation to contextual factors associated with older adult men's involvement in physical activity programs.

  10. Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England.

    Science.gov (United States)

    Gallinat, Amanda S; Russo, Luca; Melaas, Eli K; Willis, Charles G; Primack, Richard B

    2018-01-01

    Patterns of fruiting phenology in temperate ecosystems are poorly understood, despite the ecological importance of fruiting for animal nutrition and seed dispersal. Herbarium specimens represent an under-utilized resource for investigating geographical and climatic factors affecting fruiting times within species, patterns in fruiting times among species, and differences between native and non-native invasive species. We examined over 15,000 herbarium specimens, collected and housed across New England, and found 3159 specimens with ripe fruits, collected from 1849-2013. We examined patterns in fruiting phenology among 37 native and 18 invasive woody plant species common to New England. We compared fruiting dates between native and invasive species, and analyzed how fruiting phenology varies with temperature, space, and time. Spring temperature and year explained a small but significant amount of the variation in fruiting dates. Accounting for the moderate phylogenetic signal in fruiting phenology, invasive species fruited 26 days later on average than native species, with significantly greater standard deviations. Herbarium specimens can be used to detect patterns in fruiting times among species. However, the amount of intraspecific variation in fruiting times explained by temporal, geographic, and climatic predictors is small, due to a combination of low temporal resolution of fruiting specimens and the protracted nature of fruiting. Later fruiting times in invasive species, combined with delays in autumn bird migrations in New England, may increase the likelihood that migratory birds will consume and disperse invasive seeds in New England later into the year. © 2018 Botanical Society of America.

  11. Grapevine phenology and climate change in Georgia.

    Science.gov (United States)

    Cola, G; Failla, O; Maghradze, D; Megrelidze, L; Mariani, L

    2017-04-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late '1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  12. Climate change effects for phenological processes

    OpenAIRE

    Lilla Dede

    2010-01-01

    Climate change may shift dates of phenological phase of plants. We can even demonstrate changes in plant growth due to climate change by model simulations. Earth warming will accelerate appearance of the phenological phases earlier. However, not only temperature can affect on that, but some other meteorological factors as well.The theoretical implications of climate change is the main goal of the present work using strategic modeling and a 140 years long temperature data set. Analysis of the ...

  13. PEP725 Pan European Phenological Database

    Science.gov (United States)

    Koch, E.; Adler, S.; Lipa, W.; Ungersböck, M.; Zach-Hermann, S.

    2010-09-01

    Europe is in the fortunate situation that it has a long tradition in phenological networking: the history of collecting phenological data and using them in climatology has its starting point in 1751 when Carl von Linné outlined in his work Philosophia Botanica methods for compiling annual plant calendars of leaf opening, flowering, fruiting and leaf fall together with climatological observations "so as to show how areas differ". Recently in most European countries, phenological observations have been carried out routinely for more than 50 years by different governmental and non governmental organisations and following different observation guidelines, the data stored at different places in different formats. This has been really hampering pan European studies as one has to address many network operators to get access to the data before one can start to bring them in a uniform style. From 2004 to 2009 the COST-action 725 established a European wide data set of phenological observations. But the deliverables of this COST action was not only the common phenological database and common observation guidelines - COST725 helped to trigger a revival of some old networks and to establish new ones as for instance in Sweden. At the end of 2009 the COST action the database comprised about 8 million data in total from 15 European countries plus the data from the International Phenological Gardens IPG. In January 2010 PEP725 began its work as follow up project with funding from EUMETNET the network of European meteorological services and of ZAMG the Austrian national meteorological service. PEP725 not only will take over the part of maintaining, updating the COST725 database, but also to bring in phenological data from the time before 1951, developing better quality checking procedures and ensuring an open access to the database. An attractive webpage will make phenology and climate impacts on vegetation more visible in the public enabling a monitoring of vegetation development.

  14. 9 CFR 93.104 - Certificate for pet birds, commercial birds, zoological birds, and research birds.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Certificate for pet birds, commercial birds, zoological birds, and research birds. 93.104 Section 93.104 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN...

  15. Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

    Science.gov (United States)

    Allen, Jenica M; Terres, Maria A; Katsuki, Toshio; Iwamoto, Kojiro; Kobori, Hiromi; Higuchi, Hiroyoshi; Primack, Richard B; Wilson, Adam M; Gelfand, Alan; Silander, John A

    2014-04-01

    Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensis, Prunus jamasakura, and Prunus lannesiana), from the Tama Forest Cherry Preservation Garden in Hachioji, Japan. Our modeling framework used time-varying (chill and heat units) and time-invariant (slope, aspect, and elevation) factors. We found limited differences among taxa in sensitivity to chill, but earlier flowering taxa, such as P. spachiana, were more sensitive to heat than later flowering taxa, such as P. lannesiana. Using an ensemble of three downscaled regional climate models under the A1B emissions scenario, we projected shifts in flowering timing by 2100. Projections suggest that each taxa will flower about 30 days earlier on average by 2100 with 2-6 days greater uncertainty around the species mean flowering date. Dramatic shifts in the flowering times of cherry trees may have implications for economically important cultural festivals in Japan and East Asia. The survival models used here provide a mechanistic modeling approach and are broadly applicable to any time-to-event phenological data, such as plant leafing, bird arrival time, and insect emergence. The ability to explicitly quantify uncertainty, examine phenological responses on a fine time scale, and incorporate conditions leading up to an event may provide future insight into phenologically driven changes in carbon balance and ecological mismatches of plants and pollinators in natural populations and horticultural crops. © 2013 John Wiley & Sons Ltd.

  16. Important bird areas in the neotropics: the backbone of a coordinated, on-the-ground bird conservation initiative in the western hemisphere

    Science.gov (United States)

    Angelica Estrada; Ian Davidson

    2005-01-01

    The Important Bird Areas (IBA) Program was developed by BirdLife International as an approach to conserving birds and associated biodiversity throughout the world. The IBA program seeks to identify and protect a network of sites, at a biogeographic scale, which are critical for the long-term viability of naturally occurring bird populations for which site-based...

  17. The birds, the bees, and the Bible: single African American mothers' perceptions of a faith-based sexuality educaton program.

    Science.gov (United States)

    Cornelius, Judith Bacchus

    2009-01-01

    This exploratory study examined single mothers' ideas on the development of a faith-based sexuality program. Twenty African American single mothers with adolescent children (11 to 13 years of age) who were of the same faith and members of one church, participated in two focus groups about how a faith-based sexuality program could be designed and implemented. The findings call attention to the need for research on the design of faith-based sexuality education programs for ethnic minority families headed by single mothers.

  18. Linkages between Land Surface Phenology Metrics and Natural and Anthropogenic Events in Drylands (Invited)

    Science.gov (United States)

    de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.

    2013-12-01

    Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of

  19. Species interactions in an Andean bird–flowering plant network: phenology is more important than abundance or morphology

    Directory of Open Access Journals (Sweden)

    Oscar Gonzalez

    2016-12-01

    Full Text Available Biological constraints and neutral processes have been proposed to explain the properties of plant–pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers and flowering plants in high elevation forests (i.e., “elfin” forests of the Andes, we explore the importance of biological constraints and neutral processes (random interactions to explain the observed species interactions and network metrics, such as connectance, specialization, nestedness and asymmetry. In cold environments of elfin forests, which are located at the top of the tropical montane forest zone, many plants are adapted for pollination by birds, making this an ideal system to study plant–pollinator networks. To build the network of interactions between birds and plants, we used direct field observations. We measured abundance of birds using mist-nets and flower abundance using transects, and phenology by scoring presence of birds and flowers over time. We compared the length of birds’ bills to flower length to identify “forbidden interactions”—those interactions that could not result in legitimate floral visits based on mis-match in morphology. Diglossa flowerpiercers, which are characterized as “illegitimate” flower visitors, were relatively abundant. We found that the elfin forest network was nested with phenology being the factor that best explained interaction frequencies and nestedness, providing support for biological constraints hypothesis. We did not find morphological constraints to be important in explaining observed interaction frequencies and network metrics. Other network metrics (connectance, evenness and asymmetry, however, were better predicted by abundance (neutral process models. Flowerpiercers, which cut holes and access flowers at their base and, consequently, facilitate nectar access for other hummingbirds, explain why morphological mis-matches were relatively unimportant in this system. Future

  20. Examining spring phenology of forest understory using digital photography

    Science.gov (United States)

    Liang Liang; Mark D. Schwartz; Songlin. Fei

    2011-01-01

    Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....

  1. Investigating the impact of climate change on crop phenological events in Europe with a phenology model

    Science.gov (United States)

    Ma, Shaoxiu; Churkina, Galina; Trusilova, Kristina

    2012-07-01

    Predicting regional and global carbon and water dynamics requires a realistic representation of vegetation phenology. Vegetation models including cropland models exist (e.g. LPJmL, Daycent, SIBcrop, ORCHIDEE-STICS, PIXGRO) but they have various limitations in predicting cropland phenological events and their responses to climate change. Here, we investigate how leaf onset and offset days of major European croplands responded to changes in climate from 1971 to 2000 using a newly developed phenological model, which solely relies on climate data. Net ecosystem exchange (NEE) data measured with eddy covariance technique at seven sites in Europe were used to adjust model parameters for wheat, barley, and rapeseed. Observational data from the International Phenology Gardens were used to corroborate modeled phenological responses to changes in climate. Enhanced vegetation index (EVI) and a crop calendar were explored as alternative predictors of leaf onset and harvest days, respectively, over a large spatial scale. In each spatial model simulation, we assumed that all European croplands were covered by only one crop type. Given this assumption, the model estimated that the leaf onset days for wheat, barley, and rapeseed in Germany advanced by 1.6, 3.4, and 3.4 days per decade, respectively, during 1961-2000. The majority of European croplands (71.4%) had an advanced mean leaf onset day for wheat, barley, and rapeseed (7.0% significant), whereas 28.6% of European croplands had a delayed leaf onset day (0.9% significant) during 1971-2000. The trend of advanced onset days estimated by the model is similar to observations from the International Phenology Gardens in Europe. The developed phenological model can be integrated into a large-scale ecosystem model to simulate the dynamics of phenological events at different temporal and spatial scales. Crop calendars and enhanced vegetation index have substantial uncertainties in predicting phenological events of croplands. Caution

  2. Torn Paper Birds.

    Science.gov (United States)

    Harrington, Carolyn Lang

    1998-01-01

    Describes a lesson for third-grade students that begins with an examination of bird prints done by John James Audubon and moves into the students creating their own torn paper birds. Introduces the students to the beauty of birds and focuses on the environmental issues that face birds and their habitats. (CMK)

  3. Heat or humidity, which triggers tree phenology?

    Science.gov (United States)

    Laube, Julia; Sparks, Tim H.; Estrella, Nicole; Menzel, Annette

    2014-05-01

    An overwhelming number of studies confirm that temperature is the main driver for phenological events such as leafing, flowering or fruit ripening, which was first discovered by Réaumur in 1735. Since then, several additional factors which influence onset dates have been identified, such as length of the chilling period, photoperiod, temperature of the previous autumn, nutrient availability, precipitation, sunshine and genetics (local adaptations). Those are supposed to capture some of the remaining, unexplained variance. But our ability to predict onset dates remains imprecise, and our understanding of how plants sense temperature is vague. From a climate chamber experiment on cuttings of 9 tree species we present evidence that air humidity is an important, but previously overlooked, factor influencing the spring phenology of trees. The date of median leaf unfolding was 7 days earlier at 90% relative humidity compared to 40% relative humidity. A second experiment with cuttings shows that water uptake by above-ground tissue might be involved in the phenological development of trees. A third climate chamber experiment suggests that winter dormancy and chilling might be linked to dehydration processes. Analysis of climate data from several meteorological stations across Germany proves that the increase in air humidity after winter is a reliable signal of spring, i.e. less variable or susceptible to reversal compared to temperature. Finally, an analysis of long-term phenology data reveals that absolute air humidity can even be used as a reliable predictor of leafing dates. Current experimental work tries to elucidate the involved foliar uptake processes by using deuterium oxide marked water and Raman spectroscopy. We propose a new framework, wherein plants' chilling requirements and frost tolerance might be attributed to desiccation processes, while spring development is linked to re-humidification of plant tissue. The influence of air humidity on the spring

  4. Towards new approaches in phenological modelling

    Science.gov (United States)

    Chmielewski, Frank-M.; Götz, Klaus-P.; Rawel, Harshard M.; Homann, Thomas

    2014-05-01

    Modelling of phenological stages is based on temperature sums for many decades, describing both the chilling and the forcing requirement of woody plants until the beginning of leafing or flowering. Parts of this approach go back to Reaumur (1735), who originally proposed the concept of growing degree-days. Now, there is a growing body of opinion that asks for new methods in phenological modelling and more in-depth studies on dormancy release of woody plants. This requirement is easily understandable if we consider the wide application of phenological models, which can even affect the results of climate models. To this day, in phenological models still a number of parameters need to be optimised on observations, although some basic physiological knowledge of the chilling and forcing requirement of plants is already considered in these approaches (semi-mechanistic models). Limiting, for a fundamental improvement of these models, is the lack of knowledge about the course of dormancy in woody plants, which cannot be directly observed and which is also insufficiently described in the literature. Modern metabolomic methods provide a solution for this problem and allow both, the validation of currently used phenological models as well as the development of mechanistic approaches. In order to develop this kind of models, changes of metabolites (concentration, temporal course) must be set in relation to the variability of environmental (steering) parameters (weather, day length, etc.). This necessarily requires multi-year (3-5 yr.) and high-resolution (weekly probes between autumn and spring) data. The feasibility of this approach has already been tested in a 3-year pilot-study on sweet cherries. Our suggested methodology is not only limited to the flowering of fruit trees, it can be also applied to tree species of the natural vegetation, where even greater deficits in phenological modelling exist.

  5. Local temperature fine-tunes the timing of spring migration in birds

    DEFF Research Database (Denmark)

    Tøttrup, Anders P.; Rainio, Kalle; Coppack, Timothy

    2010-01-01

    Evidence for climate-driven phenological changes is rapidly increasing at all trophic levels. Our current poor knowledge of the detailed control of bird migration from the level of genes and hormonal control to direct physiological and behavioral responses hampers our ability to understand......-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations...

  6. History, status of monitoring land birds in Europe and America and countermeasures of China

    OpenAIRE

    Xingfeng Si; Ping Ding

    2011-01-01

    Because birds are important indicators of biodiversity, and useful for Ecological Impact Assessment (EcIA), scientists have monitored the abundance, richness and distribution of bird species for >100years throughout the world. In this paper, we reviewed the history and status of land bird monitoring, particularly some well-known long-term monitoring programs such as the Breeding Bird Survey (BBS) in the UK, and the Breeding Bird Survey (BBS) and Christmas Bird Count (CBC) in North America. We...

  7. Vegetation Index and Phenology (VIP) Phenology NDVI Yearly Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA MEaSUREs Vegetation Index and Phenology (VIP) global datasets were created using surface reflectance data from the Advanced Very High Resolution Radiometer...

  8. Migration distance and the effect of North Atlantic Oscillation on the spring arrival of birds in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk; Čapek, Miroslav

    2008-01-01

    Roč. 57, č. 3 (2008), s. 212-220 ISSN 0139-7893 Institutional research plan: CEZ:AV0Z60930519 Keywords : climate * NAO * phenology * temperature * weather * migration of bird s * wintering area Subject RIV: EH - Ecology, Behaviour Impact factor: 0.522, year: 2008 http://www.ivb.cz/folia/57/3/212_220.pdf

  9. Shifts in flowering phenology reshape a subalpine plant community.

    Science.gov (United States)

    CaraDonna, Paul J; Iler, Amy M; Inouye, David W

    2014-04-01

    Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology.

  10. Nature's Notebook Provides Phenology Observations for NASA Juniper Phenology and Pollen Transport Project

    Science.gov (United States)

    Luval, J. C.; Crimmins, T. M.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2014-01-01

    Phenology Network has been established to provide national wide observations of vegetation phenology. However, as the Network is still in the early phases of establishment and growth, the density of observers is not yet adequate to sufficiently document the phenology variability over large regions. Hence a combination of satellite data and ground observations can provide optimal information regarding juniperus spp. pollen phenology. MODIS data was to observe Juniperus supp. pollen phenology. The MODIS surface reflectance product provided information on the Juniper supp. cone formation and cone density. Ground based observational records of pollen release timing and quantities were used as verification. Approximately 10, 818 records of juniper phenology for male cone formation Juniperus ashei., J. monosperma, J. scopulorum, and J. pinchotti were reported by Nature's Notebook observers in 2013 These observations provided valuable information for the analysis of satellite images for developing the pollen concentration masks for input into the PREAM (Pollen REgional Atmospheric Model) pollen transport model. The combination of satellite data and ground observations allowed us to improve our confidence in predicting pollen release and spread, thereby improving asthma and allergy alerts.

  11. Seedling phenology and cold hardiness: Moving targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Phenology is the annual cycle of plant development as influenced by seasonal variations. Dormancy and cold hardiness are two aspects of the annual cycle. In temperate plants, the development of cold hardiness results in the ability to withstand subfreezing winter temperatures. Cold hardiness is also a reflection of overall stress resistance. In addition to describing...

  12. Phenology drives mutualistic network structure and diversity

    NARCIS (Netherlands)

    Encinas Viso, Francisco; Revilla, Tomas A; Etienne, Rampal S.

    Several network properties have been identified as determinants of the stability and complexity of mutualistic networks. However, it is unclear which mechanisms give rise to these network properties. Phenology seems important, because it shapes the topology of mutualistic networks, but its effects

  13. Modeling winter moth Operophtera brumata egg phenology

    NARCIS (Netherlands)

    Salis, Lucia; Lof, Marjolein; Asch, van Margriet; Visser, Marcel E.

    2016-01-01

    Understanding the relationship between an insect's developmental rate and temperature is crucial to forecast insect phenology under climate change. In the winter moth Operophtera brumata timing of egg-hatching has severe fitness consequences on growth and reproduction as egg-hatching has to match

  14. How Phenological Variation Affects Species Spreading Speeds.

    Science.gov (United States)

    Otto, Garrett; Bewick, Sharon; Li, Bingtuan; Fagan, William F

    2018-03-16

    In this paper, we develop a phenologically explicit reaction-diffusion model to analyze the spatial spread of a univoltine insect species. Our model assumes four explicit life stages: adult, two larval, and pupa, with a fourth, implicit, egg stage modeled as a time delay between oviposition and emergence as a larva. As such, our model is broadly applicable to holometabolous insects. To account for phenology (seasonal biological timing), we introduce four time-dependent phenological functions describing adult emergence, oviposition and larval conversion, respectively. Emergence is defined as the per-capita probability of an adult emerging from the pupal stage at a particular time. Oviposition is defined as the per-capita rate of adult egg deposition at a particular time. Two functions deal with the larva stage 1 to larva stage 2, and larva stage 2 to pupa conversion as per-capita rate of conversion at a particular time. This very general formulation allows us to accommodate a wide variety of alternative insect phenologies and lifestyles. We provide the moment-generating function for the general linearized system in terms of phenological functions and model parameters. We prove that the spreading speed of the linearized system is the same as that for nonlinear system. We then find explicit solutions for the spreading speed of the insect population for the limiting cases where (1) emergence and oviposition are impulsive (i.e., take place over an extremely narrow time window), larval conversion occurs at a constant rate, and larvae are immobile, (2) emergence and oviposition are impulsive (i.e., take place over an extremely narrow time window), larval conversion occurs at a constant rate starting at a delayed time from egg hatch, and larvae are immobile, and (3) emergence, oviposition, and larval conversion are impulsive. To consider other biological scenarios, including cases with emergence and oviposition windows of finite width as well as mobile larvae, we use

  15. Biological consequences of global change for birds.

    Science.gov (United States)

    Møller, Anders Pape

    2013-06-01

    Climate is currently changing at an unprecedented rate; so also human exploitation is rapidly changing the Earth for agriculture, forestry, fisheries and urbanization. In addition, pollution has affected even the most remote ecosystems, as has the omnipresence of humans, with consequences in particular for animals that keep a safe distance from potential predators, including human beings. Importantly, all of these changes are occurring simultaneously, with increasing intensity, and further deterioration in both the short and the long-term is predicted. While the consequences of these components of global change are relatively well studied on their own, the effects of their interactions, such as the combined effects of climate change and agriculture, or the combined effects of agriculture through nutrient leakage to freshwater and marine ecosystems and fisheries, and the effects of climate change and urbanization, are poorly understood. Here, I provide a brief overview of the effects of climate change on phenology, diversity, abundance, interspecific interactions and population dynamics of birds. I address whether these effects of changing temperatures are direct, or indirect through effects of climate change on the phenology, distribution or abundance of food, parasites and predators. Finally, I review interactions between different components of global change. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  16. The ecological and physiological bases of variation in the phenology of gonad growth in an urban and desert songbird.

    Science.gov (United States)

    Davies, Scott; Lane, Samuel; Meddle, Simone L; Tsutsui, Kazuyoshi; Deviche, Pierre

    2016-05-01

    Birds often adjust to urban areas by advancing the timing (phenology) of vernal gonad growth. However, the ecological and physiological bases of this adjustment are unclear. We tested whether the habitat-related disparity in gonad growth phenology of male Abert's towhees, Melozone aberti, is due to greater food availability in urban areas of Phoenix, Arizona USA or, alternatively, a habitat-related difference in the phenology of key food types. To better understand the physiological mechanism underlying variation in gonad growth phenology, we compared the activity of the reproductive system at all levels of hypothalamo-pituitary-gonadal (HPG) axis. We found no habitat-associated difference in food availability (ground arthropod biomass), but, in contrast to the seasonal growth of leaves on desert trees, the leaf foliage of urban trees was already developed at the beginning of our study. Multiple estimates of energetic status did not significantly differ between the non-urban and urban towhees during three years that differed in the habitat-related disparity in gonad growth and winter precipitation levels. Thus, our results provide no support for the hypothesis that greater food abundance in urban areas of Phoenix drives the habitat-related disparity in gonad growth phenology in Abert's towhees. By contrast, they suggest that differences in the predictability and magnitude of change in food availability between urban and desert areas of Phoenix contribute to the observed habitat-related disparity in gonad growth. Endocrine responsiveness of the gonads may contribute to this phenomenon as desert - but not urban - towhees had a marked plasma testosterone response to GnRH challenge. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Important bird areas of the Madrean Archipelago: A conservation strategy for avian communities

    Science.gov (United States)

    Vashti (Tice) Supplee; Jennie MacFarland

    2013-01-01

    The Important Bird Areas (IBA) Program is a worldwide program through BirdLife International that identifies sites considered to provide important habitats for avian species. Criteria for designation are species abundance, diversity, and range restriction. As the United States Partner of BirdLife International, the National Audubon Society administers the IBA Program...

  18. Old Plants, New Tricks: Phenological Research Using Herbarium Specimens.

    Science.gov (United States)

    Willis, Charles G; Ellwood, Elizabeth R; Primack, Richard B; Davis, Charles C; Pearson, Katelin D; Gallinat, Amanda S; Yost, Jenn M; Nelson, Gil; Mazer, Susan J; Rossington, Natalie L; Sparks, Tim H; Soltis, Pamela S

    2017-07-01

    The timing of phenological events, such as leaf-out and flowering, strongly influence plant success and their study is vital to understanding how plants will respond to climate change. Phenological research, however, is often limited by the temporal, geographic, or phylogenetic scope of available data. Hundreds of millions of plant specimens in herbaria worldwide offer a potential solution to this problem, especially as digitization efforts drastically improve access to collections. Herbarium specimens represent snapshots of phenological events and have been reliably used to characterize phenological responses to climate. We review the current state of herbarium-based phenological research, identify potential biases and limitations in the collection, digitization, and interpretation of specimen data, and discuss future opportunities for phenological investigations using herbarium specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands

    NARCIS (Netherlands)

    Kolk, Van Der Henk Jan; Wallis de Vries, Michiel; Vliet, Van Arnold J.H.

    2016-01-01

    Phenological responses of butterflies to temperature have been demonstrated in several European countries by using data from standardized butterfly monitoring schemes. Recently, phenological networks have enabled volunteers to record phenological observations at project websites. In this study,

  20. Shifts in flowering phenology reshape a subalpine plant community

    OpenAIRE

    CaraDonna, Paul J.; Iler, Amy M.; Inouye, David W.

    2014-01-01

    Seasonal timing of biological events, phenology, is one of the strongest bioindicators of climate change. Our general understanding of phenological responses to climate change is based almost solely on the first day on which an event is observed, limiting our understanding of how ecological communities may be responding as a whole. Using a unique long-term record of flowering phenology from Colorado, we find that the number of species changing their flowering times likely has been underestima...

  1. Phenological variations of polyphenols in Smilax campestris (Smilacaceae)

    OpenAIRE

    RUGNA, Ana Zulema; GURNI, Alberto Angel; WAGNER, Marcelo Luis

    2013-01-01

    Polyphenol profiles can suffer quali-quantitative modifications as the plant modifies its phenological condition. The objective of this work was to determine if there is a rhythm of production in the synthesis of polyphenols according to the phenological condition in the leaves, roots, and rhizomes of Smilax campestris Griseb. The plant material analysed corresponded to individuals of a colony of S. campestris collected in different phenological conditions. Standard methodology was used for t...

  2. Spring resource phenology and timing of songbird migration across the Gulf of Mexico

    Science.gov (United States)

    Paxton, Eben H.; Cohen, Emily B.; Németh, Zoltan; Zenzal, Theodore J.; Paxton, Kristina L.; Diehl, Robert H.; Moore, Frank R.

    2015-01-01

    Migratory songbirds are advancing their arrival to breeding areas in response to climatic warming at temperate latitudes. Less is understood about the impacts of climate changes outside the breeding period. Every spring, millions of migrating songbirds that overwinter in the Caribbean and Central and South America stop to rest and refuel in the first available habitats after crossing the Gulf of Mexico. We used capture data from a long-term banding station (20 years: 1993 to 2012) located on the northern coast of the Gulf to assess the passage timing of 17 species making northward migrations into eastern North America. We further assessed spring resource phenology as measured by normalized difference vegetation index (NDVI) on nonbreeding ranges and en route. We tested the hypotheses that spring passage timing has advanced during the past two decades and that annual variability in passage timing into eastern North America is related to spring resource phenology on stationary nonbreeding ranges and during passage south of the Gulf. Further, we assessed whether annual variability in resource phenology south of the Gulf was a good indicator of the conditions that migrants encountered upon first landfall in eastern North America. We found no trend in migration timing for species that migrate from South America and annual variability in their passage timing was unrelated to environmental conditions in nonbreeding ranges or en route. Species that migrate from Central America and the Caribbean delayed arrival by 2 to 3 days over the 20-year period and arrived later during years when conditions were dryer in nonbreeding ranges and passage areas south of the Gulf. Further, year to year variability in spring resource phenology in nonbreeding ranges and passage areas south of the Gulf were not good indicators of resource phenology upon arrival in eastern North America. Therefore, despite the fact that many migrant species have been arriving increasingly earlier to breeding

  3. Greater temperature sensitivity of plant phenology at colder sites

    DEFF Research Database (Denmark)

    Prevéy, Janet; Vellend, Mark; Rüger, Nadja

    2017-01-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance...... warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence...

  4. Why climate change will invariably alter selection pressures on phenology.

    Science.gov (United States)

    Gienapp, Phillip; Reed, Thomas E; Visser, Marcel E

    2014-10-22

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Environmental Assessment for Implementation of Expanded Bird-Aircraft Strike Hazard (BASH) Program for Moody Air Force Base and Private and Public Lands Surrounding Moody Air Force Base, Georgia

    Science.gov (United States)

    2003-09-01

    Christmas Bird Count , administered by the Audubon Society in early winter. Breeding Bird Survey trend data from 1966-2000 indicate that turkey... Christmas Bird Count data from 1959- 1988 shows a slight decline in Georgia for black vultures and an increasing trend in turkey vultures for Georgia...based on historical bird sightings from Moody AFB personnel, Breeding Bird Surveys (BBSs), and Christmas Bird Counts ( CBCs )

  6. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch

    Science.gov (United States)

    Petanidou, Theodora; Kallimanis, Athanasios S.; Sgardelis, Stefanos P.; Mazaris, Antonios D.; Pantis, John D.; Waser, Nickolas M.

    2014-08-01

    Recent anthropogenic climate change is strongly associated with average shifts toward earlier seasonal timing of activity (phenology) in temperate-zone species. Shifts in phenology have the potential to alter ecological interactions, to the detriment of one or more interacting species. Recent models predict that detrimental phenological mismatch may increasingly occur between plants and their pollinators. One way to test this prediction is to examine data from ecological communities that experience large annual weather fluctuations. Taking this approach, we analyzed interactions over a four-year period among 132 plant species and 665 pollinating insect species within a Mediterranean community. For each plant species we recorded onset and duration of flowering and number of pollinator species. Flowering onset varied among years, and a year of earlier flowering of a species tended to be a year of fewer species pollinating its flowers. This relationship was attributable principally to early-flowering species, suggesting that shifts toward earlier phenology driven by climate change may reduce pollination services due to phenological mismatch. Earlier flowering onset of a species also was associated with prolonged flowering duration, but it is not certain that this will counterbalance any negative effects of lower pollinator species richness on plant reproductive success. Among plants with different life histories, annuals were more severely affected by flowering-pollinator mismatches than perennials. Specialized plant species (those attracting a smaller number of pollinator species) did not experience disproportionate interannual fluctuations in phenology. Thus they do not appear to be faced with disproportionate fluctuations in pollinator species richness, contrary to the expectation that specialists are at greatest risk of losing mutualistic interactions because of climate change.

  7. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  8. Birds of Sabaki Birds of Sabaki

    African Journals Online (AJOL)

    CJ

    2005-02-25

    Feb 25, 2005 ... covers approximately 250ha.The area encompassed by this study extends from Mambrui to the north, the sea to the east, the opposite bank of the estuary to the south and the Sabaki bridge and Malindi-Garsen road to the west. The area is defined as an Important Bird Area(IBA) by BirdLife International in ...

  9. Altering Their Ecological Niche: Investigating the Response of Avian Migrants to Changes in Vegetation Phenology at Northern Latitudes

    Science.gov (United States)

    Budde, M. E.; Ward, D. H.; Ely, C. R.; Handel, C. M.; Hupp, J. W.

    2009-12-01

    The impacts of global climate change are expected to be most severe at high northern latitudes. There is now strong evidence to support the hypothesis that such changes have had dramatic effects on the phenology of spring vegetative growth in these areas. One aspect of this change that has not been thoroughly investigated is how these changes vary across habitats and whether sub-Arctic and Arctic avifauna have adapted to shifts in plant phenology by modifying the timing of migration and nesting. A recent study showed that certain bird species have experienced population decline due to the varied timing of seasonal events and points to the fact that the degree of risk facing migratory birds is not well quantified. Plant phenology is especially sensitive to annual variation in temperature and precipitation and is a major determinant of plant species distribution, making it a good indicator of climate change effects. Migratory birds are considered one of the most vulnerable groups to the impacts of climate change because climate affects bird movement and distribution through species-specific physiological tolerances and changes in food and habitat resources. In this study we analyze the evidence for long-term plant phenology changes across different biomes of Alaska using satellite remote sensing techniques. We correlate this variability with ground-based measurements of avian migration and breeding. Specifically, we try to determine if the timing of spring green-up is synchronized across breeding areas or whether the process has become fractured across intervening biomes, potentially disrupting the timing of migration and breeding, putting species at risk. Using satellite-based time series of Normalized Difference Vegetation Index (NDVI) data, we create spatially explicit maps of seasonal vegetation metrics and correlate those with the timing and distribution of avian migrant populations. Preliminary investigation focused on the last 10 year period (2000-2009) and

  10. Angry Birds in Space

    Science.gov (United States)

    Halford, A. J.

    2017-12-01

    When space computers first started listening into space radio, they noticed that there were radio noises that happened on the morning side of the Earth. Because these waves sounded like noises birds make in the morning, we named these waves after them. These bird sounding waves can move around the Earth, flying up and down, and sometimes move into an area where there is more stuff. This area is also much colder than where these bird noises are first made. When the waves move into this cold area where there is more stuff, they start to sound like angry birds instead of happy birds. Both of these waves, the happy and angry bird sounding waves, are very important to our understanding of how the tiny things in space move and change. Sometimes the waves which sound like birds can push these tiniest of things into the sky. The happy bird sounding waves can push the tiniest things quickly while the angry bird sounding waves push the tinest of things more slowly. When the tiny things fall into the sky, they create beautiful space lights and light that burns which can hurt people in up goers and not so up goers as well as our things like phones, and space computers. We study these waves that sound like birds to better understand when and where the tiny things will fall. That way we can be prepared and enjoy watching the pretty space lights at night with no worries.

  11. Diseases Transmitted by Birds.

    Science.gov (United States)

    Levison, Matthew E

    2015-08-01

    Although many people these days actually work very hard at leisure time activities, diseases are most commonly acquired from birds during the course of work in the usual sense of the term, not leisure. However, travel for pleasure to areas where the diseases are highly endemic puts people at risk of acquiring some of these bird-related diseases (for example, histoplasmosis and arbovirus infections), as does ownership of birds as pets (psittacosis).

  12. Linking growing degree-days and cranberry plant phenology

    Science.gov (United States)

    The Steffan lab has coordinated cranberry growers as citizen scientists since 2014 to record growing degree-days and make observations of cranberry plant phenology. The data from the last three years was analyzed to link plant phenology with degree-days....

  13. impact of some climatic and phenological parameters on the ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    climatic and phenological parameters explain 52.80% callogenesis variations, against 31.50% for SE. Therefore, climate and phenology significantly influence callogenesis, but not SE. For further industrial production of secondary metabolites such as butter, theobromin and chocolate aroma from calli, it would be desirable ...

  14. Phenology Across the LTER Network: Initial Findings, Future Directions

    Science.gov (United States)

    Henebry, G. M.

    2007-12-01

    Phenology is, in the words of Aldo Leopold, a "horizontal science" that cuts across and binds together multiple biological disciplines. It is a far-reaching but poorly understood aspect of the environmental sciences. Phenological research has been a component of the Long Term Ecological Research (LTER) Network at several sites over the years. However, it has not received the attention or resources to bring it to the forefront as an effective theme for interdisciplinary and cross-site synthesis. With the recent establishment of the USA National Phenology Network (USA-NPN), it is appropriate to assess the status of phenological knowledge across the LTER Network. A workshop funded by the LTER Network Office took place at the Sevilleta Field Station during February 26 to March 2, 2007. From the workshop three main products emerged: (1) an inventory of LTER phenology datasets, (2) establishment of a website to facilitate information interchange, and (3) a white paper recommending next steps for the LTER Network to engage the USA-NPN. This poster relates the findings and recommendations of the workshop, including a summary of phenologically explicit and phenologically implicit LTER datasets and illustrations of how the climatic envelopes described by simple weather variables can provide context for phenological comparisons within and across sites.

  15. Accuracy and precision in the calculation of phenology metrics

    DEFF Research Database (Denmark)

    Ferreira, Ana Sofia; Visser, Andre; MacKenzie, Brian

    2014-01-01

    Phytoplankton phenology (the timing of seasonal events) is a commonly used indicator for evaluating responses of marine ecosystems to climate change. However, phenological metrics are vulnerable to observation-(bloom amplitude, missing data, and observational noise) and analysis-related (temporal...

  16. Remote sensing data assimilation for a prognostic phenology model

    Science.gov (United States)

    R. Stockli; T. Rutishauser; D. Dragoni; J. O' Keefe; P. E. Thornton; M. Jolly; L. Lu; A. S. Denning

    2008-01-01

    Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active...

  17. A global synthesis of animal phenological responses to climate change

    Science.gov (United States)

    Cohen, Jeremy M.; Lajeunesse, Marc J.; Rohr, Jason R.

    2018-02-01

    Shifts in phenology are already resulting in disruptions to the timing of migration and breeding, and asynchronies between interacting species1-5. Recent syntheses have concluded that trophic level1, latitude6 and how phenological responses are measured7 are key to determining the strength of phenological responses to climate change. However, researchers still lack a comprehensive framework that can predict responses to climate change globally and across diverse taxa. Here, we synthesize hundreds of published time series of animal phenology from across the planet to show that temperature primarily drives phenological responses at mid-latitudes, with precipitation becoming important at lower latitudes, probably reflecting factors that drive seasonality in each region. Phylogeny and body size are associated with the strength of phenological shifts, suggesting emerging asynchronies between interacting species that differ in body size, such as hosts and parasites and predators and prey. Finally, although there are many compelling biological explanations for spring phenological delays, some examples of delays are associated with short annual records that are prone to sampling error. Our findings arm biologists with predictions concerning which climatic variables and organismal traits drive phenological shifts.

  18. Impact of some climatic and phenological parameters on the ...

    African Journals Online (AJOL)

    In the first year, in control clones,climatic and phenological parameters explain 52.80% callogenesis variations, against 31.50% for SE. Therefore,climate and phenology significantly influence callogenesis, but not SE. For further industrial production of secondary metabolites such as butter, the obromin and chocolate aroma ...

  19. Guam and the Northern Mariana Islands ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for pelagic birds, shorebirds, wading birds, waterfowl, gulls, terns, and passerine birds in Guam and the...

  20. Coastal Resources Atlas: Long Island: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  1. Accuracy and precision in the calculation of phenology metrics

    DEFF Research Database (Denmark)

    Ferreira, Ana Sofia; Visser, Andre; MacKenzie, Brian

    2014-01-01

    resolution, preprocessing technique, and phenology metric) processes. Here we consider the impact of these processes on the robustness of four phenology metrics (timing of maximum, 5% above median, maximum growth rate, and 15% of cumulative distribution). We apply a simulation-testing approach, where......Phytoplankton phenology (the timing of seasonal events) is a commonly used indicator for evaluating responses of marine ecosystems to climate change. However, phenological metrics are vulnerable to observation-(bloom amplitude, missing data, and observational noise) and analysis-related (temporal...... a phenology metric is first determined from a noise- and gap-free time series, and again once it has been modified. We show that precision is a greater concern than accuracy for many of these metrics, an important point that has been hereto overlooked in the literature. The variability in precision between...

  2. You Can Run, But You Can't Hide Juniper Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, Jeffrey C.

    2013-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modified the DREAM model to incorporate pollen transport. Pollen release is estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities are used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  3. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts.

    Science.gov (United States)

    Saino, Nicola; Rubolini, Diego; Lehikoinen, Esa; Sokolov, Leonid V; Bonisoli-Alquati, Andrea; Ambrosini, Roberto; Boncoraglio, Giuseppe; Møller, Anders P

    2009-08-23

    Phenological responses to climate change vary among taxa and across trophic levels. This can lead to a mismatch between the life cycles of ecologically interrelated populations (e.g. predators and prey), with negative consequences for population dynamics of some of the interacting species. Here we provide, to our knowledge, the first evidence that climate change might disrupt the association between the life cycles of the common cuckoo (Cuculus canorus), a migratory brood parasitic bird, and its hosts. We investigated changes in timing of spring arrival of the cuckoo and its hosts throughout Europe over six decades, and found that short-distance, but not long-distance, migratory hosts have advanced their arrival more than the cuckoo. Hence, cuckoos may keep track of phenological changes of long-distance, but not short-distance migrant hosts, with potential consequences for breeding of both cuckoo and hosts. The mismatch to some of the important hosts may contribute to the decline of cuckoo populations and explain some of the observed local changes in parasitism rates of migratory hosts.

  4. Reproductive phenology and pollination biology of Canavalia brasiliensis Mart. ex Benth (Fabaceae.

    Directory of Open Access Journals (Sweden)

    Roberta Sales Guedes

    2009-03-01

    Full Text Available This work studied the phenology and biology of the pollination of C. brasiliensis in an area of its natural occurrence (Pocinhos – PB. Fifteen plants were marked and observed every two weeks for the study of phenology. For the study of floral biology and morphology, flowers and inflorescences were marked and observed until fruit appeared. Visitors to flowers were observed throughout the experiment, and the frequency, time and behavior of their visits was registered. Canavalia brasiliensis demonstrated a pattern of annual flowering which was continuous, of long duration, with periods of greater flowering activity in the dry season. The inflorescence is of the paniculatum type, with flowers whose attributes are related to the syndrome of melittophily. Anthesis occurs during the day, beginning at 05h00. Nectar is produced from the phase of pre-anthesis, with a concentration of sugars around 44-60%. Visits by bees (Xylocopa frontalis, X. suspecta and X. sp., Apis mellifera and Centris similis and birds (Phaethornis ruber, Chlorostilbon aureoventris, Eupetomena macroura and Coereba flaveola were observed. Xylocopa frontalis acted as an effective pollinator.

  5. Advances and Environmental Conditions of Spring Migration Phenology of American White Pelicans.

    Science.gov (United States)

    King, D Tommy; Wang, Guiming; Yang, Zhiqiang; Fischer, Justin W

    2017-01-16

    Spring migration phenology of birds has advanced under warming climate. Migration timing of short-distance migrants is believed to be responsive to environmental changes primarily under exogenous control. However, understanding the ecological causes of the advancement in avian spring migration phenology is still a challenge due to the lack of long-term precise location data. We used 11 years of Global Positioning System relocation data to determine four different migration dates of the annual migration cycle of the American white pelican (Pelecanus erythrorhynchos), a short-distance migrant. We also tested the hypothesis that increases in winter temperature and precipitation on the wintering grounds would advance pelican spring migration. Pelican spring departures and arrivals advanced steadily from 2002 to 2011. Spring departure timing exhibited high repeatability at the upper end of migration timing repeatability reported in literature. However, individual spring departure and arrival dates were not related to winter daily temperature, total winter precipitation, and detrended vegetation green-up dates indexed by the normalized difference vegetation index. Despite high repeatability, the observed between-year variation of spring departure dates was still sufficient for the advancement of spring departure timing.

  6. Modeling and the management of migratory birds

    Science.gov (United States)

    Williams, B.K.; Nichols, J.D.

    1990-01-01

    Mathematical modeling of migratory bird populations is reviewed in the context of migratory bird management. We focus on dynamic models of waterfowl, since most management-oriented migratory bird models concern waterfowl species. We describe the management context for these modeling efforts, with a focus on large-scale operational data collection programs and on processes by which waterfowl harvest is regulated and waterfowl habitats are protected and managed. Through their impacts on key population parameters such as recruitment and survival rate, these activities can influence population dynamics, thereby providing managers some measure of control over the status of populations. Recent applications of the modeling of waterfowl are described in terms of objectives, mathematical structures, and contributions to management. Finally, we discuss research needs and data limitations in migratory bird modeling, and offer suggestions to increase the value to managers of future modeling efforts.

  7. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  8. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.

    Science.gov (United States)

    Davis, Charles C; Willis, Charles G; Connolly, Bryan; Kelly, Courtland; Ellison, Aaron M

    2015-10-01

    Climate change has resulted in major changes in the phenology of some species but not others. Long-term field observational records provide the best assessment of these changes, but geographic and taxonomic biases limit their utility. Plant specimens in herbaria have been hypothesized to provide a wealth of additional data for studying phenological responses to climatic change. However, no study to our knowledge has comprehensively addressed whether herbarium data are accurate measures of phenological response and thus applicable to addressing such questions. We compared flowering phenology determined from field observations (years 1852-1858, 1875, 1878-1908, 2003-2006, 2011-2013) and herbarium records (1852-2013) of 20 species from New England, United States. Earliest flowering date estimated from herbarium records faithfully reflected field observations of first flowering date and substantially increased the sampling range across climatic conditions. Additionally, although most species demonstrated a response to interannual temperature variation, long-term temporal changes in phenological response were not detectable. Our findings support the use of herbarium records for understanding plant phenological responses to changes in temperature, and also importantly establish a new use of herbarium collections: inferring primary phenological cueing mechanisms of individual species (e.g., temperature, winter chilling, photoperiod). These latter data are lacking from most investigations of phenological change, but are vital for understanding differential responses of individual species to ongoing climate change. © 2015 Botanical Society of America.

  9. Using Essential Biodiversity Variables (EBVs) As a Framework for Coordination Between Research and Monitoring Networks: A Case Study with Phenology

    Science.gov (United States)

    Weltzin, J. F.; Jones, K. D.; Brown, J. F.; Elmendorf, S.; Enquist, C.; Rosemartin, A.; Thorpe, A.; Wee, B.

    2014-12-01

    The United Nations Convention on Biological Diversity (CBD) was organized to encourage countries to take action to address issues of declining biodiversity. In2010, the CBD identified specific goals for 2011-2020 (the "Aichi Targets") and a tiered system of indicators necessary to achieve those targets. Essential biodiversity variables (EBVs) are the standardized measurements and observations at the base of this system; they are the basic level of information that is necessary to calculate these indicators. By providing a list of pre-defined EBVs, existing research and research planned for the future can align measurements to address common questions. We assessed the applicability of phenology EBVs for standardizing measurements across observation networks within the US as a test case for use of the standardized used of EBVs. Phenology products from the USA National Phenology Network, a citizen science observer based program, NEON, a multi-scale ecological observatory, and remotely sensed data from USGS EROS were considered for this purpose. Essential Biodiversity Variables currently defined for phenology are insufficient to support consistent measurement across monitoring networks. Specifically, phenology which is a field of study, is currently listed as a single EBV within the general category of 'species traits'. With the only guidance provided to future observation networks being that of measuring 'phenology,' there would likely be as many approaches to achieving this goal as networks participating. We propose more narrowly defined variables which may be more appropriate for standardization and demonstrate how these measurements satisfy the basic characteristics of an EBV in that they are relevant, sensitive to change, biological and generalizable, scalable, feasible, stable and, represent state variables. We map these variables to the tiered indicators identified by the CBD and, finally, to Aichi Targets to which they contribute. EBVs may be used not only to

  10. Understanding how birds navigate

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2009-01-01

    A proposed model for migrating birds' magnetic sense can withstand moderate orientational disorder of a key protein in the eye.......A proposed model for migrating birds' magnetic sense can withstand moderate orientational disorder of a key protein in the eye....

  11. Nanoscale magnetoreceptors in birds

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Greiner, Walter

    2012-01-01

    The Earth's magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings...... field, by a bird....

  12. Avian Influenza in Birds

    Science.gov (United States)

    ... However, some ducks can be infected without any signs of illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have ... hours. Some ducks can be infected without any signs of illness. Avian influenza outbreaks are of concern in domesticated birds for ...

  13. Urban bird conservation

    NARCIS (Netherlands)

    Snep, Robbert P.H.; Kooijmans, Jip Louwe; Kwak, Robert G.M.; Foppen, Ruud P.B.; Parsons, Holly; Awasthy, Monica; Sierdsema, Henk L.K.; Marzluff, John M.; Fernandez-Juricic, Esteban; Laet, de Jenny

    2016-01-01

    Following the call from the United Nations Convention on Biological Diversity “Cities & Biodiversity Outlook” project to better preserve urban biodiversity, this paper presents stakeholder-specific statements for bird conservation in city environments. Based upon the current urban bird

  14. Migratory Birds. Issue Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview discusses why, how, where, and when birds migrate as well as problems birds encounter while migrating; the importance of research…

  15. The healing bird

    African Journals Online (AJOL)

    Greek mythology it was a nondescript bird but in the medieval bestiaries it became pure white. The caladrius is used in the coats of arms of the South African Medical and Dental Council and also the Medical University of Soufhern Africa. These appear to be the first use of this medically significant bird in modern heraldry.

  16. International Trade of CITES Listed Bird Species in China

    Science.gov (United States)

    Li, Linlin; Jiang, Zhigang

    2014-01-01

    Commercial trade of wild birds may devastate wild bird populations. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) controls the trade of wild species listed in its appendices to avoid these species being threatened by international trade. China used to be one of the major trading countries with significant bird trade with foreign countries; on the other hand, China is a country with unique avian fauna, many Important Bird Areas and critically endangered bird species. What is the role of the country in world wild bird trade? What kind of insights can we extract from trade records for improving future management of wild bird trade in the country? We retrieved and analyzed international trade records of the CITES listed bird species of China from 1981 to 2010 from the CITES Trade Database maintained by United Nations Environment Program and World Conservation Monitoring Centre (UNEP-WCMC). We found that: (1) International trade of live birds in China peaked during the late 1990s, then decreased to the level before the surge of trade in a few years, the trade dynamics of wild birds may be affected by governmental policy and the outbreak of avian influenza during the period. (2) Most frequently traded CITES Appendix listed birds in China were parrots, most of which were exotic species to the country. (3) Birds were mainly traded for commercial purpose. Exotic birds in trade were mainly captive-bred while the most Chinese birds traded internationally were captured from the wild. Since many bird species in international trade are threatened to extinction, China should take stricter measures on importing of wild-captured birds and should collaborate with the countries of original in the international bird trade to avoid unsustainable harvesting of wild birds. It is urgent for China to carry out population surveys on those domestic bird species once in significant international trade and to make better conservation decisions based on

  17. International trade of CITES listed bird species in China.

    Science.gov (United States)

    Li, Linlin; Jiang, Zhigang

    2014-01-01

    Commercial trade of wild birds may devastate wild bird populations. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) controls the trade of wild species listed in its appendices to avoid these species being threatened by international trade. China used to be one of the major trading countries with significant bird trade with foreign countries; on the other hand, China is a country with unique avian fauna, many Important Bird Areas and critically endangered bird species. What is the role of the country in world wild bird trade? What kind of insights can we extract from trade records for improving future management of wild bird trade in the country? We retrieved and analyzed international trade records of the CITES listed bird species of China from 1981 to 2010 from the CITES Trade Database maintained by United Nations Environment Program and World Conservation Monitoring Centre (UNEP-WCMC). We found that: (1) International trade of live birds in China peaked during the late 1990s, then decreased to the level before the surge of trade in a few years, the trade dynamics of wild birds may be affected by governmental policy and the outbreak of avian influenza during the period. (2) Most frequently traded CITES Appendix listed birds in China were parrots, most of which were exotic species to the country. (3) Birds were mainly traded for commercial purpose. Exotic birds in trade were mainly captive-bred while the most Chinese birds traded internationally were captured from the wild. Since many bird species in international trade are threatened to extinction, China should take stricter measures on importing of wild-captured birds and should collaborate with the countries of original in the international bird trade to avoid unsustainable harvesting of wild birds. It is urgent for China to carry out population surveys on those domestic bird species once in significant international trade and to make better conservation decisions based on

  18. PHENOLOGY AND MORPHOLOGY OF Diatenopteryx sorbifolia Radlk.

    Directory of Open Access Journals (Sweden)

    Marciele Felippi

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989280This study aimed to elucidate the time of occurrence of flowers and fruits and the external and internal morphology of the flower, fruit and seed, and seedling and external changes of Diatenopteryx sorbifolia Radlk (Sapindaceae. The collection of botanical material and phenological observations were made on trees headquarters, located in the municipality of Frederico Westphalen, Rio Grande do Sul state, between March 2007 and March 2010. The study was conducted at the Seed Laboratory of the Department of Forest Sciences, Federal University of Santa Maria, RS state. The species flowered from September to October. The annual fruiting occurs from November to January, having anemochorous dispersion. There were irregularities in the production of fruits as the years and there is no synchronization between headquarters during the phenophases. The species has inflorescence thyrsus, pleiotirso, with small white flowers in color, hermaphrodites with ovarian super sincarpico, and bicarpelar uniovular, as well as male unisexual flowers. The fruit of siples, dry, indehiscent, brown color, is the type esquisocarpaceo, consisting of samarideos containing one to two seeds, ovoid, brown color, exalbuminate with axial embryo and fleshy cotyledons. The germination process started from the second day after sowing, germination is epigeal type. After 18 days, the seedling phanerocotyledonal is formed. The changes in conditions to be studied, are formed three months after sowing. The phenological characterization is morphological information that is relevant for the field identification of species, seed collection and analysis, as well as the production of seedlings.

  19. Climatic variability, plant phenology, and northern ungulates

    Energy Technology Data Exchange (ETDEWEB)

    Post, E.; Stenseth, N.C. [Univ. of Oslo (Norway)

    1999-06-01

    Models of climate change predict that global temperatures and precipitation will increase within the next century, with the most pronounced changes occurring in northern latitudes and during winter. A large-scale atmospheric phenomenon, the North Atlantic Oscillation (NAO), is a strong determinant of both interannual variation and decadal trends in temperatures and precipitation during winter in northern latitudes, and its recent persistence in one extreme phase may be a substantial component of increases in global temperatures. Hence, the authors investigated the influences of large-scale climatic variability on plant phenology and ungulate population ecology by incorporating the NAO in statistical analyses of previously published data on: (1) the timing of flowering by plants in Norway, and (2) phenotypic and demographic variation in populations of northern ungulates. The authors analyzed 137 time series on plant phenology for 13 species of plants in Norway spanning up to 50 yr and 39 time series on phenotypic and demographic traits of 7 species of northern ungulates from 16 populations in North America and northern Europe spanning up to 30 yr.

  20. Intra-Urban Microclimate Effects on Phenology

    Directory of Open Access Journals (Sweden)

    Tammy E. Parece

    2018-03-01

    Full Text Available The urban heat island effect is commonly defined as the thermal differences between cooler rural and warmer urban areas, but it also refers to microclimatic differences within an urban area that arises from varied combinations of land cover related to different land uses. Microclimatic variations should also produce intra-urban differences in vegetation phenophases, although few studies have investigated urban phenology. Most phenological studies are usually regional to continental in scale, predominantly tracking changes in start of season related to climate change. This study reports results of an exploratory analysis using TIMESAT (Lund University, Lund, Sweden software and MODIS NDVI 250-m resolution data (Goddard Space Flight Center, Greenbelt, MD, USA to identify intra-urban differences in start of season for the City of Roanoke, Virginia. We compare these results to our in-situ temperature collection campaign. Additionally, we completed an in-situ start of season data collection by observing select tree species. Our results demonstrate that MODIS, processed by TIMESAT software, identified intra-urban start of season variations, and these variations are consistent with differing intra-urban microclimates and our in-situ start of season observations. Furthermore, results from such analyses can aid plans for increasing the urban tree canopy or in cultivating locations for urban agriculture—i.e., warmer areas with a longer growing season could accommodate warmer weather trees and crops.

  1. Canada thistle phenology in broadbean canopy

    Directory of Open Access Journals (Sweden)

    Marian Wesołowski

    2013-12-01

    Full Text Available Soine of the developmental stages of Canada thistle - Cirsium arvense (L. Scop. (I. emergence and early growth, II. shooting, II. budding, IV. flowering, V. fructification, VI. shedding of fruits on the background of development stages of broad-bean, weeded by herbicides and without that weed-killing substances, were presented in the paper. Phenological observations were carried out on the plants growing on alluvial soil developed from light loam in Zakrz6w near Tarnobrzeg. It was proved that phenological development of Canada thistle, during broad-bean vegetation, depended on course of weather conditions and method of crop care. Emergence of the weed occurred earlier than broad-bean plants during warm and rather dry seasons. In every vegetation period, emergence and early vegetation stage (to 4 leaves seedling of Canada thistle lasted about 3 months, until broad-bean got full pod setting. During wet and cold season (in 2001 the weed emerged also early under herbicide (Afalon 1,5 kg ha-1 condition. Until to broad-bean harvest, Canada thistle attained the finish developmental stages, that means fruiting and fruit shedding. Herbicide treatment delayed the last two stages and limited fruit shedding by plants of Cirsium arvense.

  2. Bird Activity Analysis Using Avian Radar Information in Naval Air Station airport, WA

    Science.gov (United States)

    Wang, J.; Herricks, E.

    2010-12-01

    The number of bird strikes on aircraft has increased sharply over recent years and airport bird hazard management has gained increasing attention in wildlife management and control. Evaluation of bird activity near airport is very critical to analyze the hazard of bird strikes. Traditional methods for bird activity analysis using visual counting provide a direct approach to bird hazard assessment. However this approach is limited to daylight and good visual conditions. Radar has been proven to be a useful and effective tool for bird detection and movement analysis. Radar eliminates observation bias and supports consistent data collection for bird activity analysis and hazard management. In this study bird activity data from the Naval Air Station Whidbey Island was collected by Accipiter Avian Radar System. Radar data was pre-processed by filtering out non-bird noises, including traffic vehicle, aircraft, insects, wind, rainfall, ocean waves and so on. Filtered data is then statistically analyzed using MATLAB programs. The results indicated bird movement dynamics in target areas near the airport, which includes (1) the daily activity varied at dawn and dusk; (2) bird activity varied by target area due to the habitat difference; and (3) both temporal and spatial movement patterns varied by bird species. This bird activity analysis supports bird hazard evaluation and related analysis and modeling to provide very useful information in airport bird hazard management planning.

  3. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range.

    Science.gov (United States)

    Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker

    2016-01-01

    In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

  4. Bird community response to filter strips in Maryland

    Science.gov (United States)

    Blank, P.J.; Dively, G.P.; Gill, D.E.; Rewa, C.A.

    2011-01-01

    Filter strips are strips of herbaceous vegetation planted along agricultural field margins adjacent to streams or wetlands and are designed to intercept sediment, nutrients, and agrichemicals. Roughly 16,000 ha of filter strips have been established in Maryland through the United States Department of Agriculture's Conservation Reserve Enhancement Program. Filter strips often represent the only uncultivated herbaceous areas on farmland in Maryland and therefore may be important habitat for early-successional bird species. Most filter strips in Maryland are planted to either native warm-season grasses or cool-season grasses and range in width from 10.7 m to 91.4 m. From 2004 to 2007 we studied the breeding and wintering bird communities in filter strips adjacent to wooded edges and non-buffered field edges and the effect that grass type and width of filter strips had on bird community composition. We used 5 bird community metrics (total bird density, species richness, scrub-shrub bird density, grassland bird density, and total avian conservation value), species-specific densities, nest densities, and nest survival estimates to assess the habitat value of filter strips for birds. Breeding and wintering bird community metrics were greater in filter strips than in non-buffered field edges but did not differ between cool-season and warm-season grass filter strips. Most breeding bird community metrics were negatively related to the percent cover of orchardgrass (Dactylis glomerata) in ???1 yr. Breeding bird density was greater in narrow (60 m) filter strips. Our results suggest that narrow filter strips adjacent to wooded edges can provide habitat for many bird species but that wide filter strips provide better habitat for grassland birds, particularly obligate grassland species. If bird conservation is an objective, avoid planting orchardgrass in filter strips and reduce or eliminate orchardgrass from filter strips through management practices. Copyright ?? 2011 The

  5. Toward a U.S. National Phenological Assessment

    Science.gov (United States)

    Henebry, Geoffrey M.; Betancourt, Julio L.

    2010-01-01

    Third USA National Phenology Network (USA-NPN) and Research Coordination Network (RCN) Annual Meeting; Milwaukee, Wisconsin, 5-9 October 2009; Directional climate change will have profound and lasting effects throughout society that are best understood through fundamental physical and biological processes. One such process is phenology: how the timing of recurring biological events is affected by biotic and abiotic forces. Phenology is an early and integrative indicator of climate change readily understood by nonspecialists. Phenology affects the planting, maturation, and harvesting of food and fiber; pollination; timing and magnitude of allergies and disease; recreation and tourism; water quantity and quality; and ecosystem function and resilience. Thus, phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal time scales. Changes in phenologies have already manifested myriad effects of directional climate change. As these changes continue, it is critical to establish a comprehensive suite of benchmarks that can be tracked and mapped at local to continental scales with observations and climate models.

  6. A new statistical tool to predict phenology under climate change scenarios

    OpenAIRE

    Gienapp, P.; Hemerik, L.; Visser, M.E.

    2005-01-01

    Climate change will likely affect the phenology of trophic levels differently and thereby disrupt the phenological synchrony between predators and prey. To predict this disruption of the synchrony under different climate change scenarios, good descriptive models for the phenology of the different species are necessary. Many phenological models are based on regressing the observed phenological event against temperatures measured over a fixed period. This is problematic, especially when used fo...

  7. Mathematical model for bird flu disease transmission with no bird ...

    African Journals Online (AJOL)

    In this paper a mathematical model for the transmission dynamics of bird flu among birds and humans is presented. The model assumes that there is no migration of birds in the susceptible bird population immediately the disease starts. The model formulated is analyzed using dynamical systems theory . The analysis of the ...

  8. mathematical model for bird flu disease transmission with no bird ...

    African Journals Online (AJOL)

    Admin

    In this paper a mathematical model for the transmission dynamics of bird flu among birds and humans is presented. The model assumes that there is no migration of birds in the susceptible bird population immediately the disease starts. The model formulated is analyzed using dynamical systems theory. The analysis of the ...

  9. Bird brood parasitism.

    Science.gov (United States)

    Stevens, Martin

    2013-10-21

    For many animals, the effort to rear their young is considerable. In birds, this often includes building nests, incubating eggs, feeding the chicks, and protecting them from predators. Perhaps for this reason, about 1% of birds (around 100 species) save themselves the effort and cheat instead. They are obligate brood parasites, laying their eggs in the nests of other species and leaving the hosts or foster parents to rear the foreign chicks for them. Some birds also cheat on individuals of the same species (intraspecific brood parasitism). Intraspecific brood parasitism has been reported in around 200 species, but is likely to be higher, as it can often only be detected by genetic analyses.

  10. Hatching synchrony in birds

    OpenAIRE

    Tippeltová, Zuzana

    2011-01-01

    This bachelor thesis is about hatching synchrony in birds. Generally, among birds there are two types of hatching - asynchronous and synchronous- and the type of hatching is primarily determined by the time of the onset of incubation. In many bird species, including most precocial ones, incubation does not begin until the last egg has been laid, which results in hatching of all the eggs within a few hours. In synchronously-hatched broods, all the chicks are about the same age. Thus no single ...

  11. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    Science.gov (United States)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    species of mammals, birds, and insects have begun to reproduce and overwinter at our field site in the past decade, and hibernators have changed the phenology of emergence from hibernation. Marmots now put on much more fat before entering hibernation. Interactions among species such as pollination and seed predation have also been affected by the changes in snowpack and phenology. For example, although both migratory hummingbirds and their floral resources are changing phenology, they are not changing at the same rate, leading to mismatches in their historical synchrony; hummingbirds now arrive well after their earliest food plant has begun to flower. A similar loss of synchrony appears to be affecting bumble bees as they emerge from overwintering underground, and one of their earliest nectar sources. Seed predator flies and moths, and their parasitoids, are probably being affected by the absence of seeds from species sensitive to frost. Thus many aspects of high-altitude ecological communities are being affected by the ongoing changes in depth of winter snowpack and the timing of its melting.

  12. National Audubon society's technology initiatives for bird conservation: a summary of application development for the Christmas bird count

    Science.gov (United States)

    Kathy Dale

    2005-01-01

    Since 1998, Audubon's Christmas Bird Count (CBC) has been supported by an Internet-based data entry application that was initially designed to accommodate the traditional paper-based methods of this long-running bird monitoring program. The first efforts to computerize the data and the entry procedures have informed a planned strategy to revise the current...

  13. Nuisance Birds Webinar Report

    Science.gov (United States)

    All over the nation, birds of all shapes and sizes attempt to make schools a their favorite hangout. Their arrival can lead to sanitation issues, added facility degradation, distracted students and health problems.

  14. Birds - Breeding [ds60

    Data.gov (United States)

    California Natural Resource Agency — This data set provides access to information gathered on annual breeding bird surveys in California using a map layer developed by the Department. This data layer...

  15. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  16. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Subtypes Transmission of Avian Influenza A Viruses Between Animals and People Related Links Research Glossary of Influenza (Flu) Terms ...

  17. Breeding bird survey data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are maintained by the USGS (https://www.pwrc.usgs.gov/bbs/RawData/) and provides information on the trends and status of North American bird populations...

  18. Awesome Audubon Birds

    Science.gov (United States)

    Kahler, Laura

    2010-01-01

    In this article, the author describes a watercolor art lesson on Audubon birds. She also discusses how science, technology, writing skills, and the elements and principles of art can be incorporated into the lesson.

  19. Forests and Phenology: Designing the Early Warning System to Understand Forest Change

    Science.gov (United States)

    Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.

    2010-12-01

    transfer methodologies. Achieving Context and Meaning: To provide deeper meaning and knowledge about the Early Warning System to users, this stage of the Early Warning System provides more information about specific examples of disturbances seen in the phenological data, as well the spatial and temporal context to these disturbances. The main components of this stage are specific case studies of forest disturbances. Accessing Data: This component of the Early Warning System includes products for research scientists, the aerial detection survey sketch mapper community, and others who will access and analyze the Early Warning System and phenological data. Products and data will be available through online GIS mashups and WMS and KML downloads. Utilizing Services: The final stage of the Early Warning System supports the analysis of phenological data and serves the results to those end users, including forest managers, the forest industry, and the public, who need to locate past, present, and potential forest disturbances. The main components of this stage include data-driven web tools, automated analysis processes, and end user training programs.

  20. Birds in portuguese literature

    OpenAIRE

    Queiroz, Ana Isabel; Soares, Filipa

    2016-01-01

    UID/ELT/00657/2013 WOS:000374914600004 IF/00222/2013 Birds are emblematic natural elements of landscapes. Readily noticeable and appreciated due to their songs and flight, they have been thoroughly used as components of literary scenarios. This paper analyses their representations in a broad corpus (144 writings by 67 writers) since the nineteenth century, divided in three time-periods. It aims to understand which wild birds are represented in Portuguese literature, how those represe...

  1. Artificial insemination for breeding non-domestic birds

    Science.gov (United States)

    Gee, G.F.; Temple, S.A.; Watson, P.F.

    1978-01-01

    Captive breeding of non-domestic birds has increased dramatically in this century, and production of young often exceeds that of the same number of birds in their native habitat. However, when infertility is a problem, artificial insemination can be a useful method to improve production. Artificial insemination programs with non-domestic birds are relatively recent, but several notable successes have been documented, especially with cranes and raptors. Three methods of artificial insemination are described--cooperative, massage, and electroejaculation. Cooperative artificial insemination requires training of birds imprinted on man and is used extensively in some raptor programs. The massage technique generally is used when there are larger numbers of birds to inseminate since it requires less training of the birds than with the cooperative method, and a larger number of attempted semen collections are successful. Although the best samples are obtained from birds conditioned to capture and handling procedures associated with the massage method, samples can be obtained from wild birds. Semen collection and insemination for the crane serves to illustrate some of the modifications necessary to compensate for anatomical variations. Collection of semen by electrical stimulation is not commonly used in birds. Unlike the other two methods which require behavioral cooperation by the bird, electroejaculation is possible in reproductively active birds without prior conditioning when properly restrained. Fertility from artificial insemination in captive non-domestic-birds has been good. Although some spermatozoal morphology has been reported, most aspects of morphology are not useful in predicting fertility. However, spermatozoal head length in the crane may have a positive correlation with fertility. Nevertheless, insemination with the largest number of live spermatozoa is still the best guarantee of fertile egg production.

  2. Climate warming, ecological mismatch at arrival and population decline in migratory birds.

    Science.gov (United States)

    Saino, Nicola; Ambrosini, Roberto; Rubolini, Diego; von Hardenberg, Jost; Provenzale, Antonello; Hüppop, Kathrin; Hüppop, Ommo; Lehikoinen, Aleksi; Lehikoinen, Esa; Rainio, Kalle; Romano, Maria; Sokolov, Leonid

    2011-03-22

    Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds. In fact, several migrants have advanced their spring arrival date, but whether such advancement has been sufficient to compensate for temporal shift in spring phenophases or, conversely, birds have become ecologically mismatched, is still an unanswered question, with very few exceptions. We used a novel approach based on accumulated winter and spring temperatures (degree-days) as a proxy for timing of spring biological events to test if the progress of spring at arrival to the breeding areas by 117 European migratory bird species has changed over the past five decades. Migrants, and particularly those wintering in sub-Saharan Africa, now arrive at higher degree-days and may have therefore accumulated a 'thermal delay', thus possibly becoming increasingly mismatched to spring phenology. Species with greater 'thermal delay' have shown larger population decline, and this evidence was not confounded by concomitant ecological factors or by phylogenetic effects. These findings provide general support to the largely untested hypotheses that migratory birds are becoming ecologically mismatched and that failure to respond to climate change can have severe negative impacts on their populations. The novel approach we adopted can be extended to the analysis of ecological consequences of phenological response to climate change by other taxa.

  3. Global Lake and River Ice Phenology Database, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  4. Timing is everything: Phenology as a tool for city foresters

    Science.gov (United States)

    Theresa Crimmins; Dudley. Hartel

    2014-01-01

    Given your education, experience, frequent contact with trees, and honed observational skills, you as municipal foresters are well suited for tracking recurring seasonal events such as leafing, flowering, and fruiting. The study of these phenomena is known as phenology.

  5. Phenology for science, resource management, decision making, and education

    Science.gov (United States)

    Nolan, V.P.; Weltzin, J.F.

    2011-01-01

    Fourth USA National Phenology Network (USA-NPN) Research Coordination Network (RCN) Annual Meeting and Stakeholders Workshop; Milwaukee, Wisconsin, 21-22 September 2010; Phenology, the study of recurring plant and animal life cycle events, is rapidly emerging as a fundamental approach for understanding how ecological systems respond to environmental variation and climate change. The USA National Phenology Network (USA-NPN; http://www.usanpn.org) is a large-scale network of governmental and nongovernmental organizations, academic institutions, resource management agencies, and tribes. The network is dedicated to conducting and promoting repeated and integrated plant and animal phenological observations, identifying linkages with other relevant biological and physical data sources, and developing and distributing the tools to analyze these data at local to national scales. The primary goal of the USA-NPN is to improve the ability of decision makers to design strategies for climate adaptation.

  6. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Land surface phenology from SPOT VEGETATION time series

    Directory of Open Access Journals (Sweden)

    A. Verger

    2016-12-01

    Full Text Available Land surface phenology from time series of satellite data are expected to contribute to improve the representation of vegetation phenology in earth system models. We characterized the baseline phenology of the vegetation at the global scale from GEOCLIM-LAI, a global climatology of leaf area index (LAI derived from 1-km SPOT VEGETATION time series for 1999-2010. The calibration with ground measurements showed that the start and end of season were best identified using respectively 30% and 40% threshold of LAI amplitude values. The satellite-derived phenology was spatially consistent with the global distributions of climatic drivers and biome land cover. The accuracy of the derived phenological metrics, evaluated using available ground observations for birch forests in Europe, cherry in Asia and lilac shrubs in North America showed an overall root mean square error lower than 19 days for the start, end and length of season, and good agreement between the latitudinal gradients of VEGETATION LAI phenology and ground data.

  8. Climate change effect on wheat phenology depends on cultivar change.

    Science.gov (United States)

    Rezaei, Ehsan Eyshi; Siebert, Stefan; Hüging, Hubert; Ewert, Frank

    2018-03-20

    Changing crop phenology is considered an important bio-indicator of climate change, with the recent warming trend causing an advancement in crop phenology. Little is known about the contributions of changes in sowing dates and cultivars to long-term trends in crop phenology, particularly for winter crops such as winter wheat. Here, we analyze a long-term (1952-2013) dataset of phenological observations across western Germany and observations from a two-year field experiment to directly compare the phenologies of winter wheat cultivars released between 1950 and 2006. We found a 14-18% decline in the temperature sum required from emergence to flowering for the modern cultivars of winter wheat compared with the cultivars grown in the 1950s and 1960s. The trends in the flowering day obtained from a phenology model parameterized with the field observations showed that changes in the mean temperature and cultivar properties contributed similarly to the trends in the flowering day, whereas the effects of changes in the sowing day were negligible. We conclude that the single-cultivar concept commonly used in climate change impact assessments results in an overestimation of winter wheat sensitivity to increasing temperature, which suggests that studies on climate change effects should consider changes in cultivars.

  9. Predicting phenology by integrating ecology, evolution and climate science

    Science.gov (United States)

    Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.

    2011-01-01

    Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.

  10. 78 FR 72830 - Migratory Bird Permits; Delegating Falconry Permitting Authority to 17 States

    Science.gov (United States)

    2013-12-04

    ...-0110; FF09M21200-134-FXMB1231099BPP0] RIN 1018-BA01 Migratory Bird Permits; Delegating Falconry... Migratory Bird Permits Program and assigned OMB control number 1018-0022, which expires February 28, 2014... Regulations, as follows: PART 21--MIGRATORY BIRD PERMITS 0 1. The authority citation for part 21 continues to...

  11. 77 FR 66406 - Migratory Bird Permits; Delegating Falconry Permitting Authority to Seven States

    Science.gov (United States)

    2012-11-05

    ...-1231-9BPP] RIN 1018-AZ16 Migratory Bird Permits; Delegating Falconry Permitting Authority to Seven... requirements of the Migratory Bird Permits Program and assigned OMB control number 1018- 0022, which expires... chapter I, title 50 of the Code of Federal Regulations, as follows: PART 21--MIGRATORY BIRD PERMITS 0 1...

  12. Linking phenological events in migratory passerines with a changing climate: 50 years in the Laurel Highlands of Pennsylvania.

    Science.gov (United States)

    McDermott, Molly E; DeGroote, Lucas W

    2017-01-01

    Advanced timing of both seasonal migration and reproduction in birds has been strongly associated with a warming climate for many bird species. Phenological responses to climate linking these stages may ultimately impact fitness. We analyzed five decades of banding data from 17 migratory bird species to investigate 1) how spring arrival related to timing of breeding, 2) if the interval between arrival and breeding has changed with increasing spring temperatures, and 3) whether arrival timing or breeding timing best predicted local productivity. Four of 17 species, all mid- to long-distance migrants, hatched young earlier in years when migrants arrived earlier to the breeding grounds (~1:1 day advancement). The interval between arrival on breeding grounds and appearance of juveniles shortened with warmer spring temperatures for 12 species (1-6 days for every 1°C increase) and over time for seven species (1-8 days per decade), suggesting that some migratory passerines adapt to climate change by laying more quickly after arrival or reducing the time from laying to fledging. We found more support for the former, that the rate of reproductive advancement was higher than that for arrival in warm years. Timing of spring arrival and breeding were both poor predictors of avian productivity for most migrants analyzed. Nevertheless, we found evidence that fitness benefits may occur from shifts to earlier spring arrival for the multi-brooded Song Sparrow. Our results uniquely demonstrate that co-occurring avian species are phenologically plastic in their response to climate change on their breeding grounds. If migrants continue to show a weaker response to temperatures during migration than breeding, and the window between arrival and optimal breeding shortens further, biological constraints to plasticity may limit the ability of species to adapt successfully to future warming.

  13. Linking phenological events in migratory passerines with a changing climate: 50 years in the Laurel Highlands of Pennsylvania.

    Directory of Open Access Journals (Sweden)

    Molly E McDermott

    Full Text Available Advanced timing of both seasonal migration and reproduction in birds has been strongly associated with a warming climate for many bird species. Phenological responses to climate linking these stages may ultimately impact fitness. We analyzed five decades of banding data from 17 migratory bird species to investigate 1 how spring arrival related to timing of breeding, 2 if the interval between arrival and breeding has changed with increasing spring temperatures, and 3 whether arrival timing or breeding timing best predicted local productivity. Four of 17 species, all mid- to long-distance migrants, hatched young earlier in years when migrants arrived earlier to the breeding grounds (~1:1 day advancement. The interval between arrival on breeding grounds and appearance of juveniles shortened with warmer spring temperatures for 12 species (1-6 days for every 1°C increase and over time for seven species (1-8 days per decade, suggesting that some migratory passerines adapt to climate change by laying more quickly after arrival or reducing the time from laying to fledging. We found more support for the former, that the rate of reproductive advancement was higher than that for arrival in warm years. Timing of spring arrival and breeding were both poor predictors of avian productivity for most migrants analyzed. Nevertheless, we found evidence that fitness benefits may occur from shifts to earlier spring arrival for the multi-brooded Song Sparrow. Our results uniquely demonstrate that co-occurring avian species are phenologically plastic in their response to climate change on their breeding grounds. If migrants continue to show a weaker response to temperatures during migration than breeding, and the window between arrival and optimal breeding shortens further, biological constraints to plasticity may limit the ability of species to adapt successfully to future warming.

  14. Vegetation Index and Phenology (VIP) Phenology EVI-2 Yearly Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA MEaSUREs Vegetation Index and Phenology (VIP) global datasets were created using surface reflectance data from the Advanced Very High Resolution Radiometer...

  15. Bottom-up processes influence the demography and life-cycle phenology of Hawaiian bird communities

    Science.gov (United States)

    Jared D. Wolfe; C. John Ralph; Andrew Wiegardt

    2017-01-01

    Changes in climate can indirectly regulate populations at higher trophic levels by influencing the availability of food resources in the lower reaches of the food web. As such, species that rely on fruit and nectar food resources may be particularly sensitive to these bottom-up perturbations due to the strength of their trophic linkages with climatically-...

  16. Book review: Bird census techniques, Second edition

    Science.gov (United States)

    Sauer, John R.

    2002-01-01

    Conservation concerns, federal mandates to monitor birds, and citizen science programs have spawned a variety of surveys that collect information on bird populations. Unfortunately, all too frequently these surveys are poorly designed and use inappropriate counting methods. Some of the flawed approaches reflect a lack of understanding of statistical design; many ornithologists simply are not aware that many of our most entrenched counting methods (such as point counts) cannot appropriately be used in studies that compare densities of birds over space and time. It is likely that most of the readers of The Condor have participated in a bird population survey that has been criticized for poor sampling methods. For example, North American readers may be surprised to read in Bird Census Techniques that the North American Breeding Bird Survey 'is seriously flawed in its design,' and that 'Analysis of trends is impossible from points that are positioned along roads' (p. 109). Our conservation efforts are at risk if we do not acknowledge these concerns and improve our survey designs. Other surveys suffer from a lack of focus. In Bird Census Techniques, the authors emphasize that all surveys require clear statements of objectives and an understanding of appropriate survey designs to meet their objectives. Too often, we view survey design as the realm of ornithologists who know the life histories and logistical issues relevant to counting birds. This view reflects pure hubris: survey design is a collaboration between ornithologists, statisticians, and managers, in which goals based on management needs are met by applying statistical principles for design to the biological context of the species of interest. Poor survey design is often due to exclusion of some of these partners from survey development. Because ornithologists are too frequently unaware of these issues, books such as Bird Census Techniques take on added importance as manuals for educating ornithologists about

  17. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  18. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  19. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    Science.gov (United States)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. © 2016 John Wiley & Sons Ltd.

  20. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Gillespie, Mark A K; Rumpf, Sabine B.

    2016-01-01

    The duration of specific periods within a plant's life cycle are critical for plant growth and performance. In the High Arctic, the start of many of these phenological periods is determined by snowmelt date, which may change in a changing climate. It has been suggested that the end of these perio...... be considered an evolutionary trait leading to disadvantages compared with aperiodic species and we conclude that the mesic and heath vegetation types in Svalbard are at risk of being outcompeted by invading, aperiodic species from milder biomes....

  1. Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds

    Science.gov (United States)

    Dimitrov, Dimitar; Ivanova, Karina; Zehtindjiev, Pavel

    2018-01-01

    Blood parasites (Haemosporidia) are thought to impair the flight performance of infected animals, and therefore, infected birds are expected to differ from their non-infected counterparts in migratory capacity. Since haemosporidians invade host erythrocytes, it is commonly assumed that infected individuals will have compromised aerobic capacity, but this has not been examined in free-living birds. We tested if haemosporidian infections affect aerobic performance by examining metabolic rates and exercise endurance in migratory great reed warblers (Acrocephalus arundinaceus) experimentally treated with Plasmodium relictum pGRW04 and in naturally infected wild birds over consecutive life-history stages. We found no effect of acute or chronic infections on resting metabolic rate, maximum metabolic rate or exercise endurance in either experimentally treated or free-living birds. Oxygen consumption rates during rest and while undergoing maximum exercise as well as exercise endurance increased from breeding to migration stages in both infected and non-infected birds. Importantly, phenotypic changes associated with preparation for migration were similarly unaffected by parasitaemia. Consequently, migratory birds experiencing parasitaemia levels typical of chronic infection do not differ in migratory capacity from their uninfected counterparts. Thus, if infected hosts differ from uninfected conspecifics in migration phenology, other mechanisms besides aerobic capacity should be considered. PMID:29386365

  2. Ecology of Avian Influenza Virus in Wild Birds in Tropical Africa.

    Science.gov (United States)

    Gaidet, Nicolas

    2016-05-01

    Several ecologic factors have been proposed to describe the mechanisms whereby host ecology and the environment influence the transmission of avian influenza viruses (AIVs) in wild birds, including bird's foraging behavior, migratory pattern, seasonal congregation, the rate of recruitment of juvenile birds, and abiotic factors. However, these ecologic factors are derived from studies that have been conducted in temperate or boreal regions of the Northern Hemisphere. These factors cannot be directly translated to tropical regions, where differences in host ecology and seasonality may produce different ecologic interactions between wild birds and AIV. An extensive dataset of AIV detection in wildfowl and shorebirds sampled across tropical Africa was used to analyze how the distinctive ecologic features of Afrotropical regions may influence the dynamics of AIV transmission in wild birds. The strong seasonality of rainfall and surface area of wetlands allows testing of how the seasonality of wildfowl ecology (reproduction phenology and congregation) is related to AIV seasonal dynamics. The diversity of the African wildfowl community provides the opportunity to investigate the respective influence of migratory behavior, foraging behavior, and phylogeny on species variation in infection rate. Large aggregation sites of shorebirds in Africa allow testing for the existence of AIV infection hot spots. We found that the processes whereby host ecology influence AIV transmission in wild birds in the Afrotropical context operate through ecologic factors (seasonal drying of wetlands and extended and nonsynchronized breeding periods) that are different than the one described in temperate regions, hence, resulting in different patterns of AIV infection dynamics.

  3. Changes in phenology and frost risks of

    Directory of Open Access Journals (Sweden)

    Thomas Kartschall

    2015-04-01

    Full Text Available For a retrospective period of 110 years between 1901 and 2010 (observed data, and for the subsequent future period between 2011 and 2100 we calculated the phenological development (bud burst, harvest ripeness, and in particular the spring frost risk (frost after bud burst, as one important derived variable for grapevine (Vitis vinifera L. cv Riesling for the whole of Germany. For the future climate we included two different scenarios (RCP8.5, RCP2.6 each of them containing a triple set with minimum, medium and maximum temperature increase. The time period between 1981 and 2010 as the last three decades in the observed data was chosen as reference. In general we found an acceleration of the phenological development (all main phases mainly beginning in the late 1980s. For the three-decade period between 2031 and 2060 this acceleration will reach 11±3$11\\pm3$ days in the RCP8.5-scenario. The acceleration for the other stages behaved similarly and results in an earlier harvest ripeness of 13±1$13\\pm1$ days. Since a warmer spring in general leads to earlier bud burst, but does not reduce the risk of frost events during this period in the same manner, changes in the risk of spring frost damage were relatively small. For the coming decades this risk will not decrease for all traditional German viticultural regions in the RCP8.5-scenarios; on the contrary, our results suggest it is likely to increase. The results showed an increasing spring frost risk not only for the debated “upcoming” potential viticultural areas in eastern Germany, an effect which will partly also reach the southernmost viticultural areas. This effect in northern and eastern Germany is due to earlier bud burst together with the stronger continental influence, but for the southern and western regions of Germany is mainly due to the even earlier bud burst. This could modify the regionally nuanced character of German wines.

  4. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... appeal. However, some studies have found birds to perform relatively poorly as indicators. We therefore ask how the effectiveness of this approach can be improved by supplementing data on birds with information on other taxa. 2. Here, we explore two strategies using (i) species data for other taxa...... and (ii) genus- and family-level data for invertebrates (when available). We used three distinct species data sets for sub-Saharan Africa, Denmark and Uganda, which cover different spatial scales, biogeographic regions and taxa (vertebrates, invertebrates and plants). 3. We found that networks of priority...

  5. Cook Inlet and Kenai Peninsula, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  6. Competitor phenology as a social cue in breeding site selection.

    Science.gov (United States)

    Samplonius, Jelmer M; Both, Christiaan

    2017-05-01

    Predicting habitat quality is a major challenge for animals selecting a breeding patch, because it affects reproductive success. Breeding site selection may be based on previous experience, or on social information from the density and success of competitors with an earlier phenology. Variation in animal breeding phenology is often correlated with variation in habitat quality. Generally, animals breed earlier in high-quality habitats that allow them to reach a nutritional threshold required for breeding earlier or avoid nest predation. In addition, habitat quality may affect phenological overlap between species and thereby interspecific competition. Therefore, we hypothesized that competitor breeding phenology can be used as social cue by settling migrants to locate high-quality breeding sites. To test this hypothesis, we experimentally advanced and delayed hatching phenology of two resident tit species on the level of study plots and studied male and female settlement patterns of migratory pied flycatchers Ficedula hypoleuca. The manipulations were assigned at random in two consecutive years, and treatments were swapped between years in sites that were used in both years. In both years, males settled in equal numbers across treatments, but later arriving females avoided pairing with males in delayed phenology plots. Moreover, male pairing probability declined strongly with arrival date on the breeding grounds. Our results demonstrate that competitor phenology may be used to assess habitat quality by settling migrants, but we cannot pinpoint the exact mechanism (e.g. resource quality, predation pressure or competition) that has given rise to this pattern. In addition, we show that opposing selection pressures for arrival timing may give rise to different social information availabilities between sexes. We discuss our findings in the context of climate warming, social information use and the evolution of protandry in migratory animals. © 2017 The Authors. Journal

  7. Phenology research for natural resource management in the United States.

    Science.gov (United States)

    Enquist, Carolyn A F; Kellermann, Jherime L; Gerst, Katharine L; Miller-Rushing, Abraham J

    2014-05-01

    Natural resource professionals in the United States recognize that climate-induced changes in phenology can substantially affect resource management. This is reflected in national climate change response plans recently released by major resource agencies. However, managers on-the-ground are often unclear about how to use phenological information to inform their management practices. Until recently, this was at least partially due to the lack of broad-based, standardized phenology data collection across taxa and geographic regions. Such efforts are now underway, albeit in very early stages. Nonetheless, a major hurdle still exists: phenology-linked climate change research has focused more on describing broad ecological changes rather than making direct connections to local to regional management concerns. To help researchers better design relevant research for use in conservation and management decision-making processes, we describe phenology-related research topics that facilitate "actionable" science. Examples include research on evolution and phenotypic plasticity related to vulnerability, the demographic consequences of trophic mismatch, the role of invasive species, and building robust ecological forecast models. Such efforts will increase phenology literacy among on-the-ground resource managers and provide information relevant for short- and long-term decision-making, particularly as related to climate response planning and implementing climate-informed monitoring in the context of adaptive management. In sum, we argue that phenological information is a crucial component of the resource management toolbox that facilitates identification and evaluation of strategies that will reduce the vulnerability of natural systems to climate change. Management-savvy researchers can play an important role in reaching this goal.

  8. BIRD ATTACK OCULAR INJURIES.

    Science.gov (United States)

    Tabatabaei, Seyed Ali; Soleimani, Mohammad; Behrouz, Mahmoud Jabbarvand

    2017-03-29

    To report 30 patients with bird attack-related eye injuries. This study was performed among patients coming to Farabi Eye Hospital, Tehran, Iran, from 2010 to 2015 with a history of bird attack causing eye injury. The inclusion criteria were a history of bird attack by pecking causing eye injury and having treatment and follow-up record for at least 6 months after treatment. The primary eye examinations included a full ophthalmic examination including evaluation of uncorrected visual acuity and best-corrected visual acuity (BCVA), anterior segment slit lamp biomicroscopy, and photography. For all patients with penetrating injury, primary repair was undertaken. Thirty patients (10 females and 20 males) with a mean age of 23.3 ± 18.5 years entered the study. The most common zone of injury was zone 1 (P < 0.001), and lensectomy was not needed in majority of patients (P < 0.001). The most common bird causing the injury was mynah (P < 0.001). Those patients with baseline BCVA of less than 20/200 or those with endophthalmitis had statistically worse final BCVA after treatment. Patients attacked by mynah bird had significantly better pretreatment uncorrected visual acuity and BCVA. The most common bird causing the eye injury among the sample of patients from Iran was mynah, which differs with previous studies indicating the rooster attack as the most common cause of eye injury. The authors also found that the most common zone of injury was zone 1, and the presence of endophthalmitis and lower baseline BCVA were significant risk factors for worse visual outcomes.

  9. Biomechanics of bird flight.

    Science.gov (United States)

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context.

  10. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  11. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  12. Phenology largely explains taller grass at successful nests in greater sage-grouse.

    Science.gov (United States)

    Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E

    2018-01-01

    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

  13. Indigenizing to making schooling and education one:a bird's eye view of Yurok nation's culture and language program in Northern California, US

    OpenAIRE

    Amankwah, F. (Francis)

    2018-01-01

    Abstract This thesis focuses on the interests and attitudes shown by learners and educators towards the inclusion of the Yurok Language and Culture program in schools’ curricula across Humboldt County-Californian, USA. The program aims at revitalizing the Yurok culture and improving the academic standards of Yurok and other native American Indian students. The main theoretical frameworks used in this research are Bronfen...

  14. Watching grass grow: Successes and limitations of image-based methods for monitoring grassland phenology

    Science.gov (United States)

    Seasonal changes in aboveground primary production (i.e. phenology) are influenced by environmental conditions with implications for land-atmosphere interactions, carbon cycling, and agricultural production. Monitoring phenology and quantifying seasonal patterns across spatially extensive grasslands...

  15. Remotely sensed vegetation phenology for describing and predicting the biomes of South Africa

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-02-01

    Full Text Available What are the patterns of remotely sensed vegetation phenology, including their inter-annual variability, across South Africa? What are the phenological attributes that contribute most to distinguishing the different biomes? How well can...

  16. Predicting phenological shifts in Finnish nocturnal moth community

    Science.gov (United States)

    Valtonen, A. K.; Ayres, M. P.

    2011-12-01

    Changes in phenology are a crucial manifestation of climate change in ecological systems. Notable changes in phenology have been reported especially for high latitude systems. Are high latitude systems more sensitive to climate change because the resident species have higher physiological sensitivity to temperature? In this work, we compared the fit of three phenological models (thermal sum, photoperiod, solar day) to the time-series data of > 300 species of nocturnal moths collected with light-traps across Finland during years 1993-2004. We fitted the models separately to the data from southern and northern part of the country. We found strong support for thermal controls of phenology in 68% of the modeled species (and generations) in south and 60% in north, suggesting that at least two thirds of the species within this community are likely to shift their phenology along with rising temperatures in the future. Photoperiodic controls were more common in the north, possibly because these populations experience greater selective pressure from shorter growing seasons. Contrary to our expectations there was no tendency for greater thermal sensitivity in northern populations among species with strong thermal control of phenology. However, approximately half of the species had higher development rates at moderate temperatures (15°C) in the north, which is presumably a response to short growing seasons. When 3°C higher hourly temperatures were fitted to the thermal sum models of species with strong thermal control of phenology, southern populations shifted their phenology on average by 15.2 days (range 3.9 and 30.1) and northern populations by 11.4 days (range 2.6 and 26.7). We believe that these predictions could be improved in future with experimental studies on a variety of species, resolving species' and population specific thermal sensitivity and the control mechanisms of diapause termination in the spring. Yet, experiments on hundreds of species, like studied here

  17. Searching for adaptive traits in genetic resources - phenology based approach

    Science.gov (United States)

    Bari, Abdallah

    2015-04-01

    Searching for adaptive traits in genetic resources - phenology based approach Abdallah Bari, Kenneth Street, Eddy De Pauw, Jalal Eddin Omari, and Chandra M. Biradar International Center for Agricultural Research in the Dry Areas, Rabat Institutes, Rabat, Morocco Phenology is an important plant trait not only for assessing and forecasting food production but also for searching in genebanks for adaptive traits. Among the phenological parameters we have been considering to search for such adaptive and rare traits are the onset (sowing period) and the seasonality (growing period). Currently an application is being developed as part of the focused identification of germplasm strategy (FIGS) approach to use climatic data in order to identify crop growing seasons and characterize them in terms of onset and duration. These approximations of growing period characteristics can then be used to estimate flowering and maturity dates for dryland crops, such as wheat, barley, faba bean, lentils and chickpea, and assess, among others, phenology-related traits such as days to heading [dhe] and grain filling period [gfp]. The approach followed here is based on first calculating long term average daily temperatures by fitting a curve to the monthly data over days from beginning of the year. Prior to the identification of these phenological stages the onset is extracted first from onset integer raster GIS layers developed based on a model of the growing period that considers both moisture and temperature limitations. The paper presents some examples of real applications of the approach to search for rare and adaptive traits.

  18. A Phenological Study on Zygophyllum atriplicoides in Mouteh, Isfahan Province

    Directory of Open Access Journals (Sweden)

    A. Mohamadi

    2015-03-01

    Full Text Available Phenology refers to the study of natural cyclic events in the life of plants and animals. Phenophasis variations are the most sensitive responses to the climate changes. Knowledge of phenology is also important for rehabilitation and nursery management. In this study, phenology of Zygophyllum atriplicoides was observed in Mouteh area, Isfahan province. At first, 20 shrubs were randomly selected and then vital phenological events, such as bud developing, leaf emerging, flowering, fruiting, leaf shedding, seed formation, seed scattering and plant latent state were recorded monthly during a year. Then, pictorial time series of the plant was developed. The percentage of the three color channels (red - green - blue (RGB were extracted in every picture and for every part of the plant, such as leaves, stems and fruits. Next, they were separately analyzed. The phenological records revealed that the plant buds start to grow from late March until September. Moreover, flowering occurs in April, and peak fruiting follows in May. Seeds appear in June and scatter in July. There is a clear correlation between notable phenophasis of the plant and climatic factors such as rainfall and temperature.

  19. Timber and forest birds

    Science.gov (United States)

    Brian Roy Lockhart

    2009-01-01

    Many years ago, I had an epiphany that I would like to share. Several students and I were installing research plots in the forests on Pittman Island, Issaquena County, Mississippi, an island adjacent to the Mississippi River, near the borders of Arkansas, Mississippi, and Louisiana. While eating lunch, we watched a bird, more specifically a prothonotary warbler (

  20. Bird Flu (Avian Influenza)

    Science.gov (United States)

    ... domesticated birds. If possible, avoid rural areas, small farms and open-air markets. Wash your hands. This is one of the simplest and best ways to prevent infections of all kinds. Use an alcohol-based hand sanitizer containing at least 60 percent alcohol ...

  1. Breeding Ecology of Birds

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/008/07/0022-0032. Keywords. Birds. nesting. territory; coloniality; heronries. ecology; nesting strategies. Author Affiliations. Abdul Jamil Urfi1. Department of Environmental Biology, School of Environmental Studies, University of Delhi, Delhi 110007. Resonance – Journal of Science ...

  2. Europe's last Mesozoic bird

    NARCIS (Netherlands)

    Dyke, Gareth J.; Dortangs, Rudi W.; Jagt, John W.; Mulder, Eric W. A.; Schulp, Anne S.; Chiappe, Luis M.

    2002-01-01

    Birds known from more than isolated skeletal elements are rare in the fossil record, especially from the European Mesozoic. This paucity has hindered interpretations of avian evolution immediately prior to, and in the aftermath of, the Cretaceous-Tertiary (K-T) extinction event. We report on a

  3. The Umbrella Bird

    NARCIS (Netherlands)

    Crandall, Lee S.

    1949-01-01

    When CHARLES CORDIER arrived from Costa Rica on October 9, 1942, bringing with him, among other great rarities, three Bare-necked Umbrella Birds (Cephalopterus ornatus glabricollis), it seemed to us that the mere possession of such fabulous creatures was satisfaction enough. True, they were not

  4. Birds of Prey.

    Science.gov (United States)

    Irwin, Harriet

    Introducing students to different hawks and owls found in Wisconsin and building a basis for appreciation of these birds in their own environment is the purpose of this teacher's guide. Primarily geared for upper elementary and junior high grades, the concepts presented could be used in conjunction with the study of ecology. A filmstrip is…

  5. Long migration flights of birds

    International Nuclear Information System (INIS)

    Denny, Mark

    2014-01-01

    The extremely long migration flights of some birds are carried out in one hop, necessitating a substantial prior build-up of fat fuel. We summarize the basic elements of bird flight physics with a simple model, and show how the fat reserves influence flight distance, flight speed and the power expended by the bird during flight. (paper)

  6. Birding--Fun and Science

    Science.gov (United States)

    McIntosh, Phyllis

    2014-01-01

    This feature article presents the basics of birding, or bird watching, and discusses its appeal, especially to serious birders. A section on "citizen scientists" explains organizations that collect data on birds and describes projects they organize. Other sections discuss the legacy of John James Audubon and the bald eagle.

  7. Birds of Prey of Wisconsin.

    Science.gov (United States)

    Hamerstrom, Frances

    This copiously illustrated document is designed to be a field quide to birds of prey that are common to Wisconsin, as well as to some that enter the state occasionally. An introduction discusses birds of prey with regard to migration patterns, the relationship between common names and the attitudes of people toward certain birds, and natural signs…

  8. Long migration flights of birds

    Science.gov (United States)

    Denny, Mark

    2014-05-01

    The extremely long migration flights of some birds are carried out in one hop, necessitating a substantial prior build-up of fat fuel. We summarize the basic elements of bird flight physics with a simple model, and show how the fat reserves influence flight distance, flight speed and the power expended by the bird during flight.

  9. Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index

    Science.gov (United States)

    Taehee Hwang; Conghe Song; James Vose; Lawrence Band

    2011-01-01

    Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of phenology...

  10. A new statistical tool to predict phenology under climate change scenarios

    NARCIS (Netherlands)

    Gienapp, P.; Hemerik, L.; Visser, M.E.

    2005-01-01

    Climate change will likely affect the phenology of trophic levels differently and thereby disrupt the phenological synchrony between predators and prey. To predict this disruption of the synchrony under different climate change scenarios, good descriptive models for the phenology of the different

  11. Predicting adaptation of phenology in response to climate change, an insect herbivore example

    NARCIS (Netherlands)

    van Asch, M.; van Tienderen, P.H.; Holleman, L.J.M.; Visser, M.E.

    2007-01-01

    Climate change has led to an advance in phenology in many species. Synchrony in phenology between different species within a food chain may be disrupted if an increase in temperature affects the phenology of the different species differently, as is the case in the winter moth egg hatch - oak bud

  12. Predicting adaptation of phenology in response to climate change, an insect herbivore example

    NARCIS (Netherlands)

    Van Asch, M.; van Tienderen, P.H.; Holleman, L.J.M.; Visser, M.E.

    2007-01-01

    Climate change has led to an advance in phenology in many species. Synchrony in phenology between different species within a food chain may be disrupted if an increase in temperature affects the phenology of the different species differently, as is the case in the winter moth egg hatch–oak bud burst

  13. Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect

    Science.gov (United States)

    James A. Powell; Barbara J. Bentz

    2009-01-01

    It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a...

  14. 14 CFR 33.76 - Bird ingestion.

    Science.gov (United States)

    2010-01-01

    ... single bird, the single largest medium bird which can enter the inlet, and the large flocking bird must...) (d) Large flocking bird. An engine test will be performed as follows: (1) Large flocking bird engine.... (4) Ingestion of a large flocking bird under the conditions prescribed in this paragraph must not...

  15. Phenological sensitivity to climate across taxa and trophic levels

    DEFF Research Database (Denmark)

    Thackeray, Stephen J.; Henrys, Peter; Hemming, Deborah

    2016-01-01

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate...... Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic...... groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing...

  16. Reflection of climatic changes in Altai phenology

    Science.gov (United States)

    Malygina, Natalia; Barlyaeva, Tatiana; Blyakharchuk, Tatiana; Mitrofanova, Elena; Lovtskaya, Olga; Nenasheva, Galina; Otgonbayar, Demberel; Papina, Tatiana; Ryabchinskaya, Natalia; Sokolov, Andrey

    2014-05-01

    The last decades of the past century showed noticeable climate changes in many parts of the Earth (IPCC, 2007). Numerous models suggest that the climate changes will continue, showing a variable intensity especially in mountain regions. Altai Mountains, located at the boundary of taiga, desert, and semiarid regions of Central Asia, are exposed to intensive climatic and environmental changes. Analysis of changes in phenological parameters is the simplest process for track changes in the ecology of species in response to climate change. We present climatic characteristic and statistical analysis changes of thermal and precipitation regimes in Altai Mountains (Russian and Mongolian Altai), and the response of phenological parameters to these changes. The close correlation between temperature series of the Russian and northern part of Mongolian Altai is determined. At the same time, a correlation between precipitation data is observed only for the cold (November - March) seasons. It was found that the rate of temperature increase for the period under consideration (1940-2012) ranged from 0.15 to 0.55 ° C/10 years, and the most significant increase was registered during the cold seasons. An increase of annual means of precipitation is in the range from 2.32 to 6.37 mm / 10 years. The maximal increase (29 mm / 10 years) was observed in the data from the Kara-Tyureck station, whose location is the highest one of the considered stations (2600 m). During the maximal warming (1980-1999), a 2-4.5 times increase of annual average temperature was observed as compared to the period of 1940 - 1979. The amount of precipitation is increased for Ust'-Koksa (5 times) and Ulgiy (2 times) stations, but it is 3 times lower for Kosh-Agach and Kara-Tyureck stations. The results of the correlation analysis of temperature and precipitation data for the analyzed Russian and Mongolian Altai stations were confirmed and detailed by the wavelet and wavelet coherence / phase analysis. The

  17. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  18. Does flower phenology mirror the slowdown of global warming?

    Science.gov (United States)

    Jochner, Susanne; Menzel, Annette

    2015-01-01

    Although recent global warming trends in air temperature are not as pronounced as those observed only one decade ago, global mean temperature is still at a very high level. Does plant phenology – which is believed to be a suitable indicator of climate change – respond in a similar way, that is, does it still mirror recent temperature variations? We explored in detail long-term flowering onset dates of snowdrop, cherry, and lime tree and relevant spring temperatures at three sites in Germany (1901–2012) using the Bayesian multiple change-point approach. We investigated whether mean spring temperature changes were amplified or slowed down in the past decade and how plant phenology responded to the most recent temperature changes. Incorporating records with different end points (i.e., 2002 and 2012), we compared differences in trends and inferred possible differences caused by extrapolating phenological and meteorological data. The new multiple-change point approach is characterized by an enhanced structure and greater flexibility compared to the one change point model. However, the highest model probabilities for phenological (meteorological) records were still obtained for the one change point (linear) model. Marked warming trends in the recent decade were only revealed for mean temperatures of March to May, here better described with one or two change point models. In the majority of cases analyzed, changes in temperatures were well mirrored by phenological changes. However, temperatures in March to May were linked to less strongly advancing onset dates for lime tree flowering during the period 1901-2012, pointing to the likely influence of photoperiodic constraints or unfulfilled chilling requirements. Due to the slowdown of temperature increase, analyses conducted on records ending in 2002 demonstrated distinct differences when compared with records ending in 2012. Extrapolation of trends could therefore (along with the choice of the statistical method

  19. Does flower phenology mirror the slowdown of global warming?

    Science.gov (United States)

    Jochner, Susanne; Menzel, Annette

    2015-06-01

    Although recent global warming trends in air temperature are not as pronounced as those observed only one decade ago, global mean temperature is still at a very high level. Does plant phenology - which is believed to be a suitable indicator of climate change - respond in a similar way, that is, does it still mirror recent temperature variations? We explored in detail long-term flowering onset dates of snowdrop, cherry, and lime tree and relevant spring temperatures at three sites in Germany (1901-2012) using the Bayesian multiple change-point approach. We investigated whether mean spring temperature changes were amplified or slowed down in the past decade and how plant phenology responded to the most recent temperature changes. Incorporating records with different end points (i.e., 2002 and 2012), we compared differences in trends and inferred possible differences caused by extrapolating phenological and meteorological data. The new multiple-change point approach is characterized by an enhanced structure and greater flexibility compared to the one change point model. However, the highest model probabilities for phenological (meteorological) records were still obtained for the one change point (linear) model. Marked warming trends in the recent decade were only revealed for mean temperatures of March to May, here better described with one or two change point models. In the majority of cases analyzed, changes in temperatures were well mirrored by phenological changes. However, temperatures in March to May were linked to less strongly advancing onset dates for lime tree flowering during the period 1901-2012, pointing to the likely influence of photoperiodic constraints or unfulfilled chilling requirements. Due to the slowdown of temperature increase, analyses conducted on records ending in 2002 demonstrated distinct differences when compared with records ending in 2012. Extrapolation of trends could therefore (along with the choice of the statistical method) lead to

  20. Opportunities to investigate the functional phenology of ecosystems using a European Phenology Camera Network

    Science.gov (United States)

    Wingate, Lisa; Ogee, Jerome; Cremonese, Edoardo; Filippa, Gianluca; Mizunuma, Toshie; Migliavacca, Mirco; Plaza-Aguilar, Andres; Wilkinson, Matthew; Grace, John

    2015-04-01

    Plant phenology is orchestrated through subtle changes in photoperiod, temperature and soil moisture. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on flux towers across Europe above deciduous and evergreen forests as well as grasslands and croplands. Using colour indices from digital images and newly developed algorithms, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. Our initial results indicate that a piecewise regression approach can capture the start and end of the growing season well, in addition to striking changes in colour signals caused by flowering and management practices such as mowing. We also investigated whether the seasonal patterns of red, green and blue colour fractions derived from digital images could be modelled mechanistically using the canopy radiative transfer model PROSAIL. This model can be used to simulate the RGB signal at the canopy scale when parameterised with quantitative information on seasonal changes in canopy leaf area and leaf pigment content (chlorophyll and carotenoid concentrations). From a model sensitivity analysis we found that variations in colour fractions, and in particular the spring 'green hump' observed repeatedly in deciduous broadleaf canopies across the network, seem essentially dominated by changes in pigment concentrations (chlorophyll and carotenoids). Using the model we were also able to explain why this spring maximum in green signal is often observed out of phase with the maximum period of canopy

  1. Tracking migrating birds

    DEFF Research Database (Denmark)

    Willemoes, Mikkel

    Migratory movements of birds has always fascinated man and led to many questions concerning the ecological drivers behind, the necessary adaptations and the navigational abilities required. However, especially for the long-distance migrants, basic descriptions of their movements are still lacking...... and a forest reserve. In the degraded habitat all species used more space, although the consequence on bird density is less clear. Two manuscripts relate the migratory movements of a long-distance migrant with models of navigation. One compares model predictions obtained by simulation with actual movements......, and conclude that the currently believed theoretical framework is insufficient to explain the observed performance. The other study investigates the ability of a displaced experienced migrant to navigate back to the normal migration route. It documents the capability, but also finds interesting patterns...

  2. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    Science.gov (United States)

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A.F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-01-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species’ phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological “status”, or the ability to track presence–absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  3. Challenging claims in the study of migratory birds and climate change.

    Science.gov (United States)

    Knudsen, Endre; Lindén, Andreas; Both, Christiaan; Jonzén, Niclas; Pulido, Francisco; Saino, Nicola; Sutherland, William J; Bach, Lars A; Coppack, Timothy; Ergon, Torbjørn; Gienapp, Phillip; Gill, Jennifer A; Gordo, Oscar; Hedenström, Anders; Lehikoinen, Esa; Marra, Peter P; Møller, Anders P; Nilsson, Anna L K; Péron, Guillaume; Ranta, Esa; Rubolini, Diego; Sparks, Tim H; Spina, Fernando; Studds, Colin E; Saether, Stein A; Tryjanowski, Piotr; Stenseth, Nils Chr

    2011-11-01

    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support ('consensus view') for a claim increased and between-researcher variability in support ('expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  4. Pomological and phenological characteristics of promising rose hip ...

    African Journals Online (AJOL)

    This study was carried out to determine pomological and phenological characteristics of eleven promising rose hip (Rosa) genotypes chosen from wild populations in Tokat region of northern Anatolia, Turkey. Plants were propagated by cuttings and planted in 2000 at the research station of the Horticultural Department of ...

  5. Exploration of scaling effects on coarse resolution land surface phenology

    Science.gov (United States)

    A great number of land surface phenoloy (LSP) data have been produced from various coarse resolution satellite datasets and detection algorithms across regional and global scales. Unlike field- measured phenological events which are quantitatively defined with clear biophysical meaning, current LSP ...

  6. Flowering phenology shifts in response to biodiversity loss

    Science.gov (United States)

    Wolf, Amelia A.; Zavaleta, Erika S; Selmants, Paul C.

    2017-01-01

    Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology—the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.

  7. Explaining European fungal fruiting phenology with climate variability.

    Science.gov (United States)

    Andrew, Carrie; Heegaard, Einar; Høiland, Klaus; Senn-Irlet, Beatrice; Kuyper, Thomas W; Krisai-Greilhuber, Irmgard; Kirk, Paul M; Heilmann-Clausen, Jacob; Gange, Alan C; Egli, Simon; Bässler, Claus; Büntgen, Ulf; Boddy, Lynne; Kauserud, Håvard

    2018-04-14

    Here we assess the impact of geographically dependent (latitude, longitude and altitude) changes in bioclimatic (temperature, precipitation and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path-analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 days, primarily with latitude. Altitude affected fruiting by up to 30 days, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic, as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Interactive Vegetation Phenology, Soil Moisture, and Monthly Temperature Forecasts

    Science.gov (United States)

    Koster, R. D.; Walker, G. K.

    2015-01-01

    The time scales that characterize the variations of vegetation phenology are generally much longer than those that characterize atmospheric processes. The explicit modeling of phenological processes in an atmospheric forecast system thus has the potential to provide skill to subseasonal or seasonal forecasts. We examine this possibility here using a forecast system fitted with a dynamic vegetation phenology model. We perform three experiments, each consisting of 128 independent warm-season monthly forecasts: 1) an experiment in which both soil moisture states and carbon states (e.g., those determining leaf area index) are initialized realistically, 2) an experiment in which the carbon states are prescribed to climatology throughout the forecasts, and 3) an experiment in which both the carbon and soil moisture states are prescribed to climatology throughout the forecasts. Evaluating the monthly forecasts of air temperature in each ensemble against observations, as well as quantifying the inherent predictability of temperature within each ensemble, shows that dynamic phenology can indeed contribute positively to subseasonal forecasts, though only to a small extent, with an impact dwarfed by that of soil moisture.

  9. Phenology and fruit production of Piliostigma reticulatum (DC ...

    African Journals Online (AJOL)

    In central Burkina Faso, Piliostigma reticulatum is a more and more adopted agroforestry species by farmers but is increasingly over exploited because of the use of its pods as forage. Therefore, understanding its phenology and fructification becomes urgent for a better management of existing parks. The flowering and ...

  10. Breeding and moult phenology of African penguins Spheniscus ...

    African Journals Online (AJOL)

    The breeding and moult phenology of African penguins Spheniscus demersus at Dassen Island form part of a variable annual cycle. Between 1994 and 2006, African penguins bred throughout the year. Most of this period was characterised by favourable feeding conditions. There were definite peaks in breeding activity, but ...

  11. Phenology of larval fish in the St. Louis River estuary

    Science.gov (United States)

    Little work has been done on the phenology of fish larvae in Great Lakes coastal wetlands. As part of an aquatic invasive species early detection study, we conducted larval fish surveys in the St. Louis River estuary (SLRE) in 2012 and 2013. Using multiple gears in a spatially ba...

  12. Short Note Breeding phenology and moult of the endemic ...

    African Journals Online (AJOL)

    The breeding phenology and moult cycle of the vulnerable and range-restricted Bannerman's Weaver Ploceus bannermani was studied on the Obudu Plateau in the eastern region of Nigeria. The peak breeding season was between August and October; a major cause of breeding failure was egg predation by children.

  13. Comparison of moult phenology of African penguins Spheniscus ...

    African Journals Online (AJOL)

    Dassen and Robben islands are approximately 50 km apart, and currently support the largest and third largest populations of African penguins Spheniscus demersus respectively. At both islands, moult is the most synchronised and seasonal activity of the annual cycle. The main difference in moult phenology between the ...

  14. Studies on Intra and Inter Correlative Responses of Phenological ...

    African Journals Online (AJOL)

    The P and K leaf concentrations at 3 MAP were positively correlated with the N and P pulp concentrations. The study showed that the pre-flowering traits, especially the number of green leaves could determine the yield, postharvest qualities and nutrient content of the pulp. Keywords: Plantain, pre-flowering traits, phenology, ...

  15. Budburst phenology of white birch in industrially polluted areas

    International Nuclear Information System (INIS)

    Kozlov, Mikhail V.; Eraenen, Janne K.; Zverev, Vitali E.

    2007-01-01

    Effects of environmental contamination on plant seasonal development have only rarely been properly documented. Monitoring of leaf growth in mountain birch, Betula pubescens subsp. czerepanovii, around a nickel-copper smelter at Monchegorsk hinted advanced budburst phenology in most polluted sites. However, under laboratory conditions budburst of birch twigs cut in late winter from trees naturally growing around three point polluters (nickel-copper smelter at Monchegorsk, aluminium factory at Kandalaksha, and iron pellet plant at Kostomuksha) showed no relationship with distance from the emission source. In a greenhouse experiment, budburst phenology of mountain birch seedlings grown in unpolluted soil did not depend on seedling origin (from heavily polluted vs. clean sites), whereas seedlings in metal-contaminated soil demonstrated delayed budburst. These results allow to attribute advanced budburst phenology of white birch in severely polluted sites to modified microclimate, rather than to pollution impact on plant physiology or genetics. - Advanced budburst phenology in white birch in severely polluted sites is explained by modified microclimate, not by pollution impact on plant physiology

  16. Toward a phenological mismatch in estuarine pelagic food web?

    Science.gov (United States)

    Chevillot, Xavier; Drouineau, Hilaire; Lambert, Patrick; Carassou, Laure; Sautour, Benoit; Lobry, Jérémy

    2017-01-01

    Alterations of species phenology in response to climate change are now unquestionable. Until now, most studies have reported precocious occurrence of life cycle events as a major phenological response. Desynchronizations of biotic interactions, in particular predator-prey relationships, are however assumed to strongly impact ecosystems’ functioning, as formalized by the Match-Mismatch Hypothesis (MMH). Temporal synchronicity between juvenile fish and zooplankton in estuaries is therefore of essential interest since estuaries are major nursery grounds for many commercial fish species. The Gironde estuary (SW France) has suffered significant alterations over the last three decades, including two Abrupt Ecosystem Shifts (AES), and three contrasted intershift periods. The main objective of this study was to depict modifications in fish and zooplankton phenology among inter-shift periods and discuss the potential effects of the resulting mismatches at a community scale. A flexible Bayesian method was used to estimate and compare yearly patterns of species abundance in the estuary among the three pre-defined periods. Results highlighted (1) an earlier peak of zooplankton production and entrance of fish species in the estuary and (2) a decrease in residence time of both groups in the estuary. Such species-specific phenological changes led to changes in temporal overlap between juvenile fish and their zooplanktonic prey. This situation questions the efficiency and potentially the viability of nursery function of the Gironde estuary, with potential implications for coastal marine fisheries of the Bay of Biscay. PMID:28355281

  17. Responses of phenological and physiological stages of spring ...

    African Journals Online (AJOL)

    In order to investigate impact of complementary irrigation on phenological stages, chlorophyll content, radiation absorption and extinction coefficient, as well as some aspects concerning the yield of spring safflower, a split-plot experiment based on randomized complete block design with three replication was conducted at ...

  18. Extreme warm temperatures alter forest phenology and productivity in Europe

    Czech Academy of Sciences Publication Activity Database

    Crabbe, Richard A.; Dash, J.; Rodriguez-Galiano, V. F.; Janouš, Dalibor; Pavelka, Marian; Marek, Michal V.

    563-564, sep (2016), s. 486-495 ISSN 0048-9697 Institutional support: RVO:67179843 Keywords : land surface phenology * Envisat MTCI * anomalous temperature * climate variability * lagged effect * forest ecology Subject RIV: EH - Ecology, Behaviour Impact factor: 4.900, year: 2016

  19. Climate change impacts on corn phenology and productivity

    Science.gov (United States)

    Climate is changing around the world and will impact future production of all food and feed crops. Corn is no exception to these impacts and to ensure a future supply of this vital crop we must begin to understand how climate impacts both the phenological development of corn and the productivity. Te...

  20. Dispersal, phenology and predicted abundance of the larger grain ...

    African Journals Online (AJOL)

    The phenology and dispersal of the larger grain borer (LGB) in Africa is described, and comparisons are made between prediction of LGB numbers from laboratory studies and predictions from multiple linear models derived from trapping data in the field. The models were developed in Mexico and Kenya, using ...

  1. variability of in vitro and phenological behaviours of cocoa hybrids

    African Journals Online (AJOL)

    ACSS

    Cultivated cocoa species (Theobroma cacao L.) is originated from tropical rainforests of South and Central. America. Its fermented and dried seeds constitute the raw material for the chocolate manufacture. In order to analyse the variability of the in vitro and phenological behaviours of 6 cocoa hybrids, the typological and.

  2. Morpho-phenological diversity among natural populations of ...

    African Journals Online (AJOL)

    sunny t

    five regions in Tunisia was characterized on the basis of 16 morpho-phenological characters. Results from analysis of variance ... sativa (alfalfa, lucerne) and the legume model species Medicago truncatula. In Tunisia, the ... valuable tool for inferring the evolutionary forces such as selective pressures and drift (De Kort et al., ...

  3. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available This study used remotely-sensed phenology data derived from Advanced Very High Resolution Radiometer (AVHRR), in a fully supervised decision-tree classification based on the new biome map of South Africa. The objectives were: (i) to investigate...

  4. Variability of in vitro and phenological behaviours of cocoa hybrids ...

    African Journals Online (AJOL)

    Cultivated cocoa species (Theobroma cacao L.) is originated from tropical rainforests of South and Central America. Its fermented and dried seeds constitute the raw material for the chocolate manufacture. In order to analyse the variability of the in vitro and phenological behaviours of 6 cocoa hybrids, the typological and ...

  5. Phenological Characteristics of the Barred Chicken in Western ...

    African Journals Online (AJOL)

    Between May and June 2011, the growth performance and phenological characteristics of local barred chicken of the Western Highland Cameroon was carried out in the Teaching and Research Farm of the University of Dschang. The data on body weight, body measurements and carcass characteristics were collected on ...

  6. Phenology of the reproductive development of Elaeis oleifera (Kunth Cortes

    Directory of Open Access Journals (Sweden)

    Leidy Paola Moreno

    2015-04-01

    Full Text Available The phenological stages of oil palm can be coded using the BBCH scale, which has three digits due to the inclusion of intermediate stages between the principal and secondary stages in order to provide greater detail on each developmental stage. For the phenological description of the reproductive development of Elaeis oleifera, the principal stages used were emergence of inflorescence, flowering, fruit growth and development, and fruit ripening. The observations were made in Colombia over a 12 month-period on E. oleifera palms planted in 1991; the observations were made on the daily course or depending on the development stage. The duration of each phenological stage was measured in days. Thus, the appearance of new leaves took 20.1±2.8 days, reaching preanthesis I (601 took 145.09±19.61 days, from this stage to preanthesis II (602 took 7.50±1.50 days, then to preanthesis III (603 took 7.39±1.56 days and finally to anthesis (607 took 5.74±1.32 days. At the population level, it was found that the phenology cycle of inflorescence is annual and that the production of flowers and the opening of inflorescences with pistils is asynchronous.

  7. Frost hardiness of tree species is independent of phenology and ...

    Indian Academy of Sciences (India)

    The differences in timing in bud burst between species have been interpreted as an adaptation to late frost events in spring. Thus, it has been suggested that the degree of frost susceptibility of leaves is species-specific and depends on the species' phenology and geographic distribution range. To test for relationships ...

  8. Predicting future forests: Understanding diverse phenological responses within a community and functional trait framework

    Science.gov (United States)

    Wolkovich, E. M.; Flynn, D. F. B.

    2016-12-01

    In recent years increasing attention has focused on plant phenology as an important indicator of the biological impacts of climate change, as many plants have shifted their leafing and flowering earlier with increasing temperatures. As data have accumulated, researchers have found a link between phenological responses to warming and plant performance and invasions. Such work suggests phenology may not only be a major impact of warming, but a critical predictor of future plant performance. Yet alongside this increasing interest in phenology, important issues remain unanswered: responses to warming for species at the same site or in the same genus vary often by weeks or more and the explanatory power of phenology for performance and invasions when analyzed across diverse datasets remains low. We propose progress can come from explicitly considering phenology within a community context and as a critical plant trait correlated with other major plant functional traits. Here, we lay out a framework for our proposal: specifically we review how we expect phenology and phenological cues of different species within a community to vary and what other functional traits are predicted to co-vary with phenological traits. Much research currently suggests phenology is a critical functional trait that is shaped strongly by the environment. Plants are expected to adjust their phenologies to avoid periods of high abiotic risk and/or high competition. Thus we may expect phenology to correlate strongly to other traits involved in mitigating risk and high competition. Results from recent meta-analyses as well as experimental and observational research from 28 species in northeastern North American temperate forests suggest that species within a community show the predicted diversified set of phenological cues. We review early work on links to other functional traits and in closing review how these correlations may in turn determine the diversity of phenological responses observed for

  9. The USA-NPN Information Management System: A tool in support of phenological assessments

    Science.gov (United States)

    Rosemartin, A.; Vazquez, R.; Wilson, B. E.; Denny, E. G.

    2009-12-01

    The USA National Phenology Network (USA-NPN) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns and all aspects of environmental change. Data management and information sharing are central to the USA-NPN mission. The USA-NPN develops, implements, and maintains a comprehensive Information Management System (IMS) to serve the needs of the network, including the collection, storage and dissemination of phenology data, access to phenology-related information, tools for data interpretation, and communication among partners of the USA-NPN. The IMS includes components for data storage, such as the National Phenology Database (NPD), and several online user interfaces to accommodate data entry, data download, data visualization and catalog searches for phenology-related information. The IMS is governed by a set of standards to ensure security, privacy, data access, and data quality. The National Phenology Database is designed to efficiently accommodate large quantities of phenology data, to be flexible to the changing needs of the network, and to provide for quality control. The database stores phenology data from multiple sources (e.g., partner organizations, researchers and citizen observers), and provides for integration with legacy datasets. Several services will be created to provide access to the data, including reports, visualization interfaces, and web services. These services will provide integrated access to phenology and related information for scientists, decision-makers and general audiences. Phenological assessments at any scale will rely on secure and flexible information management systems for the organization and analysis of phenology data. The USA-NPN’s IMS can serve phenology assessments directly, through data management and indirectly as a model for large-scale integrated data management.

  10. Continental scale analysis of bird migration timing: influences of climate and life history traits-a generalized mixture model clustering and discriminant approach.

    Science.gov (United States)

    Chambers, Lynda E; Beaumont, Linda J; Hudson, Irene L

    2014-08-01

    There is substantial evidence of climate-related shifts to the timing of avian migration. Although spring arrival has generally advanced, variable species responses and geographical biases in data collection make it difficult to generalise patterns. We advance previous studies by using novel multivariate statistical techniques to explore complex relationships between phenological trends, climate indices and species traits. Using 145 datasets for 52 bird species, we assess trends in first arrival date (FAD), last departure date (LDD) and timing of peak abundance at multiple Australian locations. Strong seasonal patterns were found, i.e. spring phenological events were more likely to significantly advance, while significant advances and delays occurred in other seasons. However, across all significant trends, the magnitude of delays exceeded that of advances, particularly for FAD (+22.3 and -9.6 days/decade, respectively). Geographic variations were found, with greater advances in FAD and LDD, in south-eastern Australia than in the north and west. We identified four species clusters that differed with respect to species traits and climate drivers. Species within bird clusters responded in similar ways to local climate variables, particularly the number of raindays and rainfall. The strength of phenological trends was more strongly related to local climate variables than to broad-scale drivers (Southern Oscillation Index), highlighting the importance of precipitation as a driver of movement in Australian birds.

  11. Development and release of phenological data products—A case study in compliance with federal open data policy

    Science.gov (United States)

    Rosemartin, Alyssa H.; Langseth, Madison L.; Crimmins, Theresa M.; Weltzin, Jake F.

    2018-01-31

    In Autumn 2015, USA National Phenology Network (USA-NPN) staff implemented new U.S. Geological Survey (USGS) data-management policies intended to ensure that the results of Federally funded research are made available to the public. The effort aimed both to improve USA-NPN data releases and to provide a model for similar programs within the USGS. This report provides an overview of the steps taken to ensure compliance, following the USGS Science Data Lifecycle, and provides lessons learned about the data-release process for USGS program leaders and data managers.

  12. 50 CFR 92.12 - Relationship to the process for developing national hunting regulations for migratory game birds.

    Science.gov (United States)

    2010-10-01

    ... national hunting regulations for migratory game birds. 92.12 Section 92.12 Wildlife and Fisheries UNITED... MIGRATORY BIRD SUBSISTENCE HARVEST IN ALASKA Program Structure § 92.12 Relationship to the process for developing national hunting regulations for migratory game birds. (a) Flyway councils. (1) Proposed annual...

  13. Phenology, in vitro cultivation, and acclimatization of the endangered bromeliad species Nidularium minutum Mez

    Directory of Open Access Journals (Sweden)

    Flávia Maria Kazue Kurita

    2014-03-01

    Full Text Available Knowledge on the phenology of a species indicates the most favorable period to harvest mature seeds, which may be used for producing seedlings through effective methods as in vitro cultivation. This technique has been regarded as a strategy for the propagation of endangered species, such as the bromeliad species Nidularium minutum Mez. This article aimed at identifying the time of fructification and seed production of in situ specimens of N. minutum and establishing a protocol of in vitro cultivation through seeds. The species phenology was followed up for 12 months in plants at the Alto da Serra Biological Station, in Paranapiacaba, São Paulo, Brazil. The results showed that the best time to harvest seeds was from June to August 2008. The germination process occurred at all temperatures tested, being more effective at 26°C, with no need of mineral nutrients. The best conditions for growing plants occurred with the same temperature, with Murashige and Skoog (MS medium containing half the macronutrient concentration. By means of this protocol, it is possible to preserve in vitro plants and optimize their production to be used in restocking programs.

  14. Phenology and Growth dynamics of Avicennia marina in the Central Red Sea

    KAUST Repository

    Almahasheer, Hanan

    2016-11-28

    The formation of nodes, stem elongation and the phenology of stunted Avicennia marina was examined in the Central Red Sea, where Avicennia marina is at the limit of its distribution range and submitted to extremely arid conditions with salinity above 38 psu and water temperature as high as 35° C. The annual node production was rather uniform among locations averaging 9.59 node y−1, which resulted in a plastocron interval, the interval in between production of two consecutive nodes along a stem, of 38 days. However, the internodal length varied significantly between locations, resulting in growth differences possibly reflecting the environmental conditions of locations. The reproductive cycle lasted for approximately 12 months, and was characterized by peak flowering and propagule development in November and January. These phenological observations provide a starting point for research and restoration programs on the ecology of mangroves in the Central Red Sea, while the plastochrone index reported here would allow calculations of the growth and production of the species from simple morphological measurements.

  15. Phenology and Growth dynamics of Avicennia marina in the Central Red Sea

    Science.gov (United States)

    Almahasheer, Hanan; Duarte, Carlos M.; Irigoien, Xabier

    2016-11-01

    The formation of nodes, stem elongation and the phenology of stunted Avicennia marina was examined in the Central Red Sea, where Avicennia marina is at the limit of its distribution range and submitted to extremely arid conditions with salinity above 38 psu and water temperature as high as 35° C. The annual node production was rather uniform among locations averaging 9.59 node y-1, which resulted in a plastocron interval, the interval in between production of two consecutive nodes along a stem, of 38 days. However, the internodal length varied significantly between locations, resulting in growth differences possibly reflecting the environmental conditions of locations. The reproductive cycle lasted for approximately 12 months, and was characterized by peak flowering and propagule development in November and January. These phenological observations provide a starting point for research and restoration programs on the ecology of mangroves in the Central Red Sea, while the plastochrone index reported here would allow calculations of the growth and production of the species from simple morphological measurements.

  16. Year clustering analysis for modelling olive flowering phenology

    Science.gov (United States)

    Oteros, J.; García-Mozo, H.; Hervás-Martínez, C.; Galán, C.

    2013-07-01

    It is now widely accepted that weather conditions occurring several months prior to the onset of flowering have a major influence on various aspects of olive reproductive phenology, including flowering intensity. Given the variable characteristics of the Mediterranean climate, we analyse its influence on the registered variations in olive flowering intensity in southern Spain, and relate them to previous climatic parameters using a year-clustering approach, as a first step towards an olive flowering phenology model adapted to different year categories. Phenological data from Cordoba province (Southern Spain) for a 30-year period (1982-2011) were analysed. Meteorological and phenological data were first subjected to both hierarchical and "K-means" clustering analysis, which yielded four year-categories. For this classification purpose, three different models were tested: (1) discriminant analysis; (2) decision-tree analysis; and (3) neural network analysis. Comparison of the results showed that the neural-networks model was the most effective, classifying four different year categories with clearly distinct weather features. Flowering-intensity models were constructed for each year category using the partial least squares regression method. These category-specific models proved to be more effective than general models. They are better suited to the variability of the Mediterranean climate, due to the different response of plants to the same environmental stimuli depending on the previous weather conditions in any given year. The present detailed analysis of the influence of weather patterns of different years on olive phenology will help us to understand the short-term effects of climate change on olive crop in the Mediterranean area that is highly affected by it.

  17. Object-based Dimensionality Reduction in Land Surface Phenology Classification

    Directory of Open Access Journals (Sweden)

    Brian E. Bunker

    2016-11-01

    Full Text Available Unsupervised classification or clustering of multi-decadal land surface phenology provides a spatio-temporal synopsis of natural and agricultural vegetation response to environmental variability and anthropogenic activities. Notwithstanding the detailed temporal information available in calibrated bi-monthly normalized difference vegetation index (NDVI and comparable time series, typical pre-classification workflows average a pixel’s bi-monthly index within the larger multi-decadal time series. While this process is one practical way to reduce the dimensionality of time series with many hundreds of image epochs, it effectively dampens temporal variation from both intra and inter-annual observations related to land surface phenology. Through a novel application of object-based segmentation aimed at spatial (not temporal dimensionality reduction, all 294 image epochs from a Moderate Resolution Imaging Spectroradiometer (MODIS bi-monthly NDVI time series covering the northern Fertile Crescent were retained (in homogenous landscape units as unsupervised classification inputs. Given the inherent challenges of in situ or manual image interpretation of land surface phenology classes, a cluster validation approach based on transformed divergence enabled comparison between traditional and novel techniques. Improved intra-annual contrast was clearly manifest in rain-fed agriculture and inter-annual trajectories showed increased cluster cohesion, reducing the overall number of classes identified in the Fertile Crescent study area from 24 to 10. Given careful segmentation parameters, this spatial dimensionality reduction technique augments the value of unsupervised learning to generate homogeneous land surface phenology units. By combining recent scalable computational approaches to image segmentation, future work can pursue new global land surface phenology products based on the high temporal resolution signatures of vegetation index time series.

  18. Effects of management practices on grassland birds: Prairie Falcon

    Science.gov (United States)

    DeLong, John P.; Steenhof, Karen

    2004-01-01

    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the breeding, year-round, and nonbreeding ranges in the United States and southern Canada. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and

  19. Radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  20. Tropical birds take small risks

    OpenAIRE

    Anders Pape Møller; Wei Liang

    2013-01-01

    The life history of tropical birds differs from that of their temperate counterparts by late start of reproduction, small clutch sizes, and high rates of adult survival. Thus, tropical species should have greater residual reproductive value than temperate species. Therefore, tropical birds can be predicted to take smaller risks than closely related temperate birds in order not to jeopardize their prospects of survival, which is the single most important component of fitness, and which is grea...

  1. [Wild birds--a reservoir for influenza A virus].

    Science.gov (United States)

    Griot, C; Hoop, R

    2007-11-01

    Influenza A viruses, in particular the H5 and H7 subtypes, have caused epizootic diseases in poultry for a long time. Wild aquatic birds and shorebirds form the natural virus reservoir. All influenza virus subtypes and almost all possible haemagglutinin/neuraminidase combinations have been detected in wild birds, whereas relatively few have been detected in humans and other mammals. In 1997, the emerging and spreading of the highly pathogenic strain H5N1 within Asia was supported by lack of hygiene in commercial poultry units and by the existence of live bird markets. During autumn 2005, migratory birds have been accused for spreading the infection along their flyways to Europe including Switzerland. For early detection of introduction to Europe, many countries have initiated surveillance programs for avian influenza in wild birds. Vaccines against influenza A viruses are existing for birds and are widely used to protect domestic fowl in endemic regions of Asia as well as valuable birds in zoos worldwide. Subtype H5N1 could be the progenitor virus of a new pandemic influenza virus. Therefore, the World Organisation for Animal Health (OIE, Paris) as well as the Food and Agriculture Organisation of the United Nations (FAO, Rome) will need to increase their efforts to assist countries to combat the disease in the field.

  2. Wintering bird response to fall mowing of herbaceous buffers

    Science.gov (United States)

    Blank, P.J.; Parks, J.R.; Dively, G.P.

    2011-01-01

    Herbaceous buffers are strips of herbaceous vegetation planted between working agricultural land and streams or wetlands. Mowing is a common maintenance practice to control woody plants and noxious weeds in herbaceous buffers. Buffers enrolled in Maryland's Conservation Reserve Enhancement Program (CREP) cannot be mowed during the primary bird nesting season between 15 April and 15 August. Most mowing of buffers in Maryland occurs in late summer or fall, leaving the vegetation short until the following spring. We studied the response of wintering birds to fall mowing of buffers. We mowed one section to 10-15 cm in 13 buffers and kept another section unmowed. Ninety-two percent of birds detected in buffers were grassland or scrub-shrub species, and 98% of all birds detected were in unmowed buffers. Total bird abundance, species richness, and total avian conservation value were significantly greater in unmowed buffers, and Savannah Sparrows (Passerculus sandwichensis), Song Sparrows (Melospiza melodia), and White-throated Sparrows (Zonotrichia albicollis) were significantly more abundant in unmowed buffers. Wintering bird use of mowed buffers was less than in unmowed buffers. Leaving herbaceous buffers unmowed through winter will likely provide better habitat for wintering birds. ?? 2011 by the Wilson Ornithological Society.

  3. Rhode Island, Connecticut, New York, and New Jersey ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, pelagic birds, passerine birds, gulls and...

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for alcids, diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds,...

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds,...

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds, and...

  7. Deriving phenological metrics from NDVI through an open source tool developed in QGIS

    Science.gov (United States)

    Duarte, Lia; Teodoro, A. C.; Gonçalves, Hernãni

    2014-10-01

    Vegetation indices have been commonly used over the past 30 years for studying vegetation characteristics using images collected by remote sensing satellites. One of the most commonly used is the Normalized Difference Vegetation Index (NDVI). The various stages that green vegetation undergoes during a complete growing season can be summarized through time-series analysis of NDVI data. The analysis of such time-series allow for extracting key phenological variables or metrics of a particular season. These characteristics may not necessarily correspond directly to conventional, ground-based phenological events, but do provide indications of ecosystem dynamics. A complete list of the phenological metrics that can be extracted from smoothed, time-series NDVI data is available in the USGS online resources (http://phenology.cr.usgs.gov/methods_deriving.php).This work aims to develop an open source application to automatically extract these phenological metrics from a set of satellite input data. The main advantage of QGIS for this specific application relies on the easiness and quickness in developing new plug-ins, using Python language, based on the experience of the research group in other related works. QGIS has its own application programming interface (API) with functionalities and programs to develop new features. The toolbar developed for this application was implemented using the plug-in NDVIToolbar.py. The user introduces the raster files as input and obtains a plot and a report with the metrics. The report includes the following eight metrics: SOST (Start Of Season - Time) corresponding to the day of the year identified as having a consistent upward trend in the NDVI time series; SOSN (Start Of Season - NDVI) corresponding to the NDVI value associated with SOST; EOST (End of Season - Time) which corresponds to the day of year identified at the end of a consistent downward trend in the NDVI time series; EOSN (End of Season - NDVI) corresponding to the NDVI value

  8. Effects of management practices on grassland birds: Upland Sandpiper

    Science.gov (United States)

    Dechant, Jill A.; Dinkins, Meghan F.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Parkin, Barry D.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  9. Effects of management practices on grassland birds: Swainson's Hawk

    Science.gov (United States)

    Dechant, Jill A.; Dinkins, Meghan F.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Euliss, Betty R.

    2000-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  10. Effects of management practices on grassland birds: Vesper Sparrow

    Science.gov (United States)

    Dechant, Jill A.; Dinkins, Meghan F.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Euliss, Betty R.

    2000-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  11. Effects of management practices on grassland birds: Lark Bunting

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  12. Effects of management practices on grassland birds: Willet

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Parkin, Barry D.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  13. Effects of management practices on grassland birds: Lark Sparrow

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Parkin, Barry D.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  14. Effects of management practices on grassland birds: Sprague's Pipit

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah F.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  15. Effects of management practices on grassland birds: Western Meadowlark

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  16. Effects of management practices on grassland birds: Horned Lark

    Science.gov (United States)

    Dinkins, Meghan F.; Zimmerman, Amy L.; Dechant, Jill A.; Parkin, Barry D.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Euliss, Betty R.

    2000-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  17. Effects of management practices on grassland birds: Burrowing Owl

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Rabie, Paul A.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  18. Effects of management practices on grassland birds: American Bittern

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  19. Effects of management practices on grassland birds: Mountain Plover

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  20. Effects of management practices on grassland birds: Baird's Sparrow

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  1. Effects of management practices on grassland birds: Loggerhead Shrike

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Zimmerman, A.L.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  2. Effects of management practices on grassland birds: Northern Harrier

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  3. Effects of management practices on grassland birds: Dickcissel

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  4. Effects of management practices on grassland birds: Sedge Wren

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Parkin, Barry D.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  5. Effects of management practices on grassland birds: Ferruginous Hawk

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  6. Effects of management practices on grassland birds: Field Sparrow

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Parkin, Barry D.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  7. Effects of management practices on grassland birds: Marbled Godwit

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  8. Effects of management practices on grassland birds: Bobolink

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  9. Effects of management practices on grassland birds: Grasshopper Sparrow

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species' nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species' response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species' breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; for a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management, use the Grassland and Wetland Birds Bibliography on the home page of this resource.

  10. Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales.

    Science.gov (United States)

    Gullett, Philippa; Hatchwell, Ben J; Robinson, Robert A; Evans, Karl L

    2013-07-01

    Climate change-induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed. It is also not clear whether the most frequently used phenological index, namely the average date of a phenological event across a population, adequately captures phenological shifts in the distribution of events across the season. We use the long-tailed tit Aegithalos caudatus (Fig. 1) as a case study to explore these issues. We use an intensive 17-year local study to model mean breeding date and test the capacity of this local model to predict phenology at larger spatial and temporal scales. We assess whether local models of breeding initiation, termination, and renesting reveal phenological shifts and responses to climate not detected by a standard phenological index, that is, population average lay date. These models take predation timing/intensity into account. The locally-derived model performs well at predicting phenology at the national scale over several decades, at both high and low temperatures. In the local model, a trend toward warmer Aprils is associated with a significant advance in termination dates, probably in response to phenological shifts in food supply. This results in a 33% reduction in breeding season length over 17 years - a substantial loss of reproductive opportunity that is not detected by the index of population average lay date. We show that standard phenological indices can fail to detect patterns indicative of negative climatic effects, potentially biasing assessments of species' vulnerability to climate change. More positively, we demonstrate the potential of detailed local studies for developing broader-scale predictive models of

  11. East Africa's diminishing bird habitats and bird species

    African Journals Online (AJOL)

    ... resultant intensive agricultural projects that follow. Such impacts have resulted in a decline in both bird habitats and biodiversity. Of particular concern are the areas important to all our endemic bird species, and already we are witnessing a series of very worrying developments. Taking each. Scopus 32: 27–34, June 2013 ...

  12. The BIRD payload platform

    Science.gov (United States)

    Walter, Ingo; Briess, Klaus; Baerwald, Wolfgang; Skrbek, Wolfgang; Schrandt, Fredrich

    2003-04-01

    For hot spot events as forest fires, volcanic activity or burning oil spills and coal seams a dedicate dspace instrumentation does not exist. With its successful launch end of October 2001 with the Indian Polar Satellite Launch Vehicle the German Aerospace Center starts closing this gap with the micro-satellite mission BIRD. As space segment serves a three-axis stabilized satellite of 92 kg including a contingent of over 30% for the scientific instruments. The main payload of the BIRD micro-satellite is the newly developed Hot Spot Recognition System. It's a dual-channel instrument for middle and thermal IR imagery based on cooled MCT line detectors. The miniaturization by integrated detector/cooler assemblies provides a highly efficient design. A complement for the hot spot detection is the wide-angle stereo-scanner WAOSS-B. It is a hardware re-use dedicated to vegetation and cloud assessment in the visible spectral range. Besides the main objective of hot spot detection the mission has to answer several technological questions of the operation of cooled detectors in space, special aspects of their adaptation to the satellite platform as well as their calibration.

  13. Can we explain vagrancy in Europe with the autumn migration phenology of Siberian warbler species in East Russia?

    Directory of Open Access Journals (Sweden)

    Bozó László

    2016-06-01

    Full Text Available We examined the autumn migration phenology of nine Siberian breeding songbirds: Thick-billed Warbler (Iduna aedon, Black-browed Reed Warbler (Acrocephalus bistrigiceps, Pallas’s Grasshopper Warbler (Locustella certhiola, Lanceolated Warbler (L. lanceolata, Yellow-browed Warbler (Phylloscopus inornatus, Arctic Warbler (Ph. borealis, Dusky Warbler (Ph. fuscatus, Radde’s Warbler (Ph. schwarzi, Two-barred Warbler (Ph. plumbeitarsus and compared the migration dynamic characteristics with their European occurrence time. The study was carried out within the Amur Bird Project in the Russian Far East along the river Amur at Muraviovka Park between 2011 and 2014. The birds were caught with mistnets and ringed with individually numbered rings. For the characterization of the migration, we used timing, the intervals and the peaks of the migration, the percentage of the recaptures and the average time between the first and the last captures. The timing of migration in the studied species differed in the timing, the intervals (30-67 days and the migration peaks (14 August - 17 September.

  14. MODIS phenology image service ArcMap toolbox

    Science.gov (United States)

    Talbert, Colin; Kern, Tim J.; Morisette, Jeff; Brown, Don; James, Kevin

    2013-01-01

    Seasonal change is important to consider when managing conservation areas at landscape scales. The study of such patterns throughout the year is referred to as phenology. Recurring life-cycle events that are initiated and driven by environmental factors include animal migration and plant flowering. Phenological events capture public attention, such as fall color change in deciduous forests, the first flowering in spring, and for those with allergies, the start of the pollen season. These events can affect our daily lives, provide clues to help understand and manage ecosystems, and provide evidence of how climate variability can affect the natural cycle of plants and animals. Phenological observations can be gathered at a range of scales, from plots smaller than an acre to landscapes of hundreds to thousands of acres. Linking these observations to diverse disciplines such as evolutionary biology or climate sciences can help further research in species and ecosystem responses to climate change scenarios at appropriate scales. A cooperative study between the National Park Service (NPS), the U.S. Geological Survey (USGS), and the National Aeronautics and Space Administration (NASA) has been exploring how satellite information can be used to summarize phenological patterns observed at the park or landscape scale and how those summaries can be presented to both park managers and visitors. This study specifically addressed seasonal changes in plants, including the onset of growth, photosynthesis in the spring, and the senescence of deciduous vegetation in the fall. The primary objective of the work is to demonstrate that seasonality even in protected areas changes considerably across years. A major challenge is to decouple natural variability from possible trends—directional change that can lead to a permanent and radically different ecosystem state. Trends can be either a gradual degradation of the landscape (often from external influences) or steady improvement (by

  15. Coordinated bird monitoring: Technical recommendations for military lands

    Science.gov (United States)

    Bart, Jonathan; Manning, Ann; Fischer, Richard; Eberly, Chris

    2012-01-01

    following these procedures, DoD will minimize the possibility for a proposed action to unintentionally take migratory birds at a level that would violate any of the migratory bird treaties and potentially impact mission activities. In addition, implementing conservation and monitoring programs for migratory birds supports the ecosystem integrity necessary to sustain DoD's natural resources for the military mission.Non-compliance with the procedural requirements of the MBTA could result in a private party lawsuit under the Administrative Procedures Act (APA). A lawsuit filed under APA involving a Navy bombing range is the basis for a court ruling that unintentional take of migratory birds applies to federal actions. Ensuring the necessary data is available to adequately assess impacts of a proposed action will help avoid lawsuits or help ensure such lawsuits have no grounds. The data gathered in a bird monitoring program will provide the best scientific data available to assess the expected impacts of a proposed action on migratory bird species through the NEPA process. This report presents recommendations developed by the U.S. Geological Survey (USGS) for the Department of Defense (DoD) on establishing a "Coordinated Bird Monitoring (CBM) Plan." The CBM Plan is intended to ensure that DoD meets its conservation and regulatory responsibilities for monitoring birds (Chapter 1). The report relies heavily on recommendations in the report, "Opportunities for improving avian monitoring" (http://www.nabci-us.org/aboutnabci/monitoringreportfinal0307.pdf), by the U.S. North American Bird Conservation Initiative (U.S. NABCI Monitoring Subcommittee, 2007) and on a review of 358 current DoD bird monitoring programs carried out as part of this project (Chapter 2). This report contains 12 recommendations which, if followed, would result in a comprehensive, efficient, and useful approach to bird monitoring. The recommendations are based on the entire report but are presented together at

  16. Bird Migration Echoes Observed by Polarimetric Radar

    OpenAIRE

    MINDA, Haruya; FURUZAWA, Fumie A.; SATOH, Shinsuke; NAKAMURA, Kenji

    2008-01-01

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  17. Migration in birds and fishes

    NARCIS (Netherlands)

    Verwey, J.

    1949-01-01

    Our knowledge concerning the periodical movements in animals called migrations is chiefly based on observations on birds. By and by, however, a number of facts concerning migration in other animal groups have been assembled and it seems worth while to compare them with those known for birds. There

  18. EVOLUTION OF CONCEPTION OF INTEGRAL BIRDS AREAL: ANALYSIS OF MIGRATORY FLYWAYS

    Directory of Open Access Journals (Sweden)

    Shepelova I. A.

    2012-06-01

    Full Text Available Data on distribution and abundance of Ukraine migratory birds have nonsystematic character. Up to now there is no integrated evaluation of migratory bird populations’ status. The available information is of regional importance or it covers limited time period. Therefore, it is obvious to unite all the relevant information in order to establish monitoring program and work out the methodic on migratory birds abundance estimation concerning the Black-Mediterranean Sea Flyway.

  19. Disaggregating tree and grass phenology in tropical savannas

    Science.gov (United States)

    Zhou, Qiang

    Savannas are mixed tree-grass systems and as one of the world's largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem. This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation. The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency

  20. Capturing migration phenology of terrestrial wildlife using camera traps

    Science.gov (United States)

    Tape, Ken D.; Gustine, David D.

    2014-01-01

    Remote photography, using camera traps, can be an effective and noninvasive tool for capturing the migration phenology of terrestrial wildlife. We deployed 14 digital cameras along a 104-kilometer longitudinal transect to record the spring migrations of caribou (Rangifer tarandus) and ptarmigan (Lagopus spp.) in the Alaskan Arctic. The cameras recorded images at 15-minute intervals, producing approximately 40,000 images, including 6685 caribou observations and 5329 ptarmigan observations. The northward caribou migration was evident because the median caribou observation (i.e., herd median) occurred later with increasing latitude; average caribou migration speed also increased with latitude (r2 = .91). Except at the northernmost latitude, a northward ptarmigan migration was similarly evident (r2 = .93). Future applications of this method could be used to examine the conditions proximate to animal movement, such as habitat or snow cover, that may influence migration phenology.

  1. Quantification of Climate Warming and Crop Management Impacts on Cotton Phenology

    OpenAIRE

    Shakeel Ahmad; Qaiser Abbas; Ghulam Abbas; Zartash Fatima; Atique-ur-Rehman; Sahrish Naz; Haseeb Younis; Rana Jahanzeb Khan; Wajid Nasim; Muhammad Habib ur Rehman; Ashfaq Ahmad; Ghulam Rasul; Muhammad Azam Khan; Mirza Hasanuzzaman

    2017-01-01

    Understanding the impact of the warming trend on phenological stages and phases of cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop management practices to enhance production. This study determined the influence of the thermal trend on cotton phenology from 1980?2015 in 15 selected locations. The results demonstrated that observed phenological stages including sowing (S), emergence (E), anthesis (A) and physiological maturity (M) occurred ear...

  2. Vegetation Phenology Metrics Derived from Temporally Smoothed and Gap-filled MODIS Data

    Science.gov (United States)

    Tan, Bin; Morisette, Jeff; Wolfe, Robert; Esaias, Wayne; Gao, Feng; Ederer, Greg; Nightingale, Joanne; Nickeson, Jamie E.; Ma, Pete; Pedely, Jeff

    2012-01-01

    Smoothed and gap-filled VI provides a good base for estimating vegetation phenology metrics. The TIMESAT software was improved by incorporating the ancillary information from MODIS products. A simple assessment of the association between retrieved greenup dates and ground observations indicates satisfactory result from improved TIMESAT software. One application example shows that mapping Nectar Flow Phenology is tractable on a continental scale using hive weight and satellite vegetation data. The phenology data product is supporting more researches in ecology, climate change fields.

  3. Unzipping bird feathers.

    Science.gov (United States)

    Kovalev, Alexander; Filippov, Alexander E; Gorb, Stanislav N

    2014-03-06

    The bird feather vane can be separated into two parts by pulling the barbs apart. The original state can be re-established easily by lightly stroking through the feather. Hooklets responsible for holding vane barbs together are not damaged by multiple zipping and unzipping cycles. Because numerous microhooks keep the integrity of the feather, their properties are of great interest for understanding mechanics of the entire feather structure. This study was undertaken to estimate the separation force of single hooklets and their arrays using force measurement of an unzipping feather vane. The hooklets usually separate in some number synchronously (20 on average) with the highest observed separation force of 1.74 mN (average force 0.27 mN), whereas the single hooklet separation force was 14 μN. A simple numerical model was suggested for a better understanding of zipping and unzipping behaviour in feathers. The model demonstrates features similar to those observed in experiments.

  4. Conservation of wading birds

    Science.gov (United States)

    Kushlan, J.A.

    1996-01-01

    The conservation and management of wading birds has received considerable attention over the past twenty years, through research, population monitoring, habitat protection, and through activities of specialist groups devoted to all three groups, the herons, ibises and allies, and flamingos. While populations are best known in North America, greatest advances in knowledge may have come in Australasia. The status of most species and many populations is now sufficiently known to allow assessment of risk. Conservation and management techniques allow creation of global and regional action plans for conservation of many species. Global action plans are being developed, but few regional plans have been undertaken. Management of nesting sites is now particularly well appreciated. Although known in broad stroke, much remains to be learned about managing feeding habitat. Problems related to disturbance, conflict with humans, habitat loss, contaminants and other environmental stresses remain for some species and many populations. New challenges lie in creating conservation action that account for genetic stocks.

  5. Land surface phenology: What do we really 'see' from space?

    Science.gov (United States)

    Helman, David

    2018-03-15

    Land surface phenology (LSP) provides bio-indication of ongoing climate change. It uses space-borne greenness proxies to monitor plant phenology at the landscape level from the regional to global scale. However, several unconsidered methodological and observational -related limitations may lead to misinterpretation of the satellite-derived signals. For instance, changes in species composition within a pixel could result in a change in the time series of the greenness proxy, due to the distinct phenology of the plant species involved. The change in the signal would then be misinterpreted as a phenological change while it is actually related to changes in species composition within the pixel. Other limitations include the selection of the smoothing technique and the method used to extract the LSP metrics. These not only may affect the timing of the LSP metrics but also the sign of the observed LSP change. Another and much less known limitation is related to the mixed signal from multi-canopy layers. Satellites may detect changes that corresponds to the understorey layer in complex vertical vegetation systems while the 'real' contribution of this layer (in terms of ecosystem functioning and dynamics) might be small compared to the undetected overstorey layer in cases of a late overstorey development. Here, some of the LSP basics are reviewed with emphasis on these (and other) potential sources of misinterpretation. Several aids to overcome these limitations, which include suggestions for multi methods analysis and the integration of information from satellite and ground-based sensors are provided alongside some prospective future LSP research directions. Copyright © 2017. Published by Elsevier B.V.

  6. Phenology of slippery bark and common foliar diseases

    Science.gov (United States)

    Kevin T. Smith

    2013-01-01

    As mud season gives way to spring in New England, the pace of plant development quickens. We see that from the visual cues of plant phenology, the sequence and timing of biological events. The big early season events are upon us as the maple sap has run, buds swell, bud dormancy breaks, and leaves and flowers emerge. This is a good time for arborists to dust off their...

  7. ENTOMOFAUNA ASSOCIATED TO DIFFERENT PHENOLOGICAL STAGES ON BLUEBERRY CROP

    OpenAIRE

    DIEZ-RODRÍGUEZ, GABRIELA INÉS; SOSINSKI, ENIO EGON; HÜBNER, LUCAS KUHN; ANTUNES, LUIS EDUARDO CORRÊA; NAVA, DORI EDSON

    2017-01-01

    ABSTRACT The blueberry (Vaccinium ashei Reade, Ericaceae) is a small fruit with great growth potential in Brazil. This research was developed in order to identify the insects found on associated to the different phenological stages of blueberry in order to implement the integrated pest management for this crop. Insect samples were collected from three orchards, in the region of Pelotas, RS, from January 2010 to June 2012. The data were analyzed based on the composition and abundance of the c...

  8. Synchrony in the phenology of a culturally iconic spring flower

    Science.gov (United States)

    Sparks, Tim H.; Mizera, Tadeusz; Wójtowicz, Wanda; Tryjanowski, Piotr

    2012-03-01

    We examine the flowering phenology of the cultural iconic Spring Snowflake Leucojum vernum, a considerable tourist attraction, recorded from two sites in western Poland. Flowering dates at the two sites were closely correlated but about 6 days later at the more natural area. The end of flowering was associated with the start of canopy leafing. Early flowering was related to a longer flowering season which may benefit ecotourism under future climate warming.

  9. Bayesian mapping QTL for fruit and growth phenological traits in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... 172 Afr. J. Biotechnol. Table 4. Summary of statistics for espistatic effects obtained with Bayesian model selection on fruit traits and growth phenological traits in the F2 population and F3 lines. Traita. Generation. Position. Heritabilityb. (%) aac ddd ade daf. 2lnBF. PL. F2. LG5[88.5, 163.4]×LG6[60.7, 78.6].

  10. ENTOMOFAUNA ASSOCIATED TO DIFFERENT PHENOLOGICAL STAGES ON BLUEBERRY CROP

    Directory of Open Access Journals (Sweden)

    GABRIELA INÉS DIEZ-RODRÍGUEZ

    2017-12-01

    Full Text Available ABSTRACT The blueberry (Vaccinium ashei Reade, Ericaceae is a small fruit with great growth potential in Brazil. This research was developed in order to identify the insects found on associated to the different phenological stages of blueberry in order to implement the integrated pest management for this crop. Insect samples were collected from three orchards, in the region of Pelotas, RS, from January 2010 to June 2012. The data were analyzed based on the composition and abundance of the collected insects. In all three sites, 2,354 insects were studied and the majority belonged to Hymenoptera (72%, Coleoptera (16%, Hemiptera (6% and Diptera (4%. Forty-one families were identified with 59% of the listed insects belonging to the Apidae family, followed by 11% for Chrysomelidae and Formicidae. Overall, 50 species of insects were identified and Trigona spinipes (Fabr. and Apis mellifera L. were the most abundant. Of the species found, 78% were herbivores, while 22% was beneficial insects (pollinators, predators and parasitoids belonging to the orders Hymenoptera, Coleoptera and Dermaptera. The analysis of variance with the randomization test showed that the insect fauna does not differ between locations and phenological stages. The interaction of site with phenological stages was not significant for the three grade levels (order, family and species. The knowledge of the entomofauna associated with blueberry, along with the similarity in composition with the phenological stages and evaluated sites, contributes to the development of integrated pest management and establishment of production system for this new culture in southern Rio Grande do Sul, Brazil.

  11. Flowering phenological changes in relation to climate change in Hungary

    Science.gov (United States)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species ( Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  12. Root and shoot phenologies differ on an arctic elevation gradient

    Science.gov (United States)

    Blume-Werry, G.; Milbau, A.; Kreyling, J.; Wilson, S. D.

    2012-12-01

    The length of the growing season is usually determined from aboveground phenology, but our understanding of seasonal root growth and its coupling to shoot growth remains rudimentary. In many ecosystems the majority of plant biomass is belowground, and insights into belowground growth patterns are important for predicting arctic ecosystem responses to global change. We measured root and shoot phenology, with minirhizotrons and digital photography, over the growing season in three common vegetation types along an altitude gradient in northern Sweden. In addition, soil temperature and soil moisture were measured to assess the influence of abiotic factors. The growing season belowground was 35% longer than aboveground, with shoot growth ending 2 weeks prior to root growth. The largest time lag between the end of the growing season below and above the ground (25 days) occurred in birch forest at the lowest elevation. Fine root production was more evenly distributed throughout the season in the forest compared with the higher elevations. The importance of soil temperature and photoperiod in governing root growth increased with increasing elevation. Our results show that the overall growing season length at high latitudes is severely underestimated if aboveground phenology is used as the single indicator for seasonal plant productivity. This has important implications for modeling responses of tundra ecosystems to global change, in which roots are the main source of carbon in the soil, and which play a key role in global carbon storage.

  13. Host-race formation: promoted by phenology, constrained by heritability.

    Science.gov (United States)

    Whipple, A V; Abrahamson, W G; Khamiss, M A; Heinrich, P L; Urian, A G; Northridge, E M

    2009-04-01

    Host-race formation is promoted by genetic trade-offs in the ability of herbivores to use alternate hosts, including trade-offs due to differential timing of host-plant availability. We examined the role of phenology in limiting host-plant use in the goldenrod gall fly (Eurosta solidaginis) by determining: (1) whether phenology limits alternate host use, leading to a trade-off that could cause divergent selection on Eurosta emergence time and (2) whether Eurosta has the genetic capacity to respond to such selection in the face of existing environmental variation. Experiments demonstrated that oviposition and gall induction on the alternate host, Solidago canadensis, were the highest on young plants, whereas the highest levels of gall induction on the normal host, Solidago gigantea, occurred on intermediate-age plants. These findings indicate a phenological trade-off for host-plant use that sets up the possibility of divergent selection on emergence time. Heritability, estimated by parent-offspring regression, indicated that host-race formation is impeded by the amount of genetic variation, relative to environmental, for emergence time.

  14. Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux

    Science.gov (United States)

    Koster, Randal; Walker, G.; Thornton, Patti; Collatz, G. J.

    2012-01-01

    The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology.

  15. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    Science.gov (United States)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  16. The influence of local spring temperature variance on temperature sensitivity of spring phenology.

    Science.gov (United States)

    Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe

    2014-05-01

    The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.

  17. Shorebird migration in the face of climate change: potential shifts in migration phenology and resource availability

    Science.gov (United States)

    Stutzman, Ryan J.; Fontaine, Joseph J

    2015-01-01

    Changes in temperature and seasonality resulting from climate change are heterogeneous, potentially altering important sources of natural selection acting on species phenology. Some species have apparently adapted to climate change but the ability of most species to adapt remains unknown. The life history strategies of migratory animals are dictated by seasonal factors, which makes these species particularly vulnerable to heterogeneous changes in climate and phenology. Here, we examine the phenology of migratory shorebirds, their habitats, and primary food resources, and we hypothesize how climate change may affect migrants through predicted changes in phenology. Daily abundance of shorebirds at stopover sites was correlated with local phenology and peaked immediately prior to peaks in invertebrate food resources. A close relationship between migrant and invertebrate phenology indicates that shorebirds may be vulnerable to changes in seasonality driven by climate change. It is possible that shifts in migrant and invertebrate phenology will be congruent in magnitude and direction, but because migration phenology is dependent on a suite of ecological factors, any response is likely to occur at a larger temporal scale and may lag behind the response of invertebrate food resources. The resulting lack of sufficient access to food at stopover habitats may cause migrants to extend migration and have cascading effects throughout their life cycle. If the heterogeneous nature of climate change results in uneven changes in phenology between migrants and their prey, it may threaten the long-term viability of migratory populations

  18. Effects of management practices on grassland birds: Brewer's sparrow

    Science.gov (United States)

    Walker, Brett L.

    2004-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  19. Effects of management practices on grassland birds: Wilson's Phalarope

    Science.gov (United States)

    Dechant, Jill A.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Zimmerman, Amy L.; Euliss, Betty R.

    1999-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  20. Effects of management practices on grassland birds: Le Conte's Sparrow

    Science.gov (United States)

    Dechant, J.A.; Sondreal, M.L.; Johnson, D.H.; Igl, L.D.; Goldade, C.M.; Zimmerman, A.L.; Euliss, B.R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  1. Effects of management practices on grassland birds: Henslow's sparrow

    Science.gov (United States)

    Herkert, James R.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  2. Effects of management practices of grassland birds: Savannah Sparrow

    Science.gov (United States)

    Swanson, David A.

    1998-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  3. Effects of management practices on grassland birds: Eastern Meadowlark

    Science.gov (United States)

    Hull, Scott D.

    2000-01-01

    of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  4. Detailed description of the Ócsa Bird Ringing Station, Hungary

    Directory of Open Access Journals (Sweden)

    Csörgő Tibor

    2016-12-01

    Full Text Available The present paper acts as an introduction to a series that will describe the exploratory analyses of migration phenology and morphometrics of the most common passerine species at the Ócsa Bird Ringing Station. This station is situated in the Ócsa Landscape Protection Area that belongs to the Duna–Ipoly National Park, Hungary. The area is somewhat cooler and more humid than the surrounding agricultural fields and tree plantations, covered by a mosaic of diverse hygrophilous vegetation patches. Bird trapping is mostly based on Japanese mist-net lines crossing different plant communities. During the period of 1984–2015, a total of 422,862 birds were trapped and ringed here, while 202,739 local, 1,235 within country, and 443 foreign recaptures were also recorded. Each bird is characterized by the following data: location and time of capture, species, age, sex, scores of fat, pectoral muscle, wing tip abrasion, and moult, length of wing, 3rd primary, and tail, and body mass. After subjected to a rigorous quality check, digital data are deposited in the archive of the Hungarian Bird Ringing Centre, and the EURING data base. From time to time, other research projects also utilized the accessibility of wild birds captured here, thus collection of blood samples, ecto- and endoparasites was carried out at the station. The relatively long time span, large number of species and individuals, and the readily available environmental (weather, vegetation, etc. data makes the avian data collected here a suitable base for studies of various disciplines like capture methodology, habitat preferences, breeding, migration, and wintering, effects of weather and climate change, and epidemiology of viruses and parasites.

  5. Birds and Dutch elm disease control

    Science.gov (United States)

    DeWitt, J.B.

    1958-01-01

    Brief, factual review of information on effect of DDT and other insecticides on birds. One program for control of elm disease caused 22% decrease in number of adult birds and 56% mortality of nestlings. Quail fed 3 oz. of DDT per ton of food had 16% reduction in young hatched and 500% increase in defective chicks. Quail fed same dosage during winter and breeding seasons had 30% decrease in fertile eggs and 800% increase in defective chicks. More than 90% of their chicks died in first 6 weeks although fed no insecticide. Almost equally bad results came from feeding Pheasants diets with about 1 oz. DDT per ton. Other common insecticides (chlorinated hydrocarbons) also caused lowered chick survival and higher percentages of crippled chicks. From field data we know that 2 lbs. DDT/acre can affect birds and has even worse effects on cold-blooded animals. Efforts to control elm disease have left as much as 196 lbs. DDT/acre in top 3 inches of soil. Earthworms concentrate DDT in their tissues. Thus the treated areas can be traps for birds and other animals. What can be done? 1) In control of elm disease, use minimum effective amount of insecticide; mist blowers use less than sprayers. 2) Avoid applications during migration and nesting seasons. It has been reported that adequate control can be obtained with dormant sprays and that foliar applications may not be required. Tables of this paper show effects of DDT on reproduction of Quail, relative toxicity to quail of 8 insecticides, and amounts of 7 insecticides required to cause 40% or more decrease in Quail reproduction. These comparisons demonstrate that Aldrin, Endrin, and Dieldrin are 20 to 200 times as toxic as DDT and that Heptachlor and Chlordane are only slightly less toxic than Dieldrin. Methoxychlor and Strobane are less toxic to Quail than is DDT.

  6. Automated processing of webcam images for phenological classification.

    Directory of Open Access Journals (Sweden)

    Ludwig Bothmann

    Full Text Available Along with the global climate change, there is an increasing interest for its effect on phenological patterns such as start and end of the growing season. Scientific digital webcams are used for this purpose taking every day one or more images from the same natural motive showing for example trees or grassland sites. To derive phenological patterns from the webcam images, regions of interest are manually defined on these images by an expert and subsequently a time series of percentage greenness is derived and analyzed with respect to structural changes. While this standard approach leads to satisfying results and allows to determine dates of phenological change points, it is associated with a considerable amount of manual work and is therefore constrained to a limited number of webcams only. In particular, this forbids to apply the phenological analysis to a large network of publicly accessible webcams in order to capture spatial phenological variation. In order to be able to scale up the analysis to several hundreds or thousands of webcams, we propose and evaluate two automated alternatives for the definition of regions of interest, allowing for efficient analyses of webcam images. A semi-supervised approach selects pixels based on the correlation of the pixels' time series of percentage greenness with a few prototype pixels. An unsupervised approach clusters pixels based on scores of a singular value decomposition. We show for a scientific webcam that the resulting regions of interest are at least as informative as those chosen by an expert with the advantage that no manual action is required. Additionally, we show that the methods can even be applied to publicly available webcams accessed via the internet yielding interesting partitions of the analyzed images. Finally, we show that the methods are suitable for the intended big data applications by analyzing 13988 webcams from the AMOS database. All developed methods are implemented in the

  7. Bristol Bay, Alaska Subarea ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for shorebirds, waterfowl, raptors, diving birds, and seabirds in the Bristol Bay Subarea. The Subarea...

  8. Birds of the Mongol Empire

    Directory of Open Access Journals (Sweden)

    Eugene N. Anderson

    2016-09-01

    Full Text Available The Mongol Empire, the largest contiguous empire the world has ever known, had, among other things, a goodly number of falconers, poultry raisers, birdcatchers, cooks, and other experts on various aspects of birding. We have records of this, largely in the Yinshan Zhengyao, the court nutrition manual of the Mongol empire in China (the Yuan Dynasty. It discusses in some detail 22 bird taxa, from swans to chickens. The Huihui Yaofang, a medical encyclopedia, lists ten taxa used medicinally. Marco Polo also made notes on Mongol bird use. There are a few other records. This allows us to draw conclusions about Mongol ornithology, which apparently was sophisticated and detailed.

  9. Introduction to Avian Medicine: Companion Birds and Wild Birds ...

    African Journals Online (AJOL)

    Introduction to Avian Medicine: Companion Birds and Wild Birds. T W deMaar. Abstract. No abstract. The Kenya Veterinarian Vol. 21 2001: pp. 20-22. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/kenvet.v21i1.39504 · AJOL African Journals ...

  10. Birds as surrogates for biodiversity: an analysis of a data set from ...

    Indian Academy of Sciences (India)

    Birds as surrogates for biodiversity: an analysis of a data set from southern Québec ... Biodiversity; birds; place prioritization; Québec; surrogacy ... Biodiversity and Biocultural Conservation Laboratory, Program in the History and Philosophy of Science, University of Texas at Austin, Waggener 316, Austin, TX 78712-1180, ...

  11. Characterization of low pathogenicity avian influenza viruses isolated from wild birds in Mongolia 2005 through 2007

    Science.gov (United States)

    During 2005, 2006 and 2007 2,139 specimens representing 4,077 individual birds of 45 species were tested for avian influenza virus (AIV) as part of a wild bird AIV monitoring program conducted in Mongolia. Samples collected in 2005 were tested by virus isolation directly, samples from 2006 and 2007...

  12. Modelling the progression of bird migration with conditional autoregressive models applied to ringing data.

    Science.gov (United States)

    Ambrosini, Roberto; Borgoni, Riccardo; Rubolini, Diego; Sicurella, Beatrice; Fiedler, Wolfgang; Bairlein, Franz; Baillie, Stephen R; Robinson, Robert A; Clark, Jacquie A; Spina, Fernando; Saino, Nicola

    2014-01-01

    Migration is a fundamental stage in the life history of several taxa, including birds, and is under strong selective pressure. At present, the only data that may allow for both an assessment of patterns of bird migration and for retrospective analyses of changes in migration timing are the databases of ring recoveries. We used ring recoveries of the Barn Swallow Hirundo rustica collected from 1908-2008 in Europe to model the calendar date at which a given proportion of birds is expected to have reached a given geographical area ('progression of migration') and to investigate the change in timing of migration over the same areas between three time periods (1908-1969, 1970-1990, 1991-2008). The analyses were conducted using binomial conditional autoregressive (CAR) mixed models. We first concentrated on data from the British Isles and then expanded the models to western Europe and north Africa. We produced maps of the progression of migration that disclosed local patterns of migration consistent with those obtained from the analyses of the movements of ringed individuals. Timing of migration estimated from our model is consistent with data on migration phenology of the Barn Swallow available in the literature, but in some cases it is later than that estimated by data collected at ringing stations, which, however, may not be representative of migration phenology over large geographical areas. The comparison of median migration date estimated over the same geographical area among time periods showed no significant advancement of spring migration over the whole of Europe, but a significant advancement of autumn migration in southern Europe. Our modelling approach can be generalized to any records of ringing date and locality of individuals including those which have not been recovered subsequently, as well as to geo-referenced databases of sightings of migratory individuals.

  13. Phenology of tropical understory trees: patterns and correlates

    Directory of Open Access Journals (Sweden)

    W. Alice Boyle

    2012-12-01

    Full Text Available Reproductive phenologies of plants are constrained by climate in highly seasonal regions. In contrast, plants growing in wet tropical forests are freed from many abiotic constraints, which in canopy tree communities lead to a rich diversity of phenological patterns within and among individuals, species and communities. However, basic descriptions of tropical phenological patterns and the processes that shape them are rare. Here, we document the individual-, population-, and landscape-level phenological patterns of two dominant families of understory woody plants important to avian frugivores, the Melastomataceae and Rubiaceae, along an elevational transect in Costa Rica. The 226 individual plants belonging to 35 species in this study, varied in the number of reproductive bouts/year, and the timing, duration, and synchrony of reproductive stages. This variation was not related to factors related to their interactions with mutualists and antagonists, nor did it appear to be constrained by phylogeny. Diverse phenological patterns among species led to relatively aseasonal patterns at the community and landscape level. Overall, evidence for biotic processes shaping temporal patterns of fruiting phenology was weak or absent. These findings reveal a number of unexplained patterns, and suggest that factors shaping phenology in relatively aseasonal forests operate in idiosyncratic ways at the species level.En regiones con marcada estacionalidad, los patrones fenológicos de las plantas están limitados por el clima. Por el contrario, las plantas que crecen en bosques húmedos tropicales, no tienen tantas limitaciones abióticas y es por esto que el dosel presenta una diversidad muy rica en los patrones fenológicos de individuos, especies y comunidades. Sin embargo, es muy escasa la información sobre la descripción básica de los patrones fenológicos tropicales y de los procesos que los afectan. En este documento, presentamos los patrones fenol

  14. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology.

    Science.gov (United States)

    Cooper, Caren B

    2014-09-01

    Accurate phenology data, such as the timing of migration and reproduction, is important for understanding how climate change influences birds. Given contradictory findings among localized studies regarding mismatches in timing of reproduction and peak food supply, broader-scale information is needed to understand how whole species respond to environmental change. Citizen science-participation of the public in genuine research-increases the geographic scale of research. Recent studies, however, showed weekend bias in reported first-arrival dates for migratory songbirds in databases created by citizen-science projects. I investigated whether weekend bias existed for clutch-initiation dates for common species in US citizen-science projects. Participants visited nests on Saturdays more frequently than other days. When participants visited nests during the laying stage, biased timing of visits did not translate into bias in estimated clutch-initiation dates, based on back-dating with the assumption of one egg laid per day. Participants, however, only visited nests during the laying stage for 25% of attempts of cup-nesting species and 58% of attempts in nest boxes. In some years, in lieu of visit data, participants provided their own estimates of clutch-initiation dates and were asked "did you visit the nest during the laying period?" Those participants who answered the question provided estimates of clutch-initiation dates with no day-of-week bias, irrespective of their answer. Those who did not answer the question were more likely to estimate clutch initiation on a Saturday. Data from citizen-science projects are useful in phenological studies when temporal biases can be checked and corrected through protocols and/or analytical methods.

  15. Biases in simulation of the rice phenology models when applied in warmer climates

    Science.gov (United States)

    Zhang, T.; Li, T.; Yang, X.; Simelton, E.

    2015-12-01

    The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.

  16. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Yang Fu

    Full Text Available Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2 product, we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model, 79% (the Biome-BGC phenology model, 73% (the Number of Growing Days model and 68% (the Number of Chilling Days-Growing Degree Day model of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  17. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Science.gov (United States)

    Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping

    2014-01-01

    Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  18. As-Built documentation of programs to implement the Robertson and Doraiswamy/Thompson models

    Science.gov (United States)

    Valenziano, D. J. (Principal Investigator)

    1981-01-01

    The software which implements two spring wheat phenology models is described. The main program routines for the Doraiswamy/Thompson crop phenology model and the basic Robertson crop phenology model are DTMAIN and BRMAIN. These routines read meteorological data files and coefficient files, accept the planting date information and other information from the user, and initiate processing. Daily processing for the basic Robertson program consists only of calculation of the basic Robertson increment of crop development. Additional processing in the Doraiswamy/Thompson program includes the calculation of a moisture stress index and correction of the basic increment of development. Output for both consists of listings of the daily results.

  19. 21 CFR 1240.65 - Psittacine birds.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Psittacine birds. 1240.65 Section 1240.65 Food and... DISEASES Specific Administrative Decisions Regarding Interstate Shipments § 1240.65 Psittacine birds. (a) The term psittacine birds shall include all birds commonly known as parrots, Amazons, Mexican double...

  20. Millipedes (Diplopoda) in birds' nests

    Czech Academy of Sciences Publication Activity Database

    Tajovský, Karel; Mock, A.; Krumpál, M.

    2001-01-01

    Roč. 37, - (2001), s. 321-323 ISSN 1164-5563 Institutional research plan: CEZ:AV0Z6066911 Keywords : birds nests * microsites * millipedes Subject RIV: EH - Ecology, Behaviour Impact factor: 0.317, year: 2001

  1. Poisonous birds: A timely review.

    Science.gov (United States)

    Ligabue-Braun, Rodrigo; Carlini, Célia Regina

    2015-06-01

    Until very recently, toxicity was not considered a trait observed in birds, but works published in the last two decades started to shed light on this subject. Poisonous birds are rare (or little studied), and comprise Pitohui and Ifrita birds from Papua New Guinea, the European quail, the Spoor-winged goose, the Hoopees, the North American Ruffed grouse, the Bronzewings, and the Red warbler. A hundred more species are considered unpalatable or malodorous to humans and other animals. The present review intends to present the current understanding of bird toxicity, possibly pointing to an ignored research field. Whenever possible, biochemical characteristics of these poisons and their effects on humans and other animals are discussed, along with historical aspects of poison discovery and evolutionary hypothesis regarding their function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Leukosis in captive wild birds].

    Science.gov (United States)

    Loupal, G

    1984-10-01

    Among 2589 captive wild birds, examined between 1974 and 1983, we found leukosis in 26 birds belonging to 13 different species and five orders. We diagnosed lymphoid leukosis in 11 birds (two Melopsittacus undulatus, two Psittacus erithacus one Platycerus eximius, one Columba livia, one Streptopelia decaocto, one Polyplectron bicalcaratum, one Pavo cristatus, one Aptenodytes patachonia and one finch, species unknown), myeloid leukosis in 14 (nine Melopsittacus undulatus, two Agapomis personata fischeri, two Urgeainthus bengalus and one Neophemia pulchella) and stem cell leukosis in one bird (Serinus canaria). Among the cases with lymphoid leukosis we distinguished between lymphoblastic (four cases) and prolymphocytic forms (seven). Myeloid leukosis was subdivided into poorly differentiated (12 cases) and well differentiated myeloblastosis (two).

  3. 75 FR 52873 - Migratory Bird Hunting; Final Frameworks for Early-Season Migratory Bird Hunting Regulations

    Science.gov (United States)

    2010-08-30

    ... resources including migratory birds and their habitats. Large-scale efforts to influence bird migration and... timing and speed of bird migrations. It is possible that re-distribution of birds at smaller scales could...-0040; 91200-1231-9BPP-L2] RIN 1018-AX06 Migratory Bird Hunting; Final Frameworks for Early-Season...

  4. 76 FR 54675 - Migratory Bird Hunting; Migratory Bird Hunting Regulations on Certain Federal Indian Reservations...

    Science.gov (United States)

    2011-09-01

    ... Service 50 CFR Part 20 Migratory Bird Hunting; Migratory Bird Hunting Regulations on Certain Federal...-L2] RIN 1018-AX34 Migratory Bird Hunting; Migratory Bird Hunting Regulations on Certain Federal..., Interior. ACTION: Final rule. SUMMARY: This rule prescribes special early-season migratory bird hunting...

  5. 77 FR 49679 - Migratory Bird Hunting; Proposed Migratory Bird Hunting Regulations on Certain Federal Indian...

    Science.gov (United States)

    2012-08-16

    ... Service 50 CFR Part 20 Migratory Bird Hunting; Proposed Migratory Bird Hunting Regulations on Certain...-FXMB1231099BPP0L2] RIN 1018-AX97 Migratory Bird Hunting; Proposed Migratory Bird Hunting Regulations on Certain...) proposes special migratory bird hunting regulations for certain Tribes on Federal Indian reservations, off...

  6. 77 FR 29515 - Migratory Bird Hunting; Supplemental Proposals for Migratory Game Bird Hunting Regulations for...

    Science.gov (United States)

    2012-05-17

    ... Service 50 CFR Part 20 Migratory Bird Hunting; Supplemental Proposals for Migratory Game Bird Hunting...] RIN 1018-AX97 Migratory Bird Hunting; Supplemental Proposals for Migratory Game Bird Hunting... in an earlier document to establish annual hunting regulations for certain migratory game birds for...

  7. 78 FR 47135 - Migratory Bird Hunting; Proposed Migratory Bird Hunting Regulations on Certain Federal Indian...

    Science.gov (United States)

    2013-08-02

    ... Service 50 CFR Part 20 Migratory Bird Hunting; Proposed Migratory Bird Hunting Regulations on Certain...-FXMB1231099BPP0] RIN 1018-AY87 Migratory Bird Hunting; Proposed Migratory Bird Hunting Regulations on Certain...) proposes special migratory bird hunting regulations for certain Tribes on Federal Indian reservations, off...

  8. Trypanosomes of some Fennoscandian birds

    Directory of Open Access Journals (Sweden)

    Gordon F. Bennett

    1994-12-01

    Full Text Available Linear measurements and derived indices of trypanosomes from species of Fennoscandian birds were compared to those reported form Trypanosoma avium, T. everetti, T. ontarioensis and T. paddae. The trypanosomes encountered in the Fennoscandian birds were identified as T. avium from Tengmalm's owl Aegolius funereus and the pied flycatcher Ficedula hypoleuca, T. everetti from the great tit Parus major and collared flycatcher F. albicollis and T. ontarioensis from the collared flycatcher; T. paddae was not seen.

  9. Bird naming systems by Akan people in Ghana follow scientific nomenclature with potentials for conservation monitoring.

    Science.gov (United States)

    Deikumah, Justus P; Konadu, Vida Asieduwaa; Kwafo, Richard

    2015-10-31

    the study area can be useful in bird conservation and monitoring programs in Ghana. Further research in other Ghanaian languages is recommended.

  10. A polar system of intercontinental bird migration

    OpenAIRE

    Alerstam, Thomas; Bäckman, Johan; Gudmundsson, Gudmundur A; Hedenström, Anders; Henningsson, Sara S; Karlsson, Håkan; Rosén, Mikael; Strandberg, Roine

    2007-01-01

    Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 ...

  11. Influence of monsoon-related riparian phenology on yellow-billed cuckoo habitat selection in Arizona

    Science.gov (United States)

    Wallace, Cynthia S.A.; Villarreal, Miguel; van Riper, Charles

    2013-01-01

    Aim: The western yellow-billed cuckoo (Coccyzus americanus occidentalis), a Neotropical migrant bird, is facing steep population declines in its western breeding grounds owing primarily to loss of native habitat. The favoured esting habitat for the cuckoo in the south-western United States is low-elevation riparian forests and woodlands. Our aim was to explore relationships between vegetation phenology patterns captured by satellite phenometrics and the distribution of the yellow-billed cuckoo, and to use this information to map cuckoo habitat. Location: Arizona, USA. Methods: Land surface phenometrics were derived from satellite Advanced Very High-Resolution Radiometer (AVHRR), bi-weekly time-composite, ormalized difference vegetation index (NDVI) data for 1998 and 1999 at a resolution of 1 km. Fourier harmonics were used to analyse the waveform of the annual NDVI profile in each pixel. To create the models, we coupled 1998 satellite phenometrics with 1998 field survey data of cuckoo presence or absence and with point data that sampled riparian and cottonwood–willow vegetation types. Our models were verified and refined using field and satellite data collected in 1999. Results: The models reveal that cuckoos prefer areas that experience peak greenness 29 days later, are 36% more dynamic and slightly (< 1%) more productive than their average cottonwood–willow habitat. The results support a scenario in which cuckoos migrate northwards, following the greening of riparian corridors and surrounding landscapes in response to monsoon precipitation, but then select a nesting site based on optimizing the near-term foraging potential of the neighbourhood. Main conclusions: The identification of preferred phenotypes within recognized habitat can be used to refine future habitat models, inform habitat response to climate change, and suggest adaptation strategies. For example, models of phenotype preferences can guide management actions by identifying and prioritizing for

  12. Modeling phenological responses of Inner Mongolia grassland species to regional climate change

    Science.gov (United States)

    Li, Qiuyue; Xu, Lin; Pan, Xuebiao; Zhang, Lizhen; Li, Chao; Yang, Ning; Qi, Jiaguo

    2016-01-01

    Plant phenology is an important indicator of ecosystem dynamics and services. However, little is understood of its responses to climate change, particularly in ecologically sensitive regions such as arid and semi-arid grasslands. In this study, we analyzed a long-term climate and plant phenology dataset of thirteen grassland species in the Inner Mongolia of China, collected during 1981-2011 time period, to understand temporal patterns of plant phenology and then developed a simple chilling-adjusted physiological model to simulate phenological responses of each plant species to climate change. The results of regional climate analysis suggested that the minimum temperature was increasing at a greater rate than mean and maximum temperatures in the region and the climate variability had significant impacts on vegetation phenology. Chilling from an early stage in spring in general slowed down the phenological development in most plant species, although there were some inconsistencies among sites and years. Specifically, we found lower precipitation during green-up resulted in delayed flowering, which may attribute to plant self-adjustment strategy to respond changes in climate. These climate dependent phenologies were characterized by a simple physiological model. Scenario analysis suggested that by 2071-2100 significant shifts in plant phenology are expected in Inner Mongolia, including as much as 6-11 days earlier in green-up time and 8-11 days shorter in growing season due to earlier senescence.

  13. A novel analysis of spring phenological patterns over Europe based on co-clustering

    NARCIS (Netherlands)

    Wu, X.; Zurita-Milla, R.; Kraak, M.J.

    2016-01-01

    The study of phenological patterns and their dynamics provides insights into the impacts of climate change on terrestrial ecosystems. Here we present a novel analytical workflow, based on co-clustering, that enables the concurrent study of spatio-temporal patterns in spring phenology. The workflow

  14. Near-surface remote sensing of spatial and temporal variation in canopy phenology

    Science.gov (United States)

    Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Julian P. Jenkins; Scott V. Ollinger

    2009-01-01

    There is a need to document how plant phenology is responding to global change factors, particularly warming trends. "Near-surface" remote sensing, using radiometric instruments or imaging sensors, has great potential to improve phenological monitoring because automated observations can be made at high temporal frequency. Here we build on previous work and...

  15. Phenology of the Hemlock Woolly Adelgid (Hemiptera: Adelgidae) in Northern Georgia

    Science.gov (United States)

    Shimar V. Joseph; Albert E. Mayfield; Mark J. Dalusky; Christopher Asaro; C. Wayne. Berisford

    2011-01-01

    Understanding the seasonal phenology of an insect pest in a specific geographic region is essential for optimizing the timing of management actions or research activities. We examined the phenology of hemlock woolly adelgid, Adelges tsugae Annand, near the southern limit of the range of eastern hemlock, Tsuga canadensis (L.) Carriere, in the Appalachians of northern...

  16. Responses of rubber leaf phenology to climatic variations in Southwest China.

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-13

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  17. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

    Science.gov (United States)

    Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe

    2009-01-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...

  18. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

    Science.gov (United States)

    Trevor F. Keenan; Josh Gray; Mark A. Friedl; Michael Toomey; Gil Bohrer; David Y. Hollinger; J. William Munger; John O’Keefe; Hans Peter Schmid; Ian Sue Wing; Bai Yang; Andrew D. Richardson

    2014-01-01

    The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (although the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4...

  19. Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity

    Science.gov (United States)

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

    2013-01-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  20. Annual rhythms that underlie phenology : Biological time-keeping meets environmental change

    NARCIS (Netherlands)

    Helm, Barbara; Ben-Shlomo, Rachel; Sheriff, Michael J; Hut, Roelof A; Foster, Russell; Barnes, Brian M; Dominoni, Davide

    2013-01-01

    Seasonal recurrence of biological processes (phenology) and its relationship to environmental change is recognized as being of key scientific and public concern, but its current study largely overlooks the extent to which phenology is based on biological time-keeping mechanisms. We highlight the

  1. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  2. Management strategies for the conservation of forest birds

    Science.gov (United States)

    Kathleen E. Franzreb; Deborah M. Finch; Petra Bohall Wood; David E. Capen

    1999-01-01

    We recommend that managers of forest-associated bird species follow a five-step hierarchy in establishing and implementing management programs. In essence, a manager must evaluate the composition and physiognomy of the landscape mosaic in the context of the regional and subregional goals and objectives. Then he/she can explore alternatives that allow manipulation of...

  3. 75 FR 57413 - Migratory Bird Permits; Possession and Educational Use

    Science.gov (United States)

    2010-09-21

    ... not open to the general public, whereas, an educational program offered at a national park is. As... entertaining. As another commenter put it, ``laughter and amusement open pathways for receptive learning. The.... Under no circumstance would we authorize the use of migratory birds to endorse or promote any product or...

  4. Phenological monitoring of vine using MODIS imagery in the vineyard of Saumur-Angers (Loire Valley area, France)

    Science.gov (United States)

    Thomas, A.; Corgne, S.; Planchon, O.; Bonnefoy, C.; Quénol, H.; Lecerf, R.

    2012-04-01

    The present study focuses on the phenological monitoring of vine with MODIS multitemporal data. It takes part of two programs which deal with global change and agricultural adaptations: TERADCLIM (2011-2013) for wine makers and CLIMASTER (2008-2011) about agricultural resources in four administrative regions of Western France. Numerous studies use very high resolution remotely sensed data to monitor vineyard, despite their low acquisition frequency. Here we investigate the potential of images with moderate resolution (250-500m) but high temporal resolution to detect changes in phenology of vine. The investigated area, called the AOC (Appellation d'Origine Contrôlée) vineyard of Anjou-Saumur - AOC-SA (47°13'N-0°26'E), covers an area of 33,840 hectares and is located in West-Central France. In this monoculture area, the observed changes in biophysical variables strongly depend on temperature and precipitation variability, and, thus, represent an interesting opportunity to study relationships between climate change and evolution of vine phenology. We use a MODIS images dataset from 2000 to 2011 with a temporal resolution of one image every 10 days. Our workflow builds regular series of reflectance images from which biophysic variables (like fCOVER, vegetation cover fraction) are calculated. Thanks to the TERVICLIM (ANR-JC 07-194103) program, 13 weather stations were set up within the AOC-SA, between 2008 and 2011. The average climatic data (temperature, rainfall) from this network are linked to Modis data. The monthly records of the biophysical variables over the studied period clearly show annual oscillations including a seasonal and monthly variability of the fCOVER associated with climatic features. Furthermore, the remarkably mild and wet winters of 2000-2001 and 2006-2007 were favourable to an increase of photosynthetic activity and vegetation coverage ratio. The strong and long-term rainfall deficit (until autumn) in 2005 and the associated hydric stress

  5. Effects of management practices on wetland birds: Virginia rail

    Science.gov (United States)

    Zimmerman, Amy L.; Dechant, Jill A.; Jamison, Brent E.; Johnson, Douglas H.; Goldade, Christopher M.; Church, James O.; Euliss, Betty R.

    2002-01-01

    information on intra- and interspecific parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes recommendations for habitat management provided in the literature. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of wetland birds and their responses to habitat management is posted at the Web site mentioned below.

  6. Effects of management practices on wetland birds: Black tern

    Science.gov (United States)

    Zimmerman, Amy L.; Dechant, Jill A.; Johnson, Douglas A.; Goldade, Christopher M.; Jamison, Brent E.; Euliss, Betty R.

    2002-01-01

    information on intra- and interspecific parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes recommendations for habitat management provided in the literature. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  7. Effects of management practices on wetland birds: Yellow Rail

    Science.gov (United States)

    Goldade, Christopher M.; Dechant, Jill A.; Johnson, Douglas H.; Zimmerman, Amy L.; Jamison, Brent E.; Church, James O.; Euliss, Betty R.

    2002-01-01

    information on intra- and interspecific parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes recommendations for habitat management provided in the literature. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of wetland birds and their responses to habitat management is posted at the Web site mentioned below.

  8. Effects of management practices on wetland birds: American Avocet

    Science.gov (United States)

    Dechant, Jill A.; Zimmerman, Amy L.; Johnson, Douglas H.; Goldade, Christopher M.; Jamison, Brent E.; Euliss, Betty R.

    2002-01-01

    information on intra- and interspecific parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes recommendations for habitat management provided in the literature. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of wetland birds and their responses to habitat management is posted at the Web site mentioned below.

  9. Effects of management practices on grassland birds: Merlin

    Science.gov (United States)

    Konrad, Paul M.

    2004-01-01

    factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  10. Effects of management practices on grassland birds: Golden eagle

    Science.gov (United States)

    DeLong, John P.

    2004-01-01

    influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

  11. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes.

    Science.gov (United States)

    Prevéy, Janet; Vellend, Mark; Rüger, Nadja; Hollister, Robert D; Bjorkman, Anne D; Myers-Smith, Isla H; Elmendorf, Sarah C; Clark, Karin; Cooper, Elisabeth J; Elberling, Bo; Fosaa, Anna M; Henry, Gregory H R; Høye, Toke T; Jónsdóttir, Ingibjörg S; Klanderud, Kari; Lévesque, Esther; Mauritz, Marguerite; Molau, Ulf; Natali, Susan M; Oberbauer, Steven F; Panchen, Zoe A; Post, Eric; Rumpf, Sabine B; Schmidt, Niels M; Schuur, Edward A G; Semenchuk, Phillip R; Troxler, Tiffany; Welker, Jeffrey M; Rixen, Christian

    2017-07-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms. © 2017 John Wiley & Sons Ltd.

  12. Interactions between bee foraging and floral resource phenology shape bee populations and communities.

    Science.gov (United States)

    Ogilvie, Jane E; Forrest, Jessica Rk

    2017-06-01

    Flowers are ephemeral, yet bees rely on them for food throughout their lives. Floral resource phenology - which can be altered by changes in climate and land-use - is therefore key to bee fitness and community composition. Here, we discuss the interactions between floral resource phenology, bee foraging behaviour, and traits such as diet breadth, sociality, and body size. Recent research on bumble bees has examined behavioural responses to local floral turnover and effects of landscape-scale floral resource phenology on fitness, abundance, and foraging distances. Comparable studies are needed on non-social, pollen-specialist species. We also encourage greater use of information contained in museum collections on bee phenologies and floral hosts to test how phenology has shaped the evolution of bee-plant associations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Incorporating variability in simulations of seasonally forced phenology using integral projection models.

    Science.gov (United States)

    Goodsman, Devin W; Aukema, Brian H; McDowell, Nate G; Middleton, Richard S; Xu, Chonggang

    2018-01-01

    Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle ( Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.

  14. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2013-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention s National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts

  15. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A. R.; Nickovic, S.; Prasad, A. K.; Pejanovic, G.; Vukovic, A.; Van De Water, P. K.; Budge, A.; Hudspeth, W. B.; Krapfl, H.; Toth, B.; Zelicoff, A.; Myers, O.; Bunderson, L.; Ponce-Campos, G.; Menache, M.; Crimmins, T. M.; Vujadinovic, M.

    2012-12-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  16. Revegetation increase bird diversity in coastal area of Socorejo, Tuban, East Java - Indonesia

    Science.gov (United States)

    Lestari, Yeni Indah; Edi, Wasito; Alivvy, Alkautsar; Ibadah, Acib Setia; Sari, Fadina Yuliana; Nuraini, Finda; Yanuar, Ahmad; Satriyono, Agus; Riany, Citra Fitrie; Saptarini, Dian; Muzaki, Farid Kamal

    2017-06-01

    Study to address positive impact of revegetation program to increasing diversity of bird had been conducted in coastal area of Socorejo, Tuban - Indonesia. Field observation conducted during April 2011 (representing pre-revegetation period), April 2015 and May 2016 (representing post-revegetation period). A belt transect (500 meter long and 50 meter width) was used to survey the abundance and species composition of birds community. In general, we identified at least 51 bird species from three observation times. From 2011 to 2016, the numbers of the birds identified are 23, 37 and 37 species; while the Shannon-Wiener diversity indices (H') are 1.865, 2.071 and 2.957, respectively. In addition, there are 11 national or internationally protected species, 3 Indonesian endemic species and 12 migratory species occurred in the area. As a conclusion, the coastal revegetation program provides positive impact by generating habitat function for bird community.

  17. Reproductive phenology and sharing of floral resource among hummingbirds (Trochilidae in inflorescences of Dahlstedtia pinnata (Benth. Malme. (Fabaceae in the Atlantic forest

    Directory of Open Access Journals (Sweden)

    CAIO C.C. MISSAGIA

    2014-12-01

    Full Text Available The purpose of this study was to investigate the reproductive phenology and sharing of floral resource (nectar of Dahlstedtia pinnata (Benth. Malme. (Fabaceae, endemic of Atlantic forest, among hummingbirds. For the phenology, we looked at the presence of reproductive structures in the plants, and for floral resource sharing, the frequency of potential pollinators and foraging behaviors were examined. This study was conducted in Pedra Branca State Park, in state of Rio de Janeiro, in a dense ombrophilous forest, between August 2010 and August 2011. Flowering occurred between December 2010 and March 2011, and fruiting between April and June 2011. Hummingbirds' foraging schedules differed significantly, with legitimate visits to the flowers occurring in the morning and illegitimate visits occurring during late morning and the afternoon. Five species visited flowers, three of which were legitimate visitors: Phaethornis ruber, P. pretrei, and Ramphodon naevius. Amazilia fimbriata and Thalurania glaucopis females only visited illegitimately. Phaethornis ruber robbed nectar (78% of illegitimate visits, n=337. Ramphodon naevius, with a territorial foraging behavior and a body size bigger than that of other observed hummingbird species, dominated the floral visits, which suggests that D. pinnata is an important nourishing resource for this endemic bird of the Atlantic forest, currently globally categorized as Near Threatened.

  18. Reproductive phenology and sharing of floral resource among hummingbirds (Trochilidae) in inflorescences of Dahlstedtia pinnata (Benth.) Malme. (Fabaceae) in the Atlantic forest.

    Science.gov (United States)

    Missagia, Caio C C; Verçoza, Fábio C; Alves, Maria Alice S

    2014-12-01

    The purpose of this study was to investigate the reproductive phenology and sharing of floral resource (nectar) of Dahlstedtia pinnata (Benth.) Malme. (Fabaceae), endemic of Atlantic forest, among hummingbirds. For the phenology, we looked at the presence of reproductive structures in the plants, and for floral resource sharing, the frequency of potential pollinators and foraging behaviors were examined. This study was conducted in Pedra Branca State Park, in state of Rio de Janeiro, in a dense ombrophilous forest, between August 2010 and August 2011. Flowering occurred between December 2010 and March 2011, and fruiting between April and June 2011. Hummingbirds' foraging schedules differed significantly, with legitimate visits to the flowers occurring in the morning and illegitimate visits occurring during late morning and the afternoon. Five species visited flowers, three of which were legitimate visitors: Phaethornis ruber, P. pretrei, and Ramphodon naevius. Amazilia fimbriata and Thalurania glaucopis females only visited illegitimately. Phaethornis ruber robbed nectar (78% of illegitimate visits, n=337). Ramphodon naevius, with a territorial foraging behavior and a body size bigger than that of other observed hummingbird species, dominated the floral visits, which suggests that D. pinnata is an important nourishing resource for this endemic bird of the Atlantic forest, currently globally categorized as Near Threatened.

  19. An operational phenological model for numerical pollen prediction

    Science.gov (United States)

    Scheifinger, Helfried

    2010-05-01

    The general prevalence of seasonal allergic rhinitis is estimated to be about 15% in Europe, and still increasing. Pre-emptive measures require both the reliable assessment of production and release of various pollen species and the forecasting of their atmospheric dispersion. For this purpose numerical pollen prediction schemes are being developed by a number of European weather services in order to supplement and improve the qualitative pollen prediction systems by state of the art instruments. Pollen emission is spatially and temporally highly variable throughout the vegetation period and not directly observed, which precludes a straightforward application of dispersion models to simulate pollen transport. Even the beginning and end of flowering, which indicates the time period of potential pollen emission, is not (yet) available in real time. One way to create a proxy for the beginning, the course and the end of the pollen emission is its simulation as function of real time temperature observations. In this work the European phenological data set of the COST725 initiative forms the basis of modelling the beginning of flowering of 15 species, some of which emit allergic pollen. In order to keep the problem as simple as possible for the sake of spatial interpolation, a 3 parameter temperature sum model was implemented in a real time operational procedure, which calculates the spatial distribution of the entry dates for the current day and 24, 48 and 72 hours in advance. As stand alone phenological model and combined with back trajectories it is thought to support the qualitative pollen prediction scheme at the Austrian national weather service. Apart from that it is planned to incorporate it in a numerical pollen dispersion model. More details, open questions and first results of the operation phenological model will be discussed and presented.

  20. Shifting relative importance of climatic constraints on land surface phenology

    Science.gov (United States)

    Garonna, Irene; de Jong, Rogier; Stöckli, Reto; Schmid, Bernhard; Schenkel, David; Schimel, David; Schaepman, Michael E.

    2018-02-01

    Land surface phenology (LSP), the study of seasonal dynamics of vegetated land surfaces from remote sensing, is a key indicator of global change, that both responds to and influences weather and climate. The effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions—which are not well understood at global scale. Understanding the climatic constraints that underlie LSP is crucial for explaining climate change effects on global vegetation phenology. We used a combination of modelled and remotely-sensed vegetation activity records to quantify the interplay of three climatic constraints on land surface phenology (namely minimum temperature, moisture availability, and photoperiod), as well as the dynamic nature of these constraints. Our study examined trends and the relative importance of the three constrains at the start and the end of the growing season over eight global environmental zones, for the past three decades. Our analysis revealed widespread shifts in the relative importance of climatic constraints in the temperate and boreal biomes during the 1982-2011 period. These changes in the relative importance of the three climatic constraints, which ranged up to 8% since 1982 levels, varied with latitude and between start and end of the growing season. We found a reduced influence of minimum temperature on start and end of season in all environmental zones considered, with a biome-dependent effect on moisture and photoperiod constraints. For the end of season, we report that the influence of moisture has on average increased for both the temperate and boreal biomes over 8.99 million km2. A shifting relative importance of climatic constraints on LSP has implications both for understanding changes and for improving how they may be modelled at large scales.

  1. Atmospheric teleconnection influence on North American land surface phenology

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.

    2018-03-01

    Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.

  2. Informing agricultural management - The challenge of modelling grassland phenology

    Science.gov (United States)

    Calanca, Pierluigi

    2017-04-01

    Grasslands represent roughly 70% of the agricultural land worldwide, are the backbone of animal husbandry and contribute substantially to agricultural income. At the farm scale a proper management of meadows and pastures is necessary to attain a balance between forage production and consumption. A good hold on grassland phenology is of paramount importance in this context, because forage quantity and quality critically depend on the developmental stage of the sward. Traditionally, empirical rules have been used to advise farmers in this respect. Yet the provision of supporting information for decision making would clearly benefit from dedicated tools that integrate reliable models of grassland phenology. As with annual crops, in process-based models grassland phenology is usually described as a linear function of so-called growing degree days, whereby data from field trials and monitoring networks are used to calibrate the relevant parameters. It is shown in this contribution that while the approach can provide reasonable estimates of key developmental stages in an average sense, it fails to account for the variability observed in managed grasslands across sites and years, in particular concerning the start of the growing season. The analysis rests on recent data from western Switzerland, which serve as a benchmark for simulations carried out with grassland models of increasing complexity. Reasons for an unsatisfactory model performance and possibilities to improve current models are discussed, including the necessity to better account for species composition, late season management decisions, as well as plant physiological processes taking place during the winter season. The need to compile existing, and collect new data doe managed grasslands is also stressed.

  3. Monitoring Phenology of Ailanthus altissima in North West Isfahan

    Directory of Open Access Journals (Sweden)

    A. Shahbazi

    2013-12-01

    Full Text Available Major climate changes problems in the world have attracted attentions to the phenology and have improved studies in this field. Quantitative investigation of phenology, through recording the colour of different parts of plants can be a complement for quantitative method in determining exact appearance of the phenomena. In the present study the phenological characteristics of Ailanthus altissima has been identified, using two different methods including descriptive and digital repeated photography. In descriptive observations four trees in the campus of Isfahan University of Technology has been biweekly recorded for seven years and appearance of the phenomena has been registered. Digital photography of different parts of tree was accomplished for four years. The photo spectrum of the leaf and fruit of the tree were produced and the colors were analyzed in RGB system, with the resolution of eight bites (28 for each color. By determining the proportion of each primary color the tint was achieved, which can be easily interpreted. For determining the effect of temperature on colour changing in time, the 2G-RB Index was used. According to the descriptive observations of the flowering occurs from the beginning of May to the beginning of June and fruiting occurs in late June. In colour changing diagrams the intersection of green wavelength with red in late October exhibits a revolution in leaves colour. In the fruit colour diagrams, the first intersection takes place in coincidence with the appearance of green fruits and the second coincidence with the changing of colour from green to brown. Quantitative analysis indicates a significant correlation (P ≥ 0.05 between temperature and 2G-RB Index for both leaf and fruit.

  4. Ecosystem Responses To Plant Phenology Across Scales And Trophic Levels

    Science.gov (United States)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2015-12-01

    Plant phenology in arid and semi-arid ecoregions is constrained by water availability and governs the life history characteristics of primary and secondary consumers. We related the behavior, demography, and distribution of mammalian herbivores and their principal predator to remotely sensed vegetation and climatological indices across the western United States for the period 2000-2014. Across scales, terrain and topographic position moderates the effects of climatological drought on primary productivity, resulting in differential susceptibility among plant functional types to water stress. At broad scales, herbivores tie parturition to moist sites during the period of maximum increase in local forage production. Consequently, juvenile mortality is highest in regions of extreme phenological variability. Although decoupled from primary production by one or more trophic levels, carnivore home range size and density is negatively correlated to plant productivity and growing season length. At the finest scales, predation influences the behavior of herbivore prey through compromised habitat selection, in which maternal females trade nutritional benefits of high plant biomass for reduced mortality risk associated with increased visibility. Climate projections for the western United States predict warming combined with shifts in the timing and form of precipitation. Our analyses suggest that these changes will propagate through trophic levels as increased phenological variability and shifts in plant distributions, larger consumer home ranges, altered migration behavior, and generally higher volatility in wildlife populations. Combined with expansion and intensification of human land use across the region, these changes will likely have economic implications stemming from increased human-wildlife conflict (e.g., crop damage, vehicle collisions) and changes in wildlife-related tourism.

  5. Lab-on-a-bird: biophysical monitoring of flying birds.

    Science.gov (United States)

    Gumus, Abdurrahman; Lee, Seoho; Ahsan, Syed S; Karlsson, Kolbeinn; Gabrielson, Richard; Guglielmo, Christopher G; Winkler, David W; Erickson, David

    2015-01-01

    The metabolism of birds is finely tuned to their activities and environments, and thus research on avian systems can play an important role in understanding organismal responses to environmental changes. At present, however, the physiological monitoring of bird metabolism is limited by the inability to take real-time measurements of key metabolites during flight. In this study, we present an implantable biosensor system that can be used for continuous monitoring of uric acid levels of birds during various activities including flight. The system consists of a needle-type enzymatic biosensor for the amperometric detection of uric acid in interstitial fluids. A lightweight two-electrode potentiostat system drives the biosensor, reads the corresponding output current and wirelessly transfers the data or records to flash memory. We show how the device can be used to monitor, in real time, the effects of short-term flight and rest cycles on the uric acid levels of pigeons. In addition, we demonstrate that our device has the ability to measure uric acid level increase in homing pigeons while they fly freely. Successful application of the sensor in migratory birds could open up a new way of studying birds in flight which would lead to a better understanding of the ecology and biology of avian movements.

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  8. Annotated Bibliography of Bird Hazards to Aircraft: Bird Strike Committee Citations 1967-1997

    National Research Council Canada - National Science Library

    Short, Jeffrey

    1998-01-01

    .... This annotated bibliography of bird hazards to aircraft, termed ABBHA, is a compilation of citations with abstracts on a wide range of related topics such as bird strike tolerance engineering, bird...

  9. Coping with shorter days: do phenology shifts constrain aphid fitness?

    OpenAIRE

    Joschinski, Jens; Hovestadt, Thomas; Krauss, Jochen

    2015-01-01

    Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temp...

  10. Genetic architecture of spring and autumn phenology in Salix

    Science.gov (United States)

    2014-01-01

    Background In woody plants from temperate regions, adaptation to the local climate results in annual cycles of growth and dormancy, and optimal regulation of these cycles are critical for growth, long-term survival, and competitive success. In this study we have investigated the genetic background to growth phenology in a Salix pedigree by assessing genetic and phenotypic variation in growth cessation, leaf senescence and bud burst in different years and environments. A previously constructed linkage map using the same pedigree and anchored to the annotated genome of P. trichocarpa was improved in target regions and used for QTL analysis of the traits. The major aims in this study were to map QTLs for phenology traits in Salix, and to identify candidate genes in QTL hot spots through comparative mapping with the closely related Populus trichocarpa. Results All traits varied significantly among genotypes and the broad-sense heritabilities ranged between 0.5 and 0.9, with the highest for leaf senescence. In total across experiment and years, 80 QTLs were detected. For individual traits, the QTLs explained together from 21.5 to 56.5% of the variation. Generally each individual QTL explained a low amount of the variation but three QTLs explained above 15% of the variation with one QTL for leaf senescence explaining 34% of the variation. The majority of the QTLs were recurrently identified across traits, years and environments. Two hotspots were identified on linkage group (LG) II and X where narrow QTLs for all traits co-localized. Conclusions This study provides the most detailed analysis of QTL detection for phenology in Salix conducted so far. Several hotspot regions were found where QTLs for different traits and QTLs for the same trait but identified during different years co-localised. Many QTLs co-localised with QTLs found in poplar for similar traits that could indicate common pathways for these traits in Salicaceae. This study is an important first step in

  11. Grapevine phenology, wine production and prices: Pauillac (1800-2009)

    OpenAIRE

    Chevet, Jean-Michel; Lecocq, Sebastien; Visser, Michael

    2011-01-01

    This paper analyzes 19th and 20th century data from a well-known château in Bordeaux. The dataset includes information on weather conditions, starting dates of three phenological stages of grapevine, prices, and yields. We discuss how these variables have evolved over the last two centuries. We also study to what extent the impact of climate on yields and prices has changed over time. Our regression analysis suggests that the effect of temperature on yields has become weaker since the 19th ce...

  12. Phenological Responses to ENSO in the Global Oceans

    Science.gov (United States)

    Racault, M.-F.; Sathyendranath, S.; Menon, N.; Platt, T.

    2017-01-01

    Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth's climate system, the El Niño-Southern Oscillation (ENSO) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the ENSO influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of ENSO may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where ENSO modulates a climate system characterised by a seasonal

  13. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    Science.gov (United States)

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  14. Integrating satellite and tower phenology: a case-study in real-time ecological forecasting

    Science.gov (United States)

    Dietze, M.

    2014-12-01

    Phenological transitions have large impacts on ecosystem processes, species interactions, and climate. However, phenology is a critical source of uncertainty in projections of climate change on terrestrial ecosystems and the current generation of ecosystem models are highly variable and biased in their phenology predictions. Most phenological modeling has focused on diagnosing phenological variability and predicting long term responses to climate scenarios. Phenological predictions for the current season, on the other hand, are being made based on long-term means or expert opinion rather than real data. To our knowledge previous research has not applied operational data assimilation approaches to produce operational, real-time forecasts of phenology. We present a phenology forecast data product that is automatically updated every day using current observations and weather forecasts. Specifically we fuse MODIS NDVI and PhenoCam based GCC with a threshold logistic process model at five sites across eastern forests, from North Carolina to New Hampshire. Prior to application, models were calibrated (2000-2012) using a Bayesian state space model. Forecasts for fall 2013, spring 2014, and fall 2014 were then generated on a daily basis using a particle filter. The system successfully tracked seasonal phenology but forecasts showed high uncertainty and sensitivity to alternative model structures. Furthermore, we found that current phenological models in the literature are not formulated in a way that allows for dynamic forecasts. Work remains to be done to extend this work to a fully spatial context. In particular there is a need to determine the spatial range of influence of the tower PhenoCam data and to account for both land cover and random effects. More broadly, this work demonstrates the possibilities for the development of real-time ecological forecasting in other areas.

  15. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  16. Response of birds to climatic variability; evidence from the western fringe of Europe

    Science.gov (United States)

    Donnelly, Alison; Cooney, Tom; Jennings, Eleanor; Buscardo, Erika; Jones, Mike

    2009-05-01

    Ireland’s geographic location on the western fringe of the European continent, together with its island status and impoverished avifauna, provides a unique opportunity to observe changes in bird migration and distribution patterns in response to changing climatic conditions. Spring temperatures have increased in western Europe over the past 30 years in line with reported global warming. These have been shown, at least in part, to be responsible for changes in the timing of life cycle events (phenology) of plants and animals. In order to investigate the response of bird species in Ireland to changes in temperature, we examined ornithological records of trans-Saharan migrants over the 31-year period 1969-1999. Analysis of the data revealed that two discrete climatic phenomena produced different responses in summer migrant bird species. Firstly, a number of long-distance migrants showed a significant trend towards earlier arrival. This trend was evident in some species and was found to be a response to increasing spring air temperature particularly in the month of March. Secondly, (1) a step change in the pattern of occurrences of non-breeding migrant bird species, and (2) an increase in the ringing data of migrant species were found to correlate with a step change in temperature in 1987-1988. These results indicate that, for migrant bird species, the impact of a sudden change in temperature can be as important as any long-term monotonic trend, and we suggest that the impact of step change events merits further investigation on a wider range of species and across a greater geographical range.

  17. Climate impacts on bird and plant communities from altered animal-plant interactions

    Science.gov (United States)

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  18. Anticipatory Manoeuvres in Bird Flight

    Science.gov (United States)

    Vo, Hong D.; Schiffner, Ingo; Srinivasan, Mandyam V.

    2016-01-01

    It is essential for birds to be agile and aware of their immediate environment, especially when flying through dense foliage. To investigate the type of visual signals and strategies used by birds while negotiating cluttered environments, we presented budgerigars with vertically oriented apertures of different widths. We find that, when flying through narrow apertures, birds execute their maneuvers in an anticipatory fashion, with wing closures, if necessary, occurring well in advance of the aperture. When passing through an aperture that is narrower than the wingspan, the birds close their wings at a specific, constant distance before the aperture, which is independent of aperture width. In these cases, the birds also fly significantly higher, possibly pre-compensating for the drop in altitude. The speed of approach is largely constant, and independent of the width of the aperture. The constancy of the approach speed suggests a simple means by which optic flow can be used to gauge the distance and width of the aperture, and guide wing closure. PMID:27270506

  19. Book review: Birds of Delaware

    Science.gov (United States)

    Peterjohn, Bruce G.

    2001-01-01

    Located along Delaware Bay and the Atlantic coast, the state of Delaware’s significance for bird conservation has been well established for decades. The extensive tidal habitats and marshes bordering Delaware Bay host shorebird and waterbird populations of hemispheric importance, and protecting these populations has become an urgent conservation priority in recent years. Other habitats found in the state vary from barrier beaches to dry coniferous woods on the coastal plain and mesophytic communities along the Piedmont in the north, allowing a diverse avifauna to prosper within a small geographic area. Ornithologists and birders have actively studied birds within the state for more than a century, but surprisingly, no single reference has provided a complete summary of the status and distribution of the state’s birds until publication of the Birds of Delaware.Review info: Birds of Delaware. By Gene K. Hess, Richard L. West, Maurice V. Barnhill III, and Lorraine M. Fleming, 2000. ISBN: 0-8229-4069-8, 635 pp.

  20. Birds and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  1. Parthenogenesis in birds: A review.

    Science.gov (United States)

    Ramachandran, Reshma; McDaniel, Cd

    2018-03-20

    Parthenogenesis or "virgin birth" is embryonic development in unfertilized eggs. It is a routine means of reproduction in many invertebrates. However even though parthenogenesis occurs naturally in even more advanced vertebrates, like birds, it is mostly abortive in nature. In fact, multiple limiting factors, such as delayed and unorganized development as well as unfavorable conditions developing within the unfertilized egg upon incubation, are associated with termination of progressive development of parthenogenetic embryos. In birds, diploid parthenogenesis is automictic and facultative producing only males. However, the mechanisms controlling parthenogenesis in birds are not clearly elucidated. Additionally, it appears from even very recent research that these mechanisms may hinder the normal fertilization process and subsequent embryonic development. For instance, virgin quail and turkey hens exhibiting parthenogenesis have reduced reproductive performance following mating. Also, genetic selection and environmental factors, such as live virus vaccinations, are known to trigger the process of parthenogenesis in birds. Therefore, parthenogenesis has a plausible negative impact on the poultry industry. Hence, a better understanding of parthenogenesis and the mechanisms that control it could benefit commercial poultry production. In this context, the aim of this review is to provide a complete overview of the process of parthenogenesis in birds.

  2. Anticipatory Manoeuvres in Bird Flight.

    Science.gov (United States)

    Vo, Hong D; Schiffner, Ingo; Srinivasan, Mandyam V

    2016-06-08

    It is essential for birds to be agile and aware of their immediate environment, especially when flying through dense foliage. To investigate the type of visual signals and strategies used by birds while negotiating cluttered environments, we presented budgerigars with vertically oriented apertures of different widths. We find that, when flying through narrow apertures, birds execute their maneuvers in an anticipatory fashion, with wing closures, if necessary, occurring well in advance of the aperture. When passing through an aperture that is narrower than the wingspan, the birds close their wings at a specific, constant distance before the aperture, which is independent of aperture width. In these cases, the birds also fly significantly higher, possibly pre-compensating for the drop in altitude. The speed of approach is largely constant, and independent of the width of the aperture. The constancy of the approach speed suggests a simple means by which optic flow can be used to gauge the distance and width of the aperture, and guide wing closure.

  3. The Aerodynamics of Bird Flight

    Science.gov (United States)

    Spedding, Geoffrey

    2002-11-01

    The manifest success of birds in flight over small and large distances, in confined quarters and also in gusty conditions has inspired admiration, investigation and sometimes imitation from the earthbound human. Birds occupy a range of scales (2 g - 12 kg in mass, and 0.05 - 3 m in wingspan) that overlaps certain micro air vehicle (MAV) designs and there is interest in whether some bird-like properties (flapping wings, deformable feathers, movable tails) might be useful or even necessary for successful MAVs. A bird with 5 cm mean chord flying at 8 m/s has a nominal Reynolds number of 2 - 3 x 10^4. This is an extremely inconvenient range for design, operation and analysis of lifting surfaces, even in steady motion, because their properties are very sensitive to boundary layer separation. The moderate- to high-amplitude flapping motions, together with the complex surface geometry and mechanical properties of the wings themselves lead to yet further challenges. This talk will review some of the theoretical and practical approaches towards understanding and analyzing the aerodynamics of various types of bird flight, including some recent research results that suggest that this effort is far from complete.

  4. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-02

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. RICE CROP MAPPING USING SENTINEL-1A PHENOLOGICAL METRICS

    Directory of Open Access Journals (Sweden)

    C. F. Chen

    2016-06-01

    Full Text Available Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter–spring, summer–autumn in the Mekong River Delta (MRD, Vietnam through three main steps: (1 data pre-processing, (3 rice classification based on crop phenological metrics, and (4 accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government’s rice area statistics for such crops (R2 > 0.95. The values of relative error in area obtained for the winter–spring and summer–autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  6. Global warming leads to more uniform spring phenology across elevations.

    Science.gov (United States)

    Vitasse, Yann; Signarbieux, Constant; Fu, Yongshuo H

    2018-01-30

    One hundred years ago, Andrew D. Hopkins estimated the progressive delay in tree leaf-out with increasing latitude, longitude, and elevation, referred to as "Hopkins' bioclimatic law." What if global warming is altering this well-known law? Here, based on ∼20,000 observations of the leaf-out date of four common temperate tree species located in 128 sites at various elevations in the European Alps, we found that the elevation-induced phenological shift (EPS) has significantly declined from 34 d⋅1,000 m -1 conforming to Hopkins' bioclimatic law in 1960, to 22 d⋅1,000 m -1 in 2016, i.e., -35%. The stronger phenological advance at higher elevations, responsible for the reduction in EPS, is most likely to be connected to stronger warming during late spring as well as to warmer winter temperatures. Indeed, under similar spring temperatures, we found that the EPS was substantially reduced in years when the previous winter was warmer. Our results provide empirical evidence for a declining EPS over the last six decades. Future climate warming may further reduce the EPS with consequences for the structure and function of mountain forest ecosystems, in particular through changes in plant-animal interactions, but the actual impact of such ongoing change is today largely unknown.

  7. Investigating phenology of larval fishes in St. Louis River ...

    Science.gov (United States)

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages across different habitats and at multiple temporal scales. To optimize early detection monitoring we need to understand temporal and spatial patterns of larval fishes related to their development and dispersion, as well as the environmental factors that influence them. In 2016 we designed an experiment to assess the phenological variability in larval fish abundance and assemblages amongst shallow water habitats. Specifically, we sought to contrast different thermal environments and turbidity levels, as well as assess the importance of vegetation in these habitats. To evaluate phenological differences we sampled larval fish bi-weekly at nine locations from mid-May to mid-July. Sampling locations were split between upper estuary and lower estuary to contrast river versus seiche influenced habitats. To assess differences in thermal environments, temperature was monitored every 15 minutes at each sampling location throughout the study, beginning in early April. Our design also included sampling at both vegetated (or pre-vegetated) and non-vegetated stations within each sampling location throughout the study to assess the importance of this habitat variable. Hydroacoustic surveys (Biosonics) were

  8. Flowering phenology of selected wind pollinated allergenic deciduous tree species

    Directory of Open Access Journals (Sweden)

    Magdalena Kluza-Wieloch

    2012-12-01

    Full Text Available Systematic phenological observations have been carried out in the Dendrological Garden of August Cieszkowski Agricultural University, Park Sołacki, Lasek Golęciński, Przybyszewskiego Street, for two years (2003, 2004. The selected species of deciduous trees, as Betula pendula, Corylus avellana, Platanus x hispanica. There was interdependence between the course of flowering process and weather conditions. Long and frosty winter at the turn of 2002/2003 and subzero mean temperatures in the first quarter of 2003 delayed vegetation. Rapid coming of early spring in the year 2004 accelerate the development of generative organs. Each year spring ground frost during flowering did not inhibit this process. All the investigated tree species are anemophilous and produce large amounts of allergenic pollen grain. They cause allergic reactions throughout the whole period of pollen discharge. Male inflorescences in Corylus avellana, blooming very early, are one of the first plants causing allergic reactions. Betula pendula is the next to bloom, followed by Platanus x hispanica. Observations of phenological phases may provide useful information forecasting the beginning of the period of increased pollen concentration in air.

  9. Germination phenology determines the propensity for facilitation and competition.

    Science.gov (United States)

    Leverett, Lindsay D

    2017-09-01

    A single plant can interact both positively and negatively with its neighbors through the processes of facilitation and competition, respectively. Much of the variation in the balance of facilitation and competition that individuals experience can be explained by the degree of physical stress and the sizes or ages of plants during the interaction. Germination phenology partly controls both of these factors, but its role in defining the facilitation-competition balance has not been explicitly considered. I performed an experiment in a population of the winter annual Arabidopsis thaliana (Brassicaceae) to test whether germinating during physically stressful periods leads to facilitation while germinating during periods that promote growth and reproduction leads to competition. I manipulated germination and neighbor presence across two years in order to quantify the effects of the local plant community on survival, fecundity, and total fitness as a function of germination phenology. Neighbors increased survival when germination occurred under conditions that were unsuitable for survival, but they reduced fecundity in germinants that were otherwise the most fecund. Later germination was associated with facilitation in the first year but competition in the second year. These episodes of facilitation and competition opposed each other, leading to no net effect of neighbors when averaged over all cohorts. These results indicate that variation in germination timing can explain some of the variation in the facilitation-competition balance in plant communities. © 2017 by the Ecological Society of America.

  10. Rice Crop Mapping Using SENTINEL-1A Phenological Metrics

    Science.gov (United States)

    Chen, C. F.; Son, N. T.; Chen, C. R.; Chang, L. Y.; Chiang, S. H.

    2016-06-01

    Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter-spring, summer-autumn) in the Mekong River Delta (MRD), Vietnam through three main steps: (1) data pre-processing, (3) rice classification based on crop phenological metrics, and (4) accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government's rice area statistics for such crops (R2 > 0.95). The values of relative error in area obtained for the winter-spring and summer-autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  11. Morpho-phenological and Antibacterial Characteristics of Aconitum spp.

    Directory of Open Access Journals (Sweden)

    Yoirentomba Meetei SINAM

    2013-05-01

    Full Text Available Aconitum species have been traditionally used as ethnomedicine to cure various ailments. The present study reveals the morpho-phenology and antibacterial property of alkaloid extracts of the two Aconitum species. The morpho-phenological characteristics will be helpful for determining the resource availability. Aconitum nagarum is erect type, whereas, Aconitum elwesii is a climber. Aconitum elwesii grows in advance of A. nagarum in terms of growth, flowering and senescence. Towards the end of the year, when the fruits have ripened, the parent tuber dies off. As a result, the daughter tuber becomes independent and in the following spring, takes over the function of the parent tuber. Aconitum nagarum and A. elwesii were found to contain 4-5 aconitine equivalent (AE mg/g of alkaloid. These alkaloids showed antibacterial activity against different bacterial species including human pathogens, namely, Staphylococcus aureus, Salmonella typhimurium, Bordetella bronchiseptica, Escherichia coli, Bacillus subtilis, Pseudomonas putida, Pseudomonas fluorescence and Xanthomonas campestris. However, the extent of antibacterial activity varied among different bacterial species. The antibacterial activity against S. aureus, B. bronchiseptica, and B. subtilis was bactericidal in nature, whereas, against other tested bacterial species was bacteriostatic. Efficacy of the antibacterial activity of these alkaloids was evaluated by comparing with that of standard antibiotics. Differential localization of the antibacterial principle was observed among the Aconitum species studied.

  12. Integration of Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, W. A.; Huete, A.; Nickovic, S.; Pejanovic, G.; Levetin, E.; Van de water, P.; Myers, O.; Budge, A. M.; Krapfl, H.; hide

    2011-01-01

    greenness, dry-down and pollen release. Ground based observational records of pollen release timing and quantities will be used as verification. Techniques developed using MOD09 surface reflectance products will be directly applicable to the next generation sensors such as VIIRS. The resulting deterministic model for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. This information will be used to support the Centers for Disease Control and Prevention (CDC)'s National Environmental Public Health Tracking Program (EPHT) and the State of New Mexico environmental public health decision support for asthma and allergies alerts

  13. The Valley without Birds.

    Science.gov (United States)

    Breslin, Patrick

    1988-01-01

    Describes cooperative campaign by central Chilean farmers to reduce use of dangerous chemicals. Describes cooperative's rural extension program targeting misuse of pesticides. Describes concern of chemical danger to local and foreign consumers. Cooperative's effort described as balancing short-term economic gains with long-term health and…

  14. Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch

    Science.gov (United States)

    Youngflesh, Casey; Jenouvrier, Stephanie; Li, Yun; Ji, Rubao; Ainley, David G.; Ballard, Grant; Barbraud, Christophe; Delord, Karine; Dugger, Catherine; Emmerson, Loiuse M.; Fraser, William R.; Hinke, Jefferson T.; Lyver, Phil O'B.; Olmastroni, Silvia; Southwell, Colin J.; Trivelpiece, Susan G.; Trivelpiece, Wayne Z.; Lynch, Heather J.

    2017-01-01

    Evidence of climate-change-driven shifts in plant and animal phenology have raised concerns that certain trophic interactions may be increasingly mismatched in time, resulting in declines in reproductive success. Given the constraints imposed by extreme seasonality at high latitudes and the rapid shifts in phenology seen in the Arctic, we would also expect Antarctic species to be highly vulnerable to climate-change-driven phenological mismatches with their environment. However, few studies have assessed the impacts of phenological change in Antarctica. Using the largest database of phytoplankton phenology, sea-ice phenology, and Adélie Penguin breeding phenology and breeding success assembled to date, we find that, while a temporal match between Penguin breeding phenology and optimal environmental conditions sets an upper limit on breeding success, only a weak relationship to the mean exists. Despite previous work suggesting that divergent trends in Adélie Penguin breeding phenology are apparent across the Antarctic continent, we find no such trends. Furthermore, we find no trend in the magnitude of phenological mismatch, suggesting that mismatch is driven by interannual variability in environmental conditions rather than climate-change-driven trends, as observed in other systems. We propose several criteria necessary for a species to experience a strong climate-change-driven phenological mismatch, of which several may be violated by this system.

  15. Using Linear and Non-Linear Temporal Adjustments to Align Multiple Phenology Curves, Making Vegetation Status and Health Directly Comparable

    Science.gov (United States)

    Hargrove, W. W.; Norman, S. P.; Kumar, J.; Hoffman, F. M.

    2017-12-01

    National-scale polar analysis of MODIS NDVI allows quantification of degree of seasonality expressed by local vegetation, and also selects the most optimum start/end of a local "phenological year" that is empirically customized for the vegetation that is growing at each location. Interannual differences in timing of phenology make direct comparisons of vegetation health and performance between years difficult, whether at the same or different locations. By "sliding" the two phenologies in time using a Procrustean linear time shift, any particular phenological event or "completion milestone" can be synchronized, allowing direct comparison of differences in timing of other remaining milestones. Going beyond a simple linear translation, time can be "rubber-sheeted," compressed or dilated. Considering one phenology curve to be a reference, the second phenology can be "rubber-sheeted" to fit that baseline as well as possible by stretching or shrinking time to match multiple control points, which can be any recognizable phenological events. Similar to "rubber sheeting" to georectify a map inside a GIS, rubber sheeting a phenology curve also yields a warping signature that shows at every time and every location how many days the adjusted phenology is ahead or behind the phenological development of the reference vegetation. Using such temporal methods to "adjust" phenologies may help to quantify vegetation impacts from frost, drought, wildfire, insects and diseases by permitting the most commensurate quantitative comparisons with unaffected vegetation.

  16. Conference on wind turbines impact on birds and bats

    International Nuclear Information System (INIS)

    Ratzbor, Guenter; Dubourg-Savage, Marie-Jo; Andre, Yann; Kirchstetter, France; Bungart, Rolf; Neau, Paul; Gruendonner, Dieter; Lagrange, Hubert; Rufray, Vincent; Prie, Vincent; Haquart, Alexandre; Melki, Frederic; Fonio, Joseph; Brinkmann, Robert; Hoetker, Hermann; Grajetzki, Bodo; Mammen, Ubbo; Fagot, Guillaume; Hill, Reinhold

    2008-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on wind turbines impacts on birds and bats. In the framework of this French-German exchange of experience, more than 85 participants exchanged views on the impacts of wind energy development on birds and bats mortality, the legal aspects, the research programs and the remedial actions. This document brings together the available presentations (slides) made during this event: 1 - Wind energy and nature protection - Is there really a conflict? (Guenter Ratzbor); 2 - Taking bats into account in wind energy projects in the European legal framework (Marie-Jo Dubourg-Savage); 3 - Wind energy-biodiversity national program - Towards a biodiversity label for wind farms (Yann Andre); 4 - Development, construction and operation of a bats-friendly wind farm in France? (France Kirchstetter); 5 - Practical experience of bats protection rules in the framework of German wind energy projects - Examples taken from projects development (Rolf Bungart); 6 - Inclusion of birds and bats issues in wind energy planning documents: schemes and wind energy development area (Paul Neau); 7 - Inclusion of potential threats for birds and bats in the definition of wind energy exploitation areas in Germany (Dieter Gruendonner); 8 - Chirotech - Conciliation between wind energy development and bats preservation - Data collection status, first results and perspectives (Hubert Lagrange, Joseph Fonio); 9 - Bats and wind energy in Germany - Present day situation and research works for conflicts resolution (Robert Brinkmann); 10 - Wind turbines and raptors in Germany: experience gained and presentation of a new research project (Hermann Hoetker); 11 - Birds fauna analysis in the framework of the development of the Cote d'Albatre offshore wind energy project (Guillaume Fagot); 12 - Birds flight remote study methods around FINO 1 (Reinhold Hill)

  17. Invasive alien birds in Denmark

    DEFF Research Database (Denmark)

    Fox, Anthony David; Heldbjerg, Henning; Nyegaard, Timme

    2015-01-01

    Avian Introduced Alien Species (IAS) constitute a threat to the integrity of native biodiversity, the economy and human health, so here we briefly review some of the problems posed by such species around the world in relation to such bird species in Denmark. A new European Union Regulation...... on Invasive Alien Species implemented in January 2015 establishes a framework for actions to combat alien species, which requires Member States to prevent the spread of alien species, provide early warning and rapid responses to their presence and management of established alien species where they occur. We...... show the importance of mechanisms such as DOF’s (Dansk Ornitologisk Forening, BirdLife Denmark) Atlas project, Common Bird Census (breeding and wintering species) and DOFbasen to contribute data on the current geographical and numerical distribution of the few serious alien avian species already...

  18. Invasive alien birds in Denmark

    DEFF Research Database (Denmark)

    Nyegaard, Timme; Heldbjerg, Henning; Fox, Anthony David

    Avian Introduced Alien Species (IAS) constitute a threat to the integrity of native biodiversity, the economy and human health, so here we briefly review some of the problems posed by such species around the world in relation to bird species in Denmark. A new European Union Regulation on Invasive...... Alien Species implemented in January 2015 requires a framework for actions to combat alien species, which requires Member States to prevent the spread of alien species, provide early warning and rapid responses to their presence and management of established alien species where they occur. We show...... the importance of mechanisms such as DOFs (Danish Ornithological Society, BirdLife Denmark) Atlas project, Common Bird Monitoring (breeding and wintering species) and DOFbasen to contribute data on the current geographical and numerical distribution of the few serious alien avian species already present...

  19. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology

    Directory of Open Access Journals (Sweden)

    Tianjiao Liu

    2018-03-01

    Full Text Available Heavy metal pollution of croplands is a major environmental problem worldwide. Methods for accurately and quickly monitoring heavy metal stress have important practical significance. Many studies have explored heavy metal stress in rice in relation to physiological function or physiological factors, but few studies have considered phenology, which can be sensitive to heavy metal stress. In this study, we used an integrated Normalized Difference Vegetation Index (NDVI time-series image set to extract remote sensing phenology. A phenological indicator relatively sensitive to heavy metal stress was chosen from the obtained phenological periods and phenological parameters. The Dry Weight of Roots (WRT, which directly affected by heavy metal stress, was simulated by the World Food Study (WOFOST model; then, a feature space based on the phenological indicator and WRT was established for monitoring heavy metal stress. The results indicated that the feature space can distinguish the heavy metal stress levels in rice, with accuracy greater than 95% for distinguishing the severe stress level. This finding provides scientific evidence for combining rice phenology and physiological characteristics in time and space, and the method is useful to monitor heavy metal stress in rice.

  20. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.

    Science.gov (United States)

    Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T

    2015-10-01

    Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.

  1. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.

    Science.gov (United States)

    Munson, Seth M; Sher, Anna A

    2015-08-01

    • Mountainous regions support high plant productivity, diversity, and endemism, yet are highly vulnerable to climate change. Historical records and model predictions show increasing temperatures across high elevation regions including the Southern Rocky Mountains, which can have a strong influence on the performance and distribution of montane plant species. Rare plant species can be particularly vulnerable to climate change because of their limited abundance and distribution.• We tracked the phenology of rare and endemic species, which are identified as imperiled, across three different habitat types with herbarium records to determine if flowering time has changed over the last century, and if phenological change was related to shifts in climate.• We found that the flowering date of rare species has accelerated 3.1 d every decade (42 d total) since the late 1800s, with plants in sagebrush interbasins showing the strongest accelerations in phenology. High winter temperatures were associated with the acceleration of phenology in low elevation sagebrush and barren river habitats, whereas high spring temperatures explained accelerated phenology in the high elevation alpine habitat. In contrast, high spring temperatures delayed the phenology of plant species in the two low-elevation habitats and precipitation had mixed effects depending on the season.• These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions. © 2015 Botanical Society of America, Inc.

  2. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology.

    Science.gov (United States)

    Liu, Tianjiao; Liu, Xiangnan; Liu, Meiling; Wu, Ling

    2018-03-14

    Heavy metal pollution of croplands is a major environmental problem worldwide. Methods for accurately and quickly monitoring heavy metal stress have important practical significance. Many studies have explored heavy metal stress in rice in relation to physiological function or physiological factors, but few studies have considered phenology, which can be sensitive to heavy metal stress. In this study, we used an integrated Normalized Difference Vegetation Index (NDVI) time-series image set to extract remote sensing phenology. A phenological indicator relatively sensitive to heavy metal stress was chosen from the obtained phenological periods and phenological parameters. The Dry Weight of Roots (WRT), which directly affected by heavy metal stress, was simulated by the World Food Study (WOFOST) model; then, a feature space based on the phenological indicator and WRT was established for monitoring heavy metal stress. The results indicated that the feature space can distinguish the heavy metal stress levels in rice, with accuracy greater than 95% for distinguishing the severe stress level. This finding provides scientific evidence for combining rice phenology and physiological characteristics in time and space, and the method is useful to monitor heavy metal stress in rice.

  3. Spring leaf phenology and the diurnal temperature range in a temperate maple forest.

    Science.gov (United States)

    Hanes, Jonathan M

    2014-03-01

    Spring leaf phenology in temperate climates is intricately related to numerous aspects of the lower atmosphere [e.g., surface energy balance, carbon flux, humidity, the diurnal temperature range (DTR)]. To further develop and improve the accuracy of ecosystem and climate models, additional investigations of the specific nature of the relationships between spring leaf phenology and various ecosystem and climate processes are required in different environments. This study used visual observations of maple leaf phenology, below-canopy light intensities, and micrometeorological data collected during the spring seasons of 2008, 2009, and 2010 to examine the potential influence of leaf phenology on a seasonal transition in the trend of the DTR. The timing of a reversal in the DTR trend occurred near the time when the leaves were unfolding and expanding. The results suggest that the spring decline in the DTR can be attributed primarily to the effect of canopy closure on daily maximum temperature. These findings improve our understanding of the relationship between leaf phenology and the diurnal temperature range in temperate maple forests during the spring. They also demonstrate the necessity of incorporating accurate phenological data into ecosystem and climate models and warrant a careful examination of the extent to which canopy phenology is currently incorporated into existing models.

  4. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, Trevor [Harvard University; Gray, Josh [Boston University; Friedl, Mark [Boston University; Toomey, Michael [Harvard University; Bohrer, Gil [Ohio State University; Hollinger, David [USDA Forest Service, Northern Research Station; Munger, J. William [Harvard University; OKeefe, John [Harvard Forest (Harvard University), Massachusetts; Hans, Schmid [Karlsruhe Institute of Technology, Karlsruhe, Germany; Wing, Ian [Boston University; Yang, Bai [ORNL; Richardson, Andrew D. [Harvard University

    2014-01-01

    The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (though the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4 and increased vegetation activity5,6. Such greening could be expected to enhance ecosystem carbon uptake7,8, though reports also suggest decreased uptake for boreal forests4,9. Here we assess changes in phenology of temperate forests over the eastern US during the past two decades, and quantify the resulting changes in forest carbon storage. We combine long-term ground observations of phenology, satellite indices, and ecosystem-scale carbon dioxide flux measurements, along with 18 terrestrial biosphere models. We observe a strong trend of earlier spring and later autumn. In contrast to previous suggestions4,9 we show that carbon uptake through photosynthesis increased considerably more than carbon release through respiration for both an earlier spring and later autumn. The terrestrial biosphere models tested misrepresent the temperature sensitivity of phenology, and thus the effect on carbon uptake. Our analysis of the temperature-phenology-carbon coupling suggests a current and possible future enhancement of forest carbon uptake due to changes in phenology. This constitutes a negative feedback to climate change, and is serving to slow the rate of warming.

  5. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    Science.gov (United States)

    Iler, Amy M.; Høye, Toke T.; Inouye, David W.; Schmidt, Niels M.

    2013-01-01

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions. PMID:23836793

  6. Changes in Winegrape Phenology and Relationships with Climate and Wine Quality

    Science.gov (United States)

    Jones, G.

    2004-12-01

    During the phenological cycle of winegrapes, the timing of specific events and the length between the events are critical to the production of quality fruit and wine. In addition, winegrapes are typically grown in climates that optimize the ripening characteristics for specific varieties. These narrow geographical zones place the production of wine at a greater risk from climate variability and change than other more broadly based agricultural crops. To analyze the relationships between phenology, climate, and wine quality, data from three prominent regions in France-Bordeaux, Burgundy, and Champagne-are used. Long-term phenological data for bud break, flowering, veraison, and harvest dates for Pinot Noir in Burgundy and Champagne and for Merlot and Cabernet Sauvignon are examined for trends, climatic influences, and the general effects on wine quality. The results reveal significantly earlier events (6-14 days) with shorter intervals between events (5-12 days) across all regions. In addition, warmer growing seasons have clearly influenced these changes in the phenological cycle of winegrapes in France. Furthermore, changes in phenology and growing season temperatures are related to better fruit composition and increases in vintage ratings over the last 30-40 years. However, some of the warmest growing seasons, with very early phenology and short intervals, have resulted in lower quality. The results point to potential threshold issues whereby any further warming will likely compromise the phenological characteristics, ripening profiles, and wine quality of the varieties currently being grown.

  7. Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems

    Science.gov (United States)

    Romo-Leon, Jose Raul; van Leeuwen, Willem J. D.; Castellanos-Villegas, Alejandro

    2016-02-01

    The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance.

  8. Analysis on Difference of Forest Phenology Extracted from EVI and LAI Based on PhenoCams

    Science.gov (United States)

    Wang, C.; Jing, L.; Qinhuo, L.

    2017-12-01

    Land surface phenology can make up for the deficiency of field observation with advantages of capturing the continuous expression of phenology on a large scale. However, there are some variability in phenological metrics derived from different satellite time-series data of vegetation parameters. This paper aims at assessing the difference of phenology information extracted from EVI and LAI time series. To achieve this, some web-camera sites were selected to analyze the characteristics between MODIS-EVI and MODIS-LAI time series from 2010 to 2014 for different forest types, including evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest and deciduous broadleaf forest. At the same time, satellite-based phenological metrics were extracted by the Logistics algorithm and compared with camera-based phenological metrics. Results show that the SOS and EOS that are extracted from LAI are close to bud burst and leaf defoliation respectively, while the SOS and EOS that are extracted from EVI is close to leaf unfolding and leaf coloring respectively. Thus the SOS that is extracted from LAI is earlier than that from EVI, while the EOS that is extracted from LAI is later than that from EVI at deciduous forest sites. Although the seasonal variation characteristics of evergreen forests are not apparent, significant discrepancies exist in LAI time series and EVI time series. In addition, Satellite- and camera-based phenological metrics agree well generally, but EVI has higher correlation with the camera-based canopy greenness (green chromatic coordinate, gcc) than LAI.

  9. Bird watching and estimation of bird diversity – not always ...

    African Journals Online (AJOL)

    Some occurrences of rare or unusual bird species reported by us in a previous paper (Ostrich 86(3): 267–276, 2015) are considered to be doubtful by Hogg and Vande weghe (Ostrich 88(1): 83–88, 2017). We believe that some of the problems raised are taxonomic. The main objective of our study was to obtain reliable ...

  10. Arctic-nesting birds find physiological relief in the face of trophic constraints.

    Science.gov (United States)

    McKinnon, Laura; Nol, Erica; Juillet, Cédric

    2013-01-01

    A climate-induced phenological mismatch between the timing of reproduction and the timing of food resource peaks is one of the key hypothesized effects of climate change on wildlife. Though supported as a mechanism of population decline in birds, few studies have investigated whether the same temperature increases that drive this mismatch have the potential to decrease energetic costs of growth and compensate for the potential negative effects of reduced food availability. We generated independent indices of climate and resource availability and quantified their effects on growth of Dunlin (Calidris alpina) chicks, in the sub-arctic tundra of Churchill, Manitoba during the summers of 2010-2011 and found that when resource availability was below average, above average growth could be maintained in the presence of increasing temperatures. These results provide evidence that chicks may find physiological relief from the trophic constraints hypothesized by climate change studies.

  11. Estimating the onset of spring from a complex phenology database: trade-offs across geographic scales

    Science.gov (United States)

    Gerst, Katharine L.; Kellermann, Jherime L.; Enquist, Carolyn A. F.; Rosemartin, Alyssa H.; Denny, Ellen G.

    2016-03-01

    Phenology is an important indicator of ecological response to climate change. Yet, phenological responses are highly variable among species and biogeographic regions. Recent monitoring initiatives have generated large phenological datasets comprised of observations from both professionals and volunteers. Because the observation frequency is often variable, there is uncertainty associated with estimating the timing of phenological activity. "Status monitoring" is an approach that focuses on recording observations throughout the full development of life cycle stages rather than only first dates in order to quantify uncertainty in generating phenological metrics, such as onset dates or duration. However, methods for using status data and calculating phenological metrics are not standardized. To understand how data selection criteria affect onset estimates of springtime leaf-out, we used status-based monitoring data curated by the USA National Phenology Network for 11 deciduous tree species in the eastern USA between 2009 and 2013. We asked, (1) How are estimates of the date of leaf-out onset, at the site and regional levels, influenced by different data selection criteria and methods for calculating onset, and (2) at the regional level, how does the timing of leaf-out relate to springtime minimum temperatures across latitudes and species? Results indicate that, to answer research questions at site to landscape levels, data users may need to apply more restrictive data selection criteria to increase confidence in calculating phenological metrics. However, when answering questions at the regional level, such as when investigating spatiotemporal patterns across a latitudinal gradient, there is low risk of acquiring erroneous results by maximizing sample size when using status-derived phenological data.

  12. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    Science.gov (United States)

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  13. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  14. The influence of altitude and urbanisation on trends and mean dates in phenology (1980-2009).

    Science.gov (United States)

    Jochner, Susanne C; Sparks, Tim H; Estrella, Nicole; Menzel, Annette

    2012-03-01

    Long-term studies on urban phenology using network data are commonly limited by the small number of observation sites within city centres. Moreover, cities are often located on major rivers and consequently at lower altitudes than their rural surroundings. For these reasons, it is important (1) to go beyond a plain urban-rural comparison by taking the degree of urbanisation into account, and (2) to evaluate urbanisation and altitudinal effects simultaneously. Temporal phenological trends (1980-2009) for nine phenological spring events centred on the German cities of Frankfurt, Cologne and Munich were analysed. Trends of phenological onset dates were negative (i.e. earlier onset in phenology) for 96% of the 808 time series and significantly negative for 56% of the total number. Mean trends for the nine phenological events ranged between -0.23 days year(-1) for beech and -0.50 days year(-1) for hazel. The dependence of these trends and of mean dates on altitude and on the degree of urbanisation was explored. For mean dates, we demonstrated an earlier phenological onset at lower altitude and with a higher degree of urbanisation: altitude effects were highly significant and ranged between 1.34 days (100 m)(-1) (beech) and 4.27 days (100 m)(-1) (hazel). Coefficients for the log-transformed urban index were statistically significant for five events and varied greatly between events (coefficients from -1.74 for spruce to -5.08 for hazel). For trends in phenology, altitude was only significant for Norway maple, and no urban effects were significant. Hence, trends in phenology did not change significantly with higher altitudes or urbanised areas.

  15. Review: advances in in situ and satellite phenological observations in Japan

    Science.gov (United States)

    Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M.; Suzuki, Rikie

    2016-04-01

    To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.

  16. Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants.

    Science.gov (United States)

    Liang, Liang; Schwartz, Mark D

    2014-10-01

    Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases-earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis 'Red Rothomagensis') at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is

  17. Phenology of Spalangia endius Walker (Hymenoptera, Pteromalidae in pupae of Musca domestica Linnaeus (Diptera, Muscidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Dani Furtado de Araújo

    2012-12-01

    Full Text Available This work describes the phenology of Spalangia endius Walker in pupae of Musca domestica Linnaeus under laboratory conditions. In order to understand the developmental cycle of Spalangia endius under laboratory conditions, 360 Musca domestica pupae aged from 24 to 48 hours were exposed to 15 S. endius pairs for a period of 24 hours at 26 ± 2ºC. These pupae were kept in a BOD incubator at the same temperature, with a relative humidity of <70%, and 12 hours photophase. Fifteen hymenopteran specimens were dissected daily to evaluate their stage and development time. The phenology concluded that S. endius had a development cycle of 19 days with an incubation period of 24 hours. The development of the larvae of S. endius occurred in the subsequent eight days, during which a series of morphological alterations were observed. The pre-pupal stage occurred on the tenth day, where the movement ceased and elimination of the meconium started. The pupal stage occurred from the 11th to the 19th day, with emergence of males first, followed by female emergence approximately 24 hours later. These results allowed the evaluation of aspects of the detailed bionomics of the development of S. endius in order to record and program production of this parasitoid, thus optimizing its utilization as a biological control agent.

  18. Important Bird Areas California Audubon [ds485

    Data.gov (United States)

    California Natural Resource Agency — The objective of this project was to digitally map the boundaries of Audubon California's Important Bird Areas (IBA). Existing Important Bird Areas identify critical...

  19. Managing mainland salt marshes for breeding birds

    OpenAIRE

    Maier, Martin

    2014-01-01

    The Wadden Sea region is one of the most important breeding areas in Western Europe for coastal breeding bird species. It is expected that management of salt marshes is important for successful conservation of breeding bird populations but the impact of management on the habitat quality for breeding birds is still not fully understood. In this study the effects of management on the three crucial habitat characteristics for breeding birds were studied on mainland salt marshes: effects of manag...

  20. Birds and Bird Habitat: What Are the Risks from Industrial Wind Turbine Exposure?

    Science.gov (United States)

    Sprague, Terry; Harrington, M. Elizabeth; Krogh, Carmen M. E.

    2011-01-01

    Bird kill rate and disruption of habitat has been reported when industrial wind turbines are introduced into migratory bird paths or other environments. While the literature could be more complete regarding the documentation of negative effects on birds and bird habitats during the planning, construction, and operation of wind power projects,…