WorldWideScience

Sample records for bird flight model

  1. Physiological modelling of oxygen consumption in birds during flight

    Science.gov (United States)

    Bishop; Butler

    1995-01-01

    This study combines data on changes in cardiovascular variables with body mass (Mb) and with exercise intensity to model the oxygen supply available to birds during flight. Its main purpose is to provide a framework for identifying the factors involved in limiting aerobic power input to birds during flight and to suggest which cardiovascular variables are the most likely to have been influenced by natural selection when considering both allometric and adaptive variation. It is argued that natural selection has acted on heart rate (fh) and cardiac stroke volume (Vs), so that the difference in the arteriovenous oxygen content (CaO2-Cv¯O2) in birds, both at rest and during flight, is independent of Mb. Therefore, the Mb exponent for oxygen consumption (V(dot)O2) during flight can be estimated from measurements of heart rate and stroke volume. Stroke volume is likely to be directly proportional to heart mass (Mh) and, using empirical data, values for the Mb coefficients and exponents of various cardiovascular variables are estimated. It is concluded that, as found for mammals, fh is the main adaptive variable when considering allometric variation, although Mh also shows a slight scaling effect. Relative Mh is likely to be the most important when considering adaptive specialisations. The Fick equation may be represented as: (V(dot)O2)Mbz = (fh)Mbw x (Vs)Mbx x (CaO2 - Cv¯O2)Mby , where w, x, y, z are the body mass exponents for each variable and the terms in parentheses represent the Mb coefficients. Utilising this formula and data from the literature, the scaling of minimum V(dot)O2 during flight for bird species with a 'high aerobic capacity' (excluding hummingbirds) is calculated to be: 166Mb0.77±0.09 = 574Mb-0.19±0.02 x 3.48Mb0.96±0.02 x 0.083Mb0.00±0.05 , and for hummingbirds (considered separately owing to their unique wing kinematics) it is: 314Mb0.90±0.22 = 617Mb-0.10±0.06 x 6.13Mb1.00±0.11 x 0.083Mb0.00±0.05 . These results are largely dependent on the

  2. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  3. Energetic Metabolism and Biochemical Adaptation: A Bird Flight Muscle Model

    Science.gov (United States)

    Rioux, Pierre; Blier, Pierre U.

    2006-01-01

    The main objective of this class experiment is to measure the activity of two metabolic enzymes in crude extract from bird pectoral muscle and to relate the differences to their mode of locomotion and ecology. The laboratory is adapted to stimulate the interest of wildlife management students to biochemistry. The enzymatic activities of cytochrome…

  4. Fish Swimming and Bird/Insect Flight

    Science.gov (United States)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  5. A comparative analysis of the influence of weather on the flight altitudes of birds

    NARCIS (Netherlands)

    Shamoun-Baranes, J.; van Loon, E.; van Gasteren, H.; van Belle, J.; Bouten, W.; Buurma, L.

    2006-01-01

    Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird-aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution

  6. The Flight of Birds and Other Animals

    Directory of Open Access Journals (Sweden)

    Colin J. Pennycuick

    2015-09-01

    Full Text Available Methods of observing birds in flight now include training them to fly under known conditions in wind tunnels, and fitting free-flying birds with data loggers, that are either retrieved or read remotely via satellite links. The performance that comes to light depends on the known limitations of the materials from which they are made, and the conditions in which the birds live. Bird glide polars can be obtained by training birds to glide in a tilting wind tunnel. Translating these curves to power required from the flight muscles in level flight requires drag coefficients to be measured, which unfortunately does not work with bird bodies, because the flow is always fully detached. The drag of bodies in level flight can be determined by observing wingbeat frequency, and shows CD values around 0.08 in small birds, down to 0.06 in small waders specialised for efficient migration. Lift coefficients are up to 1.6 in gliding, or 1.8 for short, temporary glides. In-flight measurements can be used to calculate power curves for birds in level flight, and this has been applied to migrating geese in detail. These typically achieve lift:drag ratios around 15, including allowances for stops, as against 19 for continuous powered flight. The same calculations, applied to Pacific Black-tailed Godwits which start with fat fractions up to 0.55 at departure, show that such birds not only cross the Pacific to New Zealand, but have enough fuel in hand to reach the South Pole if that were necessary. This performance depends on the “dual fuel” arrangements of these migrants, whereby they use fat as their main fuel, and supplement this by extra fuel from burning the engine (flight muscles, as less power is needed later in the flight. The accuracy of these power curves has never been checked, although provision for stopping the bird, and making these checks at regular intervals during a simulated flight was built into the original design of the Lund wind tunnel. The

  7. Bird Flight and Satish Dhawan

    Indian Academy of Sciences (India)

    and birds has inspired poetry, art, l~terature, science and tech- nology. In Monsoon, Wilbur ... Henk Tennekes, an aerospace engineering professor at Pennsyl- vania State University, USA, has a different story to tell in his popular book The ...

  8. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Tobalske, Bret W

    2010-01-01

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  9. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  10. A Comparitive Analysis of the Influence of Weather on the Flight Altitudes of Birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; van Loon, Emiel; van Gasteren, Hans; van Belle, Jelmer; Bouten, Willem; Buurma, Luit

    2006-01-01

    Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution of birds and how this is influenced by weather. This study focuses on the dynamics of flight altitudes of several species of birds during local flights over land in relation to meteorological conditions.We measured flight altitudes of several species in the southeastern Netherlands using tracking radar during spring and summer 2000. Representatives of different flight strategy groups included four species: a soaring species (buzzard ), an obligatory aerial forager (swift Apus apus), a flapping and gliding species (blackheaded gull Larus ridibundus), and a flapping species (starling Sturnus vulgaris).Maximum flight altitudes varied among species, during the day and among days. Weather significantly influenced the flight altitudes of all species studied. Factors such as temperature, relative humidity, atmospheric instability, cloud cover, and sea level pressure were related to flight altitudes. Different combinations of factors explained 40% 70% of the variance in maximum flight altitudes. Weather affected flight strategy groups differently. Compared to flapping species, buzzards and swifts showed stronger variations in maximum daily altitude and f lew higher under conditions reflecting stronger thermal convection. The dynamic vertical distributions of birds are important for risk assessment and mitigation measures in flight safety as well as wind turbine studies.

  11. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  12. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.

    Science.gov (United States)

    Mitchell, Jessica; Legendre, Lucas J; Lefèvre, Christine; Cubo, Jorge

    2017-06-01

    The furcula is a specialized bone in birds involved in flight function. Its morphology has been shown to reflect different flight styles from soaring/gliding birds, subaqueous flight to high-frequency flapping flyers. The strain experienced by furculae can vary depending on flight type. Bone remodeling is a response to damage incurred from different strain magnitudes and types. In this study, we tested whether a bone microstructural feature, namely Haversian bone density, differs in birds with different flight styles, and reassessed previous work using phylogenetic comparative methods that assume an evolutionary model with additional taxa. We show that soaring birds have higher Haversian bone densities than birds with a flapping style of flight. This result is probably linked to the fact that the furculae of soaring birds provide less protraction force and more depression force than furculae of birds showing other kinds of flight. The whole bone area is another explanatory factor, which confirms the fact that size is an important consideration in Haversian bone development. All birds, however, display Haversian bone development in their furculae, and other factors like age could be affecting the response of Haversian bone development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. The Physics of Bird Flight: An Experiment

    Science.gov (United States)

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  15. Classification of Birds and Bats Using Flight Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.

    2015-05-01

    Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant model for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.

  16. Bird or bat: comparing airframe design and flight performance

    International Nuclear Information System (INIS)

    Hedenstroem, Anders; Johansson, L Christoffer; Spedding, Geoffrey R

    2009-01-01

    Birds and bats have evolved powered flight independently, which makes a comparison of evolutionary 'design' solutions potentially interesting. In this paper we highlight similarities and differences with respect to flight characteristics, including morphology, flight kinematics, aerodynamics, energetics and flight performance. Birds' size range is 0.002-15 kg and bats' size range is 0.002-1.5 kg. The wingbeat kinematics differ between birds and bats, which is mainly due to the different flexing of the wing during the upstroke and constraints by having a wing of feathers and a skin membrane, respectively. Aerodynamically, bats appear to generate a more complex wake than birds. Bats may be more closely adapted for slow maneuvering flight than birds, as required by their aerial hawking foraging habits. The metabolic rate and power required to fly are similar among birds and bats. Both groups share many characteristics associated with flight, such as for example low amounts of DNA in cells, the ability to accumulate fat as fuel for hibernation and migration, and parallel habitat-related wing shape adaptations

  17. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    Science.gov (United States)

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  18. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    Directory of Open Access Journals (Sweden)

    Florian T Muijres

    Full Text Available Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate

  19. Do birds in flight respond to (ultra)violet lighting?

    Institute of Scientific and Technical Information of China (English)

    Roel May; Jens Åström; Øyvind Hamre; Espen Lie Dahl

    2017-01-01

    Background: Concerns for bird collisions with wind turbines affect the deployment of onshore and offshore wind-power plants. To avoid delays in consenting processes and to streamline the construction and operation phase, func-tional mitigation measures are required which efficiently reduces bird mortality. Vision is the primary sensory system in birds, which for a number of species also includes the ultraviolet spectrum. Many bird species that are known to collide with offshore wind turbines are sensitive in the violet or ultraviolet spectrum. For species that are mainly active at lower ambient light levels, lighting may deter birds from the lit area. Utilizing (ultra)violet lights may in addition not disturb humans. However, we do not know whether UV-sensitive birds in flight actually respond behaviourally to UV lights. Methods: We therefore tested the efficacy of two types of lights within the violet (400 nm) and ultraviolet (365 nm) spectrum to deter birds from the lit area. These lights were placed vertically and monitored continuously between dusk and dawn using an avian radar system. Results: Relative to control nights, bird flight activity (abundance) was 27% lower when the ultraviolet light was on. Violet light resulted in a 12% decrease in overall abundance, and in addition, a vertical displacement was seen, increasing the average flight altitude by 7 m. Although temporal changes occurred, this effect persisted over the season below 40 m above sea level. Conclusions: Although the results from this pilot study are promising, we argue there still is a long way to go before a potentially functional design to mitigate collisions that has proven to be effective in situ may be in place.

  20. Waterbird flight initiation distances at Barberspan Bird Sanctuary, South Africa

    Directory of Open Access Journals (Sweden)

    Carina Coetzer

    2017-05-01

    Full Text Available With tourism in South Africa expanding, the number of avitourists increases. The increase in infrastructure and human activities in protected areas, if not managed properly, can be harmful to birds. Flight initiation distances (FID can be used as a method to monitor habituation to disturbances. This study was performed at the Barberspan Bird Sanctuary, North West province, South Africa, to determine the levels of habituation among waterbirds and make appropriate recommendations regarding the management of the reserve. Our results indicated a 0.29 m increase in FID per gram reported mean biomass. Compared with conspecific or congeneric birds from Australia, Europe and North America, South African birds have relatively larger FIDs to human disturbance, which may indicate lower habituation. We also calculated buffer zones based on the maximum FID of the waterbirds for three mass groups. These buffer zones were then matched with the spatial distribution of the birds along the shoreline. We recommend that the mean FID for the blacksmith lapwing, Vanellus armatus (62 m, can be used as approach distance outside the breeding season in areas where the birds are sparsely distributed and 104 m during the breeding season in breeding areas. A large buffer of 200 m is suggested for areas with threatened, sensitive and skittish species. However, it is still preferable for avitourists to use the bird hides along the shores. Conservation implications: This study provides information for conservation management at Barberspan, based on typical birder activity. Smaller birds would need smaller buffer zones, while larger birds need much greater distances from observers to minimise disturbance. Similar studies can be applied elsewhere.

  1. Exploring bird aerodynamics using radio-controlled models

    International Nuclear Information System (INIS)

    Hoey, Robert G

    2010-01-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  2. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Science.gov (United States)

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  3. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  4. Thermal soaring flight of birds and unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Akos, Zsuzsa; Nagy, Mate; Vicsek, Tamas; Leven, Severin

    2010-01-01

    Thermal soaring saves much energy, but flying large distances in this form represents a great challenge for birds, people and unmanned aerial vehicles (UAVs). The solution is to make use of the so-called thermals, which are localized, warmer regions in the atmosphere moving upward with a speed exceeding the descent rate of birds and planes. Saving energy by exploiting the environment more efficiently is an important possibility for autonomous UAVs as well. Successful control strategies have been developed recently for UAVs in simulations and in real applications. This paper first presents an overview of our knowledge of the soaring flight and strategy of birds, followed by a discussion of control strategies that have been developed for soaring UAVs both in simulations and applications on real platforms. To improve the accuracy of the simulation of thermal exploitation strategies we propose a method to take into account the effect of turbulence. Finally, we propose a new GPS-independent control strategy for exploiting thermal updrafts.

  5. The Netherlands Bird Avoidance Model, Final Report

    NARCIS (Netherlands)

    Shamoun-Baranes, J.; Bouten, W.; Sierdsema, H.; van Belle, J.; van Gasteren, J.R.; van Loon, E.E.

    2006-01-01

    The NL-BAM was developed as a web-based decision support tool to be used by the bird hazard avoidance experts in the ecology unit of the Royal Netherlands Air Force. The NL-BAM will be used together with the ROBIN 4 radar system to provide BirdTAMS, for real time warnings and flight planning and to

  6. How birds direct impulse to minimize the energetic cost of foraging flight

    Science.gov (United States)

    Chin, Diana; Lentink, David

    2017-11-01

    Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.

  7. Avian Information Systems: Developing Web-Based Bird Avoidance Models

    Directory of Open Access Journals (Sweden)

    Judy Shamoun-Baranes

    2008-12-01

    Full Text Available Collisions between aircraft and birds, so-called "bird strikes," can result in serious damage to aircraft and even in the loss of lives. Information about the distribution of birds in the air and on the ground can be used to reduce the risk of bird strikes and their impact on operations en route and in and around air fields. Although a wealth of bird distribution and density data is collected by numerous organizations, these data are not readily available nor interpretable by aviation. This paper presents two national efforts, one in the Netherlands and one in the United States, to develop bird avoidance nodels for aviation. These models integrate data and expert knowledge on bird distributions and migratory behavior to provide hazard maps in the form of GIS-enabled Web services. Both models are in operational use for flight planning and flight alteration and for airfield and airfield vicinity management. These models and their presentation on the Internet are examples of the type of service that would be very useful in other fields interested in species distribution and movement information, such as conservation, disease transmission and prevention, or assessment and mitigation of anthropogenic risks to nature. We expect that developments in cyber-technology, a transition toward an open source philosophy, and higher demand for accessible biological data will result in an increase in the number of biological information systems available on the Internet.

  8. On the importance of radiative heat exchange during nocturnal flight in birds.

    Science.gov (United States)

    Léger, Jérôme; Larochelle, Jacques

    2006-01-01

    Many migratory flights take place during cloudless nights, thus under conditions where the sky temperature can commonly be 20 degrees C below local air temperature. The sky then acts as a radiative sink, leading objects exposed to it to have a lower surface temperature than unexposed ones because less infrared energy is received from the sky than from the surfaces that are isothermic to air. To investigate the significance of this effect for heat dissipation during nocturnal flight in birds, we built a wind tunnel with the facility to control wall temperature (TASK) and air temperature (TAIR) independently at air speeds (UWIN) comparable to flying speeds. We used it to measure the influence of TASK, TAIR and UWIN on plumage and skin temperatures in pigeons having to dissipate a thermal load while constrained at rest in a flight posture. Our results show that the temperature of the flight and insulation plumages exposed to a radiative sink can be accurately described by multiple regression models (r2>0.96) based only on TAIR, TASK and UWIN. Predictions based on these models indicate that while convection dominates heat loss for a plumage exposed to air moving at flight speed in a thermally uniform environment, radiation may dominate in the presence of a radiative sink comparable to a clear sky. Our data also indicate that reducing TASK to a temperature 20 degrees C below TAIR can increase the temperature difference across the exposed plumage by at least 13% and thus facilitate heat flow through the main thermal resistance to the loss of internally produced heat in birds. While extrapolation from our experimentally constrained conditions to free flight in the atmosphere is difficult, our results suggest that the sky temperature has been a neglected factor in determining the range of TAIR over which prolonged flight is possible.

  9. Using high resolution GPS tracking data of bird flight for meteorological observations

    NARCIS (Netherlands)

    Treep, J.; Bohrer, G.; Shamoun-Baranes, J.; Duriez, O.; Prata de Moraes Frasson, R.; Bouten, W.

    2016-01-01

    Bird flight is strongly influenced by local meteorological conditions. With increasing amounts of high-frequency GPS data of bird movement becoming available, as tags become cheaper and lighter, opportunities are created to obtain large datasets of quantitative meteorological information from

  10. Bird flight characteristics near wind turbines in Minnesota

    Science.gov (United States)

    Osborn, R.G.; Dieter, C.D.; Higgins, K.F.; Usgaard, R.E.

    1998-01-01

    During 1994-1995, we saw 70 species of birds on the Buffalo Ridge Wind Resource Area. In both years bird abundance peaked in spring. Red-winged blackbirds (Agelaius phoeniceus), mallards (Anas platyrhynchos), common grackles (Quiscalus quiscula), and barn swallows (Hirundo rustica) were the species most commonly seen. Most birds (82-84%) flew above or below the height range of wind turbine blades (22-55 m). The Buffalo Ridge Wind Resource Area poses little threat to resident or migrating birds at its current operating level.

  11. Flight range, fuel load and the impact of climate change on the journeys of migrant birds

    Science.gov (United States)

    Sheard, Catherine; Butchart, Stuart H. M.

    2018-01-01

    Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies. PMID:29467262

  12. Flight range, fuel load and the impact of climate change on the journeys of migrant birds.

    Science.gov (United States)

    Howard, Christine; Stephens, Philip A; Tobias, Joseph A; Sheard, Catherine; Butchart, Stuart H M; Willis, Stephen G

    2018-02-28

    Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies. © 2018 The Authors.

  13. American Exceptionalism: Population Trends and Flight Initiation Distances in Birds from Three Continents

    Science.gov (United States)

    Møller, Anders Pape; Samia, Diogo S. M.; Weston, Mike A.; Guay, Patrick-Jean; Blumstein, Daniel T.

    2014-01-01

    Background All organisms may be affected by humans' increasing impact on Earth, but there are many potential drivers of population trends and the relative importance of each remains largely unknown. The causes of spatial patterns in population trends and their relationship with animal responses to human proximity are even less known. Methodology/Principal Finding We investigated the relationship between population trends of 193 species of bird in North America, Australia and Europe and flight initiation distance (FID); the distance at which birds take flight when approached by a human. While there is an expected negative relationship between population trend and FID in Australia and Europe, we found the inverse relationship for North American birds; thus FID cannot be used as a universal predictor of vulnerability of birds. However, the analysis of the joint explanatory ability of multiple drivers (farmland breeding habitat, pole-most breeding latitude, migratory habit, FID) effects on population status replicated previously reported strong effects of farmland breeding habitat (an effect apparently driven mostly by European birds), as well as strong effects of FID, body size, migratory habit and continent. Farmland birds are generally declining. Conclusions/Significance Flight initiation distance is related to population trends in a way that differs among continents opening new research possibilities concerning the causes of geographic differences in patterns of anti-predator behavior. PMID:25226165

  14. Bone-associated gene evolution and the origin of flight in birds.

    Science.gov (United States)

    Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2016-05-18

    Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.

  15. Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds

    NARCIS (Netherlands)

    McLaren, J.D.; Shamoun-Baranes, J.; Bouten, W.

    2013-01-01

    Many migrating birds divide their journeys into nocturnal flights interspersed by stopovers where they build up energy reserves (fuel) for subsequent flights. Given the difficulty in monitoring fuel loads of individual migrants over long distances, theoretical models are often used to interpret

  16. Excess Baggage for Birds: Inappropriate Placement of Tags on Gannets Changes Flight Patterns

    Science.gov (United States)

    Vandenabeele, Sylvie P.; Grundy, Edward; Friswell, Michael I.; Grogan, Adam; Votier, Stephen C.; Wilson, Rory P.

    2014-01-01

    Devices attached to flying birds can hugely enhance our understanding of their behavioural ecology for periods when they cannot be observed directly. For this, scientists routinely attach units to either birds' backs or their tails. However, inappropriate payload distribution is critical in aircraft and, since birds and planes are subject to the same laws of physics during flight, we considered aircraft aerodynamic constraints to explain flight patterns displayed by northern gannets Sula bassana equipped with (small ca. 14 g) tail- and back-mounted accelerometers and (larger ca. 30 g) tail-mounted GPS units. Tail-mounted GPS-fitted birds showed significantly higher cumulative numbers of flap-glide cycles and a higher pitch angle of the tail than accelerometer-equipped birds, indicating problems with balancing inappropriately placed weights with knock-on consequences relating to energy expenditure. These problems can be addressed by carefully choosing where to place tags on birds according to the mass of the tags and the lifestyle of the subject species. PMID:24671007

  17. Circadian flight schedules in night-migrating birds caught on migration.

    Science.gov (United States)

    Coppack, Timothy; Becker, Simon F; Becker, Philipp J J

    2008-12-23

    Many species of migratory birds migrate in a series of solitary nocturnal flights. Between flights, they stop to rest and refuel for the next segment of their journey. The mechanism controlling this behaviour has long remained elusive. Here, we show that wild-caught migratory redstarts (Phoenicurus phoenicurus) are consistent in their flight scheduling. An advanced videographic system enabled us to determine the precise timing of flight activity in redstarts caught at a northern European stopover site during their return trip from Africa. Birds were held captive for three days in the absence of photoperiodic cues (constant dim light) and under permanent food availability. Despite the absence of external temporal cues, birds showed clear bimodal activity patterns: intense nocturnal activity alternating with diurnal foraging and resting periods. The onset of their migratory activity coincided with the time of local sunset and was individually consistent on consecutive nights. The data demonstrate that night-migrating birds are driven by autonomous circadian clocks entrained by sunset cues. This timekeeping system is probably the key factor in the overall control of nocturnal songbird migration.

  18. Do migratory birds need a nap after a long non-stop flight?

    NARCIS (Netherlands)

    Schwilch, R; Piersma, T; Holmgren, NMA; Jenni, L

    2002-01-01

    After a prolonged period of sleep deprivation, the urge to sleep overrules all other activities. Despite this well-known fact, the occurrence of sleep after naturally occurring sleep deprivation during long non-stop migratory flight in birds has hardly been investigated. The aim of this

  19. Effects of Vehicle Speed on Flight Initiation by Turkey Vultures: Implications for Bird-Vehicle Collisions

    Science.gov (United States)

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2014-01-01

    The avoidance of motorized vehicles is a common challenge for birds in the modern world. Birds appear to rely on antipredator behaviors to avoid vehicles, but modern vehicles (automobiles and aircraft) are faster than natural predators. Thus, birds may be relatively ill-equipped, in terms of sensory capabilities and behaviors, to avoid vehicles. We examined the idea that birds may be unable to accurately assess particularly high speeds of approaching vehicles, which could contribute to miscalculations in avoidance behaviors and ultimately cause collisions. We baited turkey vultures (Cathartes aura) to roads with animal carcasses and measured flight initiation distance and effective time-to-collision in response to a truck driving directly towards vultures from a starting distance of 1.13 km and at one of three speeds: 30, 60, or 90 kph (no vultures were struck). Flight initiation distance of vultures increased by a factor of 1.85 as speed increased from 30 to 90 kph. However, for 90-kph approaches there was no clear trend in flight initiation distance across replicates: birds appeared equally likely to initiate escape behavior at 40 m as at 220 m. Time-to-collision decreased by a factor of 0.62 with approach speeds from 30 to 90 kph. Also, at 90 kph, four vehicle approaches (17%) resulted in near collisions with vultures (time-to-collision ≤1.7 s), compared to none during 60 kph approaches and one during 30 kph approaches (4%). Our findings suggest that antipredator behaviors in turkey vultures, particularly stimulus processing and response, might not be well tuned to vehicles approaching at speeds ≥90 kph. The possible inability of turkey vultures to react appropriately to high-speed vehicles could be common among birds, and might represent an important determinant of bird-vehicle collisions. PMID:24503622

  20. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    Science.gov (United States)

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  1. Application of models to conservation planning for terrestrial birds in North America

    Science.gov (United States)

    Fitzgerald, Jane A.; Thogmartin, Wayne E.; Dettmers, Randy; Jones, Tim; Rustay, Christopher; Ruth, Janet M.; Thompson, Frank R.; Will, Tom; Millspaugh, Joshua J.; Thompson, Frank R.

    2009-01-01

    Partners in Flight (PIF), a public–private coalition for the conservation of land birds, has developed one of four international bird conservation plans recognized under the auspices of the North American Bird Conservation Initiative (NABCI). Partners in Flight prioritized species most in need of conservation attention and set range-wide population goals for 448 species of terrestrial birds. Partnerships are now tasked with developing spatially explicit estimates of the distribution, and abundance of priority species across large ecoregions and identifying habitat acreages needed to support populations at prescribed levels. The PIF Five Elements process of conservation design identifies five steps needed to implement all bird conservation at the ecoregional scale. Habitat assessment and landscape characterization describe the current amounts of different habitat types and summarize patch characteristics, and landscape configurations that define the ability of a landscape to sustain healthy bird populations and are a valuable first step to describing the planning area before pursuing more complex species-specific models. Spatially linked database models, landscape-scale habitat suitability models, and statistical models are viable alternatives for predicting habitat suitability or bird abundance across large planning areas to help assess conservation opportunities, design landscapes to meet population objectives, and monitor change in habitat suitability or bird numbers over time.Bird conservation in the United States is a good example of the use of models in large-scale wildlife conservation planning because of its geographic extent, focus on multiple species, involvement of multiple partners, and use of simple to complex models. We provide some background on the recent development of bird conservation initiatives in the United States and the approaches used for regional conservation assessment and planning. We focus on approaches being used for landscape

  2. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  3. Saving our shared birds: Partners in Flight tri-national vision for landbird conservation

    Science.gov (United States)

    Berlanga, Humberto; Kennedy, Judith A.; Rich, Terrell D.; Arizmendi, Maria del Coro; Beardmore, Carol J.; Blancher, Peter J.; Butcher, Gregory S.; Couturier, Andrew R.; Dayer, Ashley A.; Demarest, Dean W.; Easton, Wendy E.; Gustafson, Mary; Iñigo-Elias, Eduardo E.; Krebs, Elizabeth A.; Panjabi, Arvind O.; Rodriguez Contreras, Vicente; Rosenberg, Kenneth V.; Ruth, Janet M.; Santana Castellon, Eduardo; Vidal, Rosa Ma.; Will, Tom

    2010-01-01

    Landbirds are the most abundant and diverse group of birds in North America, with nearly 900 species distributed across every major terrestrial habitat. Birds are indicators of environmental health; their populations track changes in habitat, water, disease, and climate. They are providers of invaluable ecosystem services, such as pest control, seed dispersal, and pollination. As the focus of bird watching, they help generate billions of dollars for national economies. Yet, we are in danger of losing this spectacular and irreplaceable bird diversity: landbirds are experiencing significant declines, ominous threats, and shrinking habitats across a continent with growing human populations, increasing resource consumption, and changing climate. Saving Our Shared Birds presents for the first time a comprehensive conservation assessment of landbirds in Canada, Mexico, and the continental United States. This new tri-national vision encompasses the complete range of many migratory species and highlights the vital links among migrants and highly threatened resident species in Mexico. It points to a set of continent-scale actions necessary to maintain the landbird diversity and abundance that are our shared responsibility. This collaborative effort of Partners in Flight (PIF) is the next step in linking the countries of the Western Hemisphere to help species at risk and keep common birds common through voluntary partnerships—our mission since 1990. Saving Our Shared Birds builds upon PIF’s 2004 North American Landbird Conservation Plan, which presented science-based priorities for the conservation of 448 landbird species in Canada and the United States. Our three nations have expressed their commitment to cooperative conservation through numerous international treaties, agreements, and programs, including formation of the North American Bird Conservation Initiative (NABCI) a decade ago. The NABCI partnership recognizes that effective conservation requires a concerted

  4. Low level exposure to crude oil impacts avian flight performance: The Deepwater Horizon oil spill effect on migratory birds.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Cacela, Dave; Dean, Karen M; Pritsos, Chris A

    2017-12-01

    In 2010, the Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history. The three month oil spill left tens of thousands of birds dead; however, the fate of tens of thousands of other migratory birds that were affected but did not immediately die is unknown. We used the homing pigeon as a surrogate species for migratory birds to investigate the effects of a single external oiling event on the flight performance of birds. Data from GPS data loggers revealed that lightly oiled pigeons took significantly longer to return home and spent more time stopped en route than unoiled birds. This suggests that migratory birds affected by the oil spill could have experienced long term flight impairment and delayed arrival to breeding, wintering, or crucial stopover sites and subsequently suffered reductions in survival and reproductive success. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds.

    Science.gov (United States)

    McArthur, Kimberly L; Dickman, J David

    2011-04-01

    Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons' eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state.

  6. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae)

    Science.gov (United States)

    Walker; Westneat

    1997-01-01

    backwards motion of the fin at slow speeds generates a small upward component during slow swimming. Both the alternating sign of the hydrodynamic angle of attack and the observed reduced frequencies suggest that unsteady effects are important in G. varius aquatic flight, especially at low speeds. This study provides a framework for the comparison of aquatic flight by fishes with aerial flight by birds, bats and insects.

  7. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  8. Flights of fear: a mechanical wing whistle sounds the alarm in a flocking bird.

    Science.gov (United States)

    Hingee, Mae; Magrath, Robert D

    2009-12-07

    Animals often form groups to increase collective vigilance and allow early detection of predators, but this benefit of sociality relies on rapid transfer of information. Among birds, alarm calls are not present in all species, while other proposed mechanisms of information transfer are inefficient. We tested whether wing sounds can encode reliable information on danger. Individuals taking off in alarm fly more quickly or ascend more steeply, so may produce different sounds in alarmed than in routine flight, which then act as reliable cues of alarm, or honest 'index' signals in which a signal's meaning is associated with its method of production. We show that crested pigeons, Ocyphaps lophotes, which have modified flight feathers, produce distinct wing 'whistles' in alarmed flight, and that individuals take off in alarm only after playback of alarmed whistles. Furthermore, amplitude-manipulated playbacks showed that response depends on whistle structure, such as tempo, not simply amplitude. We believe this is the first demonstration that flight noise can send information about alarm, and suggest that take-off noise could provide a cue of alarm in many flocking species, with feather modification evolving specifically to signal alarm in some. Similar reliable cues or index signals could occur in other animals.

  9. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    Directory of Open Access Journals (Sweden)

    Graham R. Martin

    2017-11-01

    Full Text Available Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid

  10. Smooth particle hydrodynamic modeling and validation for impact bird substitution

    Science.gov (United States)

    Babu, Arun; Prasad, Ganesh

    2018-04-01

    Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady

  11. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot

    NARCIS (Netherlands)

    Jenni-Eiermann, Susanne; Hasselquist, Dennis; Lindstrom, Ake; Koolhaas, Anita; Piersma, Theunis; Lindström, Åke

    2009-01-01

    During endurance flight most birds do not feed and have to rely on their body reserves. Fat and protein is catabolised to meet the high energetic demands. Even though the hormonal regulation of migration is complex and not yet fully understood. the adrenocortical hormone corticosterone crystallizes

  12. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.

    Science.gov (United States)

    Hassanalian, M; Abdelmoula, H; Ben Ayed, S; Abdelkefi, A

    2017-05-01

    The thermal impact of the birds' color on their flight performance are investigated. In most of the large migrating birds, the top of their wings is black. Considering this natural phenomenon in the migrating birds, such as albatross, a thermal analysis of the boundary layer of their wings is performed during the year depending on the solar insulation. It is shown that the temperature difference between the bright and dark colored top wing surface is around 10°C. The dark color on the top of the wing increases the temperature of the boundary layer over the wing which consequently reduces the skin drag force over the wing. This reduction in the drag force can be considered as one of the effective factors for long endurance of these migrating birds. This research should lead to improved designs of the drones by applying the inspired colors which can help drones increase their endurance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  14. A mathematical model of bird collisions with wind turbine rotors

    International Nuclear Information System (INIS)

    Tucker, V.A.

    1996-01-01

    When a bird flies through the disk swept out by the blades of a wind turbine rotor, the probability of collision depends on the motions and dimensions of the bird and the blades. The collision model in this paper predicts the probability for birds that glide upwind, downwind, an across the wind past simple one-dimensional blades represented by straight lines, and upwind and downwind past more realistic three-dimensional blades with chord and twist. Probabilities vary over the surface of the disk, and in most cases, the tip of the blade is less likely to collide with a bird than parts of the blade nearer the hub. The mean probability may be found by integration over the disk area. The collision model identifies the rotor characteristics that could be altered to make turbines safer for birds

  15. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  16. Meteorological and environmental variables affect flight behaviour and decision-making of an obligate soaring bird, the California Condor Gymnogyps californianus

    Science.gov (United States)

    Poessel, Sharon; Brandt, Joseph; Miller, Tricia A.; Katzner, Todd

    2018-01-01

    The movements of animals are limited by evolutionary constraints and ecological processes and are strongly influenced by the medium through which they travel. For flying animals, variation in atmospheric conditions is critically influential in movement. Obligate soaring birds depend on external sources of updraft more than do other flying species, as without that updraft they are unable to sustain flight for extended periods. These species are therefore good models for understanding how the environment can influence decisions about movement. We used meteorological and topographic variables to understand the environmental influences on the decision to engage in flight by obligate soaring and critically endangered California Condors Gymnogyps californianus. Condors were more likely to fly, soared at higher altitudes and flew over smoother terrain when weather conditions promoted either thermal or orographic updrafts, for example when turbulence and solar radiation were higher and when winds from the east and north were stronger. However, increased atmospheric stability, which is inconsistent with thermal development but may be associated with orographic updrafts, was correlated with a somewhat higher probability of being in flight at lower altitudes and over rougher terrain. The close and previously undescribed linkages between Condor flight and conditions that support development of thermal and orographic updrafts provide important insight into the behaviour of obligate soaring birds and into the environmental parameters that may define the currently expanding distribution of Condors within and outside the state of California.

  17. An implantable instrument for studying the long-term flight biology of migratory birds

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, Robin J., E-mail: r.spivey@bangor.ac.uk, E-mail: c.bishop@bangor.ac.uk; Bishop, Charles M., E-mail: r.spivey@bangor.ac.uk, E-mail: c.bishop@bangor.ac.uk [Department of Biological Sciences, Bangor University, Gwynedd LL57 2UW (United Kingdom)

    2014-01-15

    The design of an instrument deployed in a project studying the high altitude Himalayan migrations of bar-headed geese (Anser indicus) is described. The electronics of this archival datalogger measured 22 × 14 × 6.5 mm, weighed 3 g, was powered by a ½AA-sized battery weighing 10 g and housed in a transparent biocompatible tube sealed with titanium electrodes for electrocardiography (ECG). The combined weight of 32 g represented less than 2% of the typical bodyweight of the geese. The primary tasks of the instrument were to continuously record a digitised ECG signal for heart-rate determination and store 12-bit triaxial accelerations sampled at 100 Hz with 15% coverage over each 2 min period. Measurement of atmospheric pressure provided an indication of altitude and rate of ascent or descent during flight. Geomagnetic field readings allowed for latitude estimation. These parameters were logged twice per minute along with body temperature. Data were stored to a memory card of 8 GB capacity. Instruments were implanted in geese captured on Mongolian lakes during the breeding season when the birds are temporarily flightless due to moulting. The goal was to collect data over a ten month period, covering both southward and northward migrations. This imposed extreme constraints on the design's power consumption. Raw ECG can be post-processed to obtain heart-rate, allowing improved rejection of signal interference due to strenuous activity of locomotory muscles during flight. Accelerometry can be used to monitor wing-beat frequency and body kinematics, and since the geese continued to flap their wings continuously even during rather steep descents, act as a proxy for biomechanical power. The instrument enables detailed investigation of the challenges faced by the geese during these arduous migrations which typically involve flying at extreme altitudes through cold, low density air where oxygen availability is significantly reduced compared to sea level.

  18. Assessing the impact of marine wind farms on birds through movement modelling.

    Science.gov (United States)

    Masden, Elizabeth A; Reeve, Richard; Desholm, Mark; Fox, Anthony D; Furness, Robert W; Haydon, Daniel T

    2012-09-07

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage.

  19. Malfunction Rates of Bird Flight Diverters on Powerlines in the Mongolian Gobi

    Directory of Open Access Journals (Sweden)

    Batsuuri Dashnyam

    2016-11-01

    Full Text Available The Oyu Tolgoi (OT project, one of the world’s largest copper and gold mines, is located in Gobi Desert of Mongolia. To help meet its target of Net Positive Impact on key biodiversity features such as the Houbara bustard (Chlamydotis undulata the OT installed bird fl ight diverters (BFDs include spiral and fl apper devices to its power transmission lines to reduce the risk of birds hitting the wires. Despite the many studies demonstrating that BFDs reduce collision rates, we could fi nd no published information on malfunction rates of BFDs. In January 2013, we surveyed the physical function of 1,200 BFDs (e.g. 600 fl appers and 600 spirals in three sample areas on each of four lines of varying voltage and structure. Of the 600 fl appers examined, 123 had malfunctioned within nine months of installation, while the malfunction rate of the 600 spirals studied was zero. Using a Generalized Linear Mixed Model, we found that the rate of fl apper malfunction increased with decreasing fl apper size and power line diameter. Further, the fl apper malfunction rate increased as the distance between poles increased. The cost of replacing malfunctioning BFDs is very high as there are serious health and safety constraints related to working with live wires. Factors aff ecting diverter malfunctioning need to be considered for future powerline projects and our information can serve as basis for developing national standards or regulations for powerline mitigation in Mongolia.

  20. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  1. Flying, Feathery and Beaked Objects: Children's Mental Models about Birds

    Science.gov (United States)

    Ahi, Berat

    2016-01-01

    Purpose of this research is to state preschool students' mental model about birds by analyzing their drawing. This is a hermeneutical phenomenology research that is based on social constructivist philosophy. Typical case sampling method has used in order to form working group of this research. Working group consisting of 325 children who are in…

  2. Mouse infection models for space flight immunology

    Science.gov (United States)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  3. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds.

    Science.gov (United States)

    Lloyd, G T; Bapst, D W; Friedman, M; Davis, K E

    2016-11-01

    Branch lengths-measured in character changes-are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data. © 2016 The Authors.

  4. Flight response of slope-soaring birds to seasonal variation in thermal generation

    Science.gov (United States)

    Adam E. Duerr; Tricia A. Miller; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O' Malley; Charles Maisonneuve; Junior A. Tremblay; Todd. Katzner

    2014-01-01

    Animals respond to a variety of environmental cues, including weather conditions, when migrating. Understanding the relationship between weather and migration behaviour is vital to assessing time- and energy limitations of soaring birds. Different soaring modes have different efficiencies, are dependent upon different types of subsidized lift and are weather dependent...

  5. Estimating the surface area of birds: using the homing pigeon (Columba livia as a model

    Directory of Open Access Journals (Sweden)

    Cristina R. Perez

    2014-05-01

    Full Text Available Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird.

  6. On the modelling of gyroplane flight dynamics

    Science.gov (United States)

    Houston, Stewart; Thomson, Douglas

    2017-01-01

    The study of the gyroplane, with a few exceptions, is largely neglected in the literature which is indicative of a niche configuration limited to the sport and recreational market where resources are limited. However the contemporary needs of an informed population of owners and constructors, as well as the possibility of a wider application of such low-cost rotorcraft in other roles, suggests that an examination of the mathematical modelling requirements for the study of gyroplane flight mechanics is timely. Rotorcraft mathematical modelling has become stratified in three levels, each one defining the inclusion of various layers of complexity added to embrace specific modelling features as well as an attempt to improve fidelity. This paper examines the modelling of gyroplane flight mechanics in the context of this complexity, and shows that relatively simple formulations are adequate for capturing most aspects of gyroplane trim, stability and control characteristics. In particular the conventional 6 degree-of-freedom model structure is suitable for the synthesis of models from flight test data as well as being the framework for reducing the order of the higher levels of modelling. However, a high level of modelling can be required to mimic some aspects of behaviour observed in data gathered from flight experiments and even then can fail to capture other details. These limitations are addressed in the paper. It is concluded that the mathematical modelling of gyroplanes for the simulation and analysis of trim, stability and control presents no special difficulty and the conventional techniques, methods and formulations familiar to the rotary-wing community are directly applicable.

  7. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight

    Science.gov (United States)

    Navalón, Guillermo; Marugán-Lobón, Jesús; Chiappe, Luis M.; Luis Sanz, José; Buscalioni, Ángela D.

    2015-01-01

    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers. PMID:26440221

  8. Mechanistic modeling of insecticide risks to breeding birds in ...

    Science.gov (United States)

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. At the present time, current USEPA risk assessments do not include population-level endpoints. In this paper, we present a new mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to use agricultural fields during their breeding season. The new model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model has been applied to assess the relative risk of 12 insecticides used to control corn pests on a suite of 31 avian species known to use cornfields in midwestern agroecosystems. The 12 insecticides that were assessed in this study are all used to treat major pests of corn (corn root worm borer, cutworm, and armyworm). After running the integrated TIM/MCnest model, we found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and ë-cyhalothrin (

  9. The New York State Bird Conservation Area (BCA) Program: A Model for the United States

    Science.gov (United States)

    M. F. Burger; D. J. Adams; T. Post; L. Sommers; B. Swift

    2005-01-01

    The New York State Bird Conservation Area (BCA) Program, modeled after the National Audubon Society?s Important Bird Areas Program, is based on legislation signed by Governor Pataki in 1997. New York is the first state in the nation to enact such a program. The BCA Program seeks to provide a comprehensive, ecosystem approach to conserving birds and their habitats on...

  10. Bird Conservation Implementation and Integration in the Americas: Proceedings of the Third International Partners in Flight Conference. 2002 March 20-24; Asilomar, California, Volume 1 and 2

    Science.gov (United States)

    C. John Ralph; Terrell D. Rich

    2005-01-01

    These two volumes contain in part papers presented at the Third International Partners in Flight Conference: A Workshop on Bird Conservation Implementation and Integration, which was held 20-24 March 2002 at the Asilomar Conference Center in Monterey, California. The conference gathered together researchers, educators, foresters, monitoring specialists, planners, and...

  11. Computational modeling of aerodynamics in the fast forward flight of hummingbirds

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Tobalske, Bret; Hedrick, Tyson

    2015-11-01

    Computational models of the hummingbird at flight speed 8.3 m/s is built based on high-speed imaging of the real bird flight in the wind tunnel. The goal is to understand the lift and thrust production of the wings at the high advance ratio (flight speed to the average wingtip speed) around 1. Both the full 3D CFD model based on an immersed-boundary method and the blade-element model based on quasi-steady flow assumption were adopted to analyze the aerodynamics. The result shows that while the weight support is generated during downstroke, little negative weight support is produced during upstroke. On the other hand, thrust is generated during both downstroke and upstroke, which allows the bird to overcome drag induced at fast flight. The lift and thrust characteristics are closely related to the instantaneous wing position and motion. In addition, the flow visualization shows that the leading-edge vortex is stable during most of the wing-beat, which may have contributed to the lift and thrust enhancement. NSF CBET-0954381.

  12. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    Science.gov (United States)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  13. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    Science.gov (United States)

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of

  14. Prediction of bird-day carrying capacity on a staging site: a test of depletion models

    NARCIS (Netherlands)

    Nolet, B.A.; Gyimesi, A.; Klaassen, R.H.G.

    2006-01-01

    1. The carrying capacity of a site for migratory water birds, expressed in bird-days, can be of particular conservation value. Several attempts have been made to model this carrying capacity using ideal free distribution models such as, for instance, depletion models, in which the distribution is

  15. Simulation model for the Boeing 720B aircraft-flight control system in continuous flight.

    Science.gov (United States)

    1971-08-01

    A mathematical model of the Boeing 720B aircraft and autopilot has been derived. The model is representative of the 720B aircraft for continuous flight within a flight envelope defined by a Mach number of .4 at 20,000 feet altitude in a cruise config...

  16. The use of logistic regression in modelling the distributions of bird ...

    African Journals Online (AJOL)

    The method of logistic regression was used to model the observed geographical distribution patterns of bird species in Swaziland in relation to a set of environmental variables. Reporting rates derived from bird atlas data are used as an index of population densities. This is justified in part by the success of the modelling ...

  17. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  18. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  19. Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the "shoulder lock" in albatrosses.

    Science.gov (United States)

    Meyers, Ron A; Stakebake, Eric F

    2005-01-01

    As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.

  20. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  1. Control-oriented reduced order modeling of dipteran flapping flight

    Science.gov (United States)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  2. The ASAC Flight Segment and Network Cost Models

    Science.gov (United States)

    Kaplan, Bruce J.; Lee, David A.; Retina, Nusrat; Wingrove, Earl R., III; Malone, Brett; Hall, Stephen G.; Houser, Scott A.

    1997-01-01

    To assist NASA in identifying research art, with the greatest potential for improving the air transportation system, two models were developed as part of its Aviation System Analysis Capability (ASAC). The ASAC Flight Segment Cost Model (FSCM) is used to predict aircraft trajectories, resource consumption, and variable operating costs for one or more flight segments. The Network Cost Model can either summarize the costs for a network of flight segments processed by the FSCM or can be used to independently estimate the variable operating costs of flying a fleet of equipment given the number of departures and average flight stage lengths.

  3. MATHEMATICAL MODELLING OF AIRCRAFT PILOTING PROSSESS UNDER SPECIFIED FLIGHT PATH

    Directory of Open Access Journals (Sweden)

    И. Кузнецов

    2012-04-01

    Full Text Available The author suggests mathematical model of pilot’s activity as follow up system and mathematical methods of pilot’s activity description. The main idea of the model is flight path forming and aircraft stabilization on it during instrument flight. Input of given follow up system is offered to be aircraft deflection from given path observed by pilot by means of sight and output is offered to be pilot’s regulating actions for aircraft stabilization on flight path.

  4. Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California gull, Larus californicus: a paradox of fast fibers and posture.

    Science.gov (United States)

    Meyers, R A; Mathias, E

    1997-09-01

    Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.

  5. Adaptive temperature regulation in the little bird in winter: predictions from a stochastic dynamic programming model.

    Science.gov (United States)

    Brodin, Anders; Nilsson, Jan-Åke; Nord, Andreas

    2017-09-01

    Several species of small birds are resident in boreal forests where environmental temperatures can be -20 to -30 °C, or even lower, in winter. As winter days are short, and food is scarce, winter survival is a challenge for small endothermic animals. A bird of this size will have to gain almost 10% of its lean body mass in fat every day to sustain overnight metabolism. Birds such as parids (titmice and chickadees) can use facultative hypothermia, a process in which body temperature is actively down-regulated to a specific level, to reduce heat loss and thus save energy. During cold winter nights, these birds may decrease body temperature from the normal from 42 ° down to 35 °C, or even lower in some species. However, birds are unable to move in this deep hypothermic state, making it a risky strategy if predators are around. Why, then, do small northern birds enter a potentially dangerous physiological state for a relatively small reduction in energy expenditure? We used stochastic dynamic programming to investigate this. Our model suggests that the use of nocturnal hypothermia at night is paramount in these biomes, as it would increase winter survival for a small northern bird by 58% over a winter of 100 days. Our model also explains the phenomenon known as winter fattening, and its relationship to thermoregulation, in northern birds.

  6. A numerical model for bird strike on sidewall structure of an aircraft nose

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2014-06-01

    Full Text Available In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH and finite element (FE method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike tests on the sidewall structure of an aircraft nose are carried out and numerically simulated. The bird is modeled with SPH and described by the Murnaghan equation of state, while the structure is modeled with finite elements. A coupled SPH–FE method is developed to simulate the bird-strike tests and a numerical model is established using a commercial software PAM-CRASH. The bird model shows no signs of instability and correctly modeled the break-up of the bird into particles. Finally the dynamic response such as strains in the skin is simulated and compared with test results, and the simulated deformation and fracture process of the sidewall structure is compared with images recorded by a high speed camera. Good agreement between the simulation results and test data indicates that the coupled SPH–FE method can provide a very powerful tool in predicting the dynamic responses of aircraft structures in events of bird strike.

  7. Drag Analysis of an Aircraft Wing Model withand without Bird Feather like Winglet

    OpenAIRE

    Altab Hossain; Ataur Rahman; A.K.M. P. Iqbal; M. Ariffin; M. Mazian

    2011-01-01

    This work describes the aerodynamic characteristic for aircraft wing model with and without bird feather like winglet. The aerofoil used to construct the whole structure is NACA 653-218 Rectangular wing and this aerofoil has been used to compare the result with previous research using winglet. The model of the rectangular wing with bird feather like winglet has been fabricated using polystyrene before design using CATIA P3 V5R13 software and finally fabricated in wood. Th...

  8. The Identification of Military Installations as Important Migratory Bird Stopover Sites and the Development of Bird Migration Forecast Models: A Radar Ornithology Approach

    Science.gov (United States)

    2012-08-01

    civilian and military flights. Since 1985, nearly 38,000 bird-military aircraft collisions have been reported. These collisions have killed 33 pilots...stations in the contiguous United States. Edges of the circles are at 124 nautical mile range (230 km). and 2004, approximately 194 people were killed ... Mockingbird Wilson’s Snipe Pileated Woodpecker American Wigeon Red-bellied Woodpecker American Coot Red-cockaded Woodpecker Black-crowned Night

  9. A Flight Dynamic Model of Aircraft Spinning

    Science.gov (United States)

    1990-06-01

    r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests

  10. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  11. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  12. Long flights do not influence immune responses of a long-distance migrant bird : a wind-tunnel experiment

    NARCIS (Netherlands)

    Hasselquist, Dennis; Lindstrom, Ake; Jenni-Eiermann, Susi; Koolhaas, Anita; Piersma, Theunis; Lindström, Åke

    2007-01-01

    Heavy physical work can result in physiological stress and suppressed immune function. Accordingly, long-distance migrant birds that fly for thousands of km within days can be expected to show immunosuppression, and hence be more vulnerable to infections en route. The red knot Calidris canutus

  13. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.L. [California State Univ., Sacramento, CA (United States); Pollock, K.H. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds.

  14. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    International Nuclear Information System (INIS)

    Morrison, M.L.; Pollock, K.H.

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds

  15. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds.

    Directory of Open Access Journals (Sweden)

    Viviane Hénaux

    Full Text Available There is growing interest in avian influenza (AI epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates, considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1-2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50-60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  16. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    Science.gov (United States)

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  17. Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2016-12-01

    Full Text Available Marsh birds are notoriously elusive, with variation in detection probability across species, regions, seasons, and different times of day and weather. Therefore, it is important to develop regional field survey protocols that maximize detections, but that also produce data for estimating and analytically adjusting for remaining differences in detections. We aimed to improve regional field survey protocols by estimating detection probability of eight elusive marsh bird species throughout two regions that have ongoing marsh bird monitoring programs: the southern Canadian Prairies (Prairie region and the southern portion of the Great Lakes basin and parts of southern Québec (Great Lakes-St. Lawrence region. We accomplished our goal using generalized binomial N-mixture models and data from ~22,300 marsh bird surveys conducted between 2008 and 2014 by Bird Studies Canada's Prairie, Great Lakes, and Québec Marsh Monitoring Programs. Across all species, on average, detection probability was highest in the Great Lakes-St. Lawrence region from the beginning of May until mid-June, and then fell throughout the remainder of the season until the end of June; was lowest in the Prairie region in mid-May and then increased throughout the remainder of the season until the end of June; was highest during darkness compared with light; and did not vary significantly according to temperature (range: 0-30°C, cloud cover (0%-100%, or wind (0-20 kph, or during morning versus evening. We used our results to formulate improved marsh bird survey protocols for each region. Our analysis and recommendations are useful and contribute to conservation of wetland birds at various scales from local single-species studies to the continental North American Marsh Bird Monitoring Program.

  18. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  19. Assessing risk to birds from industrial wind energy development via paired resource selection models.

    Science.gov (United States)

    Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd

    2014-06-01

    When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. © 2014 Society for Conservation Biology.

  20. Flight performance and feather quality: paying the price of overlapping moult and breeding in a tropical highland bird.

    Directory of Open Access Journals (Sweden)

    Maria Angela Echeverry-Galvis

    Full Text Available A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life history stages will further our understanding of the selection pressures that shape the temporal regulation of life history events in vertebrates. We studied free-living tropical Slaty brush-finches (Atlapetes schistaceus, in which individuals spontaneously overlap reproduction and moult or undergo both events in separation. To assess possible costs of such an overlap we quantified feather quality and flight performance of individuals in different states. We determined individual's life history state by measuring gonad size and scoring moult stage, and collected a newly grown 7(th primary wing feather for later analysis of feather quality. Finally, we quantified flight performance for each individual in the wild. Overlapping individuals produced lighter and shorter wing feathers than individuals just moulting, with females decreasing feather quality more strongly during the overlap than males. Moreover, overlapping individuals had a reduced flight speed during escape flights, while their foraging flight speed was unaffected. Despite overlappers being larger and having a smaller wing area, their lower body mass resulted in a similar wing load as in breeders or moulters. Individuals measured repeatedly in different states also showed significant decreases in feather quality and escape flight speed during the overlap. Reduced escape flight speed may represent a major consequence of the overlap by increasing predation risk. Our data document costs to undergoing two life history stages simultaneously, which likely arise from energetic trade-offs. Impairments in

  1. Conceptual ecological model for management of breeding shrubland birds in the Mid-Atlantic Region

    Science.gov (United States)

    Peterjohn, Bruce G.

    2006-01-01

    communities. This project involved parks within three NPS Inventory and Monitoring Program (I&M) networks, Mid-Atlantic, National Capital, and Eastern Rivers and Mountains. Five parks were selected for the initial focus of this study, all of which maintain open landscapes for interpreting historic events. Most parks were selected because they contain the most extensive grassland habitats within their networks, although some also support shrubby successional habitats. The five parks included in this study are Antietam National Battlefield, Fort Necessity National Battlefield, Gettysburg National Battlefield, Manassas National Battlefield, and Monocacy National Battlefield. This conceptual ecological model is one product of this project. The information presented below allows NPS network coordinators to understand which factors should be considered when making decisions concerning shrubland management within their networks. This model provides park resource managers with information on shrubland ecology in the Mid-Atlantic Region, the ecological requirements of shrubland birds likely to occur in their parks, and management issues influencing whether significant breeding populations can occupy shrublands created and maintained in the parks. Resource managers can then make informed decisions concerning their ability to create and maintain shrubland habitats. The emphasis of this conceptual model is restricted to management of breeding shrubland birds. Additional species occur during migration and winter, and habitat requirements of shrubland birds during nonbreeding seasons may differ from those described for the breeding season.

  2. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  3. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  4. Optimization models for flight test scheduling

    Science.gov (United States)

    Holian, Derreck

    with restriction removal is based on heuristic approaches to support the reality of flight test in both solution space and computational time. Exact methods for yielding an optimized solution will be discussed however they are not directly applicable to the flight test problem and therefore have not been included in the system.

  5. Automatic Flight Controller With Model Inversion

    Science.gov (United States)

    Meyer, George; Smith, G. Allan

    1992-01-01

    Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.

  6. Predicting migratory flight altitudes by physiological migration models

    NARCIS (Netherlands)

    Liechti, F.; Klaassen, M.R.J.; Bruderer, B.

    2000-01-01

    Using the altitudinal profiles of wind, temperature, pressure, and humidity in three flight models, we tried to explain the altitudinal distributions of nocturnal migrants recorded by radar above a desert in southern Israel. In the simplest model, only the tailwind component was used as a predictor

  7. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  8. Evaluation of bird impacts on historical oil spill cases using the SIMAP oil spill model

    International Nuclear Information System (INIS)

    French McCay, D.; Rowe, J.J.

    2004-01-01

    The impact of an oil spill on bird and other wildlife species can be estimated using the Spill Impact Model Application Package (SIMAP). SIMAP estimates exposure and impact on bird species and their habitat based on physical fate and biological effects models under a broad range of environmental conditions. This paper presented the evaluations of 14 spill case studies which compared model predictions of biological impacts with field observations after a spill. Most of the observational data on the biological impacts of spills was for oiled birds and other wildlife. The impact of an oil spill on fish and invertebrates was examined in one case study. Error analysis was not performed on the field-base estimates of impact. Biological abundances and impacts are highly variable in time and space and very difficult to measure and quantify. Model-predicted and field-based estimates of oiled wildlife were compared. Uncertainty in the model-predicted number of oil wildlife was most related to mapping of biological distributions, behaviour of individuals, and local population density at the time of spill. The greatest uncertainty was the pre-spill abundance. The number of animals oils was found to be directly proportional to the pre-spill abundance assumed in the model inputs. Relative impact can be inferred from the percentage of population oiled. The total number oiled by a spill can be extrapolated using trajectories of oiled birds and counts of oiled animals collected in the field. 54 refs., 16 tabs., 12 figs

  9. Modeling the Distribution of Rare or Cryptic Bird Species of Taiwan

    Directory of Open Access Journals (Sweden)

    Tsai-Yu Wu

    2012-12-01

    Full Text Available For the study of the macroecology and conservation of Taiwan’s birds, there was an urgent need to develop distribution models of bird species whose distribution had never before been modeled. Therefore, we here model the distributions of 27 mostly rare and cryptic breeding bird species using a statistical approach which has been shown to be especially reliable for modeling species with a low sample size of presence localities, namely the maximum entropy (Maxent modeling technique. For this purpose, we began with a dedicated attempt to collate as much high-quality distributional data as possible, assembling databases from several scientific reports, contacting individual data recorders and searching publicly accessible database, the internet and the available literature. This effort resulted in 2022 grid cells of 1 × 1 km size being associated with a presence record for one of the 27 species. These records and 10 pre-selected environmental variables were then used to model each species’ probability distribution which we show here with all grid cells below the lowest presence threshold being converted to zeros. We then in detail discuss the interpretation and applicability of these distributions, whereby we pay close attention to habitat requirements, the intactness and fragmentation of their habitat, the general detectability of the species and data reliability. This study is another one in an ongoing series of studies which highlight the usefulness of using large electronic databases and modern analytical methods to help with the monitoring and assessment of Taiwan’s bird species.

  10. Using a collision model to design safer wind turbine rotors for birds

    International Nuclear Information System (INIS)

    Tucker, V.A.

    1996-01-01

    A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today's rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model

  11. A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.

    Science.gov (United States)

    Revell, Christopher; Somveille, Marius

    2017-08-29

    In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.

  12. Flight Dynamic Model Exchange using XML

    Science.gov (United States)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  13. Habitat suitability models for cavity-nesting birds in a postfire landscape

    Science.gov (United States)

    Robin E. Russell; Victoria A. Saab; Jonathan G. Dudley

    2007-01-01

    Models of habitat suitability in postfire landscapes are needed by land managers to make timely decisions regarding postfire timber harvest and other management activities. Many species of cavity-nesting birds are dependent on postfire landscapes for breeding and other aspects of their life history and are responsive to postfire management activities (e.g., timber...

  14. Using regional bird density distribution models to evaluate protected area networks and inform conservation planning

    Science.gov (United States)

    John D. Alexander; Jaime L. Stephens; Sam Veloz; Leo Salas; Josée S. Rousseau; C. John Ralph; Daniel A. Sarr

    2017-01-01

    As data about populations of indicator species become available, proactive strategies that improve representation of biological diversity within protected area networks should consider finer-scaled evaluations, especially in regions identified as important through course-scale analyses. We use density distribution models derived from a robust regional bird...

  15. Modelling bird songs: Voice onset, overtones and registers

    NARCIS (Netherlands)

    Zaccarelli, R.; Elemans, C.P.H.; Fitch, W.T.; Herzel, H.

    2006-01-01

    We analyze two symmetric two-mass models of the avian syrinx. Our first model applies to songbirds and is a rescaled version of the well-known human two-mass model. Our second model (trapezoidal model) introduces a smoother geometry and is used to simulate the ring dove (Streptopelia risoria)

  16. Modelling of Airship Flight Mechanics by the Projection Equivalent Method

    OpenAIRE

    Frantisek Jelenciak; Michael Gerke; Ulrich Borgolte

    2015-01-01

    This article describes the projection equivalent method (PEM) as a specific and relatively simple approach for the modelling of aircraft dynamics. By the PEM it is possible to obtain a mathematic al model of the aerodynamic forces and momentums acting on different kinds of aircraft during flight. For the PEM, it is a characteristic of it that - in principle - it provides an acceptable regression model of aerodynamic forces and momentums which exhibits reasonable and plausible behaviour from a...

  17. Model Based Analysis and Test Generation for Flight Software

    Science.gov (United States)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  18. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  19. BIRDS AS A MODEL TO STUDY ADULT NEUROGENESIS: BRIDGING EVOLUTIONARY, COMPARATIVE AND NEUROETHOLOGICAL APPROCHES

    Science.gov (United States)

    BARNEA, ANAT; PRAVOSUDOV, VLADIMIR

    2011-01-01

    During the last few decades evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. Such diversity of naturally-occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications. PMID:21929623

  20. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  1. The Bird.

    Science.gov (United States)

    Hannon, Jean

    2001-01-01

    Students use a dead bird to learn about bird life, anatomy, and death. Students examine a bird body and discuss what happened to the bird. Uses outdoor education as a resource for learning about animals. (SAH)

  2. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.

    Science.gov (United States)

    Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David

    2016-12-06

    There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift

  3. Virginia ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, pelagic birds, passerine birds, and gulls...

  4. Modelling of Airship Flight Mechanics by the Projection Equivalent Method

    Directory of Open Access Journals (Sweden)

    Frantisek Jelenciak

    2015-12-01

    Full Text Available This article describes the projection equivalent method (PEM as a specific and relatively simple approach for the modelling of aircraft dynamics. By the PEM it is possible to obtain a mathematic al model of the aerodynamic forces and momentums acting on different kinds of aircraft during flight. For the PEM, it is a characteristic of it that -in principle - it provides an acceptable regression model of aerodynamic forces and momentums which exhibits reasonable and plausible behaviour from a dynamics viewpoint. The principle of this method is based on applying Newton's mechanics, which are then combined with a specific form of the finite element method to cover additional effects. The main advantage of the PEM is that it is not necessary to carry out measurements in a wind tunnel for the identification of the model's parameters. The plausible dynamical behaviour of the model can be achieved by specific correction parameters, which can be determined on the basis of experimental data obtained during the flight of the aircraft. In this article, we present the PEM as applied to an airship as well as a comparison of the data calculated by the PEM and experimental flight data.

  5. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Directory of Open Access Journals (Sweden)

    Christopher L. Coxen

    2017-07-01

    Full Text Available Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1 satellite tracked birds and 2 observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4, and high overlap between suitability scores (I statistic 0.786 and suitable habitat patches (relative rank 0.639. Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  6. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Science.gov (United States)

    Coxen, Christopher L.; Frey, Jennifer K.; Carleton, Scott A.; Collins, Daniel P.

    2017-01-01

    Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata) species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1) satellite tracked birds and 2) observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4), and high overlap between suitability scores (I statistic 0.786) and suitable habitat patches (relative rank 0.639). Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  7. Modeling of preventive maintenance changes influence upon flight safety indexes

    Directory of Open Access Journals (Sweden)

    А.В. Гончаренко

    2004-03-01

    Full Text Available  It is considered a simplified model of connection between the catastrophic events flow frequency and both preventive maintenance changes periodicity and diagnosis depth of aviation equipment. It is deduced specific formulas for computing the changes and diagnostics parameters influence upon the values of both the catastrophic events flow frequency and technical-economical control factor criterion of flight safety levels.

  8. Assessing the impact of marine wind farms on birds through movement modelling

    OpenAIRE

    Masden, Elizabeth A.; Reeve, Richard; Desholm, Mark; Fox, Anthony D.; Furness, Robert W.; Haydon, Daniel T.

    2012-01-01

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measu...

  9. Airport Flight Departure Delay Model on Improved BN Structure Learning

    Science.gov (United States)

    Cao, Weidong; Fang, Xiangnong

    An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.

  10. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  11. A Method to Identify Flight Obstacles on Digital Surface Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min; LIN Xinggang; SUN Shouyu; WANG Youzhi

    2005-01-01

    In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.

  12. A model structure for identification of linear models of the UH-60 helicopter in hover and forward flight

    Science.gov (United States)

    1995-08-01

    A linear model structure applicable to identification of the UH-60 flight : dynamics in hover and forward flight without rotor-state data is developed. The : structure of the model is determined through consideration of the important : dynamic modes ...

  13. Emergence of long distance bird migrations: a new model integrating global climate changes

    Science.gov (United States)

    Louchart, Antoine

    2008-12-01

    During modern birds history, climatic and environmental conditions have evolved on wide scales. In a continuously changing world, landbirds annual migrations emerged and developed. However, models accounting for the origins of these avian migrations were formulated with static ecogeographic perspectives. Here I reviewed Cenozoic paleoclimatic and paleontological data relative to the palearctic paleotropical long distance (LD) migration system. This led to propose a new model for the origin of LD migrations, the ‘shifting home’ model (SHM). It is based on a dynamic perspective of climate evolution and may apply to the origins of most modern migrations. Non-migrant tropical African bird taxa were present at European latitudes during most of the Cenozoic. Their distribution limits shifted progressively toward modern tropical latitudes during periods of global cooling and increasing seasonality. In parallel, decreasing winter temperatures in the western Palearctic drove shifts of population winter ranges toward the equator. I propose that this induced the emergence of most short distance migrations, and in turn LD migrations. This model reconciliates ecologically tropical ancestry of most LD migrants with predominant winter range shifts, in accordance with requirements for heritable homing. In addition, it is more parsimonious than other non-exclusive models. Greater intrinsic plasticity of winter ranges implied by the SHM is supported by recently observed impacts of the present global warming on migrating birds. This may induce particular threats to some LD migrants. The ancestral, breeding homes of LD migrants were not ‘northern’ or ‘southern’ but shifted across high and middle latitudes while migrations emerged through winter range shifts themselves.

  14. Modeling of the spatial distribution of ten endangered bird species in jurisdiction of Corantioquia

    International Nuclear Information System (INIS)

    Gomez M, Ana Maria; Alvarez, Esteban

    2006-01-01

    Recently, thanks to advances made in Geographic Information Systems (GIS), techniques have been developed for the construction of models that predict the spatial distribution of species and other attributes of biodiversity. These methods have allowed for the development of objective criteria that are fundamental for making decisions regarding the creation of protected areas systems throughout the world. In this research, the spatial distribution of ten endangered species of birds found within the jurisdiction of CORANTIOQUIA (JDC from here on) was modelled, using GIS techniques. The JDC was divided into 177 squares of 15 x 10 Km and the following variables were quantified within each one: presence or absence of endangered species of birds, rainfall, temperature, sun brightness, relative humidity, day duration, altitude, vegetal cover, slope and primary net productivity. With the help of logistic regression were made predictive models. Based on logistic regressions techniques predictive models were made. These models allow to explain a percentage between 24% and 80% of spatial distribution variability of these species. Those results can help in the identification of valuable zones for the biodiversity conservation. In places where there are neither the time or the economic resources to carry out exhaustive analyses of biodiversity, the models can predict the probable presence of this endangered species

  15. Autonomous formation flight of helicopters: Model predictive control approach

    Science.gov (United States)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  16. Alabama ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, gulls, and terns...

  17. Maryland ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  18. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    Science.gov (United States)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  19. Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric

    2018-01-01

    This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..

  20. Atmospheric conditions create freeways, detours and tailbacks for migrating birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G

    2017-07-01

    The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.

  1. Using occupancy models of forest breeding birds to prioritize conservation planning

    Science.gov (United States)

    De Wan, A. A.; Sullivan, P.J.; Lembo, A.J.; Smith, C.R.; Maerz, J.C.; Lassoie, J.P.; Richmond, M.E.

    2009-01-01

    As urban development continues to encroach on the natural and rural landscape, land-use planners struggle to identify high priority conservation areas for protection. Although knowing where urban-sensitive species may be occurring on the landscape would facilitate conservation planning, research efforts are often not sufficiently designed to make quality predictions at unknown locations. Recent advances in occupancy modeling allow for more precise estimates of occupancy by accounting for differences in detectability. We applied these techniques to produce robust estimates of habitat occupancy for a subset of forest breeding birds, a group that has been shown to be sensitive to urbanization, in a rapidly urbanizing yet biological diverse region of New York State. We found that detection probability ranged widely across species, from 0.05 to 0.8. Our models suggest that detection probability declined with increasing forest fragmentation. We also found that the probability of occupancy of forest breeding birds is negatively influenced by increasing perimeter-area ratio of forest fragments and urbanization in the surrounding habitat matrix. We capitalized on our random sampling design to produce spatially explicit models that predict high priority conservation areas across the entire region, where interior-species were most likely to occur. Finally, we use our predictive maps to demonstrate how a strict sampling design coupled with occupancy modeling can be a valuable tool for prioritizing biodiversity conservation in land-use planning. ?? 2009 Elsevier Ltd.

  2. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-06-01

    ... electronic flight control system. The applicable airworthiness regulations do not contain adequate or... Design Features The Gulfstream Model GVI airplane has an electronic flight control system and no direct... impending control surface limiting, piloted or auto-flight system control of the airplane might be...

  3. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-02-17

    ...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...

  4. Predicting continental-scale patterns of bird species richness with spatially explicit models

    DEFF Research Database (Denmark)

    Rahbek, Carsten; Gotelli, Nicholas J; Colwell, Robert K

    2007-01-01

    the extraordinary diversity of avian species in the montane tropics, the most species-rich region on Earth. Our findings imply that correlative climatic models substantially underestimate the importance of historical factors and small-scale niche-driven assembly processes in shaping contemporary species-richness......The causes of global variation in species richness have been debated for nearly two centuries with no clear resolution in sight. Competing hypotheses have typically been evaluated with correlative models that do not explicitly incorporate the mechanisms responsible for biotic diversity gradients....... Here, we employ a fundamentally different approach that uses spatially explicit Monte Carlo models of the placement of cohesive geographical ranges in an environmentally heterogeneous landscape. These models predict species richness of endemic South American birds (2248 species) measured...

  5. Identifiability in N-mixture models: a large-scale screening test with bird data.

    Science.gov (United States)

    Kéry, Marc

    2018-02-01

    Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.

  6. Trade-offs between pasture production and farmland bird conservation: exploration of options using a dynamic farm model.

    Science.gov (United States)

    Sabatier, R; Teillard, F; Rossing, W A H; Doyen, L; Tichit, M

    2015-05-01

    In European grassland landscapes, grazing and mowing play a key role for the maintenance of high-quality habitats that host important bird populations. As grasslands are also key resources for cattle feeding, there is a need to develop management strategies that achieve the double objective of production and biodiversity conservation. The objective of this study was to use a modelling approach to generate recognisable patterns of bird dynamics in farms composed of different land use proportions, and to compare their production and ecological dimensions. We developed a dynamic model, which linked grassland management to bird population dynamics at the field and farm levels. The model was parameterised for two types of suckling farms corresponding to contrasting levels of grassland intensification and for two bird species of high conservation value. A viability algorithm was used to define and assess viable management strategies for production and ecological performance so as to draw the shape of the relationship between both types of performances for the two types of farms. Our results indicated that, at the farm level, there was a farming system effect with a negative and non-linear relationship linking performance. Improving bird population maintenance was less costly in extensive farms compared with intensive farms. At the field level, the model predicted the timing and intensity of land use, maximising either production or ecological performance. The results suggested that multi-objective grassland management would benefit from public policies that consider levels of organisation higher than the field level, such as the farm or the landscape.

  7. Modeling Rocket Flight in the Low-Friction Approximation

    Directory of Open Access Journals (Sweden)

    Logan White

    2014-09-01

    Full Text Available In a realistic model for rocket dynamics, in the presence of atmospheric drag and altitude-dependent gravity, the exact kinematic equation cannot be integrated in closed form; even when neglecting friction, the exact solution is a combination of elliptic functions of Jacobi type, which are not easy to use in a computational sense. This project provides a precise analysis of the various terms in the full equation (such as gravity, drag, and exhaust momentum, and the numerical ranges for which various approximations are accurate to within 1%. The analysis leads to optimal approximations expressed through elementary functions, which can be implemented for efficient flight prediction on simple computational devices, such as smartphone applications.

  8. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  9. Understanding how birds navigate

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2009-01-01

    A proposed model for migrating birds' magnetic sense can withstand moderate orientational disorder of a key protein in the eye.......A proposed model for migrating birds' magnetic sense can withstand moderate orientational disorder of a key protein in the eye....

  10. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    Science.gov (United States)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  11. Model-Based Estimation of Collision Risks of Predatory Birds with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Marcus Eichhorn

    2012-06-01

    Full Text Available The expansion of renewable energies, such as wind power, is a promising way of mitigating climate change. Because of the risk of collision with rotor blades, wind turbines have negative effects on local bird populations, particularly on raptors such as the Red Kite (Milvus milvus. Appropriate assessment tools for these effects have been lacking. To close this gap, we have developed an agent-based, spatially explicit model that simulates the foraging behavior of the Red Kite around its aerie in a landscape consisting of different land-use types. We determined the collision risk of the Red Kite with the turbine as a function of the distance between the wind turbine and the aerie and other parameters. The impact function comprises the synergistic effects of species-specific foraging behavior and landscape structure. The collision risk declines exponentially with increasing distance. The strength of this decline depends on the raptor's foraging behavior, its ability to avoid wind turbines, and the mean wind speed in the region. The collision risks, which are estimated by the simulation model, are in the range of values observed in the field. The derived impact function shows that the collision risk can be described as an aggregated function of distance between the wind turbine and the raptor's aerie. This allows an easy and rapid assessment of the ecological impacts of (existing or planned wind turbines in relation to their spatial location. Furthermore, it implies that minimum buffer zones for different landscapes can be determined in a defensible way. This modeling approach can be extended to other bird species with central-place foraging behavior. It provides a helpful tool for landscape planning aimed at minimizing the impacts of wind power on biodiversity.

  12. Screamy Bird

    DEFF Research Database (Denmark)

    Tarby, Sara; Cermak, Daniel

    2016-01-01

    Sara Tarby, Daniel Cermak-Sassenrath. Screamy Bird. Digital game. Kulturnatten 2016, Danish Science Ministry, Copenhagen, DK, Oct 14, 2016.......Sara Tarby, Daniel Cermak-Sassenrath. Screamy Bird. Digital game. Kulturnatten 2016, Danish Science Ministry, Copenhagen, DK, Oct 14, 2016....

  13. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models

    Science.gov (United States)

    White, Joseph D.; Gutzwiller, Kevin J.; Barrow, Wylie C.; Johnson-Randall, Lori; Zygo, Lisa; Swint, Pamela

    2011-01-01

    Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species' use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.

  14. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    Science.gov (United States)

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  15. Cardio-respiratory development in bird embryos: new insights from a venerable animal model

    Directory of Open Access Journals (Sweden)

    Warren W. Burggren

    Full Text Available ABSTRACT The avian embryo is a time-honored animal model for understanding vertebrate development. A key area of extensive study using bird embryos centers on developmental phenotypic plasticity of the cardio-respiratory system and how its normal development can be affected by abiotic factors such as temperature and oxygen availability. Through the investigation of the plasticity of development, we gain a better understanding of both the regulation of the developmental process and the embryo's capacity for self-repair. Additionally, experiments with abiotic and biotic stressors during development have helped delineate not just critical windows for avian cardio-respiratory development, but the general characteristics (e.g., timing and dose-dependence of critical windows in all developing vertebrates. Avian embryos are useful in exploring fetal programming, in which early developmental experiences have implications (usually negative later in life. The ability to experimentally manipulate the avian embryo without the interference of maternal behavior or physiology makes it particularly useful in future studies of fetal programming. The bird embryo is also a key participant in studies of transgenerational epigenetics, whether by egg provisioning or effects on the germline that are transmitted to the F1 generation (or beyond. Finally, the avian embryo is heavily exploited in toxicology, in which both toxicological testing of potential consumer products as well as the consequences of exposure to anthropogenic pollutants are routinely carried out in the avian embryo. The avian embryo thus proves useful on numerous experimental fronts as an animal model that is concurrently both of adequate complexity and sufficient simplicity for probing vertebrate cardio-respiratory development.

  16. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    Directory of Open Access Journals (Sweden)

    T. Alexander Dececchi

    2016-07-01

    Full Text Available Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR, and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory

  17. Hawaiian forest bird trends: using log-linear models to assess long-term trends is supported by model diagnostics and assumptions (reply to Freed and Cann 2013)

    Science.gov (United States)

    Camp, Richard J.; Pratt, Thane K.; Gorresen, P. Marcos; Woodworth, Bethany L.; Jeffrey, John J.

    2014-01-01

    Freed and Cann (2013) criticized our use of linear models to assess trends in the status of Hawaiian forest birds through time (Camp et al. 2009a, 2009b, 2010) by questioning our sampling scheme, whether we met model assumptions, and whether we ignored short-term changes in the population time series. In the present paper, we address these concerns and reiterate that our results do not support the position of Freed and Cann (2013) that the forest birds in the Hakalau Forest National Wildlife Refuge (NWR) are declining, or that the federally listed endangered birds are showing signs of imminent collapse. On the contrary, our data indicate that the 21-year long-term trends for native birds in Hakalau Forest NWR are stable to increasing, especially in areas that have received active management.

  18. Multiscale habitat suitability index models for priority landbirds in the Central Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions

    Science.gov (United States)

    John M. Tirpak; D. Todd Jones-Farrand; Frank R., III Thompson; Daniel J. Twedt; William B., III Uihlein

    2009-01-01

    Habitat Suitability Index (HSI) models were developed to assess habitat quality for 40 priority bird species in the Central Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions. The models incorporated both site and landscape environmental variables from one of six nationally consistent datasets. Potential habitat was first defined from unique...

  19. Applying citizen-science data and mark-recapture models to estimate numbers of migrant golden eagles in an important bird area in eastern North America

    Science.gov (United States)

    Dennhardt, Andrew J.; Duerr, Adam E.; Brandes, David; Katzner, Todd

    2017-01-01

    Estimates of population abundance are important to wildlife management and conservation. However, it can be difficult to characterize the numbers of broadly distributed, low-density, and elusive bird species. Although Golden Eagles (Aquila chrysaetos) are rare, difficult to detect, and broadly distributed, they are concentrated during their autumn migration at monitoring sites in eastern North America. We used hawk-count data collected by citizen scientists in a virtual mark–recapture modeling analysis to estimate the numbers of Golden Eagles that migrate in autumn along Kittatinny Ridge, an Important Bird Area in Pennsylvania, USA. In order to evaluate the sensitivity of our abundance estimates to variation in eagle capture histories, we applied candidate models to 8 different sets of capture histories, constructed with or without age-class information and using known mean flight speeds 6 1, 2, 4, or 6 SE for eagles to travel between hawk-count sites. Although some abundance estimates were produced by models that poorly fitted the data (ĉ > 3.0), 2 sets of population estimates were produced by acceptably performing models (cˆ less than or equal to 3.0). Application of these models to count data from November, 2002–2011, suggested a mean population abundance of 1,354 6 117 SE (range: 873–1,938). We found that Golden Eagles left the ridgeline at different rates and in different places along the route, and that typically ,50% of individuals were detected at the hawk-count sites. Our study demonstrates a useful technique for estimating population abundance that may be applicable to other migrant species that are repeatedly detected at multiple monitoring sites along a topographic diversion or leading line.

  20. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with...

  1. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Science.gov (United States)

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  2. Modeling nest survival of cavity-nesting birds in relation to postfire salvage logging

    Science.gov (United States)

    Vicki Saab; Robin E. Russell; Jay Rotella; Jonathan G. Dudley

    2011-01-01

    Salvage logging practices in recently burned forests often have direct effects on species associated with dead trees, particularly cavity-nesting birds. As such, evaluation of postfire management practices on nest survival rates of cavity nesters is necessary for determining conservation strategies. We monitored 1,797 nests of 6 cavity-nesting bird species: Lewis'...

  3. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  4. Mathematical model validation of a thermal architecture system connecting east/west radiators by flight data

    International Nuclear Information System (INIS)

    Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik

    2014-01-01

    A novel satellite thermal architecture connecting the east and west radiators of a geostationary telecommunication satellite via loop heat pipes (LHPs) is flight tested on board the satellite Hispasat 1E. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). The flight data demonstrated the successful operation of the proposed concept. A transient numerical model specifically developed for the design of this system satisfactorily simulated the flight data. The validated mathematical model can be used to design and analyze the thermal behavior of more complex architectures. - Highlights: •A novel spacecraft thermal control architecture is presented. •The east–west radiators of a GEO communications satellite are connected using LHPs. •A transient mathematical model is validated with flight data. •The space flight data proved successful in-orbit operation of the novel architecture. •The model can be used to design/analyze LHP based complex thermal architectures

  5. Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis.

    Directory of Open Access Journals (Sweden)

    Masahiro Ishizuka

    Full Text Available Hypersensitivity pneumonitis (HP is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif ligand 5 (CXCL5 in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils.

  6. Landscape capability models as a tool to predict fine-scale forest bird occupancy and abundance

    Science.gov (United States)

    Loman, Zachary G.; DeLuca, William; Harrison, Daniel J.; Loftin, Cynthia S.; Rolek, Brian W.; Wood, Petra B.

    2018-01-01

    ContextSpecies-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning.ObjectivesWe tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird species representative of spruce-fir, mixed conifer-hardwood, and riparian and wooded wetland macrohabitats.MethodsWe compiled point count data sets used for biological inventory, species monitoring, and field studies across the northeastern United States to create an independent validation data set. Our validation explicitly accounted for underestimation in validation data using joint distance and time removal sampling.ResultsBlackpoll warbler (Setophaga striata), wood thrush (Hylocichla mustelina), and Louisiana (Parkesia motacilla) and northern waterthrush (P. noveboracensis) models were validated as predicting variation in abundance, although this varied from not biologically meaningful (1%) to strongly meaningful (59%). We verified all seven species models [including ovenbird (Seiurus aurocapilla), blackburnian (Setophaga fusca) and cerulean warbler (Setophaga cerulea)], as all were positively related to occupancy data.ConclusionsLC models represent a useful tool for conservation planning owing to their predictive ability over a regional extent. As improved remote-sensed data become available, LC layers are updated, which will improve predictions.

  7. The function of migratory bird calls

    DEFF Research Database (Denmark)

    Reichl, Thomas; Andersen, Bent Bach; Larsen, Ole Næsbye

    The function of migratory bird calls: do they influence orientation and navigation?   Thomas Reichl1, Bent Bach Andersen2, Ole Naesbye Larsen2, Henrik Mouritsen1   1Institute of Biology, University of Oldenburg, Oldenburg, D-26111 Oldenburg, Germany 2Institute of Biology, University of Southern...... migration and to stimulate migratory restlessness in conspecifics. We wished to test if conspecific flight calls influence the flight direction of a nocturnal migrant, the European Robin (Erithacus rubecula), i.e. if flight calls help migrants keeping course. Wild caught birds showing migratory restlessness...... the experimental bird could be activated successively to simulate a migrating Robin cruising E-W, W-E, S-N or N-S at a chosen height (mostly about 40 m), at 10 m/s and emitting Robin flight calls of 80 dB(A) at 1 m. The simulated flight of a "ding" sound served as a control. During an experiment the bird was first...

  8. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks.

    Science.gov (United States)

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-04-26

    With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction.

  9. Modelling Perception of Structure and Affect in Music: Spectral Centroid and Wishart's Red Bird

    Directory of Open Access Journals (Sweden)

    Roger T. Dean

    2011-12-01

    Full Text Available Pearce (2011 provides a positive and interesting response to our article on time series analysis of the influences of acoustic properties on real-time perception of structure and affect in a section of Trevor Wishart’s Red Bird (Dean & Bailes, 2010. We address the following topics raised in the response and our paper. First, we analyse in depth the possible influence of spectral centroid, a timbral feature of the acoustic stream distinct from the high level general parameter we used initially, spectral flatness. We find that spectral centroid, like spectral flatness, is not a powerful predictor of real-time responses, though it does show some features that encourage its continued consideration. Second, we discuss further the issue of studying both individual responses, and as in our paper, group averaged responses. We show that a multivariate Vector Autoregression model handles the grand average series quite similarly to those of individual members of our participant groups, and we analyse this in greater detail with a wide range of approaches in work which is in press and continuing. Lastly, we discuss the nature and intent of computational modelling of cognition using acoustic and music- or information theoretic data streams as predictors, and how the music- or information theoretic approaches may be applied to electroacoustic music, which is ‘sound-based’ rather than note-centred like Western classical music.

  10. Intification and modelling of flight characteristics for self-build shock flyer type UAV

    Science.gov (United States)

    Rashid., Z. A.; Dardin, A. S. F. Syed.; Azid, A. A.; Ahmad, K. A.

    2018-02-01

    The development of an autonomous Unmanned Aerial Vehicle (UAV) requires a fundamentals studies of the UAV's flight characteristic. The aim of this study is to identify and model the flight characteristic of a conventional fixed-wing type UAV. Subsequence to this, the mode of flight of the UAV can be investigated. One technique to identify the characteristic of a UAV is a flight test where it required specific maneuvering to be executed while measuring the attitude sensor. In this study, a simple shock flyer type UAV was used as the aircraft. The result shows that the modeled flight characteristic has a significant relation with actual values but the fitting value is rather small. It is suggested that the future study is conducted with an improvement of the physical UAV, data filtering and better system identification methods.

  11. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Arneodo

    Full Text Available Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  12. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    Science.gov (United States)

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  13. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  14. Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions.

    Science.gov (United States)

    O'Brien, Susan H; Cook, Aonghais S C P; Robinson, Robert A

    2017-10-01

    Assessing the potential impact of additional mortality from anthropogenic causes on animal populations requires detailed demographic information. However, these data are frequently lacking, making simple algorithms, which require little data, appealing. Because of their simplicity, these algorithms often rely on implicit assumptions, some of which may be quite restrictive. Potential Biological Removal (PBR) is a simple harvest model that estimates the number of additional mortalities that a population can theoretically sustain without causing population extinction. However, PBR relies on a number of implicit assumptions, particularly around density dependence and population trajectory that limit its applicability in many situations. Among several uses, it has been widely employed in Europe in Environmental Impact Assessments (EIA), to examine the acceptability of potential effects of offshore wind farms on marine bird populations. As a case study, we use PBR to estimate the number of additional mortalities that a population with characteristics typical of a seabird population can theoretically sustain. We incorporated this level of additional mortality within Leslie matrix models to test assumptions within the PBR algorithm about density dependence and current population trajectory. Our analyses suggest that the PBR algorithm identifies levels of mortality which cause population declines for most population trajectories and forms of population regulation. Consequently, we recommend that practitioners do not use PBR in an EIA context for offshore wind energy developments. Rather than using simple algorithms that rely on potentially invalid implicit assumptions, we recommend use of Leslie matrix models for assessing the impact of additional mortality on a population, enabling the user to explicitly define assumptions and test their importance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bird guard

    Science.gov (United States)

    Fairchild, Dana M [Armour, SD

    2010-03-02

    The bird guard provides a device to protect electrical insulators comprising a central shaft; a clamp attached to an end of the shaft to secure the device to a transmission tower; a top and bottom cover to shield transmission tower insulators; and bearings to allow the guard to rotate in order to frighten birds away from the insulators.

  16. Scaled Model Technology for Flight Research of General Aviation Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  17. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    Science.gov (United States)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.

  18. Flight Control Failure Detection and Control Redistribution Using Multiple Model Adaptive Estimation with Filter Spawning

    National Research Council Canada - National Science Library

    Torres, Michael

    2002-01-01

    ...) are used together to identify failures and apply appropriate corrections. This effort explores the performance of the MMAE/FS/CR in different regions of the flight envelope using model and gain scheduling...

  19. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks

    Science.gov (United States)

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-01-01

    Simple Summary The understanding of the spatio-temporal distribution of the species habitats would facilitate wildlife resource management and conservation efforts. Existing methods have poor performance due to the limited availability of training samples. More recently, location-aware sensors have been widely used to track animal movements. The aim of the study was to generate suitability maps of bar-head geese using movement data coupled with environmental parameters, such as remote sensing images and temperature data. Therefore, we modified a deep convolutional neural network for the multi-scale inputs. The results indicate that the proposed method can identify the areas with the dense goose species around Qinghai Lake. In addition, this approach might also be interesting for implementation in other species with different niche factors or in areas where biological survey data are scarce. Abstract With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results

  20. Implementation of Dryden Continuous Turbulence Model into Simulink for LSA-02 Flight Test Simulation

    Science.gov (United States)

    Ichwanul Hakim, Teuku Mohd; Arifianto, Ony

    2018-04-01

    Turbulence is a movement of air on small scale in the atmosphere that caused by instabilities of pressure and temperature distribution. Turbulence model is integrated into flight mechanical model as an atmospheric disturbance. Common turbulence model used in flight mechanical model are Dryden and Von Karman model. In this minor research, only Dryden continuous turbulence model were made. Dryden continuous turbulence model has been implemented, it refers to the military specification MIL-HDBK-1797. The model was implemented into Matlab Simulink. The model will be integrated with flight mechanical model to observe response of the aircraft when it is flight through turbulence field. The turbulence model is characterized by multiplying the filter which are generated from power spectral density with band-limited Gaussian white noise input. In order to ensure that the model provide a good result, model verification has been done by comparing the implemented model with the similar model that is provided in aerospace blockset. The result shows that there are some difference for 2 linear velocities (vg and wg), and 3 angular rate (pg, qg and rg). The difference is instantly caused by different determination of turbulence scale length which is used in aerospace blockset. With the adjustment of turbulence length in the implemented model, both model result the similar output.

  1. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  2. Mathematical modeling of Avian Influenza epidemic with bird vaccination in constant population

    Science.gov (United States)

    Kharis, M.; Amidi

    2018-03-01

    The development of the industrial world and human life is increasingly modern and less attention to environmental sustainability causes the virus causes the epidemic has a high tendency to mutate so that the virus that initially only attack animals, is also found to have the ability to attack humans. The epidemics that lasted some time were bird flu epidemics and swine flu epidemics. The flu epidemic led to several deaths and many people admitted to the hospital. Strain (derivatives) of H5N1 virus was identified as the cause of the bird flu epidemic while the H1N1 strain of the virus was identified as the cause of the swine flu epidemic. The symptoms are similar to seasonal flu caused by H3N2 strain of the virus. Outbreaks of bird flu and swine flu initially only attacked animals, but over time some people were found to be infected with the virus.

  3. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    Science.gov (United States)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  4. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  5. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling.

    Science.gov (United States)

    Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G

    2014-03-25

    Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system.

  6. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Science.gov (United States)

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  7. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Directory of Open Access Journals (Sweden)

    Manuela de Lucas

    Full Text Available BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed. We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  8. A GIS-based model of Serengeti grassland bird species | Gottschalk ...

    African Journals Online (AJOL)

    The study was conducted on the Serengeti Plains, Tanzania, combining (1) records from a bird survey, (2) local measurements of vegetation structure and precipitation, and (3) a habitat map derived from a Landsat satellite image classification. The question of whether ground-based or satellite data explained more of the ...

  9. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  10. Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft

    Science.gov (United States)

    Bahri, S.; Sasongko, R. A.

    2018-04-01

    The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.

  11. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  12. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  13. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  14. Hawaii ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for endangered waterbirds and passerine birds, migratory shorebirds and waterfowl, gulls and terns,...

  15. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.

    Science.gov (United States)

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-03-01

    Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in

  16. On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds

    Science.gov (United States)

    Bowers, Albion H.; Murillo, Oscar J.; Jensen, Robert (Red); Eslinger, Brian; Gelzer, Christian

    2016-01-01

    For nearly a century Ludwig Prandtl's lifting-line theory remains a standard tool for understanding and analyzing aircraft wings. The tool, said Prandtl, initially points to the elliptical spanload as the most efficient wing choice, and it, too, has become the standard in aviation. Having no other model, avian researchers have used the elliptical spanload virtually since its introduction. Yet over the last half-century, research in bird flight has generated increasing data incongruous with the elliptical spanload. In 1933 Prandtl published a little-known paper presenting a superior spanload: any other solution produces greater drag. We argue that this second spanload is the correct model for bird flight data. Based on research we present a unifying theory for superior efficiency and coordinated control in a single solution. Specifically, Prandtl's second spanload offers the only solution to three aspects of bird flight: how birds are able to turn and maneuver without a vertical tail; why birds fly in formation with their wingtips overlapped; and why narrow wingtips do not result in wingtip stall. We performed research using two experimental aircraft designed in accordance with the fundamentals of Prandtl's second paper, but applying recent developments, to validate the various potentials of the new spanload, to wit: as an alternative for avian researchers, to demonstrate the concept of proverse yaw, and to offer a new method of aircraft control and efficiency.

  17. The Terrestrial Investigation Model: A probabilistic risk assessment model for birds exposed to pesticides

    Science.gov (United States)

    One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....

  18. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    Science.gov (United States)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  19. Modeling the flocking propensity of passerine birds in two Neotropical habitats.

    Science.gov (United States)

    Pomara, Lars Y; Cooper, Robert J; Petit, Lisa J

    2007-08-01

    We examined the importance of mixed-species flock abundance, individual bird home range size, foraging height, and foraging patch characteristics in predicting the propensity for five Neotropical passerine bird species (Slaty Antwren, Myrmotherula schisticolor; Golden-crowned Warbler, Basileuterus culicivorus; Slate-throated Redstart, Myioborus miniatus; Wilson's Warbler, Wilsonia pusilla; and Black-and-white Warbler, Mniotilta varia) to forage within flocks, rather than solitarily. We used study plots in primary mid-elevation forest and in shade coffee fields in western Panama. We expected that all species would spend as much time as possible flocking, but that the social and environmental factors listed above would limit compatibility between flock movements and individual bird movements, explaining variability in flocking propensity both within and among species. Flocking propensity was well predicted by home range size and flock abundance together, for four of the five species. While flock abundance was uniform across plots, home range sizes varied among species and plots, so that home range size appeared to be the principle factor limiting flocking propensity. Estimates of flock abundance were still required, however, for calculating flocking propensity values. Foraging height and patch characteristics slightly improved predictive ability for the remaining species, M. miniatus. In general, individual birds tended to join flocks whenever one was available inside their home range, regardless of a flock's specific location within the home range. Flocking propensities of individual species were lower in shade coffee fields than in forests, and probably vary across landscapes with variations in habitat. This variability affects the stability and species composition of flocks, and may affect survival rates of individual species.

  20. A queueing model of pilot decision making in a multi-task flight management situation

    Science.gov (United States)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  1. Toward a Model-Based Approach to Flight System Fault Protection

    Science.gov (United States)

    Day, John; Murray, Alex; Meakin, Peter

    2012-01-01

    Fault Protection (FP) is a distinct and separate systems engineering sub-discipline that is concerned with the off-nominal behavior of a system. Flight system fault protection is an important part of the overall flight system systems engineering effort, with its own products and processes. As with other aspects of systems engineering, the FP domain is highly amenable to expression and management in models. However, while there are standards and guidelines for performing FP related analyses, there are not standards or guidelines for formally relating the FP analyses to each other or to the system hardware and software design. As a result, the material generated for these analyses are effectively creating separate models that are only loosely-related to the system being designed. Development of approaches that enable modeling of FP concerns in the same model as the system hardware and software design enables establishment of formal relationships that has great potential for improving the efficiency, correctness, and verification of the implementation of flight system FP. This paper begins with an overview of the FP domain, and then continues with a presentation of a SysML/UML model of the FP domain and the particular analyses that it contains, by way of showing a potential model-based approach to flight system fault protection, and an exposition of the use of the FP models in FSW engineering. The analyses are small examples, inspired by current real-project examples of FP analyses.

  2. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.

    Science.gov (United States)

    Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A

    2015-11-01

    A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.

  3. Predictable evolution toward flightlessness in volant island birds.

    Science.gov (United States)

    Wright, Natalie A; Steadman, David W; Witt, Christopher C

    2016-04-26

    Birds are prolific colonists of islands, where they readily evolve distinct forms. Identifying predictable, directional patterns of evolutionary change in island birds, however, has proved challenging. The "island rule" predicts that island species evolve toward intermediate sizes, but its general applicability to birds is questionable. However, convergent evolution has clearly occurred in the island bird lineages that have undergone transitions to secondary flightlessness, a process involving drastic reduction of the flight muscles and enlargement of the hindlimbs. Here, we investigated whether volant island bird populations tend to change shape in a way that converges subtly on the flightless form. We found that island bird species have evolved smaller flight muscles than their continental relatives. Furthermore, in 366 populations of Caribbean and Pacific birds, smaller flight muscles and longer legs evolved in response to increasing insularity and, strikingly, the scarcity of avian and mammalian predators. On smaller islands with fewer predators, birds exhibited shifts in investment from forelimbs to hindlimbs that were qualitatively similar to anatomical rearrangements observed in flightless birds. These findings suggest that island bird populations tend to evolve on a trajectory toward flightlessness, even if most remain volant. This pattern was consistent across nine families and four orders that vary in lifestyle, foraging behavior, flight style, and body size. These predictable shifts in avian morphology may reduce the physical capacity for escape via flight and diminish the potential for small-island taxa to diversify via dispersal.

  4. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  5. Columbia River ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, diving birds, seabirds, passerine birds, gulls, and terns in...

  6. A resource-based modelling framework to assess habitat suitability for steppe birds in semiarid Mediterranean agricultural systems.

    Directory of Open Access Journals (Sweden)

    Laura Cardador

    Full Text Available European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species' key resource requirements (diet, foraging habitat and nesting site, and examine whether it can be used to link land-use and local species' distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species' occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models.

  7. COMPLETE SEPARATION OF THE VERTICAL AND HORIZONTAL INDEPENDENT COMPONENTS OF THE FLIGHT IN POLICOPTER UAV NAU PKF "AURORA" AND MATHEMATICAL MODEL OF THIS FLIGHT

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-07-01

    Full Text Available Purpose: This article presents a mathematical model and the experimental results of automatic flights of the policopter UAV NAU PKF "Aurora" of oktacopter scheme with additional elektroimpeler engines of horizontal thrust. Methods: UAV NAU PKF "Aurora" is developed for experimental flights in manual, semi-automatic and unmanned modes. The uniqueness and scientific novelty of data of flight testes is in a complete separation and isolation of vertical and horizontal components of the flight, which enables a fundamentally new way of moving of vehicle in the aerial space. This approach gives a ability to obtain all advantages and to eliminate disadvantages of helicopter and airplane in fundamentally new aircraft by structure and by function – namely in the policopter flyer with additional independent engines of the lateral thrust. Results: Obtained a new experimental data that allowed to better understand the nature of the physical forces, providing the flight of the policopter. Discussion: Revised a physical basis of the airscrew (propeller, namely on the example of flight of the policopter proved that most of the thrust of the propeller provided by the mechanical impulse (kinetic energy Ек=mv2/2 by the impulse, that a airscrew receives at his collisions with air molecules,but not by the gradient of air pressure below and above the airscrew. Is put forward a hypothesis of gravitational nature of the flight and introduced the notion of "functional antigravity", that a force completely identical in function and opposite on the direction of the force of gravity (gravity force. Deduced a mathematical formula of "functionally antigravitational" transport, namely:G·M·m/R2 = mI·v2/2 – for the flights of the aircraft with a mass m over universal astronomical body with a mass M, and m·g = mI·v2/2 – for the flights of the aircraft with mass m over a planet Earth.

  8. Kinematic Optimization in Birds, Bats and Ornithopters

    Science.gov (United States)

    Reichert, Todd

    Birds and bats employ a variety of advanced wing motions in the efficient production of thrust. The purpose of this thesis is to quantify the benefit of these advanced wing motions, determine the optimal theoretical wing kinematics for a given flight condition, and to develop a methodology for applying the results in the optimal design of flapping-wing aircraft (ornithopters). To this end, a medium-fidelity, combined aero-structural model has been developed that is capable of simulating the advanced kinematics seen in bird flight, as well as the highly non-linear structural deformations typical of high-aspect ratio wings. Five unique methods of thrust production observed in natural species have been isolated, quantified and thoroughly investigated for their dependence on Reynolds number, airfoil selection, frequency, amplitude and relative phasing. A gradient-based optimization algorithm has been employed to determined the wing kinematics that result in the minimum required power for a generalized aircraft or species in any given flight condition. In addition to the theoretical work, with the help of an extended team, the methodology was applied to the design and construction of the world's first successful human-powered ornithopter. The Snowbird Human-Powered Ornithopter, is used as an example aircraft to show how additional design constraints can pose limits on the optimal kinematics. The results show significant trends that give insight into the kinematic operation of natural species. The general result is that additional complexity, whether it be larger twisting deformations or advanced wing-folding mechanisms, allows for the possibility of more efficient flight. At its theoretical optimum, the efficiency of flapping-wings exceeds that of current rotors and propellers, although these efficiencies are quite difficult to achieve in practice.

  9. Aging in Birds.

    Science.gov (United States)

    Travin, D Y; Feniouk, B A

    2016-12-01

    Rodents are the most commonly used model organisms in studies of aging in vertebrates. However, there are species that may suit this role much better. Most birds (Aves), having higher rate of metabolism, live two-to-three times longer than mammals of the same size. This mini-review briefly covers several evolutionary, ecological, and physiological aspects that may contribute to the phenomenon of birds' longevity. The role of different molecular mechanisms known to take part in the process of aging according to various existing theories, e.g. telomere shortening, protection against reactive oxygen species, and formation of advanced glycation end-products is discussed. We also address some features of birds' aging that make this group unique and perspective model organisms in longevity studies.

  10. MODELING OF BEHAVIORAL ACTIVITY OF AIR NAVIGATION SYSTEM'S HUMAN-OPERATOR IN FLIGHT EMERGENCIES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2012-09-01

    Full Text Available  The Air Navigation System is presented as a complex socio-technical system. The influence on decision-making by Air Navigation System's human-operator of the professional factors as well as the factors of non-professional nature has been defined. Logic determined and stochastic models of decision-making by the Air Navigation System's human-operator in flight emergencies have been developed. The scenarios of developing a flight situation in case of selecting either the positive or negative pole in accordance with the reflexive theory have been obtained. The informational support system of the operator in the unusual situations on the basis of Neural Network model of evaluating the efficiency of the potential alternative of flight completion has been built.

  11. Birds as predators in tropical agroforestry systems.

    Science.gov (United States)

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  12. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  13. Verification of Simulation Results Using Scale Model Flight Test Trajectories

    National Research Council Canada - National Science Library

    Obermark, Jeff

    2004-01-01

    .... A second compromise scaling law was investigated as a possible improvement. For ejector-driven events at minimum sideslip, the most important variables for scale model construction are the mass moment of inertia and ejector...

  14. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models.

    Science.gov (United States)

    Korner-Nievergelt, Fränzi; Brinkmann, Robert; Niermann, Ivo; Behr, Oliver

    2013-01-01

    Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.

  15. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models.

    Directory of Open Access Journals (Sweden)

    Fränzi Korner-Nievergelt

    Full Text Available Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.

  16. Landscape associations of birds during migratory stopover

    Science.gov (United States)

    Diehl, Robert Howard

    The challenge for migratory bird conservation is habitat preservation that sustains breeding, migration, and non-breeding biological processes. In choosing an appropriately scaled conservation arena for habitat preservation, a conservative and thorough examination of stopover habitat use patterns by migrants works back from the larger scales at which such relationships may occur. Because the use of stopover habitats by migrating birds occurs at spatial scales larger than traditional field techniques can easily accommodate, I quantify these relationship using the United States system of weather surveillance radars (popularly known as NEXRAD). To provide perspective on use of this system for biologists, I first describe the technical challenges as well as some of the biological potential of these radars for ornithological research. Using data from these radars, I then examined the influence of Lake Michigan and the distribution of woodland habitat on migrant concentrations in northeastern Illinois habitats during stopover. Lake Michigan exerted less influence on migrant abundance and density than the distribution and availability of habitat for stopover. There was evidence of post-migratory movement resulting in habitats within suburban landscapes experiencing higher migrant abundance but lower migrant density than habitats within nearby urban and agricultural landscapes. Finally, in the context of hierarchy theory, I examined the influence of landscape ecological and behavioral processes on bird density during migratory stopover. Migrant abundance did not vary across landscapes that differed considerably in the amount of habitat available for stopover. As a result, smaller, more isolated patches held higher densities of birds. Spatial models of migrant habitat selection based on migrant proximity to a patch explained nearly as much variance in the number of migrants occupying patches (R2 = 0.88) as selection models based on migrant interception of patches during

  17. Stall Recovery in a Centrifuge-Based Flight Simulator With an Extended Aerodynamic Model

    NARCIS (Netherlands)

    Ledegang, W.D.; Groen, E.L.

    2015-01-01

    We investigated the performance of 12 airline pilots in recovering from an asymmetrical stall in a flight simulator featuring an extended aerodynamic model of a transport-category aircraft, and a centrifuge-based motion platform capable of generating enhanced buffet motion and g-cueing. All pilots

  18. Dealing with unexpected events on the flight deck : A conceptual model of startle and surprise

    NARCIS (Netherlands)

    Landman, H.M.; Groen, E.L.; Paassen, M.M. van; Bronkhorst, A.W.; Mulder, M.

    2017-01-01

    Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of

  19. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    Science.gov (United States)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  20. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    Science.gov (United States)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements

  1. A simple model to estimate radiation doses to aircrew during air flights in Brazil and abroad

    International Nuclear Information System (INIS)

    Lavalle Heilbron Filho, Paulo Fernando; Pérez Guerrero, Jesus Salvador; Lavalle Heilbron, Rafael Cabidolusso; Amaral, Mario Luth Gonçalves Henriques do

    2015-01-01

    The objective of this article is to present the results obtained from the development of a simple model used to estimate cosmic radiation doses from crew members taking into consideration the variation of the dose rates with the altitude and the latitude, airplane cruise velocity and other important parameters such as, cruise height, takeoff time, landing time, takeoff angle, landing angle. The model was incorporated into a Brazilian computer program developed using the “mathematica” symbolic software. The data used to calculate the dose rates with altitude and latitude by the authors takes into consideration the mean solar activity from January 1958 to December 2008 (51 years). Twenty two data including international and national American flights were used to test the program and the results between them compared, showing good agreement. The program also gives excellent results for the doses expected for the crew members of three Brazilian national flights (between capitals cities in Brazil) when compared with the doses values measured for these flights using a radiation detector. According to the results the doses expected for the Brazilian crews of domestic flights can, in some cases, depending on the number of annual flights, overcome the limit of 1 mSv/year established by the Brazilian competent authority in Brazil (Brazilian Nuclear Energy Commission- CNEN) for public annual exposure. In the case of the simulated international flights the results shows a good agreement with the results found in literature especially when considered the different database series used by the authors and by the other references for the solar activity. (authors)

  2. Statistical mechanics for natural flocks of birds

    Science.gov (United States)

    Bialek, William; Cavagna, Andrea; Giardina, Irene; Mora, Thierry; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2012-01-01

    Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction. PMID:22427355

  3. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  4. Integrated modeling and robust control for full-envelope flight of robotic helicopters

    Science.gov (United States)

    La Civita, Marco

    Robotic helicopters have attracted a great deal of interest from the university, the industry, and the military world. They are versatile machines and there is a large number of important missions that they could accomplish. Nonetheless, there are only a handful of documented examples of robotic-helicopter applications in real-world scenarios. This situation is mainly due to the poor flight performance that can be achieved and---more important---guaranteed under automatic control. Given the maturity of control theory, and given the large body of knowledge in helicopter dynamics, it seems that the lack of success in flying high-performance controllers for robotic helicopters, especially by academic groups and by small industries, has nothing to do with helicopters or control theory as such. The problem lies instead in the large amount of time and resources needed to synthesize, test, and implement new control systems with the approach normally followed in the aeronautical industry. This thesis attempts to provide a solution by presenting a modeling and control framework that minimizes the time, cost, and both human and physical resources necessary to design high-performance flight controllers. The work is divided in two main parts. The first consists of the development of a modeling technique that allows the designer to obtain a high-fidelity model adequate for both real-time simulation and controller design, with few flight, ground, and wind-tunnel tests and a modest level of complexity in the dynamic equations. The second consists of the exploitation of the predictive capabilities of the model and of the robust stability and performance guarantees of the Hinfinity loop-shaping control theory to reduce the number of iterations of the design/simulated-evaluation/flight-test-evaluation procedure. The effectiveness of this strategy is demonstrated by designing and flight testing a wide-envelope high-performance controller for the Carnegie Mellon University robotic

  5. Employing organizational modeling and simulation of the KC-135 depot's flight controls repair cell

    OpenAIRE

    Paskin, Matthew A.; Trevino, Alice W.; Ferrer, Geraldo; Dillard, John T.

    2008-01-01

    Today’s environment of increased operations tempo is stressing the KC- 135 Stratotanker fleet. With an 80-year life span expectancy, effectively maintaining these aircraft is challenging. This research modeled the KC- 135 programmed depot maintenance (PDM) flight controls repair cell to identify improvement opportunities within the repair process. Computational organizational modeling (COM) incorporates the human element along with organizational design theory. By employing ...

  6. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight

    Directory of Open Access Journals (Sweden)

    Zhiquan LI

    2017-12-01

    Full Text Available The existing full-span models of the tiltrotor aircraft adopted the rigid blade model without considering the coupling relationship among the elastic blade, wing and fuselage. To overcome the limitations of the existing full-span models and improve the precision of aeroelastic analysis of tiltrotor aircraft in forward flight, the aeroelastic stability analysis model of full-span tiltrotor aircraft in forward flight has been presented in this paper by considering the coupling among elastic blade, wing, fuselage and various components. The analytical model is validated by comparing with the calculation results and experimental data in the existing references. The influence of some structural parameters, such as the fuselage degrees of freedom, relative displacement between the hub center and the gravity center, and nacelle length, on the system stability is also investigated. The results show that the fuselage degrees of freedom decrease the critical stability velocity of tiltrotor aircraft, and the variation of the structural parameters has great influence on the system stability, and the instability form of system can change between the anti-symmetric and symmetric wing motions of vertical and chordwise bending. Keywords: Aeroelastic stability, Forward flight, Full-span model, Modal analysis, Tiltrotor aircraft

  7. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Science.gov (United States)

    Swanson, David L; Thomas, Nathan E; Liknes, Eric T; Cooper, Sheldon J

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum) (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; M(sum) and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and M(sum) only) and examined correlations among these variables. We also measured BMR and M(sum) in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum) or MMR in juncos. Moreover, no significant correlation between M(sum) and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum) were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum) were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic

  8. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Directory of Open Access Journals (Sweden)

    David L Swanson

    Full Text Available The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum (maximum thermoregulatory metabolic rate and MMR (maximum exercise metabolic rate in a hop-flutter chamber in winter for dark-eyed juncos (Junco hyemalis, American goldfinches (Carduelis tristis; M(sum and MMR only, and black-capped chickadees (Poecile atricapillus; BMR and M(sum only and examined correlations among these variables. We also measured BMR and M(sum in individual house sparrows (Passer domesticus in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum or MMR in juncos. Moreover, no significant correlation between M(sum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential

  9. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  10. BIRDS’ FLIGHT ENERGY PREDICTIONS AND APPLICATION TO RADAR-TRACKING STUDY

    Directory of Open Access Journals (Sweden)

    Matsyura Alex

    2013-12-01

    Full Text Available In ofered research, we propose to observe diurnal soaring birds to check, whether there the positions of birds in formations are such, that the wing tip interval and depth met the predictions of aerodynamic theory for achievement of maximal conservation of energy or predictions of the hypothesis of communication. We also can estimate, whether adverse conditions of a wind influence the abilty of birds to support formation. We can asume that windy conditions during flight might make precision flight more dificult by inducing both unpredictable bird and vortex positions. To this, we ned to found change in wing-tip spacing variation with increasing wind sped, sugesting or rejecting that in high winds bird skeins maintained similar variation to that on calm days. The interelation betwen variation of mean depth and wind sped should prove this hypothesis. Litle is known about the importance of depth, but in high winds the vortex is likely to break up more rapidly and its location become unpredictable the further back a bird flies; therefore, a shift towards skeins with more regular depths at high wind speds may compensate for the unpredictabilty of the vortex locations. Any significant relationship betwen the standard deviation of wing-tip spacing and wind sped sugests that wind has a major efect on optimal positioning. Results of proposed study wil be used also as the auxilary tol in radar research of bird migration, namely in research of flight features of soaring birds. It is extremely important to determine al pertinent characteristics of flock for model species, namely flocking birds

  11. Testing the time-of-flight model for flagellar length sensing.

    Science.gov (United States)

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  13. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  14. 9 CFR 93.104 - Certificate for pet birds, commercial birds, zoological birds, and research birds.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Certificate for pet birds, commercial birds, zoological birds, and research birds. 93.104 Section 93.104 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN...

  15. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  16. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  17. Aerodynamic efficiency of flapping flight: analysis of a two-stroke model.

    Science.gov (United States)

    Wang, Z Jane

    2008-01-01

    To seek the simplest efficient flapping wing motions and understand their relation to steady flight, a two-stroke model in the quasi-steady limit was analyzed. It was found that a family of two-stroke flapping motions have aerodynamic efficiency close to, but slightly lower than, the optimal steady flight. These two-stroke motions share two common features: the downstroke is a gliding motion and the upstroke has an angle of attack close to the optimal of the steady flight of the same wing. With the reduced number of parameters, the aerodynamic cost function in the parameter space can be visualized. This was examined for wings of different lift and drag characteristics at Reynolds numbers between 10(2) and 10(6). The iso-surfaces of the cost function have a tube-like structure, implying that the solution is insensitive to a specific direction in the parameter space. Related questions in insect flight that motivated this work are discussed.

  18. Multiple Conceptual Modelling of Perceived Quality of In-flight Airline Services

    Directory of Open Access Journals (Sweden)

    Urban Šebjan

    2017-06-01

    Full Text Available Despite growing literature on the different aspects of airline service quality in relation to behavioural intentions, less attention has been paid to some specific aspects of in-flight services. The focus of the present research is, therefore, on a multiple conceptual model of the quality of in-flight services in relation to passengers’ perception of value, followed by recommendations (word of mouth - WOM of airlines, as well as the quality and comfort of airline seats. The study is performed using two databases of reviewers’/passengers’ opinions regarding the quality of in-flight airline services and airline seat comfort. Our research results reveal that the perceived comfort of the airplane seat is the most important factor of passengers’ perceived quality of in-flight airline services, which also considerably affects the passengers’ perception of value, and consequently moderates behavioural intentions (in our research, expressed through positive WOM. The analysis of the relative importance of the components of perceived airline seats’ comfort shows that seat width is the most significant factor that contributes to the overall perceived comfort of the airline seat.

  19. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    Science.gov (United States)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; hide

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  20. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    Science.gov (United States)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  1. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Science.gov (United States)

    Chen, Qiang; Gorb, Stanislav; Kovalev, Alexander; Li, Zhiyong; Pugno, Nicola

    2016-10-01

    Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the interlocking mechanical behavior of the barbules is very important to understand the function and long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high robustness and flaw-tolerant design of the structure. This work contributes to the understanding of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and provides a basis for design of feather-inspired materials with robust interlocking mechanism, such as advanced bio-inspired micro-zipping devices.

  2. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.

    Directory of Open Access Journals (Sweden)

    Rafael Villegas-Patraca

    Full Text Available The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura and Swainson's Hawks (Buteo swainsoni. We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region.

  3. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.

    Science.gov (United States)

    Villegas-Patraca, Rafael; Cabrera-Cruz, Sergio A; Herrera-Alsina, Leonel

    2014-01-01

    The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura) and Swainson's Hawks (Buteo swainsoni). We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region.

  4. Soaring Migratory Birds Avoid Wind Farm in the Isthmus of Tehuantepec, Southern Mexico

    Science.gov (United States)

    Villegas-Patraca, Rafael; Cabrera-Cruz, Sergio A.; Herrera-Alsina, Leonel

    2014-01-01

    The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura) and Swainson's Hawks (Buteo swainsoni). We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region. PMID:24647442

  5. 77 FR 69569 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Science.gov (United States)

    2012-11-20

    ... attitude protection functions through the normal modes of the electronic flight control system that will...-1211; Notice No. 25-12-10-SC] Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and Roll Limiting Functions AGENCY: Federal Aviation Administration (FAA), DOT...

  6. Bird interactions with wind turbines : a Canadian case study

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.; Hamilton, B. [TAEM Ltd., Calgary, AB (Canada)

    2004-07-01

    An environmental study has been conducted on a wind farm adjacent to Castle River, in the foothills of the Rocky Mountains in Alberta. The objective was to determine the impact of the many wind turbines on birds. The study involved observations of different bird species including raptors, waterfowl and passerines. The observations looked at bird numbers, location relative to turbines, and changes in flight pattern. The study found that raptors flew around or over the turbine blades, while passerines remained below, and waterfowl flew up and over the blades. Very few dead birds were found over the monitoring period, suggesting that wind turbines do not have a major impact on birds. figs.

  7. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling

    NARCIS (Netherlands)

    Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G

    2014-01-01

    Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced

  8. Evidence for Endothermy in Pterosaurs Based on Flight Capability Analyses

    Science.gov (United States)

    Jenkins, H. S.; Pratson, L. F.

    2005-12-01

    Previous attempts to constrain flight capability in pterosaurs have relied heavily on the fossil record, using bone articulation and apparent muscle allocation to evaluate flight potential (Frey et al., 1997; Padian, 1983; Bramwell, 1974). However, broad definitions of the physical parameters necessary for flight in pterosaurs remain loosely defined and few systematic approaches to constraining flight capability have been synthesized (Templin, 2000; Padian, 1983). Here we present a new method to assess flight capability in pterosaurs as a function of humerus length and flight velocity. By creating an energy-balance model to evaluate the power required for flight against the power available to the animal, we derive a `U'-shaped power curve and infer optimal flight speeds and maximal wingspan lengths for pterosaurs Quetzalcoatlus northropi and Pteranodon ingens. Our model corroborates empirically derived power curves for the modern black-billed magpie ( Pica Pica) and accurately reproduces the mechanical power curve for modern cockatiels ( Nymphicus hollandicus) (Tobalske et al., 2003). When we adjust our model to include an endothermic metabolic rate for pterosaurs, we find a maximal wingspan length of 18 meters for Q. northropi. Model runs using an exothermic metabolism derive maximal wingspans of 6-8 meters. As estimates based on fossil evidence show total wingspan lengths reaching up to 15 meters for Q. northropi, we conclude that large pterosaurs may have been endothermic and therefore more metabolically similar to birds than to reptiles.

  9. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  10. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  11. Use of multispecies occupancy models to evaluate the response of bird communities to forest degradation associated with logging.

    Science.gov (United States)

    Carrillo-Rubio, Eduardo; Kéry, Marc; Morreale, Stephen J; Sullivan, Patrick J; Gardner, Beth; Cooch, Evan G; Lassoie, James P

    2014-08-01

    Forest degradation is arguably the greatest threat to biodiversity, ecosystem services, and rural livelihoods. Therefore, increasing understanding of how organisms respond to degradation is essential for management and conservation planning. We were motivated by the need for rapid and practical analytical tools to assess the influence of management and degradation on biodiversity and system state in areas subject to rapid environmental change. We compared bird community composition and size in managed (ejido, i.e., communally owned lands) and unmanaged (national park) forests in the Sierra Tarahumara region, Mexico, using multispecies occupancy models and data from a 2-year breeding bird survey. Unmanaged sites had on average higher species occupancy and richness than managed sites. Most species were present in low numbers as indicated by lower values of detection and occupancy associated with logging-induced degradation. Less than 10% of species had occupancy probabilities >0.5, and degradation had no positive effects on occupancy. The estimated metacommunity size of 125 exceeded previous estimates for the region, and sites with mature trees and uneven-aged forest stand characteristics contained the highest species richness. Higher estimation uncertainty and decreases in richness and occupancy for all species, including habitat generalists, were associated with degraded young, even-aged stands. Our findings show that multispecies occupancy methods provide tractable measures of biodiversity and system state and valuable decision support for landholders and managers. These techniques can be used to rapidly address gaps in biodiversity information, threats to biodiversity, and vulnerabilities of species of interest on a landscape level, even in degraded or fast-changing environments. Moreover, such tools may be particularly relevant in the assessment of species richness and distribution in a wide array of habitats. © 2014 Society for Conservation Biology.

  12. Model Predictive Flight Control System with Full State Observer using H∞ Method

    Science.gov (United States)

    Sanwale, Jitu; Singh, Dhan Jeet

    2018-03-01

    This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.

  13. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  14. Flight controller design of unmanned airplane for radiation monitoring system via structured robust controller design using multiple model approach. Radiation monitoring flight in Namie-machi in Fukushima prefecture

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2015-01-01

    Due to the tragic accident of radioactive contaminant spread from Fukushima Dai-ichi nuclear power plant, the necessity of unmanned systems for radiation monitoring has been increasing. This paper concerns the flight controller design of an unmanned airplane which has been developed for radiation monitoring around the power plant. The flight controller consists of conventional control elements, i.e. Stability/Control Augmentation System (S/CAS) with PI controllers and guidance loops with PID controllers. The gains in these controllers are designed by minimizing appropriately defined cost functions for several possible models and disturbances to produce structured robust flight controllers. (This method is called as 'multiple model approach'.) Control performance of our flight controller was evaluated through flight tests and a primitive flight of radiation monitoring in Namie-machi in Fukushima prefecture was conducted in Jan. 2014. Flight results are included in this paper. (author)

  15. The scanning mechanism for ROSETTA/MIDAS: from an engineering model to the flight model

    Science.gov (United States)

    Le Letty, R.; Barillot, F.; Lhermet, N.; Claeyssen, F.; Yorck, M.; Gavira Izquierdo, J.; Arends, H.

    2001-09-01

    The MIDAS (Micro Imaging Dust Analysis System) instrument jointly developed by IWF Graz (AT) and the Solar Space Division of ESA/ESTEC (NL) will flow on ROSETTA and will analyse the dust of the 46P/Wirtanen comet using an Atomic Force Microscope (AFM). A piezoelectric XYZ stage, used to scan the sample in 3 axis, is part of the instrument and has been fully designed and qualified under the ESA/ESTEC contract no13090/98/NL/MV. Two qualification models (EQM/QM) and two flight models (FM/FSM) have been integrated and fully tested within 18 months. The basic principle of the stage has been described in a previous paper. The XY stage includes a latch mechanism based on two Shape Memory actuators. This paper focuses on the lessons learned during the qualification campaign, especially on the testing activities and on the latch mechanism. The XYZ stage has followed a full qualification campaign including Thermal Vacuum cycles, Random Vibrations tests and lifetime tests. The latch mechanism has been designed and tested with the following features: easiness of locking and refurbishment operations, compatibility with the parallel two degrees of freedom mechanism, low shock device. It has been tested more than 20 times, including 4 tests in the worst case conditions (eg the most demanding power case at -20°C) and 2 times after a vibration test. The results and the parameters influencing the reproducibility are discussed. The functional performances have been assessed using a dedicated test bench. Comments are made on the measurements techniques used to get results independent from the drift effect displayed by the piezo components. The calibration work (static and gain of the position sensors) have played an important role during the testing activities. Several parameters (temperature, piezo drift effect and external forces acting on the stage and coming from the coarse approach mechanism) affects the static position. Because of the limited stroke range of reading of the

  16. Modeling and emergence of flapping flight of butterfly based on experimental measurements

    OpenAIRE

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Nishikata, Tomomi; Hirai, Norio; Iima, Makoto; Yokoyama, Naoto

    2012-01-01

    The objective of this paper is to clarify the principle of stabilization in flapping-of-wing flight of a butterfly, which is a rhythmic and cyclic motion. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. For the aerodynamic forces, a panel method is applied. Validity of the mathematical models is shown by an agreement of the numerical result with the measured data. Then, periodic orbits of flappi...

  17. Integrated Climate Change and Threatened Bird Population Modeling to Mitigate Operations Risks on Florida Military Installations

    Science.gov (United States)

    2013-01-01

    Morris, 1991) and a quantitative variance-based method ( Sobol ’, 1993). The screening method allows an initial reduction in the number of parameters...generic (model free) methods, a qualitative Morris method and a quantitative variance-based Sobol method. The Morris method ranks the model inputs...according to their importance in driving model outputs uncertainty, while the Sobol method computes the contribution of each model input to the

  18. Population dynamics and flight phenology model of codling moth differ between commercial and abandoned apple orchard ecosystems

    Directory of Open Access Journals (Sweden)

    Neelendra K Joshi

    2016-09-01

    Full Text Available Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM, Cydia pomonella (L. (Lepidoptera: Tortricidae, which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight and egg-hatch allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e.,1970’s model. In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology.

  19. Avian Alert - a bird migration early warning system

    OpenAIRE

    van Gasteren, H.; Shamoun-Baranes, J.; Ginati, A.; Garofalo, G.

    2008-01-01

    Every year billions of birds migrate from breeding areas to their wintering ranges, some travelling over 10,000 km. Stakeholders interested in aviation flight safety, spread of disease, conservation, education, urban planning, meteorology, wind turbines and bird migration ecology are interested in information on bird movements. Collecting and disseminating useful information about such mobile creatures exhibiting diverse behaviour is no simple task. However, ESA’s Integrated Application Promo...

  20. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Science.gov (United States)

    2011-03-18

    ... electronic flight control system. The applicable airworthiness regulations do not contain adequate or...). Novel or Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This system provides an electronic interface between the pilot's flight controls and the flight control...

  1. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  2. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  3. Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering

    International Nuclear Information System (INIS)

    Xu, Na; Sun, Mao

    2014-01-01

    Many insects hover with their wings beating in a horizontal plane (‘normal hovering’), while some insects, e.g., hoverflies and dragonflies, hover with inclined stroke-planes. Here, we investigate the lateral dynamic flight stability of a hovering model hoverfly. The aerodynamic derivatives are computed using the method of computational fluid dynamics, and the equations of motion are solved by the techniques of eigenvalue and eigenvector analysis. The following is shown: The flight of the insect is unstable at normal hovering (stroke-plane angle equals 0) and the instability becomes weaker as the stroke-plane angle increases; the flight becomes stable at a relatively large stroke-plane angle (larger than about 24°). As previously shown, the instability at normal hovering is due to a positive roll-moment/side-velocity derivative produced by the ‘changing-LEV-axial-velocity’ effect. When the stroke-plane angle increases, the wings bend toward the back of the body, and the ‘changing-LEV-axial-velocity’ effect decreases; in addition, another effect, called the ‘changing-relative-velocity’ effect (the ‘lateral wind’, which is due to the side motion of the insect, changes the relative velocity of its wings), becomes increasingly stronger. This causes the roll-moment/side-velocity derivative to first decrease and then become negative, resulting in the above change in stability as a function of the stroke-plane angle. (paper)

  4. Conservation Priorities for Terrestrial Birds in the Northeastern United States

    Science.gov (United States)

    Kenneth V. Rosenberg; Jeffrey V. Wells

    2005-01-01

    As part of the Partners in Flight (PIF) bird-conservation planning process, we assessed breeding land bird species according to seven categories of population vulnerability to derive a priority species pool in each of 12 physiographic areas that overlap the northeastern U.S. We then grouped species into the following habitat-species suites: (1) boreal-mountaintop...

  5. Avian Alert - a bird migration early warning system

    NARCIS (Netherlands)

    van Gasteren, H.; Shamoun-Baranes, J.; Ginati, A.; Garofalo, G.

    2008-01-01

    Every year billions of birds migrate from breeding areas to their wintering ranges, some travelling over 10,000 km. Stakeholders interested in aviation flight safety, spread of disease, conservation, education, urban planning, meteorology, wind turbines and bird migration ecology are interested in

  6. Modeling and Control of an Ornithopter for Non-Equilibrium Maneuvers

    OpenAIRE

    Rose, Cameron Jarrel

    2015-01-01

    Flapping-winged flight is very complex, and it is difficult to efficiently model the unsteady airflow and nonlinear dynamics for online control. While steady state flight is well understood, transitions between flight regimes are not readily modeled or controlled. Maneuverability in non-equilibrium flight, which birds and insects readily exhibit in nature, is necessary to operate in the types of cluttered environments that small-scale flapping-winged robots are best suited for. The advantages...

  7. Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird: implications for ecologists

    NARCIS (Netherlands)

    Crommenacker, van de J.; Horrocks, N.P.C.; Versteegh, M.A.; Tieleman, B.I.; Komdeur, J.; Matson, K.D.

    2010-01-01

    One route to gain insight into the causes and consequences of ecological differentiation is to understand the underlying physiological mechanisms. We explored the relationships between immunological and oxidative status and investigated how birds cope physiologically with the effects of

  8. Landscape-based population viability models demonstrate importance of strategic conservation planning for birds

    Science.gov (United States)

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd. Jones-Farland

    2013-01-01

    Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...

  9. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    Science.gov (United States)

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  10. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  11. Ontogeny of lift and drag production in ground birds.

    Science.gov (United States)

    Heers, Ashley M; Tobalske, Bret W; Dial, Kenneth P

    2011-03-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.

  12. Palaearctic-African Bird Migration

    DEFF Research Database (Denmark)

    Iwajomo, Soladoye Babatola

    Bird migration has attracted a lot of interests over past centuries and the methods used for studying this phenomenon has greatly improved in terms of availability, dimension, scale and precision. In spite of the advancements, relatively more is known about the spring migration of trans-Saharan m......Bird migration has attracted a lot of interests over past centuries and the methods used for studying this phenomenon has greatly improved in terms of availability, dimension, scale and precision. In spite of the advancements, relatively more is known about the spring migration of trans...... of birds from Europe to Africa and opens up the possibility of studying intra-African migration. I have used long-term, standardized autumn ringing data from southeast Sweden to investigate patterns in biometrics, phenology and population trends as inferred from annual trapping totals. In addition, I...... in the population of the species. The papers show that adult and juvenile birds can use different migration strategies depending on time of season and prevailing conditions. Also, the fuel loads of some individuals were theoretically sufficient for a direct flight to important goal area, but whether they do so...

  13. Higher Dimensional Spacetimes for Visualizing and Modeling Subluminal, Luminal and Superluminal Flight

    International Nuclear Information System (INIS)

    Froning, H. David; Meholic, Gregory V.

    2010-01-01

    This paper briefly explores higher dimensional spacetimes that extend Meholic's visualizable, fluidic views of: subluminal-luminal-superluminal flight; gravity, inertia, light quanta, and electromagnetism from 2-D to 3-D representations. Although 3-D representations have the potential to better model features of Meholic's most fundamental entities (Transluminal Energy Quantum) and of the zero-point quantum vacuum that pervades all space, the more complex 3-D representations loose some of the clarity of Meholic's 2-D representations of subluminal and superlumimal realms. So, much new work would be needed to replace Meholic's 2-D views of reality with 3-D ones.

  14. Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion

    Science.gov (United States)

    Xu, Xiao-Ke; Small, Michael

    2012-01-01

    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred. PMID:22479176

  15. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.

    Directory of Open Access Journals (Sweden)

    Graciano Dieck Kattas

    Full Text Available Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals may be inferred.

  16. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  17. Modeling of a 3D CMOS sensor for time-of-flight measurements

    Science.gov (United States)

    Kuhla, Rico; Hosticka, Bedrich J.; Mengel, Peter; Listl, Ludwig

    2004-02-01

    A solid state 3D-CMOS camera system for direct time-of-flight image acquisition consisting of a CMOS imaging sensor, a laser diode module for active laser pulse illumination and all optics for image forming is presented, including MDSI & CDS algorithms for time-of-flight evaluation from intensity imaging. The investigation is carried out using ideal and real signals. For real signals the narrow infrared laser pulse of the laser diode module and the shutter function of the sensors column circuit were sampled by a new sampling procedure. A discrete sampled shutter function was recorded by using the impulse response of a narrow pulse of FWHM=50ps and an additional delay block with step size of Δτ = 0.25ns. A deterministic system model based on LTI transfer functions was developed. The visual shutter windows give a good understanding of differences between ideal and real output functions of measurement system. Simulations of shutter and laser pulse brought out an extended linear delay domain from MDSI. A stochastic model for the transfer function and photon noise in time domain was developed. We used the model to investigate noise in variation the laser pulse shutter configuration.

  18. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    Science.gov (United States)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed

  19. Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models

    Directory of Open Access Journals (Sweden)

    Achim Ionita

    2009-01-01

    Full Text Available The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.

  20. Economic modeling of fault tolerant flight control systems in commercial applications

    Science.gov (United States)

    Finelli, G. B.

    1982-01-01

    This paper describes the current development of a comprehensive model which will supply the assessment and analysis capability to investigate the economic viability of Fault Tolerant Flight Control Systems (FTFCS) for commercial aircraft of the 1990's and beyond. An introduction to the unique attributes of fault tolerance and how they will influence aircraft operations and consequent airline costs and benefits is presented. Specific modeling issues and elements necessary for accurate assessment of all costs affected by ownership and operation of FTFCS are delineated. Trade-off factors are presented, aimed at exposing economically optimal realizations of system implementations, resource allocation, and operating policies. A trade-off example is furnished to graphically display some of the analysis capabilities of the comprehensive simulation model now being developed.

  1. An exact model for airline flight network optimization based on transport momentum and aircraft load factor

    Directory of Open Access Journals (Sweden)

    Daniel Jorge Caetano

    2017-12-01

    Full Text Available The problem of airline flight network optimization can be split into subproblems such as Schedule Generation (SG and Fleet Assignment (FA, solved in consecutive steps or in an integrated way, usually based on monetary costs and revenue forecasts. A linear pro­gramming model to solve SG and FA in an integrated way is presented, but with an al­ternative approach based on transport momentum and aircraft load factor. This alterna­tive approach relies on demand forecast and allows obtaining solutions considering min­imum average load factors. Results of the proposed model applications to instances of a regional Brazilian airline are presented. The comparison of the schedules generated by the proposed approach against those obtained by applying a model based on mone­tary costs and revenue forecasts demonstrates the validity of this alternative approach for airlines network planning.

  2. Computational Models of the Eye and their Applications in Long Duration Space Flight

    Science.gov (United States)

    Chen, Richard; Best, Lauren; Mason, Kyle; Mulugeta, Lealem

    2011-01-01

    Astronauts are exposed to cephalad fluid shift, increased carbon dioxide levels and other environmental factors during space flight. As a result of these conditions, it is believed that they are at risk of developing increased intracranial pressure (ICP) and intraocular pressure (IOP), which in turn may cause papilledema and other disorders of the eye that can lead to temporary or permanent changes in vision. However, the mechanisms behind this risk are not fully understood. Ground analog and flight studies pose challenges because there are limited non-invasive methods that can be used to study the eye and intracranial space. Therefore it is proposed that computational models can be applied to help address this gap by providing a low cost method for studying the effects of IOP, ICP and various properties of the eye on these diseases. The information presented by the authors provides a summary of several models found in literature that could potentially be augmented and applied to inform research. Specifically, finite element models of the optic nerve head, sclera and other structures of the eye can be readily adapted as potential building blocks. These models may also be integrated with a brain/cerebrospinal fluid (CSF) model which will take into account the interaction between the CSF fluid and its pressure on the optic nerve. This integration can enable the study of the effects of microgravity on the interaction between the vasculature system and CSF system and can determine the effects of these changes on the optic nerve, and in turn the eye. Ultimately, it can help pinpoint the influences of long-term exposure to microgravity on vision and inform the future research into countermeasure development. In addition to spaceflight, these models can provide deeper understanding of the mechanisms of glaucoma, papilledema and other eye disorders observed in terrestrial conditions.

  3. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    Science.gov (United States)

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

  4. Information needs and priorities for assessing the sensitivity of marine birds to oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, J.A.; Ford, G.; Heinemann, D.

    1984-01-01

    Experience in developing models to predict the potential impacts of oil spills on colonially breeding marine birds has revealed some major gaps in the information available on these systems. The authors consider the availability of data for a variety of parameters of seabird biology that are required in modelling efforts, and assign provisional priorities to the information needs. In order to develop means of predicting the impacts of oil spills on seabirds, the authors suggest that colony- or site-specific information on the timing of reproduction and colony occupancy, chick growth rates and body weights, several metabolic parameters, flight speed, and food load size is of relatively low overall priority. Intermediate priority is assigned to the collection of specific data on the dynamics of oil spills, the age and breeding structure of the populations, reproductive success, foraging activity budgets and flight paths, flight costs, and the response of growing chicks to food deprivation. The authors suggest that studies of seabird biology should give highest priority to obtaining information of population sizes, the probability of adult death upon encountering a spill, age-specific fecundity and survivorship, the time required in foraging trips, the lag time in the response of birds to an oil spill, foraging rate as a function of resource density, and changes in the availability of resources to the birds as a consequence of oil spills.

  5. An analytical model and scaling of chordwise flexible flapping wings in forward flight.

    Science.gov (United States)

    Kodali, Deepa; Kang, Chang-Kwon

    2016-12-13

    Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.

  6. Development of a Model Following Control Law for Inflight Simulation and Flight Controls Research

    Science.gov (United States)

    Takahashi, Mark; Fletcher, Jay; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    The U.S. Army and NASA are currently developing the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) at the Ames Research Center. RASCAL, shown in Figure 1, is a UH-60, which is being modified in a phased development program to have a research fly-by-wire flight control system, and an advanced navigation research platform. An important part of the flight controls and handling qualities research on RASCAL will be an FCS design for the aircraft to achieve high bandwidth control responses and disturbance rejection characteristics. Initially, body states will be used as feedbacks, but research into the use of rotor states will also be considered in later stages to maximize agility and maneuverability. In addition to supporting flight controls research, this FCS design will serve as the inflight simulation control law to support basic handling qualities, guidance, and displays research. Research in high bandwidth controls laws is motivated by the desire to improve the handling qualities in aggressive maneuvering and in severely degraded weather conditions. Naturally, these advantages will also improve the quality of the model following, thereby improving the inflight simulation capabilities of the research vehicle. High bandwidth in the control laws provides tighter tracking allowing for higher response bandwidths which can meet handling qualities requirements for aggressive maneuvering. System sensitivity is also reduced preventing variations in the response from the vehicle due to changing flight conditions. In addition, improved gust rejection will result from this reduced sensitivity. The gust rejection coupled with a highly stable system will make more precise maneuvering and pointing possible in severely degraded weather conditions. The difficulty in achieving higher bandwidths from the control laws in the feedback and in the responses arises from the complexity of the models that are needed to produce a satisfactory design. In this case, high

  7. Overseas seed dispersal by migratory birds.

    Science.gov (United States)

    Viana, Duarte S; Gangoso, Laura; Bouten, Willem; Figuerola, Jordi

    2016-01-13

    Long-distance dispersal (LDD) promotes the colonization of isolated and remote habitats, and thus it has been proposed as a mechanism for explaining the distributions of many species. Birds are key LDD vectors for many sessile organisms such as plants, yet LDD beyond local and regional scales has never been directly observed nor quantified. By sampling birds caught while in migratory flight by GPS-tracked wild falcons, we show that migratory birds transport seeds over hundreds of kilometres and mediate dispersal from mainland to oceanic islands. Up to 1.2% of birds that reached a small island of the Canary Archipelago (Alegranza) during their migration from Europe to Sub-Saharan Africa carried seeds in their guts. The billions of birds making seasonal migrations each year may then transport millions of seeds. None of the plant species transported by the birds occurs in Alegranza and most do not occur on nearby Canary Islands, providing a direct example of the importance of environmental filters in hampering successful colonization by immigrant species. The constant propagule pressure generated by these LDD events might, nevertheless, explain the colonization of some islands. Hence, migratory birds can mediate rapid range expansion or shifts of many plant taxa and determine their distribution. © 2016 The Author(s).

  8. Drug metabolism in birds

    Science.gov (United States)

    Pan, Huo Ping; Fouts, James R.

    1979-01-01

    Papers published over 100 years since the beginning of the scientific study of drug metabolism in birds were reviewed. Birds were found to be able to accomplish more than 20 general biotransformation reactions in both functionalization and conjugation. Chickens were the primary subject of study but over 30 species of birds were used. Large species differences in drug metabolism exist between birds and mammals as well as between various birds, these differences were mostly quantitative. Qualitative differences were rare. On the whole, drug metabolism studies in birds have been neglected as compared with similar studies on insects and mammals. The uniqueness of birds and the advantages of using birds in drug metabolism studies are discussed. Possible future studies of drug metabolism in birds are recommended.

  9. Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear Dynamic Flight Simulation (NL-DFS) system will be developed in the Phase II project by combining the classical nonlinear rigid-body flight dynamics...

  10. How birds can negate gusts and maintain heading by crabbing into the wind passively

    Science.gov (United States)

    Quinn, Daniel; Kress, Daniel; Stein, Andrea; Wegrzynski, Michal; Hamzah, Latifah; Lentink, David

    2017-11-01

    Everyday observations show birds flying stably in strong lateral gusts in which aerial robots cannot operate reliably. However, the mechanisms that birds use to negate lateral gusts are unknown. Therefore, we studied the motions of lovebirds as they flew through strong gusts in a long mesh corridor. The corridor was painted to simulate a forest (vertical stripes), a lake (horizontal stripe), and a cave (dark with a small light at the end). Fan arrays outside the corridor imposed three wind conditions: still air, a uniform gust, and wind shear. We found that lovebirds consistently yaw their body into the wind direction, crabbing like a fixed-wing aircraft, while keeping their head oriented towards the landing perch, unlike aircraft. These results were the same for all three visual conditions, showing how lovebirds can even negate gusts in the dark with a faint point source as a target. Because the naive birds had never experienced gusts before, the gust mitigation behavior is innate. Motivated by these observations, we developed a physical model that shows how yaw corrections can be passive in flapping flight. Our model offers a foundation for understanding wind negation in birds and other flying animals and offers inspiration for aerial robots that are more robust to gusts. How birds can negate gusts and maintain heading by crabbing into the wind passively.

  11. Control for small-speed lateral flight in a model insect

    International Nuclear Information System (INIS)

    Zhang Yanlai; Sun Mao

    2011-01-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  12. Control for small-speed lateral flight in a model insect.

    Science.gov (United States)

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  13. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  14. Modeling Relationships Between Flight Crew Demographics and Perceptions of Interval Management

    Science.gov (United States)

    Remy, Benjamin; Wilson, Sara R.

    2016-01-01

    The Interval Management Alternative Clearances (IMAC) human-in-the-loop simulation experiment was conducted to assess interval management system performance and participants' acceptability and workload while performing three interval management clearance types. Twenty-four subject pilots and eight subject controllers flew ten high-density arrival scenarios into Denver International Airport during two weeks of data collection. This analysis examined the possible relationships between subject pilot demographics on reported perceptions of interval management in IMAC. Multiple linear regression models were created with a new software tool to predict subject pilot questionnaire item responses from demographic information. General patterns were noted across models that may indicate flight crew demographics influence perceptions of interval management.

  15. Actogram analysis of free-flying migratory birds

    DEFF Research Database (Denmark)

    Bäckman, Johan; Andersson, Arne; Pedersen, Lykke

    2017-01-01

    The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like...... frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use...... of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research....

  16. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds.

    Science.gov (United States)

    Buchin, Kevin; Sijben, Stef; van Loon, E Emiel; Sapir, Nir; Mercier, Stéphanie; Marie Arseneau, T Jean; Willems, Erik P

    2015-01-01

    The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis. We develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a "contextually naïve" model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM. Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to

  17. Escape behaviour of birds in urban parks and cemeteries across Europe: Evidence of behavioural adaptation to human activity.

    Science.gov (United States)

    Morelli, Federico; Mikula, Peter; Benedetti, Yanina; Bussière, Raphaël; Jerzak, Leszek; Tryjanowski, Piotr

    2018-08-01

    Urban environments are very heterogeneous, and birds living in the proximity of humans have to adapt to local conditions, e.g. by changing their behavioural response to potential predators. In this study, we tested whether the escape distance of birds (measured as flight initiation distance; FID) differed between parks and cemeteries, areas characterized by different microhabitat conditions and human conduct, that are determinants of animal behaviour at large spatial scales. While escape behaviour of park populations of birds was often examined, cemetery populations have not been studied to the same extent and a large-scale comparison is still missing. Overall, we collected 2139 FID estimates for 44 bird species recorded in 79 parks and 90 cemeteries in four European countries: Czech Republic, France, Italy and Poland. Mixed model procedure was applied to study escape behaviour in relation to type of area (park or cemetery), environmental characteristics (area size, coverage by trees, shrubs, grass, chapels, tombstones, flowerbeds, number of street lamps) and human activity (human density, pedestrians speed and ratio of men/women). Birds allowed people closer in cemeteries than in parks in all countries. This pattern was persistent even when focusing on intraspecific differences in FID between populations of the most common bird species. Escape distance of birds was negatively correlated with the size of parks/cemeteries, while positively associated with tombstone coverage and human density in both types of habitat. Our findings highlight the ability of birds to adapt their behaviour to different types of urban areas, based on local environmental conditions, including the character of human-bird interactions. Our results also suggest that this behavioural pattern may be widespread across urban landscapes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ecological niche modeling as a new paradigm for large-scale investigations of diversity and distribution of birds

    Science.gov (United States)

    A. Townsend Peterson; Daniel A. Kluza

    2005-01-01

    Large-scale assessments of the distribution and diversity of birds have been challenged by the need for a robust methodology for summarizing or predicting species' geographic distributions (e.g. Beard et al. 1999, Manel et al. 1999, Saveraid et al. 2001). Methodologies used in such studies have at times been inappropriate, or even more frequently limited in their...

  19. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  20. ASTEC and MODEL: Controls software development at Goddard Space Flight Center

    Science.gov (United States)

    Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.

    1993-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.

  1. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  2. Birds and music

    Directory of Open Access Journals (Sweden)

    L Amini

    2009-03-01

    Through research in old mythological narrations, and literary texts, one could assume an intrinsic relationship between music and such sweet-singing mythological birds as phoenix, sphinx, Song-song, holy birds like Kership-tah, and other birds including swan and ring dove.

  3. Birds Kept as Pets

    Science.gov (United States)

    ... your pet’s health Visit a veterinarian who has experience with pet birds for routine check-ups to keep your bird healthy and prevent infectious diseases. If your bird becomes sick or dies within a month after purchase or adoption: Contact your veterinarian. Inform the pet ...

  4. Audubon Bird Study Program.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    Included are a student reader, "The Story of Birds," a leaders' guide, a large colored Audubon bird chart, and a separate guide for the chart. The student reader is divided into eleven sections which relate to the various physical and behavioral features of birds such as feathers, feeding habits as related to the shape of bills and feet, nests,…

  5. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    Science.gov (United States)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2018-01-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min–max: 0.46, 0.3–0.5 ppbv) and 0.2% (0.013, 0.004–0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5–0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01–0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions. PMID:29707471

  6. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    Science.gov (United States)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2017-12-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed 1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5-0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01-0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed 70 times and 13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.

  7. Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight.

    Science.gov (United States)

    Smith, Steven R; Lovejoy, Jennifer C; Bray, George A; Rood, Jennifer; Most, Marlene M; Ryan, Donna H

    2008-12-01

    Bed rest has been used as a model to simulate the effects of space flight on bone metabolism. Thyroid hormones accelerate bone metabolism. Thus, supraphysiologic doses of this hormone might be used as a model to accelerate bone metabolism during bed rest and potentially simulate space flight. The objective of the study was to quantitate the changes in bone turnover after low doses of triiodothyronine (T(3)) added to short-term bed rest. Nine men and 5 women were restricted to bed rest for 28 days with their heads positioned 6 degrees below their feet. Subjects were randomly assigned to receive either placebo or oral T(3) at doses of 50 to 75 microg/d in a single-blind fashion. Calcium balance was measured over 5-day periods; and T(3), thyroxine, thyroid-stimulating hormone, immunoreactive parathyroid hormone, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were measured weekly. Triiodothyronine increased 2-fold in the men and 5-fold in the women during treatment, suppressing both thyroxine and thyroid-stimulating hormone. Calcium balance was negative by 300 to 400 mg/d in the T(3)-treated volunteers, primarily because of the increased fecal loss that was not present in the placebo group. Urinary deoxypyridinoline to creatinine ratio, a marker of bone resorption, increased 60% in the placebo group during bed rest, but more than doubled in the T(3)-treated subjects (P < .01), suggesting that bone resorption was enhanced by treatment with T(3). Changes in serum osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, were similar in T(3)- and placebo-treated subjects. Triiodothyronine increases bone resorption and fecal calcium loss in subjects at bed rest.

  8. Organic scintillators response function modeling for Monte Carlo simulation of Time-of-Flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-15

    In neutron Time-of-Flight (TOF) measurements performed with fast organic scintillation detectors, both pulse arrival time and amplitude are relevant. Monte Carlo simulation can be used to calculate the time-energy dependant neutron flux at the detector position. To convert the flux into a pulse height spectrum, one must calculate the detector response function for mono-energetic neutrons. MCNP can be used to design TOF systems, but standard MCNP versions cannot reliably calculate the energy deposited by fast neutrons in the detector since multiple scattering effects must be taken into account in an analog way, the individual recoil particles energy deposit being summed with the appropriate scintillation efficiency. In this paper, the energy response function of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime liquid scintillation BC-501 A (Bicron) detectors to fast neutrons ranging from 20 keV to 5.0 MeV is computed with GEANT4 to be coupled with MCNPX through the 'MCNP Output Data Analysis' software developed under ROOT (). - Highlights: Black-Right-Pointing-Pointer GEANT4 has been used to model organic scintillators response to neutrons up to 5 MeV. Black-Right-Pointing-Pointer The response of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime BC501A detectors has been parameterized with simple functions. Black-Right-Pointing-Pointer Parameterization will allow the modeling of neutron Time of Flight measurements with MCNP using tools based on CERN's ROOT.

  9. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    Science.gov (United States)

    2016-04-01

    AND ROTORCRAFT FROM DISCRETE -POINT LINEAR MODELS Eric L. Tobias and Mark B. Tischler Aviation Development Directorate Aviation and Missile...Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete -Point Linear Models 5...of discrete -point linear models and trim data. The model stitching simulation architecture is applicable to any aircraft configuration readily

  10. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  11. Modeling, Simulation, and Flight Test for Automatic Flight Control of the Condor Hybrid-Electric Remote Piloted Aircraft

    Science.gov (United States)

    2012-03-01

    absolutely vital in the evaluation and validation of the calculated values throughout the Condor modeling process. 10 2.2.6 Nelson Text Robert C...Utilizing a variety of equations found in Roskam (1979), Raymer (1999), and Brandt et al (2004), Jet5 is able to output the first detailed predictions of...Con_guration Guide, Kestrel Autopilot, Procerus Technologies, Inc., Vineyard, UT. 2008. Raymer , Daniel P. Aircraft Design : A Conceptual Approach

  12. The Integrated Computational Environment for Airbreathing Hypersonic Flight Vehicle Modeling and Design Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated computational environment for multidisciplinary, physics-based simulation and analyses of airbreathing hypersonic flight vehicles will be developed....

  13. Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds

    Science.gov (United States)

    Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd

    2017-01-01

    Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data. PMID:28403159

  14. The aerodynamic cost of flight in bats--comparing theory with measurement

    Science.gov (United States)

    von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Breuer, Kenneth S.

    2012-11-01

    Aerodynamic theory has long been used to predict the aerodynamic power required for animal flight. However, even though the actuator disk model does not account for the flapping motion of a wing, it is used for lack of any better model. The question remains: how close are these predictions to reality? We designed a study to compare predicted aerodynamic power to measured power from the kinetic energy contained in the wake shed behind a bat flying in a wind tunnel. A high-accuracy displaced light-sheet stereo PIV system was used in the Trefftz plane to capture the wake behind four bats flown over a range of flight speeds (1-6m/s). The total power in the wake was computed from the wake vorticity and these estimates were compared with the power predicted using Pennycuick's model for bird flight as well as estimates derived from measurements of the metabolic cost of flight, previously acquired from the same individuals.

  15. Lévy flight with absorption: A model for diffusing diffusivity with long tails

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-03-01

    We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e., ∝T at all times, but the probability distribution of particle displacement is not Gaussian at all times. It is exponential at short times and crosses over to become Gaussian only in a large time limit in the case where the distribution of D in that model has a steady state limit which is exponential, i.e., πe(D ) ˜e-D /D0 . In the present study, we model the diffusivity of a particle as a Lévy flight process so that D has a power-law tailed distribution, viz., πe(D ) ˜D-1 -α with 0 <α <1 . We find that in the short time limit, the width of displacement distribution is proportional to √{T }, implying that the diffusion is Fickian. But for long times, the width is proportional to T1 /2 α which is a characteristic of anomalous diffusion. The distribution function for the displacement of the particle is found to be a symmetric stable distribution with a stability index 2 α which preserves its shape at all times.

  16. On modeling human reliability in space flights - Redundancy and recovery operations

    Science.gov (United States)

    Aarset, M.; Wright, J. F.

    The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.

  17. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    Science.gov (United States)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  18. Oak Ridge Reservation Bird Records and Population Trends

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giffen, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wade, M. C. [CDM Smith (United States); Haines, A. M. [Xcel Engineering, Inc.(United States); Evans, J. W. [Tennessee WIldlife Resources Agency (WRA), Nashville, TN (United States); Jett, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Bird data have been collected through surveys, environmental assessments, and other observations for decades in the Oak Ridge National Environmental Research Park, located on the US Department of Energy’s Oak Ridge Reservation (ORR) in East Tennessee. Birds were recorded in a variety of habitats, including wetlands, interior forests, grasslands, ponds, corridors, forest edges, and more. Most of the information was gathered from waterfowl surveys conducted from 1990 to 2008, from Partners in Flight (PIF) breeding bird surveys conducted from 1995 to 2013, and from past publications and research on Reservation birds. We have also included our own observations and, in a few instances, credible observations of ORR birds of which we have been made aware through eBird or discussions with area ornithologists and bird watchers. For the period 1950-2014, we were able to document 228 species of birds on the ORR. Several of these species are known from historic records only, while others were not known to have ever occurred on the Reservation until recently. This report does not include PIF breeding bird data from the 2014 season or any records after July 2014. Twenty-two species--approximately 10% of the total number of species observed--have state-listed status in Tennessee as endangered, threatened, or in need of management. Of the 228 species we documented, 120 are believed to be breeding birds on the ORR.

  19. Oak Ridge Reservation Bird Records and Population Trends

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W. Kelly [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giffen, Neil R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wade, Murray [CDM Smith, Inc., Knoxville, TN (United States); Haines, Angelina [Xcel Engineering, Inc., Oak Ridge, TN (United States); Evans, James W. [Tennessee Wildlife Resources Agency, Nashville, TN (United States); Jett, Robert Trent [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    Bird data have been collected through surveys, environmental assessments, and other observations for decades in the Oak Ridge National Environmental Research Park, located on the US Department of Energy s Oak Ridge Reservation (ORR) in East Tennessee. Birds were recorded in a variety of habitats, including wetlands, interior forests, grasslands, ponds, corridors, forest edges, and more. Most of the information was gathered from waterfowl surveys conducted from 1990 to 2008, from Partners in Flight (PIF) breeding bird surveys conducted from 1995 to 2013, and from past publications and research on Reservation birds. We have also included our own observations and, in a few instances, credible observations of ORR birds of which we have been made aware through eBird or discussions with area ornithologists and bird watchers. For the period 1950 2014, we were able to document 228 species of birds on the ORR. Several of these species are known from historic records only, while others were not known to have ever occurred on the Reservation until recently. This report does not include PIF breeding bird data from the 2014 season or any records after July 2014. Twenty-two species approximately 10% of the total number of species observed have state-listed status in Tennessee as endangered, threatened, or in need of management. Of the 228 species we documented, 120 are believed to be breeding birds on the ORR.

  20. Research on an infectious disease transmission by flocking birds.

    Science.gov (United States)

    Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia

    2013-01-01

    The swarm intelligence is becoming a hot topic. The flocking of birds is a natural phenomenon, which is formed and organized without central or external controls for some benefits (e.g., reduction of energy consummation). However, the flocking also has some negative effects on the human, as the infectious disease H7N9 will easily be transmited from the denser flocking birds to the human. Zombie-city model has been proposed to help analyzing and modeling the flocking birds and the artificial society. This paper focuses on the H7N9 virus transmission in the flocking birds and from the flocking birds to the human. And some interesting results have been shown: (1) only some simple rules could result in an emergence such as the flocking; (2) the minimum distance between birds could affect H7N9 virus transmission in the flocking birds and even affect the virus transmissions from the flocking birds to the human.

  1. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  2. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will

  3. 75 FR 77569 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Science.gov (United States)

    2010-12-13

    ... Some failures of this system may lead to a degraded operating mode that does not merit a classic ``failure warning'' but in which flight envelope protection is lost and the flight crew must fly the... surfaces for both normal and failure states, and it generates the actual surface commands that provide for...

  4. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions.

  5. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  6. Impaired Compensation for Salt-Induced Urinary Calcium Loss in a Space Flight Model

    Science.gov (United States)

    Navidi, Meena; Harper, J. S.; Evans, J.; Fung, P.; Wolinsky, I.; Arnaud, S. B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The loss of urinary calcium (UCa) induced by high sodium (HiNa) diets is compensated for by an increase in net intestinal Ca absorption (abs.). To determine the capacity of the intestine to absorb Ca in a space flight model in which the formation of 1,25-dihydroxyvitamin D (1,25-D) is suppressed, we induced Ca loss with HiNa diets (8%) and restricted dietary Ca (0.2%). In 200 g rats with hind limbs unloaded by tail suspension (S), we examined intestinal Ca abs. by direct measurement in the duodenum (everted gut sac or S/M), vitamin D receptors (VDR) and Ca balance. We also measured serum ionized calcium (ICa), pH, parathyroid hormone (PTH) and 1,25D. PTH was related to ICa (r = -0.44, p is less than 0.02), pH (r = -0.47, p is less than 0.02) and %Ca abs. (r = -0.40, p is less than 0.05). 1,25-D was related to %Ca abs. (r = 0.60, p is less than 0.001) but not VDR or S/M. Effects of the model were lower serum 1,25-D (110 +/- 59 vs. 199 +/- 80 pg/ml, p is less than 0.005), %Ca abs. (83 +/- 6.9 vs. 93 +/- 3.2, p is less than 0.03) and Ca balance (27 +/- 0.2 vs. 30 +/- 0.3 mg/d, p is less than 0.001) in S than controls (C). The HiNa diet increased UCa excretion from 2 to 13% of dietary Ca. Responses to HiNa diets, compared to normal Na, revealed no differences in 1,25-D, Ca abs. or VDR. Ca balances were lower in HiNa (27 +/- 0.3 vs. 30 +/- 0.4 mg/d, p is less than 0.001) in spite of higher Ca intakes. The failure of S rats fed HiNa diets to increase Ca abs. in response to Na-induced Ca loss appears to be related to suppressed 1,25-D in the space flight model, the cause of which remains obscure.

  7. Atmospheric lidar co-alignment sensor: flight model electro-optical characterization campaign

    Science.gov (United States)

    Valverde Guijarro, Ángel Luis; Belenguer Dávila, Tomás.; Laguna Hernandez, Hugo; Ramos Zapata, Gonzalo

    2017-10-01

    Due to the difficulty in studying the upper layer of the troposphere by using ground-based instrumentation, the conception of a space-orbit atmospheric LIDAR (ATLID) becomes necessary. ATLID born in the ESA's EarthCare Programme framework as one of its payloads, being the first instrument of this kind that will be in the Space. ATLID will provide vertical profiles of aerosols and thin clouds, separating the relative contribution of aerosol and molecular scattering to know aerosol optical depth. It operates at a wavelength of 355 nm and has a high spectral resolution receiver and depolarization channel with a vertical resolution up to 100m from ground to an altitude of 20 km and, and up to 500m from 20km to 40km. ATLID measurements will be done from a sun-synchronous orbit at 393 km altitude, and an alignment (co-alignment) sensor (CAS) is revealed as crucial due to the way in which LIDAR analyses the troposphere. As in previous models, INTA has been in charge of part of the ATLID instrument co-alignment sensor (ATLID-CAS) electro-optical characterization campaign. CAS includes a set of optical elements to take part of the useful signal, to direct it onto the memory CCD matrix (MCCD) used for the co-alignment determination, and to focus the selected signal on the MCCD. Several tests have been carried out for a proper electro-optical characterization: CAS line of sight (LoS) determination and stability, point spread function (PSF), absolute response (AbsRes), pixel response non uniformity (PRNU), response linearity (ResLin) and spectral response. In the following lines, a resume of the flight model electrooptical characterization campaign is reported on. In fact, results concerning the protoflight model (CAS PFM) will be summarized. PFM requires flight-level characterization, so most of the previously mentioned tests must be carried out under simulated working conditions, i.e., the vacuum level (around 10-5 mbar) and temperature range (between 50°C and -30°C) that

  8. Mathematic Model of Technical Process of Heavy Mixtures Classifying on the Basis of Dispersion of Particles Flight Path

    OpenAIRE

    Normahmad Ravshanov; Bozorboy Palvanov; Gulnora Shermatova

    2014-01-01

    The article presents mathematic model and results of computer calculations of heavy mixtures classifying and farm crops full seeds selection. They enable to determine major process parameters and variation range, providing maximum dispersion of particles flight path, depending on feedstock modules.

  9. Mathematic Model of Technical Process of Heavy Mixtures Classifying on the Basis of Dispersion of Particles Flight Path

    Directory of Open Access Journals (Sweden)

    Normahmad Ravshanov

    2014-05-01

    Full Text Available The article presents mathematic model and results of computer calculations of heavy mixtures classifying and farm crops full seeds selection. They enable to determine major process parameters and variation range, providing maximum dispersion of particles flight path, depending on feedstock modules.

  10. Birds of Sabaki Birds of Sabaki

    African Journals Online (AJOL)

    CJ

    2005-02-25

    Feb 25, 2005 ... covers approximately 250ha.The area encompassed by this study extends from Mambrui to the north, the sea to the east, the opposite bank of the estuary to the south and the Sabaki bridge and Malindi-Garsen road to the west. The area is defined as an Important Bird Area(IBA) by BirdLife International in ...

  11. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    Science.gov (United States)

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  12. Unzipping bird feathers.

    Science.gov (United States)

    Kovalev, Alexander; Filippov, Alexander E; Gorb, Stanislav N

    2014-03-06

    The bird feather vane can be separated into two parts by pulling the barbs apart. The original state can be re-established easily by lightly stroking through the feather. Hooklets responsible for holding vane barbs together are not damaged by multiple zipping and unzipping cycles. Because numerous microhooks keep the integrity of the feather, their properties are of great interest for understanding mechanics of the entire feather structure. This study was undertaken to estimate the separation force of single hooklets and their arrays using force measurement of an unzipping feather vane. The hooklets usually separate in some number synchronously (20 on average) with the highest observed separation force of 1.74 mN (average force 0.27 mN), whereas the single hooklet separation force was 14 μN. A simple numerical model was suggested for a better understanding of zipping and unzipping behaviour in feathers. The model demonstrates features similar to those observed in experiments.

  13. Tracking migrating birds

    DEFF Research Database (Denmark)

    Willemoes, Mikkel

    habitats with those in rural habitats. Some species have decreased the frequency of migrants and migration distance in urban environments, and others have not. The other manuscript describes the small scale movements of three different Palaearctic migrants during winter in Africa in a farmland habitat....... In another species, environmental conditions are not a good predictor of movements, and possibly effects of timing constraints or food type play a role. Two manuscripts focus on the effects of human-induced habitat alterations on migratory behaviour. One compares the movements of partial migrants in urban...... and a forest reserve. In the degraded habitat all species used more space, although the consequence on bird density is less clear. Two manuscripts relate the migratory movements of a long-distance migrant with models of navigation. One compares model predictions obtained by simulation with actual movements...

  14. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  15. Architecting the Human Space Flight Program with Systems Modeling Language (SysML)

    Science.gov (United States)

    Jackson, Maddalena M.; Fernandez, Michela Munoz; McVittie, Thomas I.; Sindiy, Oleg V.

    2012-01-01

    The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).

  16. Levy flights and self-similar exploratory behaviour of termite workers: beyond model fitting.

    Directory of Open Access Journals (Sweden)

    Octavio Miramontes

    Full Text Available Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties--including Lévy flights--in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.

  17. A bi-objective integer programming model for partly-restricted flight departure scheduling.

    Science.gov (United States)

    Zhong, Han; Guan, Wei; Zhang, Wenyi; Jiang, Shixiong; Fan, Lingling

    2018-01-01

    The normal studies on air traffic departure scheduling problem (DSP) mainly deal with an independent airport in which the departure traffic is not affected by surrounded airports, which, however, is not a consistent case. In reality, there still exist cases where several commercial airports are closely located and one of them possesses a higher priority. During the peak hours, the departure activities of the lower-priority airports are usually required to give way to those of higher-priority airport. These giving-way requirements can inflict a set of changes on the modeling of departure scheduling problem with respect to the lower-priority airports. To the best of our knowledge, studies on DSP under this condition are scarce. Accordingly, this paper develops a bi-objective integer programming model to address the flight departure scheduling of the partly-restricted (e.g., lower-priority) one among several adjacent airports. An adapted tabu search algorithm is designed to solve the current problem. It is demonstrated from the case study of Tianjin Binhai International Airport in China that the proposed method can obviously improve the operation efficiency, while still realizing superior equity and regularity among restricted flows.

  18. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Science.gov (United States)

    2013-01-24

    ... failure states occur in the electronic flight control system, flight envelope protection features can... Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation Administration (FAA), DOT...), specifically new control architecture and a full digital flight control system which provides flight envelope...

  19. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    Science.gov (United States)

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during

  20. Models of disordered media: some new results, including some new connections between composite-media, fluid-state, and random-flight theories

    International Nuclear Information System (INIS)

    Stell, G.

    1983-01-01

    Some new theoretical results on the microstructure of models of two-phase disordered media are given, as well as the new quantitative bounds on the thermal conductivity that follows for one such model (randomly centered spherical inclusions). A second set of results is then given for random flights, including random flights with hit expectancy prescribed in a unit hall around the flight origin. Finally, some interesting correspondences are demonstrated, via the Ornstein-Zernike equation, between random-flight results, liquid-state results and percolation-theory results. 27 references, 6 figures, 4 tables

  1. Diseases Transmitted by Birds.

    Science.gov (United States)

    Levison, Matthew E

    2015-08-01

    Although many people these days actually work very hard at leisure time activities, diseases are most commonly acquired from birds during the course of work in the usual sense of the term, not leisure. However, travel for pleasure to areas where the diseases are highly endemic puts people at risk of acquiring some of these bird-related diseases (for example, histoplasmosis and arbovirus infections), as does ownership of birds as pets (psittacosis).

  2. Modelling and simulation of flight control electromechanical actuators with special focus on model architecting, multidisciplinary effects and power flows

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2017-02-01

    Full Text Available In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortunately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now available on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling, thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power network pollution analysis and fault response.

  3. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  4. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds.

    Science.gov (United States)

    Lagerholm, Vendela K; Sandoval-Castellanos, Edson; Vaniscotte, Amélie; Potapova, Olga R; Tomek, Teresa; Bochenski, Zbigniew M; Shepherd, Paul; Barton, Nick; Van Dyck, Marie-Claire; Miller, Rebecca; Höglund, Jacob; Yoccoz, Nigel G; Dalén, Love; Stewart, John R

    2017-04-01

    Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum. © 2016 John Wiley & Sons Ltd.

  5. Evolution of the 'Trick' Dynamic Software Executive and Model Libraries for Reusable Flight Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to a need for cost-effective small satellite missions, Odyssey Space Research is proposing the development of a common flight software executive and a...

  6. Rapid Development of Guidance, Navigation, and Control Core Flight System Software Applications Using Simulink Models

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposal is to demonstrate a new Guidance, Navigation, and Control (GNC) Flight Software (FSW) application development paradigm which takes...

  7. Coastal Resources Atlas: Long Island: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  8. Guam and the Northern Mariana Islands ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for pelagic birds, shorebirds, wading birds, waterfowl, gulls, terns, and passerine birds in Guam and the...

  9. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  10. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane with the Lower Vertical Tail Removed, TED No.DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.

    1954-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.

  11. Using radar to advance migratory bird management: An interagency collaboration

    Science.gov (United States)

    Sojda, R.; Ruth, J.M.; Barrow, W.C.; Dawson, D.K.; Diehl, R.H.; Manville, A.; Green, M.T.; Krueper, D.J.; Johnston, S.

    2005-01-01

    Migratory birds face many changes to the landscapes they traverse and the habitats they use. Wind turbines and communications towers, which pose hazards to birds and bats in flight, are being erected across the United States and offshore. Human activities can also destroy or threaten habitats critical to birds during migratory passage, and climate change appears to be altering migratory patterns. The U.S. Fish and Wildlife Service (USFWS) and other agencies are under increasing pressure to identify and evaluate movement patterns and habitats used during migration and other times.

  12. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  13. Comparative analysis of vestibular ecomorphology in birds.

    Science.gov (United States)

    Benson, Roger B J; Starmer-Jones, Ethan; Close, Roger A; Walsh, Stig A

    2017-12-01

    mammals. Furthermore, we find little support for relationships between labyrinth shape and flying style or wing kinematics. Overall, our results suggest that the topological problem of fitting long semicircular canals into a spatially constrained braincase is more important in determining the shape of the avian labyrinth than the specifics of locomotory style or agility. Our results tentatively indicate a link between visual acuity and proportional size of the labyrinth among birds. This suggests that the large labyrinths of birds compared with other tetrapods may result from their generally high visual acuities, and not directly from their ability to fly. The endosseous labyrinths of extinct birds and their close dinosaurian relatives may allow broad inferences about flight or vision, but so far provide few specific insights into detailed aspects of locomotion. © 2017 Anatomical Society.

  14. Bird Flu (Avian Influenza)

    Science.gov (United States)

    Bird flu (avian influenza) Overview Bird flu is caused by a type of influenza virus that rarely infects humans. More than a ... for Disease Control and Prevention estimates that seasonal influenza is responsible for ... heat destroys avian viruses, cooked poultry isn't a health threat. ...

  15. Nanoscale magnetoreceptors in birds

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Greiner, Walter

    2012-01-01

    The Earth's magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings...... field, by a bird....

  16. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  17. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  18. Electron beam charging of insulators: A self-consistent flight-drift model

    International Nuclear Information System (INIS)

    Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.; Juve, D.; Treheux, D.; Fitting, H.-J.

    2006-01-01

    Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges ρ(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate σ(t) and the surface potential V 0 (t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and σ=1. Especially for low electron beam energies E 0 G of a vacuum grid in front of the target surface. For high beam energies E 0 =10, 20, and 30 keV high negative surface potentials V 0 =-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected

  19. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  20. The NASA radar entomology program at Wallops Flight Center

    Science.gov (United States)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  1. Mass and performance optimization of an airplane wing leading edge structure against bird strike using Taguchi-based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Hassan Pahange

    2016-08-01

    Full Text Available Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics (SPH method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance (ANOVA is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure.

  2. How High? How Fast? How Long? Modeling Water Rocket Flight with Calculus

    Science.gov (United States)

    Ashline, George; Ellis-Monaghan, Joanna

    2006-01-01

    We describe an easy and fun project using water rockets to demonstrate applications of single variable calculus concepts. We provide procedures and a supplies list for launching and videotaping a water rocket flight to provide the experimental data. Because of factors such as fuel expulsion and wind effects, the water rocket does not follow the…

  3. Identification of a Cessna Citation II Model Based on Flight Test Data

    NARCIS (Netherlands)

    de Visser, C.C.; Pool, D.M.

    2017-01-01

    As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go through flight simulator-based stall recovery training. For this reason the Control and Simulation division at Delft University of Technology has set up a task force to develop a new methodology for

  4. Wind-governed flight altitudes of nocturnal spring migrants over the ...

    African Journals Online (AJOL)

    Flight costs make up a large proportion of energy expenditure during migration and are strongly dependent on atmospheric conditions aloft. Birds crossing the Sahara can take advantage of the fairly reliable trade-wind regime. In our study, we investigated whether birds adapt flight altitude to minimise energy or water loss.

  5. Methods of quantitative and qualitative analysis of bird migration with a tracking radar

    Science.gov (United States)

    Bruderer, B.; Steidinger, P.

    1972-01-01

    Methods of analyzing bird migration by using tracking radar are discussed. The procedure for assessing the rate of bird passage is described. Three topics are presented concerning the grouping of nocturnal migrants, the velocity of migratory flight, and identification of species by radar echoes. The height and volume of migration under different weather conditions are examined. The methods for studying the directions of migration and the correlation between winds and the height and direction of migrating birds are presented.

  6. Hatching synchrony in birds

    OpenAIRE

    Tippeltová, Zuzana

    2011-01-01

    This bachelor thesis is about hatching synchrony in birds. Generally, among birds there are two types of hatching - asynchronous and synchronous- and the type of hatching is primarily determined by the time of the onset of incubation. In many bird species, including most precocial ones, incubation does not begin until the last egg has been laid, which results in hatching of all the eggs within a few hours. In synchronously-hatched broods, all the chicks are about the same age. Thus no single ...

  7. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    Science.gov (United States)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  8. Combining radar systems to get a 3D - picture of the bird migration

    NARCIS (Netherlands)

    Liechti, F.; Dokter, A.; Shamoun, J.; van Gasteren, H.; Holleman, I.

    2008-01-01

    For military training flights bird strikes en route are still a severe problem. To reduce collisions an international project has been launched by the European Space agency (ESA), aiming 1) for a compilation of information on current bird movements by various sensors, 2) to combine them in a single

  9. USDA Forest Service goals and programs for monitoring neotropical migratory birds

    Science.gov (United States)

    Patricia Manley

    1993-01-01

    The USDA Forest Service (USFS) developed goals, objectives, and guidelines for monitoring neotropical migratory birds (NTMB) on National Forest System lands in response to the Neotropical Migratory Bird Conservation Program Partners in Flight. A USFS task group developed a hierarchical monitoring framework designed to define priorities for type of monitoring data....

  10. A phenology of the evolution of endothermy in birds and mammals.

    Science.gov (United States)

    Lovegrove, Barry G

    2017-05-01

    Recent palaeontological data and novel physiological hypotheses now allow a timescaled reconstruction of the evolution of endothermy in birds and mammals. A three-phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented. In Phase One I propose that the elevation of endothermy - increased metabolism and body temperature (T b ) - complemented large-body-size homeothermy during the Permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land. I propose that Phase Two commenced in the Late Triassic and Jurassic and was marked by extreme body-size miniaturization, the evolution of enhanced body insulation (fur and feathers), increased brain size, thermoregulatory control, and increased ecomorphological diversity. I suggest that Phase Three occurred during the Cretaceous and Cenozoic and involved endothermic pulses associated with the evolution of muscle-powered flapping flight in birds, terrestrial cursoriality in mammals, and climate adaptation in response to Late Cenozoic cooling in both birds and mammals. Although the triphasic model argues for an iterative evolution of endothermy in pulses throughout the Mesozoic and Cenozoic, it is also argued that endothermy was potentially abandoned at any time that a bird or mammal did not rely upon its thermal benefits for parental care or breeding success. The abandonment would have taken the form of either hibernation or daily torpor as observed in extant endotherms. Thus torpor and hibernation are argued to be as ancient as the origins of endothermy itself, a plesiomorphic characteristic observed today in many small birds and mammals. © 2016 Cambridge Philosophical Society.

  11. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  12. Calcium metabolism in birds.

    Science.gov (United States)

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  13. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... and applications.?Good surrogates of biodiversity are necessary to help identify conservation areas that will be effective in preventing species extinctions. Birds perform fairly well as surrogates in cases where birds are relatively speciose, but overall effectiveness will be improved by adding additional data...... from other taxa, in particular from range-restricted species. Conservation solutions with focus on birds as biodiversity surrogate could therefore benefit from also incorporating species data from other taxa....

  14. Awesome Audubon Birds

    Science.gov (United States)

    Kahler, Laura

    2010-01-01

    In this article, the author describes a watercolor art lesson on Audubon birds. She also discusses how science, technology, writing skills, and the elements and principles of art can be incorporated into the lesson.

  15. Nuisance Birds Webinar Report

    Science.gov (United States)

    All over the nation, birds of all shapes and sizes attempt to make schools a their favorite hangout. Their arrival can lead to sanitation issues, added facility degradation, distracted students and health problems.

  16. Birds - Breeding [ds60

    Data.gov (United States)

    California Natural Resource Agency — This data set provides access to information gathered on annual breeding bird surveys in California using a map layer developed by the Department. This data layer...

  17. Breeding bird survey data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are maintained by the USGS (https://www.pwrc.usgs.gov/bbs/RawData/) and provides information on the trends and status of North American bird populations...

  18. SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    This software is a new target for the Spacecraft Health Inference Engine (SHINE) knowledge base that compiles a knowledge base to a language called Tiny C - an interpreted version of C that can be embedded on flight processors. This new target allows portions of a running SHINE knowledge base to be updated on a "live" system without needing to halt and restart the containing SHINE application. This enhancement will directly provide this capability without the risk of software validation problems and can also enable complete integration of BEAM and SHINE into a single application. This innovation enables SHINE deployment in domains where autonomy is used during flight-critical applications that require updates. This capability eliminates the need for halting the application and performing potentially serious total system uploads before resuming the application with the loss of system integrity. This software enables additional applications at JPL (microsensors, embedded mission hardware) and increases the marketability of these applications outside of JPL.

  19. Magnetic Orientation in Birds and Other Animals

    Science.gov (United States)

    Wiltschko, Wolfgang

    The use of the geomagnetic field for compass orientation is widespread among animals, with two types of magnetic compass mechanisms described: an shape inclination compass in birds, turtles and salamanders and a shape polarity compass in arthropods, fishes and mammals. Additionally, some vertebrates appear to derive positional information from the total intensity and/or inclination of the geomagnetic field. For magnetoreception by animals, two models are currently discussed, the shape Radical Pair model assuming light-dependent processes by specialized photopigments, and the shape Magnetite hypothesis proposing magnetoreception by crystals of magnetite, Fe304. Behavioral experiments with migratory birds, testing them under monochromatic lights and subjecting them to a brief, strong pulse that could reverse the magnetization of magnetite particles, produced evidence for both mechanisms. However, monochromatic lights affect old, experienced and young birds alike, whereas the pulse affects only experienced birds, leaving young, inexperienced birds unaffected. These observations suggest that a radical pair mechanism provides birds with directional information for their innate magnetic compass and a magnetite-based mechanism possibly mediates information about total intensity for indicating position.

  20. An experimentally verified model for estimating the distance resolution capability of direct time of flight 3D optical imaging systems

    International Nuclear Information System (INIS)

    Nguyen, K Q K; Fisher, E M D; Walton, A J; Underwood, I

    2013-01-01

    This report introduces a new statistical model for time-resolved photon detection in a generic single-photon-sensitive sensor array. The model is validated by comparing modelled data with experimental data collected on a single-photon avalanche diode sensor array. Data produced by the model are used alongside corresponding experimental data to calculate, for the first time, the effective distance resolution of a pulsed direct time of flight 3D optical imaging system over a range of conditions using four peak-detection algorithms. The relative performance of the algorithms is compared. The model can be used to improve the system design process and inform selection of the optimal peak-detection algorithm. (paper)

  1. Status and management of neotropical migratory birds: Introduction

    Science.gov (United States)

    Deborah M.; Peter W. Stangel

    1993-01-01

    The future for neotropical migratory birds rests with our commitment and ability to provide them adequate habitat during all periods of their life cycle. Our commitment to this cause is apparent in the groundswell of interest in neotropical migrants and the many proactive and coopemtive partnerships resulting from the Partners in Flight - Aves de las Americas...

  2. A Risk Assessment Model for Reduced Aircraft Separation: A Quantitative Method to Evaluate the Safety of Free Flight

    Science.gov (United States)

    Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in

  3. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

    Science.gov (United States)

    Martin, Samuel; Bhushan, Bharat

    2016-08-06

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  4. Application of ground-truth for classification and quantification of bird movements on migratory bird habitat initiative sites in southwest Louisiana: final report

    Science.gov (United States)

    Barrow, Wylie C.; Baldwin, Michael J.; Randall, Lori A.; Pitre, John; Dudley, Kyle J.

    2013-01-01

    This project was initiated to assess migrating and wintering bird use of lands enrolled in the Natural Resources Conservation Service’s (NRCS) Migratory Bird Habitat Initiative (MBHI). The MBHI program was developed in response to the Deepwater Horizon oil spill in 2010, with the goal of improving/creating habitat for waterbirds affected by the spill. In collaboration with the University of Delaware (UDEL), we used weather surveillance radar data (Sieges 2014), portable marine radar data, thermal infrared images, and visual observations to assess bird use of MBHI easements. Migrating and wintering birds routinely make synchronous flights near dusk (e.g., departure during migration, feeding flights during winter). Weather radars readily detect birds at the onset of these flights and have proven to be useful remote sensing tools for assessing bird-habitat relations during migration and determining the response of wintering waterfowl to wetland restoration (e.g., Wetlands Reserve Program lands). However, ground-truthing is required to identify radar echoes to species or species group. We designed a field study to ground-truth a larger-scale, weather radar assessment of bird use of MBHI sites in southwest Louisiana. We examined seasonal bird use of MBHI fields in fall, winter, and spring of 2011-2012. To assess diurnal use, we conducted total area surveys of MBHI sites in the afternoon, collecting data on bird species composition, abundance, behavior, and habitat use. In the evenings, we quantified bird activity at the MBHI easements and described flight behavior (i.e., birds landing in, departing from, circling, or flying over the MBHI tract). Our field sampling captured the onset of evening flights and spanned the period of collection of the weather radar data analyzed. Pre- and post-dusk surveys were conducted using a portable radar system and a thermal infrared camera. Landbirds, shorebirds, and wading birds were commonly found on MBHI fields during diurnal

  5. When and where to move: Dynamic occupancy models explain the range dynamics of a food nomadic bird under climate and land cover change.

    Science.gov (United States)

    Kalle, Riddhika; Ramesh, Tharmalingam; Downs, Colleen T

    2018-01-01

    Globally, long-term research is critical to monitor the responses of tropical species to climate and land cover change at the range scale. Citizen science surveys can reveal the long-term persistence of poorly known nomadic tropical birds occupying fragmented forest patches. We applied dynamic occupancy models to 13 years (2002-2014) of citizen science-driven presence/absence data on Cape parrot (Poicephalus robustus), a food nomadic bird endemic to South Africa. We modeled its underlying range dynamics as a function of resource distribution, and change in climate and land cover through the estimation of colonization and extinction patterns. The range occupancy of Cape parrot changed little over time (ψ = 0.75-0.83) because extinction was balanced by recolonization. Yet, there was considerable regional variability in occupancy and detection probability increased over the years. Colonizations increased with warmer temperature and area of orchards, thus explaining their range shifts southeastwards in recent years. Although colonizations were higher in the presence of nests and yellowwood trees (Afrocarpus and Podocarpus spp.), the extinctions in small forest patches (≤227 ha) and during low precipitation (≤41 mm) are attributed to resource constraints and unsuitable climatic conditions. Loss of indigenous forest cover and artificial lake/water bodies increased extinction probabilities of Cape parrot. The land use matrix (fruit farms, gardens, and cultivations) surrounding forest patches provides alternative food sources, thereby facilitating spatiotemporal colonization and extinction in the human-modified matrix. Our models show that Cape parrots are vulnerable to extreme climatic conditions such as drought which is predicted to increase under climate change. Therefore, management of optimum sized high-quality forest patches is essential for long-term survival of Cape parrot populations. Our novel application of dynamic occupancy models to long-term citizen

  6. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  7. Flapping Wings of an Inclined Stroke Angle: Experiments and Reduced-Order Models in Dual Aerial/Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Triantafyllou, Michael

    2016-11-01

    Flapping wings in nature demonstrate a large force actuation envelope, with capabilities beyond the limits of static airfoil section coefficients. Puffins, guillemots, and other auks particularly showcase this mechanism, as they are able to both generate both enough thrust to swim and lift to fly, using the same wing, by changing the wing motion trajectory. The wing trajectory is therefore an additional design criterion to be optimized along with traditional aircraft parameters, and could possibly enable dual aerial/aquatic flight. We showcase finite aspect-ratio flapping wing experiments, dynamic similarity arguments, and reduced-order models for predicting the performance of flapping wings that carry out complex motion trajectories.

  8. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    Science.gov (United States)

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  9. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    Science.gov (United States)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  10. Studying respiratory rhythm generation in a developing bird: Hatching a new experimental model using the classic in vitro brainstem-spinal cord preparation.

    Science.gov (United States)

    Vincen-Brown, Michael A; Whitesitt, Kaitlyn C; Quick, Forrest G; Pilarski, Jason Q

    2016-04-01

    It has been more than thirty years since the in vitro brainstem-spinal cord preparation was first presented as a method to study automatic breathing behaviors in the neonatal rat. This straightforward preparation has led to an incredible burst of information about the location and coordination of several spontaneously active microcircuits that form the ventrolateral respiratory network of the brainstem. Despite these advances, our knowledge of the mechanisms that regulate central breathing behaviors is still incomplete. Investigations into the nature of spontaneous breathing rhythmicity have almost exclusively focused on mammals, and there is a need for comparative experimental models to evaluate several unresolved issues from a different perspective. With this in mind, we sought to develop a new avian in vitro model with the long term goal to better understand questions associated with the ontogeny of respiratory rhythm generation, neuroplasticity, and whether multiple, independent oscillators drive the major phases of breathing. The fact that birds develop in ovo provides unparalleled access to central neuronal networks throughout the prenatal period - from embryo to hatchling - that are free from confounding interactions with mother. Previous studies using in vitro avian models have been strictly limited to the early embryonic period. Consequently, the details and even the presence of brainstem derived breathing-related rhythmogenesis in birds have never been described. In the present study, we used the altricial zebra finch (Taeniopygia guttata) and show robust spontaneous motor outflow through cranial motor nerve IX, which is first detectable on embryonic day four and continues through prenatal and early postnatal development without interruption. We also show that brainstem oscillations change dramatically over the course of prenatal development, sometimes within hours, which suggests rapid maturational modifications in growth and connectivity. We propose

  11. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  12. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    Science.gov (United States)

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  13. Visual perception and social foraging in birds.

    Science.gov (United States)

    Fernández-Juricic, Esteban; Erichsen, Jonathan T; Kacelnik, Alex

    2004-01-01

    Birds gather information about their environment mainly through vision by scanning their surroundings. Many prevalent models of social foraging assume that foraging and scanning are mutually exclusive. Although this assumption is valid for birds with narrow visual fields, these models have also been applied to species with wide fields. In fact, available models do not make precise predictions for birds with large visual fields, in which the head-up, head-down dichotomy is not accurate and, moreover, do not consider the effects of detection distance and limited attention. Studies of how different types of visual information are acquired as a function of body posture and of how information flows within flocks offer new insights into the costs and benefits of living in groups.

  14. Cook Inlet and Kenai Peninsula, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  15. Bayesian hierarchical modelling of continuous non-negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter.

    Science.gov (United States)

    Swallow, Ben; Buckland, Stephen T; King, Ruth; Toms, Mike P

    2016-03-01

    The development of methods for dealing with continuous data with a spike at zero has lagged behind those for overdispersed or zero-inflated count data. We consider longitudinal ecological data corresponding to an annual average of 26 weekly maximum counts of birds, and are hence effectively continuous, bounded below by zero but also with a discrete mass at zero. We develop a Bayesian hierarchical Tweedie regression model that can directly accommodate the excess number of zeros common to this type of data, whilst accounting for both spatial and temporal correlation. Implementation of the model is conducted in a Markov chain Monte Carlo (MCMC) framework, using reversible jump MCMC to explore uncertainty across both parameter and model spaces. This regression modelling framework is very flexible and removes the need to make strong assumptions about mean-variance relationships a priori. It can also directly account for the spike at zero, whilst being easily applicable to other types of data and other model formulations. Whilst a correlative study such as this cannot prove causation, our results suggest that an increase in an avian predator may have led to an overall decrease in the number of one of its prey species visiting garden feeding stations in the United Kingdom. This may reflect a change in behaviour of house sparrows to avoid feeding stations frequented by sparrowhawks, or a reduction in house sparrow population size as a result of sparrowhawk increase. © 2015 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  17. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  18. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  19. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  20. Changes in timing, duration, and symmetry of molt of Hawaiian forest birds.

    Science.gov (United States)

    Freed, Leonard A; Cann, Rebecca L

    2012-01-01

    Food limitation greatly affects bird breeding performance, but the effect of nutritive stress on molt has barely been investigated outside of laboratory settings. Here we show changes in molting patterns for an entire native Hawaiian bird community at 1650-1900 m elevation on the Island of Hawaii between 1989-1999 and 2000-2006, associated with severe food limitation throughout the year beginning in 2000. Young birds and adults of all species took longer to complete their molt, including months never or rarely used during the 1989-1999 decade. These included the cold winter months and even the early months of the following breeding season. In addition, more adults of most species initiated their molt one to two months earlier, during the breeding season. Suspended molt, indicated by birds temporarily not molting primary flight feathers during the months of peak primary molt, increased in prevalence. Food limitation reached the point where individuals of all species had asymmetric molt, with different primary flight feathers molted on each wing. These multiple changes in molt, unprecedented in birds, had survival consequences. Adult birds captured during January to March, 2000-2004, had lower survival in four of five species with little effect of extended molt. Extended molt may be adaptive for a nutrient stressed bird to survive warm temperatures but not cool winter temperatures that may obliterate the energy savings. The changing molt of Hawaiian birds has many implications for conservation and for understanding life history aspects of molt of tropical birds.

  1. Changes in timing, duration, and symmetry of molt of Hawaiian forest birds.

    Directory of Open Access Journals (Sweden)

    Leonard A Freed

    Full Text Available Food limitation greatly affects bird breeding performance, but the effect of nutritive stress on molt has barely been investigated outside of laboratory settings. Here we show changes in molting patterns for an entire native Hawaiian bird community at 1650-1900 m elevation on the Island of Hawaii between 1989-1999 and 2000-2006, associated with severe food limitation throughout the year beginning in 2000. Young birds and adults of all species took longer to complete their molt, including months never or rarely used during the 1989-1999 decade. These included the cold winter months and even the early months of the following breeding season. In addition, more adults of most species initiated their molt one to two months earlier, during the breeding season. Suspended molt, indicated by birds temporarily not molting primary flight feathers during the months of peak primary molt, increased in prevalence. Food limitation reached the point where individuals of all species had asymmetric molt, with different primary flight feathers molted on each wing. These multiple changes in molt, unprecedented in birds, had survival consequences. Adult birds captured during January to March, 2000-2004, had lower survival in four of five species with little effect of extended molt. Extended molt may be adaptive for a nutrient stressed bird to survive warm temperatures but not cool winter temperatures that may obliterate the energy savings. The changing molt of Hawaiian birds has many implications for conservation and for understanding life history aspects of molt of tropical birds.

  2. Changes in Timing, Duration, and Symmetry of Molt of Hawaiian Forest Birds

    Science.gov (United States)

    Freed, Leonard A.; Cann, Rebecca L.

    2012-01-01

    Food limitation greatly affects bird breeding performance, but the effect of nutritive stress on molt has barely been investigated outside of laboratory settings. Here we show changes in molting patterns for an entire native Hawaiian bird community at 1650–1900 m elevation on the Island of Hawaii between 1989–1999 and 2000–2006, associated with severe food limitation throughout the year beginning in 2000. Young birds and adults of all species took longer to complete their molt, including months never or rarely used during the 1989–1999 decade. These included the cold winter months and even the early months of the following breeding season. In addition, more adults of most species initiated their molt one to two months earlier, during the breeding season. Suspended molt, indicated by birds temporarily not molting primary flight feathers during the months of peak primary molt, increased in prevalence. Food limitation reached the point where individuals of all species had asymmetric molt, with different primary flight feathers molted on each wing. These multiple changes in molt, unprecedented in birds, had survival consequences. Adult birds captured during January to March, 2000–2004, had lower survival in four of five species with little effect of extended molt. Extended molt may be adaptive for a nutrient stressed bird to survive warm temperatures but not cool winter temperatures that may obliterate the energy savings. The changing molt of Hawaiian birds has many implications for conservation and for understanding life history aspects of molt of tropical birds. PMID:22279547

  3. Potential impacts of wind turbines on birds at North Cape, Prince Edward Island

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, A.; Whitman, B.

    2001-12-13

    As the number of new wind power generating stations in Canada grows, so do concerns regarding the environmental impact of turbines on birds, particularly on raptors and migrating songbirds. These birds are generally at greatest risk of injury or death from turbines, but the impact of these structures on all bird species must be considered on a site-by-site basis. Disturbance to breeding and wintering as a result of turbines must be better researched. This report reviews the literature on the effects of wind turbines on birds, with reference to the North Cape, Prince Edward Island. It recommends ways to reduce potential impacts of turbines on birds in that area, and suggests a program whereby the potential effects of wind turbines on birds can be monitored. The bird groups likely to be seen at North Cape include water birds, raptors, songbirds, and 5 bird species that are considered to be provincially rare. The main causes of bird mortality at wind powered energy facilities are birds flying into rotating turbine blades. Migrating birds are attracted to warning lights on the turbines and collide with the structures and they also collide with the power lines connected to the station. Poor weather conditions, such as fog, increase the occurrence of collisions with towers. Several studies have shown that most migrating and wintering bird species alter their flight paths to avoid turbines. Studies also indicate that bird mortalities at wind energy facilities are not biologically significant and that impacts are not likely to be significant if wind turbines are located in areas of poor habitat and low bird densities. 61 refs., 1 tab., 1 fig.

  4. WT-BIRD. Bird collision monitoring system for multi-megawatt wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wiggelinkhuizen, E.J.; Rademakers, L.W.M.M.; Barhorst, S.A.M. [ECN Wind Energy, Petten (Netherlands); Den Boon, H.J. [E-Connection Project, Bunnik (Netherlands); Dirksen, S. [Bureau Waardenburg, Culemborg (Netherlands)

    2007-05-15

    A new method for detection and registration of bird collisions has been developed that is suitable for continuous remote operation in both onshore and offshore wind farms. The characteristic sound of a collision is detected by sensors in the blades, which triggers the storage of video registrations and sends an alert message to the operator. A prototype has been tested successfully on a Nordex N80/2.5MW turbine at ECN's Wind turbine Test park Wieringermeer. Compared to other methods employed so far this monitoring system will reduce the uncertainty in the number of birds killed by collisions with wind turbines. Further, the system enables the operator to identify species and to study the collision mechanisms. It has been found that this system can also be used for monitoring of other events in order to save costs for inspection and repair after incidents. For offshore wind farms, the WT-Bird system is currently the only alternative to count the number of bird collisions. Functional tests with tennis balls that were shot against rotating blades showed that the majority of the impacts were detected. The flight track of these dummies and the collision events were clearly visible on the video registrations. During the monitoring period of about one year two bird collisions were detected. The video recordings confirmed that a collision took place and showed that the location of both collisions was near the blade root, which resulted that in both cases the bird was not (immediately) killed. Therefore no corpses could be found beneath the turbine after these events. Also during the rest of the monitoring period no corpses were found beneath the turbine.

  5. 78 FR 11553 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Science.gov (United States)

    2013-02-19

    ...; Electronic Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation...) associated with the control surface awareness and mode annunciation of the electronic flight control system... a fly-by-wire electronic flight control system and no direct coupling from the flightdeck controller...

  6. 77 FR 57039 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Science.gov (United States)

    2012-09-17

    ... Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation... a fly-by-wire electronic flight control system and no direct coupling from the flightdeck controller... nuisance alerting. This special condition also addresses flight control system mode annunciation. It...

  7. 78 FR 31838 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Science.gov (United States)

    2013-05-28

    .... When failure states occur in the electronic flight control system, flight envelope protection features... any change in envelope limiting or maneuverability is produced by single or multiple failures of the...; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation Administration (FAA...

  8. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in a Setup Simulating that Proposed for Captive-Flight Tests in a Hangar, TED No. NACA DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.

    1953-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane in test setups representing the setup proposed for use in the first flight tests of the full-scale airplane in the Moffett Field airship hangar. The investigation was conducted in two parts: first, tests with the model flying freely in an enclosure simulating the hangar, and second, tests with the model partially restrained by an overhead line attached to the propeller spinner and ground lines attached to the wing and tail tips. The results of the tests indicated that the airplane can be flown without difficulty in the Moffett Field airship hangar if it does not approach too close to the hangar walls. If it does approach too close to the walls, the recirculation of the propeller slipstream might cause sudden trim changes which would make smooth flight difficult for the pilot to accomplish. It appeared that the tethering system proposed by Convair could provide generally satisfactory restraint of large-amplitude motions caused by control failure or pilot error without interfering with normal flying or causing any serious instability or violent jerking motions as the tethering lines restrained the model.

  9. The effects of a wind farm on birds in a migration point: the Strait of Gibraltar.

    OpenAIRE

    Lucas, Manuela de; Janss, Guyonne, F.E.; Ferrer, Miguel

    2004-01-01

    The interaction between birds and wind turbines is an important factor to consider when a wind farm is constructed. A wind farm and two control areas were studied in Tarifa (Andalusia Province, southern Spain, 30STF590000–30STE610950).Variables were studied along linear transects in each area and observations of flight were also recorded from fixed points in the wind farm. The main purpose of our research was to determine the impact and the degree of flight behavioural change in birds flights...

  10. The effect of the Sep wind park near Oosterbierum, Friesland, The Netherlands, on birds

    International Nuclear Information System (INIS)

    Winkelman, J.E.

    1992-01-01

    The study concerns 1984-1991. The wind park consists of 18 three-bladed 300 kW horizontal axis wind turbines of 35 meters height, and a rotor diameter of 30 meters, seven meteorological towers, and three cluster and control buildings. Aspects studied included disturbance of breeding, resting or feeding, and migrating birds, behavior of birds approaching the wind turbines during the day and night, and bird victims due to collision with the wind turbines and the meteorological towers. The flight behavior of birds approaching the wind park system during daylight is also dealt with. For at least a fifth of the observations it was noted whether the birds passing within 100 meters distance of a turbine showed a reaction or not. The proportion of the reactions was related to the wind park in operation or not in operation, and to the distance between the wind turbines, species, flight height, the passing distance, wind direction and wind force. Secondly the flight path of birds approaching the wind park from eastern directions during daylight (real autumn migration) and from southern directions during late afternoon (flights of gulls to night roosts) was studied in detail. Significantly more reactions (11-18%) were recorded with the wind park fully operational compared to the wind park not operational (2%). In total 2203 flight paths of birds approaching the wind park were recorded during 151 hours of observation. The test results showed that a passing distance of less or more than 100 meters of the nearest wind turbine did not affect the proportion of reactions. Several reaction types and combinations were noted, varying from gradual and calm reactions (circa 75%), and panic reactions, occurring just before or while passing the wind turbines. The reactions are shift in the flight path in the horizontal plane (30%), shift in the flight path in the vertical plane (14%), one passing attempt (87%), an accelerated wing beat (14%), an alteration of the angle of the body (21%)

  11. Europe's last Mesozoic bird

    NARCIS (Netherlands)

    Dyke, Gareth J.; Dortangs, Rudi W.; Jagt, John W.; Mulder, Eric W. A.; Schulp, Anne S.; Chiappe, Luis M.

    2002-01-01

    Birds known from more than isolated skeletal elements are rare in the fossil record, especially from the European Mesozoic. This paucity has hindered interpretations of avian evolution immediately prior to, and in the aftermath of, the Cretaceous-Tertiary (K-T) extinction event. We report on a

  12. The Umbrella Bird

    NARCIS (Netherlands)

    Crandall, Lee S.

    1949-01-01

    When CHARLES CORDIER arrived from Costa Rica on October 9, 1942, bringing with him, among other great rarities, three Bare-necked Umbrella Birds (Cephalopterus ornatus glabricollis), it seemed to us that the mere possession of such fabulous creatures was satisfaction enough. True, they were not

  13. Timber and forest birds

    Science.gov (United States)

    Brian Roy Lockhart

    2009-01-01

    Many years ago, I had an epiphany that I would like to share. Several students and I were installing research plots in the forests on Pittman Island, Issaquena County, Mississippi, an island adjacent to the Mississippi River, near the borders of Arkansas, Mississippi, and Louisiana. While eating lunch, we watched a bird, more specifically a prothonotary warbler (

  14. Fish, birds and flies

    Science.gov (United States)

    Gibbings, J. C.

    2013-04-01

    The article in your animal physics special issue on the use of magnetic field sensing in bird navigation (November 2012 pp38-42) reminded me of a comment made regarding a paper that I presented in the US many years ago.

  15. Cavity Nesting Birds

    Science.gov (United States)

    Virgil E. Scott; Keith E. Evans; David R. Patton; Charles P. Stone

    1977-01-01

    Many species of cavity-nesting birds have declined because of habitat reduction. In the eastern United States, where primeval forests are gone, purple martins depend almost entirely on man-made nesting structures (Allen and Nice 1952). The hole-nesting population of peregrine falcons disappeared with the felling of the giant trees upon which they depended (Hickey and...

  16. Eating Like a Bird.

    Science.gov (United States)

    Brothers, Chris; Fortner, Rosanne W.

    This teacher guide and student workbook set contains two learning activities, designed for fifth through ninth grade students, that concentrate on the adaptations of shorebird beaks for a variety of habitats and food sources, and the effect of toxic chemicals in the food chain on the birds. In activity A, students discover how shorebirds are…

  17. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  18. Breeding Ecology of Birds -22 ...

    Indian Academy of Sciences (India)

    or drive the birds away. However, the droppings of the birds provide a rich source of fertilizer and this ... birds of India are under severe threat and require urgent protection. he~ries'(Box 1), can ... there will be no fish and then suddenly a school.

  19. Degree-Day Prediction Models for the Flight Phenology of Western Bean Cutworm (Lepidoptera: Noctuidae) Assessed with the Concordance Correlation Coefficient.

    Science.gov (United States)

    Hanson, A A; Moon, R D; Wright, R J; Hunt, T E; Hutchison, W D

    2015-08-01

    Western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a native, univoltine pest of corn and dry beans in North America. The current degree-day model for predicting a specified percentage of yearly moth flight involves heat unit accumulation above 10°C after 1 May. However, because the moth's observed range has expanded into the northern and eastern United States, there is concern that suitable temperatures before May could allow for significant S. albicosta development. Daily blacklight moth catch and temperature data from four Nebraska locations were used to construct degree-day models using simple or sine-wave methods, starting dates between 1 January and 1 May, and lower (-5 to 15°C) and upper (20 to 43.3°C) developmental thresholds. Predicted dates of flight from these models were compared with observed flight dates using independent datasets to assess model performance. Model performance was assessed with the concordance correlation coefficient to concurrently evaluate precision and accuracy. The best model for predicting timing of S. albicosta flight used simple degree-day calculations beginning on 1 March, a 3.3°C (38°F) lower threshold, and a 23.9°C (75°F) upper threshold. The revised cumulative flight model indicated field scouting to estimate moth egg density at the time of 25% flight should begin when 1,432 degree-days (2,577 degree-days °F) have accumulated. These results underscore the importance of assessing multiple parameters in phenological models and utilizing appropriate assessment methods, which in this case may allow for improved timing of field scouting for S. albicosta. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds

    NARCIS (Netherlands)

    Buchin, K.; Sijben, S.; van Loon, E.E.; Sapir, N.; Mercier, S.; Arseneau, T.J.M.; Willems, E.P.

    2015-01-01

    Background: The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while

  1. Flight performance of western sandpipers, Calidris mauri, remains uncompromised when mounting an acute phase immune response.

    Science.gov (United States)

    Nebel, Silke; Buehler, Deborah M; MacMillan, Alexander; Guglielmo, Christopher G

    2013-07-15

    Migratory birds have been implicated in the spread of some zoonotic diseases, but how well infected individuals can fly remains poorly understood. We used western sandpipers, Calidris mauri, to experimentally test whether flight is affected when long-distance migrants are mounting an immune response and whether migrants maintain immune defences during a flight in a wind tunnel. We measured five indicators of innate immunity in 'flown-healthy' birds (flying in a wind tunnel without mounting an immune response), 'flown-sick' birds (flying while mounting an acute phase response, which is part of induced innate immunity), and a non-flying control group ('not-flown'). Voluntary flight duration did not differ between flown-healthy and flown-sick birds, indicating that mounting an acute phase response to simulated infection did not hamper an individual's ability to fly for up to 3 h. However, in comparison to not-flown birds, bacterial killing ability of plasma was significantly reduced after flight in flown-sick birds. In flown-healthy birds, voluntary flight duration was positively correlated with bacterial killing ability and baseline haptoglobin concentration of the blood plasma measured 1-3 weeks before experimental flights, suggesting that high quality birds had strong immune systems and greater flight capacity. Our findings indicate that flight performance is not diminished by prior immune challenge, but that flight while mounting an acute phase response negatively affects other aspects of immune function. These findings have important implications for our understanding of the transmission of avian diseases, as they suggest that birds can still migrate while fighting an infection.

  2. 14 CFR 33.76 - Bird ingestion.

    Science.gov (United States)

    2010-01-01

    ... single bird, the single largest medium bird which can enter the inlet, and the large flocking bird must...) (d) Large flocking bird. An engine test will be performed as follows: (1) Large flocking bird engine.... (4) Ingestion of a large flocking bird under the conditions prescribed in this paragraph must not...

  3. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Directory of Open Access Journals (Sweden)

    Katherine M Sholtis

    Full Text Available Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics. These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  4. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Science.gov (United States)

    Sholtis, Katherine M; Shelton, Ryan M; Hedrick, Tyson L

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  5. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    International Nuclear Information System (INIS)

    Hirohashi, Kensuke; Inamuro, Takaji

    2017-01-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m . We set the parameters at Re = 200, Fr = 15 and m  = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ , and the horizontal motion of the model depends on the stroke angle β . Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β . The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β . (paper)

  6. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Hirohashi, Kensuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2017-08-15

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m . We set the parameters at Re = 200, Fr = 15 and m  = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ , and the horizontal motion of the model depends on the stroke angle β . Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β . The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β . (paper)

  7. [Morphologic-functional study of the locomotor system of penguins as a general model of movement in under-water flight. I].

    Science.gov (United States)

    Bannasch, R

    1986-01-01

    Regarding several theories of the evolution of the Sphenisciformes the specific morpho-physiological alterations for the changeover from aerial to underwater life are discussed. The peculiarities in the Penguin's "construction" become comprehensible as strong adjustments to the subaquatic locomotion. Surely they took their origin from the equipment of flying birds. The present data of the kinematics of the underwater locomotion show, that propulsion is produced in the same principal way by the flapping wings as in aerial flight. Therefore the short term "underwater flight" for the Penguin's style of locomotion is justified. Known data of swimming performance suggest that its essential adaptation is not that to top achievements but more to an economical use of energy budget. The favourable hydrodynamic characteristics of the Penguin body may be well interpreted from this point of view. The peculiarity of underwater flight is the absence of the necessity to produce a weight-compensating force. In order to create thrust forces in an appropriate magnitude during up- and downstroke of the beating cycle the upstroke must be powered. The anatomical architecture and the mode of operation of the parts of the muscle system must be adjusted to this demand. Based on these statements, the anatomy of active and passive apparatus of movement was studied by dissection of 26 individuals of Pygoscelis papua, P. antarctica, P. adeliae, Eudyptes chrysolophus, and Aptenodytes forsteri. Besides the functional explanation of the Articulatio sternocoracoidea (diverging considerably from the usual type in birds), a new interpretation is given for the structures of the Articulatio humeri. In this context, the role of the Ligamentum acrocoracohumerale as an important element for coordination of the motion processes in the shoulder joint is elucidated. The essential curvature of the Caput humeri is found to be satisfactorily approximated by a logarithmic spiral. The understanding of the

  8. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  9. Model surface conductivity effect for the electromagnetic heat shield in re-entry flight

    International Nuclear Information System (INIS)

    Matsuda, Atsushi; Otsu, Hirotaka; Kawamura, Masaaki; Konigorski, Detlev; Takizawa, Yuji; Abe, Takashi

    2008-01-01

    Effects of model surface conductivity on shock layer enhancement by an applied magnetic field in weakly ionized supersonic plasma flow with a large Hall parameter (β∼300) was investigated experimentally. The shock layer structures of test models of two kinds were measured using laser absorption spectroscopy, in the large Hall parameter situation. One was an insulated model; the other was a conductive spherical blunt model. The shock layer enhancement phenomenon by the applied magnetic field was more pronounced for the insulated model than for the conductive model. This tendency agrees with the computational fluid dynamics result, at least qualitatively

  10. Estimated Mortality of Selected Migratory Bird Species from Mowing and Other Mechanical Operations in Canadian Agriculture

    Directory of Open Access Journals (Sweden)

    Joerg Tews

    2013-12-01

    Full Text Available Mechanical operations such as mowing, tilling, seeding, and harvesting are well-known sources of direct avian mortality in agricultural fields. However, there are currently no mortality rate estimates available for any species group or larger jurisdiction. Even reviews of sources of mortality in birds have failed to address mechanical disturbance in farm fields. To overcome this information gap we provide estimates of total mortality rates by mechanical operations for five selected species across Canada. In our step-by-step modeling approach we (i quantified the amount of various types of agricultural land in each Bird Conservation Region (BCR in Canada, (ii estimated population densities by region and agricultural habitat type for each selected species, (iii estimated the average timing of mechanical agricultural activities, egg laying, and fledging, (iv and used these values and additional demographical parameters to derive estimates of total mortality by species within each BCR. Based on our calculations the total annual estimated incidental take of young ranged from ~138,000 for Horned Lark (Eremophila alpestris to as much as ~941,000 for Savannah Sparrow (Passerculus sandwichensis. Net losses to the fall flight of birds, i.e., those birds that would have fledged successfully in the absence of mechanical disturbance, were, for example ~321,000 for Bobolink (Dolichonyx oryzivorus and ~483,000 for Savannah Sparrow. Although our estimates are subject to an unknown degree of uncertainty, this assessment is a very important first step because it provides a broad estimate of incidental take for a set of species that may be particularly vulnerable to mechanical operations and a starting point for future refinements of model parameters if and when they become available.

  11. Functional morphometric analysis of the furcula in mesozoic birds.

    Directory of Open Access Journals (Sweden)

    Roger A Close

    Full Text Available The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs, including phylogenetic Flexible Discriminant Analysis (pFDA. Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving, correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations.

  12. Homing pigeons externally exposed to Deepwater Horizon crude oil change flight performance and behavior.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Cacela, Dave; Dean, Karen M; Pritsos, Chris A

    2017-11-01

    The Deepwater Horizon oil spill was the largest in U.S. history, contaminating thousands of miles of coastal habitat and affecting the lives of many avian species. The Gulf of Mexico is a critical bird migration route area and migrants that were oiled but did not suffer mortality as a direct result of the spill faced unpredictable fates. This study utilized homing pigeons as a surrogate species for migratory birds to investigate the effects a single low level external oiling event has on the flight performance and behavior of birds flying repeated 161 km flights. Data from GPS data loggers showed that lightly oiled pigeons changed their flight paths, increased their flight durations by 2.6 fold, increased their flight distances by 28 km and subsequently decreased their route efficiencies. Oiled birds also exhibited reduced rate of weight gain between flights. Our data suggest that contaminated birds surviving the oil spill may have experienced flight impairment and reduced refueling abilities, likely reducing overall migration speed. Our findings contribute new information on how oil spills affect avian species, as the effects of oil on the flight behavior of long distance free-flying birds have not been previously described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Global associations between birds and vane-dwelling feather mites.

    Science.gov (United States)

    Doña, Jorge; Proctor, Heather; Mironov, Sergey; Serrano, David; Jovani, Roger

    2016-11-01

    Understanding host-symbiont networks is a major question in evolutionary ecology. Birds host a great diversity of endo- and ectosymbiotic organisms, with feather mites (Arachnida: Acariformes: Analgoidea, Pterolichoidea) being among the most diverse of avian symbionts. A global approach to the ecology and evolution of bird-feather-mite associations has been hampered because of the absence of a centralized data repository. Here we present the most extensive data set of associations between feather mites and birds. Data include 12 036 records of 1887 feather mite species located on the flight feathers of 2234 bird species from 147 countries. Feather mites typically located inside quills, on the skin, or on downy body feathers are not included. Data were extracted from 493 published sources dating from 1882 to 2015. Data exploration shows that although most continents and bird families are represented, most bird species remain unexplored for feather mites. Nevertheless, this is the most comprehensive data set available for enabling global macroecological analyses of feather mites and their hosts, such as ecological network analyses. This metadata file outlines the structure of these data and provides primary references for all records used. © 2016 by the Ecological Society of America.

  14. A Phororhacoid bird from the Eocene of Africa

    Science.gov (United States)

    Mourer-Chauviré, Cécile; Tabuce, Rodolphe; Mahboubi, M'hammed; Adaci, Mohammed; Bensalah, Mustapha

    2011-10-01

    The bird fossil record is globally scarce in Africa. The early Tertiary evolution of terrestrial birds is virtually unknown in that continent. Here, we report on a femur of a large terrestrial new genus discovered from the early or early middle Eocene (between ˜52 and 46 Ma) of south-western Algeria. This femur shows all the morphological features of the Phororhacoidea, the so-called Terror Birds. Most of the phororhacoids were indeed large, or even gigantic, flightless predators or scavengers with no close modern analogs. It is likely that this extinct group originated in South America, where they are known from the late Paleocene to the late Pleistocene (˜59 to 0.01 Ma). The presence of a phororhacoid bird in Africa cannot be explained by a vicariant mechanism because these birds first appeared in South America well after the onset of the mid-Cretaceous Gondwana break up (˜100 million years old). Here, we propose two hypotheses to account for this occurrence, either an early dispersal of small members of this group, which were still able of a limited flight, or a transoceanic migration of flightless birds from South America to Africa during the Paleocene or earliest Eocene. Paleogeographic reconstructions of the South Atlantic Ocean suggest the existence of several islands of considerable size between South America and Africa during the early Tertiary, which could have helped a transatlantic dispersal of phororhacoids.

  15. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  16. Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART

    Directory of Open Access Journals (Sweden)

    José A. Delgado

    2012-01-01

    Full Text Available Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR imagery and related techniques to model structural parameters at the stand level (n = 490 in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively served to model structural parameters. Classification and Regression Tree Analysis (CART was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD (R2 = 0.8; RMSE = 0.13 m with an average error of 17% while basal area (BA models produced an average error of 22% (RMSE = 5.79 m2/ha. When the measured number of trees per unit area (N was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from

  17. Quantitative model of the effects of contamination and space environment on in-flight aging of thermal coatings

    Science.gov (United States)

    Vanhove, Emilie; Roussel, Jean-François; Remaury, Stéphanie; Faye, Delphine; Guigue, Pascale

    2014-09-01

    The in-orbit aging of thermo-optical properties of thermal coatings critically impacts both spacecraft thermal balance and heating power consumption. Nevertheless, in-flight thermal coating aging is generally larger than the one measured on ground and the current knowledge does not allow making reliable predictions1. As a result, a large oversizing of thermal control systems is required. To address this issue, the Centre National d'Etudes Spatiales has developed a low-cost experiment, called THERME, which enables to monitor the in-flight time-evolution of the solar absorptivity of a large variety of coatings, including commonly used coatings and new materials by measuring their temperature. This experiment has been carried out on sunsynchronous spacecrafts for more than 27 years, allowing thus the generation of a very large set of telemetry measurements. The aim of this work was to develop a model able to semi-quantitatively reproduce these data with a restraint number of parameters. The underlying objectives were to better understand the contribution of the different involved phenomena and, later on, to predict the thermal coating aging at end of life. The physical processes modeled include contamination deposition, UV aging of both contamination layers and intrinsic material and atomic oxygen erosion. Efforts were particularly focused on the satellite leading wall as this face is exposed to the highest variations in environmental conditions during the solar cycle. The non-monotonous time-evolution of the solar absorptivity of thermal coatings is shown to be due to a succession of contamination and contaminant erosion by atomic oxygen phased with the solar cycle.

  18. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Science.gov (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  19. Omnivory in birds is a macroevolutionary sink

    NARCIS (Netherlands)

    Burin, G.; Kissling, W.D.; Guimarães, P.R.; Şekercioğlu, Ç.H.; Quental, T.B.

    2016-01-01

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction

  20. Developing stochastic model of thrust and flight dynamics for small UAVs

    Science.gov (United States)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  1. Alien invasive birds.

    Science.gov (United States)

    Brochier, B; Vangeluwe, D; van den Berg, T

    2010-08-01

    A bird species is regarded as alien invasive if it has been introduced, intentionally or accidentally, to a location where it did not previously occur naturally, becomes capable of establishing a breeding population without further intervention by humans, spreads and becomes a pest affecting the environment, the local biodiversity, the economy and/or society, including human health. European Starling (Sturnus vulgaris), Common Myna (Acridotheres tristis) and Red-vented Bulbul (Pycnonotus cafer) have been included on the list of '100 of the World's Worst Invasive Alien Species', a subset of the Global Invasive Species Database. The 'Delivering Alien Invasive Species Inventories for Europe' project has selected Canada Goose (Branta canadensis), Ruddy Duck (Oxyura jamaicensis), Rose-ringed Parakeet (Psittacula krameri) and Sacred Ibis (Threskiornis aethiopicus) as among 100 of the worst invasive species in Europe. For each of these alien bird species, the geographic range (native and introduced range), the introduction pathway, the general impacts and the management methods are presented.

  2. Model-Based Systems Engineering for Capturing Mission Architecture System Processes with an Application Case Study - Orion Flight Test 1

    Science.gov (United States)

    Bonanne, Kevin H.

    2011-01-01

    Model-based Systems Engineering (MBSE) is an emerging methodology that can be leveraged to enhance many system development processes. MBSE allows for the centralization of an architecture description that would otherwise be stored in various locations and formats, thus simplifying communication among the project stakeholders, inducing commonality in representation, and expediting report generation. This paper outlines the MBSE approach taken to capture the processes of two different, but related, architectures by employing the Systems Modeling Language (SysML) as a standard for architecture description and the modeling tool MagicDraw. The overarching goal of this study was to demonstrate the effectiveness of MBSE as a means of capturing and designing a mission systems architecture. The first portion of the project focused on capturing the necessary system engineering activities that occur when designing, developing, and deploying a mission systems architecture for a space mission. The second part applies activities from the first to an application problem - the system engineering of the Orion Flight Test 1 (OFT-1) End-to-End Information System (EEIS). By modeling the activities required to create a space mission architecture and then implementing those activities in an application problem, the utility of MBSE as an approach to systems engineering can be demonstrated.

  3. Windmills and birds

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, N W; Poulsen, E

    1984-07-01

    The objective of this study is an investigation of potential conflicts between windmills and birds. Emphasis is on frightening, collision risk and biotopic changes due to windmill systems. The study is based on the environment of Koldby and Nibe windmills (South Jutland). Biotopic changes were not observed around the existing windmills. Drainage of mill grounds at Nibe had probably no effect on water level in the area around; a longer observation is necessary to draw any decisive conclusions.(EG).

  4. Free flight simulations of a dragonfly-like flapping wing-body model using the immersed boundary-lattice Boltzmann method

    International Nuclear Information System (INIS)

    Minami, Keisuke; Suzuki, Kosuke; Inamuro, Takaji

    2015-01-01

    Free flights of the dragonfly-like flapping wing-body model are numerically investigated using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m, and we set the parameters at Re = 200, Fr = 15, and m = 51. First, we simulate free flights of the model without the pitching rotation for various values of the phase lag angle ϕ between the forewing and the hindwing motions. We find that the wing-body model goes forward in spite of ϕ, and the model with ϕ = 0 ∘ and 90 ∘ goes upward against gravity. The model with ϕ =180 ∘ goes almost horizontally, and the model with ϕ =270 ∘ goes downward. That is, the moving direction of the model depends on the phase lag angle ϕ. Secondly, we simulate free flights with the pitching rotation for various values of the phase lag angle ϕ. It is found that in spite of ϕ the wing-body model turns gradually in the nose-up direction and goes back and down as the pitching angle Θ c increases. That is, the wing-body model cannot make a stable forward flight without control. Finally, we show a way to control the pitching motion by changing the lead–lag angle γ(t). We propose a simple proportional controller of γ(t) which makes stable flights within Θ c =±5 ∘ and works well even for a large disturbance. (paper)

  5. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    Science.gov (United States)

    Krishnan, Govindarajapuram Subramaniam

    1997-12-01

    The National Aeronautics & Space Administration (NASA), the European Space Agency (ESA), and the Canadian Space Agency (CSA) missions involve the performance of scientific experiments in Space. Instruments used in such experiments are fabricated using electronic parts such as microcircuits, inductors, capacitors, diodes, transistors, etc. For instruments to perform reliably the selection of commercial parts must be monitored and strictly controlled. The process used to achieve this goal is by a manual review and approval of every part used to build the instrument. The present system to select and approve parts for space applications is manual, inefficient, inconsistent, slow and tedious, and very costly. In this dissertation a computer based decision support model is developed for implementing this process using artificial intelligence concepts based on the current information (expert sources). Such a model would result in a greater consistency, accuracy, and timeliness of evaluation. This study presents the methodology of development and features of the model, and the analysis of the data pertaining to the performance of the model in the field. The model was evaluated for three different part types by experts from three different space agencies. The results show that the model was more consistent than the manual evaluation for all part types considered. The study concludes with the cost and benefits analysis of implementing the models and shows that implementation of the model will result in significant cost savings. Other implementation details are highlighted.

  6. Using molt cycles to categorize the age of tropical birds: an integrative new system

    Science.gov (United States)

    Jared D. Wolfe; Thomas B. Ryder; Peter Pyle

    2010-01-01

    Accurately differentiating age classes is essential for the long-term monitoring of resident New World tropical bird species. Molt and plumage criteria have long been used to accurately age temperate birds, but application of temperate age-classification models to the Neotropics has been hindered because annual life-cycle events of tropical birds do not always...

  7. Research on an Infectious Disease Transmission by Flocking Birds

    Directory of Open Access Journals (Sweden)

    Mingsheng Tang

    2013-01-01

    Full Text Available The swarm intelligence is becoming a hot topic. The flocking of birds is a natural phenomenon, which is formed and organized without central or external controls for some benefits (e.g., reduction of energy consummation. However, the flocking also has some negative effects on the human, as the infectious disease H7N9 will easily be transmited from the denser flocking birds to the human. Zombie-city model has been proposed to help analyzing and modeling the flocking birds and the artificial society. This paper focuses on the H7N9 virus transmission in the flocking birds and from the flocking birds to the human. And some interesting results have been shown: (1 only some simple rules could result in an emergence such as the flocking; (2 the minimum distance between birds could affect H7N9 virus transmission in the flocking birds and even affect the virus transmissions from the flocking birds to the human.

  8. Toward a Model-Based Approach for Flight System Fault Protection

    Science.gov (United States)

    Day, John; Meakin, Peter; Murray, Alex

    2012-01-01

    Use SysML/UML to describe the physical structure of the system This part of the model would be shared with other teams - FS Systems Engineering, Planning & Execution, V&V, Operations, etc., in an integrated model-based engineering environment Use the UML Profile mechanism, defining Stereotypes to precisely express the concepts of the FP domain This extends the UML/SysML languages to contain our FP concepts Use UML/SysML, along with our profile, to capture FP concepts and relationships in the model Generate typical FP engineering products (the FMECA, Fault Tree, MRD, V&V Matrices)

  9. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    Science.gov (United States)

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 deg and 45 deg because of static directional instability in this range.

  10. Flight Dynamics Simulation Modeling and Control of a Large Flexible Tiltrotor Aircraft

    Science.gov (United States)

    2014-09-01

    analyses as it retains a momentum theory type rotor system. Later, CAMRAD, a comprehensive aeromechanics and dynamics model capa- ble of multi-rotor and...isotropic, linearly elastic material. 8. All blades are identical. 9. Euler- Bernoulli beam theory is used, implying plane cross sections remain plane and...aircraft could be improved to achieve a higher fidelity structural response. Currently, flexible wings are modeled as Bernoulli beams. Actual aircraft

  11. Regionalizing land use impacts on farmland birds.

    Science.gov (United States)

    Glemnitz, Michael; Zander, Peter; Stachow, Ulrich

    2015-06-01

    The environmental impacts of land use vary regionally. Differences in geomorphology, climate, landscape structure, and biotope inventories are regarded as the main causes of this variation. We present a methodological approach for identifying regional responses in land use type to large-scale changes and the implications for the provision of habitat for farmland birds. The methodological innovations of this approach are (i) the coupling of impact assessments with economic models, (ii) the linking of cropping techniques at the plot scale with the regional distribution of land use, and (iii) the integration of statistical or monitoring data on recent states. This approach allows for the regional differentiation of farmers' responses to changing external conditions and for matching the ecological impacts of land use changes with regional environmental sensitivities. An exemplary scenario analysis was applied for a case study of an area in Germany, assessing the impacts of increased irrigation and the promotion of energy cropping on farmland birds, evaluated as a core indicator for farmland biodiversity. The potential effects on farmland birds were analyzed based on the intrinsic habitat values of the crops and cropping techniques. The results revealed that the strongest decrease in habitat availability for farmland birds occurred in regions with medium-to-low agricultural yields. As a result of the limited cropping alternatives, the increase in maize production was highest in marginal regions for both examined scenarios. Maize production replaced many crops with good-to-medium habitat suitability for birds. The declines in habitat quality were strongest in regions that are not in focus for conservation efforts for farmland birds.

  12. EXPERIMENTAL INVESTIGATION OF THE IMPACT OF FLIGHT SPEED ON DRAG FORCE IN THE AUTOGYRO MODEL

    OpenAIRE

    Zbigniew Czyż; Paweł Magryta; Marcin Szlachetka

    2015-01-01

    The paper presents the experimental investigation of the impact of velocity on drag force in the autogyro model. One of the methods which simulate motion of the flying object consists of using a wind tunnel. In this case, test object is stationary and the motion of air is forced by e.g. a special fan. The costs related with renting and the wind tunnel service are still very high. In this paper, the motion of the autogyro with respect to the air, was produced by fixing this model with scale to...

  13. Modelling flight heights of lesser black-backed gulls and great skuas from GPS: a Bayesian approach

    NARCIS (Netherlands)

    Ross-Smith, V.H.; Thaxter, C.B.; Masden, E.A.; Shamoun-Baranes, J.; Burton, N.H.K.; Wright, L.J.; Rehfisch, M.M.; Johnston, A.

    2016-01-01

    * Wind energy generation is increasing globally, and associated environmental impacts must be considered. The risk of seabirds colliding with offshore wind turbines is influenced by flight height, and flight height data usually come from observers on boats, making estimates in daylight in fine

  14. Understanding the biological concept "bird": A kindergarten case study

    Science.gov (United States)

    Buchholz, Dilek

    The purpose of this qualitative, multiple case study of 14 students in a metropolitan public school in the Deep South was to find out, during a period of three months, what these kindergarten-aged children knew about birds, whether this knowledge represented current scientific thought, if such science instruction meaningfully affected their prior knowledge, and if so, what the factors during instruction that seemed to influence their understanding of the concept of bird were. The research was conducted in three phases; preinstruction interviews, instruction, and postinstruction interviews. The theoretical framework for this research was based on the Human Constructivism theory of learning (Mintzes, Wandersee and Novak, 1997). Instructional materials consisted of carefully chosen books (both fiction and non-fiction), guest speakers, field trips, a live bird in the classroom, students' observation journals, teacher-made classification and sorting activities, and picture-based concept maps. The findings suggest that young children's knowledge of birds was limited chiefly to birds' anatomical and morphological characteristics, with repeated references being made by the children to human characteristics. There was a positive, significant difference in young children's pre- and postinstruction scientific knowledge of birds. Although performance varied from child to child after instruction, most children were able to identify some common birds by name. Just one child resisted conceptual change. Kindergarten children's basic knowledge of bird behavior was limited to flight and eating. Although the children had more conceptual knowledge at the end, understanding still appeared to be shallow. The children did develop their skill in observing markedly. It also became evident that these kindergarten children needed more (a) experience in asking questions, (b) practice in techniques of visual representation, and (c) language development in order to be able to explain what they

  15. Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness

    Science.gov (United States)

    2013-09-01

    by generating random solutions composed of binary strings or “ chromosomes ” representing a treatment path. Each member of this initial population is...dimerization in a more complex HPA-Immune-HPG models resulted in the disappearance of 480 this alternate hypocortisolic state through compensatory effects of

  16. The North Sea Bird Club

    International Nuclear Information System (INIS)

    Doyle, P.A.T.; Gorman, M.L.; Patterson, I.J.; Howe, S.

    1991-01-01

    This paper reports that the creation of a club for the purpose of encouraging oil and gas workers to watch birds may not at first seem a viable proposition. To the layperson, birds offshore conjures up an image of hundreds of seagulls following fishing boats, and very little else. Also, the act of birdwatching is not seen as a typical offshore worker's activity. Anyone who has worked on an installation offshore and who has any interest in wildlife will be aware of the occasional presence of land-birds. Two decades ago, prompted by some keen offshore workers, a single oil company set up a monitoring program, which quickly became popular with a number of its employees. Birds seem offshore were recorded on data forms and collected together. At this stage the club was purely another recreation facility; however, when the data were collated it was soon realized that installations offshore were being used as staging posts by birds on migration, and that the information being collected would be of great interest in the study of bird movements. All over Britain, at strategic points on the coastline, there are bird observatories which record the arrival and departure of migrating birds. The presence of several hundred solid structures up and down the North Sea, which are used by birds en route, represents a huge, unique bird observatory, capable of uncovering facts about bird migration which have long eluded land-based scientists. Eleven years ago, the North Sea Bird Club began, composed of eight member companies, a recorder from Aberdeen University and a representative from the Nature Conservancy Council. The club received data from 41 installations, and the recorder collated these on Aberdeen University's computer and produced an annual report of sightings

  17. Modeling aerodynamic discontinuities and onset of chaos in flight dynamical systems

    Science.gov (United States)

    Tobak, M.; Chapman, G. T.; Unal, A.

    1987-01-01

    Various representations of the aerodynamic contribution to the aircraft's equation of motion are shown to be compatible within the common assumption of their Frechet differentiability. Three forms of invalidating Frechet differentiability are identified, and the mathematical model is amended to accommodate their occurrence. Some of the ways in which chaotic behavior may emerge are discussed, first at the level of the aerodynamic contribution to the equations of motion, and then at the level of the equations of motion themselves.

  18. Modeling aerodynamic discontinuities and the onset of chaos in flight dynamical systems

    Science.gov (United States)

    Tobak, M.; Chapman, G. T.; Uenal, A.

    1986-01-01

    Various representations of the aerodynamic contribution to the aircraft's equation of motion are shown to be compatible within the common assumption of their Frechet differentiability. Three forms of invalidating Frechet differentiality are identified, and the mathematical model is amended to accommodate their occurrence. Some of the ways in which chaotic behavior may emerge are discussed, first at the level of the aerodynamic contribution to the equation of motion, and then at the level of the equations of motion themselves.

  19. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials for Hypersonic Flight

    Science.gov (United States)

    2011-11-01

    air flows was investigated in the 1.2 MW Plasmatron facility at the 1 von Kantian Institute for Fluid Dynamics (VKI). Samples manufactured by...surfaces (e.g., oxides) with refractive indices between 1 and 4, electromagnetic theory predicts differences of no more than ~5% between...model of a concept UHTC WLE section is shown in Fig. 1.) While not an achievable design in practice, in the context of supersonic flow theory , a

  20. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    Science.gov (United States)

    Krishnan, G. S.

    1997-01-01

    A cost effective model which uses the artificial intelligence techniques in the selection and approval of parts is presented. The knowledge which is acquired from the specialists for different part types are represented in a knowledge base in the form of rules and objects. The parts information is stored separately in a data base and is isolated from the knowledge base. Validation, verification and performance issues are highlighted.

  1. 78 FR 75287 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Flight...

    Science.gov (United States)

    2013-12-11

    ... exceeded. When EFCS failure states occur, flight envelope protection features can likewise either be... Series Airplanes; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation... flight control system that provides flight envelope protections. The applicable airworthiness regulations...

  2. Bird-strike of a Cinereous Vulture Aegypius monachus in the ...

    African Journals Online (AJOL)

    Campbell Murn

    Bird-strike of a Cinereous Vulture Aegypius monachus in the Balearic Islands, Spain. Alvaro Camiña1* and Joan ... http://dx.doi.org/10.4314/vulnew.v71i1.3. On 15 September 2016 a Lufthansa flight en route from Munich ... nautical miles from runway 24L. Considering the altitude of the area of around 100 meters, the bird ...

  3. Rhode Island, Connecticut, New York, and New Jersey ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, pelagic birds, passerine birds, gulls and...

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds,...

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds, and...

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for alcids, diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds,...

  7. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  8. Approaching birds with drones: first experiments and ethical guidelines.

    Science.gov (United States)

    Vas, Elisabeth; Lescroël, Amélie; Duriez, Olivier; Boguszewski, Guillaume; Grémillet, David

    2015-02-01

    Unmanned aerial vehicles, commonly called drones, are being increasingly used in ecological research, in particular to approach sensitive wildlife in inaccessible areas. Impact studies leading to recommendations for best practices are urgently needed. We tested the impact of drone colour, speed and flight angle on the behavioural responses of mallards Anas platyrhynchos in a semi-captive situation, and of wild flamingos (Phoenicopterus roseus) and common greenshanks (Tringa nebularia) in a wetland area. We performed 204 approach flights with a quadricopter drone, and during 80% of those we could approach unaffected birds to within 4 m. Approach speed, drone colour and repeated flights had no measurable impact on bird behaviour, yet they reacted more to drones approaching vertically. We recommend launching drones farther than 100 m from the birds and adjusting approach distance according to species. Our study is a first step towards a sound use of drones for wildlife research. Further studies should assess the impacts of different drones on other taxa, and monitor physiological indicators of stress in animals exposed to drones according to group sizes and reproductive status. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Risk of Agricultural Practices and Habitat Change to Farmland Birds

    Directory of Open Access Journals (Sweden)

    David Anthony. Kirk

    2011-06-01

    Full Text Available Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables, local habitat features (12 variables, or habitat features that influence susceptibility to predation. We found that: (1 Overall bird abundance, but not richness, was significantly (p < 0.05 higher on organic sites (mean 43.1 individuals per site than nonorganic sites (35.8 individuals per site. Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2 Farming practice models were the best (Î"AIC < 4 for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3 Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance migrants and resident richness; (4 Predation models were the best for richness of secondary grassland birds and ground feeders; (5 A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type and 9 of 13 habitat variables (including hedgerow length, proportion of hay were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds. An

  10. Modeling of a sensitive time-of-flight flash LiDAR system

    Science.gov (United States)

    Fathipour, V.; Wheaton, S.; Johnson, W. E.; Mohseni, H.

    2016-09-01

    used for monitoring and profiling structures, range, velocity, vibration, and air turbulence. Remote sensing in the IR region has several advantages over the visible region, including higher transmitter energy while maintaining eye-safety requirements. Electron-injection detectors are a new class of detectors with high internal avalanche-free amplification together with an excess-noise-factor of unity. They have a cutoff wavelength of 1700 nm. Furthermore, they have an extremely low jitter. The detector operates in linear-mode and requires only bias voltage of a few volts. This together with the feedback stabilized gain mechanism, makes formation of large-format high pixel density electron-injection FPAs less challenging compared to other detector technologies such as avalanche photodetectors. These characteristics make electron-injection detectors an ideal choice for flash LiDAR application with mm scale resolution at longer ranges. Based on our experimentally measured device characteristics, a detailed theoretical LiDAR model was developed. In this model we compare the performance of the electron-injection detector with commercially available linear-mode InGaAs APD from (Hamamatsu G8931-20) as well as a p-i-n diode (Hamamatsu 11193 p-i-n). Flash LiDAR images obtained by our model, show the electron-injection detector array (of 100 x 100 element) achieves better resolution with higher signal-to-noise compared with both the InGaAs APD and the p-i-n array (of 100 x 100 element).

  11. An experiment to study the effects of space flight cells of mesenchymal origin in the new model 3D-graft in vitro

    Science.gov (United States)

    Volova, Larissa

    One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.

  12. Comparison of semiautomated bird song recognition with manual detection of recorded bird song samples

    Directory of Open Access Journals (Sweden)

    Lisa A. Venier

    2017-12-01

    Full Text Available Automated recording units are increasingly being used to sample wildlife populations. These devices can produce large amounts of data that are difficult to process manually. However, the information in the recordings can be summarized with semiautomated sound recognition software. Our objective was to assess the utility of the semiautomated bird song recognizers to produce data useful for conservation and sustainable forest management applications. We compared detection data generated from expert-interpreted recordings of bird songs collected with automated recording units and data derived from a semiautomated recognition process. We recorded bird songs at 109 sites in boreal forest in 2013 and 2014 using automated recording units. We developed bird-song recognizers for 10 species using Song Scope software (Wildlife Acoustics and each recognizer was used to scan a set of recordings that was also interpreted manually by an expert in birdsong identification. We used occupancy models to estimate the detection probability associated with each method. Based on these detection probability estimates we produced cumulative detection probability curves. In a second analysis we estimated detection probability of bird song recognizers using multiple 10-minute recordings for a single station and visit (35-63, 10-minute recordings in each of four one-week periods. Results show that the detection probability of most species from single 10-min recordings is substantially higher using expert-interpreted bird song recordings than using the song recognizer software. However, our results also indicate that detection probabilities for song recognizers can be significantly improved by using more than a single 10-minute recording, which can be easily done with little additional cost with the automate procedure. Based on these results we suggest that automated recording units and song recognizer software can be valuable tools to estimate detection probability and

  13. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    Science.gov (United States)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  14. EXPERIMENTAL INVESTIGATION OF THE IMPACT OF FLIGHT SPEED ON DRAG FORCE IN THE AUTOGYRO MODEL

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2015-05-01

    Full Text Available The paper presents the experimental investigation of the impact of velocity on drag force in the autogyro model. One of the methods which simulate motion of the flying object consists of using a wind tunnel. In this case, test object is stationary and the motion of air is forced by e.g. a special fan. The costs related with renting and the wind tunnel service are still very high. In this paper, the motion of the autogyro with respect to the air, was produced by fixing this model with scale to measure the drag force on the passenger car roof. The position of the object relative to the vehicle was checked on the basis of numerical analysis of the airflow around this vehicle. Based on the investigations, the field of velocity and pressure, and air flow formed around the contour of the vehicle which have been chosen, were determined. In addition, the drag force characteristic was determined as a function of velocity and it was compared with the values from the numerical analysis. This research is a form of verifying opportunities for this type of research on vehicles. The conclusions derived from the analysis of the results will be used in the future to carry out further research.

  15. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    Science.gov (United States)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  16. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation.

    Science.gov (United States)

    Newman, Erica A; Eisen, Lars; Eisen, Rebecca J; Fedorova, Natalia; Hasty, Jeomhee M; Vaughn, Charles; Lane, Robert S

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States.

  17. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.

    Science.gov (United States)

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin

    2010-02-25

    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  18. Using a Sound Field to Reduce the Risks of Bird-Strike: An Experimental Approach.

    Science.gov (United States)

    Swaddle, John P; Ingrassia, Nicole M

    2017-07-01

    Each year, billions of birds collide with large human-made structures, such as building, towers, and turbines, causing substantial mortality. Such bird-strike, which is projected to increase, poses risks to populations of birds and causes significant economic costs to many industries. Mitigation technologies have been deployed in an attempt to reduce bird-strike, but have been met with limited success. One reason for bird-strike may be that birds fail to pay adequate attention to the space directly in front of them when in level, cruising flight. A warning signal projected in front of a potential strike surface might attract visual attention and reduce the risks of collision. We tested this idea in captive zebra finches (Taeniopygia guttata) that were trained to fly down a long corridor and through an open wooden frame. Once birds were trained, they each experienced three treatments at unpredictable times and in a randomized order: a loud sound field projected immediately in front of the open wooden frame; a mist net (i.e., a benign strike surface) placed inside the wooden frame; and both the loud sound and the mist net. We found that birds slowed their flight approximately 20% more when the sound field was projected in front of the mist net compared with when the mist net was presented alone. This reduction in velocity would equate to a substantial reduction in the force of any collision. In addition to slowing down, birds increased the angle of attack of their body and tail, potentially allowing for more maneuverable flight. Concomitantly, the only cases where birds avoided the mist net occurred in the sound-augmented treatment. Interestingly, the sound field by itself did not demonstrably alter flight. Although our study was conducted in a limited setting, the alterations of flight associated with our sound field has implications for reducing bird-strike in nature and we encourage researchers to test our ideas in field trials. © The Author 2017. Published by

  19. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  20. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    Science.gov (United States)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  1. Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunological indices in pigeons

    NARCIS (Netherlands)

    Matson, Kevin D.; Horrocks, Nicholas P. C.; Tieleman, B. Irene; Haase, Eberhard

    Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined

  2. Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunoplogical indices in pigeons

    NARCIS (Netherlands)

    Matson, K.D.; Horrocks, N.P.C.; Tieleman, B.I.; Haase, E.

    2012-01-01

    Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined

  3. Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunological indices in pigeons

    NARCIS (Netherlands)

    Matson, Kevin D.; Horrocks, Nicholas P. C.; Tieleman, B. Irene; Haase, Eberhard

    2012-01-01

    Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined

  4. Secondarily flightless birds or Cretaceous non-avian theropods?

    Science.gov (United States)

    Kavanau, J Lee

    2010-02-01

    Recent studies by Varricchio et al. reveal that males cared for the eggs of troodontids and oviraptorids, so-called "non-avian theropods" of the Cretaceous, just as do those of most Paleognathic birds (ratites and tinamous) today. Further, the clutches of both groups have large relative volumes, and consist of many eggs of relatively large size. By comparison, clutch care by most extant birds is biparental and the clutches are of small relative volume, and consist of but few small eggs. Varricchio et al. propose that troodontids and oviraptorids were pre-avian and that paternal egg care preceded the origin of birds. On the contrary, unmentioned by them is that abundant paleontological evidence has led several workers to conclude that troodontids and oviraptorids were secondary flightless birds. This evidence ranges from bird-like bodies and bone designs, adapted for climbing, perching, gliding, and ultimately flight, to relatively large, highly developed brains, poor sense of smell, and their feeding habits. Because ratites also are secondarily flightless and tinamous are reluctant, clumsy fliers, the new evidence strengthens the view that troodontids and oviraptorids were secondarily flightless. Although secondary flightlessness apparently favors paternal care of clutches of large, abundant eggs, such care is not likely to have been primitive. There are a suite of previously unknown independent findings that point to the evolution of, first, maternal, followed by biparental egg care in earliest ancestors of birds. This follows from the discovery of remarkable relict avian reproductive behaviors preserved by virtue of the highly conservative nature of vertebrate brain evolution. These behaviors can be elicited readily by exposing breeding birds to appropriate conditions, both environmental and with respect to their eggs and chicks. They give significant new clues for a coherent theory of avian origin and early evolution.

  5. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.

    Science.gov (United States)

    Hieronymus, Tobin L

    2016-11-01

    Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species. © 2016 Anatomical Society.

  6. Advancing migratory bird conservation and management by using radar: An interagency collaboration

    Science.gov (United States)

    Ruth, Janet M.; Barrow, Wylie C.; Sojda, Richard S.; Dawson, Deanna K.; Diehl, Robert H.; Manville, Albert; Green, Michael T.; Krueper, David J.; Johnston, Scott

    2005-01-01

    Migratory birds face many changes to the landscapes they traverse and the habitats they use. Wind turbines and communications towers, which pose hazards to birds and bats in flight, are being erected or proposed across the United States and offshore. Human activities can also destroy or threaten habitats critical to birds during migratory passage, and climate change appears to be altering migratory patterns. The U.S. Fish and Wildlife Service (USFWS) and other agencies are under increasing pressure to identify and evaluate movement patterns and habitats used during migration and other times.

  7. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  8. Employing Organizational Modeling and Simulation to Deconstruct the KC-135 Aircraft's Programmed Depot Maintenance Flight Controls Repair Cell

    National Research Council Canada - National Science Library

    Paskin, Matthew A; Trevino, Alice W

    2007-01-01

    ...), Tinker Air Force Base, Oklahoma. The researchers focused on the repair cell's internal formal and informal communication flows and information processing to evaluate the impact on flight controls repair throughput time...

  9. Laboratory Animal Management: Wild Birds.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    This is a report on the care and use of wild birds in captivity as research animals. Chapters are presented on procurement and identification, housing, nutrition, health of birds and personnel, reproduction in confinement, and surgical procedures. Also included are addresses of federal, state, and provencial regulatory agencies concerned with wild…

  10. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  11. Assessing allowable take of migratory birds

    Science.gov (United States)

    Runge, M.C.; Sauer, J.R.; Avery, M.L.; Blackwell, B.F.; Koneff, M.D.

    2009-01-01

    Legal removal of migratory birds from the wild occurs for several reasons, including subsistence, sport harvest, damage control, and the pet trade. We argue that harvest theory provides the basis for assessing the impact of authorized take, advance a simplified rendering of harvest theory known as potential biological removal as a useful starting point for assessing take, and demonstrate this approach with a case study of depredation control of black vultures (Coragyps atratus) in Virginia, USA. Based on data from the North American Breeding Bird Survey and other sources, we estimated that the black vulture population in Virginia was 91,190 (95% credible interval = 44,520?212,100) in 2006. Using a simple population model and available estimates of life-history parameters, we estimated the intrinsic rate of growth (rmax) to be in the range 7?14%, with 10.6% a plausible point estimate. For a take program to seek an equilibrium population size on the conservative side of the yield curve, the rate of take needs to be less than that which achieves a maximum sustained yield (0.5 x rmax). Based on the point estimate for rmax and using the lower 60% credible interval for population size to account for uncertainty, these conditions would be met if the take of black vultures in Virginia in 2006 was < 3,533 birds. Based on regular monitoring data, allowable harvest should be adjusted annually to reflect changes in population size. To initiate discussion about how this assessment framework could be related to the laws and regulations that govern authorization of such take, we suggest that the Migratory Bird Treaty Act requires only that take of native migratory birds be sustainable in the long-term, that is, sustained harvest rate should be < rmax. Further, the ratio of desired harvest rate to 0.5 x rmax may be a useful metric for ascertaining the applicability of specific requirements of the National Environmental Protection Act.

  12. Direct Evidence for Vision-based Control of Flight Speed in Budgerigars.

    Science.gov (United States)

    Schiffner, Ingo; Srinivasan, Mandyam V

    2015-06-05

    We have investigated whether, and, if so, how birds use vision to regulate the speed of their flight. Budgerigars, Melopsittacus undulatus, were filmed in 3-D using high-speed video cameras as they flew along a 25 m tunnel in which stationary or moving vertically oriented black and white stripes were projected on the side walls. We found that the birds increased their flight speed when the stripes were moved in the birds' flight direction, but decreased it only marginally when the stripes were moved in the opposite direction. The results provide the first direct evidence that Budgerigars use cues based on optic flow, to regulate their flight speed. However, unlike the situation in flying insects, it appears that the control of flight speed in Budgerigars is direction-specific. It does not rely solely on cues derived from optic flow, but may also be determined by energy constraints.

  13. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  14. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful

  15. Flight Model Discharge System

    Science.gov (United States)

    1989-09-01

    arcs from other spacecraft transients. Spacecraft transients wouU . iot be expected to change the steady-state E- field seen by the antenna. 79 N z 0oc...HOUSEKEEPING SUPPLY _ POWER , SIGNAL PRESSURE I ONDITIONING TRANSDUCERS , VALVE OPEN/CLOSE COMMANDS IDRIVERS "Figure 7-7. Block diagram of the plasma

  16. Collision risks at sea: species composition and altitude distributions of birds in Danish offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Blew, J.; Hoffmann, M.; Nehls, G. [BioConsult SH (Germany)

    2007-07-01

    This study investigates the collision risks of birds in operating offshore wind farms, focussing on all bird species present in the direct vicinity of the wind farms, their altitude distribution and reactions. The project was conducted jointly by BioConsult SH and the University of Hamburg in the two Danish offshore wind farms Horns Rev (North Sea) and Nysted (Baltic Sea) in the framework of a Danish-German cooperation and financed by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Data were collected between March 2005 and November 2006, using a ship anchored at the edge of the offshore wind farms. In this way, bird species of all sizes could be considered. Daytime observations yielded data on species composition, flight routes and potential reactions of the birds. Radar observations provided altitude distributions inside and outside the wind farm area and also reactions. The results shall help to further describe and assess the collision risk of different species groups. Since data analysis is still running, exemplary results will be presented here. 114 species have been recorded in Nysted and 99 in Horns Rev, approximately 65% of which have been observed inside the wind farm areas. Migrating birds seem to avoid flying into the wind farms, whereas individuals present in the areas for extended time periods utilize areas within the wind farms. While a barrier effect exists for species on migration, resident species probably have a higher collision risk. Raptors migrating during daylight frequently enter the wind farm area on their flight routes, correcting their flight paths in order to avoid collisions. Radar results show that during times of intensive migration, the proportion of birds flying at high altitudes and thus above windmill height is higher than in times of low migration intensity. Consequently, there is a lower proportion of migrating birds flying within the risk area. Data will be further analysed to

  17. Exploiting Science: Enhancing the Safety Training of Pilots to Reduce the Risk of Bird Strikes

    Science.gov (United States)

    Mendonca, Flavio A. C.

    Analysis of bird strikes to aviation in the U.S. from 1990 to 2015 indicate that the successful mitigation efforts at airports, which must be sustained, have reduced incidents with damage and a negative effect-on-flight since 2000. However, such efforts have done little to reduce strikes outside the airport jurisdiction, such as occurred with US Airways Flight 1549 in 2009. There are basically three strategies to mitigate the risk of bird strikes: standards set by aviation authorities, technology, and actions by crewmembers. Pilots play an important role as stakeholders in the prevention of bird strikes, especially outside the airport environment. Thus, safety efforts require enhanced risk management and aeronautical decision-making training for flight crews. The purpose of this study was to determine if a safety training protocol could effectively enhance CFR Part 141 general aviation pilots' knowledge and skills to reduce the risk of bird strikes to aviation. Participants were recruited from the Purdue University professional flight program and from Purdue Aviation. The researcher of this study used a pretest posttest experimental design. Additionally, qualitative data were collected through open-ended questions in the pretest, posttest, and a follow-up survey questionnaire. The participants' pretest and posttest scores were analyzed using parametric and nonparametric tests. Results indicated a significant increase in the posttest scores of the experimental group. An investigation of qualitative data showed that the topic "safety management of bird hazards by pilots" is barely covered during the ground and flight training of pilots. Furthermore, qualitative data suggest a misperception of the safety culture tenets and a poor familiarity with the safety risk management process regarding bird hazards. Finally, the researcher presented recommendations for practice and future research.

  18. Observation of bird interaction with wind turbines : Canadian applications and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Brown, K.; Hamilton, B. [Vision Quest Windelectric Inc., Calgary, AB (Canada)

    2002-07-01

    An environmental study has been conducted on a wind farm adjacent to Castle River, in the foothills of the Rocky Mountains in Alberta, to determine the impact of wind turbines on birds. The wind farm includes a total of 60 turbines. The study consisted of 30 observation days between March and December 2001 during which time nearly 2000 birds were monitored. These included 27 different species, including 181 raptors, 1021 waterfowl, and 821 passerines. The observations focused on spring and fall migration of birds. The observations looked at bird numbers, location relative to turbines, and changes in flight pattern. The study found that raptors flew around or over the turbine blades, while passerines remained below, and waterfowl flew up and over the blades. In total, 4 dead birds were found over the 9 month period, which translates to 0.15 birds per turbine per year. This study demonstrates that there are few bird fatalities associated with wind turbines, therefore it was concluded that wind turbines do not have a major impact on birds. The results of this study are consistent with international studies. 2 figs.

  19. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown

  20. Bristol Bay, Alaska Subarea ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for shorebirds, waterfowl, raptors, diving birds, and seabirds in the Bristol Bay Subarea. The Subarea...