WorldWideScience

Sample records for bipolar transistor integrated

  1. An analog front-end bipolar-transistor integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1994-01-01

    Since 1989 the Solenoidal Detector Collaboration (SDC) has been developing a general purpose detector to be operated at the Superconducting Super Collider (SSC). A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDS silicon tracker. The IC was designed and tested at LBL and was fabricated using AT and T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a φ = 10 14 protons/cm 2 have been performed on the JC, demonstrating the radiation hardness of the complementary bipolar process

  2. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  3. Analysis of the Nonlinear Characteristics of Microwave Power Heterojunction Bipolar Transistors and Optoelectronic Integrated Circuits.

    Science.gov (United States)

    Samelis, Apostolos

    A physical basis for large-signal HBT modeling was established in terms of transit times using a Monte Carlo analysis of AlGaAs/GaAs and GaInP/GaAs designs. Static carriers located in the collector-subcollector interface were found to prohibit accurate evaluation of transit times from electron velocity profiles. These carriers also influence the bias dependence of device capacitances. Analytical parameter extraction techniques for DC, thermal and high frequency HBT parameters were developed and applied to HBT large-signal modeling. The "impedance block" conditioned optimization technique was introduced to facilitate parameter extraction. Physical analysis of HBTs by means of Volterra Series techniques showed that C_{bc } dominates nonlinear distortion in high gain amplifiers. Designs with that C_{bc }-V_{cb} characteristics i.e. p -n collector HBTs lead to more than 10 dB IP3 improvement over n-collector HBTs. Nonlinear current cancellation was found to improve intermodulation distortion. A Gummel -Poon-based HBT large-signal model incorporating self-heating effects was developed and applied to AlGaAs/GaAs HBTs. Maximum power drive was shown to occur using constant V _{be} father than I_ {b} bias. The device temperature of constant I_{b} biased HBTs decreases at increased rf-drive levels ensuring in this case safer device operation. A large-signal model incorporating "soft" -breakdown effects typical of InP/InGaAs HBTs was developed and found to model succesfully the power characteristics of OEICs built with them. The effective large-signal transimpedance of a cascode transimpedance preamplifier was evaluated using this model and found to degrade by 3dBOmega for a variation of P_{in} from -65 to -5 dBm. Self-bias of individual transistors was studied and found to be related to variations of the amplifier characteristics at higher rf-drive levels. The power characteristics of CE and CB AlGaAs/GaAs HBTs were investigated using an on -wafer source/load pull setup

  4. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  5. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Science.gov (United States)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  6. Modeling of charge transport in ion bipolar junction transistors.

    Science.gov (United States)

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  7. Impact of Process Technologies on ELDRS of Bipolar Transistors

    International Nuclear Information System (INIS)

    Lu Wu; Ren Diyuan; Guo Qi; Yu Xuefeng; Zheng Yuzhan

    2010-01-01

    Radiation effects under different dose rates and annealing behaviors of domestic bipolar transistors, with same manufacture technology, were investigated.These transistors include NPN transistors of various emitter area, and LPNP transistors with different doping concentrations in emitter. It is shown that different types of transistors have different radiation responses. The results of NPN transistors show that more degradation occurs at less emitter area. Yet, the results of LPNP transistors demonstrate that transistors with lightly doped emitter are more sensitive to radiation, compared with heavily doped emitter. Finally,the mechanisms of the difference between various radiation responses were analyzed. (authors)

  8. Total dose effects on elementary transistors of a comparator in bipolar technology

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Guerre, F.X.

    1995-01-01

    In the present work we investigate elementary transistors behaviour of an Integrated Circuit using junction isolation bipolar technology. Polarization conditions and dose rate effects on the main elementary transistor types are analysed. Furthermore, the IC electronic function degradations are studied. Finally, a comparison between the function degradations and the elementary component ones is attempted. (author)

  9. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  10. Study on ionizing radiation effects of bipolar transistor with BPSG films

    International Nuclear Information System (INIS)

    Lu Man; Zhang Xiaoling; Xie Xuesong; Sun Jiangchao; Wang Pengpeng; Lu Changzhi; Zhang Yanxiu

    2013-01-01

    Background: Because of the damage induced by ionizing radiation, bipolar transistors in integrated voltage regulator could induce the current gain degradation and increase leakage current. This will bring serious problems to electronic system. Purpose: In order to ensure the reliability of the device work in the radiation environments, the device irradiation reinforcement technology is used. Methods: The characteristics of 60 Co γ irradiation and annealing at different temperatures in bipolar transistors and voltage regulators (JW117) with different passive films for SiO 2 +BPSG+SiO 2 and SiO 2 +SiN have been investigated. Results: The devices with BPSG film enhanced radiation tolerance significantly. Because BPSG films have better absorption for Na + in SiO 2 layer, the surface recombination rate of base region in a bipolar transistor and the excess base current have been reduced. It may be the main reason for BJT with BPSG film having a good radiation hardness. And annealing experiments at different temperatures after irradiation ensure the reliability of the devices with BPSG films. Conclusions: A method of improving the ionizing irradiation hardness of bipolar transistors is proposed. As well as the linear integrated circuits which containing bipolar transistors, an experimental basis for the anti-ionizing radiation effects of bipolar transistors is provided. (authors)

  11. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    International Nuclear Information System (INIS)

    Li Ou-Peng; Zhang Yong; Xu Rui-Min; Cheng Wei; Wang Yuan; Niu Bing; Lu Hai-Yan

    2016-01-01

    Design and characterization of a G-band (140–220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are −2.688 dBm at 210 GHz and −2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. (paper)

  12. Recent advances in understanding total-dose effects in bipolar transistors

    International Nuclear Information System (INIS)

    Schrimpf, R.D.

    1996-01-01

    Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described

  13. Discrete bipolar universal integrals

    Czech Academy of Sciences Publication Activity Database

    Greco, S.; Mesiar, Radko; Rindone, F.

    2014-01-01

    Roč. 252, č. 1 (2014), s. 55-65 ISSN 0165-0114 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : bipolar integral * universal integral * Choquet integral Subject RIV: BA - General Mathematics Impact factor: 1.986, year: 2014 http://library.utia.cas.cz/separaty/2014/E/mesiar-0432224.pdf

  14. Single-event burnout of epitaxial bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kuboyama, S.; Sugimoto, K.; Shugyo, S.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan); Hirao, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan)

    1998-12-01

    Single-Event Burnout (SEB) of bipolar junction transistors (BJTs) has been observed nondestructively. It was revealed that all the NPN BJTs, including small signal transistors, with thinner epitaxial layers were inherently susceptible to the SEB phenomenon. It was demonstrated that several design parameters of BJTs were responsible for SEB susceptibility. Additionally, destructive and nondestructive modes of SEB were identified.

  15. Single-event burnout of epitaxial bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kuboyama, Satoshi; Sugimoto, Kenji; Matsuda, Sumio [National Space Development Agency of Japan, Ysukuba, Ibaraki (Japan); Hirao, Toshio

    1998-10-01

    Single-event burnout (SEB) of bipolar junction transistors (BJTs) has been observed nondestructively. It was revealed that all the NPN BJTs including small signal transistors with thinner epitaxial layer were inherently susceptible to the SEB phenomenon. It was demonstrated that several design parameters of BJTs were responsible for SEB susceptibility. Additionally, destructive and nondestructive modes of SEB were identified. (author)

  16. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    Science.gov (United States)

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  17. Experiments with Charge Indicator Based on Bipolar Transistors

    Science.gov (United States)

    Dvorak, Leos; Planinsic, Gorazd

    2012-01-01

    A simple charge indicator with bipolar transistors described recently enables us to perform a number of experiments suitable for high-school physics. Several such experiments are presented and discussed in this paper as well as some features of the indicator important for its use in schools, namely its sensitivity and robustness, i.e. the…

  18. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  19. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  20. The effect and mechanism of the bipolar junction transistor in different temperature

    International Nuclear Information System (INIS)

    Wang Dong; Lu Wu; Ren Diyuan; Li Aiwu; Kuang Zhibing

    2007-01-01

    The annealing-effect of bipolar junction transistor in different temperature is investigated. It is found that the anneal of the bipolar transistor is related to the annealing-temperature, and the annealing-effect of the different type transistor is dissimilar. The possible mechanism is discussed. (authors)

  1. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    Science.gov (United States)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  2. DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT

    Directory of Open Access Journals (Sweden)

    F. I. Bukashev

    2016-01-01

    Full Text Available Aim. The aim of this study is to develop one of the most perspective semiconductor device suitable for creation and improvement of controlled rectifiers, bipolar static induction transistor.Methods. Considered are the structural and schematic circuit controlled rectifier based on bipolar static induction transistor (BSIT, and the criterion of effectiveness controlled rectifiers - equivalent to the voltage drop.Results. Presented are the study results of controlled rectifier layout on BSIT KT698I. It sets the layout operation at an input voltage of 2.0 V at a frequency up to 750 kHz. The efficiency of the studied layouts at moderate current densities as high as 90 % .Offered is optimization of technological route microelectronic controlled rectifier manufacturing including BSIT and integrated bipolar elements of the scheme management.Conclusion. It is proved that the most efficient use of the bipolar static induction transistor occurs at the low voltage controlled rectifiers 350-400 kHz, at frequencies in conjunction with a low-voltage control circuit.It is proved that the increase of the functional characteristics of the converters is connected to the expansion of the input voltage and output current ranges

  3. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  4. Shootthrough fault protection system for bipolar transistors in a voltage source transistor inverter

    International Nuclear Information System (INIS)

    Wirth, W.F.

    1982-01-01

    Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area, thereby preventing second breakdown destruction of the transistors

  5. Single-event burnout of power bipolar junction transistors

    International Nuclear Information System (INIS)

    Titus, J.L.; Johnson, G.H.; Schrimpf, R.D.; Galloway, K.F.

    1991-01-01

    Experimental evidence of single-event burnout of power bipolar junctions transistors (BJTs) is reported for the first time. Several commercial power BJTs were characterized in a simulated cosmic ray environment using mono-energetic ions at the tandem Van de Graaff accelerator facility at Brookhaven National Laboratory. Most of the device types exposed to this simulated environment exhibited burnout behavior. In this paper the experimental technique, data, and results are presented, while a qualitative model is used to help explain those results and trends observed in this experiment

  6. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  7. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Alley, G.T.; Britton, C.L. Jr.; Skubic, P.L.; Gray, B.; Wu, A.

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents ≤1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier

  8. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    International Nuclear Information System (INIS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-01-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  9. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-21

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  10. Radiation effect of doping and bias conditions on NPN bipolar junction transistors

    International Nuclear Information System (INIS)

    Xi Shanbin; Wang Yiyuan; Xu Fayue; Zhou Dong; Li Ming; Wang Fei; Wang Zhikuan; Yang Yonghui; Lu Wu

    2011-01-01

    In this paper,we investigate 60 Co γ-ray irradiation effects and annealing behaviors of NPN bipolar junction transistors of the same manufacturing technology but different doping concentrations. The transistors of different doping concentrations differ in responses of the radiation effect. More degradation was observed with the transistors of low concentration-doped NPN transistors than the high concentration-doped NPN transistors. The results also demonstrate that reverse-biased transistors are more sensitive to radiation than the forward-biased ones. Mechanisms of the radiation responses are analyzed. (authors)

  11. Gamma Irradiation Performance Tests of the Bipolar Junction Transistor (BJT) for Medical Dosimetry Purposes

    International Nuclear Information System (INIS)

    Nazififard, Mohammad; Suh, Kune Y.; Faghihi, Reyhaneh; Norov, Enkhbat

    2014-01-01

    Two basic radiation damage mechanisms may affect semiconductor devices which are Displacement damage and Ionization damage. In displacement damage mechanism, the incident radiation displaces silicon atoms from their lattice sites. The resulting defects alter the electronic characteristics of the crystal. In ionization damage mechanism, the absorbed energy by electronic ionization in insulating layers liberates charge carriers, which diffuse or drift to other locations where they are trapped, leading to unintended concentrations of charge and, as a consequence, parasitic fields. Both mechanisms are important in detectors, transistors and integrated circuits. Hardly a system is immune to either one phenomenon and most are sensitive to both. This paper investigates the behavior of Bipolar Junction Transistors (BJTs), exposed to radiation in order to establish their applicability in a radiation environment

  12. Gamma Irradiation Performance Tests of the Bipolar Junction Transistor (BJT) for Medical Dosimetry Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of); Faghihi, Reyhaneh [Kashan Univ. of Medical Science, Kashan (Iran, Islamic Republic of); Norov, Enkhbat [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Two basic radiation damage mechanisms may affect semiconductor devices which are Displacement damage and Ionization damage. In displacement damage mechanism, the incident radiation displaces silicon atoms from their lattice sites. The resulting defects alter the electronic characteristics of the crystal. In ionization damage mechanism, the absorbed energy by electronic ionization in insulating layers liberates charge carriers, which diffuse or drift to other locations where they are trapped, leading to unintended concentrations of charge and, as a consequence, parasitic fields. Both mechanisms are important in detectors, transistors and integrated circuits. Hardly a system is immune to either one phenomenon and most are sensitive to both. This paper investigates the behavior of Bipolar Junction Transistors (BJTs), exposed to radiation in order to establish their applicability in a radiation environment.

  13. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  14. Simulation of Heating of an Oil-Cooled Insulated Gate Bipolar Transistors Converter Model

    National Research Council Canada - National Science Library

    Ovrebo, Gregory

    2004-01-01

    I used SolidWorks a three-dimensional modeling software, and FloWorks, a fluid dynamics analysis tool, to simulate oil flow and heat transfer in a heat sink structure attached to three insulated gate bipolar transistors...

  15. Integrated Neurobiology of Bipolar Disorder

    Science.gov (United States)

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of

  16. Evaluation of temperature-enhanced gain degradation of verticle npn and lateral pnp bipolar transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Galloway, K.F.

    1997-01-01

    The effect of dose rate on radiation-induced gain degradation is compared for verticle npn and lateral pnp bipolar transistors. High dose rate irradiations at elevated temperatures are more effective at simulating low dose rate degradation in the lateral pnp transistors

  17. Controlled ion-beam transformation of silicon bipolar microwave power transistor's characteristics

    International Nuclear Information System (INIS)

    Solodukha, V.A.; Snitovskij, Yu.P.

    2015-01-01

    In this article, a method for changing the silicon bipolar microwave power transistor's characteristics in a direct and deliberate manner by modifying the chemical composition at the molybdenum - silicon boundary, the electro-physical properties of molybdenum - silicon contacts, and the electrophysical characteristics of transistor structure areas by the phosphorus ions irradiation of generated ohmic molybdenum - silicon contacts to the transistor emitters is proposed for the first time. The possibilities of this method are investigated and confirmed experimentally. (authors)

  18. Radiation effects on JFETS, MOSFETS, and bipolar transistors, as related to SSC circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, E J; Gray, B; Wu, A [Dept. of Electrical and Computer Engineering, Univ. of Tennessee, Knoxville, TN (United States); Alley, G T; Britton, Jr, C L [Oak Ridge National Lab., TN (United States); Skubic, P L [Univ. of Oklahoma, Dept. of Physics and Astronomy, Norman, OK (United States)

    1991-10-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular at currents {<=} 1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier. (orig.).

  19. Application of accelerated simulation method on NPN bipolar transistors of different technology

    International Nuclear Information System (INIS)

    Fei Wuxiong; Zheng Yuzhan; Wang Yiyuan; Chen Rui; Li Maoshun; Lan Bo; Cui Jiangwei; Zhao Yun; Lu Wu; Ren Diyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    With different radiation methods, ionizing radiation response of NPN bipolar transistors of six different processes was investigated. The results show that the enhanced low dose rate sensitivity obviously exists in NPN bipolar transistors of the six kinds of processes. According to the experiment, the damage of decreasing temperature in step during irradiation is obviously greater than the result of irradiated at high dose rate. This irradiation method can perfectly simulate and conservatively evaluate low dose rate damage, which is of great significance to radiation effects research of bipolar devices. Finally, the mechanisms of the experimental phenomena were analyzed. (authors)

  20. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  1. Wide bandgap collector III-V double heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Flitcroft, R.M.

    2000-10-01

    This thesis is devoted to the study and development of Heterojunction Bipolar Transistors (HBTs) designed for high voltage operation. The work concentrates on the use of wide bandgap III-V semiconductor materials as the collector material and their associated properties influencing breakdown, such as impact ionisation coefficients. The work deals with issues related to incorporating a wide bandgap collector into double heterojunction structures such as conduction band discontinuities at the base-collector junction and results are presented which detail, a number of methods designed to eliminate the effects of such discontinuities. In particular the use of AlGaAs as the base material has been successful in eliminating the conduction band spike at this interface. A method of electrically injecting electrons into the collector has been employed to investigate impact ionisation in GaAs, GaInP and AlInP which has used the intrinsic gain of the devices to extract impact ionisation coefficients over a range of electric fields beyond the scope of conventional optical injection techniques. This data has enabled the study of ''dead space'' effects in HBT collectors and have been used to develop an analytical model of impact ionisation which has been incorporated into an existing Ebers-Moll HBT simulator. This simulator has been shown to accurately reproduce current-voltage characteristics in both the devices used in this work and for external clients. (author)

  2. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Oo, Myo Min; Rashid, N K A Md; Hasbullah, N F; Karim, J Abdul; Zin, M R Mohamed

    2013-01-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region

  3. Nonlinear System Analysis in Bipolar Integrated Circuits.

    Science.gov (United States)

    1980-01-01

    H2 (fl,f 6), H2 (f2,f4), and H2 (f3,f4) are all equal, Equation (7-8) can be written as v M(t) = mA2 H2 (fl’-f 2) cos[27(f ,-f2)t] (7-9) The AF...and R. A. AMADORI: Micro- wave Interference Effect in Bipolar Transistors, IEEE Trans. EMC, Vol. EMC-17, pp. 216-219, November 1975. 55. KAPLAN , G

  4. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  5. Validation of Nonlinear Bipolar Transistor Model by Small-Signal Measurements

    DEFF Research Database (Denmark)

    Vidkjær, Jens; Porra, V.; Zhu, J.

    1992-01-01

    A new method for the validity analysis of nonlinear transistor models is presented based on DC-and small-signal S-parameter measurements and realistic consideration of the measurement and de-embedding errors and singularities of the small-signal equivalent circuit. As an example, some analysis...... results for an extended Gummel Poon model are presented in the case of a UHF bipolar power transistor....

  6. Lateral power transistors in integrated circuits

    CERN Document Server

    Erlbacher, Tobias

    2014-01-01

    This book details and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. It includes the state-of-the-art concept of double-acting RESURF topologies.

  7. Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature

    International Nuclear Information System (INIS)

    Stork, J.M.C.; Harame, D.L.; Meyerson, B.S.; Nguyen, T.N.

    1989-01-01

    The base profile requirements of Si bipolar junction transistors (BJT's) high-performance operation at liquid-nitrogen temperature are examined. Measurements of thin epitaxial-base polysilicon-emitter n-p-n transistors with increasing base doping show the effects of bandgap narrowing, mobility changes, and carrier freezeout. At room temperature the collector current at low injection is proportional to the integrated base charge, independent of the impurity distribution. At temperatures below 150 Κ, however, minority injection is dominated by the peak base doping because of the greater effectiveness of bandgap narrowing. When the peak doping in the base approaches 10 19 cm -3 , the bandgap difference between emitter and base is sufficiently small that the current gain no longer monotonically decreases with lower temperature but instead shows a maximum as low as 180 Κ. The device design window appears limited at the low-current end by increased base-emitter leakage due to tunneling and by resistance control at the high-current end. Using the measured dc characteristics, circuit delay calculations are made to estimate the performance of an ECL ring oscillator at room and liquid-nitrogen temperatures. It is shown that if the base doping can be raised to 10 19 cm -3 while keeping the base thickness constant, the minimum delay at liquid nitrogen can approach the delay of optimized devices at room temperature

  8. A Physics-Based Engineering Methodology for Calculating Soft Error Rates of Bulk CMOS and SiGe Heterojunction Bipolar Transistor Integrated Circuits

    Science.gov (United States)

    Fulkerson, David E.

    2010-02-01

    This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.

  9. Combined effects of 60Co dose and high frequency interferences on a discrete bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Raoult, J.; Jarrix, S.; Blain, A.; Dusseau, L.; Hoffmann, P.; Chatry, N.; Calvel, P.

    2012-01-01

    This paper concerns bipolar transistors subject to a double aggression: dose irradiation and high-frequency interference. The electromagnetic interference is injected in a contactless way in the near-field zone around the device. Parameters of the interference are power and frequency, the latter largely out of band of operation of the transistors. The output voltage of the transistor exhibits changes, due to rectification and to some extent to current crowding. The importance of the base bias set-up for the type of change occurring in voltage is displayed. After irradiation with a 60 Co source, the voltage output will change under electromagnetic interference but sometimes in an opposite way as initially measured. The impact of the irradiation with respect to electromagnetic susceptibility is highlighted from a physical point of view. Finally preliminary results of simulation for susceptibility prediction are given and a discussion is given on the limits of the transistor model used. (authors)

  10. The free electron gas primary thermometer using an ordinary bipolar junction transistor approaches ppm accuracy

    Science.gov (United States)

    Mimila-Arroyo, J.

    2017-06-01

    In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.

  11. The Bipolar Field-Effect Transistor: XIII. Physical Realizations of the Transistor and Circuits (One-Two-MOS-Gates on Thin-Thick Pure-Impure Base)

    International Nuclear Information System (INIS)

    Sah, C.-T.; Jie Binbin

    2009-01-01

    This paper reports the physical realization of the Bipolar Field-Effect Transistor (BiFET) and its one-transistor basic building block circuits. Examples are given for the one and two MOS gates on thin and thick, pure and impure base, with electron and hole contacts, and the corresponding theoretical current-voltage characteristics previously computed by us, without generation-recombination-trapping-tunneling of electrons and holes. These examples include the one-MOS-gate on semi-infinite thick impure base transistor (the bulk transistor) and the impurethin-base Silicon-on-Insulator (SOI) transistor and the two-MOS-gates on thin base transistors (the FinFET and the Thin Film Transistor TFT). Figures are given with the cross-section views containing the electron and hole concentration and current density distributions and trajectories and the corresponding DC current-voltage characteristics.

  12. High-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors

    Science.gov (United States)

    Ahmari, David Abbas

    Heterojunction bipolar transistors (HBTs) have demonstrated the high-frequency characteristics as well as the high linearity, gain, and power efficiency necessary to make them attractive for a variety of applications. Specific applications for which HBTs are well suited include amplifiers, analog-to-digital converters, current sources, and optoelectronic integrated circuits. Currently, most commercially available HBT-based integrated circuits employ the AlGaAs/GaAs material system in applications such as a 4-GHz gain block used in wireless phones. As modern systems require higher-performance and lower-cost devices, HBTs utilizing the newer, InGaP/GaAs and InP/InGaAs material systems will begin to dominate the HBT market. To enable the widespread use of InGaP/GaAs HBTs, much research on the fabrication, performance, and characterization of these devices is required. This dissertation will discuss the design and implementation of high-performance InGaP/GaAs HBTs as well as study HBT device physics and characterization.

  13. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    Science.gov (United States)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  14. Electrical characteristics of SiGe-base bipolar transistors on thin-film SOI substrates

    International Nuclear Information System (INIS)

    Liao, Shu-Hui; Chang, Shu-Tong

    2010-01-01

    This paper, based on two-dimensional simulations, provides a comprehensive analysis of the electrical characteristics of the Silicon germanium (SiGe)-base bipolar transistors on thin-film siliconon-insulator (SOI) substrates. The impact of the buried oxide thickness (T OX ), the emitter width (W E ), and the lateral distance between the edge of the intrinsic base and the reach-through region (L col ) on both the AC and DC device characteristics was analyzed in detail. Regarding the DC characteristics, the simulation results suggest that a thicker T OX gives a larger base-collector breakdown voltage (BV CEO ), whereas reducing the T OX leads to an enhanced maximum electric field at the B-C junction. As for the AC characteristics, cut-off frequency (f T ) increases slightly with increasing buried oxide thickness and finally saturates to a constant value when the buried oxide thickness is about 0.15 μm. The collector-substrate capacitance (C CS ) decreases with increasing buried oxide thickness while the maximum oscillation frequency (f max ) increases with increasing buried oxide thickness. Furthermore, the impact of self-heating effects in the device was analyzed in various areas. The thermal resistance as a function of the buried oxide thickness indicates that the thermal resistance of the SiGe-base bipolar transistor on a SOI substrate is slightly higher than that of a bulk SiGe-base bipolar transistor. The thermal resistance is reduced by ∼37.89% when the emitter width is increased by a factor of 5 for a fixed buried oxide thickness of 0.1 μm. All the results can be used to design and optimize SiGe-base bipolar transistors on SOI substrates with minimum thermal resistance to enhance device performance.

  15. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  16. A novel technique for CAD-optimization of analog circuits with bipolar transistors

    Directory of Open Access Journals (Sweden)

    B. Dimov

    2009-05-01

    Full Text Available In this paper, a novel approach for robust automatic optimization of analog circuits with bipolar transistors is presented. It includes additional formal parameters into the device model cards, which sweep the model parameters smoothly between the different device types. In this way, not only the sizing, but also the choice of the device type is committed to the optimization tool, thus improving the efficiency of the design process significantly.

  17. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Li, Ming-Yang; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L.; Lan, Yann-Wen

    2017-01-01

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  18. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu

    2017-10-04

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  19. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon.

    Science.gov (United States)

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen

    2017-11-28

    High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.

  20. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  1. An improved bipolar junction transistor model for electrical and radiation effects

    International Nuclear Information System (INIS)

    Kleiner, C.T.; Messenger, G.C.

    1982-01-01

    The use of bipolar technology in hardened electronic design requires an in-depth understanding of how the Bipolar Junction Transistor (BJT) behaves under normal electrical and radiation environments. Significant improvements in BJT process technology have been reported, and the successful use of sophisticated Computer Aided Design (CAD) tools has aided implementation with respect to specific families of hardened devices. The most advanced BJT model used to date is the Improved Gummel-Poon (IGP) model which is used in CAA programs such as the SPICE II and SLICE programs. The earlier Ebers-Moll model (ref 1 and 2) has also been updated to compare with the older Gummel-Poon model. This paper describes an adaptation of an existing computer model which incorporates the best features of both models into a new, more accurate model called the Improved Bipolar Junction Transistor model. This paper also describes a unique approach to data reduction for the B(I /SUB c/) and V /SUB BE/(ACT) vs I /SUB c/characterizations which has been successfully programmed in Basic using a Commodore PET computer. This model is described in the following sections

  2. An accurate two-dimensional LBIC solution for bipolar transistors

    Science.gov (United States)

    Benarab, A.; Baudrand, H.; Lescure, M.; Boucher, J.

    1988-05-01

    A complete solution of the diffusion problem of carriers generated by a located light beam in the emitter and base region of a bipolar structure is presented. Green's function method and moment method are used to solve the 2-D diffusion equation in these regions. From the Green's functions solution of these equations, the light beam induced currents (LBIC) in the different junctions of the structure due to an extended generation represented by a rectangular light spot; are thus decided. The equations of these currents depend both on the parameters which characterise the structure, surface states, dimensions of the emitter and the base region, and the characteristics of the light spot, that is to say, the width and the wavelength. Curves illustrating the variation of the various LBIC in the base region junctions as a function of the impact point of the light beam ( x0) for different values of these parameters are discussed. In particular, the study of the base-emitter currents when the light beam is swept right across the sample illustrates clearly a good geometrical definition of the emitter region up to base end of the emitter-base space-charge areas and a "whirl" lateral diffusion beneath this region, (i.e. the diffusion of the generated carriers near the surface towards the horizontal base-emitter junction and those created beneath this junction towards the lateral (B-E) junctions).

  3. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  4. Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation

    International Nuclear Information System (INIS)

    Fu, S.-I.; Lai, P.-H.; Tsai, Y.-Y.; Hung, C.-W.; Yen, C.-H.; Cheng, S.-Y.; Liu, W.-C.

    2006-01-01

    An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain β max , offset voltage ΔV CE , and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications

  5. Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach

    Science.gov (United States)

    Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.

    2018-04-01

    A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.

  6. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  7. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    Science.gov (United States)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  8. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    Energy Technology Data Exchange (ETDEWEB)

    Curry, M. J. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123 (United States); England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carroll, M. S. [Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123 (United States); Carr, S. M. [Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123 (United States)

    2015-05-18

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  9. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  10. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  11. Lateral n-p-n bipolar transistors by ion implantation into semi-insulating GaAs

    International Nuclear Information System (INIS)

    Canfield, P.; Forbes, L.

    1988-01-01

    GaAs bipolar transistors have not seen the major development effort that GaAs MESFETs have due primarily to the short minority carrier lifetimes in GaAs. The short minority carrier lifetimes require that the base region be very thin which, if done by implantation, requires that the doping be high to obtain a well defined base profile. These requirements are very difficult to achieve in GaAs and typically, if high current gain and high speed are desired for a bipolar technology, then heterostructure bipolars are the appropriate technology, although the cost of heterostructure devices will be prohibitive for some time to come. For applications requiring low current gain, more modest fabrication rules can be followed. Lateral bipolars are particularly attractive since they would be easier to fabricate than a planar bipolar or a heterojunction bipolar. Lateral bipolars do not require steps or deep contacts to make contact with the subcollector or highly doped very thin epilayers for the base region and they can draw upon the semi-insulating properties of the GaAs substrates for device isolation. Bipolar transistors are described and shown to work successfully. (author)

  12. Enhanced low dose rate radiation effect test on typical bipolar devices

    International Nuclear Information System (INIS)

    Liu Minbo; Chen Wei; Yao Zhibin; He Baoping; Huang Shaoyan; Sheng Jiangkun; Xiao Zhigang; Wang Zujun

    2014-01-01

    Two types of bipolar transistors and nine types bipolar integrated circuit were selected in the irradiation experiment at different "6"0Co γ dose rate. The base current of bipolar transistor and input bias current of amplifier and comparator was measured, low dose enhance factor of test device was obtained. The results show that bipolar device have enhanced low dose rate sensitivity, enhancement factor of bipolar integrated circuit was bigger than that of transistor, and enhanced low dose rate sensitivity greatly varied with different structure and process of bipolar device. (authors)

  13. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    Science.gov (United States)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  14. Study of an Insulated Gate Bipolar Transistor (IGBT) and its connection in series. Application at a chopper 1500V-5A-10kHz

    International Nuclear Information System (INIS)

    Gros, P.

    1993-01-01

    In the frame of the tokamak ITER (International Thermonuclear Experimental Reactor) we have studied, for neutral particle injection, a converter with at least two static interrupters by Mosfet transistor, bipolar transistor or Insulated Gate Bipolar Transistor (IGBT). After a comparison between these three types of transistors, by the simulating software MICROCAP, a serial of tests has shown the advantages of the IGBT. A command, associated with two IGBT of equivalent characteristics, has given a simple and efficacious solution. The performances are: (1) between two blockages: 50 ns without overvoltage, (2) between two cut-off: 60 ns. 40 figs; 30 refs; 10 annexes

  15. Fluid phase passivation and polymer encapsulation of InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Oxland, R K; Rahman, F

    2008-01-01

    This paper reports on the development of effective passivation techniques for improving and stabilizing the characteristics of InP/InGaAs heterojunction bipolar transistors. Two different methods for carrying out sulfur-based surface passivations are compared. These include exposure to gaseous hydrogen sulfide and immersion treatment in an ammonium sulfide solution. The temporal behaviour of effects resulting from such passivation treatments is reported. It is shown that liquid phase passivation has a larger beneficial effect on device performance than gas phase passivation. This is explained in terms of the polarity of passivating species and the exposed semiconductor surface. Finally, device encapsulation in a novel chalcogenide polymer is shown to be effective in preserving the benefits of surface passivation treatments. The relevant properties of this encapsulation material are also discussed

  16. Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing

    International Nuclear Information System (INIS)

    Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiao Ying; Sun Bo-Tao; Wang Ren-Qing

    2011-01-01

    A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. (interdisciplinary physics and related areas of science and technology)

  17. A study of s new power semiconductor insulated gate bipolar transistor (IGBT) characteristics and its application to automotive ignition

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1995-05-01

    Assessment has been made of the problem of the on-resistance and temperature effects in the three power transistor combinations, such as Darlington-types or IGBT. The IGBT is a device in which the drain of the MOSFET feeds the bipolar base in monolithic (IC and Power on the same chip) to give it both the MOS and bipolar advantages. The high temperature operating characteristics of the device are discussed and compared to that of power bipolar transistor. Unlike the power bipolar transistor whose operating current density shows current crowding at above forward collector current of 4Amps and forward voltage drop above 0.4V, the IGBT is found to maintain its high current density above forward collector of current 1Amp (or a forward voltage drop above 1.2V). The results also indicate that these devices (IGBTs) can be interdigited (paralleled) without current hogging problems if the forward conduction occurs at forward voltage drops in excess of 1.2V, and this makes it the best candidate for automotive ignition power switches. (author). 20 refs, 10 figs, 1 tab

  18. Effects of microwave pulse-width damage on a bipolar transistor

    International Nuclear Information System (INIS)

    Ma Zhen-Yang; Chai Chang-Chun; Ren Xing-Rong; Yang Yin-Tang; Chen Bin; Zhao Ying-Bo

    2012-01-01

    This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves (HPMs) through the injection approach. The dependences of the microwave damage power, P, and the absorbed energy, E, required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method. A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out. By means of a two-dimensional simulator, ISE-TCAD, the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively. The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different, while only one hot spot exists under the injection of dc pulses. The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy, respectively. The dc pulse damage data may be useful as a lower bound for microwave pulse damage data. (interdisciplinary physics and related areas of science and technology)

  19. A bipolar analog front-end integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1993-11-01

    A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT ampersand T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a Φ=10 14 protons/cm 2 have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process

  20. Measurement of low-frequency base and collector current noise and coherence in SiGe heterojunction bipolar transistors using transimpedance amplifiers

    NARCIS (Netherlands)

    Bruce, S.P.O.; Vandamme, L.K.J.; Rydberg, A.

    1999-01-01

    Transimpedance amplifiers have been used for direct study of current noise in silicon germanium (SiGe) heterojunction bipolar transistors (HBT's) at different biasing conditions. This has facilitated a wider range of resistances in the measurement circuit around the transistor than is possible when

  1. Effect of germanium concentrations on tunnelling current calculation of Si/Si1-xGex/Si heterojunction bipolar transistor

    Science.gov (United States)

    Hasanah, L.; Suhendi, E.; Khairrurijal

    2018-05-01

    Tunelling current calculation on Si/Si1-xGex/Si heterojunction bipolar transistor was carried out by including the coupling between transversal and longitudinal components of electron motion. The calculation results indicated that the coupling between kinetic energy in parallel and perpendicular to S1-xGex barrier surface affected tunneling current significantly when electron velocity was faster than 1x105 m/s. This analytical tunneling current model was then used to study how the germanium concentration in base to Si/Si1-xGex/Si heterojunction bipolar transistor influenced the tunneling current. It is obtained that tunneling current increased as the germanium concentration given in base decreased.

  2. Integrated amplifying circuit with MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Baylac, B; Merckel, G; Meunier, P

    1974-01-25

    The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.

  3. DC modeling and characterization of AlGaAs/GaAs heterojunction bipolar transistors for high-temperature applications

    International Nuclear Information System (INIS)

    Dikmen, C.T.; Dogan, N.S.; Osman, M.A.

    1994-01-01

    There is currently a demand for active electronic devices operating reliably over wide range of temperatures. Potential applications for the high-temperature devices and integrated circuits are in the areas of jet engine and control instrumentation for nuclear power plants. Here, the large signal dc characteristics of AlGaAs/GaAs heterojunction bipolar transistors (HBT) at high temperatures (27--300 C) are reported. A high-temperature SPICE model is developed which includes the recombination-generation current components and avalanche multiplication which become extremely important at high temperatures. The effect of avalanche breakdown is also included to model the current due to thermal generation of electron/hole pairs causing breakdown at high temperatures. A parameter extraction program is developed used to extract the model parameters of HBT's at different temperatures. Fitting functions for the model parameters as a function of temperature are developed. These parameters are then used in the SPICE Ebers-Moll model for the dc characterization of the HBT at any temperature between (27--300 C)

  4. Contribution to the study of ionizing radiation effects on bipolar technologies: application to the hardening of integrated circuits

    International Nuclear Information System (INIS)

    Briand, R.

    2001-01-01

    The use of analog integrated circuits in radiation environments raises the problem of their behaviour with respect to the different effects induced by particles and radiations. The first chapter of this thesis presents the origins of radiations and the different topologies of bipolar transistors. The effects of ionizing radiations on bipolar components, like cumulative dose, dose rates, and single events, are detailed in three distinct chapters with the same scientifical approach. The simulation of the physical degradation phenomena of the components allows to establish original electrical models coming from the understanding of the induced mechanisms. These models are used to evaluate the degradations occurring in linear analogic circuits. Common and original hardening methods are presented, some of which are applied to bipolar integrated circuit technologies. Finally, experimental laser beam test techniques are presented, which are used to reproduce the dose rate and the single events. (J.S.)

  5. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Science.gov (United States)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  7. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  8. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Science.gov (United States)

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  9. Technique for electronic measurement of semi-reduction layer using bipolar transistor of junction

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Santos, Marcus A.P.; Monte, David S.; Santos, Jose A.P.

    2014-01-01

    Recommendations of the International Commission on Radiological Protection (ICRP), the World Health Organization (WHO) and also of the International Atomic Energy Agency (IAEA) suggest equipment for X-rays diagnosis are checked for conformance to their parameters, such as Layer Semi-Reduction (CSR). The importance of verification of diagnostic radiology in parameters is because of have records that forces patients undergoing radiation doses in some clinics, up to 300% the reference values suggested by international agencies which doses are considered unnecessary, and even harmful, either because of physical or variable greatness of being out of control nominal specification, or the fact of having to repeat the radiographs. In this context, the purpose of this study was an innovative methodology that is the use of bipolar transistor junction (TBJ) to measure the aluminum CSR in diagnostic X-ray equipment beams. Although the TBJ be a device invented in the last century, only in recent years have explored their potential as X-ray sensor applied to diagnosis. The study indicates that the tested device can operating the detection of X-rays is properly polarized with electrical signals that can detect interference of the interaction of X-ray photons with the PN junction formed by the base and emitter terminals. The result of the developed technique was compared to CSR measurements obtained with detection systems standards and it was found that the BJT provides values for aluminum CSR relative errors less than 5%

  10. Influence of the flux density on the radiation damage of bipolar silicon transistors by protons and electrons

    International Nuclear Information System (INIS)

    Bannikov, Y.; Gorin, B.; Kozhevnikov, V.; Mikhnovich, V.; Gusev, L.

    1981-01-01

    It was found experimentally that the radiation damage of bipolar n-p-n transistors increased by a factor of 8--12 when the proton flux density was reduced from 4.07 x 10 10 to 2.5 x 10 7 cm -2 sec -1 . In the case of p-n-p transistors the effect was opposite: there was a reduction in the radiation damage by a factor of 2--3 when the dose rate was lowered between the same limits. A similar effect was observed for electrons but at dose rates three orders of magnitude greater. The results were attributed to the dependences of the radiation defect-forming reactions on the charge state of defects which was influenced by the formation of disordered regions in the case of proton irradiation

  11. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  12. Electrical properties of InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ouacha, A.

    1993-01-01

    In recent years, there has been considerable interest in indium phosphide (InP) and In-based III-V compounds because of their applications in many electronic and photonic devices. The issues involved in processing high quality InP-based devices have been widely explored during the last decade. Realization of highly reliable, high speed, and long distance fiber-optics communication systems requires good quality of the material growth, characterization techniques and reproducible device processing concepts. All these three elements should be included in the manufacturing sequence in order to produce devices of high quality. Until recently, most of the InP related technologies and advances have been focused around optical fiber communications (1.3-1.55 μm) where Si and GaAs could not compete. The main obstacle to rapid growth of InP based technology in the 80s was the enormous investment and interest of large companies and commercial research organizations in GaAs technology. Supporting and financing InP related devices and material was at best minimal. As a consequence, there has been a much slower perhaps more realistic development curve for non-optical InP-based devices and technologies. InP technology has survived solely on the basic of its technical performance, despite the financial problems. In this thesis, we investigate the static behaviour of InP/InGaAs heterojunction bipolar transistors (HBTs) which have attracted a significant amount of attention. (20 refs., 5 figs., 3 tabs.)

  13. Characteristics of Novel InGaAsN Double Heterojunction Bipolar Transistors

    Energy Technology Data Exchange (ETDEWEB)

    LI,N.Y.; CHANG,PING-CHIH; BACA,ALBERT G.; LAROCHE,J.R.; REN,F.; ARMOUR,E.; SHARPS,P.R.; HOU,H.Q.

    2000-08-01

    The authors demonstrate, for the first time, both functional Pnp AlGaAs/InGaAsN/GaAs (Pnp InGaAsN) and Npn InGaP/InGaAsN/GaAs (Npn InGaAsN) double heterojunction bipolar transistors (DHBTs) using a 1.2 eV In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} as the base layer for low-power electronic applications. The Pnp InGaAsN DHBT has a peak current gain ({beta}) of 25 and a low turn-on voltage (V{sub ON}) of 0.79 V. This low V{sub ON} is {approximately} 0.25 V lower than in a comparable Pnp AlGAAs/GaAs HBT. For the Npn InGaAsN DHBT, it has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in an InGaP/GaAs HBT. A peak {beta} of 7 with nearly ideal I-V characteristics has been demonstrated. Since GaAs is used as the collector of both Npn and Pnp InGaAsN DHBTs, the emitter-collector breakdown voltage (BV{sub CEO}) are 10 and 12 V, respectively, consistent with the BV{sub CEO} of Npn InGaP/GaAs and Pnp AlGaAs/GaAs HBTs of comparable collector thickness and doping level. All these results demonstrate the potential of InGaAsN DHBTs as an alternative for application in low-power electronics.

  14. Synergetic effects of radiation stress and hot-carrier stress on the current gain of npn bipolar junction transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The combined effects of ionizing radiation and hot-carrier stress on the current gain of npn bipolar junction transistors were investigated. The analysis was carried out experimentally by examining the consequences of interchanging the order in which the two stress types were applied to identical transistors which were stressed to various levels of damage. The results indicate that the hot-carrier response of the transistor is improved by radiation damage, whereas hot-carrier damage has little effect on subsequent radiation stress. Characterization of the temporal progression of hot-carrier effects revealed that hot-carrier stress acts initially to reduce excess base current and improve current gain in irradiated transistors. PISCES simulations show that the magnitude of the peak electric-field within the emitter-base depletion region is reduced significantly by net positive oxide charges induced by radiation. The interaction of the two stress types is explained in a qualitative model based on the probability of hot-carrier injection determined by radiation damage and on the neutralization and compensation of radiation-induced positive oxide charges by injected electrons. The result imply that a bound on damage due to the combined stress types is achieved when hot-carrier stress precedes any irradiation

  15. A comparative study on electrical characteristics of 1-kV pnp and npn SiC bipolar junction transistors

    Science.gov (United States)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2018-04-01

    We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.

  16. Experimental study on short-circuit characteristics of the new protection circuit of insulated gate bipolar transistor

    International Nuclear Information System (INIS)

    Ji, In-Hwan; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo; Choi, Yearn-Ik

    2006-01-01

    A new protection circuit employing the collector to emitter voltage (V CE ) sensing scheme for short-circuit withstanding capability of the insulated gate bipolar transistor (IGBT) is proposed and verified by experimental results. Because the current path between the gate and collector can be successfully eliminated in the proposed protection circuit, the power consumption can be reduced and the gate input impedance can be increased. Previous study is limited to dc characteristics. However, experimental results show that the proposed protection circuit successfully reduces the over-current of main IGBT by 80.4% under the short-circuit condition

  17. On the choice of a head element for low-noise bipolar transistor amplifier

    International Nuclear Information System (INIS)

    Krasnokutskij, R.N.; Kurchaninov, L.L.; Fedyakin, N.N.; Shuvalov, R.S.

    1988-01-01

    The measurement results of equivalent noise charge (ENC) for KT382 transistor depending on detector capacity, formation duration and collector current are given. It is shown that the measurement results for this transistor in good agreement with calculations according to the noise model, time-consuming ENC measurements can be replaced by preliminary transistor rejection according to the distributed base resistance, current gain and simple calculations. In applications in the field of nuclear electronics the KT382 transistor enables to attain the same noise parameters as NE578, NE021 transistors (Japan) and it can be recommended for using as a head element of amplifiers

  18. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    International Nuclear Information System (INIS)

    Chang, P. C.; Baca, A. G.; Li, N. Y.; Xie, X. M.; Hou, H. Q.; Armour, E.

    2000-01-01

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In 0.03 Ga 0.97 As 0.99 N 0.01 /GaAs DHBT has a low V ON of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In 0.03 Ga 0.97 As 0.99 N 0.01 base layer. GaAs is used for the collector; thus the breakdown voltage (BV CEO ) is 10 V, consistent with the BV CEO of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with δ doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics

  19. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  20. Sub-bandgap photonic base current method for characterization of interface states at heterointerfaces in heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Shin, H. T.; Kim, K. H.; Kim, K. S.

    2004-01-01

    In this paper, we propose a novel photonic base current analysis method to characterize the interface states in heterojunction bipolar transistors (HBTs) by using the photonic I-V characteristics under sub-bandgap photonic excitation. For the photonic current-voltage characterization of HBTs, an optical source with a photon energy less than the bandgap energy of Al 0.3 Ga 0.7 As and GaAs (E ph = 0.95 eV g,AlGaAs = 1.79 eV, E g,GaAs = 1.45 eV) is employed for the characterization of the interface states distributed in the photo-responsive energy band (E C - 0.95 ≤ E it ≤ E C ) in emitter-base heterojunction at HBTs. The proposed novel method, which is applied to bipolar junction transistors for the first time, is simple, and an accurate analysis of interface traps in HBTs is possible. By using the photonic base-current and the dark-base-current, we qualitatively analyze the interface trap at the Al 0.3 Ga 0.7 As/GaAs heterojunction interface in HBTs.

  1. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  2. An investigation of group IV alloys and their applications in bipolar transistors

    International Nuclear Information System (INIS)

    Anteney, I.M.

    2000-09-01

    This thesis investigates the use of carbon in group IV alloys and their potential uses in bipolar transistors. The first part of the thesis investigates the ability of carbon to suppress transient enhanced diffusion in SiGe heterojunction bipolar transistors, whilst the second part deals with the impact of carbon incorporation on the electrical properties of polycrystalline silicon and silicon-germanium films. A background doping concentration (10 20 cm -3 ) of C has been introduced into the base of SiGe HBTs with the aim of studying the effects of C on TED of B from the base. An electrical method is used to extract the bandgap narrowing in the base of SiGe and SiGe:C HBTs through measurements of the temperature dependence of I c at different C/B reverse biases. The method is very sensitive to small amounts of dopant out-diffusion from the base and hence is ideal for determining the effect of C on TED. Extracted BGN values of 115meV and 173meV were obtained for the SiGe and SiGe:C HBTs respectively, for a C/B reverse bias of 0V. Increasing the C/B reverse bias to 1V increased the extracted BGN of the SiGe HBT to 145meV, but left the SiGe:C value unchanged. This demonstrates that no parasitic energy barrier exists in the SiGe:C HBT and that TED has been suppressed. The effect of carbon position and concentration has been studied by introducing a peak C concentration of 10 20 cm -3 in the collector and 1.1x10 19 cm -3 or 1.5x10 19 cm -3 C in the base. From these measurements it has been shown that TED is only suppressed in the device with 1.5x10 19 cm -3 C in the base, indicating that a C concentration of 1.5x10 19 cm -3 is needed to suppress TED and that the C needs to be co-located with the B profile. The effects of carbon on the electrical properties of polycrystalline Si and SiGe films have been investigated. The resistivity, Hall mobility (μ H ) and effective carrier concentration (N EFF ) of n- and p-type polySi 1-y C y and polySi 0.82-y Ge 0.18 C y layers

  3. The Aluminum-Free P-n-P InGaAsN Double Heterojunction Bipolar Transistors

    Energy Technology Data Exchange (ETDEWEB)

    CHANG,PING-CHIH; LI,N.Y.; BACA,ALBERT G.; MONIER,C.; LAROCHE,J.R.; HOU,H.Q.; REN,F.; PEARTON,S.J.

    2000-08-01

    The authors have demonstrated an aluminum-free P-n-P GaAs/InGaAsN/GaAs double heterojunction bipolar transistor (DHBT). The device has a low turn-on voltage (V{sub ON}) that is 0.27 V lower than in a comparable P-n-p AlGaAs/GaAs HBT. The device shows near-ideal D. C. characteristics with a current gain ({beta}) greater than 45. The high-speed performance of the device are comparable to a similar P-n-p AlGaAs/GaAs HBT, with f{sub T} and f{sub MAX} values of 12 GHz and 10 GHz, respectively. This device is very suitable for low-power complementary HBT circuit applications, while the aluminum-free emitter structure eliminates issues typically associated with AlGaAs.

  4. The Smallest Transistor-Based Nonautonomous Chaotic Circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, Arunas

    2005-01-01

    A nonautonomous chaotic circuit based on one transistor, two capacitors, and two resistors is described. The mechanism behind the chaotic performance is based on “disturbance of integration.” The forward part and the reverse part of the bipolar transistor are “fighting” about the charging...

  5. Method for double-sided processing of thin film transistors

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  6. On the 50th Anniversary of the Transistor

    DEFF Research Database (Denmark)

    Stassen, Flemming

    1997-01-01

    This paper celebrates the 50th anniversary of the invention of the bipolar transistor in 1947. Combined with the inventions of integration and planar technology, the invention of the transistor marks the beginning of a period of unprecedented growth, the industrialization of electronics....

  7. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2018-02-01

    Full Text Available We present herein a novel method of bipolar field-effect control on DC electroosmosis (DCEO from a physical point of view, in the context of an intelligent and robust operation tool for stratified laminar streams in microscale systems. In this unique design of the DC flow field-effect-transistor (DC-FFET, a pair of face-to-face external gate terminals are imposed with opposite gate-voltage polarities. Diffuse-charge dynamics induces heteropolar Debye screening charge within the diffuse double layer adjacent to the face-to-face oppositely-polarized gates, respectively. A background electric field is applied across the source-drain terminal and forces the face-to-face counterionic charge of reversed polarities into induced-charge electroosmotic (ICEO vortex flow in the lateral direction. The chaotic turbulence of the transverse ICEO whirlpool interacts actively with the conventional plug flow of DCEO, giving rise to twisted streamlines for simultaneous DCEO pumping and ICEO mixing of fluid samples along the channel length direction. A mathematical model in thin-layer approximation and the low-voltage limit is subsequently established to test the feasibility of the bipolar DC-FFET configuration in electrokinetic manipulation of fluids at the micrometer dimension. According to our simulation analysis, an integrated device design with two sets of side-by-side, but upside-down gate electrode pair exhibits outstanding performance in electroconvective pumping and mixing even without any externally-applied pressure difference. Moreover, a paradigm of a microdevice for fully electrokinetics-driven analyte treatment is established with an array of reversed bipolar gate-terminal pairs arranged on top of the dielectric membrane along the channel length direction, from which we can obtain almost a perfect liquid mixture by using a smaller magnitude of gate voltages for causing less detrimental effects at a small Dukhin number. Sustained by theoretical

  8. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection.

    Science.gov (United States)

    Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won

    2011-10-15

    In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effect of random inhomogeneities in the spatial distribution of radiation-induced defect clusters on carrier transport through the thin base of a heterojunction bipolar transistor upon neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Puzanov, A. S.; Obolenskiy, S. V., E-mail: obolensk@rf.unn.ru; Kozlov, V. A. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation)

    2016-12-15

    We analyze the electron transport through the thin base of a GaAs heterojunction bipolar transistor with regard to fluctuations in the spatial distribution of defect clusters induced by irradiation with a fissionspectrum fast neutron flux. We theoretically demonstrate that the homogeneous filling of the working region with radiation-induced defect clusters causes minimum degradation of the dc gain of the heterojunction bipolar transistor.

  10. Modelling, development and optimization of integrated power LDMOS transistor. Performance limits in terms of energy; Modelisation, conception et optimisation de composant de puissance lateral DMOS integre. Etude des limites de performance en energie

    Energy Technology Data Exchange (ETDEWEB)

    Farenc, D.

    1997-12-16

    Technologies for Smart Power Integrated Circuits combine into a single chip Bipolar and CMOS transistors, plus power with lateral or vertical DMOS transistors. Complexity which has been increasing dramatically since the mid-80`s has allowed to integrate, into a single monolithic solution, entire systems. This thesis deals with the modelling, conception and test of the power integrated LDMOS transistor. The power LDMOS transistor is used as a switching device. It is characterized by two parameters which are the Specific On-resistance R{sub sp} and the breakdown voltage BV{sub DSS}. The LDMOS transistor developed for the new Smart Power technology exhibits a Specific On-resistance of 200 m{Omega}{sup *}mm{sup 2} and a breakdown voltage of 60 V. This device is dedicated to automotive applications. A reduction of the power device which is achieved with a low Specific On-resistance puts forward new issues such as the maximum Energy capability. When the power device is switched-off on an inductive load, a certain amount of energy is dissipated; if it is beyond a certain limit, the device is destroyed. Our goal is to determine the energy limits which are associated with our new Power integrated LDMOS transistor. (author) 28 refs.

  11. Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors

    Science.gov (United States)

    Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad

    2018-01-01

    Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.

  12. Optically switched graphene/4H-SiC junction bipolar transistor

    Science.gov (United States)

    Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.; Brown, Gabriel; Shetu, Shamaita S.

    2018-05-08

    A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on a first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.

  13. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  14. The effect of fluorine in low thermal budget polysilicon emitters for SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Schiz, F.J.W.

    1999-03-01

    This thesis investigates the behaviour of fluorine in two types of polysilicon emitter. In the first type the emitter is deposited at 610 deg. C as polycrystalline silicon (p-Si). In the second type the emitter is deposited at 560 deg. C as amorphous silicon (α-Si). The amorphous silicon 1 then regrows to polysilicon during subsequent high temperature anneals. Remarkably different behaviour of fluorine is seen in as-deposited α-Si and as-deposited p-Si emitter bipolar transistors. In the most extreme case, fluorine-implanted as-deposited p-Si devices show a base current increase by a factor of 1.5 and equivalent α-Si devices a base current decrease by a factor of 10.0 compared to unimplanted devices. Cross-section TEM observations are made to study the structure of the polysilicon/silicon interface and SIMS measurements to study the distribution of the fluorine in the polysilicon. The TEM results correlate well with the electrical results and show that fluorine accelerates interfacial oxide breakup. Furthermore, they show that for a given thermal budget, more interfacial oxide breakup and thus more epitaxial regrowth is obtained for transistors with p-Si polysilicon emitters. This results in a lower emitter resistance, for example as low as 12Ωμm 2 for as-deposited p-Si devices. The base current suppression for as-deposited α-Si devices is explained by fluorine passivation of trapping states at the interface. Analysis of the fluorine SIMS profiles suggests that they do not resemble normal diffusion profiles, but are due to fluorine trapped at defects. It is shown that a reciprocal relationship exists between the fluorine dose in the bulk polysilicon layer and the fluorine dose at the interface. In as-deposited α-Si devices, there is more fluorine trapped at defects in the bulk polysilicon layer, so less is available to diffuse to the interface. As a result there is less interfacial oxide breakup and more passivation in the as-deposited α-Si devices. These

  15. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  16. Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS

    Science.gov (United States)

    De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.

    1996-08-01

    This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.

  17. Silicon-on-Insulator Lateral-Insulated-Gate-Bipolar-Transistor with Built-in Self-anti-ESD Diode

    Directory of Open Access Journals (Sweden)

    Xiaojun Cheng

    2014-05-01

    Full Text Available Power SOI (Silicon-On-Insulator devices have an inherent sandwich structure of MOS (Metal-Oxide-Semiconductor gate which is very easy to suffer ESD (Electro-Static Discharge overstress. To solve this reliability problem, studies on design and modification of a built-in self-anti-ESD diode for a preliminarily optimized high voltage SOI LIGBT (Lateral-Insulated-Gate-Bipolar-Transistor were carried out on the Silvaco TCAD (Technology-Computer-Aided-Design platform. According to the constrains of the technological process, the new introduction of the N+ doped region into P-well region that form the built-in self-anti-ESD diode should be done together with the doping of source under the same mask. The modifications were done by adjusting the vertical impurity profile in P-well into retrograde distribution and designing a cathode plate with a proper length to cover the forward depletion terminal and make sure that the thickness of the cathode plate is the same as that of the gate plate. The simulation results indicate that the modified device structure is compatible with the original one in process and design, the breakdown voltage margin of the former was expanded properly, and both the transient cathode voltages are clamped low enough very quickly. Therefore, the design and optimization results of the modified device structure of the built-in self-anti-ESD diode for the given SOI LIGBT meet the given requirements.

  18. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  19. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    Science.gov (United States)

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  20. Characterization of a power bipolar transistor as high-dose dosimeter for 1.9-2.2 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Lavalle, M.; Corda, U. [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France); Gombia, E. [IMEM-CNR Institute, Viale delle Scienze 37 A, Loc. Fontanini, 43010 Parma (Italy)

    2010-04-15

    Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a {sup 60}Co source and tested in industrial irradiation plants having high-activity {sup 60}Co gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 deg. C, dependence on temperature during reading in the range 20-50 deg. C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.

  1. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Mandal, Saumen; Noh, Yong-Young

    2015-01-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  2. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (Zn

  3. Electro-Thermo-Mechanical Analysis of High-Power Press-Pack Insulated Gate Bipolar Transistors under Various Mechanical Clamping Conditions

    DEFF Research Database (Denmark)

    Hasmasan, Adrian Augustin; Busca, Cristian; Teodorescu, Remus

    2014-01-01

    With the continuously increasing demand for energy and the limited supply of fossil fuels, renewable power sources are becoming ever more important. Knowing that future energy demand will grow, manufacturers are increasing the size of new wind turbines (WTs) in order to reduce the cost of energy...... production. The reliability of the components has a large impact on the overall cost of a WT, and press-pack (PP) insulated gate bipolar transistors (IGBTs) could be a good solution for future multi-megawatt WTs because of advantages like high power density and reliability. When used in power converters, PP...

  4. Problems posed by the model of bipolar transistor used and the measurement of the parameters associated in the IMAG.1 program

    International Nuclear Information System (INIS)

    Imbrechts, Claude; Le Ber, Jacques

    1969-02-01

    The IMAG-1 program uses, for diodes and transistors, bipolar models of the Ebers and Moll modified type. This model is already used in the US NET.1 program. The object of this paper is essentially to pose the problem of the measurement of the parameters associated with the Ebers and Moll model. However, the authors' ambition is not to solve it but to attract attention to the need to speak the same language to define the model, the methods of measuring the associated parameters and their dispersions in order to better appreciate inaccuracies due to the model's approximations

  5. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  6. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    Science.gov (United States)

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  7. Fabricating an organic complementary inverter by integrating two transistors on a single substrate

    International Nuclear Information System (INIS)

    Wang Jun; Wei Bin; Zhang Jianhua

    2008-01-01

    Organic complementary inverters were fabricated by integrating two transistors of different electric type on a single substrate. One is a p-type organic heterojunction transistor with a depletion–accumulation mode that acts as a load element. The other is an n-type transistor with an accumulation mode that acts as a drive element. Typical inverter characteristics with a voltage gain of 12 were obtained. Compared with conventional devices, our organic complementary inverter used only one-step patterning of an organic semiconductor, and simultaneously suppressed the leakage current between supply voltage and ground. Therefore, current studies provide a simpler path to fabrication of organic complementary circuits

  8. Modeling and Extraction of Parameters Based on Physical Effects in Bipolar Transistors

    Directory of Open Access Journals (Sweden)

    Agnes Nagy

    2011-01-01

    Full Text Available The rising complexity of electronic systems, the reduction of components size, and the increment of working frequencies demand every time more accurate and stable integrated circuits, which require more precise simulation programs during the design process. PSPICE, widely used to simulate the general behavior of integrated circuits, does not consider many of the physical effects that can be found in real devices. Compact models, HICUM and MEXTRAM, have been developed over recent decades, in order to eliminate this deficiency. This paper presents some of the physical aspects that have not been studied so far, such as the expression of base-emitter voltage, including the emitter emission coefficient effect (n, physical explanation and simulation procedure, as well as a new extraction method for the diffusion potential VDE(T, based on the forward biased base-emitter capacitance, showing excellent agreement between experimental and theoretical results.

  9. Bipolar one diode-one resistor integration for high-density resistive memory applications.

    Science.gov (United States)

    Li, Yingtao; Lv, Hangbing; Liu, Qi; Long, Shibing; Wang, Ming; Xie, Hongwei; Zhang, Kangwei; Huo, Zongliang; Liu, Ming

    2013-06-07

    Different from conventional unipolar-type 1D-1R RRAM devices, a bipolar-type 1D-1R memory device concept is proposed and successfully demonstrated by the integration of Ni/TiOx/Ti diode and Pt/HfO2/Cu bipolar RRAM cell to suppress the undesired sneak current in a cross-point array. The bipolar 1D-1R memory device not only achieves self-compliance resistive switching characteristics by the reverse bias current of the Ni/TiOx/Ti diode, but also exhibits excellent bipolar resistive switching characteristics such as uniform switching, satisfactory data retention, and excellent scalability, which give it high potentiality for high-density integrated nonvolatile memory applications.

  10. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  11. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  12. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  13. Accurate automatic tuning circuit for bipolar integrated filters

    NARCIS (Netherlands)

    de Heij, Wim J.A.; de Heij, W.J.A.; Hoen, Klaas; Hoen, Klaas; Seevinck, Evert; Seevinck, E.

    1990-01-01

    An accurate automatic tuning circuit for tuning the cutoff frequency and Q-factor of high-frequency bipolar filters is presented. The circuit is based on a voltage controlled quadrature oscillator (VCO). The frequency and the RMS (root mean square) amplitude of the oscillator output signal are

  14. Germanium content and base doping level influence on extrinsic base resistance and dynamic performances of SiGe:C heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ramirez-Garcia, E; Valdez-Monroy, L A; Rodriguez-Mendez, L M; Valdez-Perez, D; Galaz-Larios, M C; Enciso-Aguilar, M A; Zerounian, N; Aniel, F

    2014-01-01

    We describe a reliable technique to separate the different contributions to the apparent base resistance (R B  = R Bx  + X R Bi ) of silicon germanium carbon (SiGe:C) heterojunction bipolar transistors (HBTs). The extrinsic base resistance (R Bx ) is quantified using small-signal measurements. The base-collector junction distribution factor (X) and the intrinsic base resistance (R Bi ) are extracted from high frequency noise (MWN) measurements. This method is applied to five different SiGe:C HBTs varying in base doping level and germanium content. The results show that high doping levels improve high frequency noise performances while germanium gradient helps to maintain outstanding dynamic performances. This method could be used to elucidate the base technological configuration that ensures low noise together with remarkable dynamic performances in state-of-the-art SiGe:C HBTs. (paper)

  15. Procedure to derive analytical models for microwave noise performances of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ramirez-Garcia, E; Enciso-Aguilar, M A; Aniel, F P; Zerounian, N

    2013-01-01

    We present a useful procedure to derive simplified expressions to model the minimum noise factor and the equivalent noise resistance of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors (HBTs). An acceptable agreement between models and measurements at operation frequencies up to 18 GHz and at several bias points is demonstrated. The development procedure includes all the significant microwave noise sources of the HBTs. These relations should be useful to model F min and R n for state-of-the-art IV-IV and III–V HBTs. The method is the first step to derive noise analyses formulas valid for operation frequencies near the unitary current gain frequency (f T ); however, to achieve this goal a necessary condition is to have access to HFN measurements up to this frequency regime. (paper)

  16. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    International Nuclear Information System (INIS)

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions

  17. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  18. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir

    2013-11-26

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  19. Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II.

    Science.gov (United States)

    Yasuno, Fumihiko; Kudo, Takashi; Matsuoka, Kiwamu; Yamamoto, Akihide; Takahashi, Masato; Nakagawara, Jyoji; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi

    2016-11-01

    A significantly lower fractional anisotropy (FA) value has been shown in anterior parts of the corpus callosum in patients with bipolar disorder. We investigated the association between abnormal corpus callosum integrity and interhemispheric functional connectivity (IFC) in patients with bipolar disorder. We examined the association between FA values in the corpus callosum (CC-FA) and the IFC between homotopic regions in the anterior cortical structures of bipolar disorder ( n =16) and major depressive disorder ( n =22) patients with depressed or euthymic states. We found a positive correlation between the CC-FA and IFC values between homotopic regions of the ventral prefrontal cortex and insula cortex, and significantly lower IFC between these regions in bipolar disorder patients. The abnormal corpus callosum integrity in bipolar disorder patients is relevant to the IFC between homotopic regions, possibly disturbing the exchange of emotional information between the cerebral hemispheres resulting in emotional dysregulation. None. © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license.

  20. Design and characterization of integrated front-end transistors in a micro-strip detector technology

    International Nuclear Information System (INIS)

    Simi, G.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Morganti, M.; U. Pignatel, G.; Ratti, L.; Re, V.; Rizzo, G.; Speziali, V.; Zorzi, N.

    2002-01-01

    We present the developments in a research program aimed at the realization of silicon micro-strip detectors with front-end electronics integrated in a high resistivity substrate to be used in high-energy physics, space and medical/industrial imaging applications. We report on the fabrication process developed at IRST (Trento, Italy), the characterization of the basic wafer parameters and measurements of the relevant working characteristics of the integrated transistors and related test structures

  1. OPEN-LOOP CONTROL OF A BIPOLAR STEPPER MOTORS USING THE SPECIALIZED INTEGRATED CIRCUITS

    Directory of Open Access Journals (Sweden)

    Gheorghe BALUTA

    2004-12-01

    Full Text Available This paper describes the open-loop control of a stepper motors. Bipolar stepper motors can be driven with an L297, an L298N bridge driver and very few external components. With an L298N this configuration drives motors with winding currents up to 2.5A. If very high powers are required an equivalent circuit made with discrete transistors replaces the bridge driver. Together these two chips form a complete microprocessor-to-stepper motor interface. The command signals for the controller L297 are generated through an IBM-PC486 interface. It was developed an open-loop command program written in BorlandC programming language.

  2. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  3. Contribution to the study of fluctuations in transistors (bipolar and junction field effect types); Contribution a l'etude des fluctuations dans les transistors (bipolaires et a effet champ a jonctions)

    Energy Technology Data Exchange (ETDEWEB)

    Borel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    A brief review of the basic theory of fluctuations in semiconductors is given: shot, thermal low frequency noise. A measuring set has been built to draw noise spectrums (current or voltage). Noise parameters of bipolar transistors are given, mainly noise voltage. Noise current, noise factor and correlation between noise sources are also calculated. Measurements of noise parameters fit well with theory for various devices made in different technologies: alloyed, mesa, planar. Then we give results of the calculation of noise parameters in a FET starting from a simplified model of the device. Low frequency noise is taken into account. Measurements of the parameters and of the spectrum agree fairly well with the theory. Studies of low frequency noise versus temperature give the density and energy of traps located in the space charge layers and an idea of the impurity encountered in these space charge layers. [French] On rappelle les notions de base de la theorie des fluctuations dans les semiconducteurs: bruit de grenaille, bruit thermique, bruit basse frequence. Un appareillage mis au point pour tracer un spectre de bruit est decrit. On presente ensuite le calcul des parametres de bruit d'un transistor bipolaire en insistant plus particulierement sur la tension de bruit ramenee a l'entree de l'element. Le courant de bruit, le facteur de bruit et la correlation entre les sources de bruit sont calcules. La mesure des parametres de bruit est faite sur divers elements realises dans diverses technologies: alliee, mesa et plane. Les mesures confirment tres bien la theorie. On presente ensuite le calcul des parametres de bruit d'un transistor a effet de champ en definissant un schema equivalent simple de l'element. Le calcul theorique des fluctuations basse frequence est aussi fait. La mesure du spectre de bruit confirme tres bien les calculs theoriques. L'etude du bruit basse frequence en fonction de la temperature permet de remonter a la densite et a l'energie des pieges

  4. An innovative large scale integration of silicon nanowire-based field effect transistors

    Science.gov (United States)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  5. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  6. Development of a construction and manufacturing techniques of complementary transistors for the radiation tolerant integrated circuits

    Directory of Open Access Journals (Sweden)

    Gorban A. N.

    2011-06-01

    Full Text Available The construction of vertical complementary transistors with the full dielectric isolation is developed, new technolo-gical processes of creation on their basis the radiation tolerant integrated circuits with parameters which provide low values of a leakage current along with the considerable values of a forward current and breakdown voltage at the information signals exchange frequency of about 500 kHz are developed.

  7. Failure of the integrated circuits involving complementary MOS transistors under thermal and ionizing radiation stresses

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Rossel, P.; Buxo, J.; Vialaret, G.

    Some criteria for reliability and sorting of complementary MOS transistor integrated circuits are proposed, that take account for special environmental stresses near plane reactors or nuclear reactor cores. An analysis of the damaging causes for these circuits at high and low temperatures is proposed, results obtained on the evolution of these devices under irradiation and irradiation behaviors are discussed. The whole set of experiments has been carried out on CD 4007 AD(K) circuits [fr

  8. The Fault Detection, Localization, and Tolerant Operation of Modular Multilevel Converters with an Insulated Gate Bipolar Transistor (IGBT Open Circuit Fault

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-04-01

    Full Text Available Reliability is one of the critical issues for a modular multilevel converter (MMC since it consists of a large number of series-connected power electronics submodules (SMs. In this paper, a complete control strategy including fault detection, localization, and tolerant operation is proposed for the MMC under an insulated gate bipolar transistor (IGBT open circuit fault. According to the output characteristics of the SM with the open-circuit fault of IGBT, a fault detection method based on the circulating current and output current observation is used. In order to further precisely locate the position of the faulty SM, a fault localization method based on the SM capacitor voltage observation is developed. After the faulty SM is isolated, the continuous operation of the converter is ensured by adopting the fault-tolerant strategy based on the use of redundant modules. To verify the proposed fault detection, fault localization, and fault-tolerant operation strategies, a 900 kVA MMC system under the conditions of an IGBT open circuit is developed in the Matlab/Simulink platform. The capabilities of rapid detection, precise positioning, and fault-tolerant operation of the investigated detection and control algorithms are also demonstrated.

  9. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  10. Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.

    2017-01-01

    This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.

  11. Convergent integration of animal model and human studies of bipolar disorder (manic-depressive illness).

    Science.gov (United States)

    Le-Niculescu, Helen; Patel, Sagar D; Niculescu, Alexander B

    2010-10-01

    Animal models and human studies of bipolar disorder and other psychiatric disorders are becoming increasingly integrated, prompted by recent successes. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in sharp contrast to the fit-to-cohort effect, disappointing findings to date, and limited reproducibility of human genetic analyses alone. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer biology and diabetes. Copyright © 2010. Published by Elsevier Ltd.

  12. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors.

    Science.gov (United States)

    Chen, Haitian; Cao, Yu; Zhang, Jialu; Zhou, Chongwu

    2014-06-13

    Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).

  13. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications. © 2013 American Chemical Society.

  14. Integrated materials design of organic semiconductors for field-effect transistors.

    Science.gov (United States)

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L; Fang, Lei; Bao, Zhenan

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm(2)/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

  15. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  16. Integrated 1 GHz 4-channel InP phasar based WDM-receiver with Si bipolar frontend array

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; Vreede, de L.C.N.; Dam, van C.; Scholtes, T.L.M.; Smit, M.K.; Tauritz, J.L.; Pedersen, J.W.; Moerman, I.; Verbeek, B.H.; Baets, R.G.F.

    1995-01-01

    An integrated 4-channel WDM-receiver frontend with 1 GHz channel bandwidth is described. The receiver consists of an integrated wavelength demultiplexer with photodiodes in InP technology connected through bond wires with a 4 channel Si bipolar transimpedance amplifier mounted on an epoxy board. The

  17. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    Science.gov (United States)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  18. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  19. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  20. Integrated motivational interviewing and cognitive-behavioural therapy for bipolar disorder with comorbid substance use.

    Science.gov (United States)

    Jones, Steven H; Barrowclough, Christine; Allott, Rory; Day, Christine; Earnshaw, Paul; Wilson, Ian

    2011-01-01

    Although comorbid substance use is a common problem in bipolar disorder, there has been little research into options for psychological therapy. Studies to date have concentrated on purely cognitive-behavioural approaches, which are not equipped to deal with the ambivalence to change exhibited by many towards therapy designed to change substance use. This paper provides the first report of an integrated psychological treatment approach for bipolar disorder with comorbid substance use. The intervention reported combines motivational interviewing and cognitive-behavioural therapy to address ambivalence and equips individuals with strategies to address substance use. Across five individual case studies, preliminary evidence is reported to support the acceptability and the feasibility of this approach. Despite most participants not highlighting their substance use as a primary therapy target, all but one exhibited reduced use of drugs or alcohol at the end of therapy, sustained at 6 months' follow-up. There was some evidence for improvements in mood symptoms and impulsiveness, but this was less clear-cut. The impact of social and relationship issues on therapy process and outcome is discussed. The implications of the current findings for future intervention research in this area are considered. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Array of organic thin film transistors integrated with organic light emitting diodes on a plastic substrate

    International Nuclear Information System (INIS)

    Ryu, Gi-Seong; Choe, Ki-Beom; Song, Chung-Kun

    2006-01-01

    In order to demonstrate the possible application of an organic thin film transistor (OTFT) to a flexible active matrix organic light emitting diode (OLED) an array of 64 x 64 pixels was fabricated on a 4-in. size poly-ethylene-terephehalate substrate. Each pixel was composed of one OTFT integrated with one OLED. OTFTs successfully drove OLEDs by varying current in a wide range and some images were displayed on the array by emitting green light. The OTFTs used poly(4-vinylphenol) for the gate and pentacene for the semiconductor taking account compatibility with the PET substrate. The average mobility in the array was 0.2 cm 2 /V.s, which was reduced from 1.0 cm 2 /V.s in a single OTFT, and its variation over the entire substrate was 10%

  2. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  3. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  4. Calculating and experimental technique for forecasting the bipolar digital integrated circuit response; Raschetno-ehksperimental`nyj metod prognozirovaniya reaktsii bipolyarnykh Ts IS

    Energy Technology Data Exchange (ETDEWEB)

    Butin, V I; Trofimov, Eh N

    1994-12-31

    Typical responses of the bipolar digital integrated circuits (DIC) of the combination type under the action of pulse gamma radiation are presented. Analysis of the DIC transients is carried out. A calculation-experimental method for forecasting the temporal serviceability loss of bipolar DIC is proposed. The reliability of the method is confirmed experimentally. 1 fig.

  5. Investigation of Impact of the Gate Circuitry on IGBT Transistor Dynamic Parameters

    Directory of Open Access Journals (Sweden)

    Vytautas Bleizgys

    2011-03-01

    Full Text Available The impact of Insulated Gate Bipolar Transistor driver circuit parameters on the rise and fall time of the collector current and voltage collector-emitter was investigated. The influence of transistor driver circuit parameters on heating of Insulated Gate Bipolar Transistors was investigated as well.Article in Lithuanian

  6. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Chang

    2016-05-01

    Full Text Available All-vanadium redox flow batteries (VRBs are potential energy storage systems for renewable power sources because of their flexible design, deep discharge capacity, quick response time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional design, a flow field is machined on two electrically insulated frames with a graphite plate in between. A traditional bipolar plate (BP of a VRB consists of many components, and thus, the assembly process is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize the manufacturing cost. First, the effects of the mold design and injection parameters on frame formability were analyzed by simulation. Second, a new graphite plate design for integral molding was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show that gate position significantly affects air traps and the maximum volume shrinkage occurs at the corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within the frame.

  7. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    Science.gov (United States)

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    Science.gov (United States)

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  9. Design of analog integrated circuits and systems

    CERN Document Server

    Laker, Kenneth R

    1994-01-01

    This text is designed for senior or graduate level courses in analog integrated circuits or design of analog integrated circuits. This book combines consideration of CMOS and bipolar circuits into a unified treatment. Also included are CMOS-bipolar circuits made possible by BiCMOS technology. The text progresses from MOS and bipolar device modelling to simple one and two transistor building block circuits. The final two chapters present a unified coverage of sample-data and continuous-time signal processing systems.

  10. The Development and Course of Bipolar Spectrum Disorders: An Integrated Reward and Circadian Rhythm Dysregulation Model

    Science.gov (United States)

    Alloy, Lauren B.; Nusslock, Robin; Boland, Elaine M.

    2014-01-01

    In this article, we present and review the evidence for two major biopsychosocial theories of the onset and course of bipolar spectrum disorders (BSDs) that integrate behavioral, environmental, and neurobiological mechanisms: the reward hypersensitivity and the social and circadian rhythm disruption models. We describe the clinical features, spectrum, age of onset, and course of BSDs. We then discuss research designs relevant to demonstrating whether a hypothesized mechanism represents a correlate, vulnerability, or predictor of the course of BSDs, as well as important methodological issues. We next present the reward hypersensitivity model of BSD, followed by the social/circadian rhythm disruption model of BSD. For each model, we review evidence regarding whether the proposed underlying mechanism is associated with BSDs, provides vulnerability to the onset of BSDs, and predicts the course of BSDs. We then present a new integrated reward/circadian rhythm (RCR) dysregulation model of BSD and discuss how the RCR model explains the symptoms, onset, and course of BSDs. We end with recommendations for future research directions. PMID:25581235

  11. Development of high-performance printed organic field-effect transistors and integrated circuits.

    Science.gov (United States)

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  12. High-performance integrated field-effect transistor-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Microelectronic Engineering (SoME), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Bioprocess Engineering (SBE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Ayub, R.M., E-mail: ramzan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Nor, M. Nuzaihan Mohd, E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Voon, C.H., E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia)

    2016-04-21

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  13. High-performance integrated field-effect transistor-based sensors

    International Nuclear Information System (INIS)

    Adzhri, R.; Md Arshad, M.K.; Gopinath, Subash C.B.; Ruslinda, A.R.; Fathil, M.F.M.; Ayub, R.M.; Nor, M. Nuzaihan Mohd; Voon, C.H.

    2016-01-01

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  14. Effect of preliminary annealing of silicon substrates on the spectral sensitivity of photodetectors in bipolar integrated circuits

    International Nuclear Information System (INIS)

    Blynskij, V.I.; Bozhatkin, O.A.; Golub, E.S.; Lemeshevskaya, A.M.; Shvedov, S.V.

    2010-01-01

    We examine the results of an effect of preliminary annealing on the spectral sensitivity of photodetectors in bipolar integrated circuits, formed in silicon grown by the Czochralski method. We demonstrate the possibility of substantially improving the sensitivity of photodetectors in the infrared region of the spectrum with twostep annealing. The observed effect is explained by participation of oxidation in the gettering process, where oxidation precedes formation of a buried n + layer in the substrate. (authors)

  15. Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage.

    Science.gov (United States)

    Liu, Tingting; Zhao, Jianwen; Xu, Weiwei; Dou, Junyan; Zhao, Xinluo; Deng, Wei; Wei, Changting; Xu, Wenya; Guo, Wenrui; Su, Wenming; Jie, Jiansheng; Cui, Zheng

    2018-01-03

    Fabrication and application of hybrid functional circuits have become a hot research topic in the field of printed electronics. In this study, a novel flexible diode-transistor logic (DTL) driving circuit is proposed, which was fabricated based on a light emitting diode (LED) integrated with printed high-performance single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs). The LED, which is made of AlGaInP on GaAs, is commercial off-the-shelf, which could generate free electrical charges upon white light illumination. Printed top-gate TFTs were made on a PET substrate by inkjet printing high purity semiconducting SWCNTs (sc-SWCNTs) ink as the semiconductor channel materials, together with printed silver ink as the top-gate electrode and printed poly(pyromellitic dianhydride-co-4,4'-oxydianiline) (PMDA/ODA) as gate dielectric layer. The LED, which is connected to the gate electrode of the TFT, generated electrical charge when illuminated, resulting in biased gate voltage to control the TFT from "ON" status to "OFF" status. The TFTs with a PMDA/ODA gate dielectric exhibited low operating voltages of ±1 V, a small subthreshold swing of 62-105 mV dec -1 and ON/OFF ratio of 10 6 , which enabled DTL driving circuits to have high ON currents, high dark-to-bright current ratios (up to 10 5 ) and good stability under repeated white light illumination. As an application, the flexible DTL driving circuit was connected to external quantum dot LEDs (QLEDs), demonstrating its ability to drive and to control the QLED.

  16. Using NCAP to predict RFI effects in linear bipolar integrated circuits

    Science.gov (United States)

    Fang, T.-F.; Whalen, J. J.; Chen, G. K. C.

    1980-11-01

    Applications of the Nonlinear Circuit Analysis Program (NCAP) to calculate RFI effects in electronic circuits containing discrete semiconductor devices have been reported upon previously. The objective of this paper is to demonstrate that the computer program NCAP also can be used to calcuate RFI effects in linear bipolar integrated circuits (IC's). The IC's reported upon are the microA741 operational amplifier (op amp) which is one of the most widely used IC's, and a differential pair which is a basic building block in many linear IC's. The microA741 op amp was used as the active component in a unity-gain buffer amplifier. The differential pair was used in a broad-band cascode amplifier circuit. The computer program NCAP was used to predict how amplitude-modulated RF signals are demodulated in the IC's to cause undesired low-frequency responses. The predicted and measured results for radio frequencies in the 0.050-60-MHz range are in good agreement.

  17. Solving the integration problem of one transistor one memristor architecture with a Bi-layer IGZO film through synchronous process

    Science.gov (United States)

    Chang, Che-Chia; Liu, Po-Tsun; Chien, Chen-Yu; Fan, Yang-Shun

    2018-04-01

    This study demonstrates the integration of a thin film transistor (TFT) and resistive random-access memory (RRAM) to form a one-transistor-one-resistor (1T1R) configuration. With the concept of the current conducting direction in RRAM and TFT, a triple-layer stack design of Pt/InGaZnO/Al2O3 is proposed for both the switching layer of RRAM and the channel layer of TFT. This proposal decreases the complexity of fabrication and the numbers of photomasks required. Also, the robust endurance and stable retention characteristics are exhibited by the 1T1R architecture for promising applications in memory-embedded flat panel displays.

  18. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  19. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  20. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  1. Programmable automated transistor test system

    International Nuclear Information System (INIS)

    Truong, L.V.; Sundberg, G.R.

    1986-01-01

    The paper describes a programmable automated transistor test system (PATTS) and its utilization to evaluate bipolar transistors and Darlingtons, and such MOSFET and special types as can be accommodated with the PATTS base-drive. An application of a pulsed power technique at low duty cycles in a non-destructive test is used to examine the dynamic switching characteristic curves of power transistors. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software. In addition a library of test data is established on disks, tapes, and hard copies for future reference

  2. Simulation of a spintronic transistor: A study of its performance

    International Nuclear Information System (INIS)

    Pela, R.R.; Teles, L.K.

    2009-01-01

    We study theoretically the magnetic bipolar transistor, and compare its performance with common bipolar transistor. We present not only the simulation results for the characteristic curves, but also other relevant parameters related with its performance, such as: the current amplification factor, the open-loop gain, the hybrid parameters and the cutoff frequency. We noted that the spin-charge coupling introduces new phenomena that enrich the functionality characteristics of the magnetic bipolar transistor. Among other things, it has an adjustable band structure, which may be modified during the device operation; it exhibits the already known spin-voltaic effect. On the other hand, we observed that it is necessary a large g-factor to analyze the influence of the field B over the transistor. Nevertheless, we consider the magnetic bipolar transistor as a promising device for spintronic applications

  3. Low-background transistors for application in nuclear electronics

    International Nuclear Information System (INIS)

    Krasnokutskij, R.N.; Kurchaninov, L.L.; Fedyakin, N.N.; Shuvalov, R.S.

    1988-01-01

    Investigations of silicon transistors were carried out to determine transistors with low value of base distributed resistance (R). Measurement results for R and current amplification coefficient β are presented for bipolar transistor several types. Correlations between R and β were studied. KT 399A, 2T640A and KT3117B transistors are found to be most adequate ones as a base for low-background amplifier development

  4. Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.

    Science.gov (United States)

    Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel

    2017-05-23

    Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

  5. White matter tract integrity is associated with antidepressant response to lurasidone in bipolar depression.

    Science.gov (United States)

    Lan, Martin J; Rubin-Falcone, Harry; Motiwala, Fatima; Chen, Ying; Stewart, Jonathan W; Hellerstein, David J; Mann, J John; McGrath, Patrick J

    2017-09-01

    Patients with bipolar disorder spend the most time in the depressed phase, and that phase is associated with the most morbidity and mortality. Treatment of bipolar depression lacks a test to determine who will respond to treatment. White matter disruptions have been found in bipolar disorder. Previous reports suggest that white matter disruptions may be associated with resistance to antidepressant medication, but this has never been investigated in a prospective study using a Food and Drug Administration (FDA)-approved medication. Eighteen subjects with bipolar disorder who were in a major depressive episode and off all medications were recruited. Magnetic resonance imaging was acquired using a 64-direction diffusion tensor imaging sequence on a 3T scanner. Subjects were treated with 8 weeks of open-label lurasidone. The Montgomrey-Asberg Depression Rating Scale (MADRS) was completed weekly. Tract-Based Spatial Statistics were utilized to perform a regression analysis of fractional anisotropy (FA) data with treatment outcome as assessed by percent change in MADRS as a regressor while controlling for age and sex, using a threshold of P (threshold-free cluster enhancement-corrected) bipolar disorder were associated with poorer antidepressant response to lurasidone. The disruptions may potentially indicate treatment with a different antidepressant medication class. These results are limited by the open-label study design, sample size and lack of a healthy control group. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Abnormal white matter integrity as a structural endophenotype for bipolar disorder.

    Science.gov (United States)

    Sarıçiçek, A; Zorlu, N; Yalın, N; Hıdıroğlu, C; Çavuşoğlu, B; Ceylan, D; Ada, E; Tunca, Z; Özerdem, A

    2016-05-01

    Several lines of evidence suggest that bipolar disorder (BD) is associated with white matter (WM) pathology. Investigation of unaffected first-degree relatives of BD patients may help to distinguish structural biomarkers of genetic risk without the confounding effects of burden of illness, medication or clinical state. In the present study, we applied tract-based spatial statistics to study WM changes in patients with BD, unaffected siblings and controls. A total of 27 euthymic patients with BD type I, 20 unaffected siblings of bipolar patients and 29 healthy controls who did not have any current or past diagnosis of Axis I psychiatric disorders were enrolled in the study. Fractional anisotropy (FA) was significantly lower in BD patients than in the control group in the corpus callosum, fornix, bilateral superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, posterior thalamic radiation, cingulum, uncinate fasciculus, superior corona radiata, anterior corona radiata and left external capsule. In region-of-interest (ROI) analyses, we found that both unaffected siblings and bipolar patients had significantly reduced FA in the left posterior thalamic radiation, the left sagittal stratum, and the fornix compared with healthy controls. Average FA for unaffected siblings was intermediate between the healthy controls and bipolar patients within these ROIs. Decreased FA in the fornix, left posterior thalamic radiation and left sagittal stratum in both bipolar patients and unaffected siblings may represent a potential structural endophenotype or a trait-based marker for BD.

  7. Monolithic integration of detectors and transistors on high-resistivity silicon

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Batignani, Giovanni; Boscardin, Maurizio; Bosisio, Luciano; Gregori, Paolo; Pancheri, Lucio; Piemonte, Claudio; Ratti, Lodovico; Verzellesi, Giovanni; Zorzi, Nicola

    2007-01-01

    We report on the most recent results from an R and D activity aimed at the development of silicon radiation detectors with embedded front-end electronics. The key features of the fabrication technology and the available active devices are described. Selected results from the characterization of transistors and test structures are presented and discussed, and the considered application fields are addressed

  8. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L.; Fang, Lei; Bao, Zhenan

    2013-01-01

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight

  9. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    Science.gov (United States)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  10. A low power bipolar amplifier integrated circuit for the ZEUS silicon strip system

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Cartiglia, N. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Dorfan, D.E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Spencer, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States))

    1993-05-01

    A fast low power bipolar chip consisting of 64 amplifier-comparators has been developed for use with silicon strip detectors for systems where high radiation levels and high occupancy considerations are important. The design is described and test results are presented. (orig.)

  11. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    Energy Technology Data Exchange (ETDEWEB)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M., E-mail: MuhammadMustafa.Hussain@kaust.edu.sa [Integrated Nanotechnology Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Aljedaani, Abdulrahman B. [High-Speed Fluids Imaging Laboratory, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  12. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    International Nuclear Information System (INIS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M.; Aljedaani, Abdulrahman B.

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties

  13. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Aljedaani, Abdulrahman B.; Hussain, Muhammad Mustafa

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  14. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  15. Optical Sensitivity of a Monolithic Integrated InP PIN-HEMT-HBT Transimpedance Amplifier

    OpenAIRE

    Matiss, A.; Janssen, G.; Bertenburg, R. M.; Brockerhoff, W.; Tegude, F.J.

    2004-01-01

    To improve sensitivity of optical receivers, a special integration concept is chosen that includes a pinphotodiode, high-electron mobility transistors (HEMT) and heterostructure bipolar transistors (HBT) on a single substrate. This work focuses on the optimization of the amplifier design to achieve lowest input noise currents of a transimpedance amplifier, and thus highest receiver sensitivity. The respective advantages of the components used are investigated with respect...

  16. Vertically integrated logic circuits constructed using ZnO-nanowire-based field-effect transistors on plastic substrates.

    Science.gov (United States)

    Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig

    2013-05-01

    ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.

  17. Appraisals to affect: Testing the integrative cognitive model of bipolar disorder.

    Science.gov (United States)

    Palmier-Claus, Jasper E; Dodd, Alyson; Tai, Sara; Emsley, Richard; Mansell, Warren

    2016-09-01

    Cognitive models have suggested that extreme appraisals of affective states and maladaptive affect regulation strategies are important in the development of bipolar symptomatology. Little is known about the pathway by which these appraisals and behaviours interact in the formation of activated and depressed affective states. This study tested the predictions that (1) ascent behaviours mediate the relationship between positive appraisals of activated mood and activation; and (2) descent behaviours mediate the relationship between negative appraisals of activated mood and depression. A total of 52 individuals with a DSM-IV diagnosis of bipolar I or II disorder (confirmed by structured interview) completed biweekly assessments of affect regulation behaviours and mood for 4 weeks. Positive and negative appraisals of affective states were assessed at baseline through the Hypomanic Attitudes and Positive Prediction Inventory. Multilevel mediation analysis was used to explore the data. Ascent behaviours partially mediated the relationship between positive appraisals of activated mood and activation. Descent behaviours, but not negative appraisals of activated mood, predicted levels of depression indicating the absence of a mediation effect. The results suggest that positive appraisals of activated mood can escalate activation in individuals with bipolar disorder. Such appraisals may be inherently rewarding and reinforcing directly elevating levels of activation, whilst increasing individuals' use of ascent behaviours. The results are consistent with the view that appraisals and behaviours should be targeted during cognitive behavioural therapy for bipolar disorder. It may be beneficial to target positive appraisals of activated mood in cognitive behavioural therapy for mania. Cognitive behavioural therapists may also wish to focus on identifying and targeting individuals' use of ascent behaviours to reduce highly activated states. © 2015 The British Psychological

  18. Mef2d is essential for the maturation and integrity of retinal photoreceptor and bipolar cells.

    Science.gov (United States)

    Omori, Yoshihiro; Kitamura, Tamiki; Yoshida, Satoyo; Kuwahara, Ryusuke; Chaya, Taro; Irie, Shoichi; Furukawa, Takahisa

    2015-05-01

    Mef2 transcription factors play a crucial role in cardiac and skeletal muscle differentiation. We found that Mef2d is highly expressed in the mouse retina and its loss causes photoreceptor degeneration similar to that observed in human retinitis pigmentosa patients. Electroretinograms (ERGs) were severely impaired in Mef2d-/- mice. Immunohistochemistry showed that photoreceptor and bipolar cell synapse protein levels severely decreased in the Mef2d-/- retina. Expression profiling by microarray analysis showed that Mef2d is required for the expression of various genes in photoreceptor and bipolar cells, including cone arrestin, Guca1b, Pde6h and Cacna1s, which encode outer segment and synapse proteins. We also observed that Mef2d synergistically activates the cone arrestin (Arr3) promoter with Crx, suggesting that functional cooperation between Mef2d and Crx is important for photoreceptor cell gene regulation. Taken together, our results show that Mef2d is essential for photoreceptor and bipolar cell gene expression, either independently or cooperatively with Crx. © 2015 Institution for Protein Research. Genes to Cells published by Wiley Publishing Asia Pty Ltd and the Molecular Biology Society of Japan.

  19. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  20. Transistor data book

    International Nuclear Information System (INIS)

    1988-03-01

    It introduces how to use this book. It lists transistor data and index, which are Type No, Cross index, Germanium PNP low power transistors, silicon NPN low power transistors, Germanium PNP high power transistors, Switching transistors, transistor arrays, Miscellaneous transistors, types with U.S military specifications, direct replacement transistors, suggested replacement transistors, schematic drawings, outline drawings, device number keys and manufacturer's logos.

  1. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  2. Epicardial, Biatrial Ablation With Integrated Uni-bipolar Radiofrequency Technology in Stand-alone Persistent Atrial Fibrillation.

    Science.gov (United States)

    Rosati, Fabrizio; Muneretto, Claudio; Merati, Elisa; Polvani, Gianluca; Moltrasio, Massimo; Tondo, Claudio; Curnis, Antonio; Cerini, Manuel; Metras, Alexandre; Bisleri, Gianluigi

    Although minimally invasive approaches for surgical treatment of stand-alone atrial fibrillation have gained popularity for the past decade, ablation technology and extensive lesion sets play a major role in the achievement of a successful procedure, especially in presence of persistent and long-standing persistent atrial fibrillation. We evaluated clinical outcomes after totally endoscopic biatrial epicardial ablation of persistent atrial fibrillation with a novel integrated uni-bipolar radiofrequency device. Forty-nine (49) consecutive patients with stand-alone atrial fibrillation underwent right-sided monolateral thoracoscopic surgical ablation with a novel integrated uni-bipolar radiofrequency energy delivery and temperature-controlled technology. Atrial fibrillation was persistent in 13 (26.5%) of 49 and long-standing persistent in 36 (73.5%) of 49 patients. Mean ± SD age was 60.6 ± 10.3 years. Median duration of atrial fibrillation was 74 months. Mean ± SD left atrial diameter was 44.7 ± 4.0 mm. Epicardial en bloc isolation of all pulmonary veins (box lesion) and additional ablation of the right atrial free wall was successfully performed via minimally invasive approach without any intraoperative and postoperative major complications. Intraoperative entrance and exit block was achieved in 77.5% (38/49) and 91.8% (45/49) of patients, respectively. Mean ± SD ablation time was 16.3 ± 4.8 minutes. No intensive care unit stay was required. Postoperative sinus rhythm was achieved in 93.8% (30/32) patients, and no pacemaker implantation was required. At 13 months, 87.7% (43/49) of patients were in sinus rhythm; 71.4% (35/49) were free from antiarrhythmic drugs and 75.5% (37/49) from oral anticoagulation. Integrated uni-bipolar radiofrequency ablation technology showed to be effective for the surgical treatment of atrial fibrillation with a total endoscopic approach. A versapolar suction device with extensive right-left atrial lesion set may further improve

  3. Bipolar Disorder

    Science.gov (United States)

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  4. Outlook and Emerging Semiconducting Materials for Ambipolar Transistors

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great

  5. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  6. Application of the Johnson criteria to graphene transistors

    International Nuclear Information System (INIS)

    Kelly, M J

    2013-01-01

    For 60 years, the Johnson criteria have guided the development of materials and the materials choices for field-effect and bipolar transistor technology. Intrinsic graphene is a semi-metal, precluding transistor applications, but only under lateral bias is a gap opened and transistor action possible. This first application of the Johnson criteria to biased graphene suggests that this material will struggle to ever achieve competitive commercial applications. (fast track communication)

  7. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  8. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  9. Unijunction transistors

    International Nuclear Information System (INIS)

    1981-01-01

    The electrical characteristics of unijunction transistors can be modified by irradiation with electron beams in excess of 400 KeV and at a dose rate of 10 13 to 10 16 e/cm 2 . Examples are given of the effect of exposing the emitter-base junctions of transistors to such lattice defect causing radiation for a time sufficient to change the valley current of the transistor. (U.K.)

  10. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  11. A 38 to 44GHz sub-harmonic balanced HBT mixer with integrated miniature spiral type marchand balun

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    This work presents an active balanced sub-harmonic mixer (SHM) using InP double heterojunction bipolar transistor technology (DHBT) for Q-band applications. A miniature spiral type Marchand balun with five added capacitances for improved control of amplitude and phase balance is integrated with t...

  12. Abelson Helper Integration Site-1 Gene Variants on Major Depressive Disorder and Bipolar Disorder

    Science.gov (United States)

    Porcelli, Stefano; Han, Changsu; Lee, Soo-Jung; Patkar, Ashwin A.; Masand, Prakash S.; Balzarro, Beatrice; Alberti, Siegfried; De Ronchi, Diana; Serretti, Alessandro

    2014-01-01

    Objective The present study aimed to explore whether 4 single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with major depressive disorder (MD) and bipolar disorder (BD), and whether they could predict clinical outcomes in mood disorders. Methods One hundred and eighty-four (184) patients with MD, 170 patients with BD and 170 healthy controls were genotyped for 4 AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and final clinical measures for MD patients were assessed through the Hamilton Rating Scale for Depression (HAM-D). Allelic and genotypic frequencies in MD and BD subjects were compared with those of each disorder and healthy group using the χ2 statistics. Repeated measures ANOVA was used to test possible influences of SNPs on treatment efficacy. Results The rs9647635 A/A was more represented in subjects with BD as compared with MD and healthy subjects together. The rs9647635 A/A was also more presented in patients with MD than in healthy subjects. With regard to the allelic analysis, rs9647635 A allele was more represented in subjects with BD compared with healthy subjects, while it was not observed between patients with MD and healthy subjects. Conclusion Our findings provide potential evidence of an association between some variants of AHI1 and mood disorders susceptibility but not with clinical outcomes. However, we will need to do more adequately-powered and advanced association studies to draw any conclusion due to clear limitations. PMID:25395981

  13. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  14. Feasibility studies of microelectrode silicon detectors with integrated electronics

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Batignani, G.; Bettarini, S.; Boscardin, M.; Bosisio, L.; Carpinelli, M.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Lusiani, A.; Manghisoni, M.; Pignatel, G.U.; Rama, M.; Ratti, L.; Re, V.; Sandrelli, F.; Speziali, V.; Svelto, F.; Zorzi, N.

    2002-01-01

    We describe our experience on design and fabrication, on high-resistivity silicon substrates, of microstrip detectors and integrated electronics, devoted to high-energy physics experiments and medical/industrial imaging applications. We report on the full program of our collaboration, with particular regards to the tuning of a new fabrication process, allowing for the production of good quality transistors, while keeping under control the basic detector parameters, such as leakage current. Experimental results on JFET and bipolar transistors are presented, and a microstrip detector with an integrated JFET in source-follower configuration is introduced

  15. Bipolar disorders

    DEFF Research Database (Denmark)

    Vieta, Eduard; Berk, Michael; Schulze, Thomas G

    2018-01-01

    Bipolar disorders are chronic and recurrent disorders that affect >1% of the global population. Bipolar disorders are leading causes of disability in young people as they can lead to cognitive and functional impairment and increased mortality, particularly from suicide and cardiovascular disease...... and accurate diagnosis is difficult in clinical practice as the onset of bipolar disorder is commonly characterized by nonspecific symptoms, mood lability or a depressive episode, which can be similar in presentation to unipolar depression. Moreover, patients and their families do not always understand...... a bipolar disorder from other conditions. Optimal early treatment of patients with evidence-based medication (typically mood stabilizers and antipsychotics) and psychosocial strategies is necessary....

  16. The Complete Semiconductor Transistor and Its Incomplete Forms

    International Nuclear Information System (INIS)

    Jie Binbin; Sah, C.-T.

    2009-01-01

    This paper describes the definition of the complete transistor. For semiconductor devices, the complete transistor is always bipolar, namely, its electrical characteristics contain both electron and hole currents controlled by their spatial charge distributions. Partially complete or incomplete transistors, via coined names or/and designed physical geometries, included the 1949 Shockley p/n junction transistor (later called Bipolar Junction Transistor, BJT), the 1952 Shockley unipolar 'field-effect' transistor (FET, later called the p/n Junction Gate FET or JGFET), as well as the field-effect transistors introduced by later investigators. Similarities between the surface-channel MOS-gate FET (MOSFET) and the volume-channel BJT are illustrated. The bipolar currents, identified by us in a recent nanometer FET with 2-MOS-gates on thin and nearly pure silicon base, led us to the recognition of the physical makeup and electrical current and charge compositions of a complete transistor and its extension to other three or more terminal signal processing devices, and also the importance of the terminal contacts.

  17. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    Science.gov (United States)

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-04-25

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  18. Tunable conduction type of solution-processed germanium nanoparticle based field effect transistors and their inverter integration.

    Science.gov (United States)

    Meric, Zeynep; Mehringer, Christian; Karpstein, Nicolas; Jank, Michael P M; Peukert, Wolfgang; Frey, Lothar

    2015-09-14

    In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.

  19. Design of Integrated Circuits Approaching Terahertz Frequencies

    OpenAIRE

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also important for driving THz signal sources. To meet the requirement of high output power, amplifiers based on InP double heterojunction bipolar transistor (DHBT) devices from the III-V Lab in Marcoussic,...

  20. Bipolar Disorder.

    Science.gov (United States)

    Spearing, Melissa

    Bipolar disorder, a brain disorder that causes unusual shifts in a person's mood, affects approximately one percent of the population. It commonly occurs in late adolescence and is often unrecognized. The diagnosis of bipolar disorder is made on the basis of symptoms, course of illness, and when possible, family history. Thoughts of suicide are…

  1. Growth of a single-wall carbon nanotube film and its patterning as an n-type field effect transistor device using an integrated circuit compatible process

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, S H; Gau, C [Institute of Aeronautics and Astronautics, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan (China); Liu, C W; Dai, B T [National Nano Device Laboratories, No. 27, Nanke 3rd Road, Science-based Industrial Park, Hsin-shi, Tainan, Taiwan (China)], E-mail: gauc@mail.ncku.edu.tw

    2008-03-12

    This study presents the synthesis of a dense single-wall carbon nanotube (SWNT) network on a silicon substrate using alcohol as the source gas. The nanosize catalysts required are made by the reduction of metal compounds in ethanol. The key point in spreading the nanoparticles on the substrate, so that the SWNT network can be grown over the entire wafer, is making the substrate surface hydrophilic. This SWNT network is so dense that it can be treated like a thin film. Methods of patterning this SWNT film with integrated circuit compatible processes are presented and discussed for the first time in the literature. Finally, fabrication and characteristic measurements of a field effect transistor (FET) using this SWNT film are also demonstrated. This FET is shown to have better electronic properties than any other kind of thin film transistor. This thin film with good electronic properties can be readily applied in the processing of many other SWNT electronic devices.

  2. Analysis of the background noise of field effect transistors in MOS complementary technology and application in the construction of a current-sensitive integrated amplifier

    International Nuclear Information System (INIS)

    Beuville, E.

    1989-10-01

    A low noise amplifier for use in high energy physics is developed. The origin and the mechanisms of the noise in MOSFET transistors is carried out with the aim of minimizing such effects in amplifiers. The research is applied in the construction of a current-sensitive integrated amplifier. The time scale continuous filtering principle is used and allows the detection of particles arriving in the counter in a random distribution. The rules which must be taken into account in the construction of an analog integrated circuit are shown [fr

  3. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    Science.gov (United States)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  4. Determination of parameters of the Gummel-Pun model of bipolar transistors with account of Kirk effect and ionizing radiation effects; Opredelenie parametrov modeli Gummelya-Puna bipolyarnykh tranzistiorov s uchetom ehffekta Kirka i vozdejstviya ioniziruyushchego izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Ragozin, A Yu [and others

    1994-12-31

    Gamma radiation effect on the parameters Gummel-Pun model n-p-n transistors with different resistance of the collector layer is investigated. A method for their determination on the base of vol-ampere characteristics is proposed.

  5. Transistor Effect in Improperly Connected Transistors.

    Science.gov (United States)

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  6. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  7. The process of recovery from bipolar I disorder: a qualitative analysis of personal accounts in relation to an integrative cognitive model.

    Science.gov (United States)

    Mansell, Warren; Powell, Seth; Pedley, Rebecca; Thomas, Nia; Jones, Sarah Amelia

    2010-06-01

    This study explored the process of recovery from bipolar I disorder from a phenomenological and cognitive perspective. A semi-structured interview was coded and analysed using interpretative phenomenological analysis. Eleven individuals over the age of 30 with a history of bipolar disorder were selected on the basis of having remained free from relapse, and without hospitalization for at least 2 years, as confirmed by a diagnostic interview (Standardised Interview for DSM-IV; SCID-I). This arbitrary and equivocal criterion for 'recovery' provided an objective method of defining the sample for the study. The analysis revealed two overarching themes formed from four themes each. Ambivalent approaches referred to approaches that participants felt had both positive and negative consequences: avoidance of mania, taking medication, prior illness versus current wellness, and sense of identity following diagnosis. Helpful approaches referred to approaches that were seen as universally helpful: understanding, life-style fundamentals, social support and companionship, and social change. These themes were then interpreted in the light of the existing literature and an integrative cognitive model of bipolar disorder. Limitations and future research directions are discussed.

  8. Improvements in or relating to transistor circuits

    International Nuclear Information System (INIS)

    Richards, R.F.; Williamson, P.W.

    1978-01-01

    This invention relates to transistor circuits and in particular to integrated transistor circuits formed on a substrate of semi-conductor material such as silicon. The invention is concerned with providing integrated circuits in which malfunctions caused by the effects of ionising, e.g. nuclear, radiations are reduced. (author)

  9. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May, E-mail: eekmlau@ust.hk [Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  10. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-01-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme

  11. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    International Nuclear Information System (INIS)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-01-01

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing

  12. Cytokines in bipolar disorder vs. healthy control subjects

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Braüner, Julie Vestergaard; Kessing, Lars Vedel

    2013-01-01

    Bipolar disorder may be associated with peripheral immune system dysfunction; however, results in individual studies are conflicting. Our aim was to systematically review evidence of peripheral cytokine alterations in bipolar disorder integrating findings from various affective states....

  13. Modeling suicide in bipolar disorders.

    Science.gov (United States)

    Malhi, Gin S; Outhred, Tim; Das, Pritha; Morris, Grace; Hamilton, Amber; Mannie, Zola

    2018-02-19

    Suicide is a multicausal human behavior, with devastating and immensely distressing consequences. Its prevalence is estimated to be 20-30 times greater in patients with bipolar disorders than in the general population. The burden of suicide and its high prevalence in bipolar disorders make it imperative that our current understanding be improved to facilitate prediction of suicide and its prevention. In this review, we provide a new perspective on the process of suicide in bipolar disorder, in the form of a novel integrated model that is derived from extant knowledge and recent evidence. A literature search of articles on suicide in bipolar disorder was conducted in recognized databases such as Scopus, PubMed, and PsycINFO using the keywords "suicide", "suicide in bipolar disorders", "suicide process", "suicide risk", "neurobiology of suicide" and "suicide models". Bibliographies of identified articles were further scrutinized for papers and book chapters of relevance. Risk factors for suicide in bipolar disorders are well described, and provide a basis for a framework of epigenetic mechanisms, moderated by neurobiological substrates, neurocognitive functioning, and social inferences within the environment. Relevant models and theories include the diathesis-stress model, the bipolar model of suicide and the ideation-to-action models, the interpersonal theory of suicide, the integrated motivational-volitional model, and the three-step theory. Together, these models provide a basis for the generation of an integrated model that illuminates the suicidal process, from ideation to action. Suicide is complex, and it is evident that a multidimensional and integrated approach is required to reduce its prevalence. The proposed model exposes and provides access to components of the suicide process that are potentially measurable and may serve as novel and specific therapeutic targets for interventions in the context of bipolar disorder. Thus, this model is useful not only

  14. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa

    2017-03-17

    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V−1 s−1 and 0.013 cm2 V−1 s−1, respectively, current on/off ratio in the range 102–104, and maximum operating voltages between −3.5 and −10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  15. Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers

    Science.gov (United States)

    Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.

    2018-02-01

    In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.

  16. Transistor regenerative spectrometer for 14N nuclear quadrupole resonance study

    International Nuclear Information System (INIS)

    Anferov, V.P.; Mikhal'kov, V.M.

    1981-01-01

    Improvement of the Robinson transducer for investigations of nuclear quadrupole resonance (NQR) in 14 N is described. Amplifier of the suggested transducer is made using p-n field effect transistor and small-noise SHF bipolar transistor. Such a circuit permits to obtain optimal relation between input resistance, low-frequency noises and transconductance which provides uniform gain of the transducer in the frequency range of 0.6-12 MHz and permits to construct a transistor spectrometer of NQR not yielding to a lamp spectrometer in sensitivity [ru

  17. Bipolar Disorder

    Science.gov (United States)

    ... one or other traumatic event Drug or alcohol abuse Complications Left untreated, bipolar disorder can result in serious problems that affect every area of your life, such as: Problems related to drug and alcohol use Suicide or suicide attempts Legal or financial problems Damaged ...

  18. 10 K gate I(2)L and 1 K component analog compatible bipolar VLSI technology - HIT-2

    Science.gov (United States)

    Washio, K.; Watanabe, T.; Okabe, T.; Horie, N.

    1985-02-01

    An advanced analog/digital bipolar VLSI technology that combines on the same chip 2-ns 10 K I(2)L gates with 1 K analog devices is proposed. The new technology, called high-density integration technology-2, is based on a new structure concept that consists of three major techniques: shallow grooved-isolation, I(2)L active layer etching, and I(2)L current gain increase. I(2)L circuits with 80-MHz maximum toggle frequency have developed compatibly with n-p-n transistors having a BV(CE0) of more than 10 V and an f(T) of 5 GHz, and lateral p-n-p transistors having an f(T) of 150 MHz.

  19. Neutrality in bipolar structures

    DEFF Research Database (Denmark)

    Montero, Javier; Rodríguez, J. Tinguaro; Franco, Camilo

    2014-01-01

    In this paper, we want to stress that bipolar knowledge representation naturally allows a family of middle states which define as a consequence different kinds of bipolar structures. These bipolar structures are deeply related to the three types of bipolarity introduced by Dubois and Prade, but our...... approach offers a systematic explanation of how such bipolar structures appear and can be identified....

  20. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    Science.gov (United States)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  1. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  2. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  3. Bipolar Treatment: Are Bipolar I and Bipolar II Treated Differently?

    Science.gov (United States)

    ... The diagnosis and management of bipolar I and bipolar II disorders: Clinical practice update. Mayo Clinic Proceedings. 2017;92:1532. Haynes PL, et al. Social rhythm therapies for mood disorders: An update. Current Psychiatry Reports. ...

  4. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  5. Bipolar electrochemistry.

    Science.gov (United States)

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  7. Transtorno bipolar

    Directory of Open Access Journals (Sweden)

    Alda Martin

    1999-01-01

    Full Text Available Os resultados de estudos de famílias sugerem que o transtorno bipolar tenha uma base genética. Essa hipótese foi reforçada em estudos de adoção e de gêmeos. A herança do transtorno bipolar é complexa, envolve vários genes, além de apresentar heterogeneidade e interação entre fatores genéticos e não-genéticos. Achados, que já foram replicados, já implicaram os cromossomos 4, 12, 18 e 21, entre outros, na busca por genes de suscetibilidade. Os resultados mais promissores foram obtidos através de estudos de ligação. Por outro lado, os estudos de associação geraram dados interessantes, mas ainda vagos. Os estudos de populações de pacientes homogêneos e a melhor definição do fenótipo deverão contribuir para avanços futuros. A identificação dos genes relacionados ao transtorno bipolar irá permitir o melhor entendimento e tratamento dessa doença.

  8. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  9. [Bipolar disorder in adolescence].

    Science.gov (United States)

    Brunelle, Julie; Milhet, Vanessa; Consoli, Angèle; Cohen, David

    2014-04-01

    Juvenile mania is a concept widely developed but also highly debated since the 1990s. In the heart of this debate, Severe Mood Dysregulation (SMD) and "Temper Dysregulation disorder with Dysphoria" (recently integrated in DSM-5) showed their interest. Actually, the objective is to distinguish two clinical phenotypes in order to avoid confusion between (1) what would raise more of mood dysregulation with chronic manic like symptoms, and (2) bipolar disorder type I with episodic and acute manic episodes. Therapeutic stakes are major. In adolescents, even if DSM adult diagnostic criteria can be used and bipolar disorder type I clearly established, differential diagnostic at onset between acute manic episode and schizophrenia onset remain sometimes difficult to assess. Furthermore, it is crucial to better assess outcome of these adolescents, in terms of morbidity and potential prognosis factors, knowing that a younger age at onset is associated with a poorer outcome according to several adult studies. Therapeutic implications could then be drawn.

  10. Radiation tolerance of NPN bipolar technology with 30 GHz Ft

    International Nuclear Information System (INIS)

    Flament, O.; Synold, S.; Pontcharra, J. de; Niel, S.

    1999-01-01

    The ionizing dose and neutron radiation tolerance of Si QSA bipolar technology has been investigated. The transistors exhibit good radiation tolerance up to 100 krad and 5 10 13 n/cm 2 without any special fabrication steps to harden the technology to the studied effects. (authors)

  11. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.

    Science.gov (United States)

    Ghavami, Behnam; Raji, Mohsen; Pedram, Hossein

    2011-08-26

    Carbon nanotube field-effect transistors (CNFETs) show great promise as building blocks of future integrated circuits. However, synthesizing single-walled carbon nanotubes (CNTs) with accurate chirality and exact positioning control has been widely acknowledged as an exceedingly complex task. Indeed, density and chirality variations in CNT growth can compromise the reliability of CNFET-based circuits. In this paper, we present a novel statistical compact model to estimate the failure probability of CNFETs to provide some material and process guidelines for the design of CNFETs in gigascale integrated circuits. We use measured CNT spacing distributions within the framework of detailed failure analysis to demonstrate that both the CNT density and the ratio of metallic to semiconducting CNTs play dominant roles in defining the failure probability of CNFETs. Besides, it is argued that the large-scale integration of these devices within an integrated circuit will be feasible only if a specific range of CNT density with an acceptable ratio of semiconducting to metallic CNTs can be adjusted in a typical synthesis process.

  12. Monolithic integrated photoreceiver for 1.3--1.55-μm wavelengths: Association of a Schottky photodiode and a field-effect transistor on GaInP-GaInAs heteroepitaxy

    International Nuclear Information System (INIS)

    Therani, A.H.; Decoster, D.; Vilcot, J.P.; Razeghi, M.

    1988-01-01

    We present a monolithic integrated circuit associating a Schottky photodiode and a field-effect transistor which has been fabricated, for the first time, on Ga/sub 0.49/In/sub 0.51/P/Ga/sub 0.47/In/sub 0.53/As strained heteroepitaxial material. Static, dynamic, and noise properties of the Schottky photodiode, the field-effect transistor, and the integrated circuit have been investigated and are reported. As an example, dynamic responsivity up to 50 A/W can be achieved at 1.3-μm wavelength for the integrated photoreceiver. The performance of the device is discussed, taking into account the integrated circuit design and the main characteristics of the material

  13. Memristive device based on a depletion-type SONOS field effect transistor

    Science.gov (United States)

    Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.

    2017-06-01

    State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.

  14. Parasitic bipolar amplification in a single event transient and its temperature dependence

    International Nuclear Information System (INIS)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor

  15. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  16. Characterization of ionizing radiation effects in MOS structures by study of bipolar operation; Caracterisation des effets induits par irradiations ionisantes dans des structures MOS a partir de leur fonctionnement en regime bipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiar, H. [Univ. Teknologi Malaysia, Dept. of Physics, Johor (Malaysia); Picard, C.; Brisset, C. [CEA Saclay, Lab. d' Electronique et de Technologie de l' Informatique, LETI, 91 - Gif-sur-Yvette (France); Bakhtiar, H.; Hoffmann, A.; Charles, J.P. [Metz Univ., LICM-CLOES-Supelec, 57 (France)

    1999-07-01

    This work presents an original method to characterize radiation effects of micronic transistors. The characterization includes a study of the transistor substrate-drain junction and current gain variation of the bipolar transistor (drain-substrate-source as emitter-base-collector) for different gate voltages. (author000.

  17. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  18. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  19. Integrated psychological therapy for people with bipolar disorder and co-morbid alcohol use: A feasibility and acceptability randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Steven Jones

    2018-06-01

    Full Text Available Background: Co-morbid substance misuse, particularly alcohol, is common in bipolar disorder (BD and associated with worse treatment outcomes. Research into psychological interventions for substance misuse in BD is at an early stage and no studies have specifically targeted problematic alcohol use. This paper describes the context and protocol for a feasibility and acceptability randomised controlled trial (RCT evaluating a novel intervention combining motivational interviewing and cognitive behavioural therapy (MI-CBT for participants with BD and problematic alcohol use, developed in collaboration with people with lived experience of both issues. Methods and design: An RCT will assess the feasibility and acceptability of MI-CBT in addition to treatment as usual (TAU compared with TAU alone. Participants will be recruited from across the North West of England through NHS services and self-referral. The primary outcomes will be the feasibility and acceptability of the intervention assessed by recruitment to target, adherence to intervention, retention rate at follow-up, absence of adverse events and qualitative analysis of participants' reported experiences of intervention. The effect size of the impact of the intervention on alcohol use and mood outcomes will also be estimated. In addition, we will explore a number of potential process variables in therapy. Discussion: This is the first RCT evaluating MI-CBT for BD and problematic alcohol use. Given the prevalence and impact of alcohol problems in BD this novel integrated intervention may have potential to offer important improvements in clinical and functional outcomes. Keywords: Bipolar, Alcohol, Substance, Motivational interviewing, Trial registration number: ISRCTN14774583

  20. Transfer of Graphene Layers Grown on SiC Wafers to Other Substrates and Their Integration into Field Effect Transistors

    Science.gov (United States)

    Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar; Kim, Hoon-Sik; MacLaren, Scott; Mason, Nadya; Petrov, Ivan; Rogers, John

    2010-03-01

    An approach to produce graphene films by epitaxial growth on silicon carbide substrate is promising, but its current implementation requires the use of SiC as the device substrate. We present a simple method for transferring epitaxial sheets of graphene on SiC to other substrates. The graphene was grown on the (0001) face of 6H-SiC by thermal annealing in a hydrogen atmosphere. Transfer was accomplished using a peeling process with a bilayer film of Gold/polyimide, to yield graphene with square millimeters of coverage on the target substrate. Back gated field-effect transistors fabricated on oxidized silicon substrates with Cr/Au as source-drain electrodes exhibited ambipolar characteristics with hole mobilities of ˜100 cm^2/V-s, and negligible influence of resistance at the contacts. This work was supported by the U.S. DOE, under Award No. DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  1. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-17

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  2. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu, E-mail: liuyan@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Chen; Shanchao, Yang; Xiaoming, Jin [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); Chaohui, He [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-09-21

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  3. Bipolar disorder diagnosis: challenges and future directions

    Science.gov (United States)

    Phillips, Mary L; Kupfer, David J

    2018-01-01

    Bipolar disorder refers to a group of affective disorders, which together are characterised by depressive and manic or hypomanic episodes. These disorders include: bipolar disorder type I (depressive and manic episodes: this disorder can be diagnosed on the basis of one manic episode); bipolar disorder type II (depressive and hypomanic episodes); cyclothymic disorder (hypomanic and depressive symptoms that do not meet criteria for depressive episodes); and bipolar disorder not otherwise specified (depressive and hypomanic-like symptoms that do not meet the diagnostic criteria for any of the aforementioned disorders). Bipolar disorder type II is especially difficult to diagnose accurately because of the difficulty in differentiation of this disorder from recurrent unipolar depression (recurrent depressive episodes) in depressed patients. The identification of objective biomarkers that represent pathophysiologic processes that differ between bipolar disorder and unipolar depression can both inform bipolar disorder diagnosis and provide biological targets for the development of new and personalised treatments. Neuroimaging studies could help the identification of biomarkers that differentiate bipolar disorder from unipolar depression, but the problem in detection of a clear boundary between these disorders suggests that they might be better represented as a continuum of affective disorders. Innovative combinations of neuroimaging and pattern recognition approaches can identify individual patterns of neural structure and function that accurately ascertain where a patient might lie on a behavioural scale. Ultimately, an integrative approach, with several biological measurements using different scales, could yield patterns of biomarkers (biosignatures) to help identify biological targets for personalised and new treatments for all affective disorders. PMID:23663952

  4. Bipolar disorder in adolescence.

    Science.gov (United States)

    DeFilippis, Melissa; Wagner, Karen Dineen

    2013-08-01

    Bipolar disorder is a serious psychiatric condition that may have onset in childhood. It is important for physicians to recognize the symptoms of bipolar disorder in children and adolescents in order to accurately diagnose this illness early in its course. Evidence regarding the efficacy of various treatments is necessary to guide the management of bipolar disorder in youth. For example, several medications commonly used for adults with bipolar disorder have not shown efficacy for children and adolescents with bipolar disorder. This article reviews the prevalence, diagnosis, course, and treatment of bipolar disorder in children and adolescents and provides physicians with information that will aid in diagnosis and treatment.

  5. Evolution of the MOS transistor - From conception to VLSI

    International Nuclear Information System (INIS)

    Sah, C.T.

    1988-01-01

    Historical developments of the metal-oxide-semiconductor field-effect-transistor (MOSFET) during the last sixty years are reviewed, from the 1928 patent disclosures of the field-effect conductivity modulation concept and the semiconductor triodes structures proposed by Lilienfeld to the 1947 Shockley-originated efforts which led to the laboratory demonstration of the modern silicon MOSFET thirty years later in 1960. A survey is then made of the milestones of the past thirty years leading to the latest submicron silicon logic CMOS (Complementary MOS) and BICMOS (Bipolar-Junction-Transistor CMOS combined) arrays and the three-dimensional and ferroelectric extensions of Dennard's one-transistor dynamic random access memory (DRAM) cell. Status of the submicron lithographic technologies (deep ultra-violet light, X-ray, electron-beam) are summarized. Future trends of memory cell density and logic gate speed are projected. Comparisons of the switching speed of the silicon MOSFET with that of silicon bipolar and GaAs field-effect transistors are reviewed. Use of high-temperature superconducting wires and GaAs-on-Si monolithic semiconductor optical clocks to break the interconnect-wiring delay barrier is discussed. Further needs in basic research and mathematical modeling on the failure mechanisms in submicron silicon transistors at high electric fields (hot electron effects) and in interconnection conductors at high current densities and low as well as high electric fields (electromigration) are indicated

  6. Transistor design considerations for low-noise preamplifiers

    International Nuclear Information System (INIS)

    Fair, R.B.

    1976-01-01

    A review is presented of design considerations for GaAs Schottky-barrier FETs and other types of transistors in low-noise amplifiers for capacitive sources which are used in nuclear radiation detectors and high speed fiber-optic communication systems. Ultimate limits on performance are evaluated in terms of the g/sub m//C/sub i/ ratio and the gate leakage current to minimize the noise sources. Si bipolar transistors and the future prospects of GaAs, Si and InAs MISFETs are discussed, and performance is compared to FETs currently being used in low-noise preamplifiers

  7. The bipolar silicon microstrip detector: A proposal for a novel precision tracking device

    International Nuclear Information System (INIS)

    Horisberger, R.

    1990-01-01

    It is proposed to combine the technology of fully depleted microstrip detectors fabricated on n doped high resistivity silicon with the concept of the bipolar transistor. This is done by adding a n ++ doped region inside the normal p + implanted region of the reverse biased p + n diode. The resulting structure has amplifying properties and is referred to as bipaolar pixel transistor. The simplest readout scheme of a bipolar pixel array by an aluminium strip bus leads to the bipolar microstrip detector. The bipolar pixel structure is expected to give a better signal-to-noise performance for the detection of minimum ionizing charged particle tracks than the normal silicon diode strip detector and therefore should allow in future the fabrication of thinner silicon detectors for precision tracking. (orig.)

  8. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...... to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients...

  9. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  10. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  11. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  12. Catalytic, Conductive Bipolar Membrane Interfaces through Layer-by-Layer Deposition for the Design of Membrane-Integrated Artificial Photosynthesis Systems.

    Science.gov (United States)

    McDonald, Michael B; Freund, Michael S; Hammond, Paula T

    2017-11-23

    In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Water-gel for gating graphene transistors.

    Science.gov (United States)

    Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho

    2014-05-14

    Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.

  14. Nutrition and Bipolar Depression.

    Science.gov (United States)

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Relaxation of Si-SiO2 interfacial stress in bipolar screen oxides due to ionizing radiation

    International Nuclear Information System (INIS)

    Witczak, S.C.; Galloway, K.F.; Schrimpf, R.D.; Suehle, J.S.

    1995-01-01

    Current gain degradation due to ionizing radiation in complementary single-crystalline emitter bipolar transistors was found to grow progressively worse upon subjecting the transistors to repeated cycles of radiation exposure and high-temperature anneal. The increase in radiation sensitivity is independent of the emitter polarity or geometry and is most dramatic between the first and second radiation and anneal cycles. In parallel with the current gain measurements, samples from a monitor wafer simulating the screen oxide region above the extrinsic base in the npn transistors were measured for mechanical stress while undergoing similar cycles of irradiation and anneal. The oxide on the monitor wafer consisted of a 45 nm thermal layer and a 640 nm deposited layer. The results indicate that ionizing radiation helped relieve compressive stress at the Si surface. The magnitude of the stress change due to radiation is smaller than the stress induced by the emitter contact metallization followed by a post-metallization anneal. Correlation of radiation sensitivity in the bipolar transistors and mechanical stress in the monitor wafer suggests that mechanical stress may be influential in determining the radiation hardness of bipolar transistors and lends validation to previously reported observations that Si-SiO 2 interfaces are increasingly more susceptible to radiation damage with decreasing Si compressive stress. Possible mechanisms for the observed changes in stress and their effect on the radiation sensitivity of the bipolar transistors are discussed

  16. Uniformity of fully gravure printed organic field-effect transistors

    International Nuclear Information System (INIS)

    Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fuegmann, U.; Hahn, U.; Huebler, A.C.

    2010-01-01

    Fully mass-printed organic field-effect transistors were made completely by means of gravure printing. Therefore a special printing layout was developed in order to avoid register problems in print direction. Upon using this layout, contact pads for source-drain electrodes of the transistors are printed together with the gate electrodes in one and the same printing run. More than 50,000 transistors have been produced and by random tests a yield of approximately 75% has been determined. The principle suitability of the gravure printed transistors for integrated circuits has been shown by the realization of ring oscillators.

  17. High-performance silicon nanowire bipolar phototransistors

    Science.gov (United States)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  18. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    Science.gov (United States)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  19. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  20. Performance Enhancement of Power Transistors and Radiation effect

    International Nuclear Information System (INIS)

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  1. The International Society for Bipolar Disorders (ISBD) Task Force Report on Antidepressant Use in Bipolar Disorders

    Science.gov (United States)

    Pacchiarotti, Isabella; Bond, David J.; Baldessarini, Ross J.; Nolen, Willem A.; Grunze, Heinz; Licht, Rasmus W.; Post, Robert M.; Berk, Michael; Goodwin, Guy M.; Sachs, Gary S.; Tondo, Leonardo; Findling, Robert L.; Youngstrom, Eric A.; Tohen, Mauricio; Undurraga, Juan; González-Pinto, Ana; Goldberg, Joseph F.; Yildiz, Ayşegül; Altshuler, Lori L.; Calabrese, Joseph R.; Mitchell, Philip B.; Thase, Michael E.; Koukopoulos, Athanasios; Colom, Francesc; Frye, Mark A.; Malhi, Gin S.; Fountoulakis, Konstantinos N.; Vázquez, Gustavo; Perlis, Roy H.; Ketter, Terence A.; Cassidy, Frederick; Akiskal, Hagop; Azorin, Jean-Michel; Valentí, Marc; Mazzei, Diego Hidalgo; Lafer, Beny; Kato, Tadafumi; Mazzarini, Lorenzo; Martínez-Aran, Anabel; Parker, Gordon; Souery, Daniel; Özerdem, Ayşegül; McElroy, Susan L.; Girardi, Paolo; Bauer, Michael; Yatham, Lakshmi N.; Zarate, Carlos A.; Nierenberg, Andrew A.; Birmaher, Boris; Kanba, Shigenobu; El-Mallakh, Rif S.; Serretti, Alessandro; Rihmer, Zoltan; Young, Allan H.; Kotzalidis, Georgios D.; MacQueen, Glenda M.; Bowden, Charles L.; Ghaemi, S. Nassir; Lopez-Jaramillo, Carlos; Rybakowski, Janusz; Ha, Kyooseob; Perugi, Giulio; Kasper, Siegfried; Amsterdam, Jay D.; Hirschfeld, Robert M.; Kapczinski, Flávio; Vieta, Eduard

    2014-01-01

    Objective The risk-benefit profile of antidepressant medications in bipolar disorder is controversial. When conclusive evidence is lacking, expert consensus can guide treatment decisions. The International Society for Bipolar Disorders (ISBD) convened a task force to seek consensus recommendations on the use of antidepressants in bipolar disorders. Method An expert task force iteratively developed consensus through serial consensus-based revisions using the Delphi method. Initial survey items were based on systematic review of the literature. Subsequent surveys included new or reworded items and items that needed to be rerated. This process resulted in the final ISBD Task Force clinical recommendations on antidepressant use in bipolar disorder. Results There is striking incongruity between the wide use of and the weak evidence base for the efficacy and safety of antidepressant drugs in bipolar disorder. Few well-designed, long-term trials of prophylactic benefits have been conducted, and there is insufficient evidence for treatment benefits with antidepressants combined with mood stabilizers. A major concern is the risk for mood switch to hypomania, mania, and mixed states. Integrating the evidence and the experience of the task force members, a consensus was reached on 12 statements on the use of antidepressants in bipolar disorder. Conclusions Because of limited data, the task force could not make broad statements endorsing antidepressant use but acknowledged that individual bipolar patients may benefit from antidepressants. Regarding safety, serotonin reuptake inhibitors and bupropion may have lower rates of manic switch than tricyclic and tetracyclic antidepressants and norepinephrine-serotonin reuptake inhibitors. The frequency and severity of antidepressant-associated mood elevations appear to be greater in bipolar I than bipolar II disorder. Hence, in bipolar I patients antidepressants should be prescribed only as an adjunct to mood-stabilizing medications

  2. Genetics Home Reference: bipolar disorder

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Bipolar disorder Bipolar disorder Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Bipolar disorder is a mental health condition that causes extreme ...

  3. BIPOLAR DISORDER: A REVIEW

    OpenAIRE

    Pathan Dilnawaz N; Ziyaurrahaman A.R; Bhise K.S.

    2010-01-01

    Bipolar disorder (BD) is a severe psychiatric disorder that results in poor global functioning, reduced quality of life and high relapse rates. Research finds that many adults with bipolar disorder identify the onset of symptoms in childhood and adolescence, indicating the importance of early accurate diagnosis and treatment. Accurate diagnosis of mood disorders is critical for treatment to be effective. Distinguishing between major depression and bipolar disorders, especially the depressed p...

  4. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Mü nzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Trö ster, Gerhard; Anthopoulos, Thomas D.

    2017-01-01

    , depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors

  5. Bipolar Disorder in Women

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2013-06-01

    Full Text Available The research on gender's role in bipolar disorders has drawn significant interest recently. The presentation and course of bipolar disorder differs between women and men. Women experience depressive episodes, dysphoric mood, mixed states, rapid cycling and seasonal patterns more often than men. Comorbidity, particularly thyroid disease, migraine, obesity, and anxiety disorders laso occur more frequently in women than men. On the other hand men with bipolar disorder are also more likely than women to have problems with drug or alcohol abuse. The pregnancy and postpartum period is a time of high risk for onset and recurrence of bipolar disorder in women.

  6. The thermodynamics of bipolarity: a bifurcation model of bipolar illness and bipolar character and its psychotherapeutic applications.

    Science.gov (United States)

    Sabelli, H C; Carlson-Sabelli, L; Javaid, J I

    1990-11-01

    Two models dominate current formulations of bipolar illness: the homeostatic model implicit in Freud's psychodynamics and most neuroamine deficit/excess theories; and the oscillatory model of exaggerated biological rhythms. The homeostatic model is based on the closed systems approach of classic thermodynamics, while the oscillatory model requires the open systems approach of modern thermodynamics. Here we present a thermodynamic model of bipolarity that includes both homeostatic and oscillatory features and adds the most important feature of open systems thermodynamics: the creation of novel structures in bifurcation processes. According to the proposed model, bipolarity is the result of exaggerated biological energy that augments homeostatic, oscillatory and creative psychological processes. Only low-energy closed systems tend to rest ("point attractor") and entropic disorder. Open processes containing and exchanging energy fluctuate between opposite states ("periodic attractors"); they are characteristic of most physiological rhythms and are exaggerated in bipolar subjects. At higher energies, their strong fluctuations destroy pre-existing patterns and structures, produce turbulence ("chaotic attractors"), which sudden switches between opposite states, and create new and more complex structures. Likewise, high-energy bipolars develop high spontaneity, great fluctuations between opposite moods, internal and interpersonal chaos, and enhanced creativity (personal, artistic, professional) as well as psychopathology (personality deviations, psychotic delusions). Offered here is a theoretical explanation of the dual--creative and destructive--nature of bipolarity in terms of the new enantiodromic concept of entropy generalized by process theory. Clinically, this article offers an integrative model of bipolarity that accounts for many clinical features and contributes to a definition of the bipolar personality.

  7. Unsplit bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A [Pleasanton, CA

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  8. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  9. A spiking neuron circuit based on a carbon nanotube transistor

    International Nuclear Information System (INIS)

    Chen, C-L; Kim, K; Truong, Q; Shen, A; Li, Z; Chen, Y

    2012-01-01

    A spiking neuron circuit based on a carbon nanotube (CNT) transistor is presented in this paper. The spiking neuron circuit has a crossbar architecture in which the transistor gates are connected to its row electrodes and the transistor sources are connected to its column electrodes. An electrochemical cell is incorporated in the gate of the transistor by sandwiching a hydrogen-doped poly(ethylene glycol)methyl ether (PEG) electrolyte between the CNT channel and the top gate electrode. An input spike applied to the gate triggers a dynamic drift of the hydrogen ions in the PEG electrolyte, resulting in a post-synaptic current (PSC) through the CNT channel. Spikes input into the rows trigger PSCs through multiple CNT transistors, and PSCs cumulate in the columns and integrate into a ‘soma’ circuit to trigger output spikes based on an integrate-and-fire mechanism. The spiking neuron circuit can potentially emulate biological neuron networks and their intelligent functions. (paper)

  10. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  11. Comparative familial aggregation of bipolar disorder in patients with bipolar I and bipolar II disorders.

    Science.gov (United States)

    Parker, Gordon B; Romano, Mia; Graham, Rebecca K; Ricciardi, Tahlia

    2018-05-01

    We sought to quantify the prevalence and differential prevalence of a bipolar disorder among family members of patients with a bipolar I or II disorder. The sample comprised 1165 bipolar and 1041 unipolar patients, with the former then sub-typed as having either a bipolar I or II condition. Family history data was obtained via an online self-report tool. Prevalence of a family member having a bipolar disorder (of either sub-type) was distinctive (36.8%). Patients with a bipolar I disorder reported a slightly higher family history (41.2%) compared to patients with a bipolar II disorder (36.3%), and with both significantly higher than the rate of bipolar disorder in family members of unipolar depressed patients (18.5%). Findings support the view that bipolar disorder is heritable. The comparable rates in the two bipolar sub-types support the positioning of bipolar II disorder as a valid condition with strong genetic underpinnings.

  12. Calculation of comparators of analog-to-digital converters with account of electric regime of transistor operation and ionizing radiation effect; Raschet komparatov analogo-tsifrovykh preobrazovatelej s uchetom ehlektricheskogo rezhima raboty tranzistorov i vozdejstviya ioniziruyushchego izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Ragozin, A Yu

    1994-12-31

    Zero shift voltage in comparators of analog-to-digital converters under gamma irradiation with regard to electric mode effect on bipolar transistor degradation is calculated. It is shown that the input range of comparators such weak units are represented by comparators of bipolar and lower grades.

  13. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  14. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  15. Going ballistic: Graphene hot electron transistors

    Science.gov (United States)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  16. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  17. Properties and growth peculiarities of Si{sub 0.30}Ge{sub 0.70} stressor integrated in 14 nm fin-based p-type metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hikavyy, A., E-mail: Andriy.Hikavyy@imec.be; Rosseel, E.; Kubicek, S.; Mannaert, G.; Favia, P.; Bender, H.; Loo, R.; Horiguchi, N.

    2016-03-01

    Integration of Si{sub 0.30}Ge{sub 0.70} in the Source/Drain (S/D) areas of metal oxide semiconductor transistors built according to 14 nm technological node rules has been shown. SiGe properties and growth peculiarities are presented and elaborated. In order to preserve the fin structures during a pre-epitaxy surface preparation, the H{sub 2} bake pressure had to be increased to 19,998 Pa at 800 °C. Influence of this bake on the Si recess in the S/D areas is presented. Excellent quality of both the raised and the embedded Si{sub 0.30}Ge{sub 0.70} was demonstrated by transmission electron microscopy inspections. Energy-dispersive X-ray spectroscopy measurement showed two stages of SiGe growth for the embedded case: first with a lower Ge content at the beginning of the deposition until the (111) facets are formed, and second with a higher Ge content which is governed by the growth on (111) planes. Nano-beam diffraction analysis showed that SiGe grown in the S/D areas of p-type metal-oxide-semiconductor field-effect transistor is fully elastically relaxed in the direction across the fin and partially strained along the fin. Finally, a strain accumulation effect in the chain of transistors has been observed. - Highlights: • Si{sub 0.30}Ge{sub 0.70} stressor has been implemented in the 14 nm technology node CMOS flow. • Embedded and raised variants have been investigated. • High Si{sub 0.30}Ge{sub 0.70} quality was confirmed. • Si{sub 0.30}Ge{sub 0.70} layer is elastically relaxed across the fin direction. • Partial stress presence and stress accumulation effect were observed.

  18. Outlook and emerging semiconducting materials for ambipolar transistors.

    Science.gov (United States)

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanofluidic Transistor Circuits

    Science.gov (United States)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  20. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  1. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  2. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  3. Report on the results of research and development under a consignment from NEDO on deca-nano quantum integrating transistor substrate technologies; 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Deca-nano ryoshi shusekika soshi kiban gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Researches have been conducted on deca-nano quantum integrating transistor substrate technologies, and developments were made on a three-dimensional device simulator which can be used in deca-nano domains, and a circuit simulator to have quantifying function transistors coexist with silicon semiconductor integrated circuits. The researches were intended to develop a simulator capable of analyzing properties of very small silicon and compound semiconductor devices in deca-nano domains. The researches discussed the applicability of conventional simulators, calculated quantum levels in a three-dimensional hetero structure, and resulted in development of an electron wave propagation simulator in optional two-dimensional shapes, a quantum Monte Carlo simulator, and a three-dimensional semiconductor device simulator with quantum correction. On the other hand, in order to estimate characteristics of a hybrid circuit in which single electron transistors coexist with conventional transistors such as CMOS transistors, a single electron hybrid circuit simulator was developed. The development indicated that a CMOS-SET fused memory is promising as a future LSI memory. 22 refs., 116 figs., 3 tabs.

  4. Bipolar Disorder in Children

    Science.gov (United States)

    2014-01-01

    Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005). Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered. PMID:24800202

  5. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    Science.gov (United States)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor

  6. About influence of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in heterobipolar transistors

    Directory of Open Access Journals (Sweden)

    E Pankratov

    2016-10-01

    Full Text Available In this paper we introduce an approach to manufacture a heterobipolar transistors. Framework this approach we consider doping by diffusion or by ion implantation of required parts of a heterostructure with special configuration and optimization of annealing of dopant and/or radiation defects. In this case one have possibility to manufacture bipolar transistors, which include into itself p-n-junctions with higher sharpness and smaller dimensions. We also consider influence of presents of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in the considered transistors. An approach to decrease value of mismatch-induced stress has been considered.

  7. Fabrication of a Silicon MOSFET Device with Bipolar Transistor Source,

    Science.gov (United States)

    1980-07-01

    NEGATIVE PHOTORESIST PROCEDURE ’•J n •:• fi >. 3 u i fc- Process Coat wafer Air dry Pre bake the resist coating Expose Develop Method Time...Orange (rather broad for orange) 0.82 Salmon 0.85 Dull, light red-violet 0.86 Violet £ 0.87 Blue-violet 0.89 Blue ::’ 0.92 V Blue-green •I 0.95

  8. Development of insulated gate bipolar transistor-based power ...

    Indian Academy of Sciences (India)

    [5] S V Nakhe et al, National Laser Symposium, 81–82 (2001). [6] E G Cook et al, 8th IEEE Pulsed Power Conference, June 1991. [7] L Druckmann et al, IEEE Power Modulator Symposium, 213–216 (1992). [8] Hybrid gate drivers and gate drive power supplies, M57962L datasheet from Mitsubishi. Electric Corpn. Pramana ...

  9. Heuristic for Learning Common Emitter Amplification with Bipolar Transistors

    Science.gov (United States)

    Staffas, Kjell

    2017-01-01

    Mathematics in engineering education causes many thresholds in the courses because of the demand of abstract conceptualisation. Electronics depend heavily on more or less complex mathematics. Therefore the concepts of analogue electronics are hard to learn since a great deal of students struggle with the calculations and procedures needed. A…

  10. What is Bipolar Disorder?

    Science.gov (United States)

    ... down” Have trouble sleeping Think about death or suicide Can someone have bipolar disorder along with other problems? Yes. Sometimes people having very strong mood episodes may have psychotic symptoms. Psychosis affects thoughts ...

  11. Electroluminescence from single-wall carbon nanotube network transistors.

    Science.gov (United States)

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  12. Electron irradiation of power transistors

    International Nuclear Information System (INIS)

    Hower, P.L.; Fiedor, R.J.

    1982-01-01

    A method for reducing storage time and gain parameters in a semiconductor transistor includes the step of subjecting the transistor to electron irradiation of a dosage determined from measurements of the parameters of a test batch of transistors. Reduction of carrier lifetime by proton bombardment and gold doping is mentioned as an alternative to electron irradiation. (author)

  13. 75 GHz InP DHBT power amplifier based on two-stacked transistors

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Midili, Virginio; Johansen, Tom Keinicke

    2017-01-01

    In this paper we present the design and measurements of a two-stage 75-GHz InP Double Heterojunction Bipolar Transistor (DHBT) power amplifier (PA). An optimized two-stacked transistor power cell has been designed, which represents the building block in the power stage as well as in the driver st......, the power amplifier exhibits a small signal gain of G = 12.6 dB, output power at 1-dB compression of Pout, 1dB = 18.6 dBm and a saturated output power of Psat > 21.4 dBm....

  14. Charge collection mechanisms in MOS/SOI transistors irradiated by energetic heavy ions

    International Nuclear Information System (INIS)

    Musseau, O.; Leray, J.L.; Ferlet, V.; Umbert, A.; Coic, Y.M.; Hesto, P.

    1991-01-01

    We have investigated with both experimental and numerical methods (Monte Carlo and drift-diffusion models) various charge collection mechanisms in NMOS/SOI transistors irradiated by single energetic heavy ions. Our physical interpretations of data emphasize the influence of various parasitic structures of the device. Two charge collection mechanisms are detailed: substrate funneling in buried MOS capacitor and latching of the parasitic bipolar transistor. Based on carrier transport and charge collection, the sensitivity of future scaled down CMOS/SOI technologies is finally discussed

  15. Bipolar Affective Disorder and Migraine

    Directory of Open Access Journals (Sweden)

    Birk Engmann

    2012-01-01

    Full Text Available This paper consists of a case history and an overview of the relationship, aetiology, and treatment of comorbid bipolar disorder migraine patients. A MEDLINE literature search was used. Terms for the search were bipolar disorder bipolar depression, mania, migraine, mood stabilizer. Bipolar disorder and migraine cooccur at a relatively high rate. Bipolar II patients seem to have a higher risk of comorbid migraine than bipolar I patients have. The literature on the common roots of migraine and bipolar disorder, including both genetic and neuropathological approaches, is broadly discussed. Moreover, bipolar disorder and migraine are often combined with a variety of other affective disorders, and, furthermore, behavioural factors also play a role in the origin and course of the diseases. Approach to treatment options is also difficult. Several papers point out possible remedies, for example, valproate, topiramate, which acts on both diseases, but no first-choice treatments have been agreed upon yet.

  16. Depression and Bipolar Support Alliance

    Science.gov (United States)

    Depression and Bipolar Support Alliance Crisis Hotline Information Coping with a Crisis Suicide Prevention Information Psychiatric Hospitalization ... sign-up Education info, training, events Mood Disorders Depression Bipolar Disorder Anxiety Screening Center Co-occurring Illnesses/ ...

  17. InP-DHBT-on-BiCMOS technology with fT/fmax of 400/350 GHz for heterogeneous integrated millimeter-wave sources

    DEFF Research Database (Denmark)

    Kraemer, Tomas; Ostermay, Ina; Jensen, Thomas

    2013-01-01

    -100 GHz. The 0.8 × 5 μm2 InP DHBTs show fT/fmax of 400/350 GHz with an output power of more than 26 mW at 96 GHz. These are record values for a heterogeneously integrated transistor on silicon. As a circuit example, a 164-GHz signal source is presented. It features a voltage-controlled oscillator in Bi......This paper presents a novel InP-SiGe BiCMOS technology using wafer-scale heterogeneous integration. The vertical stacking of the InP double heterojunction bipolar transistor (DHBT) circuitry directly on top of the BiCMOS wafer enables ultra-broadband interconnects with

  18. Bipolar Disorder and Cancer

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2012-06-01

    Full Text Available Prevalence studies and studies on causation relations have shown that the relation between psychiatric disorders and chronic physical diseases is neglected. For heterogeneous diseases an increasing number of susceptibility variants are being defined. Alzheimer disease, bipolar disorder, breast and prostate cancer, coronary artery disease, Chron's disease, systemic lupus eritematosus, type 1 and type 2 diabetes mellitus are mentioned together with epigenetic concept. In acrocentric zone of chromosome 13, breast cancer, retinoblastoma, chronic Iymphocytic leukemia genes with B cells, dopamin loci of bipolar disorder are found together. Among bipolar and healthy individuals, an increase risk of breast cancer in female cases has been resported. On the other hand, psychosocial factors that affect stress and response to stress itself may be important variables in prognosis and progression of different cancer types. During the course of many cancer types –especially brain tumors- and during treatment of chemotherapeutic agents, bipolar symptomatology may appear. In this article, it is reviewed with relevant literature that whether an etiological relation between bipolar disorder and cancer exist and how both diseases affect each other's course and treatment.

  19. Modular Micromachined Si Heat Removal (MOMS Heat Removal): Electronic Integration and System Test

    National Research Council Canada - National Science Library

    Brown, Elliott

    2003-01-01

    ...: (1) insulated-gated bipolar transistors (IGBTs), and (2) laterally-diffused (LD) MOSFETs. Heat pipes were found to provide little or no advantage over conventional copper-based heat spreaders in both device applications...

  20. Accelerating the life of transistors

    International Nuclear Information System (INIS)

    Qi Haochun; Lü Changzhi; Zhang Xiaoling; Xie Xuesong

    2013-01-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 10 4 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 10 3 . Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation. (semiconductor devices)

  1. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  2. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  4. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  5. Types of Bipolar Disorder

    Science.gov (United States)

    ... Events Home Science News Meetings and Events Multimedia Social Media Press Resources Newsletters NIMH News Feeds About Us ... has a lot of money, or has special powers. Someone having psychotic symptoms ... Substance Abuse: People with bipolar disorder may also misuse alcohol ...

  6. El trastorno bipolar

    OpenAIRE

    Freaza Rodríguez, Paula

    2014-01-01

    Se exponen los aspectos más relevantes del trastorno bipolar, entender qué significa este concepto, conocer los tipos que existen, qué otros trastornos suelen aparecer al mismo tiempo y qué tratamientos son los que dan mejores resultados

  7. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  8. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  9. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  10. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  11. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  12. Affective Disruption from Social Rhythm and Behavioral Approach System (BAS) Sensitivities: A Test of the Integration of the Social Zeitgeber and BAS Theories of Bipolar Disorder.

    Science.gov (United States)

    Boland, Elaine M; Stange, Jonathan P; Labelle, Denise R; Shapero, Benjamin G; Weiss, Rachel B; Abramson, Lyn Y; Alloy, Lauren B

    2016-05-01

    The Behavioral Approach System (BAS)/Reward Hypersensitivity Theory and the Social Zeitgeber Theory are two biopsychosocial theories of bipolar spectrum disorders (BSD) that may work together to explain affective dysregulation. The present study examined whether BAS sensitivity is associated with affective symptoms via a) increased social rhythm disruption in response to BAS-relevant life events, or b) greater exposure to BAS events leading to social rhythm disruption and subsequent symptoms. Results indicated that high BAS individuals were more likely to experience social rhythm disruption following BAS-relevant events. Social rhythm disruption mediated the association between BAS-relevant events and symptoms (hypothesis a). High BAS individuals experienced significantly more BAS-relevant events, which predicted greater social rhythm disruption, which predicted greater levels of affective symptoms (hypothesis b). Individuals at risk for BSD may be sensitive to BAS-relevant stimuli, experience more BAS-relevant events, and experience affective dysregulation due to the interplay of the BAS and circadian rhythms.

  13. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  14. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  15. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  16. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  17. E-Learning System for Design and Construction of Amplifier Using Transistors

    Science.gov (United States)

    Takemura, Atsushi

    2014-01-01

    This paper proposes a novel e-Learning system for the comprehensive understanding of electronic circuits with transistors. The proposed e-Learning system allows users to learn a wide range of topics, encompassing circuit theories, design, construction, and measurement. Given the fact that the amplifiers with transistors are an integral part of…

  18. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    Science.gov (United States)

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  19. Ultra-high gain diffusion-driven organic transistor

    Science.gov (United States)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  20. Implementation of Self-Bias Transistor on Voting Logic

    International Nuclear Information System (INIS)

    Harzawardi Hasim; Syirrazie Che Soh

    2014-01-01

    Study in the eld of digital integrated circuit (IC) already become common to the modern industrial. Day by day we have been introduced with new gadget that was developed based on transistor. This paper will study the implementation of self-bias transistor on voting logic. The self-bias transistor will connected both on pull-up network and pull-down network. On previous research, study on comparison of total number of transistors, time propagation delay, and frequency between NAND and NOR gate of voting logic. It's show, with the same number of transistor, NAND gate achieve high frequency and low time propagation delay compare to NOR gate. We extend this analysis by comparing the total number of transistor, time propagation delay, frequency and power dissipation between common NAND gate with self-bias NAND gate. Extensive LTSpice simulations were performed using IBM 90 nm CMOS(Complementary Metal Oxide Semiconductor) process technology. The result show self-bias voting NAND gate consumes 54 % less power dissipation, 43% slow frequency and 43 % high time propagation delay compare to common voting NAND gate. (author)

  1. Impact of doped boron concentration in emitter on high- and low-dose-rate damage in lateral PNP transistors

    International Nuclear Information System (INIS)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    The characteristics of radiation damage under a high or low dose rate in lateral PNP transistors with a heavily or lightly doped emitter is investigated. Experimental results show that as the total dose increases, the base current of transistors would increase and the current gain decreases. Furthermore, more degradation has been found in lightly-doped PNP transistors, and an abnormal effect is observed in heavily doped transistors. The role of radiation defects, especially the double effects of oxide trapped charge, is discussed in heavily or lightly doped transistors. Finally, through comparison between the high- and low-dose-rate response of the collector current in heavily doped lateral PNP transistors, the abnormal effect can be attributed to the annealing of the oxide trapped charge. The response of the collector current, in heavily doped PNP transistors under high- and low-dose-rate irradiation is described in detail. (semiconductor integrated circuits)

  2. Life expectancy in bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2015-01-01

    OBJECTIVE: Life expectancy in patients with bipolar disorder has been reported to be decreased by 11 to 20 years. These calculations are based on data for individuals at the age of 15 years. However, this may be misleading for patients with bipolar disorder in general as most patients have a later...... onset of illness. The aim of the present study was to calculate the remaining life expectancy for patients of different ages with a diagnosis of bipolar disorder. METHODS: Using nationwide registers of all inpatient and outpatient contacts to all psychiatric hospitals in Denmark from 1970 to 2012 we...... remaining life expectancy in bipolar disorder and that of the general population decreased with age, indicating that patients with bipolar disorder start losing life-years during early and mid-adulthood. CONCLUSIONS: Life expectancy in bipolar disorder is decreased substantially, but less so than previously...

  3. Atypical transistor-based chaotic oscillators: Design, realization, and diversity

    Science.gov (United States)

    Minati, Ludovico; Frasca, Mattia; OświÈ©cimka, Paweł; Faes, Luca; DroŻdŻ, Stanisław

    2017-07-01

    In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar junction transistors and a limited number of passive components can be obtained via random search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after manual adjustment of a variable resistor placed in series with the supply voltage source. Following this approach, 49 unique circuits generating chaotic signals when physically realized were designed, representing the largest collection of circuits of this kind to date. These circuits are atypical as they do not trivially map onto known topologies or variations thereof. They feature diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which generates a range of attractors depending on the parameter values. We also found a circuit yielding an irregular quantized spike-train resembling some aspects of neural discharge and another one generating a double-scroll attractor, which represent the smallest known transistor-based embodiments of these behaviors. Through three representative examples, we additionally show that diffusive coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as lag synchronization with directed information transfer and generalized synchronization. The replicability and reproducibility of the experimental findings are good.

  4. Depressive and bipolar disorders

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hansen, Hanne Vibe; Demyttenaere, Koen

    2005-01-01

    of the patients (40-80%) had erroneous views as to the effect of antidepressants. Older patients (over 40 years of age) consistently had a more negative view of the doctor-patient relationship, more erroneous ideas concerning the effect of antidepressants and a more negative view of antidepressants in general....... Moreover, their partners agreed on these negative views. Women had a more negative view of the doctor-patient relationship than men, and patients with a depressive disorder had a more negative view of antidepressants than patients with bipolar disorder. The number of psychiatric hospitalizations......BACKGROUND: There is increasing evidence that attitudes and beliefs are important in predicting adherence to treatment and medication in depressive and bipolar disorders. However, these attitudes have received little study in patients whose disorders were sufficiently severe to require...

  5. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  6. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    International Nuclear Information System (INIS)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-01-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs

  7. Big data for bipolar disorder.

    Science.gov (United States)

    Monteith, Scott; Glenn, Tasha; Geddes, John; Whybrow, Peter C; Bauer, Michael

    2016-12-01

    The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, population health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many technical challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active participation of psychiatrists is needed throughout the analytical process.

  8. [Creativity and bipolar disorder].

    Science.gov (United States)

    Maçkalı, Zeynep; Gülöksüz, Sinan; Oral, Timuçin

    2014-01-01

    The relationship between creativity and bipolar disorder has been an intriguing topic since ancient times. Early studies focused on describing characteristics of creative people. From the last quarter of the twentieth century, researchers began to focus on the relationship between mood disorders and creativity. Initially, the studies were based on biographical texts and the obtained results indicated a relationship between these two concepts. The limitations of the retrospective studies led the researchers to develop systematic investigations into this area. The systematic studies that have focused on artistic creativity have examined both the prevalence of mood disorders and the creative process. In addition, a group of researchers addressed the relationship in terms of affective temperaments. Through the end of the 90's, the scope of creativity was widened and the notion of everyday creativity was proposed. The emergence of this notion led researchers to investigate the associations of the creative process in ordinary (non-artist) individuals. In this review, the descriptions of creativity and creative process are mentioned. Also, the creative process is addressed with regards to bipolar disorder. Then, the relationship between creativity and bipolar disorder are evaluated in terms of aforementioned studies (biographical, systematic, psychobiographical, affective temperaments). In addition, a new model, the "Shared Vulnerability Model" which was developed to explain the relationship between creativity and psychopathology is introduced. Finally, the methodological limitations and the suggestions for resolving these limitations are included.

  9. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Direct coupled amplifiers using field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-03-15

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  11. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Peter, I.; Frank, G.

    1977-01-01

    The performance of MOS transistors as gamma detectors has been tested. The dosimeter sensitivity has proved to be independent on the doses ranging from 10 3 to 10 6 R, and gamma energy of 137 Cs, 60 Co - sources and 5 - 18 MeV electrons. Fading of the space charge trapped by the SiO 2 layer of the transistor has appeared to be neglegible at room temperature after 400 hrs. The isochronous annealing in the temperature range of 40-260 deg C had a more substantial effect on the space charge of the transistor irradiated with 18 MeV electrons than on the 137 Cs gamma-irradiated transistors. This proved a repeated use of γ-dosemeters. MOS transistors are concluded to be promising for gamma dosimetry [ru

  12. Bipolar Disorder in Pregnancy: A Review of Pregnancy Outcomes.

    Science.gov (United States)

    Scrandis, Debra A

    2017-11-01

    Women with bipolar disorder may benefit from continuation of their medications during pregnancy, but there may be risks to the fetus associated with some of these medications. This article examines the evidence relating to the effect of bipolar disorder and pharmacologic treatments for bipolar disorder on pregnancy outcomes. MEDLINE, CINAHL, ProQuest Dissertation & Theses, and the Cochrane Database of Systematic Reviews were searched for English-language studies published between 2000 and 2017, excluding case reports and integrative reviews. Twenty articles that met inclusion criteria were included in this review. Women with bipolar disorder have a higher risk for pregnancy complications and congenital abnormalities than do women without bipolar disorder. In addition, illness relapse can occur if psychotropic medications are discontinued. There are limited data to recommend discontinuing lithium, lamotrigine, or carbamazepine during pregnancy. Valproic acid is not recommended during pregnancy due to increased odds of neural tube defects associated with its use. Atypical antipsychotics are used more frequently during pregnancy, with mixed evidence regarding an association between these agents and congenital malformations or preterm birth. The knowledge of benefits and risks of bipolar disorder and its treatment can help women and health care providers make individualized decisions. Prenatal care providers can discuss the evidence about safety of medications used to treat bipolar disorder with women in collaboration with their mental health care providers. In addition, women being treated for bipolar disorder require close monitoring for depressive and manic/hypomanic episodes that impact pregnancy outcomes. © 2017 by the American College of Nurse-Midwives.

  13. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  14. Scientific attitudes towards bipolar disorders

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Biglu

    2014-02-01

    Full Text Available Introduction: Bipolar disorder is a psychiatric condition that is also called manic-depressive disease. It causes unusual changes in mood, energy, activity levels, and the ability to carry out day-to-day tasks. In the present study, 3 sets of data were considered and analyzed: first, all papers categorized under Bipolar Disorders in Science Citation Index Expanded (SCI-E database through 2001-2011; second, papers published by the international journal of Bipolar Disorders indexed in SCI-E during a period of 11 years; and third, all papers distributed by the international journal of Bipolar Disorders indexed in MEDLINE during the period of study. Methods: The SCI-E database was used to extract all papers indexed with the topic of Bipolar Disorders as well as all papers published by The International Journal of Bipolar Disorders. Extraction of data from MEDLINE was restricted to the journals name from setting menu. The Science of Science Tool was used to map the co-authorship network of papers published by The International Journal of Bipolar Disorders through 2009-2011. Results: Analysis of data showed that the majority of publications in the subject area of bipolar disorders indexed in SCI-E were published by The International Journal of Bipolar Disorders. Although journal articles consisted of 59% of the total publication type in SCI-E, 65% of publications distributed by The Journal of Bipolar Disorders were in the form of meetingabstracts. Journal articles consisted of only 23% of the total publications. USA was the leading country regarding sharing data in the field of bipolar disorders followed by England, Canada, and Germany. Conclusion: The editorial policy of The International Journal of Bipolar Disorders has been focused on new themes and new ways of researching in the subject area of bipolar disorder. Regarding the selection of papers for indexing, the SCI-E database selects data more comprehensively than MEDLINE. The number of papers

  15. Physical limits of silicon transistors and circuits

    International Nuclear Information System (INIS)

    Keyes, Robert W

    2005-01-01

    A discussion on transistors and electronic computing including some history introduces semiconductor devices and the motivation for miniaturization of transistors. The changing physics of field-effect transistors and ways to mitigate the deterioration in performance caused by the changes follows. The limits of transistors are tied to the requirements of the chips that carry them and the difficulties of fabricating very small structures. Some concluding remarks about transistors and limits are presented

  16. Epidemiology in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Caner Mutlu

    2015-12-01

    Full Text Available Childhood and adolescent bipolar disorder diagnosis has been increasing recently. Since studies evaluating attempted suicide rates in children and adolescents have shown bipolarity to be a significant risk factor, diagnosis and treatment of bipolarity has become a very important issue. Since there is a lack of specific diagnostic criteria for especially preadolescent samples and evaluations are made mostly symptomatically, suspicions about false true diagnosis and increased prevalence rates have emerged. This situation leads to controversial data about the prevalence rates of bipolar disorder in children and adolescents. The aim of this article is to review the prevalence of childhood and adolescent bipolar disorder in community, inpatient and outpatient based samples in literature.

  17. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-01-01

    This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving

  18. Area and energy efficient high-performance ZnO wavy channel thin-film transistor

    KAUST Repository

    Hanna, Amir; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Hussain, Aftab M.; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2014-01-01

    of the transistor width in the direction perpendicular to the substrate through integrating continuous fin features on the underlying substrate. This architecture enables expanding the TFT width without consuming any additional chip area, thus enabling increased

  19. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  20. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  1. Early Intervention in Bipolar Disorder.

    Science.gov (United States)

    Vieta, Eduard; Salagre, Estela; Grande, Iria; Carvalho, André F; Fernandes, Brisa S; Berk, Michael; Birmaher, Boris; Tohen, Mauricio; Suppes, Trisha

    2018-05-01

    Bipolar disorder is a recurrent disorder that affects more than 1% of the world population and usually has its onset during youth. Its chronic course is associated with high rates of morbidity and mortality, making bipolar disorder one of the main causes of disability among young and working-age people. The implementation of early intervention strategies may help to change the outcome of the illness and avert potentially irreversible harm to patients with bipolar disorder, as early phases may be more responsive to treatment and may need less aggressive therapies. Early intervention in bipolar disorder is gaining momentum. Current evidence emerging from longitudinal studies indicates that parental early-onset bipolar disorder is the most consistent risk factor for bipolar disorder. Longitudinal studies also indicate that a full-blown manic episode is often preceded by a variety of prodromal symptoms, particularly subsyndromal manic symptoms, therefore supporting the existence of an at-risk state in bipolar disorder that could be targeted through early intervention. There are also identifiable risk factors that influence the course of bipolar disorder, some of them potentially modifiable. Valid biomarkers or diagnosis tools to help clinicians identify individuals at high risk of conversion to bipolar disorder are still lacking, although there are some promising early results. Pending more solid evidence on the best treatment strategy in early phases of bipolar disorder, physicians should carefully weigh the risks and benefits of each intervention. Further studies will provide the evidence needed to finish shaping the concept of early intervention. AJP AT 175 Remembering Our Past As We Envision Our Future April 1925: Interpretations of Manic-Depressive Phases Earl Bond and G.E. Partridge reviewed a number of patients with manic-depressive illness in search of a unifying endo-psychic conflict. They concluded that understanding either phase of illness was "elusive" and

  2. Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs

    OpenAIRE

    Muhammad, Akram; Musavarah, Sarwar

    2016-01-01

    In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs.

  3. Advancement in organic nanofiber based transistors

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    and characterization of OLETs using the organic semiconductors para-hexaphenylene (p6P), 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP) and 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2). These molecules can self-assemble forming molecular crystalline nanofibers. Organic nanofibers can form the basis for light......The focus of this project is to study the light emission from nanofiber based organic light-emitting transistors (OLETs) with the overall aim of developing efficient, nanoscale light sources with different colors integrated on-chip. The research performed here regards the fabrication...

  4. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Science.gov (United States)

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  5. Effect of 1MeV electron beam on transistors and circuits

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1998-02-01

    It has been known that semiconductor devices operating in a radiation environment exhibited significant alterations of their electrical responses. Since an electron beam bombardment produces lattice damage in Si and charged defects in SiO 2 , several electrical parameters of transistors exhibit significant changes. Those parameters are the current gain of BJT (Bipolar Junction Transistor) and the threshold voltage of MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The degradation of transistors brings about that of circuits. This paper presents the results of experiments and simulations performed to study the effects of 1MeV electron beam irradiation on selected silicon transistors and circuits. For BJTs, the current gains of npn (2N3904) and pnp (2N3906) linearly decreased as the irradiation dose increased, and from this result, the damage constants, Ks were obtained as 13.65 for 2N3904 and 22.52 for 2N3906 in MGy, indicating a more stable operation in the electron radiation environment for pnp than that for npn. The decrease of current gain was due to that of minority-carrier lifetime in the base region. For MOSFETs (CD4007s), the threshold voltages of NMOS and PMOS shifted to the lower values, which was resulted from the accumulation of charge in SiO 2 . The charges could be categorized into fixed oxide charge and interfacial trap charge. From experimental results, the amounts of the induced charges could be quantitatively estimated. These degradations of transistors brought about the decrease in the voltage gain of CE (Common Emitter) amplifier and the shifts in the inverting voltage of inverter. Additionally, PSpice simulations of these circuits were carried out by modeling of irradiated transistors. The comparison of simulation with experiment showed the relatively good agreement of simulation for the degradation of circuits after irradiation

  6. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    Science.gov (United States)

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  7. Inexpensive Measuring System for the Characterization of Organic Transistors

    Directory of Open Access Journals (Sweden)

    Clara Pérez-Fuster

    2018-01-01

    Full Text Available A measuring module has been specifically designed for the electrical characterization of organic semiconductor devices such as organic field effect transistors (OFETs and organic electrochemical transistors (OECTs according to the IEEE 1620-2008 standard. This device has been tested with OFETs based on 6,13-bis(triisopropylsilylethinylpentacene (TIPS-pentacene. The measuring system has been constructed using a NI-PXIe-1073 chassis with integrated controller and two NI-PXI-4132 programmable high-precision source measure units (SMUs that offer a four-quadrant ± 100 V output, with resolution down to 10 pA. LabVIEW™ has been used to develop the appropriate program. Most of the main OFET parameters included in the IEEE 1620 standard can be measured by means of this device. Although nowadays expensive devices for the characterization of Si-based transistors are available, devices for the characterization of organic transistors are not yet widespread in the market. Fabrication of a specific and flexible module that can be used to characterize this type of transistors would provide a powerful tool to researchers.

  8. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  9. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi

    2017-01-01

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer

  10. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  11. Hypersexuality and couple relationships in bipolar disorder: A review.

    Science.gov (United States)

    Kopeykina, Irina; Kim, Hae-Joon; Khatun, Tasnia; Boland, Jennifer; Haeri, Sophia; Cohen, Lisa J; Galynker, Igor I

    2016-05-01

    Although change in sexual behavior is recognized as an integral part of bipolar disorder, most of the relevant literature on sexual issues in patients with this illness concerns medication side effects and does not differentiate bipolar disorder from other serious mental disorders. Surprisingly, little has been published on mania-induced hypersexuality and the effects of mood cycling on couple relationships. In this review, we examine the extant literature on both of these subjects and propose a framework for future research. A search of PsycINFO and PubMed was conducted using keywords pertaining to bipolar disorder, hypersexuality and couple relationships. A total of 27 articles were selected for review. Despite lack of uniformity in diagnosis of bipolar disorder and no formal definition of hypersexuality, the literature points to an increased incidence of risky sexual behaviors in bipolar patients during manic episodes compared to patients with other psychiatric diagnoses. Further, it appears that bipolar patients are more similar to healthy controls than to other psychiatric patients when it comes to establishing and maintaining couple relationships. Nonetheless, the studies that examined sexuality in couples with one bipolar partner found decreased levels of sexual satisfaction associated with the diagnosis, varying levels of sexual interest across polarities, increased incidence of sexual dysfunction during depressive episodes, and disparate levels of satisfaction in general between patients and their partners. Due to changes in diagnostic criteria over time, there is a lack of uniformity in the definition of bipolar disorder across studies. Hypersexuality is not systematically defined and therefore the construct was not consistent across studies. Some of the older articles date back more than 30 years, making them subject to the biases of sexual and gender norms that have since become outdated. Finally, the heterogeneity of the samples, which include patients

  12. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Frank, H.; Petr, I.

    1977-01-01

    The structure of MOS transistors is described and their characteristics given. The experiments performed and data in the literature show the following dosimetric properties of MOS transistors: while for low gamma doses the transistor response to exposure is linear, it shows saturation for higher doses (exceeding 10 3 Gy in tissue). The response is independent of the energy of radiation and of the dose rate (within 10 -2 to 10 5 Gy/s). The spontaneous reduction with time of the spatial charge captured by the oxide layer (fading) is small and acceptable from the point of view of dosimetry. Curves are given of isochronous annealing of the transistors following irradiation with 137 Cs and 18 MeV electrons for different voltages during irradiation. The curves show that in MOS transistors irradiated with high-energy electrons the effect of annealing is less than in transistors irradiated with 137 Cs. In view of the requirement of using higher temperatures (approx. 400 degC) for the complete ''erasing'' of the captured charge, unsealed systems must be used for dosimetric purposes. The effect was also studied of neutron radiation, proton radiation and electron radiation on the MOS transistor structure. For MOS transistor irradiation with 14 MeV neutrons from a neutron generator the response was 4% of that for gamma radiation at the same dose equivalent. The effect of proton radiation was studied as related to the changes in MOS transistor structure during space flights. The response curve shapes are similar to those of gamma radiation curves. The effect of electron radiation on the MOS structure was studied by many authors. The experiments show that for each thickness of the SiO 2 layer an electron energy exists at which the size of the charge captured in SiO 2 is the greatest. All data show that MOS transistors are promising for radiation dosimetry. The main advantage of MOS transistors as gamma dosemeters is the ease and speed of evaluation, low sensitivity to neutron

  13. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The dual role of multiple-transistor charge sharing collection in single-event transients

    International Nuclear Information System (INIS)

    Guo Yang; Chen Jian-Jun; He Yi-Bai; Liang Bin; Liu Bi-Wei

    2013-01-01

    As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal—oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies. (condensed matter: structural, mechanical, and thermal properties)

  15. Treating patients with bipolar disorder and substance dependence: lessons learned.

    Science.gov (United States)

    Weiss, Roger D

    2004-12-01

    Although bipolar disorder is the Axis I psychiatric disorder associated with the highest rate of co-occurring substance use disorders, little research has focused on treatments specifically designed for these patients. The author and his colleagues have developed and studied Integrated Group Therapy (IGT) for this population. This paper describes common themes that have emerged in carrying out IGT for patients with bipolar disorder and substance dependence. These include the strong emphasis on depression, as opposed to mania; the predominance of hopelessness; specific patterns of medication noncompliance; and the implications of patients' labeling their substance use as self-medication. Therapeutic aspects involved in addressing these themes are discussed.

  16. Asenapine for bipolar disorder

    Directory of Open Access Journals (Sweden)

    Scheidemantel T

    2015-12-01

    Full Text Available Thomas Scheidemantel,1 Irina Korobkova,2 Soham Rej,3,4 Martha Sajatovic1,2 1University Hospitals Case Medical Center, 2Case Western Reserve University School of Medicine, Cleveland, OH, USA; 3Department of Psychiatry, University of Toronto, Toronto, ON, 4Geri PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada Abstract: Asenapine (Saphris® is an atypical antipsychotic drug which has been approved by the US Food and Drug Administration for the treatment of schizophrenia in adults, as well as the treatment of acute manic or mixed episodes of bipolar I in both adult and pediatric populations. Asenapine is a tetracyclic drug with antidopaminergic and antiserotonergic activity with a unique sublingual route of administration. In this review, we examine and summarize the available literature on the safety, efficacy, and tolerability of asenapine in the treatment of bipolar disorder (BD. Data from randomized, double-blind trials comparing asenapine to placebo or olanzapine in the treatment of acute manic or mixed episodes showed asenapine to be an effective monotherapy treatment in clinical settings; asenapine outperformed placebo and showed noninferior performance to olanzapine based on improvement in the Young Mania Rating Scale scores. There are limited data available on the use of asenapine in the treatment of depressive symptoms of BD, or in the maintenance phase of BD. The available data are inconclusive, suggesting the need for more robust data from prospective trials in these clinical domains. The most commonly reported adverse effect associated with use of asenapine is somnolence. However, the somnolence associated with asenapine use did not cause significant rates of discontinuation. While asenapine was associated with weight gain when compared to placebo, it appeared to be modest when compared to other atypical antipsychotics, and its propensity to cause increases in hemoglobin A1c or serum lipid levels appeared to be

  17. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    Science.gov (United States)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  18. Bipolar explosion models for hypernovae

    International Nuclear Information System (INIS)

    Maeda, Keiichi; Nomoto, Ken'ichi

    2003-01-01

    Bipolar explosion models for hypernovae (very energetic supernovae) are presented. These models provide a favorable situation to explain some unexpected features in observations of hypernovae, e.g., high velocity matter dominated by Fe and low velocity matter dominated by O. The overall abundance of these models gives a good fit, at least qualitatively, to abundances in extremely metal-poor stars. We suggest hypernovae be driven by bipolar jets and contribute significantly to the early Galactic chemical evolution

  19. Functional remediation for bipolar disorder

    OpenAIRE

    Martínez-Arán, Anabel, 1971-; Torrent, C.; Solé, B.; Bonnín, C.M.; Rosa, A.R.; Sánchez-Moreno, J.; Vieta i Pascual, Eduard, 1963-

    2014-01-01

    Neurocognitive impairment constitutes a core feature of bipolar illness. The main domains affected are verbal memory, attention, and executive functions. Deficits in these areas as well as difficulties to get functional remission seem to be increased associated with illness progression. Several studies have found a strong relationship between neurocognitive impairment and low functioning in bipolar disorder, as previously reported in other illnesses such as schizophrenia. Cognitive remediatio...

  20. Psychotherapy for Bipolar Disorder in Adults: A Review of the Evidence

    Science.gov (United States)

    Swartz, Holly A.; Swanson, Joshua

    2015-01-01

    Although pharmacotherapy is the mainstay of treatment for bipolar disorder, medication offers only partial relief for patients. Treatment with pharmacologic interventions alone is associated with disappointingly low rates of remission, high rates of recurrence, residual symptoms, and psychosocial impairment. Bipolar-specific therapy is increasingly recommended as an essential component of illness management. This review summarizes the available data on psychotherapy for adults with bipolar disorder. We conducted a search of the literature for outcome studies published between 1995 and 2013 and identified 35 reports of 28 randomized controlled trials testing individual or group psychosocial interventions for adults with bipolar disorder. These reports include systematic trials investigating the efficacy and effectiveness of individual psychoeducation, group psychoeducation, individual cognitive-behavioral therapy, group cognitive-behavioral therapy, family therapy, interpersonal and social rhythm therapy, and integrated care management. The evidence demonstrates that bipolar disorder-specific psychotherapies, when added to medication for the treatment of bipolar disorder, consistently show advantages over medication alone on measures of symptom burden and risk of relapse. Whether delivered in a group or individual format, those who receive bipolar disorder-specific psychotherapy fare better than those who do not. Psychotherapeutic strategies common to most bipolar disorder-specific interventions are identified. PMID:26279641

  1. Principles of transistor circuits introduction to the design of amplifiers, receivers and digital circuits

    CERN Document Server

    Amos, S W

    2013-01-01

    For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand an

  2. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.

    Science.gov (United States)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-05-07

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.

  3. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  4. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  5. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  6. Quetiapine monotherapy for bipolar depression

    Directory of Open Access Journals (Sweden)

    Michael E Thase

    2008-03-01

    Full Text Available Michael E ThaseDepartments of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; the Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA; and the University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: Bipolar depression is more common, disabling, and difficult-to-treat than the manic and hypomanic phases that define bipolar disorder. Unlike the treatment of so-called “unipolar” depressions, antidepressants generally are not indicated as monotherapies for bipolar depressions and recent studies suggest that - even when used in combination with traditional mood stabilizers – antidepressants may have questionable value for bipolar depression. The current practice is that mood stabilizers are initiated first as monotherapies; however, the antidepressant efficacy of lithium and valproate is modest at best. Within this context the role of atypical antipsychotics is being evaluated. The combination of olanzapine and the antidepressant fluoxetine was the first treatment to receive regulatory approval in the US specifically for bipolar I depression. Quetiapine was the second medication to be approved for this indication, largely as the result of two pivotal trials known by the acronyms of BOLDER (BipOLar DEpRession I and II. Both studies demonstrated that two doses of quetiapine (300 mg and 600 mg given once daily at bedtime were significantly more effective than placebo, with no increased risk of patients switching into mania. Pooling the two studies, quetiapine was effective for both bipolar I and bipolar II depressions and for patients with (and without a history of rapid cycling. The two doses were comparably effective in both studies. Although the efficacy of quetiapine monotherapy has been established, much additional research is necessary. Further studies are needed to more fully investigate dose-response relationships and comparing quetiapine monotherapy to other mood stabilizers

  7. The point of practical use for the transistor circuit

    International Nuclear Information System (INIS)

    1996-01-01

    This is comprised of eight chapters and goes as follows; what is transistor? the first step for use of transistor such as connection between power and signal source, static characteristic of transistor and equivalent circuit of transistor, design of easy small-signal amplifier circuit, design for amplification of electric power and countermeasure for prevention of trouble, transistor concerned interface, transistor circuit around micro computer, transistor in active use of FET and power circuit and transistor. It has an appendix on transistor and design of bias of FET circuits like small signal transistor circuit and FET circuit.

  8. A novel Tunneling Graphene Nano Ribbon Field Effect Transistor with dual material gate: Numerical studies

    Science.gov (United States)

    Ghoreishi, Seyed Saleh; Saghafi, Kamyar; Yousefi, Reza; Moravvej-farshi, Mohammad Kazem

    2016-09-01

    In this work, we present Dual Material Gate Tunneling Graphene Nano-Ribbon Field Effect Transistors (DMG-T-GNRFET) mainly to suppress the am-bipolar current with assumption that sub-threshold swing which is one of the important characteristics of tunneling transistors must not be degraded. In the proposed structure, dual material gates with different work functions are used. Our investigations are based on numerical simulations which self-consistently solves the 2D Poisson based on an atomistic mode-space approach and Schrodinger equations, within the Non-Equilibrium Green's (NEGF). The proposed device shows lower off-current and on-off ratio becomes 5order of magnitude greater than the conventional device. Also two different short channel effects: Drain Induced Barrier Shortening (DIBS) and hot-electron effect are improved in the proposed device compare to the main structure.

  9. A Transistor Sizing Tool for Optimization of Analog CMOS Circuits: TSOp

    OpenAIRE

    Y.C.Wong; Syafeeza A. R; N. A. Hamid

    2015-01-01

    Optimization of a circuit by transistor sizing is often a slow, tedious and iterative manual process which relies on designer intuition. It is highly desirable to automate the transistor sizing process towards being able to rapidly design high performance integrated circuit. Presented here is a simple but effective algorithm for automatically optimizing the circuit parameters by exploiting the relationships among the genetic algorithm's coefficient values derived from the analog circuit desig...

  10. Transistor challenges - A DRAM perspective

    International Nuclear Information System (INIS)

    Faul, Juergen W.; Henke, Dietmar

    2005-01-01

    Key challenges of the transistor scaling from a DRAM perspective will be reviewed. Both, array transistors as well as DRAM support devices face challenges that differ essentially from high performance logic device scaling. As a major difference, retention time and standby current requirements characterize special boundary conditions in the DRAM device design. Array device scaling is determined by a chip size driven aggressive node scaling. To continue scaling, major innovations need to be introduced into state-of-the-art planar array transistors. Alternatively, non planar device concepts will have to be evaluated. Support device design for DRAMs is driven by today's market demand for increased chip performances at little to no extra cost. Major innovations are required to continue that path. Besides this strive for performance increase, special limitations for 'on pitch' circuits at the array edge will come up due to the aggressive cell size scaling

  11. Various aspects of ionic machining applied to metallic systems in microwave dipolar transistors

    International Nuclear Information System (INIS)

    Pestie, J.P.; Dumontet, H.; Andrieu, J.P.

    1974-01-01

    The positive benefit of ion bombardment machining in fabricating bipolar microwave transistors is shown. Ion cleaning, especially for P type silicon with high boron concentration allows reproducible surface resistivities to be reached 10 -6 ohms/cm 2 ) and the spurious resistance of the basis to be minimized. Ionic etching of metallic layers allowed 1μm stepped geometric structures to be realized. The multilayer Ti-Pt-Au system was associated to the finest geometries through a finite number of operations [fr

  12. Bipolar Disorder and Alcoholism: Are They Related?

    Science.gov (United States)

    ... Are they related? Is there a connection between bipolar disorder and alcoholism? Answers from Daniel K. Hall-Flavin, M.D. Bipolar disorder and alcoholism often occur together. Although the association ...

  13. Photon-gated spin transistor

    OpenAIRE

    Li, Fan; Song, Cheng; Cui, Bin; Peng, Jingjing; Gu, Youdi; Wang, Guangyue; Pan, Feng

    2017-01-01

    Spin-polarized field-effect transistor (spin-FET), where a dielectric layer is generally employed for the electrical gating as the traditional FET, stands out as a seminal spintronic device under the miniaturization trend of electronics. It would be fundamentally transformative if optical gating was used for spin-FET. We report a new type of spin-polarized field-effect transistor (spin-FET) with optical gating, which is fabricated by partial exposure of the (La,Sr)MnO3 channel to light-emitti...

  14. Programmable, automated transistor test system

    Science.gov (United States)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  15. Therapy of a couple with a bipolar spouse.

    Science.gov (United States)

    Witusik, Andrzej; Pietras, Tadeusz

    2017-10-23

    Qualitative analysis of therapy of a couple with a partner who has bipolar disorder is an important research paradigm in contemporary psychotherapy of mental disorders.The qualitative method of the study is important both from the cognitive point of view and for the evaluation of the therapeutic efficacy in the individual, idiographical aspect. The aim of the study is a qualitative analysis of the therapeutic process of a couple in which one partner suffers from bipolar affective disorder. The study of the couple therapy process utilized the qualitative research methodology using variouspsychotherapeutic paradigms indicating the interrelationships that exist between relapses of the disease and functioning of the couple. The importance of triangulation processes, inheritance of transgenerational myths and dysfunctional cognitive patterns in the functional destabilization of a couple with one partner suffering from bipolar affective disorder was indicated. The study of the couple therapy process utilized the qualitative research methodology using variouspsychotherapeutic paradigms indicating the interrelationships that exist between relapses of the disease and functioning of the couple. The importance of triangulation processes, inheritance of transgenerational myths and dysfunctional cognitive patterns in the functional destabilization of a couple with one partner suffering from bipolar affective disorder was indicated. The dysfunctionality of the discussed couple is largely due to the effects of bipolar disorder and related disturbances on marital functioning. The spectrum of autism in the child is probably related both to the genetic strain of predisposition to psychiatric disorders and to the dysfunctionality of the parental dyad. The presence of bipolar affective disorder in the partner's family is also a genetic burden. The wife's aggression represents probably a syndrome of adaptation to disease in the family. Aggression plays a morphostatic role in the couple

  16. Development of mos thyristor technological processes for functional integration of new power devices; Developpement de filieres technologiques mos-thyristor adaptees a l`integration fonctionnelle de nouveaux dispositifs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Berriane, R.

    1997-05-05

    The development of MOS thyristor technological processes for integration of the switching function for high voltage power applications in industrial supply networks, is studied. A MOS-gated optically triggered thyristor is presented, which includes a MOS gated thyristor constituting the power element and a photodiode for optical control detection; protection and control are obtained respectively by a Zener diode and a depletion MOSFET transistor. In order to verify the switching function, a model is proposed and a high voltage planar aluminium gate process technology, compatible with various bipolar and MOSFET devices associations have been developed and optimized. In the framework of industrial supply networks, the integration of a thermal protection element has been investigated. The dual thyristor function application has been also studied, composed of a spontaneously fired, controlled turn off MOS-thyristor association. The early developments of a MOS thyristor polysilicon gate process technology is then presented

  17. The fitting parameters extraction of conversion model of the low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Bakerenkov, Alexander

    2011-01-01

    The Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar devices consists of in base current degradation of NPN and PNP transistors increase as the dose rate is decreased. As a result of almost 20-year studying, the some physical models of effect are developed, being described in detail. Accelerated test methods, based on these models use in standards. The conversion model of the effect, that allows to describe the inverse S-shaped excess base current dependence versus dose rate, was proposed. This paper presents the problem of conversion model fitting parameters extraction.

  18. Bipolar outflow in B335

    International Nuclear Information System (INIS)

    Hirano, N.; Kameya, O.; Nakayama, M.; Takakubo, K.

    1988-01-01

    The high-velocity (C-12)O (J = 1-0) emission in B335 with a high angular resolution of 16 arcsec has been mapped. The high-velocity emission shows distinct bipolar pattern centered at IRAS 19345+0727, toward which a strong high-velocity (C-12)O emission has been detected. The bipolar lobes delineate remarkable collimation toward the IRAS source, indicating that the flow is focused within 0.02 pc of the driving source. Each lobe is accompanied by significant wing emission with the opposite velocity shift, which clearly shows the association with IRAS 19345+0727. This feature is well explained as a bipolar flow the axis of which is nearly perpendicular to the line of sight. There is no evidence of another evolved bipolar flow which does not associate with any dense core as previously suggested. This suggests that B335 is a site of very recent star formation, containing a single bipolar flow with an age of about 30,000 yr. 15 references

  19. Exercising control over bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; Byrow, Yulisha

    2016-11-01

    Following extensive research exercise has emerged as an effective treatment for major depressive disorder, and it is now a recognised therapy alongside other interventions. In contrast, there is a paucity of research examining the therapeutic effects of exercise for those with bipolar disorder. Given that dysfunctional reward processing is central to bipolar disorder, research suggests that exercise can perhaps be framed as a reward-related event that may have the potential to precipitate a manic episode. The behavioural activation system (BAS) is a neurobehavioural system that is associated with responding to reward and provides an appropriate framework to theoretically examine and better understand the effects of exercise treatment on bipolar disorder. This article discusses recent research findings and provides an overview of the extant literature related to the neurobiological underpinnings of BAS and exercise as they relate to bipolar disorder. This is important clinically because depending on mood state in bipolar disorder, we postulate that exercise could be either beneficial or deleterious with positive or negative effects on the illness. Clearly, this complicates the evaluation of exercise as a potential treatment in terms of identifying its optimal characteristics in this population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Standardization of Schwarz-Christoffel transformation for engineering design of semiconductor and hybrid integrated-circuit elements

    Science.gov (United States)

    Yashin, A. A.

    1985-04-01

    A semiconductor or hybrid structure into a calculable two-dimensional region mapped by the Schwarz-Christoffel transformation and a universal algorithm can be constructed on the basis of Maxwell's electro-magnetic-thermal similarity principle for engineering design of integrated-circuit elements. The design procedure involves conformal mapping of the original region into a polygon and then the latter into a rectangle with uniform field distribution, where conductances and capacitances are calculated, using tabulated standard mapping functions. Subsequent synthesis of a device requires inverse conformal mapping. Devices adaptable as integrated-circuit elements are high-resistance film resistors with periodic serration, distributed-resistance film attenuators with high transformation ratio, coplanar microstrip lines, bipolar transistors, directional couplers with distributed coupling to microstrip lines for microwave bulk devices, and quasirregular smooth matching transitions from asymmetric to coplanar microstrip lines.

  1. Late Onset Bipolar Disorder: Case Report

    OpenAIRE

    Filipa Araújo; Adriana Horta

    2016-01-01

    Background: Bipolar disorder affects approximately 1% of the population, with diagnosis often being made during late adolescence and early adulthood, and only rarely (0.1%) in the elderly. Late onset bipolar disorder in the elderly has a impact on the nature and course of bipolar disorder. Aims: The authors report a case of bipolar disorder emerging in late life  (76years old) with no cleary identified organic cause. Conclusion: This case highlights the importance of a broad different...

  2. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  3. Reprogrammable read only variable threshold transistor memory with isolated addressing buffer

    Science.gov (United States)

    Lodi, Robert J.

    1976-01-01

    A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.

  4. Imunologia do transtorno bipolar Immunology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2009-01-01

    Full Text Available OBJETIVO: Pesquisas recentes têm implicado fatores imunes na patogênese de diversos transtornos neuropsiquiátricos. O objetivo do presente trabalho é revisar os trabalhos que investigaram a associação entre transtorno bipolar e alterações em parâmetros imunes. MÉTODOS: Artigos que incluíam as palavras-chave: "bipolar disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" e "tumor necrosis factor" foram selecionados em uma revisão sistemática da literatura. As bases de dados avaliadas foram MedLine e Scopus, entre os anos de 1980 e 2008. RESULTADOS: Foram identificados 28 trabalhos que estudaram alterações imunes em pacientes com transtorno bipolar. Seis artigos investigaram genes relacionados à resposta imune; cinco, autoanticorpos; quatro, populações leucocitárias; 13, citocinas e/ou moléculas relacionadas à resposta imune e seis, leucócitos de pacientes in vitro. CONCLUSÕES: Embora haja evidências na literatura correlacionando o transtorno bipolar a alterações imunes, os dados não são conclusivos. O transtorno bipolar parece estar associado a níveis mais elevados de autoanticorpos circulantes, assim como à tendência à ativação imune com produção de citocinas pró-inflamatórias e redução de parâmetros anti-inflamatórios.OBJECTIVE: Emerging research has implicated immune factors in the pathogenesis of a variety of neuropsychiatric disorders. The objective of the present paper is to review the studies that investigated the association between bipolar disorder and immune parameters. METHODS: Papers that included the keywords "bipolar to disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" and "tumor necrosis factor" were selected in a systematic review of the literature. The evaluated databases were MedLine and Scopus in the period between 1980 and 2008. RESULTS: Twenty eight works were found. Six studies investigated immune response

  5. Heterogeneous Integration Technology

    Science.gov (United States)

    2017-05-19

    integrated CMOS imaging system for high frame rate applications [171]. .................... 68 Figure 83: CPU-DRAM Memory Landscape . [127... film transistors (TFT) were integrated with GaN HEMTs on the same wafer at AFRL. The thin film transistor fabrication using metal-oxide...second layer. Layer transfer produces the best quality devices compared to other additive technologies such as re-crystallization of thin films [148

  6. Transistor analogs of emergent iono-neuronal dynamics.

    Science.gov (United States)

    Rachmuth, Guy; Poon, Chi-Sang

    2008-06-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.

  7. On theory of single-molecule transistor

    International Nuclear Information System (INIS)

    Tran Tien Phuc

    2009-01-01

    The results of the study on single-molecule transistor are mainly investigated in this paper. The structure of constructed single-molecule transistor is similar to a conventional MOSFET. The conductive channel of the transistors is a single-molecule of halogenated benzene derivatives. The chemical simulation software CAChe was used to design and implement for the essential parameter of the molecules utilized as the conductive channel. The GUI of Matlab has been built to design its graphical interface, calculate and plot the output I-V characteristic curves for the transistor. The influence of temperature, length and width of the conductive channel, and gate voltage is considered. As a result, the simulated curves are similar to the traditional MOSFET's. The operating temperature range of the transistors is wider compared with silicon semiconductors. The supply voltage for transistors is only about 1 V. The size of transistors in this research is several nanometers.

  8. Analysing organic transistors based on interface approximation

    International Nuclear Information System (INIS)

    Akiyama, Yuto; Mori, Takehiko

    2014-01-01

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region

  9. GaAs integrated circuits and heterojunction devices

    Science.gov (United States)

    Fowlis, Colin

    1986-06-01

    The state of the art of GaAs technology in the U.S. as it applies to digital and analog integrated circuits is examined. In a market projection, it is noted that whereas analog ICs now largely dominate the market, in 1994 they will amount to only 39 percent vs. 57 percent for digital ICs. The military segment of the market will remain the largest (42 percent in 1994 vs. 70 percent today). ICs using depletion-mode-only FETs can be constructed in various forms, the closest to production being BFL or buffered FET logic. Schottky diode FET logic - a lower power approach - can reach higher complexities and strong efforts are being made in this direction. Enhancement type devices appear essential to reach LSI and VLSI complexity, but process control is still very difficult; strong efforts are under way, both in the U.S. and in Japan. Heterojunction devices appear very promising, although structures are fairly complex, and special fabrication techniques, such as molecular beam epitaxy and MOCVD, are necessary. High-electron-mobility-transistor (HEMT) devices show significant performance advantages over MESFETs at low temperatures. Initial results of heterojunction bipolar transistor devices show promise for high speed A/D converter applications.

  10. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  11. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-López, Manuel Angel Quevedo

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  12. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-Ló pez, Manuel Angel Quevedo; Wondmagegn, Wudyalew T.; Alshareef, Husam N.; Ramí rez-Bon, Rafael; Gnade, Bruce E.

    2011-01-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  13. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    Science.gov (United States)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  14. A Voxel-Based Diffusion Tensor Imaging Study of White Matter in Bipolar Disorder

    OpenAIRE

    Mahon, Katie; Wu, Jinghui; Malhotra, Anil K.; Burdick, Katherine E.; DeRosse, Pamela; Ardekani, Babak A.; Szeszko, Philip R.

    2009-01-01

    There is evidence from post-mortem and magnetic resonance imaging studies that hyperintensities, oligodendrioglial abnormalities and gross white matter volumetric alterations play a role in the pathophysiology of bipolar disorder. There is also functional imaging evidence for a defect in frontal cortico-subcortical pathways in bipolar disorder, but the white matter comprising these pathways has not been well-investigated. Few studies have investigated white matter integrity in patients with b...

  15. Is bipolar always bipolar? Understanding the controversy on bipolar disorder in children

    Science.gov (United States)

    Grimmer, Yvonne; Hohmann, Sarah

    2014-01-01

    Dramatically increasing prevalence rates of bipolar disorder in children and adolescents in the United States have provoked controversy regarding the boundaries of manic symptoms in child and adolescent psychiatry. The serious impact of this ongoing debate on the treatment of affected children is reflected in the concomitant increase in prescription rates for antipsychotic medication. A key question in the debate is whether this increase in bipolar disorder in children and adolescents is based on a better detection of early-onset bipolar disorder—which can present differently in children and adolescents—or whether it is caused by an incorrect assignment of symptoms which overlap with other widely known disorders. So far, most findings suggest that the suspected symptoms, in particular chronic, non-episodic irritability (a mood symptom presenting with easy annoyance, temper tantrums and anger) do not constitute a developmental presentation of childhood bipolar disorder. Additional research based on prospective, longitudinal studies is needed to further clarify the developmental trajectories of bipolar disorder and the diagnostic status of chronic, non-episodic irritability. PMID:25580265

  16. Bipolar dislocation of the clavicle

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Full Text Available Bipolar dislocation of the clavicle at acromioclavicular and sternoclavicular joint is an uncommon traumatic injury. The conservative treatments adopted in the past is associated with redislocation dysfunction and deformity. A 41 years old lady with bipolar dislocation of right shoulder is treated surgically by open reduction and internal fixation by oblique T-plate at sternoclavicular joint and Kirschner wire stabilization at acromioclavicular joint. The patient showed satisfactory recovery with full range of motion of the right shoulder and normal muscular strength. The case reported in view of rarity and at 2 years followup.

  17. Transcultural aspects of bipolar disorder

    OpenAIRE

    Sanches, Marsal; Jorge, Miguel Roberto

    2004-01-01

    Considerando-se que existem diferenças importantes na maneira como as emoções são vivenciadas e expressas em diferentes culturas, a apresentação e o manejo do transtorno afetivo bipolar sofrem influência de fatores culturais. O presente artigo realiza uma breve revisão da evidência referente aos aspectos transculturais do transtorno bipolar.Cultural variations in the expression of emotions have been described. Consequently, there are cross-cultural influences on the diagnosis and management o...

  18. A III-V nanowire channel on silicon for high-performance vertical transistors.

    Science.gov (United States)

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  19. The Role of Intrinsic Brain Functional Connectivity in Vulnerability and Resilience to Bipolar Disorder.

    Science.gov (United States)

    Doucet, Gaelle E; Bassett, Danielle S; Yao, Nailin; Glahn, David C; Frangou, Sophia

    2017-12-01

    Bipolar disorder is a heritable disorder characterized by mood dysregulation associated with brain functional dysconnectivity. Previous research has focused on the detection of risk- and disease-associated dysconnectivity in individuals with bipolar disorder and their first-degree relatives. The present study seeks to identify adaptive brain connectivity features associated with resilience, defined here as avoidance of illness or delayed illness onset in unaffected siblings of patients with bipolar disorder. Graph theoretical methods were used to examine global and regional brain network topology in head-motion-corrected resting-state functional MRI data acquired from 78 patients with bipolar disorder, 64 unaffected siblings, and 41 healthy volunteers. Global network properties were preserved in patients and their siblings while both groups showed reductions in the cohesiveness of the sensorimotor network. In the patient group, these sensorimotor network abnormalities were coupled with reduced integration of core default mode network regions in the ventromedial cortex and hippocampus. Conversely, integration of the default mode network was increased in the sibling group compared with both the patient group and the healthy volunteer group. The authors found that trait-related vulnerability to bipolar disorder was associated with reduced resting-state cohesiveness of the sensorimotor network in patients with bipolar disorder. However, integration of the default mode network emerged as a key feature differentiating disease expression and resilience between the patients and their siblings. This is indicative of the presence of neural mechanisms that may promote resilience, or at least delay illness onset.

  20. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  1. Electronic monitoring in bipolar disorder.

    Science.gov (United States)

    Faurholt-Jepsen, Maria

    2018-03-01

    Major reasons for the insufficient effects of current treatment options in bipolar disorder include delayed intervention for prodromal depressive and manic symptoms and decreased adherence to psychopharmacological treatment. The reliance on subjective information and clinical evaluations when diagnosing and assessing the severity of depressive and manic symptoms calls for less biased and more objective markers. By using electronic devices, fine-grained data on complex psychopathological aspects of bipolar disorder can be evaluated unobtrusively over the long term. Moreover, electronic data could possibly represent candidate markers of diagnosis and illness activity in bipolar disorder and allow for early and individualized intervention for prodromal symptoms outside clinical settings. 
The present dissertation concerns the use of electronic monitoring as a marker and treatment intervention in bipolar disorder and investigated the scientific literature and body of evidence within the area, which includes ten original study reports and two systematic reviews, one of which included a meta-analysis, conducted by the author of the dissertation. 
Taken together, the literature presented in this dissertation illustrates that 1) smartphone-based electronic self-monitoring of mood seems to reflect clinically assessed depressive and manic symptoms and enables the long-term characterization of mood

instability in bipolar disorder; 2) preliminary results suggest that smartphone-based automatically generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had no effects on the severity of depressive and manic symptoms in bipolar disorder, according to a randomized controlled trial; and 4) electronic monitoring of psychomotor

  2. Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications

    Science.gov (United States)

    Schwank, James R.; Shaneyfelt, Marty R.; Draper, Bruce L.; Dodd, Paul E.

    2001-01-01

    A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.

  3. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Concept of rewritable organic ferroelectric random access memory in two lateral transistors-in-one cell architecture

    International Nuclear Information System (INIS)

    Kim, Min-Hoi; Lee, Gyu Jeong; Keum, Chang-Min; Lee, Sin-Doo

    2014-01-01

    We propose a concept of rewritable ferroelectric random access memory (RAM) with two lateral organic transistors-in-one cell architecture. Lateral integration of a paraelectric organic field-effect transistor (OFET), being a selection transistor, and a ferroelectric OFET as a memory transistor is realized using a paraelectric depolarizing layer (PDL) which is patterned on a ferroelectric insulator by transfer-printing. For the selection transistor, the key roles of the PDL are to reduce the dipolar strength and the surface roughness of the gate insulator, leading to the low memory on–off ratio and the high switching on–off current ratio. A new driving scheme preventing the crosstalk between adjacent memory cells is also demonstrated for the rewritable operation of the ferroelectric RAM. (paper)

  5. Social support and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Paula Mendonça Studart

    2015-08-01

    Full Text Available Background Bipolar disorder is a chronic condition that affects the functioning of its carriers in many different ways, even when treated properly. Therefore, it’s also important to identify the psychosocial aspects that could contribute to an improvement of this population’s quality of life.Objective Carry out a literature review on the role of social support in cases of bipolar disorder.Method A research on the following online databases PubMed, Lilacs and SciELO was conducted by using the keywords “social support” or “social networks” and “mood disorders” or “bipolar disorder” or “affective disorder,” with no defined timeline.Results Only 13 studies concerning the topic of social support and BD were found in the search for related articles. Generally speaking, the results show low rates of social support for BD patients.Discussion Despite the growing interest in the overall functioning of patients with bipolar disorder, studies on social support are still rare. Besides, the existing studies on the subject use different methodologies, making it difficult to establish data comparisons.

  6. Electronic monitoring in bipolar disorder

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, Maria

    2018-01-01

    generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had...

  7. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    International Nuclear Information System (INIS)

    Che, Yongli; Zhang, Yating; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan; Cao, Xiaolong; Dai, Haitao; Yang, Junbo

    2016-01-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV th  ∼ 15 V) and a long retention time (>10 5  s). The magnitude of ΔV th depended on both P/E voltages and the bias voltage (V DS ): ΔV th was a cubic function to V P/E and linearly depended on V DS . Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  8. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    Energy Technology Data Exchange (ETDEWEB)

    Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan [Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Cao, Xiaolong [Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Dai, Haitao [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Yang, Junbo [Center of Material Science, National University of Defense Technology, Changsha 410073 (China)

    2016-07-04

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th} was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  9. Unidirectional threshold switching in Ag/Si-based electrochemical metallization cells for high-density bipolar RRAM applications

    Science.gov (United States)

    Wang, Chao; Song, Bing; Li, Qingjiang; Zeng, Zhongming

    2018-03-01

    We herein present a novel unidirectional threshold selector for cross-point bipolar RRAM array. The proposed Ag/amorphous Si based threshold selector showed excellent threshold characteristics in positive field, such as high selectivity ( 105), steep slope (type RRAM. By integrating a bipolar RRAM device with the selector, experiments showed that the undesired sneak was significantly suppressed, indicating its potentiality for high-density integrated nonvolatile memory applications.

  10. Power transistor module for high current applications

    International Nuclear Information System (INIS)

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  11. A new bipolar RRAM selector based on anti-parallel connected diodes for crossbar applications

    International Nuclear Information System (INIS)

    Li, Yingtao; Gong, Qingchun; Li, Rongrong; Jiang, Xinyu

    2014-01-01

    Crossbar arrays are the most promising application of a resistive random access memory (RRAM) device for achieving high density memory. However, cross-talk interference in the crossbar array limits the increase in the integration density. In this paper, the combination of two anti-parallel connected diodes and a bipolar RRAM cell is proposed to suppress the sneak current in a crossbar array with anti-parallel connected diodes as the selector for the bipolar RRAM. By using the anti-parallel connected diodes as a selector, the sneak current can be effectively suppressed and the high density crossbar array of more than 1 Mb can be realized as estimated by the 1/2V read voltage scheme. These results indicate that anti-parallel connected diodes can be used as a bipolar selector and have great potential for high density bipolar RRAM crossbar array applications. (papers)

  12. Principles of an atomtronic transistor

    International Nuclear Information System (INIS)

    Caliga, Seth C; Anderson, Dana Z; Straatsma, Cameron J E; Zozulya, Alex A

    2016-01-01

    A semiclassical formalism is used to investigate the transistor-like behavior of ultracold atoms in a triple-well potential. Atom current flows from the source well, held at fixed chemical potential and temperature, into an empty drain well. In steady-state, the gate well located between the source and drain is shown to acquire a well-defined chemical potential and temperature, which are controlled by the relative height of the barriers separating the three wells. It is shown that the gate chemical potential can exceed that of the source and have a lower temperature. In electronics terminology, the source–gate junction can be reverse-biased. As a result, the device exhibits regimes of negative resistance and transresistance, indicating the presence of gain. Given an external current input to the gate, transistor-like behavior is characterized both in terms of the current gain, which can be greater than unity, and the power output of the device. (paper)

  13. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Yaacobi-Gross, Nir; Zhao, Kui; Ndjawa, Guy Olivier Ngongang; Li, Jinhua; Yan, Feng; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2012-01-01

    ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY

  14. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Wei, A.; DeLaus, M.; Combs, W.E.; Pease, R.L.

    1994-01-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of ∼25 C, the net trapped-positive-charge density (N ox ) inferred from midgap C-V shifts is ∼25--40% greater for low-dose-rate ( 2 )/s) than for high-dose-rate (> 100 rad(SiO 2 )/s) exposure. Device modeling shows that such a difference in screen-oxide N ox is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the ∼ exp(N ox 2 ) dependence of the excess base current. At the higher rates, TSC measurements reveal a ∼10% decrease in trapped-hole density over low rates. Also, at high rates, up to ∼2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in Eδ' centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO 2 )/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications

  15. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  16. Atom transistor from the point of view of nonequilibrium dynamics

    International Nuclear Information System (INIS)

    Zhang, Z; Dunjko, V; Olshanii, M

    2015-01-01

    We analyze the atom field-effect transistor scheme (Stickney et al 2007 Phys. Rev. A 75 013608) using the standard tools of quantum and classical nonequlilibrium dynamics. We first study the correspondence between the quantum and the mean-field descriptions of this system by computing, both ab initio and by using their mean-field analogs, the deviations from the Eigenstate Thermalization Hypothesis, quantum fluctuations, and the density of states. We find that, as far as the quantities that interest us, the mean-field model can serve as a semi-classical emulator of the quantum system. Then, using the mean-field model, we interpret the point of maximal output signal in our transistor as the onset of ergodicity—the point where the system becomes, in principle, able to attain the thermal values of the former integrals of motion, albeit not being fully thermalized yet. (paper)

  17. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  18. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  19. Bipolar polygenic loading and bipolar spectrum features in major depressive disorder

    NARCIS (Netherlands)

    Wiste, Anna; Robinson, Elise B.; Milaneschi, Yuri; Meier, Sandra; Ripke, Stephan; Clements, Caitlin C.; Fitzmaurice, Garrett M.; Rietschel, Marcella; Penninx, Brenda W.; Smoller, Jordan W.; Perlis, Roy H.

    Objectives Family and genetic studies indicate overlapping liability for major depressive disorder and bipolar disorder. The purpose of the present study was to determine whether this shared genetic liability influences clinical presentation. Methods A polygenic risk score for bipolar disorder,

  20. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls.

    Science.gov (United States)

    Xu, Jinyou; Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2017-11-08

    Tri-gate transistors offer better performance than planar transistors by exerting additional gate control over a channel from two lateral sides of semiconductor nanowalls (or "fins"). Here we report the bottom-up assembly of aligned CdS nanowalls by a simultaneous combination of horizontal catalytic vapor-liquid-solid growth and vertical facet-selective noncatalytic vapor-solid growth and their parallel integration into tri-gate transistors and photodetectors at wafer scale (cm 2 ) without postgrowth transfer or alignment steps. These tri-gate transistors act as enhancement-mode transistors with an on/off current ratio on the order of 10 8 , 4 orders of magnitude higher than the best results ever reported for planar enhancement-mode CdS transistors. The response time of the photodetector is reduced to the submicrosecond level, 1 order of magnitude shorter than the best results ever reported for photodetectors made of bottom-up semiconductor nanostructures. Guided semiconductor nanowalls open new opportunities for high-performance 3D nanodevices assembled from the bottom up.

  1. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    Science.gov (United States)

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.

  2. Course of Subthreshold Bipolar Disorder in Youth: Diagnostic Progression from Bipolar Disorder Not Otherwise Specified

    Science.gov (United States)

    Axelson, David A.; Birmaher, Boris; Strober, Michael A.; Goldstein, Benjamin I.; Ha, Wonho; Gill, Mary Kay; Goldstein, Tina R.; Yen, Shirley; Hower, Heather; Hunt, Jeffrey I.; Liao, Fangzi; Iyengar, Satish; Dickstein, Daniel; Kim, Eunice; Ryan, Neal D.; Frankel, Erica; Keller, Martin B.

    2011-01-01

    Objective: To determine the rate of diagnostic conversion from an operationalized diagnosis of bipolar disorder not otherwise specified (BP-NOS) to bipolar I disorder (BP-I) or bipolar II disorder (BP-II) in youth over prospective follow-up and to identify factors associated with conversion. Method: Subjects were 140 children and adolescents…

  3. Bipolar (spectrum) disorder and mood stabilization: standing at the crossroads?

    OpenAIRE

    De Fruyt, Jurgen; Demyttenaere, Koen

    2007-01-01

    Diagnosis and treatment of bipolar disorder has long been a neglected discipline. Recent years have shown an upsurge in bipolar research. When compared to major depressive disorder, bipolar research still remains limited and more expert based than evidence based. In bipolar diagnosis the focus is shifting from classic mania to bipolar depression and hypomania. There is a search for bipolar signatures in symptoms and course of major depressive episodes. The criteria for hypomania are softened,...

  4. [Bipolar disorders in DSM-5].

    Science.gov (United States)

    Severus, E; Bauer, M

    2014-05-01

    In spring 2013 the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) edited by the American Psychiatric Association was published. The DSM-5 has also brought some important changes regarding bipolar disorders. The goal of this manuscript is to review the novelties in DSM-5 and to evaluate the implications of these changes. The diagnostic criteria as well as the additional remarks provided in the running text of DSM-5 were carefully appraised. For the first time diagnostic criteria are provided for disorders which up to now have been considered as subthreshold bipolar disorders. Furthermore, mixed episodes were eliminated and instead a mixed specifier was introduced. An increase in goal-directed activity/energy is now one of the obligatory symptoms for a (hypo)manic episode. Diagnostic guidance is provided as to when a (hypo)manic episode that has developed during treatment with an antidepressant has to be judged to be causally related to antidepressants and when this episode has only occurred coincidentally with antidepressant use. While some of the novelties are clearly useful, e.g. addition of increased goal-directed activity/energy as obligatory symptom for (hypo)manic episodes, this remains to be demonstrated for others, such as the definition of various subthreshold bipolar disorders.

  5. Virginia Woolf, neuroprogression, and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Manuela V. Boeira

    2016-01-01

    Full Text Available Family history and traumatic experiences are factors linked to bipolar disorder. It is known that the lifetime risk of bipolar disorder in relatives of a bipolar proband are 5-10% for first degree relatives and 40-70% for monozygotic co-twins. It is also known that patients with early childhood trauma present earlier onset of bipolar disorder, increased number of manic episodes, and more suicide attempts. We have recently reported that childhood trauma partly mediates the effect of family history on bipolar disorder diagnosis. In light of these findings from the scientific literature, we reviewed the work of British writer Virginia Woolf, who allegedly suffered from bipolar disorder. Her disorder was strongly related to her family background. Moreover, Virginia Woolf was sexually molested by her half siblings for nine years. Her bipolar disorder symptoms presented a pernicious course, associated with hospitalizations, suicidal behavioral, and functional impairment. The concept of neuroprogression has been used to explain the clinical deterioration that takes places in a subgroup of bipolar disorder patients. The examination of Virgina Woolf’s biography and art can provide clinicians with important insights about the course of bipolar disorder.

  6. Bipolar Disorder and Obsessive Compulsive Disorder Comorbidity

    Directory of Open Access Journals (Sweden)

    Necla Keskin

    2014-08-01

    Full Text Available The comorbidity of bipolar disorder and anxiety disorders is a well known concept. Obsessive-compulsive disorder is the most commonly seen comorbid anxiety disorder in bipolar patients. Some genetic variants, neurotransmitters especially serotonergic systems and second-messenger systems are thought to be responsible for its etiology. Bipolar disorder alters the clinical aspects of obsessive compulsive disorder and is associated with poorer outcome. The determination of comorbidity between bipolar disorder and obsessive compulsive disorder is quite important for appropriate clinical management and treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 429-437

  7. [Lithium and anticonvulsants in bipolar depression].

    Science.gov (United States)

    Samalin, L; Nourry, A; Llorca, P-M

    2011-12-01

    For decades, lithium and anticonvulsants have been widely used in the treatment of bipolar disorder. Their efficacy in the treatment of mania is recognized. These drugs have been initially evaluated in old and methodologically heterogeneous studies. Their efficacy in bipolar depression has not always been confirmed in more recent and methodologically more reliable studies. Thus, lithium's efficacy as monotherapy was challenged by the study of Young (2008) that showed a lack of efficacy compared with placebo in the treatment of bipolar depression. In two recent meta-analyses, valproate has shown a modest efficacy in the treatment of bipolar depression. As for lithium, valproate appeared to have a larger antimanic effect for acute phase and prophylaxis of bipolar disorder. In contrast, lamotrigine is more effective on the depressive pole of bipolar disorder with better evidence for the prevention of depressive recurrences. The guidelines include these recent studies and recommend lamotrigine as a first-line treatment of bipolar depression and for maintenance treatment. Because of more discordant data concerning lithium and valproate, these two drugs are placed either as first or as second line treatment of bipolar depression. The different safety/efficacy ratios of mood stabilizers underlie the complementarity and the importance of combination between them, or with some second-generation antipsychotics, in the treatment of patients with bipolar disorder. Copyright © 2011 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  8. Late Onset Bipolar Disorder: Case Report

    Directory of Open Access Journals (Sweden)

    Filipa Araújo

    2016-07-01

    Full Text Available Background: Bipolar disorder affects approximately 1% of the population, with diagnosis often being made during late adolescence and early adulthood, and only rarely (0.1% in the elderly. Late onset bipolar disorder in the elderly has a impact on the nature and course of bipolar disorder. Aims: The authors report a case of bipolar disorder emerging in late life  (76years old with no cleary identified organic cause. Conclusion: This case highlights the importance of a broad differential diagnosis and pharmacologic management when approaching new-onset manic/depressive symptoms among geriatric patients.

  9. Dysfunctional gaze processing in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Cristina Berchio

    2017-01-01

    The present study provides neurophysiological evidence for abnormal gaze processing in BP and suggests dysfunctional processing of direct eye contact as a prominent characteristic of bipolar disorder.

  10. Effect of proton and electron-irradiation intensity on radiation-induced damages in silicon bioolar transistors

    International Nuclear Information System (INIS)

    Bannikov, Yu.A.; Gorin, B.M.; Kozhevnikov, V.P.; Mikhnovich, V.V.; Gusev, L.I.

    1981-01-01

    The increase of radiation-induced damages of bipolar n-p-n transistors 8-12 times with the irradiation intensity decrease by protons from 4.07x1010 to 2.5x107 cm-2 x c-1 has been found experimentally. damages of p-n-p transistors vary in the opposite way - they are decreased 2-3 times with the irradiation intensity decrease within the same limits. the dependence of damages on intansity of proton irradiation occurs at the dose rate by three orders less than it has been observed for electron irradiation. the results obtained are explained by the dependence of radiation defectoformation reactions on charge state of defects with account for the role of formation of disordering regions upon proton irradiation [ru

  11. Ultrasmall transistor-based light sources

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Tavares, Luciana; Kjelstrup-Hansen, Jakob

    Dette projekt fokuserer på at udvikle transistor baserede nanofiber lyskilder med det overordnede mål at udvikle effektive og nano skalerede flerfarvede lyskilder integreret on-chip.......Dette projekt fokuserer på at udvikle transistor baserede nanofiber lyskilder med det overordnede mål at udvikle effektive og nano skalerede flerfarvede lyskilder integreret on-chip....

  12. Efficient simulation of power MOS transistors

    NARCIS (Netherlands)

    Ugryumova, M.; Schilders, W.H.A.

    2011-01-01

    In this report we present a few industrial problems related to modeling of MOS transistors. We suggest an efficient algorithm for computing output current at the top ports of power MOS transistors for given voltage excitations. The suggested algorithm exploits the connection between the resistor and

  13. Enhanced low dose rate sensitivity (ELDRS) in a voltage comparator which only utilizes complementary vertical NPN and PNP transistors

    International Nuclear Information System (INIS)

    Krieg, J.F.; Titus, J.L.; Emily, D.; Gehlhausen, M.; Swonger, J.; Platteter, D.

    1999-01-01

    For the first time, enhanced low dose rate sensitivity (ELDRS) is reported in a vertical bipolar process. A radiation hardness assurance (RHA) test method was successfully demonstrated on a linear circuit, the HS139RH quad comparator, and its discrete transistor elements. This circuit only uses vertical NPN and PNP transistors. Radiation tests on the HS139RH were performed at 25 C using dose rates of 50 rd(Si)/s, 100 mrd(Si)/s and 10 mrd(Si)/s, and at 100 C using a dose rate of 10 rd(Si)/s. Tests at dose rates of 50 rd(Si)/s at 25 C and 10 rd(Si)/s at 100 C were performed on discrete vertical NPN and PNP transistor elements which comprise the HS139RH. Transistor and circuit responses were evaluated. The die's passivation overcoat layers were varied to examine the effect of removing a nitride layer and thinning a deposited SiO 2 (silox) layer

  14. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder.

    Science.gov (United States)

    Mahon, Katie; Wu, Jinghui; Malhotra, Anil K; Burdick, Katherine E; DeRosse, Pamela; Ardekani, Babak A; Szeszko, Philip R

    2009-05-01

    There is evidence from post-mortem and magnetic resonance imaging studies that hyperintensities, oligodendroglial abnormalities, and gross white matter volumetric alterations are involved in the pathophysiology of bipolar disorder. There is also functional imaging evidence for a defect in frontal cortico-subcortical pathways in bipolar disorder, but the white matter comprising these pathways has not been well investigated. Few studies have investigated white matter integrity in patients with bipolar disorder compared to healthy volunteers and the majority of studies have used manual region-of-interest approaches. In this study, we compared fractional anisotropy (FA) values between 30 patients with bipolar disorder and 38 healthy volunteers in the brain white matter using a voxelwise analysis following intersubject registration to Talairach space. Compared to healthy volunteers, patients demonstrated significantly (p or =50) higher FA within the right and left frontal white matter and lower FA within the left cerebellar white matter. Examination of individual eigenvalues indicated that group differences in both axial diffusivity and radial diffusivity contributed to abnormal FA within these regions. Tractography was performed in template space on averaged diffusion tensor imaging data from all individuals. Extraction of bundles passing through the clusters that differed significantly between groups suggested that white matter abnormalities along the pontine crossing tract, corticospinal/corticopontine tracts, and thalamic radiation fibers may be involved in the pathogenesis of bipolar disorder. Our findings are consistent with models of bipolar disorder that implicate dysregulation of cortico-subcortical and cerebellar regions in the disorder and may have relevance for phenomenology.

  15. Bipolar mixed features - Results from the comparative effectiveness for bipolar disorder (Bipolar CHOICE) study.

    Science.gov (United States)

    Tohen, Mauricio; Gold, Alexandra K; Sylvia, Louisa G; Montana, Rebecca E; McElroy, Susan L; Thase, Michael E; Rabideau, Dustin J; Nierenberg, Andrew A; Reilly-Harrington, Noreen A; Friedman, Edward S; Shelton, Richard C; Bowden, Charles L; Singh, Vivek; Deckersbach, Thilo; Ketter, Terence A; Calabrese, Joseph R; Bobo, William V; McInnis, Melvin G

    2017-08-01

    DSM-5 changed the criteria from DSM-IV for mixed features in mood disorder episodes to include non-overlapping symptoms of depression and hypomania/mania. It is unknown if, by changing these criteria, the same group would qualify for mixed features. We assessed how those meeting DSM-5 criteria for mixed features compare to those meeting DSM-IV criteria. We analyzed data from 482 adult bipolar patients in Bipolar CHOICE, a randomized comparative effectiveness trial. Bipolar diagnoses were confirmed through the MINI International Neuropsychiatric Interview (MINI). Presence and severity of mood symptoms were collected with the Bipolar Inventory of Symptoms Scale (BISS) and linked to DSM-5 and DSM-IV mixed features criteria. Baseline demographics and clinical variables were compared between mood episode groups using ANOVA for continuous variables and chi-square tests for categorical variables. At baseline, the frequency of DSM-IV mixed episodes diagnoses obtained with the MINI was 17% and with the BISS was 20%. Using DSM-5 criteria, 9% of participants met criteria for hypomania/mania with mixed features and 12% met criteria for a depressive episode with mixed features. Symptom severity was also associated with increased mixed features with a high rate of mixed features in patients with mania/hypomania (63.8%) relative to those with depression (8.0%). Data on mixed features were collected at baseline only and thus do not reflect potential patterns in mixed features within this sample across the study duration. The DSM-5 narrower, non-overlapping definition of mixed episodes resulted in fewer patients who met mixed criteria compared to DSM-IV. Copyright © 2017. Published by Elsevier B.V.

  16. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Universal power transistor base drive control unit

    Science.gov (United States)

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  18. Five-year follow-up of cognitive impairment in older adults with bipolar disorder.

    Science.gov (United States)

    Schouws, Sigfried N T M; Comijs, Hannie C; Dols, Annemieke; Beekman, Aartjan T F; Stek, Max L

    2016-03-01

    To date, cognitive impairment has been thought to be an integral part of bipolar disorder. In clinical staging models, cognitive impairment is one of the hallmarks to define the clinical stage and it plays an important role in identifying the risk factors for progression to later stages of the illness. It is important to examine neurocognitive performance over longer periods to test the hypothesis of neuroprogression of bipolar disorder. A comprehensive neuropsychological test battery was applied at baseline and five years later to 56 euthymic older outpatients with bipolar disorder (mean age = 68.35 years, range: 60-90 years) and to a demographically matched sample of 44 healthy subjects. A group-by-time repeated measures multivariate analysis of variance was performed to measure changes over time for the two groups. The impact of baseline illness characteristics on the intra-individual change in neurocognitive performance within the bipolar disorder group was studied by using logistic regression analysis. At baseline and at follow-up, patients with bipolar disorder performed worse on all neurocognitive measures compared to the matched healthy subjects. However, there was no significant group-by-time interaction between the patients with bipolar disorder and the comparison group. Although older patients with bipolar disorder had worse cognitive function than healthy subjects, they did not have greater cognitive decline over a five-year period. The change in acquired cognitive impairment of patients with bipolar disorder might parallel the cognitive development as seen in normal aging. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Progressive neurostructural changes in adolescent and adult patients with bipolar disorder.

    Science.gov (United States)

    Lisy, Megan E; Jarvis, Kelly B; DelBello, Melissa P; Mills, Neil P; Weber, Wade A; Fleck, David; Strakowski, Stephen M; Adler, Caleb M

    2011-06-01

    Several lines of evidence suggest that bipolar disorder is associated with progressive changes in gray matter volume (GMV), particularly in brain structures involved in emotional regulation and expression. The majority of these studies however, have been cross-sectional in nature. In this study we compared baseline and follow-up scans in groups of bipolar disorder and healthy subjects. We hypothesized bipolar disorder subjects would demonstrate significant GMV changes over time. A total of 58 bipolar disorder and 48 healthy subjects participated in structural magnetic resonance imaging (MRI). Subjects were rescanned 3-34 months after their baseline MRI. MRI images were segmented, normalized to standard stereotactic space, and compared voxel-by-voxel using statistical parametrical mapping software (SPM2). A model was developed to investigate differences in GMV at baseline, and associated with time and episodes, as well as in comparison to healthy subjects. We observed increases in GMV in bipolar disorder subjects across several brain regions at baseline and over time, including portions of the prefrontal cortex as well as limbic and subcortical structures. Time-related changes differed to some degree between adolescent and adult bipolar disorder subjects. The interval between scans positively correlated with GMV increases in bipolar disorder subjects in portions of the prefrontal cortex, and both illness duration and number of depressive episodes were associated with increased GMV in subcortical and limbic structures. Our findings support suggestions that widely observed progressive neurofunctional changes in bipolar disorder patients may be related to structural brain abnormalities in anterior limbic structures. Abnormalities largely involve regions previously noted to be integral to emotional expression and regulation, and appear to vary by age. © 2011 John Wiley and Sons A/S.

  20. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  1. Transient Stuttering in Catatonic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    Anthony B. Joseph

    1991-01-01

    Full Text Available Two cases of transient stuttering occurring in association with catatonia and bipolar disorder are described. Affective decompensation has been associated with lateralized cerebral dysfunction, and it is hypothesized that in some bipolar catatonic patients a concomitant disorder of the lateralization of language function may lead to a variety of clinical presentations including aphasia, mutism, and stuttering.

  2. Swimming in Deep Water: Childhood Bipolar Disorder

    Science.gov (United States)

    Senokossoff, Gwyn W.; Stoddard, Kim

    2009-01-01

    The authors focused on one parent's struggles in finding a diagnosis and intervention for a child who had bipolar disorder. The authors explain the process of identification, diagnosis, and intervention of a child who had bipolar disorder. In addition to the personal story, the authors provide information on the disorder and outline strategies…

  3. Bipolar Disorder and Cognitive Therapy: A Commentary

    Science.gov (United States)

    Riskind, John H.

    2005-01-01

    This article comments on the three articles (Leahy, 2005; Newman, 2005; and Reilly-Harrington & Knauz, 2005) that deal with the applications of cognitive therapy to treatment of bipolar disorder. They focus on the uses of cognitive therapy in treating three important facets of the special problems of bipolar patients: rapid cycling, severe…

  4. Perceived parental rearing of bipolar offspring

    NARCIS (Netherlands)

    Reichart, C. G.; van der Ende, J.; Hillegers, M. H. J.; Wals, M.; Bongers, I. L.; Nolen, W. A.; Ormel, J.; Verhulst, F. C.

    Objective: To explore the impact of growing up with a parent with a bipolar disorder. First, we compared parental rearing behavior perceived by young adult offspring of bipolar parents with parental rearing behavior perceived by same aged young adults from the general population. Secondly, we

  5. Cognitive behavioral therapy for bipolar disorders

    OpenAIRE

    Lotufo Neto, Francisco

    2004-01-01

    Descrição dos objetivos e principais técnicas da terapia comportamental cognitiva usadas para a psicoterapia das pessoas com transtorno bipolar.Objectives and main techniques of cognitive behavior therapy for the treatment of bipolar disorder patients are described.

  6. Optomechanical transistor with mechanical gain

    Science.gov (United States)

    Zhang, X. Z.; Tian, Lin; Li, Yong

    2018-04-01

    We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultralong delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.

  7. Cognitive deficits in bipolar disorders: Implications for emotion.

    Science.gov (United States)

    Lima, Isabela M M; Peckham, Andrew D; Johnson, Sheri L

    2018-02-01

    Prominent cognitive deficits have been documented in bipolar disorder, and multiple studies suggest that these deficits can be observed among non-affected first-degree relatives of those with bipolar disorder. Although there is variability in the degree of cognitive deficits, these deficits are robustly relevant for functional outcomes. A separate literature documents clear difficulties in emotionality, emotion regulation, and emotion-relevant impulsivity within bipolar disorder, and demonstrates that these emotion-relevant variables are also central to outcome. Although cognitive and emotion domains are typically studied independently, basic research and emergent findings in bipolar disorder suggest that there are important ties between cognitive deficits and the emotion disturbances observed in bipolar disorder. Understanding these relationships has relevance for fostering more integrative research, for clarifying relevant aspects related to functionality and vulnerability within bipolar disorder, and for the development of novel treatment interventions. Bipolar disorder (BD) is a severe psychiatric illness that has been ranked as one of the 20 leading medical causes of disability (WHO, 2011). BD has been shown to be the psychiatric disorder with the highest rates of completed suicide across two major cohort studies (Ilgen et al., 2010; Nordentoft, Mortensen, & Pedersen, 2011). In a cross-national representative sample, one in four persons diagnosed with bipolar I disorder reported a suicide attempt (Merikangas et al., 2011). Rates of relapse remain high despite available treatments (Gitlin, Swendsen, Heller, & Hammen, 1995), and in the year after hospitalization for manic episode, two-thirds of patients do not return to work (Strakowski et al., 1998). Poverty, homelessness, and incarceration are all too common (Copeland et al., 2009). Despite the often poor outcomes, there is also evidence for outstanding accomplishments and creativity among those with milder

  8. 2017 Bipolar Plate Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kopasz, John P. [Argonne National Lab. (ANL), Argonne, IL (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States); Schenck, Deanna [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-17

    The Bipolar Plate (BP) Workshop was held at USCAR1 in Southfield, Michigan on February 14, 2017 and included 63 participants from industry, government agencies, universities, and national laboratories with expertise in the relevant fields. The objective of the workshop was to identify research and development (R&D) needs, in particular early-stage R&D, for bipolar plates for polymer electrolyte membrane (PEM) fuel cells for transportation applications. The focus of the workshop was on materials, manufacturing, and design aspects of bipolar plates with the goal of meeting DOE’s 2020 bipolar plate targets. Of special interest was the cost target of ≤$3/kW for the bipolar plate.

  9. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  11. European Network of Bipolar Research Expert Centre (ENBREC)

    DEFF Research Database (Denmark)

    Henry, Chantal; Andreassen, Ole A; Barbato, Angelo

    2013-01-01

    Bipolar disorders rank as one of the most disabling illnesses in working age adults worldwide. Despite this, the quality of care offered to patients with this disorder is suboptimal, largely due to limitations in our understanding of the pathology. Improving this scenario requires the development...... centres across Europe can collaborate on a wide range of basic science and clinical programmes using shared protocols. This paper is to describe the network and how it aims to improve the quality and effectiveness of research in a neglected priority area....... of a critical mass of expertise and multicentre collaborative projects. Within the framework of the European FP7 programme, we developed a European Network of Bipolar Research Expert Centres (ENBREC) designed specifically to facilitate EU-wide studies. ENBREC provides an integrated support structure...... facilitating research on disease mechanisms and clinical outcomes across six European countries (France, Germany, Italy, Norway, Spain and the UK). The centres are adopting a standardised clinical assessment that explores multiple aspects of bipolar disorder through a structured evaluation designed to inform...

  12. A randomised controlled trial of time limited CBT informed psychological therapy for anxiety in bipolar disorder.

    Science.gov (United States)

    Jones, Steven; McGrath, Elly; Hampshire, Kay; Owen, Rebecca; Riste, Lisa; Roberts, Chris; Davies, Linda; Mayes, Debbie

    2013-02-15

    Anxiety comorbidity is common in bipolar disorder and is associated with worse treatment outcomes, greater risk of self harm, suicide and substance misuse. To date however there have been no psychological interventions specifically designed to address this problem. The primary objective of this trial is to establish the acceptability and feasibility of a new integrated intervention for anxiety in bipolar disorder designed in collaboration with individuals with personal experience of both problems. Single blind randomised controlled trials to assess the feasibility and acceptability of a time limited CBT informed psychological intervention for anxiety in bipolar disorder (AIBD) compared with treatment as usual. Participants will be recruited from across the North West of England from specialist mental health services and through primary care and self referral. The primary outcome of the study is the feasibility and acceptability of AIBD assessed by recruitment to target and retention to follow-up, as well as absence of untoward incidents associated with AIBD. We will also estimate the effect size of the impact of the intervention on anxiety and mood outcomes, as well as calculate preliminary estimates of cost-effectiveness and investigate potential mechanisms for this (stigma, self appraisal and stability of social rhythms). This is the first trial of an integrated intervention for anxiety in bipolar disorder. It is of interest to researchers involved in the development of new therapies for bipolar disorder as well as indicating the wider potential for evaluating approaches to the treatment of comorbidity in severe mental illness.

  13. Controlling morphology and molecular order of solution-processed organic semiconductors for transistors

    NARCIS (Netherlands)

    Li, X.

    2012-01-01

    As a potential low-cost alternative to traditional amorphous-silicon based devices, organic field-effect transistors (OFETs) are expected to be incorporated into all-plastic integrated circuits and flexible display backplanes. More recently, breakthroughs have been made in the performance of OFETs

  14. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  15. Protonic transistors from thin reflecting films

    Energy Technology Data Exchange (ETDEWEB)

    Ordinario, David D.; Phan, Long; Jocson, Jonah-Micah [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Nguyen, Tam [Department of Chemistry, University of California, Irvine, California 92697 (United States); Gorodetsky, Alon A., E-mail: alon.gorodetsky@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-01-01

    Ionic transistors from organic and biological materials hold great promise for bioelectronics applications. Thus, much research effort has focused on optimizing the performance of these devices. Herein, we experimentally validate a straightforward strategy for enhancing the high to low current ratios of protein-based protonic transistors. Upon reducing the thickness of the transistors’ active layers, we increase their high to low current ratios 2-fold while leaving the other figures of merit unchanged. The measured ratio of 3.3 is comparable to the best values found for analogous devices. These findings underscore the importance of the active layer geometry for optimum protonic transistor functionality.

  16. Transistors using crystalline silicon devices on glass

    Science.gov (United States)

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  17. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  18. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  19. A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis.

    Science.gov (United States)

    Han, Ying; Lu, Zhenyu; Du, Zhenguang; Luo, Qi; Chen, Sheng

    2018-05-01

    Bipolar disorder is often mis-diagnosed as unipolar depression in the clinical diagnosis. The main reason is that, different from other diseases, bipolarity is the norm rather than exception in bipolar disorder diagnosis. YinYang bipolar fuzzy set captures bipolarity and has been successfully used to construct a unified inference mathematical modeling method to bipolar disorder clinical diagnosis. Nevertheless, symptoms and their interrelationships are not considered in the existing method, circumventing its ability to describe complexity of bipolar disorder. Thus, in this paper, a YinYang bipolar fuzzy multi-criteria group decision making method to bipolar disorder clinical diagnosis is developed. Comparing with the existing method, the new one is more comprehensive. The merits of the new method are listed as follows: First of all, multi-criteria group decision making method is introduced into bipolar disorder diagnosis for considering different symptoms and multiple doctors' opinions. Secondly, the discreet diagnosis principle is adopted by the revised TOPSIS method. Last but not the least, YinYang bipolar fuzzy cognitive map is provided for the understanding of interrelations among symptoms. The illustrated case demonstrates the feasibility, validity, and necessity of the theoretical results obtained. Moreover, the comparison analysis demonstrates that the diagnosis result is more accurate, when interrelations about symptoms are considered in the proposed method. In a conclusion, the main contribution of this paper is to provide a comprehensive mathematical approach to improve the accuracy of bipolar disorder clinical diagnosis, in which both bipolarity and complexity are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Detection of saliva-range glucose concentrations using organic thin-film transistors

    International Nuclear Information System (INIS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-01-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  1. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  2. Principles of transistor circuits introduction to the design of amplifiers, receivers and digital circuits

    CERN Document Server

    Amos, S W

    2013-01-01

    Principles of Transistor Circuits: Sixth Edition discusses the principles, concepts, and practices involved integrated circuits. The current edition includes up-to-date circuits, the section on thyristors has been revised to give more information on modern types, and dated information has been eliminated. The book covers related topics such as semiconductors and junction diodes; the principles behind transistors; and common amplifiers. The book also covers bias and DC stabilization; large-signal and small-signal AF amplifiers; DC and pulse amplifiers; sinusoidal oscillators; pulse and sawtooth

  3. An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

    International Nuclear Information System (INIS)

    Gao Peijun; Min Hao; Oh, N J

    2009-01-01

    A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative g m -cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply. (semiconductor integrated circuits)

  4. Lower switch rate in depressed patients with bipolar II than bipolar I disorder treated adjunctively with second-generation antidepressants

    NARCIS (Netherlands)

    Altshuler, LL; Suppes, T; Nolen, WA; Leverich, G; Keck, PE; Frye, MA; Kupka, R; McElroy, SL; Grunze, H; Kitchen, CMR; Post, R; Black, D.O.

    Objectives: The authors compared the switch rate into hypomania/mania in depressed patients treated with second-generation antidepressants who had either bipolar I or bipolar II disorder. Method: In a 10-week trial, 184 outpatients with bipolar depression (134 with bipolar I disorder, 48 with

  5. Brief Report: A Family Risk Study Exploring Bipolar Spectrum Problems and Cognitive Biases in Adolescent Children of Bipolar Parents

    Science.gov (United States)

    Espie, Jonathan; Jones, Steven H.; Vance, Yvonne H.; Tai, Sara J.

    2012-01-01

    Children of parents with bipolar disorder are at increased risk of bipolar spectrum diagnoses. This cross-sectional study explores cognitive factors in the prediction of vulnerability to bipolar disorder. Adolescents at high-risk (with a parent with bipolar disorder; n = 23) and age and gender matched adolescents (n = 24) were recruited. Parent…

  6. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    Science.gov (United States)

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  7. Simple Exact Algorithm for Transistor Sizing of Low-Power High-Speed Arithmetic Circuits

    Directory of Open Access Journals (Sweden)

    Tooraj Nikoubin

    2010-01-01

    Full Text Available A new transistor sizing algorithm, SEA (Simple Exact Algorithm, for optimizing low-power and high-speed arithmetic integrated circuits is proposed. In comparison with other transistor sizing algorithms, simplicity, accuracy, independency of order and initial sizing factors of transistors, and flexibility in choosing the optimization parameters such as power consumption, delay, Power-Delay Product (PDP, chip area or the combination of them are considered as the advantages of this new algorithm. More exhaustive rules of grouping transistors are the main trait of our algorithm. Hence, the SEA algorithm dominates some major transistor sizing metrics such as optimization rate, simulation speed, and reliability. According to approximate comparison of the SEA algorithm with MDE and ADC for a number of conventional full adder circuits, delay and PDP have been improved 55.01% and 57.92% on an average, respectively. By comparing the SEA and Chang's algorithm, 25.64% improvement in PDP and 33.16% improvement in delay have been achieved. All the simulations have been performed with 0.13 m technology based on the BSIM3v3 model using HSpice simulator software.

  8. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  9. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  10. Optimization of ultra-low-power CMOS transistors

    International Nuclear Information System (INIS)

    Stockinger, M.

    2000-01-01

    Ultra-low-power CMOS integrated circuits have constantly gained importance due to the fast growing portable electronics market. High-performance applications like mobile telephones ask for high-speed computations and low stand-by power consumption to increase the actual operating time. This means that transistors with low leakage currents and high drive currents have to be provided. Common fabrication methods will soon reach their limits if the on-chip feature size of CMOS technology continues to shrink at this very fast rate. New device architectures will help to keep track with the roadmap of the semiconductor industry. Especially doping profiles offer much freedom for performance improvements as they determine the 'inner functioning' of a transistor. In this work automated doping profile optimization is performed on MOS transistors within the TCAD framework SIESTA. The doping between and under the source/drain wells is discretized on an orthogonal optimization grid facilitating almost arbitrary two-dimensional shapes. A linear optimizer issued to find the optimum doping profile by variation of the doping parameters utilizing numerical device simulations with MINIMOS-NT. Gaussian functions are used in further optimization runs to make the doping profiles smooth. Two device generations are considered, one with 0.25 μm, the other with 0.1 μm gate length. The device geometries and source/drain doping profiles are kept fixed during optimization and supply voltages are chosen suitable for ultra-low-power purposes. In a first optimization study the drive current of NMOS transistors is maximized while keeping the leakage current below a limit of 1 pA/μm. This results in peaking channel doping devices (PCD) with narrow doping peaks placed asymmetrically in the channel. Drive current improvements of 45 % and 71 % for the 0.25 μm and 0.1 μm devices, respectively, are achieved compared to uniformly doped devices. The PCD device is studied in detail and explanations for

  11. VALPROATE, BIPOLAR DISORDER AND POLYCYSTIC OVARIAN SYNDROME.

    Science.gov (United States)

    Okanović, Milana; Zivanović, Olga

    2016-01-01

    Polycystic ovarian syndrome is a syndrome of ovarian dysfunction with the principal features of hyperandrogenism and polycystic ovary morphology. A large number of studies conducted on this topic have suggested a possible role of anticonvulsants, particularly valproate, in the pathogenesis or risk factors associated with polycystic ovarian syndrome. Bipolar treatment guidelines from Canada and the United States of America recommend valproate as the first line strategy in the acute treatment of bipolar disorder. Most persons with bipolar disorder require maintenance treatment. Long-term administration of valproate in women with bipolar disorder or epilepsy is believed to result in the increased risk of hyperandrogenism, menstrual abnormalities and polycystic ovaries. Valproate may also increase the risk of infertility and other associated symptoms of polycystic ovarian syndrome. Therefore, particular caution is indicated in the use of valproate in women of reproductive age. The treatment of the female patients with bipolar disorder presents various challenges for the clinician. Every woman of reproductive age needs to know the risk and benefits of her pharmacologic treatment options. Bipolar disorder should be considered chronic disorder, whose development is largely affected by hormonal changes and reproductive cycle in women. These issues should be researched more thoroughly in order to opt for the most appropriate treatment in women with bipolar disorder.

  12. Distinctions of bipolar disorder symptoms in adolescence.

    Science.gov (United States)

    Gudiene, Devika; Leskauskas, Darius; Markeviciūte, Aurelija; Klimavicius, Dalius; Adomaitiene, Virginija

    2008-01-01

    Bipolar disorder in adolescents is a serious mental illness with problematic diagnosis that adversely affects social, academic, emotional, and family functioning. The objective of this study was to analyze features of premorbid and clinical symptoms, comorbidity, and course of bipolar disorder in adolescence. Data for analysis were collected from all case histories (N=6) of 14-18-year-old patients, hospitalized with diagnosis of bipolar disorder in the Unit of Children's and Adolescents' Psychiatry, Department of Psychiatry, Hospital of Kaunas University of Medicine, during the period from 2000 to 2005. Analysis of bipolar disorder course showed that five patients previously had been diagnosed with an episode of depression. The most frequent symptoms typical to bipolar disorder were disobedience and impulsive behavior, rapid changes of mood. The most common premorbid features were frequent changes of mood, being active in communication, hyperactive behavior. Adolescence-onset bipolar disorder was frequently comorbid with emotionally instable personality disorder, borderline type. Findings of the study confirm the notion that oppositional or impulsive behavior, rapid changes of mood without any reason, dysphoric mood and euphoric mood episodes with increased energy were cardinal symptoms of bipolar disorder with mania in adolescents. Most frequent premorbid features of these patients were quite similar to attention-deficit/hyperactivity disorder making differential diagnosis problematic.

  13. Liquid crystals for organic transistors (Conference Presentation)

    Science.gov (United States)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  14. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing.

    Science.gov (United States)

    Li, Xiaoxi; Cheng, Ruoyu; Sun, Zhiyong; Su, Wei; Pan, Guoqing; Zhao, Song; Zhao, Jinzhong; Cui, Wenguo

    2017-10-01

    Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated

  15. Nursing processes used in the treatment of patients with bipolar disorder.

    NARCIS (Netherlands)

    Goossens, P.J.J.; Achterberg, T. van; Knoppert-van der Klein, E.A.M.

    2007-01-01

    Psychiatric nurses are increasingly being involved in the provision of care for outpatients with bipolar disorder. The establishment of a body of knowledge for the nursing of these patients is vital for the development of integrated evidence-based treatment. The literature for the period January

  16. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  17. Simulation of a spiking neuron circuit using carbon nanotube transistors

    International Nuclear Information System (INIS)

    Najari, Montassar; El-Grour, Tarek; Jelliti, Sami; Hakami, Othman Mousa

    2016-01-01

    Neuromorphic engineering is related to the existing analogies between the physical semiconductor VLSI (Very Large Scale Integration) and biophysics. Neuromorphic systems propose to reproduce the structure and function of biological neural systems for transferring their calculation capacity on silicon. Since the innovative research of Carver Mead, the neuromorphic engineering continues to emerge remarkable implementation of biological system. This work presents a simulation of an elementary neuron cell with a carbon nanotube transistor (CNTFET) based technology. The model of the cell neuron which was simulated is called integrate and fire (I&F) model firstly introduced by G. Indiveri in 2009. This circuit has been simulated with CNTFET technology using ADS environment to verify the neuromorphic activities in terms of membrane potential. This work has demonstrated the efficiency of this emergent device; i.e CNTFET on the design of such architecture in terms of power consumption and technology integration density.

  18. Simulation of a spiking neuron circuit using carbon nanotube transistors

    Energy Technology Data Exchange (ETDEWEB)

    Najari, Montassar, E-mail: malnjar@jazanu.edu.sa [Departement of Physics, Faculty of Sciences, University of Gabes, Gabes (Tunisia); IKCE unit, Jazan University, Jazan (Saudi Arabia); El-Grour, Tarek, E-mail: grour-tarek@hotmail.fr [Departement of Physics, Faculty of Sciences, University of Gabes, Gabes (Tunisia); Jelliti, Sami, E-mail: sjelliti@jazanu.edu.sa [IKCE unit, Jazan University, Jazan (Saudi Arabia); Hakami, Othman Mousa, E-mail: omhakami@jazanu.edu.sa [IKCE unit, Jazan University, Jazan (Saudi Arabia); Faculty of Sciences, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Neuromorphic engineering is related to the existing analogies between the physical semiconductor VLSI (Very Large Scale Integration) and biophysics. Neuromorphic systems propose to reproduce the structure and function of biological neural systems for transferring their calculation capacity on silicon. Since the innovative research of Carver Mead, the neuromorphic engineering continues to emerge remarkable implementation of biological system. This work presents a simulation of an elementary neuron cell with a carbon nanotube transistor (CNTFET) based technology. The model of the cell neuron which was simulated is called integrate and fire (I&F) model firstly introduced by G. Indiveri in 2009. This circuit has been simulated with CNTFET technology using ADS environment to verify the neuromorphic activities in terms of membrane potential. This work has demonstrated the efficiency of this emergent device; i.e CNTFET on the design of such architecture in terms of power consumption and technology integration density.

  19. Transfer-free fabrication of graphene transistors

    OpenAIRE

    Wessely, P.J.; Wessely, F.; Birinci, E.; Schwalke, U.; Riedinger, B.

    2012-01-01

    The authors invented a method to fabricate graphene transistors on oxidized silicon wafers without the need to transfer graphene layers. To stimulate the growth of graphene layers on oxidized silicon, a catalyst system of nanometer thin aluminum/nickel double layer is used. This catalyst system is structured via liftoff before the wafer enters the catalytic chemical vapor deposition (CCVD) chamber. In the subsequent methane-based growth process, monolayer graphene field-effect transistors and...

  20. Diffusion pipes at PNP switching transistors

    International Nuclear Information System (INIS)

    Sachelarie, D.; Postolache, C.; Gaiseanu, F.

    1976-01-01

    The appearance of the ''diffusion pipes'' greatly affects the fabrication of the PNP high-frequency/very-fast-switching transistors. A brief review of the principal problems connected to the presence of these ''pipes'' is made. A research program is presented which permitted the fabrication of the PNP switching transistors at ICCE-Bucharest, with transition frequency fsub(T) = 1.2 GHz and storage time tsub(s) = 4.5 ns. (author)