WorldWideScience

Sample records for bipolar surface electrodes

  1. Composite substrate for bipolar electrodes

    Science.gov (United States)

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  2. Bipolar Electrode Sample Preparation Devices

    Science.gov (United States)

    Wang, Yi (Inventor); Song, Hongjun (Inventor); Pant, Kapil (Inventor)

    2017-01-01

    An analyte selection device can include: a body defining a fluid channel having a channel inlet and channel outlet; a bipolar electrode (BPE) between the inlet and outlet; one of an anode or cathode electrically coupled with the BPE on a channel inlet side of the BPE and the other of the anode or cathode electrically coupled with the BPE on a channel outlet side of the BPE; and an electronic system operably coupled with the anode and cathode so as to polarize the BPE. The fluid channel can have any shape or dimension. The channel inlet and channel outlet can be longitudinal or lateral with respect to the longitudinal axis of the channel. The BPE can be any metallic member, such as a flat plate on a wall or mesh as a barrier BPE. The anode and cathode can be located at a position that polarizes the BPE.

  3. Pelvic-floor rehabilitation, Part 1: Comparison of two surface electrode placements during stimulation of the pelvic-floor musculature in women who are continent using bipolar interferential currents.

    Science.gov (United States)

    Dumoulin, C; Seaborne, D E; Quirion-DeGirardi, C; Sullivan, S J

    1995-12-01

    of urinary stress incontinence in women postpartum. [Dumoulin C, Seaborne DE, Quirion-DeGirardi C, Sullivan SJ. Pelvic-floor rehabilitation, part 1: comparison of two surface electrode placements during stimulation of the pelvic-floor musculature in women who are continent using bipolar interferential currents.

  4. Identification of local myocardial repolarization time by bipolar electrode potential.

    Science.gov (United States)

    Namba, Tsunetoyo; Todo, Takahiro; Yao, Takenori; Ashihara, Takashi; Haraguchi, Ryo; Nakazawa, Kazuo; Ikeda, Takanori; Ohe, Tohru

    2007-01-01

    The aim of this study was to investigate whether bipolar electrode potentials (BEPs) reflect local myocardial repolarization dynamics, using computer simulation. Simulated action potential and BEP mapping of myocardial tissue during fibrillation was performed. The BEP was modified to make all the fluctuations have the same polarity. Then, the modified BEP (mBEP) was transformed to "dynamic relative amplitude" (DRA) designed to make all the fluctuations have the similar amplitude. The repolarization end point corresponded to the end of the repolarization-related small fluctuation that clearly appeared in the DRA of mBEP. Using the DRA of mBEP, we could reproduce the repolarization dynamics in the myocardial tissue during fibrillation. The BEP may facilitate identifying the repolarization time. Furthermore, BEP mapping has the possibility that it would be available for evaluating repolarization behavior in myocardial tissue even during fibrillation. The accuracy of activation-recovery interval was also reconfirmed.

  5. Three-dimension finite-element analyses of multiple electrodes bipolar RF global endometrial ablation

    Science.gov (United States)

    Hu, Tao; Panhao, Tang; Xiao, Jiahua

    2015-03-01

    Radio-frequency ablation (RFA) is a minimally invasive surgical procedure to thermally ablate the targeted diseased tissue. There have been many finite-element method (FEM) studies of cardiac and hepatic RFA, but hardly find any FEM study on endometrial ablation for abnormal uterine bleeding. In this paper, a FEM model was generated to analyze the temperature distribution of bipolar RF global endometrial ablation with three pairs of bipolar electrodes placed at the perimeter of the uterine cavity. COMSOL was utilized to calculate the RF electric fields and temperature fields by numerically solving the bioheat equation in the triangle uterine cavity range. The 55°C isothermal surfaces show the shape of the ablation dimensions (depth and width), which reasonably matched the experimental results.

  6. Radio frequency ablation in the rabbit lung using wet electrodes: comparison of monopolar and dual bipolar electrode mode

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Park, Sang Hee; Han, Young Min; Chung, Gyung Ho; Kwak, Hyo Sung; Jeon, Soo Bin; Lee, Yong Chul

    2006-01-01

    To compare the effect of radio frequency ablation (RFA) on the dimensions of radio frequency coagulation necrosis in a rabbit lung using a wet electrode in monopolar mode with that in dual electrode bipolar mode at different infusion rates (15 mm/hr versus 30 ml/hr) and saline concentrations (0.9% normal versus 5.8% hypertonic saline. Fifty ablation zones (one ablation zone in each rabbit) were produced in 50 rabbit using one or two 16-guage wet electrodes with a 1- cm active tip. The RFA system used in the monopolar and dual electrode wet bipolar RFA consisted of a 375-kHz generator (Elektrotom HiTT 106, Berchtold, Medizinelektronik, Germany). The power used was 30 watts and the exposure time was 5 minutes. The rabbits were assigned to one of five groups. Group A (n = 10) was infused with 0.9% NaCl used at a rate of 30 ml/hr in a monopolar mode. Groups B (n=10) and C (n=10) were infused with 0.9% NaCl at a rate of 15 and 30ml/hr, respectively in dual electrode bipolar mode; groups D (n=10) and E (n=10) were infused with 5.8% NaCl at a rate of 15 and 30 ml/hr, respectively in a dual electrode bipolar mode. The dimensions of the ablation zones in the gross specimens from the groups were compared using one-way analysis of variance by means of the Scheffe test (post-hoc testing). The mean largest diameter of the ablation zones was larger in dual electrode bipolar mode (30.9 ± 4.4 mm) than in monopolar mode (22.5 ± 3.5 mm). The mean smallest diameter of the ablation zones was larger in dual electrode bipolar mode (22.3 ± 2.5 mm) than in monopolar mode (19.5 ± 3.5 mm). There were significant differences in the largest and smallest dimension between the monopolar (group A ) ana dual electrode wet bipolar mode (groups B-E). In dual electrode bipolar mode, the mean largest diameter of the ablation zones was larger at an infusion rate of 15 ml/hr (34.2 ± 4.0 mm) than at 30 ml/hr (27.6 ± 0.0 mm), and the mean smallest diameter of the ablation zones was larger at an

  7. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  8. Characterization and processing of bipolar semiconductor electrodes in a dual electrolyte cell

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S.; Musiani, M.M. [Istituto di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)

    1995-11-01

    Photoelectrochemical (PEC) processes may be induced at both faces of a bipolar semiconductor electrode without application of metal contacts by using the dual electrolyte arrangement -- metal/electrolyte 1/semiconductor/electrolyte 2/metal -- and by applying a voltage to the end metal electrodes. The possibilities of semiconductor characterization (determination of action spectra and doping level) and processing (photoetching and metal electrodeposition) are discussed on the basis of model experiments, performed with n-InP wafers. The advantages of this approach over traditional PEC and electroless techniques are discussed with particular emphasis on etching.

  9. Transurethral en bloc resection with bipolar button electrode for non-muscle invasive bladder cancer.

    Science.gov (United States)

    Zhang, Junfeng; Wang, Longsheng; Mao, Shiyu; Liu, Mengnan; Zhang, Wentao; Zhang, Ziwei; Guo, Yadong; Huang, Bisheng; Yan, Yang; Huang, Yong; Yao, Xudong

    2018-04-01

    Transurethral resection of bladder tumor (TURBT) using a wire loop is considered the gold standard for staging and treating non-muscle invasive bladder cancer (NMIBC). TURBT is associated with serious disadvantages that facilitate tumor recurrence. The present study evaluated the safety and efficacy of the bipolar button electrode for en bloc resection of NMIBC. From January 2013 to July 2016, 82 consecutive patients newly diagnosed with NMIBC received transurethral en bloc resection with bipolar button electrode. Operative details, pathological result, and intraoperative and postoperative complications regarded as safety outcomes were documented. Each patient was followed up for ≥ 18 months. A total of 118 neoplasms were removed en bloc from 82 patients. The mean tumor diameter was 2.42 ± 1.34 cm. The average operation time was 35 ± 14 min. No complications such as bladder bleeding, vesicle perforation, and obturator nerve reflex occurred during the treatment. Pathological evaluations showed urothelial carcinoma with stage Ta low grade in 26 patients, T1 high grade in 51 patients, and T2 high grade in 5 patients. In addition, the bladder detrusor muscle layer was provided in all cases. The 18-month recurrence-free survival was 88.5% (23/26) and 74.5% (38/51) for Ta and T1 patients, respectively. The current results demonstrated that transurethral en bloc resection with bipolar button electrode is an effective, feasible, and safe treatment for NMIBC.

  10. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.

    Science.gov (United States)

    Zhang, Chunhui; Lin, Hui; Chen, Jun; Zhang, Wenwen

    2013-01-01

    Electrochemical oxidation is a promising technology for the treatment ofbio-refractory wastewater. In this research, advanced treatment of coking wastewater which had previously undergone A/O (anaerobic-aerobic biological) treatment was investigated over Ti/RuO2 x IrO2 anode, stainless steel cathode and coke powder particle electrodes which were packed into the electrodes in a bipolar three-dimensional electrode reactor (BTDR). The results showed that the removal efficiency of COD and ammonia nitrogen increased with applied current density. The main influencing factors of BTDR were evaluated by an orthogonal test, including reaction time, plate distance, current density, plate amounts and aeration flow rate. With reaction time of 60 min, plate distance of 1.0 cm, current density of 20 mA/cm2 and plate amounts of four pairs, most of the contaminants in coking wastewater can be remediated by BTDR, which can then meet the discharge limit for coking wastewater in China. For organic pollutants, 12 kinds of organic pollutants can be completely removed, and the removal efficiencies of 11 kinds of organic pollutants are between 13.3 and 70.3% by advanced treatment with BTDR. We conclude that there is great potential for BTDR in engineering applications as a final treatment for coking wastewater.

  11. Investigation into the origin of the noise of surface electrodes

    NARCIS (Netherlands)

    Huigen, E.; Peper, A.; Grimbergen, C. A.

    2002-01-01

    In the recording of biomedical signals, a significant noise component is introduced by the electrode. The magnitude of this noise is considerably higher than the equivalent thermal noise from the electrode impedance. As the noise in surface electrodes limits the resolution of biopotential

  12. Studying the thermal performance of a bipolar radiofrequency ablation with an improved electrode matrix system: In vitro experiments and modelling

    International Nuclear Information System (INIS)

    Shao, Y.L.; Leo, H.L.; Chua, K.J.

    2017-01-01

    Highlights: • We made judicious modification to the Penne’s equation in the process of developing our model. We consider the liver to consist of tumor and health tissue. The model has been validated with experimental data. • The proposed electrode system can reduce the tissue volume damage outside the electrodes. The designed building unit with 10 mm inter-electrode distance is the optimal choice to achieve desired ablation zone. • The influence of blood vessel is relatively small for using this electrode system. A spatial distance of 13 mm is deemed as the safe distance between the wall of the central probe and the large vessel. • This proposed electrode system demonstrated higher ablation stability even for tissue regions that are close to blood vessels. The system is better suited for matrix-type RFA. - Abstract: Radiofrequency ablation (RFA) is becoming an effective treatment method for both primary tumors and tumors that have metastasized. Large tumors in difficult anatomic locations can be treated by RFA technologies. However, constant size and regular shape of damage zones cannot be obtained by recent RFA technologies. The aim of this study is to optimize the stability of RFA treatment by employing a newly proposed bipolar electrode system. A hepatic RFA mathematical model is developed by the finite element method approach. The model is validated with the experimental data. This model is then used to verify the reliability and stability of the proposed electrode system. Simulated results showed the cross section of the ablation zone utilizing designed electrode system approximates a square. In addition, the fraction of the necrosed tissue with this electrode pattern turned out to be larger than the fraction with single-probe RFA techniques. This system demonstrated higher ablation stability even for tissue regions that are close to blood vessels. The proposed electrode system is better suited for matrix-type RFA.

  13. Reversibility of bacterial adhesion at an electrode surface

    NARCIS (Netherlands)

    Poortinga, AT; Busscher, HJ; Bos, R.R.M.

    2001-01-01

    Deposition of four bacterial strains from a 1 mM potassium phosphate buffer (pH 7) to an indium tin oxide (ITO) electrode surface has been studied in a parallel plate flow chamber at three electrode potentials (-0.2, 0.1, and 0.5 V). Capacitance measurements demonstrated that the ITO surface was

  14. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells

    International Nuclear Information System (INIS)

    De Asis, Edward D Jr; Wood, Sally; Leung, Joseph; Nguyen, Cattien V

    2010-01-01

    Identifying the neurophysiological basis underlying learning and memory in the mammalian central nervous system requires the development of biocompatible, high resolution, low electrode impedance electrophysiological probes; however, physically, electrode impedance will always be finite and, at times, large. Herein, we demonstrate through experiments performed on frog sartorius muscle that single multi-walled carbon nanotube electrode (sMWNT electrode) geometry and placement are two degrees of freedom that can improve biocompatibility of the probe and counteract the detrimental effects of MWNT/electrolyte interface impedance on the stimulation efficiency and signal-to-noise ratio (SNR). We show that high aspect ratio dependent electric field enhancement at the MWNT tip can boost stimulation efficiency. Derivation of the sMWNT electrode's electrical equivalent indicates that, at low stimulus voltage regimes below 1 V, current conduction is mediated by charge fluctuation in the double layer obviating electrolysis of water, which is potentially toxic to pH sensitive biological tissue. Despite the accompanying increase in electrode impedance, a pair of closely spaced sMWNT electrodes in a two probe (bipolar) configuration maintains biocompatibility and enhances stimulation efficiency and SNR compared to the single probe (unipolar) configuration. For stimulus voltages below 1 V, the electrical equivalent verifies that current conduction in the two probe configuration still proceeds via charge fluctuation in the double layer. As an extracellular stimulation electrode, the two sMWNT electrodes comprise a current dipole that concentrates the electric field and the current density in a smaller region of sartorius; consequently, the bipolar configuration can elicit muscle fiber twitching at low voltages that preclude electrolysis of water. When recording field potentials, the bipolar configuration subtracts the potential between two points allowing for the detection of

  15. The effect of different EEG derivations on sleep staging in rats: the frontal midline–parietal bipolar electrode for sleep scoring

    International Nuclear Information System (INIS)

    Fang, Guangzhan; Zhang, Chunpeng; Xia, Yang; Lai, Yongxiu; Liu, Tiejun; You, Zili; Yao, Dezhong

    2009-01-01

    Most sleep-staging research has focused on developing and optimizing algorithms for sleep scoring, but little attention has been paid to the effect of different electroencephalogram (EEG) derivations on sleep staging. To explore the possible effects of EEG derivations, an automatic computer method was established and confirmed by agreement analysis between the computer and two independent raters, and four fronto-parietal bipolar leads were compared for sleep scoring in rats. The results demonstrated that different bipolar electrodes have significantly different sleep-staging accuracies, and that the optimal frontal electrode for sleep scoring is located at the anterior midline

  16. High surface area electrode for high efficient microbial electrosynthesis

    Science.gov (United States)

    Nie, Huarong; Cui, Mengmeng; Lu, Haiyun; Zhang, Tian; Russell, Thomas; Lovley, Derek

    2012-02-01

    Microbial electrosynthesis, a process in which microorganisms directly accept electrons from an electrode to convert carbon dioxide and water into multi carbon organic compounds, affords a novel route for the generation of valuable products from electricity or even wastewater. The surface area of the electrode is critical for high production. A biocompatible, highly conductive, three-dimensional cathode was fabricated from a carbon nanotube textile composite to support the microorganism to produce acetate from carbon dioxide. The high surface area and macroscale porous structure of the intertwined CNT coated textile ?bers provides easy microbe access. The production of acetate using this cathode is 5 fold larger than that using a planar graphite electrode with the same volume. Nickel-nanowire-modified carbon electrodes, fabricated by microwave welding, increased the surface area greatly, were able to absorb more bacteria and showed a 1.5 fold increase in performance

  17. Bipolar lead acid batteries with ceramic partitioning walls. Forming and characterization of negative electrodes; Bipolaera blybatterier med keramiska mellanvaeggar. Tillverkning och karaktaerisering av negativa elektroder

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ove; Haraldsen, Britta [Chalmers Univ. of Technology, Goeteborg (Sweden). Environmental Inorganic Chemistry

    2001-01-01

    Bipolar electrodes are built with positive and negative paste on each side of a partitioning wall (PW). The PW must be dimensional stable and shall not allow electrolyte to flow through. The process of lead infiltration in porous ceramic plates is studied in this report in combination with different methods of forming pos. and neg. halves. Plante formed negative paste can not withstand a high pressure - relief details must be included in the design. The expanders in NAM are necessary to maintain the capacity. Positive Plante formed electrodes are not proper formed due to a too high current density. Furthermore, they are very brittle. The usefulness of paste plates has been shown and the future work will be directed towards such bipolar electrodes to be included in prototype batteries.

  18. Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    OpenAIRE

    Shyu, R. F.; Yang, H.; Lee, J. -H.

    2008-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838); International audience; This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 μm thick and 500 μm wide were firstly fabricated in a negative photore...

  19. Electrochemical removal of hexavalent chromium from wastewater using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes

    Directory of Open Access Journals (Sweden)

    Hoshyar Hossini

    2015-01-01

    Full Text Available Background: In recent decades, electrocoagulation (EC has engrossed much attention as an environmental-friendly and effectiveness process. In addition, the EC process is a potential suitable way for treatment of wastewater with concern to costs and environment. The object of this study was electrochemical evaluation of chromium removal from industrial wastewater using Platinum and carbon nanotubes electrodes. Materials and Methods: The effect of key variables including pH (3–9, hexavalent chromium concentration (50–300 mg/l, supporting electrolyte (NaCl, KCl, Na2CO3 and KNO3 and its dosage, Oxidation-Reduction variations, sludge generation rate and current density (2–20 mA/cm2 was determined. Results: Based on experimental data, optimum conditions were determined in 20, 120 min, pH 3, NaCl 0.5% and 100 mg/L initial concentration of chromium. Conclusions: Removal of hexavalent chromium from the wastewater could be successfully performanced using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes.

  20. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  1. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  2. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  3. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    Science.gov (United States)

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  4. Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes

    Science.gov (United States)

    Yoon, J H; Woo, S; Hwang, E J; Hwang, I; Choi, W; Han, J K; Choi, B I

    2015-01-01

    Objective: To evaluate whether switching bipolar radiofrequency ablation (SB-RFA) using three internally cooled wet (ICW) electrodes can induce coagulations >5 cm in porcine livers with better efficiency than consecutive monopolar (CM) or switching monopolar (SM) modes. Methods: A total of 60 coagulations were made in 15 in vivo porcine livers using three 17-gauge ICW electrodes and a multichannel radiofrequency (RF) generator. RF energy (approximately 200 W) was applied in CM mode (Group A, n = 20) for 24 min, SM mode for 12 min (Group B, n = 20) or switching bipolar (SB) mode for 12 min (Group C, n = 20) in in vivo porcine livers. Thereafter, the delivered RFA energy, as well as the shape and dimension of coagulations were compared among the groups. Results: Spherical- or oval-shaped ablations were created in 30% (6/20), 85% (17/20) and 90% (18/20) of coagulations in the CM, SM and SB groups, respectively (p = 0.003). SB-RFA created ablations >5 cm in minimum diameter (Dmin) in 65% (13/20) of porcine livers, whereas SM- or CM-RFA created ablations >5 cm in only 25% (5/20) and 20% (4/20) of porcine livers, respectively (p = 0.03). The mean Dmin of coagulations was significantly larger in Group C than in Groups A and B (5.1 ± 0.9, 3.9 ± 1.2 and 4.4 ± 1.0 cm, respectively, p = 0.002) at a lower delivered RF energy level (76.8 ± 14.3, 120.9 ± 24.5 and 114.2 ± 18.3 kJ, respectively, p 5 cm in diameter with better efficiency than do SM- or CM-RFA. Advances in knowledge: SB-RFA can create large, regular ablation zones with better time–energy efficiency than do CM- or SM-RFA. PMID:25873479

  5. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  6. Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate

    OpenAIRE

    Guziejewski, Dariusz; Mirceski, Valentin; Jadresko, Dijana

    2014-01-01

    Abstract: The kinetics of surface confined electrode reactions of alizarin, vitamin B12, and vitamin K2 is measured with square-wave voltammetry over a wide pH interval, by applying the recent methodology for kinetic analysis at a constant scan rate [V. Mirceski, D. Guziejewski, K. Lisichkov, Electrochim. Acta 2013, 114, 667–673]. The reliability and the simplicity of the recent methodology is confirmed. The methodology requires analysis of the peak potential separation o...

  7. Schottky bipolar I-MOS: An I-MOS with Schottky electrodes and an open-base BJT configuration for reduced operating voltage

    Science.gov (United States)

    Kannan, N.; Kumar, M. Jagadesh

    2017-04-01

    In this paper, we have proposed a novel impact ionization MOS (I-MOS) structure, called the Schottky bipolar I-MOS, with Schottky source and drain electrodes and utilizing the open-base bipolar junction transistor (BJT) configuration for achieving reduction in the operating voltage of the I-MOS transistor. We report, using 2-D simulations, a low operating voltage (∼1.1 V) and a low subthreshold swing (∼3.6 mV/Decade). For the corresponding p-i-n I-MOS, the operating voltage is ∼5.5 V. The operating voltage of the Schottky bipolar I-MOS is the lowest reported operating voltage for silicon based I-MOS transistors. The nearly 80% reduction in the operating voltage of the Schottky bipolar I-MOS makes it suitable for applications requiring low operating voltages. The Schottky bipolar I-MOS is also expected to have an improved reliability over the p-i-n I-MOS since high energy carriers, induced by impact ionization near the drain, do not have to pass under the gate region in the channel. The use of Schottky contacts instead of heavily doped source and drain regions and the low channel doping level reduces the required thermal budget for device fabrication. The low operating voltage, low subthreshold swing and possibly improved reliability of the Schottky bipolar I-MOS, makes it a potential solution for applications where steep subthreshold slope transistors are being explored as alternative to the conventional MOS transistor.

  8. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...... in contact with YSZ is covered with adsorbed oxygen which vanishes at high temperature (1000 degrees C). On Ni (YSZ) a specific layer of NiO is observed above the equilibrium potential while no surface species involving hydrogen can be identified at SOFC anode conditions. (C) 1998 Published by Elsevier...... Science B.V. All rights reserved....

  9. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  10. Improved Model for Increased Surface Recombination Current in Irradiated Bipolar Junction Transistors

    Science.gov (United States)

    Barnaby, H. J.; Vermeire, B.; Campola, M. J.

    2015-08-01

    Current gain degradation in irradiated bipolar junction transistors is primarily due to excess base current caused by enhanced carrier recombination in the emitter-base space-charge region (SCR). Radiation-induced traps at the interface between silicon and the bipolar base oxide facilitate the recombination process primarily above the sensitive emitter-base junction. This leads to an increase in surface recombination current in the SCR, which is a non-ideal component of the BJT's base current characteristic under active bias conditions. In this paper, we derive a precise analytical model for surface recombination current that captures bias dependencies typically omitted from traditional models. This improved model is validated by comparisons to these traditional approaches.

  11. An uniform DBD plasma excited by bipolar nanosecond pulse using wire-cylinder electrode configuration in atmospheric air.

    Science.gov (United States)

    Jiang, Peng-Chao; Wang, Wen-Chun; Zhang, Shuai; Jia, Li; Yang, De-Zheng; Tang, Kai; Liu, Zhi-Jie

    2014-03-25

    In this study, a bipolar nanosecond pulsed power supply with 15 ns rising time is employed to generate an uniform dielectric barrier discharge using the wire-cylinder electrode configuration in atmospheric air. The images, waveforms of pulse voltage and discharge current, and the optical emission spectra of the discharges are recorded. The rotational and vibrational temperatures of plasma are determined by comparing the simulated spectra with the experimental spectra. The effects of pulse peak voltage, pulse repetition rate and quartz tube diameter on the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 and the rotational and vibrational temperatures have been investigated. It is found that the uniform plasma with low gas temperature can be obtained, and the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 rise with increasing the pulse peak voltage and pulse repetition rate, while decrease as the increase of quartz tube diameter. In addition, under the condition of 28 kV pulse peak voltage, 150 Hz pulse repetition rate and 7 mm quartz tube diameter, the plasma gas temperature is determined to be 330 K. The results also indicate that the plasma gas temperature keep almost constant when increasing the pulse peak voltage and pulse repetition rate but increase with the increase of the quartz tube diameter. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Science.gov (United States)

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  13. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia.

    LENUS (Irish Health Repository)

    Hennessy, Robin J

    2010-09-01

    Any developmental relationship between bipolar disorder and schizophrenia engenders continuing debate. As the brain and face emerge in embryological intimacy, brain dysmorphogenesis is accompanied by facial dysmorphogenesis. 3D laser surface imaging was used to capture the facial surface of 13 male and 14 female patients with bipolar disorder in comparison with 61 male and 75 female control subjects and with 37 male and 32 female patients with schizophrenia. Surface images were analysed using geometric morphometrics and 3D visualisations to identify domains of facial shape that distinguish bipolar patients from controls and bipolar patients from those with schizophrenia. Both male and female bipolar patients evidenced significant facial dysmorphology: common to male and female patients was overall facial widening, increased width of nose, narrowing of mouth and upward displacement of the chin; dysmorphology differed between male and female patients for nose length, lip thickness and tragion height. There were few morphological differences in comparison with schizophrenia patients. That dysmorphology of the frontonasal prominences and related facial regions in bipolar disorder is more similar to than different from that found in schizophrenia indicates some common dysmorphogenesis. Bipolar disorder and schizophrenia might reflect similar insult(s) acting over slightly differing time-frames or slightly differing insult(s) acting over a similar time-frame.

  14. Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity.

    Science.gov (United States)

    Guo, Shuyue; Yan, Hailong; Wu, Fei; Zhao, Lijun; Yu, Ping; Liu, Huibiao; Li, Yuliang; Mao, Lanqun

    2017-12-05

    Graphdiyne (GDY) is recently synthesized two-dimensional carbon allotrope with hexagonal rings cross-linked by diacetylene through introducing butadiyne linkages (-C≡C-C≡C-) to form 18-C hexagons and is emerging to be fundamentally interesting and particularly useful in various research fields. In this study, we for the first time find that GDY can be used as an electrode material with reactivity tunable by electronic states and surface chemistry of GDY. To demonstrate this, GDY is oxidized into graphdiyne oxide (GDYO) that is then chemically and electrochemically reduced into chemically reduced GDYO (cr-GDYO) and electrochemically reduced GDYO (er-GDYO), respectively. Electrode reactivity of GDY and its derivatives (i.e., GDYO, cr-GDYO, and er-GDYO) is studied with hexaammineruthenium chloride ([Ru(NH 3 ) 6 ]Cl 3 ) and potassium ferricyanide (K 3 Fe(CN) 6 ) as redox probes. We find that electron transfer kinetics of the redox probes employed here at GDYs depends on the density of electronic state (DOS) and the synergetic effects of the surface chemistry as well as the hydrophilicity of the materials, and that the electron transfer kinetics at cr-GDYO and er-GDYO are faster than those at GDY and GDYO, and quite comparable with those at carbon nanotubes and graphene and its derivatives (i.e., GO, cr-GO, and er-GO). These properties, combined with the unique electronic and chemical structures of GDY, essentially enable GDY as a new kind of electrode material for fundamental studies on carbon electrochemistry and various electroanalytical applications.

  15. Stimulation of abdominal and upper thoracic muscles with surface electrodes for respiration and cough: acute studies in adult canines.

    Science.gov (United States)

    Walter, James S; Posluszny, Joseph; Dieter, Raymond; Dieter, Robert S; Sayers, Scott; Iamsakul, Kiratipath; Staunton, Christine; Thomas, Donald; Rabbat, Mark; Singh, Sanjay

    2017-06-14

    To optimize maximal respiratory responses with surface stimulation over abdominal and upper thorax muscles and using a 12-Channel Neuroprosthetic Platform. Following instrumentation, six anesthetized adult canines were hyperventilated sufficiently to produce respiratory apnea. Six abdominal tests optimized electrode arrangements and stimulation parameters using bipolar sets of 4.5 cm square electrodes. Tests in the upper thorax optimized electrode locations, and forelimb moment was limited to slight-to-moderate. During combined muscle stimulation tests, the upper thoracic was followed immediately by abdominal stimulation. Finally, a model of glottal closure for cough was conducted with the goal of increased peak expiratory flow. Optimized stimulation of abdominal muscles included three sets of bilateral surface electrodes located 4.5 cm dorsal to the lateral line and from the 8 th intercostal space to caudal to the 13 th rib, 80 or 100 mA current, and 50 Hz stimulation frequency. The maximal expired volume was 343 ± 23 ml (n=3). Optimized upper thorax stimulation included a single bilateral set of electrodes located over the 2 nd interspace, 60 to 80 mA, and 50 Hz. The maximal inspired volume was 304 ± 54 ml (n=4). Sequential stimulation of the two muscles increased the volume to 600 ± 152 ml (n=2), and the glottal closure maneuver increased the flow. Studies in an adult canine model identified optimal surface stimulation methods for upper thorax and abdominal muscles to induce sufficient volumes for ventilation and cough. Further study with this neuroprosthetic platform is warranted.

  16. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  17. Generation of metal composition gradients by means of bipolar electrodeposition

    International Nuclear Information System (INIS)

    Tisserant, Gwendoline; Fattah, Zahra; Ayela, Cédric; Roche, Jérome; Plano, Bernard; Zigah, Dodzi; Goudeau, Bertrand; Kuhn, Alexander; Bouffier, Laurent

    2015-01-01

    Highlights: • A bipolar electrochemistry approach for the preparation of surface gradients is reported. • Several metals are simultaneously deposited on a bipolar electrode. • The elemental composition and thickness of the deposit varies alongside the bipolar electrode. • The deposit affects the surface properties and exhibits a barcode feature. - Abstract: Bipolar electrochemistry is an unconventional technique that currently encounters a renewal of interest due to modern applications in the fields of analytical chemistry or materials science. The approach is particularly relevant for the preparation of asymmetric objects or surfaces such as Janus particles for example. Bipolar electrochemistry allows spatially controlled deposition of various layers from electroactive precursors, selectively at one side of a bipolar electrode. We report here the concomitant cathodic deposition of up to three different metals at the same time in a single experiment. The deposits were characterized by optical and electron microscopy imaging as well as profilometry and energy dispersive X-ray spectroscopy. As a result, the deposited layer is composed of several areas exhibiting both a composition and a thickness gradient. Such a variation directly modifies the optical and electronic properties alongside the surface and gives access to the design of composite surfaces exhibiting a visual gradient feature.

  18. Nanofluidic diode and bipolar transistor.

    Science.gov (United States)

    Daiguji, Hirofumi; Oka, Yukiko; Shirono, Katsuhiro

    2005-11-01

    Theoretical modeling of ionic distribution and transport in a nanochannel containing a surface charge on its wall, 30 nm high and 5 microm long, suggests that ionic current can be controlled by locally modifying the surface charge density through a gate electrode, even if the electrical double layers are not overlapped. When the surface charge densities at the right and left halves of a channel are the same absolute value but of different signs, this could form the basis of a nanofluidic diode. When the surface charge density at the middle part of a channel is modified, this could form the basis of a nanofluidic bipolar transistor.

  19. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  20. Surface modifications of aluminum alloy 5052 for bipolar plates using an electroless deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Chao, Chu-Lung; Ger, Ming-Der [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China); Chou, Yu-Hsien [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan (China); Lee, Shuo-Jen [Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Tao-Yuan (China)

    2008-08-15

    This study tries to replace graphite bipolar plates in fuel cells with surface-modified aluminum alloy 5052. To improve the surface characteristics of Al alloy, Ni-Mo-P coatings were deposited on the substrates under various pH values and concentrations of sodium molybdate (Na{sub 2}MoO{sub 4}) by an electroless deposition process. The effects of the controlling conditions on the microstructure and the corrosion resistance of these deposits were examined. Moreover, the thermal stability and the corrosion resistance of Ni-Mo-P coatings were compared with those of Ni-P deposits in various attacking environments. The experimental results indicate that the electrical conductivity of all deposits produced in this experiment is superior to the U.S. DOE's target. The optimum Ni-Mo-P coating, which is produced in a solution containing 4.13 x 10{sup -2} M Na{sub 2}MoO{sub 4} at pH 7.0 and 70 C, possesses superior corrosion resistance in a mixed acidic environment. It is also found that Ni-Mo-P coatings exhibit better thermal stability, and superior long-term corrosion resistance than Ni-P deposits. The Ni-Mo-P deposits, therefore, are promising for applications in protecting coatings for bipolar plates. (author)

  1. Surface modifications of aluminum alloy 5052 for bipolar plates using an electroless deposition process

    Science.gov (United States)

    Bai, Ching-Yuan; Chou, Yu-Hsien; Chao, Chu-Lung; Lee, Shuo-Jen; Ger, Ming-Der

    This study tries to replace graphite bipolar plates in fuel cells with surface-modified aluminum alloy 5052. To improve the surface characteristics of Al alloy, Ni-Mo-P coatings were deposited on the substrates under various pH values and concentrations of sodium molybdate (Na 2MoO 4) by an electroless deposition process. The effects of the controlling conditions on the microstructure and the corrosion resistance of these deposits were examined. Moreover, the thermal stability and the corrosion resistance of Ni-Mo-P coatings were compared with those of Ni-P deposits in various attacking environments. The experimental results indicate that the electrical conductivity of all deposits produced in this experiment is superior to the U.S. DOE's target. The optimum Ni-Mo-P coating, which is produced in a solution containing 4.13 × 10 -2 M Na 2MoO 4 at pH 7.0 and 70 °C, possesses superior corrosion resistance in a mixed acidic environment. It is also found that Ni-Mo-P coatings exhibit better thermal stability, and superior long-term corrosion resistance than Ni-P deposits. The Ni-Mo-P deposits, therefore, are promising for applications in protecting coatings for bipolar plates.

  2. Reduction of the Electrode Overpotential of the Oxygen Evolution Reaction by Electrode Surface Modification

    Directory of Open Access Journals (Sweden)

    Cian-Tong Lu

    2017-01-01

    Full Text Available Metal–air batteries exhibit high potential for grid-scale energy storage because of their high theoretical energy density, their abundance in the earth’s crust, and their low cost. In these batteries, the oxygen evolution reaction (OER occurs on the air electrode during charging. This study proposes a method for improving the OER electrode performance. The method involves sequentially depositing a Ni underlayer, Sn whiskers, and a Ni protection layer on the metal mesh. Small and uniform gas bubbles form on the Ni/Sn/Ni mesh, leading to low overpotential and a decrease in the overall resistance of the OER electrode. The results of a simulated life cycle test indicate that the Ni/Sn/Ni mesh has a life cycle longer than 1,300 cycles when it is used as the OER electrode in 6 M KOH.

  3. Reduction of the Electrode Overpotential of the Oxygen Evolution Reaction by Electrode Surface Modification

    OpenAIRE

    Lu, Cian-Tong; Chiu, Yen-Wen; Li, Mei-Jing; Hsueh, Kan-Lin; Hung, Ju-Shei

    2017-01-01

    Metal–air batteries exhibit high potential for grid-scale energy storage because of their high theoretical energy density, their abundance in the earth’s crust, and their low cost. In these batteries, the oxygen evolution reaction (OER) occurs on the air electrode during charging. This study proposes a method for improving the OER electrode performance. The method involves sequentially depositing a Ni underlayer, Sn whiskers, and a Ni protection layer on the metal mesh. Small and uniform gas ...

  4. Radiofrequency ablation of large size liver tumours using novel plan-parallel expandable bipolar electrodes: Initial clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [Department of Radiology, VU University Medical Centre, Amsterdam (Netherlands); Tol, Petrousjka van den [Department of Surgical Oncology, VU University Medical Centre, Amsterdam (Netherlands); Tilborg, Aukje A.J.M. van; Waesberghe, Jan Hein T.M. van [Department of Radiology, VU University Medical Centre, Amsterdam (Netherlands); Meijer, Sybren [Department of Surgical Oncology, VU University Medical Centre, Amsterdam (Netherlands); Kuijk, Cornelis van [Department of Radiology, VU University Medical Centre, Amsterdam (Netherlands)

    2011-01-15

    Purpose: Although radiofrequency ablation (RFA) is a promising method for local treatment of liver malignancies, with conventional monopolar systems recurrence rates for large size tumours ({>=}3.5 cm) remain high. The objective of this study was to evaluate the safety, feasibility and local effectiveness of a novel bipolar plan-parallel expandable system for these larger tumours. Methods and materials: Eight consecutive patients with either unresectable colorectal liver metastases (CRLM in 6 patients), carcinoid liver metastases (1 patient) and hepatocellular carcinoma (HCC in 1 patient) of {>=}3.5 cm were treated with bipolar RFA during laparotomy with ultrasound guidance. Early and late, major and minor complications were recorded. Local success was determined on 3-8 month follow-up CT scans of the upper abdomen. Results: Nine CRLM, one carcinoid liver metastases and one HCC (3.5-6.6 cm) were ablated with bipolar RFA. Average ablation time was 16 min (range 6-29 min.). Two patients developed a liver abscess which required re-laparotomy. In both cases bowel surgery during the same session probably caused bacterial spill. There were no mortalities. The patients were released from hospital between 5 and 29 days after the procedure (median 12 days). The 6-12 month follow-up PET-CT scans showed signs for marginal RFA-site tumour recurrence in three patients with CRLM (3/11 lesions). Conclusion: Preliminary results suggest bipolar RFA to be a reasonably safe, fast and feasible technique which seems to improve local control for large size hepatic tumour ablations.

  5. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    International Nuclear Information System (INIS)

    Wang Xiaoping; Zhang Xingwang; Lei Lecheng

    2013-01-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  6. Design of the optimum insulator gate bipolar transistor using response surface method with cluster analysis

    CERN Document Server

    Wang, Chi Ling; Huang Sy Ruen; Yeh Chao Yu

    2004-01-01

    In this paper, a statistical methodology that can be used for the optimization of the Insulator Gate Bipolar Transistor (IGBT) devices is proposed. This is achieved by integrating the response surface method (RSM) with cluster analysis, weighted composite method and genetic algorithm (GA). The device characteristic of IGBT was simulated based upon the fabrication simulator, ATHENA, and the device simulator, ATLAS. This methodology, yielded another way to investigate the IGBT device and to make a decision in the tradeoff between the breakdown voltage and the on-resistance. In this methodology, we also show how to use cluster analysis to determine the dominant factors that are not visible in the screening of all experiments. 20 Refs.

  7. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  8. Method of electrode printing on one or more surfaces of a dielectric substrate

    KAUST Repository

    Neophytou, Marios

    2017-09-14

    Described herein is a method for printing electrodes surfaces of a dielectric substrate. Provided herein is a new method of depositing electrically conductive electrodes of any shape on flexible and/or rigid dielectric substrates/surfaces and devices so produced. In various embodiments, the devices can generate ionic wind, for example to remove dust or other debris or contaminants or to remove ice or humidity from a surface.

  9. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows d...

  10. Localization, correlation, and visualization of electroencephalographic surface electrodes and brain anatomy in epilepsy studies

    Science.gov (United States)

    Brinkmann, Benjamin H.; O'Brien, Terence J.; Robb, Richard A.; Sharbrough, Frank W.

    1997-05-01

    Advances in neuroimaging have enhanced the clinician's ability to localize the epileptogenic zone in focal epilepsy, but 20-50 percent of these cases still remain unlocalized. Many sophisticated modalities have been used to study epilepsy, but scalp electrode recorded electroencephalography is particularly useful due to its noninvasive nature and excellent temporal resolution. This study is aimed at specific locations of scalp electrode EEG information for correlation with anatomical structures in the brain. 3D position localizing devices commonly used in virtual reality systems are used to digitize the coordinates of scalp electrodes in a standard clinical configuration. The electrode coordinates are registered with a high- resolution MRI dataset using a robust surface matching algorithm. Volume rendering can then be used to visualize the electrodes and electrode potentials interpolated over the scalp. The accuracy of the coordinate registration is assessed quantitatively with a realistic head phantom.

  11. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate

    Science.gov (United States)

    Wang, Lixia; Sun, Juncai; Kang, Bin; Li, Song; Ji, Shijun; Wen, Zhongsheng; Wang, Xiaochun

    2014-01-01

    A niobium carbide diffusion layer with a cubic NbC phase surface layer (∼6 μm) and a Nb and C diffusion subsurface layer (∼1 μm) is fabricated on the surface of AISI 304 stainless steel (304 SS) bipolar plate in a proton exchange membrane fuel cell (PEMFC) using plasma surface diffusion alloying. The electrochemical behaviour of the niobium carbide diffusion-modified 304 SS (Nb-C 304 SS) is investigated in simulated PEMFC environments (0.5 M H2SO4 and 2 ppm HF solution at 80 °C). Potentiodynamic, potentiostatic polarisation and electrochemical impedance spectroscopy measurements reveal that the niobium carbide diffusion layer considerably improves the corrosion resistance of 304 SS compared with untreated samples. The corrosion current density of Nb-C 304 SS is maintained at 0.058 μA cm-2 and 0.051 μA cm-2 under simulated anodic and cathodic conditions, respectively. The interfacial contact resistance of Nb-C 304 SS is 8.47 mΩ cm2 at a compaction force of 140 N cm-2, which is significantly lower than that of the untreated sample (100.98 mΩ cm2). Moreover, only a minor increase in the ICR of Nb-C 304 SS occurs after 10 h potentiostatic tests in both cathodic and anodic environments.

  12. Closed Bipolar Electrodes for Spatial Separation of H2and O2Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells.

    Science.gov (United States)

    Goodwin, Sean; Walsh, Darren A

    2017-07-19

    Electrolytic water splitting could potentially provide clean H 2 for a future "hydrogen economy". However, as H 2 and O 2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H 2 - and O 2 -evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K 3 Fe(CN) 6 /K 4 Fe(CN) 6 ). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K 3 Fe(CN) 6 /K 4 Fe(CN) redox couples in the separate compartments, affording completely spatially separated H 2 and O 2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni 2 P electrocatalysts for H 2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H 2 fuel cell, releasing the energy stored in the electrogenerated H 2 and O 2 . We also describe how the absence of an ionically conducting electrolyte bridging the H 2 - and O 2 -electrode compartments makes it possible to develop H 2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H 2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.

  13. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  14. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    Science.gov (United States)

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  15. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  16. Model tests for corrosion influence of electrode surface on electroosmosis in marine sludge

    Science.gov (United States)

    Zheng, Lingwei; Li, Jinzhu; Shi, Hanru

    2017-11-01

    The corrosion of metal electrodes is inevitable on electroosmosis in soil. Surface corrosion of electrodes is also one of the reasons for increasing energy consumption in electroosmosis treatment. A series of laboratory tests were conducted employing three kinds of materials, aluminium, steel, and brass. To explore the impact of surface corrosion degree on electroosmosis, metal electrodes were pretreated with durations 0 h, 12 h, 24 h, and 36 h. After the pretreatment, corroded electrodes are used as anodes on electroosmosis. Water discharge, current, voltage potential were measured during the tests; water content was also tested at three points after the electroosmosis. The results showed that aluminium was better than steel in electroosmotic drainage while brass provided the worst dewatering performance. Surface corrosion did not influence the aluminium and steel on electroosmosis in marine sludge, but brass did. In the pretreatment of brass electrodes, corrosion rate had started to slow down at later periods, with the deterioration rate of dewatering reduced afterwards. As the results showed, it is not recommended to employ those easily deteriorated electrode materials from surface corrosion in practical engineering, such as brass; electrode material with higher electroosmosis exchange rate is recommended, such as aluminium.

  17. Dispersion and Polarization of Surface Waves Trapped in High Aspect Ratio Electrode Arrays

    DEFF Research Database (Denmark)

    Laude, Vincent; Dühring, Maria Bayard; Moubchir, Hanane

    2007-01-01

    .Phys., 90(5):2492, 2001; Appl. Phys. Lett., 89:083515, 2006.) an experimental and theoretical analysis of the transduction of SAW under a metallic array of electrodes with a large aspect ratio on a piezoelectric substrate, whereby allowing the electrode height to become larger than one wavelength...... additional results on the polarization and the dispersion of the surface waves trapped by high aspect ratio electrode arrays. A finite element model, including periodic boundary conditions along the propagation direction and a perfectly matched layer (PML) to absorb waves away from the surface...... wave vector values....

  18. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    Science.gov (United States)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  19. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    International Nuclear Information System (INIS)

    Ponomarev, A V; Pedos, M S; Scherbinin, S V; Mamontov, Y I; Ponomarev, S V

    2015-01-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface. (paper)

  20. Electrode Surface Composition of Dual-Intercalation, All-Graphite Batteries

    Directory of Open Access Journals (Sweden)

    Boris Dyatkin

    2017-02-01

    Full Text Available Dual-intercalation batteries implement graphite electrodes as both cathodes and anodes and offer high specific energy, inexpensive and environmentally sustainable materials, and high operating voltages. Our research investigated the influence of surface composition on capacities and cycling efficiencies of chemically functionalized all-graphite battery electrodes. We subjected coreshell spherical particles and synthetic graphite flakes to high-temperature air oxidation, and hydrogenation to introduce, respectively, –OH, and –H surface functional groups. We identified noticeable influences of electrode surface chemistry on first-cycle efficiencies and charge storage densities of anion and cation intercalation into graphite electrodes. We matched oxidized cathodes and hydrogenated anodes in dual-ion batteries and improved their overall performance. Our approach provides novel fundamental insight into the anion intercalation process and suggests inexpensive and environmentally sustainable methods to improve performance of these grid-scale energy storage systems

  1. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  2. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  3. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian

    2016-09-26

    The surface effects of ZnO-based resistive random-access memory (ReRAM) were investigated using various electrodes. Pt electrodes were found to have better performance in terms of the device\\'s switching functionality. A thermodynamic model of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy for the chemisorption process, resulting in a better resistive switching performance. These findings provide an in-depth understanding of electrode-dependent switching behaviors and can serve as design guidelines for future ReRAM devices.

  4. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  5. Deep Brain Stimulation of Hemiparkinsonian Rats with Unipolar and Bipolar Electrodes for up to 6 Weeks: Behavioral Testing of Freely Moving Animals

    Directory of Open Access Journals (Sweden)

    Kathrin Badstuebner

    2017-01-01

    Full Text Available Although the clinical use of deep brain stimulation (DBS is increasing, its basic mechanisms of action are still poorly understood. Platinum/iridium electrodes were inserted into the subthalamic nucleus of rats with unilateral 6-OHDA-induced lesions of the medial forebrain bundle. Six behavioral parameters were compared with respect to their potential to detect DBS effects. Locomotor function was quantified by (i apomorphine-induced rotation, (ii initiation time, (iii the number of adjusting steps in the stepping test, and (iv the total migration distance in the open field test. Sensorimotor neglect and anxiety were quantified by (v the retrieval bias in the corridor test and (vi the ratio of migration distance in the center versus in the periphery in the open field test, respectively. In our setup, unipolar stimulation was found to be more efficient than bipolar stimulation for achieving beneficial long-term DBS effects. Performance in the apomorphine-induced rotation test showed no improvement after 6 weeks. DBS reduced the initiation time of the contralateral paw in the stepping test after 3 weeks of DBS followed by 3 weeks without DBS. Similarly, sensorimotor neglect was improved. The latter two parameters were found to be most appropriate for judging therapeutic DBS effects.

  6. Surface residual stress evaluation in double-electrode butt welded steel plates

    International Nuclear Information System (INIS)

    Estefen, S.F.; Gurova, T.; Castello, X.; Leontiev, A.

    2010-01-01

    Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.

  7. Microscopic degradation mechanism of polyimide film caused by surface discharge under bipolar continuous square impulse voltage

    Science.gov (United States)

    Luo, Yang; Wu, Guang-Ning; Liu, Ji-Wu; Peng, Jia; Gao, Guo-Qiang; Zhu, Guang-Ya; Wang, Peng; Cao, Kai-Jiang

    2014-02-01

    Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C—O—C) and imide ring (C—N—C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant ɛ to increase and dielectric loss tan δ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI polymer bulk.

  8. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Surface Area.

    Science.gov (United States)

    Patel, Yogi A; Kim, Brian S; Rountree, William S; Butera, Robert J

    2017-10-01

    Kilohertz electrical stimulation (KES) induces repeatable and reversible conduction block of nerve activity and is a potential therapeutic option for various diseases and disorders resulting from pathological or undesired neurological activity. However, successful translation of KES nerve block to clinical applications is stymied by many unknowns, such as the relevance of the onset response, acceptable levels of waveform contamination, and optimal electrode characteristics. We investigated the role of electrode geometric surface area on the KES nerve block threshold using 20- and 40-kHz current-controlled sinusoidal KES. Electrodes were electrochemically characterized and used to characterize typical KES waveforms and electrode charge characteristics. KES nerve block amplitudes, onset duration, and recovery of normal conduction after delivery of the KES were evaluated along with power requirements for effective KES nerve block. Results from this investigation demonstrate that increasing electrode geometric surface area provides for a more power-efficient KES nerve block. Reductions in block threshold by increased electrode surface area were found to be KES-frequency-dependent, with block thresholds and average power consumption reduced by greater than two times with 20-kHz KES waveforms and greater than three times for 40-kHz KES waveforms.

  9. Improving surface acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    The acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes...

  10. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    KAUST Repository

    Almuhammadi, Khaled

    2015-10-19

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  11. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    A long-standing issue in protein film voltammetry (PFV), particularly electrocatalytic voltammetry of redox enzyme monolayers, is the variability of protein adsorption modes, reflected in distributions of catalytic activity of the adsorbed protein/enzyme molecules. Use of well-defined, atomically...... planar electrode surfaces is a step towards the resolution of this central issue. We report here the voltammetry of copper nitrite reductase (CNiR, Achromobacter xylosoxidons) on Au(111)-electrode surfaces modified by monolayers of a broad variety of thiol-based linker molecules. These represent......NiR thus shows highly efficient, close to ideal reversible electrocatalytic voltammetry on cysteamine-covered Au(111)-electrode surfaces, most likely due to two cysteamine orientations previously disclosed by in situ scanning tunnelling microscopy. Such a dual orientation exposes both a hydrophobic...

  12. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    Science.gov (United States)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  13. AC surface flashover strength and barrier effect of LN 2 for HTS transformer with simulated electrode

    Science.gov (United States)

    Joung, Jong-Man; Baek, Seung-Myeong; Kim, Hae-Jong; Kim, Sang-Hyun

    2003-10-01

    In the response to an increasing demand for electrical energy, much effort aimed to develop and commercialise HTS power equipments is going on around the world. For the development, it is necessary to establish the dielectric technology in LN 2. Hence many types of dielectric tests should be carried out to understand the dielectric phenomena at cryogenic temperature and to gather various dielectric data. Among the many types dielectric tests, the characteristic of surface flashover and the barrier effect were conducted with the simulated electrode after analysing the insulating configuration of the pancake-coil-type HTS transformer. The influence of a barrier on the dielectric strength was measured according to the size of the barrier, the position of the barrier and the effect of the back-electrode. It was shown that the effectiveness, namely the ratio of the breakdown voltage in presence of barrier to the voltage without barrier, is highest when the barrier is placed at the needle electrode side. The effect increased up to 1.8 times when collar length is 10 mm. The flashover characteristic with back-electrode was remarkably lower than the characteristic without one in the case the electrodes located at the same surface of dielectric plate. On the contrary, in the case the barrier was placed between the electrodes, the characteristic was even improved slightly.

  14. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  15. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    The combination of in situ and in particular in operando characterization methods such as electrochemical impedance spectroscopy (EIS) on both technical and model electrode are well known ways to gain some practical insight in electrode reaction kinetics. Yet, is has become clear that in spite...... of the strengths it is not sufficient to reveal much details of the electrode mechanisms mainly because it provide average values only. Therefore it has to be combined with surface science methods in order to reveal the interface structure and composition. Ex situ methods have been very useful over the latest....... Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  16. Characterization of thiol-functionalised silica films deposited on electrode surfaces

    Directory of Open Access Journals (Sweden)

    Ivana Cesarino

    2008-12-01

    Full Text Available Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA involving the hydrolysis and (cocondensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG, elemental analysis (EA, atomic force microscopy (AFM, scanning electron microscopy (SEM and cyclic voltammetry (CV.

  17. On the Concept of Electrode to Discharge Phenomena in Surface Roughness With Reference Strongly Electronegative Gases

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1986-01-01

    The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions of artif......The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions...

  18. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  19. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    Science.gov (United States)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  20. Investigation of ozone zero phenomenon using new electrode and surface analysis technique

    Science.gov (United States)

    Taguchi, M.; Ochiai, Y.; Kawagoe, R.; Kato, Y.; Teranishi, K.; Suzuki, S.; Itoh, H.

    2011-07-01

    Results of our experimental investigation on the ozone zero phenomenon suggested us the importance of the electrode surface condition. This means that the main cause of the phenomenon, that is, temporal decrease of ozone concentration at the outlet of DBD type ozone generator and the recovery characteristics from the phenomenon are considered as the surface reaction process, which are influenced strongly by the surface condition. The surface condition is never constant during the ozone generation and varies gradually or remarkably with time depending on the experimental conditions. Therefore we have been continued to make clear the cause of the phenomenon, for example, the reproducibility of the phenomenon, using new electrodes and together with the surface analysis technique etc. In this paper, we describe on the above results and discussion.

  1. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra

    2014-08-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  2. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  3. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  4. Distance scaling of electric-field noise in a surface-electrode ion trap

    Science.gov (United States)

    Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2018-02-01

    We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.

  5. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance

    Science.gov (United States)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael

    2018-01-01

    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  6. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H. [on leave from NTT Laboratories (Japan); Mueller, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  7. Surface concentration nonuniformities resulting from chronoamperometry of a reversible reaction at an ultramicrodisk electrode

    DEFF Research Database (Denmark)

    Britz, Dieter H.; Strutwolf, Jörg

    2016-01-01

    The chronoamperometric experiment at a disk electrode was simulated, assuming a reversible reaction. When the diffusion coefficients of the two substances involved are different, there appears a surface concentration non- uniformity in the radial direction, exhibiting a maximum effect in time...

  8. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  9. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  10. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  11. Diamond detectors with laser induced surface graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Komlenok, M. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); Bolshakov, A. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); Harbin Institute of Technology, 92 Xidazhi Str., 150001 Harbin (China); Ralchenko, V. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); Harbin Institute of Technology, 92 Xidazhi Str., 150001 Harbin (China); National Research Nuclear University “MEPhI”, Kashirskoye shosse, 31, 115409 Moscow (Russian Federation); Konov, V. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); National Research Nuclear University “MEPhI”, Kashirskoye shosse, 31, 115409 Moscow (Russian Federation); Conte, G. [Department of Sciences, University Roma Tre and INFN, Via Vasca Navale, 84-00148 Rome (Italy); CNR-ISM, Institute for Structure of Matter, National Research Council, Via Salaria km 29, 300, Montelibretti (Italy); Girolami, M. [CNR-ISM, Institute for Structure of Matter, National Research Council, Via Salaria km 29, 300, Montelibretti (Italy); Oliva, P. [University Niccolò Cusano, Via don Carlo Gnocchi, 3-00166 Rome (Italy); Mediterranean Institute of Fundamental Physics ‘MIFP’, Via Appia Nuova, 31-00040 Marino (Rome) (Italy); Salvatori, S. [University Niccolò Cusano, Via don Carlo Gnocchi, 3-00166 Rome (Italy)

    2016-11-21

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm{sup 2} pixels was realized on one side of a 10.0×10.0×0.5 mm{sup 3} polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 µm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  12. Measurement of EMG activity with textile electrodes embedded into clothing.

    Science.gov (United States)

    Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S

    2007-11-01

    Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.

  13. Estimating the measuring sensitivity of unipolar and bipolar ECG with lead field method and FDM models.

    Science.gov (United States)

    Puurtinen, Merja; Viik, Jari; Takano, Noriyuki; Malmivuo, Jaakko; Hyttinen, Jari

    2009-05-01

    New portable electrocardiogram (ECG) measurement systems are emerging into market. Some use nonstandard bipolar electrode montage and sometimes very small interelectrode distances to improve the usability of the system. Modeling could provide a straightforward method to test new electrode systems. The aim of this study was to assess whether modeling the electrodes' measuring sensitivity with lead field method can provide a simple tool for testing a number of new electrode locations. We evaluated whether the actual ECG signal strength can be estimated by lead fields with two realistic 3D finite difference method (FDM) thorax models. We compared the modeling results to clinical body surface potential map (BSPM) data from 236 normal patients and studied 117 unipolar and 42 bipolar leads. In the case of unipolar electrodes the modeled measuring sensitivities correlated well with the clinical data (r=0.86, N=117, p<0.05). In the case of bipolar electrodes the correlation was moderate (r=0.62 between Model 1 and clinical data, r=0.71 between Model 2 and clinical data, N=42 and p<0.05 for both). Based on this we can conclude that lead field analysis based on realistic thorax models provides a good initial prediction for designing new electrode montages and measurement systems.

  14. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yu, Ha Na; Lim, Jun Woo; Suh, Jung Do; Lee, Dai Gil

    A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface. In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.

  15. Real surface area of the aluminium electrode in sodium chloride solution

    Directory of Open Access Journals (Sweden)

    Z. RAKOCEVIC

    1999-11-01

    Full Text Available By combining the techniques of electrochemical slow potentiodynamic, AC impedance and atomic force microscopy (AFM, it was shown that the differences in the anodic dissolution rates of Al in 0.5 NaCl solutions as measured experimentally in the potential region between the corrosion and pitting potential, are mainly due to differences in surface roughness of the electrodes used. It was shown that mechanical grinding and polishing of the electrode surface with emery paper (400 grit and alumina polishing powder (f 0.25 mm can produce surfaces differing by a factor of 6 in the roughness factor Ra. By using AFM estimates of the roughness factors a true electrode capacitance of 4.63 µC cm-2 and thickness dox ~ 2.0 nm for the barrier layer of the surface film was estamited. The outer part of the film is porous, partly as amorphous Al(OH3, or crystalline bayerite (Al2O3.3H2O.

  16. Comparison of EMG signals recorded by surface electrodes on endotracheal tube and thyroid cartilage during monitored thyroidectomy

    Directory of Open Access Journals (Sweden)

    Feng-Yu Chiang

    2017-10-01

    Full Text Available A variety of electromyography (EMG recording methods were reported during intraoperative neural monitoring (IONM of recurrent laryngeal nerve (RLN in thyroid surgery. This study compared two surface recording methods that were obtained by electrodes on endotracheal tube (ET and thyroid cartilage (TC. This study analyzed 205 RLNs at risk in 110 patients undergoing monitored thyroidectomy. Each patient was intubated with an EMG ET during general anesthesia. A pair of single needle electrode was inserted obliquely into the TC lamina on each side. Standard IONM procedure was routinely followed, and EMG signals recorded by the ET and TC electrodes at each step were compared. In all nerves, evoked laryngeal EMG signals were reliably recorded by the ET and TC electrodes, and showed the same typical waveform and latency. The EMG signals recorded by the TC electrodes showed significantly higher amplitudes and stability compared to those by the ET electrodes. Both recording methods accurately detected 7 partial loss of signal (LOS and 2 complete LOS events caused by traction stress, but only the ET electrodes falsely detected 3 LOS events caused by ET displacement during surgical manipulation. Two patients with true complete LOS experienced temporary RLN palsy postoperatively. Neither permanent RLN palsy, nor complications from ET or TC electrodes were encountered in this study. Both electrodes are effective and reliable for recording laryngeal EMG signals during monitored thyroidectomy. Compared to ET electrodes, TC electrodes obtain higher and more stable EMG signals as well as fewer false EMG results during IONM.

  17. Bipolar Disorder

    Science.gov (United States)

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  18. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer.

    Science.gov (United States)

    Zhi, Jinghui; Zhang, Li-Zhi

    2017-08-30

    This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.

  19. High-Surface-Area Porous Platinum Electrodes for Enhanced Charge Transfer

    OpenAIRE

    Hu Yelin; Yella Aswani; Guldin Stefan; Schreier Marcel; Stellacci Francesco; Grätzel Michael; Stefik Morgan

    2014-01-01

    Cobalt based electrolytes are highly tunable and have pushed the limits of dye sensitized solar cells enabling higher open circuit voltages and new record effi ciencies. However the performance of these electrolytes and a range of other electrolytes suffer from slow electron transfer at platinum counter electrodes. High surface area platinum would enhance catalysis but pure platinum structures are too expensive in practice. Here a material effi cient host guest architecture is developed that ...

  20. Cylindrical articles surfacing with a strip electrode at an angle to the generatrix

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Іванов

    2017-07-01

    Full Text Available The use of the strip electrode when surfacing is made along a variable path leads to a change in the melting process and the formation of a weld bead, due to the absence, in contrast to the wire electrode, of the axial symmetry of the strip cross section. In the layered surfacing of mill rolls with the rollers being at an angle to the generatrix, there may be such defects as undercuts and slagging along the edges of the seam, that worsen the quality and performance of the wear resistant layer. According to the results of the metallographic analysis of the sections, it has been established that these defects in the seam at the cross-over of the rolls during the layer-by-layer surfacing are not remelted by the arc and it leads to slag inclusions in the zone. There is an asymmetry in the formation of the weld pool, which is associated with the peculiarities of the liquid metal flow during its melting. Thus, a decrease in the minimum deviation angle of the strip electrode location with respect to the deposition rate vector leads to a decrease in the crack resistance of the working surface. Investigations of the weld bead formation during deposition by a strip electrode as a function of the angle of the strip rotation with respect to the deposition rate vector have been performed. The influence of the change in the angle of rotation of the strip electrode on the uniformity of the fusion line with the parent metal formation was studied. The allowable range of strip angle values has been determined, which ensures the quality and operability of the wear-resistant layer, as well as the absence of formation defects. Analysis of the wear characteristics and fracture toughness of the deposited layer showed that a change in the location of the strip electrode makes it possible to increase the fracture toughness of the welded layer with high quality of its formation and practically unchanged wear resistance

  1. Deposition and stripping processes of tin on gold film electrodes studied by surface conductance

    International Nuclear Information System (INIS)

    Fonticelli, M.; Tucceri, R.I.; Posadas, D.

    2004-01-01

    The CV and surface conductance (SC) responses of tin species adsorbed on evaporated gold film electrodes were studied as a function of the potential window and the potential sweep rate. Sn adatoms were generated either, by reducing Sn(II) present in the solution (u p d) or by first irreversibly adsorbing Sn(II) and then reducing it in the supporting electrolyte alone. The experimental results show that at potentials about E ∼ -0.25 V(versus SCE), all the Sn(II) is reduced to Sn(0) and this species is adsorbed on the electrode surface. The subsequent oxidation of Sn(0) leads to Sn(II) ad , adsorbed on the electrode. This species desorbs only when the Sn(II) ad is further oxidised to soluble Sn(IV). The number of electrons involved in the reduction of Sn(II) to Sn(0) and vice versa is two. On the other hand, the analysis of the resistance measurements at low coverage is made by applying the surface Linde's rule. This leads to the conclusion that the Sn(0) behaves as an interstitial impurity. SC experiments, made in the potential region corresponding to Sn bulk deposition, suggest the formation of a bulk Sn-Au alloy

  2. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Science.gov (United States)

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    KAUST Repository

    Alshareef, Husam N.

    2016-12-23

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  4. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Yang, Meijun; Zhang, Dongming

    2014-01-01

    The bipolar plate is an important component of the PEMFC (polymer electrolyte membrane fuel cell) because it supplies the pathway of electron flow between each unit cell. Fe–Ni–Cr alloy is considered as a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its high ICR (interfacial contact resistance) and corrosion problem. In order to explore a cost-effective method on surface modification, various chemical and electrochemical treatments are performed on Fe–Ni–Cr alloy to acquire the effect of the surface modification on the ICR and corrosion behavior. The ICR and corrosion resistance of Fe–Ni–Cr alloy can be effectively controlled by the chemical treatment of immersion in the mixed acid solution with 10 vol% HNO 3 , 2 vol% HCl and 1 vol% HF for 10 min at 65 °C and then was placed in 30 vol% HNO 3 solution for 5 min. The chemical treatment is more effective on reducing ICR and improving corrosion resistance than that of electrochemical methods (be carried out in the 2 mol/L H 2 SO 4 solution with the electrical potential from −0.4 V to 0.6 V) for Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. - Highlights: • The procedure of the surface treatments on Fe–Ni–Cr alloy as bipolar plate was described in detail. • Effects of various surface treatments on the interfacial contact resistivity and corrosion behavior were discussed. • The mechanism of the surface modification was particularly analyzed

  5. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol

    Science.gov (United States)

    Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba

    2018-03-01

    Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.

  6. Design of new multi-channel electrodes for surface electromyography signals for signal-processing.

    Science.gov (United States)

    Kilby, J; Prasad, K; Mawston, G

    2016-08-01

    This paper covers the design aspects of a new multi-channel electrode for the acquisition of surface electromyography signals from a selected muscle. The new multi-channel electrode has 11 pins where the monopolar signals produced will be configured in a software either as Linear array or Laplacian configuration. The design specification of the pre-amplifier ideally was to have a voltage gain of 500 with bandpass filtering of 5 Hz-1 kHz. The final design of the pre-amplifier circuit using an INA 118 instrumentation amplifier was built and tested to give values for voltage gain of 484 with bandpass filtering of 6.8 Hz-1.02 kHz. The software configuration that gives clearer and more defined signals in terms of motor unit action potentials for future signal processing is the Laplacian rather than Linear array.

  7. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    Directory of Open Access Journals (Sweden)

    F. B. Liu

    2015-04-01

    Full Text Available The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  8. Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications

    International Nuclear Information System (INIS)

    Sun, Xihe; Souier, Tewfik; Chiesa, Matteo; Vassallo, Anthony

    2014-01-01

    Due to their high electrical conductivity and corrosion resistance, carbon nanotube (MWNT)-high density polyethylene (HDPE) composites are potential candidates to replace traditional activated carbon electrodes for the next generation of fuel-cells, super capacitors and flow batteries. Electrochemical impedance spectroscopy (EIS) is employed to separate the surface conduction from bulk conduction in 15% HDPE-MWNT and 19% carbon black (CB)-HDPE composites for zinc-bromine flow battery electrodes. While exhibiting superior bulk conductivity, the interfacial conductivity of MWNT-filled composites is lower than that of CB-filled composites. High resolution conductive atomic force microscopy (C-AFM) imaging and current-voltage (I-V) spectroscopy were employed to investigate the sub-surface electronic transport of the composite. Unlike the CB-composite, the fraction of conducting MWNTs near the surface is very low compared to their volume fraction. In addition, the non-linear I-V curves reveal the presence of a tunneling junction between the tip and the polymer-coated MWNTs. The tunneling resistance is as high as 1 GΩ, which strongly affects the electronic/electrochemical transfer at the interface of the electrolyte and the surface of the composite, which is evident in the voltammetric and EIS observations

  9. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2016-07-01

    Full Text Available The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran. Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally “single-use” devices. Keywords: Screen-printed electrodes, Polishing, Platinum, Activation, Pre-treatment, Cyclic voltammetry

  10. Surface passivation of natural graphite electrode for lithium ion battery by chlorine gas.

    Science.gov (United States)

    Suzuki, Satoshi; Mazej, Zoran; Zemva, Boris; Ohzawa, Yoshimi; Nakajima, Tsuyoshi

    2013-01-01

    Surface lattice defects would act as active sites for electrochemical reduction of propylene carbonate (PC) as a solvent for lithium ion battery. Effect of surface chlorination of natural graphite powder has been investigated to improve charge/discharge characteristics of natural graphite electrode in PC-containing electrolyte solution. Chlorination of natural graphite increases not only surface chlorine but also surface oxygen, both of which would contribute to the decrease in surface lattice defects. It has been found that surface-chlorinated natural graphite samples with surface chlorine concentrations of 0.5-2.3 at% effectively suppress the electrochemical decomposition of PC, highly reducing irreversible capacities, i.e. increasing first coulombic efficiencies by 20-30% in 1 mol L-1 LiClO4-EC/DEC/PC (1:1:1 vol.). In 1 mol L-1 LiPF6-EC/EMC/PC (1:1:1 vol.), the effect of surface chlorination is observed at a higher current density. This would be attributed to decrease in surface lattice defects of natural graphite powder by the formation of covalent C-Cl and C=O bonds.

  11. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  12. Using electrochemistry - total internal refection imaging ellipsometry to monitor biochemical oxygen demand on the surface tethered polyelectrolyte modified electrode

    Science.gov (United States)

    Liu, Wei; Li, Meng; Lv, Bei'er; Chen, YanYan; Ma, Hongwei; Jin, Gang

    2015-03-01

    Our previous work has proposed an electrochemistry - total internal reflection imaging ellipsometry (EC-TIRIE) technique to observe the dissolved oxygen (DO) reduction on Clark electrode since high interface sensitivity makes TIRIE a useful tool to study redox reactions on the electrode surface. To amplify the optical signal noise ratio (OSNR), a surface tethered weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random- 2-hydroxyethylmethacrylate) (abbreviated as carboxylated poly(OEGMA-r-HEMA)), has been introduced on the electrode surface. Since Clark electrode is widely used in biochemical oxygen demand (BOD) detection, we use this technique to measure BOD in the sample. The dynamic range of the system is from 0 ˜ 25 mg/L. Two samples have been measured. Compared with the conventional method, the deviation of both optical and electrical signals are less than 10%.

  13. Electromagnetic surface waves for large-area RF plasma productions between large-area planar electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1992-01-01

    Recently, large-area plasma production has been tested by means of a 13.56 MHz radio-frequency (RF) discharge between a pair of large-area planar electrodes, approximately 0.5 m x 1.4 m, as one of the semiconductor technologies for fabrication of large-area amorphous silicon solar cells in the ''Sunshine Project'' of the Agency of Industrial Science and Technology in Japan. We also confirmed long plasma production between a pair of long electrodes. In this paper, normal electromagnetic (EM) waves propagating in a region between a planar waveguide with one plasma and two dielectric layers are analyzed in order to study the feasibility of large-area plasma productions by EM wave-discharges between a pair of large-area RF electrodes larger than the half-wavelength of RF wave. In conclusion, plasmas higher than an electron plasma frequency will be produced by an odd TMoo surface mode. (author) 4 refs., 3 figs

  14. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  15. Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices

    KAUST Repository

    Ahmed, Bilal

    2017-12-31

    The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties. This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability. Thermal annealing of MXene at elevated temperature under different atmospheres was

  16. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  17. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  18. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  19. Cloaking of metal grid electrodes on Lambertian emitters by free-form refractive surfaces.

    Science.gov (United States)

    Schumann, Martin F; Fritz, Benjamin; Eckstein, Ralph; Lemmer, Uli; Gomard, Guillaume; Wegener, Martin

    2018-02-01

    We discuss invisibility cloaking of metal grid electrodes on Lambertian light emitters by using dielectric free-form surfaces. We show that cloaking can be ideal in geometrical optics for all viewing directions if reflections at the dielectric-air interface are negligible. We also present corresponding white-light proof-of-principle experiments that demonstrate close-to-ideal cloaking for a wide range of viewing angles. Remaining imperfections are analyzed by ray-tracing calculations. The concept can potentially be used to enhance the luminance homogeneity of large-area organic light-emitting diodes.

  20. Electrochemistry of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    . Hemin itself also acts as catalyst in electrochemical reduction of dioxygen and other small inert molecules suchas nitrogen monoxide, and in electrochemiluminescent detection of dioxygen, peroxide, DNA, and proteins. л-л interactions of hemin with carbon materials have been broadly studied. Hemin...... adsorption on well-defined single-crystal Au(111)-electrode surfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1B). In situ STM shows that hemin self...

  1. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  2. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  3. Study on the deterioration mechanism of layered rock-salt electrodes using epitaxial thin films - Li(Ni, Co, Mn)O2 and their Zr-O surface modified electrodes

    Science.gov (United States)

    Abe, Machiko; Iba, Hideaki; Suzuki, Kota; Minamishima, Hiroaki; Hirayama, Masaaki; Tamura, Kazuhisa; Mizuki, Jun'ichiro; Saito, Tomohiro; Ikuhara, Yuichi; Kanno, Ryoji

    2017-03-01

    Deterioration mechanism of Li(Ni, Co, Mn)O2 and Zr-O surface modified electrodes has been elucidated using epitaxial thin films synthesized by pulsed laser deposition. The electrodes comprise a mixture of layered rock-salt and spinel phases. The deterioration mechanism is analyzed using cyclic voltammetry, in situ X-ray diffraction measurements, and in situ neutron reflectometry. The spinel phase in the electrodes has low electrochemical activity and is not involved in Li insertion/extraction. The amount of Li participating in the charge-discharge reactions in the layered rock-salt phase increases with cycling, inducing a phase change at the electrode surface, lowering the reversibility. In contrast, in the Zr-O surface modified electrode, the spinel phase does not increase on charging/discharging. Thus, the Zr-O modification stabilizes the surface of layered rock-salt structure, thereby improving the cycling characteristics. Also, after the Zr-O modification, the Li concentration in the liquid electrolyte near the electrode/electrolyte interface increases during charging/discharging. The Zr-O surface modification not only stabilizes the electrode surface but also causes changes on the electrolyte side. Using the mixed model electrodes, we elucidate the mechanism of electrode deterioration and the origin of the improvement in cycling characteristics occurring on surface modification.

  4. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  5. Influence of the plain-parallel electrode surface dimensions on the type A measurement uncertainty of GM counter

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka Đ.

    2011-01-01

    Full Text Available This paper investigates, through theory and experiment, the influence of the plain-parallel electrode surface dimensions change on the type A measurement uncertainty of a GM counter. The possibilities of applying these results to practical structures are examined by using the methods of mathematical statistics. Special attention is devoted to the influence of electrode surface enlargement on the statistical behavior of the pulse number random variable, expressed in the form of the enlargement law. In the theoretical part of the paper, the general surface enlargement law is derived. Comparison of experimental results with those predicted by the surface enlargement law proved its validity for expressing the type A measurement uncertainty of GM counters constructed with a plain-parallel electrode configuration with a homogenous electric field.

  6. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  7. Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis

    NARCIS (Netherlands)

    Hajar, Y.; di Palma, V.; Kyriakou, V.; Verheijen, M. A.; Baranova, E. A.; Vernoux, P.; Kessels, W. M. M.; Creatore, M.; van de Sanden, M. C. M.; Tsampas, M. N.

    2017-01-01

    A novel catalyst design for electrochemical promotion of catalysis (EPOC) is proposed which overcomes the main bottlenecks that limit EPOC commercialization, i.e., the low dispersion and small surface area of metal catalysts. We have increased the surface area by using a porous composite electrode

  8. Characterization of the surface redox process of adsorbed morin at glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tesio, Alvaro Yamil, E-mail: atesio@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina); Granero, Adrian Marcelo, E-mail: agranero@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina); Fernandez, Hector, E-mail: hfernandez@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina); Zon, Maria Alicia, E-mail: azon@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina)

    2011-02-01

    The thermodynamic and kinetics of the adsorption of morin (MOR) on glassy carbon (GC) electrodes in 0.2 mol dm{sup -3} phosphate buffer solutions (PBS, pH 7.00) was studied by both cyclic (CV) and square wave (SWV) voltammetries. The Frumkin adsorption isotherm was the best to describe the specific interaction of MOR with GC electrodes. The SWV allowed to characterize the thermodynamic and kinetics of surface quasi-reversible redox couple of MOR, using the combination of the 'quasi-reversible maximum' and the 'splitting of SW net peaks' methods. Average values obtained for the formal potential and the anodic transfer coefficient were (0.27 {+-} 0.02) V and (0.59 {+-} 0.09), respectively. Moreover, a value of formal rate constant (k{sub s}) of 87 s{sup -1} for the overall two-electron redox process was calculated. The SWV was also employed to generate calibration curves, which were linear in the range MOR bulk concentration (c{sub MOR}*) from 1.27 x 10{sup -7} to 2.50 x 10{sup -5} mol dm{sup -3}. The lowest concentration experimentally measured for a signal to noise ratio of 3:1 was 1.25 x 10{sup -8} mol dm{sup -3} (3 ppb).

  9. Self-assembly of phosphorylated dihydroceramide at Au(111) electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawłowski, Jan; Juhaniewicz, Joanna; Sęk, Sławomir, E-mail: slasek@chem.uw.edu.pl

    2017-01-15

    Although the adsorption of lipids on reconstructed Au(111) surface and formation of highly ordered stripe-like domains are well-known phenomena, the exact orientation of the molecules with respect to the substrate remains unclear. Therefore, in this study we have focused on the structure and arrangement of lipid molecules forming highly ordered stripe-like domains at gold electrode-electrolyte interface. N-palmitoyl-D-erythro-dihydroceramide-1-phosphate was selected as model compound since its ability to transform into hemimicellar structure is limited. This way it was possible to get very stable lipid film with characteristic stripe-like pattern. Application of complementary techniques such as atomic force microscopy and scanning tunneling microscopy enabled detailed characteristics of lipid adlayer adsorbed on Au(111) electrode. Based on careful analysis of the experimental results, we have proposed a model which describes the arrangement of the molecules within the film. In general, it assumes flat-lying orientation of the lipids but only one hydrocarbon chain of phosphorylated dihydroceramide is involved in direct interaction with gold. - Highlights: • STM and AFM methods were used to examine adsorption of model lipid on Au(111). • Self-assembly of model lipid leads to formation of highly organized molecular film. • The model is proposed which reproduces the STM contrast.

  10. Evaluation of electrode surface modification techniques for the development of chemical sensors

    International Nuclear Information System (INIS)

    Galiatsatos, C.

    1988-01-01

    This thesis covers several aspects of electrode surface modification techniques. The successful application of gamma-radiation to create polymer-coated electrodes, where the polymers can be ion exchangers and consequently of great analytical interest by themselves (such as the polymer poly(diallyl) dimethyl ammonium chloride) or where some other neutral polymers can function as convenient matrices for the introduction of biomolecules and/or other electrochemically interesting species is reported. This is demonstrated by using the neutral polymer poly(vinyl alcohol) (PVAL) as a matrix for immobilization of the enzyme glucose oxidase and the mediator methyl viologen. The effect of γ-radiation on PVAL is discussed, as well as swelling properties of the irradiated polymers and specific characteristics of the created chemical sensors. Results of an experiment where the various kinds of interactions between the ion-exchange polymer Nafion and some positively charged species are explored are reported, and a model system for competition (methyl viologen vs. ruthenium hexaamine) which increases significantly our understanding of the interaction is mentioned. The effect of γ-radiation on Nafion and its ion-exchange compabilities is discussed also. A system of conduction polymers primarily polypyrrole, used as a detector of electroinactive anions due to their doping-undergoing in the film is discussed. Preliminary results on a new method that involves chemical cross-linking of a triisocyane molecule with -OH containing polymers in the presence of enzymes are reported

  11. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  12. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  13. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  14. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  15. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO 2 ) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO 2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO 2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO 2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO 2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  16. Bipolar disorder

    Science.gov (United States)

    ... of pleasure in activities once enjoyed Loss of self-esteem Thoughts of death or suicide Trouble getting to ... other. This is called rapid cycling. Exams and Tests To diagnose bipolar disorder, the provider may do ...

  17. Bipolar disorder

    Directory of Open Access Journals (Sweden)

    F Colin

    2013-08-01

    Full Text Available Bipolar disorder (BD presents in different phases over time and is oftencomplicated by comorbid conditions such as substance-use disordersand anxiety disorders. Treatment usually involves pharmacotherapywith combinations of different classes of medications and frequentmedication revisions.

  18. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements.

    Science.gov (United States)

    Colyer, Steffi L; McGuigan, Polly M

    2018-03-01

    Textile electromyography (EMG) electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat) were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity) and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking) and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day) repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2%) and excitation length (CV: 12.9 and 9.8%) when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV) was recorded for average rectified EMG (13.8 and 14.1%) and excitation length (13.0 and 12.7%) for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  19. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Directory of Open Access Journals (Sweden)

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  20. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  1. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    Science.gov (United States)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  2. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle

    Science.gov (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro

    2013-04-01

    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  3. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  4. Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts.

    Science.gov (United States)

    Concepcion, Javier J; Binstead, Robert A; Alibabaei, Leila; Meyer, Thomas J

    2013-10-07

    We report here the application of a simple hydrodynamic technique, linear sweep voltammetry with a modified rotating-ring-disc electrode, for the study of water oxidation catalysis. With this technique, we have been able to reliably obtain turnover frequencies, overpotentials, Faradaic conversion efficiencies, and mechanistic information from single samples of surface-bound metal complex catalysts.

  5. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    conductivity and high strength causing it extremely difficult tomachine. Micro-Electrical Discharge Machining (Micro-EDM) is a non-conventional method that has a potential toovercome these restrictions for machining of Inconel 718. Response Surface Method (RSM) was used for modelling thetool Electrode Wear...

  6. Conditions pertaining to the influence of electrode surface roughness upon the insulation strength of compressed SF6 systems

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1997-01-01

    On the basis of a series of experimental investigations reported in the literature, electrode microscopic surface roughness was dismissed as a factor influencing breakdown levels in compressed SF6, irrespective of field non-uniformity. This conclusion appears to be tenable if one restricts observ...

  7. In situ real-time gravimetric and viscoelastic probing of surface films formation on lithium batteries electrodes.

    Science.gov (United States)

    Dargel, Vadim; Shpigel, Netanel; Sigalov, Sergey; Nayak, Prasant; Levi, Mikhael D; Daikhin, Leonid; Aurbach, Doron

    2017-11-09

    It is generally accepted that solid-electrolyte interphase formed on the surface of lithium-battery electrodes play a key role in controlling their cycling performance. Although a large variety of surface-sensitive spectroscopies and microscopies were used for their characterization, the focus was on surface species nature rather than on the mechanical properties of the surface films. Here we report a highly sensitive method of gravimetric and viscoelastic probing of the formation of surface films on composite Li 4 Ti 5 O 12 electrode coupled with lithium ions intercalation into this electrode. Electrochemical quartz-crystal microbalance with dissipation monitoring measurements were performed with LiTFSI, LiPF 6 , and LiPF 6  + 2% vinylene carbonate solutions from which structural parameters of the surface films were returned by fitting to a multilayer viscoelastic model. Only a few fast cycles are required to qualify surface films on Li 4 Ti 5 O 12 anode improving in the sequence LiPF 6  < LiPF 6  + 2% vinylene carbonate < LiTFSI.

  8. Structure formation and surface chemistry of ionic liquids on model electrode surfaces—Model studies for the electrode | electrolyte interface in Li-ion batteries

    Science.gov (United States)

    Buchner, Florian; Uhl, Benedikt; Forster-Tonigold, Katrin; Bansmann, Joachim; Groß, Axel; Behm, R. Jürgen

    2018-05-01

    Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Here we present a comprehensive review of the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP]+[TFSI]-) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO2(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-)monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode | electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-)monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, Li3N, Li2S, LixSOy, and Li2O. In the absence of a [BMP]+[TFSI]- adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO2) above a critical temperature, forming LiOx and Ti3+ species in the latter case. Finally, the formation of stable

  9. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    OpenAIRE

    Yu, Yuan; Zhou, Yanli; Wu, Liangzhuan; Zhi, Jinfang

    2012-01-01

    Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitiv...

  10. Determination of picogram quantities of oligodeoxynucleotides by stripping voltammetry at mercury modified graphite electrode surfaces

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Jelen, František; Fojt, Lukáš; Vetterl, Vladimír

    2005-01-01

    Roč. 577, č. 2 (2005), s. 263-272 ISSN 0022-0728 R&D Projects: GA AV ČR IAA4004404; GA AV ČR(CZ) KJB4004305; GA AV ČR(CZ) IBS5004107; GA ČR(CZ) GA203/02/0422 Institutional research plan: CEZ:AV0Z50040507 Keywords : pyrolitic graphite electrode * glassy carbon electrode * mercury film electrodes Subject RIV: BO - Biophysics Impact factor: 2.223, year: 2005

  11. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    International Nuclear Information System (INIS)

    Allcock, D T C; Sherman, J A; Stacey, D N; Burrell, A H; Curtis, M J; Imreh, G; Linke, N M; Szwer, D J; Webster, S C; Steane, A M; Lucas, D M

    2010-01-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca + ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  13. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    Science.gov (United States)

    Allcock, D. T. C.; Sherman, J. A.; Stacey, D. N.; Burrell, A. H.; Curtis, M. J.; Imreh, G.; Linke, N. M.; Szwer, D. J.; Webster, S. C.; Steane, A. M.; Lucas, D. M.

    2010-05-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca+ ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  14. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena

    International Nuclear Information System (INIS)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1963-01-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs

  15. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  16. Normal motor nerve conduction studies using surface electrode recording from the supraspinatus, infraspinatus, deltoid, and biceps.

    Science.gov (United States)

    Buschbacher, Ralph Michael; Weir, Susan Karolyi; Bentley, John Greg; Cottrell, Erika

    2009-02-01

    Proximal peripheral nerve conduction studies can provide useful information to the clinician. The difficulty of measuring the length of the proximal nerve as well as a frequent inability to stimulate at 2 points along the nerve adds a challenge to the use of electrodiagnosis for this purpose. The purpose of this article is to present normal values for the suprascapular, axillary, and musculocutaneous nerves using surface electrodes while accounting for side-to-side variability. Prospective, observational study. Patients were evaluated in outpatient, private practices affiliated with tertiary care systems in the United States and Malaysia. One hundred volunteers were recruited and completed bilateral testing. Exclusion criteria included age younger than 18 years; previous shoulder surgery/atrophy; symptoms of numbness, tingling, or abnormal sensations in the upper extremity; peripheral neuropathy; or presence of a cardiac pacemaker. Nerve conduction studies to bilateral supraspinatus, infraspinatus, deltoid, and biceps brachii muscles were performed with documented technique. Distal latency, amplitude, and area were recorded. Side-to-side comparisons were made. A mixed linear model was fit to the independent variables of gender, race, body mass index, height, and age with each recorded value. Distal latency, amplitude, area, and side-to-side variability of nerve conduction studies of the suprascapular, axillary, and musculocutaneous nerves with correlation to significant independent variables. Data are presented showing normal distal latency, amplitude, and area values subcategorized by clinically significant variables, as well as acceptable side-to-side variability. Increased height correlated with increased distal latency in all the nerves tested. Amplitudes were larger in the infraspinatus recordings from women, while the amplitudes from the biceps and deltoid were greater in men. A larger body mass index was associated with a smaller amplitude in the deltoid in

  17. Design of a multi-enzyme reaction on an electrode surface for an L-glutamate biofuel anode.

    Science.gov (United States)

    Sakamoto, Hiroaki; Komatsu, Tomohiro; Yamasaki, Koji; Satomura, Takenori; Suye, Shin-Ichiro

    2017-02-01

    To design and construct a novel bio-anode electrode based on the oxidation of glutamic acid to produce 2-oxoglutarate, generating two electrons from NADH. Efficient enzyme reaction and electron transfer were observed owing to immobilization of the two enzymes using a mixed self-assembled monolayer. The ratio of the immobilized enzymes was an important factor affecting the efficiency of the system; thus, we quantified the amounts of immobilized enzyme using a quartz crystal microbalance to further evaluate the electrochemical reaction. The electrochemical reaction proceeded efficiently when approximately equimolar amounts of the enzyme were on the electrode. The largest oxidation peak current increase (171 nA) was observed under these conditions. Efficient multi-enzyme reaction on the electrode surface has been achieved which is applicable for biofuel cell application.

  18. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    International Nuclear Information System (INIS)

    Hu, Xinyue; Yang, Juan; Zhang, Jingdong

    2011-01-01

    Highlights: ► Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. ► Magnetically attached TSF electrode shows high photoelectrochemical activity. ► Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. ► Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO 2 /SiO 2 /Fe 3 O 4 (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  19. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Johar, Saffuwan [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Sahdan, Mohd Zainizan [Microelectronics and Nanotechnology Centre (MiNT-SRC), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia)

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  20. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-01-01

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si 2+ and Al 2+ cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail

  1. Influence of the crystallographic structure of the electrode surface on the structure of the electrical double layer and adsorption of organic molecules

    International Nuclear Information System (INIS)

    Kochorovski, Z.; Zagorska, I.; Pruzhkovska-Drakhal, R.; Trasatti, S.

    1995-01-01

    The results of systematic investigation of influence of crystal structure of Bi-, Sb- and Cd-electrode surfaces on regularities of double electric layer structure in aqueous and nonaqueous solutions of surface-nonactive electrolyte are given. Influence of electrode surface characteristics on adsorptive behaviour of different organic molecules has been studied. General regularities of of chemical nature influence and surface crystallographic structure on the double layer structure and on organic compounds adsorption have been established. 57 refs., 7 figs., 4 tabs

  2. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Noori, Jafar Safaa

    2012-01-01

    of plain silicium showed a maximum power density of 86.0 mW/m2. Further expanding the surface area of carbon paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9 mW/m2 which is 2.9 times higher than that achieved with conventional carbon paper. These results show......Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass......-like nanostructure (termed nanograss) were used. A two-chamber MFC with plain silicium electrodes achieved a maximum power density of 0.002 mW/m2, while an electrode with nanograss of titanium and gold deposited on one side gave a maximum power density of 2.5 mW/m2. Deposition of titanium and gold on both sides...

  3. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

    Science.gov (United States)

    Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki

    2016-01-01

    Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at −1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion. PMID:27892544

  4. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

    Science.gov (United States)

    Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki

    2016-11-01

    Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.

  5. Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2005-02-01

    Full Text Available Electrochemical biosensors have superior properties over other existingmeasurement systems because they can provide rapid, simple and low-cost on-fielddetermination of many biological active species and a number of dangerous pollutants. Inour work, we suggested a new heavy metal biosensor based on interaction of heavy metalions (Cd2+ and Zn2+ with phytochelatin, which was adsorbed on the surface of the hangingmercury drop electrode, using adsorptive transfer stripping differential pulse voltammetry.In addition, we applied the suggested technique for the determination of heavy metals in abiological sample – human urine and platinum in a pharmaceutical drug. The detectionlimits (3 S/N of Cd(II, Zn(II and cis-platin were about 1.0, 13.3 and 1.9 pmole in 5 μl,respectively. On the basis of the obtained results, we propose that the suggested techniqueoffers simple, rapid, and low-cost detection of heavy metals in environmental, biologicaland medical samples.

  6. A Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow Waves

    Directory of Open Access Journals (Sweden)

    Victor Zena-Giménez

    2018-01-01

    Full Text Available Developing new types of optimized electrodes for specific biomedical applications can substantially improve the quality of the sensed signals. Concentric ring electrodes have been shown to provide enhanced spatial resolution to that of conventional disc electrodes. A sensor with different electrode sizes and configurations (monopolar, bipolar, etc. that provides simultaneous records would be very helpful for studying the best signal-sensing arrangement. A 5-pole electrode with an inner disc and four concentric rings of different sizes was developed and tested on surface intestinal myoelectrical recordings from healthy humans. For good adaptation to a curved body surface, the electrode was screen-printed onto a flexible polyester substrate. To facilitate clinical use, it is self-adhesive, incorporates a single connector and can perform dry or wet (with gel recordings. The results show it to be a versatile electrode that can evaluate the optimal configuration for the identification of the intestinal slow wave and reject undesired interference. A bipolar concentric record with an outer ring diameter of 30 mm, a foam-free adhesive material, and electrolytic gel gave the best results.

  7. High rate lithium-thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G.; Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1994-12-31

    The lithium/thionyl chloride system is capable of providing both high power and high energy density when cells containing thin components are arranged in a bipolar configuration. Electrode current densities in excess of 300mA/cm{sup 2} are achieved during pulse discharge. The present work is concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells.

  8. Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM)

    International Nuclear Information System (INIS)

    Huang, C.A.; Hsu, F.Y.; Yao, S.J.

    2004-01-01

    In this research, quenched and tempered martensitic stainless steels, AISI 440A, were subjected to multi-cutting passes by wire electrical discharge machining (WEDM). The WEDM is widely applied to final surface shaping of harden steel. The steel was roughly machined at first cutting pass, semi-finished by two cutting passes, and then finished by one cutting passes, all machined by WEDM. The negatively polarized wire electrode (NPWE) was used for all of these four cutting passes. Some finished specimens were further extra-finished by using the positively polarized wire electrode (PPWE). Microstructures of the finished surfaces using NPWE as well as PPWE were studied with scanning and transmission electron microscopes (SEM and TEM). Chemical composition was analyzed by an energy-dispersive X-ray spectrometer (EDX) integrated in SEM or TEM. The study of the finished surfaces with NPWE shows that a heat-affected zone (HAZ) of about 1.5 μm thick was developed. The HAZ is composed of very fine equiaxed martensitic grains of about 200 nm with concentrated dislocations, but the temper-induced carbides were not found. A few spherical deposits of wire electrode material were also registered. Oxides with ca. 10 nm in diameter were detected around the deposits. The spherical deposits were characterized as 'bull eye' in TEM according to their appearance. For the surface finished with PPWE, no obvious HAZ was detected, but a very thin (<50 nm) and uniform amorphous layer composed of wire electrode and workpiece material was found. The structural difference between the two finished surfaces was explained based on the theory of electrical discharging and metallurgical physics

  9. Bipolar Disorder (For Teens)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Bipolar Disorder KidsHealth / For Teens / Bipolar Disorder What's in this ... Disorder Print en español Trastorno bipolar What Is Bipolar Disorder? Bipolar disorders are one of several medical conditions ...

  10. Neutrality in bipolar structures

    DEFF Research Database (Denmark)

    Montero, Javier; Rodríguez, J. Tinguaro; Franco, Camilo

    2014-01-01

    In this paper, we want to stress that bipolar knowledge representation naturally allows a family of middle states which define as a consequence different kinds of bipolar structures. These bipolar structures are deeply related to the three types of bipolarity introduced by Dubois and Prade, but our...... approach offers a systematic explanation of how such bipolar structures appear and can be identified....

  11. The hypothesis of formation of the structure of surfaced metal at the surfacing based on the application of the prognostic algorithm of control the electrode wire speed

    Directory of Open Access Journals (Sweden)

    Lebedev V. A.

    2017-12-01

    Full Text Available The growth of a drop in the process of surfacing by a consumable electrode is characterized by a linear dependence of the current change on time. A hypothesis has been put forward, according to which a reduction in the feed rate of the electrode wire to zero in this time interval will substantially reduce the spraying loss and improve the formation of the surfacing roller. For the implementation of which, the use of regulators with a typical law of regulation is proposed, but not according to the current value of the arc current, but according to the forecast. A key feature of these researches is a realization given surfacing process with the imposition of external mechanical oscillations with specified amplitude-frequency characteristics on the welding bath. Analytical calculation of the transfer function for the prognostic PID regulator with the simplest linear prediction taking into account the oscillation of the weld pool is given.

  12. The monothiocyanate complexes of chromium ion(III) on the silver electrode by the surface enhanced Raman scattering

    Science.gov (United States)

    Wang, Huanru; Wu, Guozhen

    2005-11-01

    Two adsorbate forms of the monothiocyanate complex of chromium ion on the silver electrode are identified in the surface enhanced Raman scattering. The spectroscopic, especially the electronic, properties of these two forms under different applied voltages on the electrode and under both 632.8 and 514.5 nm excitations are studied by the bond force constants (bond orders) and the bond polarizability derivatives which are retrieved from the Raman intensities by an algorithm developed by Wu and co-workers [B. Tian, G. Wu, G. Liu, J. Chem. Phys. 87 (1987) 7300]. The work shows the potential of this approach to the surface enhanced Raman scattering and other fields like resonance Raman that involve vibronic coupling.

  13. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.

    2014-06-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  14. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena

    International Nuclear Information System (INIS)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1961-01-01

    Radioactive stearic acid ( 1 4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs

  15. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  16. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, Stanley; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are

  17. Effect of electrode configuration on the uniformity of atmospheric pressure surface dielectric barrier air micro-discharge

    Science.gov (United States)

    Xia, Yang; Bi, Zhenhua; Qi, Zhihua; Ji, Longfei; Zhao, Yao; Chang, Xuewei; Wang, Wenchun; Liu, Dongping

    2018-02-01

    The electrode configuration of atmospheric pressure air discharge is one of the key elements that have significant effects on the discharge properties. In this study, double-sided printed circuit boards with square-shaped lattice structure are used to generate surface dielectric barrier air micro-discharge (SDBAMD) at atmospheric pressure. The effects of the lattice width on the discharge properties are reported. The uniformity of the SDBAMD is evaluated by adopting the digital image processing method. Our measurements show that the power and ignition voltage of the SDBAMD significantly depended on the configuration of the grounded electrode. The digital image processing results show that the uniformity of the SDBAMD is severely affected by the lattice width, and the most uniform discharge is achieved at the lattice width of 2.0 mm. The numerical model based on COMSOL demonstrated that increasing the lattice width can lead to an increase in the electric field in the vicinity of the grounded electrode and a decrease in the lattice center. Furthermore, our analysis suggests that the different electrode configurations can change the interaction between the space charges during the discharge, which ultimately affects the uniformity of the SDBAMD.

  18. What is Bipolar Disorder?

    Science.gov (United States)

    ... affect friends and family? For More Information Share Bipolar Disorder Download PDF Download ePub Order a free hardcopy ... brochure will give you more information. What is bipolar disorder? Bipolar disorder is a serious brain illness. It ...

  19. Transtorno bipolar

    Directory of Open Access Journals (Sweden)

    Alda Martin

    1999-01-01

    Full Text Available Os resultados de estudos de famílias sugerem que o transtorno bipolar tenha uma base genética. Essa hipótese foi reforçada em estudos de adoção e de gêmeos. A herança do transtorno bipolar é complexa, envolve vários genes, além de apresentar heterogeneidade e interação entre fatores genéticos e não-genéticos. Achados, que já foram replicados, já implicaram os cromossomos 4, 12, 18 e 21, entre outros, na busca por genes de suscetibilidade. Os resultados mais promissores foram obtidos através de estudos de ligação. Por outro lado, os estudos de associação geraram dados interessantes, mas ainda vagos. Os estudos de populações de pacientes homogêneos e a melhor definição do fenótipo deverão contribuir para avanços futuros. A identificação dos genes relacionados ao transtorno bipolar irá permitir o melhor entendimento e tratamento dessa doença.

  20. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface

    International Nuclear Information System (INIS)

    Frasconi, Marco; Boer, Harry; Koivula, Anu; Mazzei, Franco

    2010-01-01

    Laccases and other multicopper oxidases are reported to be able to carry out direct electron transfer reactions when immobilized onto electrode surface. This allows detailed research of their electron transfer mechanisms. We have recently characterized the kinetic properties of four laccases in homogenous solution and immobilized onto an electrode surface with respect to a set of different redox mediators. In this paper we report the direct electron transfer of four purified laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL), by trapping the proteins within an electrochemically inert polymer of tributylmethyl phosphonium chloride coating a gold electrode surface. In particular, we have characterized the steps involved in the laccases electron transfer mechanism as well as the factors limiting each step. During the voltammetric experiments, non-turnover Faradic signals with midpoint potential of about 790 and 400 mV were observed for high potential laccases, ThL and TvL, corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively, whereas low redox potential laccases r-MaL and RvL shown a redox couple with a midpoint potential around 400 mV. The electrocatalytic properties of these laccase modified electrodes for the reduction of oxygen have been evaluated demonstrating significative direct electron transfer kinetics. The biocatalytic activity of laccases was also monitored in the presence of a well known inhibitor, sodium azide. On the basis of the experimental results, a hypothesis about the electronic pathway for intramolecular electron transfer characterizing laccases has been proposed.

  1. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Frasconi, Marco [Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5 00185 Rome (Italy); Boer, Harry; Koivula, Anu [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Mazzei, Franco, E-mail: franco.mazzei@uniroma1.i [Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5 00185 Rome (Italy)

    2010-12-30

    Laccases and other multicopper oxidases are reported to be able to carry out direct electron transfer reactions when immobilized onto electrode surface. This allows detailed research of their electron transfer mechanisms. We have recently characterized the kinetic properties of four laccases in homogenous solution and immobilized onto an electrode surface with respect to a set of different redox mediators. In this paper we report the direct electron transfer of four purified laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL), by trapping the proteins within an electrochemically inert polymer of tributylmethyl phosphonium chloride coating a gold electrode surface. In particular, we have characterized the steps involved in the laccases electron transfer mechanism as well as the factors limiting each step. During the voltammetric experiments, non-turnover Faradic signals with midpoint potential of about 790 and 400 mV were observed for high potential laccases, ThL and TvL, corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively, whereas low redox potential laccases r-MaL and RvL shown a redox couple with a midpoint potential around 400 mV. The electrocatalytic properties of these laccase modified electrodes for the reduction of oxygen have been evaluated demonstrating significative direct electron transfer kinetics. The biocatalytic activity of laccases was also monitored in the presence of a well known inhibitor, sodium azide. On the basis of the experimental results, a hypothesis about the electronic pathway for intramolecular electron transfer characterizing laccases has been proposed.

  2. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    International Nuclear Information System (INIS)

    Zhang, PengFei; Qiu, Aici; Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian

    2016-01-01

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10 21 /cm 3 ), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  3. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong

    2017-03-21

    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH and 27% for CO production was achieved with the current density of 1.5 mA cm-2 at −0.64 V vs. RHE, much higher than that of polycrystalline Cu. The enhanced catalytic performance is a result of the formation of the high electrochemical active surface area and high density of preferred low-index facets.

  4. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    Science.gov (United States)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  5. Study of an Ozone Composing Mechanism derived from the Third Element on Surface of Electrode using Oxygen Gas: Part 2

    Science.gov (United States)

    Murai, Akira; Nakajima, Tsuyoshi

    In our third experiment, we changed the density of nitrogen through the addition of heat energy to the anode. A computer simulation confirmed the same phenomenon. Then the copper anode was replaced with an antimony anode. We found that antimony worked better than nitrogen as a third element. Finally, in the fourth experiment, we used an industrial ozone generator including ceramic dielectrics and a titanium expanded metal electrode. A decrease in the temperature of the cooling water led to a proportional increase in ozone. It follows the formula of van't Hoff. After spattering the surface of the electrodes with argon gas and supplying the ozone generator with 99% oxygen, we were able to produce ozone which was more than 20% higher in concentration than primary state ozone under the same conditions. The ozone generator produced ozone in high yield efficiency due to the optimum density of a third element like nitrogen on the surface of the electrodes. Antimony works better than nitrogen does as a third element.

  6. High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes

    Science.gov (United States)

    Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan

    2018-02-01

    Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.

  7. Microbes, Minerals and Electrodes at the Sanford Underground Research Facility (SURF): Electrochemistry 4100 ft below the surface.

    Science.gov (United States)

    Rowe, A. R.; Abuyen, K.; Casar, C. P.; Osburn, M. R.; Kruger, B.; El-Naggar, M.; Amend, J.

    2017-12-01

    Little is known about the importance of mineral oxidation processes in subsurface environments. This stems, in part from our limited insight into the biochemistry of many of these metabolisms, especially where redox interactions with solid surfaces is concerned. To this aim, we have been developing electrochemical cultivation techniques, to target enrichment and isolation of microbes capable of oxidative extracellular electron transfer (oxEET)—transfer of electrons from the exterior of the cell to the interior. Our previous worked focused on marine sediments; using an electrode poised at a given redox potential to isolate mineral-oxidizing microbes. Electrode oxidizing microbes isolated from these enrichments belong to the genera Thioclava, Marinobacter, Halomonas, Idiomarina, Thalassospira, and Pseudamonas; organisms commonly detected in marine and deep sea sediments but not generally associated with mineral, sulfur and/or iron oxidation. At the Sanford Underground Research Facility (SURF) in Leed, South Dakota, we have been utilizing similar electrocultivation techniques to understand: 1) the potential for mineral oxidation by subsurface microbes, 2) their selective colonization on mineral vs. electrode surfaces, as well as 3) the community composition of microbes capable of these metabolic interactions. An electrochemical and mineral enrichment scheme was designed and installed into a sulfidic groundwater flow, located at the 4100 ft level of the former gold mine. The communities enriched on electrodes (graphite and indium tin oxide coated glass) and minerals (sulfur, pyrite, and schists from the location) were compared to the long-term ground water microbial community observed. Ultimately, these observations will help inform the potential activity of a lithotrophic microbes in situ and will in turn guide our culturing efforts.

  8. Understanding the Effects of a High Surface Area Nanostructured Indium Tin Oxide Electrode on Organic Solar Cell Performance.

    Science.gov (United States)

    Cao, Bing; He, Xiaoming; Sorge, Jason B; Lalany, Abeed; Ahadi, Kaveh; Afshar, Amir; Olsen, Brian C; Hauger, Tate C; Mobarok, Md Hosnay; Li, Peng; Cadien, Kenneth C; Brett, Michael J; Luber, Erik J; Buriak, Jillian M

    2017-11-08

    Organic solar cells (OSCs) are a complex assembly of disparate materials, each with a precise function within the device. Typically, the electrodes are flat, and the device is fabricated through a layering approach of the interfacial layers and photoactive materials. This work explores the integration of high surface area transparent electrodes to investigate the possible role(s) a three-dimensional electrode could take within an OSC, with a BHJ composed of a donor-acceptor combination with a high degree of electron and hole mobility mismatch. Nanotree indium tin oxide (ITO) electrodes were prepared via glancing angle deposition, structures that were previously demonstrated to be single-crystalline. A thin layer of zinc oxide was deposited on the ITO nanotrees via atomic layer deposition, followed by a self-assembled monolayer of C 60 -based molecules that was bound to the zinc oxide surface through a carboxylic acid group. Infiltration of these functionalized ITO nanotrees with the photoactive layer, the bulk heterojunction comprising PC 71 BM and a high hole mobility low band gap polymer (PDPPTT-T-TT), led to families of devices that were analyzed for the effect of nanotree height. When the height was varied from 0 to 50, 75, 100, and 120 nm, statistically significant differences in device performance were noted with the maximum device efficiencies observed with a nanotree height of 75 nm. From analysis of these results, it was found that the intrinsic mobility mismatch between the donor and acceptor phases could be compensated for when the electron collection length was reduced relative to the hole collection length, resulting in more balanced charge extraction and reduced recombination, leading to improved efficiencies. However, as the ITO nanotrees increased in height and branching, the decrease in electron collection length was offset by an increase in hole collection length and potential deleterious electric field redistribution effects, resulting in

  9. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    Administrator

    e-mail: sergio.trasatti@unimi.it. Abstract. RuO2 thin layers were deposited on Ti supports ... scrutinized in an attempt to separate geometric from electronic factors. True electrocatalytic effects are clearly seen to prevail over ... layer electrodes have shown that electronic and geometric factors are interrelated as the size of the.

  10. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction

    NARCIS (Netherlands)

    Pozo, Guillermo; Jourdin, Ludovic; Lu, Yang; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2016-01-01

    Recent evidence suggests that autotrophic sulfate reduction could be driven by direct and indirect electron transfer mechanisms in bioelectrochemical systems. However, much uncertainty still exists about the electron fluxes from the electrode to the final electron acceptor sulfate during

  11. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    . Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  12. Spatially resolved electrochemistry in ionic liquids: surface structure effects on triiodide reduction at platinum electrodes

    NARCIS (Netherlands)

    Aaronson, Barak D.B.; Lai, Stanley; Unwin, Patrick R.

    2014-01-01

    Understanding the relationship between electrochemical activity and electrode structure is vital for improving the efficiency of dye-sensitized solar cells. Here, the reduction of triiodide to iodide in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) room temperature ionic liquid (RTIL)

  13. Novel electroanalysis of hydroxyurea at glassy carbon and gold electrode surfaces

    Directory of Open Access Journals (Sweden)

    Keerti M. Naik

    2014-09-01

    Full Text Available A simple and a novel electroanalysis of hydroxyurea (HU drug at glassy carbon and gold electrode was investigated for the first time using cyclic, linear sweep and differential pulse voltammetric techniques. The oxidation of HU was irreversible and exhibited a diffusion controlled process on both electrodes. The oxidation mechanism was proposed. The dependence of the current on pH, the concentration, nature of buffer, and scan rate was investigated to optimize the experimental conditions for the determination of HU. It was found that the optimum buffer pH was 7.0, a physiological pH. In the range of 0.01 to 1.0 mM, the current measured by differential pulse voltammetry showed a linear relationship with HU concentration with limit of detection of 0.46 µM for glassy carbon electrode and 0.92 µM for gold electrode. In addition, reproducibility, precision and accuracy of the method were checked as well. The developed method was successfully applied to HU determination in pharmaceutical formulation and human biological fluids. The method finds its applications in quality control laboratories and pharmacokinetics.

  14. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sebarchievici, I., E-mail: incemc@incemc.ro [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Tăranu, B.O. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Birdeanu, M. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania); Rus, S.F. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Fagadar-Cosma, E., E-mail: efagadar@yahoo.com [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania)

    2016-12-30

    Highlights: • Mn-porphyrin/gold nanoparticle-modified glassy carbon electrodes were obtained. • AFM investigations of thin films display multilayer of triangular type architecture. • Oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controled. • There is a linear dependence between H{sub 2}O{sub 2} concentration and the currents intensity. • The modified electrodes show better electrochemical detection ability to H{sub 2}O{sub 2}. - Abstract: The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H{sub 2}O{sub 2}. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV–vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC-MnP-nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC-MnP-nAu in comparison with GC-MnP, due to increasing charge transfer efficiency. The MnP-nAu film mediates the electron transfer between H{sub 2}O{sub 2} and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H{sub 2}O{sub 2} at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H{sub 2}O{sub 2} concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controlled. The GC-MnP-nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  15. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  16. Bipolar disorder: an overview

    African Journals Online (AJOL)

    which is the reason that up to 69% of patients with BD are misdiagnosed.1 Bipolar ... Cyclothymic disorder. • Substance/medication induced bipolar and related disorder. • Bipolar and related disorder due to another medical condition ... patients. Keywords: bipolar disorder, mania, depression, pharmacological management.

  17. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  18. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  19. Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust

    Science.gov (United States)

    Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.

    2018-02-01

    The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.

  20. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  1. Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate

    International Nuclear Information System (INIS)

    Huang, K.-J.; Li, J.; Liu, Y.-M.; Yu, S.; Yu, M.; Cao, X.

    2012-01-01

    We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0. 5-800 ng mL -1 , and the detection limit is 0.1 ng mL -1 (at an S/N of 3). The immunosensor is sensitive and stable. (author)

  2. In situ structural study on underpotential deposition of Ag on Au(111) electrode using surface X-ray scattering technique

    OpenAIRE

    Kondo, Toshihiro; Morita, Jun; Okamura, Masayuki; Saito, Toshiya; Uosaki, Kohei

    2002-01-01

    In situ surface X-ray scattering (SXS) measurements were carried out to study the structure of a Ag layer on a Au(111) electrode formed by underpotential deposition (upd) in sulfuric acid solution. Specular rod profiles showed that a monolayer of Ag was formed at a potential between the second and third upd peaks, and a bilayer of Ag was formed at a potential between the third upd peak and bulk deposition. Non-specular rod profiles demonstrated that electrochemically deposited Ag atoms both i...

  3. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. (Division of Cardiovascular Medicine, University of California, School of Medicine, Davis (USA))

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  4. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    maximize the triple phase boundary length for simultaneous high current density and selectivity towards formate formation (Chapter 3). The Sn GDEs was incorporated into a home-designed scalable full electrochemical cell which features a buffer layer of circulating liquid electrolyte mediating the proton concentration at cathode electrode surface. The Sn GDEs exhibited excellent short-term performance for CO2 reduction with high selectivity towards formate formation at low overpotentials in the full electrochemical cell. Additionally, coupling water oxidation and CO2 reduction was demonstrated in this full electrochemical cell to mimic biosynthesis (Chapter 4). The rapid degradation of selectivity towards formate formation on Sn GDEs in the full electrochemical cell, however, was observed during long-term operation. The degradation mechanism was unraveled due to the decrease of electrode potential resulted from substantial increase of internal ohmic resistance of the full electrochemical cell. The unexpected rise of internal ohmic resistance was attributed to the pulverization of 100 nm Sn nanoparticles due to the hydrogen diffusion induced stress. Based on the understanding of the origin of Sn nanoparticles pulverization, SnO2 nanoparticles of 3˜3.5 nm close to the critical size were utilized and reduced in situ to form Sn catalyst for electrochemical reduction of CO2. The pulverization was suppressed and subsequently a stable performance of electrodes was obtained (Chapter 5). Due to the affinity to oxygen, Sn nanoparticle surface is covered by a native thin oxide layer. The performance of Sn GDEs towards CO2 reduction strongly depends on the initial thickness of the surface oxide layer. The selectivity towards formate production dropped while the hydrogen yield increased as the initial thickness of the oxide layer increased (Chapter 6). These results suggest the underlying of surface structure on the selectivity of Sn electrode for CO2 reduction and provide insight into

  5. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; Liu, Xiao; Wang, Hua; Mei, Donghai; Ge, Qingfeng

    2016-11-01

    Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance Computing

  6. Flexible retinal electrode array

    Science.gov (United States)

    Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  7. Micromachined electrode array

    Science.gov (United States)

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  8. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    Science.gov (United States)

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  9. Bipolar Items

    Directory of Open Access Journals (Sweden)

    Nishiguchi Sumiyo

    2016-12-01

    Full Text Available This article asserts that the Japanese wide-scope mo ‘even’ in simple sentences are bipolar items (BPIs antilicensed or forbidden by negation and licensed in a non-monotonic (NM environment. BPIs share the features of negative polarity items (NPIs as well as positive polarity items (PPIs. The Dutch ooit ‘ever’, the Serbo-Croatian i-series ‘and/even’, and the Hungarian is-series ‘and/even’ are antilicensed by clausemate negation and licensed by extraclausal negation (van der Wouden, 1997; Progovac, 1994; Szabolcsi, 2002 or non-monotonic negative (and positive, for Serbo-Croatian emotive predicates. Adding an NPI rescues BPIs in uncomfortable clausemate negation.

  10. Design, Synthesis, and Use of Peptides Derived from Human Papillomavirus L1 Protein for the Modification of Gold Electrode Surfaces by Self-Assembled Monolayers.

    Science.gov (United States)

    Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-11-14

    In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.

  11. Single Qubit Manipulation in a Microfabricated Surface Electrode Ion Trap (Open Access, Publisher’s Version)

    Science.gov (United States)

    2013-09-13

    electrode ion trap with field compensation using a modulated Raman effect D T C Allcock, J A Sherman, D N Stacey et al. Spatially uniform single-qubit gate...in thermal states of motion G Kirchmair, J Benhelm, F Zähringer et al. Normal modes of trapped ions in the presence of anharmonic trap potentials J P...Qloaded = 280) [35]. New Journal of Physics 15 (2013) 093018 (http://www.njp.org/) 5 2.1 GHz Zeeman = 1.4 MHz/G 36 9. 5 nm HF = 12.6 GHz 171Yb+ 2P 1

  12. Preparation and Properties of Mercury Film Electrodes on Solid Amalgam Surface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Barek, J.

    2010-01-01

    Roč. 22, 17-18 (2010), s. 1967-1973 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : voltammetry * solid and paste amalgam * Mercury film electrode Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  13. Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Teepu Sultan

    2014-01-01

    Full Text Available Electrical discharge machining is one of the earliest nontraditional machining, extensively used in industry for processing of parts having unusual profiles with reasonable precision. In the present work, an attempt has been made to model material removal rate, electrode wear rate, and surface roughness through response surface methodology in a die sinking EDM process. The optimization was performed in two steps using one factor at a time for preliminary evaluation and a Box-Behnken design involving three variables with three levels for determination of the critical experimental conditions. Pulse on time, pulse off time, and peak current were changed during the tests, while a copper electrode having tubular cross section was employed to machine through holes on EN 353 steel alloy workpiece. The results of analysis of variance indicated that the proposed mathematical models obtained can adequately describe the performances within the limits of factors being studied. The experimental and predicted values were in a good agreement. Surface topography is revealed with the help of scanning electron microscope micrographs.

  14. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    Science.gov (United States)

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  15. Metal-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells through High Surface Area and Large Porous Carbon

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available Highly efficient, large mesoporous carbon is fabricated as a metal-free counter electrode for dye-sensitized solar cells. The mesoporous carbon shows very high energy conversion efficiency of 7.1% compared with activated carbon. The mesoporous carbon is prepared and characterized by nitrogen adsorption, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The nitrogen adsorption data reveals that the material possesses BET specific surface area ca.1300 m2/g and pore diameter 4.4 nm. Hexagonal rod-like morphology and ordered pore structure of mesoporous carbon are confirmed by electron microscopy data. The better performance of this carbon material is greatly benefited from its ordered interconnected mesoporous structure and high surface area.

  16. PECULIAR FEATURES OF MACHINING MARKS FORMATION ON SURFACE ОF TITANIUM SPECIMEN WITH SINGLE ELECTRO CONTACT ACTION OF WIRE ELECTRODE-TOOL

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2013-01-01

    Full Text Available The paper presents an investigation of shape and geometry parameters of machining marks obtained on the surface of titanium specimen with a single electro contact action of a wire electrode-tool. A description of the developed unit and methodology for execution of experimental investigations has been given in the paper. The paper provides and analyzes experimentally obtained data showing the effect of conditions and modes of single electro contact action of wire tool-electrode on the shape and geometrical parameters of machining marks obtained on the surface of titanium specimen. It is shown that the formation of these traces occurs in the context of joint action of both the electrical erosion and mechanical action of the working part of the wire electrode-tool on the surface of the titanium specimen that expands technological capabilities of electro contact treatment while  solving problems associated with targeted modification of the original work-piece surfaces.

  17. Poly({omicron}-methoxyaniline) modified electrode for detection of lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Lindino, Cleber Antonio; Casagrande, Marcella; Peiter, Andreia; Ribeiro, Caroline [Departamento de Quimica, Universidade Estadual do Oeste do Parana, Toledo, PR (Brazil)

    2012-07-01

    This paper reports the use of an electrode modified with poly({omicron}-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly({omicron}-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10{sup -5} to 1 x 10{sup -4} mol L{sup -1}. The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry). (author)

  18. Poly(ο-methoxyaniline) modified electrode for detection of lithium ions

    International Nuclear Information System (INIS)

    Lindino, Cleber Antonio; Casagrande, Marcella; Peiter, Andreia; Ribeiro, Caroline

    2012-01-01

    This paper reports the use of an electrode modified with poly(ο-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(ο-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10 -5 to 1 x 10 -4 mol L -1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry). (author)

  19. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  20. Tritium isotope separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Petek, M.; Ramey, D.W.; Taylor, R.D.; Kobisk, E.H.

    1980-01-01

    A process for separating tritium from light and heavy water is described. Hydrogen is transferred at and through bipolar electrodes at rates H > D > T. In a cell containing several bipolar electrodes placed in series between two terminal electrodes, a flow of hydrogen is established from the terminal anode compartment toward the terminal cathode. An electrolyte feed containing tritium is continuously added to the system and is subsequently transported countercurrent to the hydrogen mass transfer. A cascaded system is established, in which effluent streams enriched and depleted in tritium can be withdrawn. The voltage drop is smaller at any bipolar electrode as compared to the voltage for normal electrolysis. Cell design is compact because isotope separation occurs at bipolar electrodes without evolution of gas. Isotope separation was demonstrated in laboratory cells where a steady-state tritium concentration gradient was attained. This gradient was in agreement with concentrations calculated from a derived mathematical model

  1. Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes.

    Science.gov (United States)

    Cui, G; Yoo, J H; Lee, J S; Yoo, J; Uhm, J H; Cha, G S; Nam, H

    2001-08-01

    The effect of various electrochemical pre-treatment methods on the surface and electrochemical properties of screen-printed carbon paste electrodes (SPCE) prepared with three different commercial products was examined. It was observed that a positively charged redox couple, e.g., hexaammineruthenium(III), exhibited quasi-reversible behavior at the untreated SPCE. However, the cyclic voltammograms (CVs) of the SPCE prepared with general-purpose carbon inks did not exhibit clear redox peaks to other representative redox couples [e.g., hexacyanoferrate(III), hexachloroiridate(IV), dopamine, and hydroquinone] without activation. Electrochemical pre-treatment methods were sought in four different aqueous solutions, i.e., sulfuric acid, potassium chloride, sodium hydrogencarbonate, and sodium carbonate, applying various activation potentials. It was found that the pre-treatment procedure in saturated Na2CO3 solution at 1.2 V provides a mild and effective condition for activating the SPCE. By measuring the water contact angles at the SPCE surfaces and recording their SEM images, it was confirmed that the electrochemical pre-treatment effectively removes the organic binders from the surface carbon particles. A prolonged period of activation (> 5 min) or the use of high potentials (> 1.2 V) increased the capacitance of the electrode over 20 microF cm(-2). The pre-treated SPCE behaved like a random array microelectrode, exhibiting a sigmoidal-shaped CV at a slow scan rate. The short pre-anodization method in Na2CO3 solution was generally applicable to most SPCE prepared with general-purpose carbon inks.

  2. Types of Bipolar Disorder

    Science.gov (United States)

    ... many people have bipolar disorder along with another illness such as anxiety disorder, substance abuse, or an eating disorder. People with ... are sometimes misdiagnosed with schizophrenia. Anxiety and ADHD: ... such as bipolar disorder. Risk Factors Scientists are ...

  3. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    Administrator

    Oxides produced by thermal decomposition are poorly crystalline and a heating pulse could induce crystallization. The high inten- sity of the beam much probably causes a violent thermal shock with formation of surface micro- cracks. 14. As a consequence, the number of surface sites accessible to the solution increases.

  4. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients......BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...

  5. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Kunimatsu, Keiji; Senzaki, Takahiro; Samjeske, Gabor; Tsushima, Minoru; Osawa, Masatoshi

    2007-01-01

    Hydrogen evolution reaction (HER) on a polycrystalline Pt electrode has been investigated in Ar-purged acids by surface-enhanced infrared absorption spectroscopy and electrochemical kinetic analysis (Tafel plot). A vibrational mode characteristic to H atom adsorbed at atop sites (terminal H) was observed at 2080-2095 cm -1 . This band appears at 0.1 V (RHE) and grows at more negative potentials in parallel to the increase in hydrogen evolution current. Good signal-to-noise ratio of the spectra enabled us to establish the quantitative relation between the band intensity (equivalently, coverage) of terminal H and the kinetics of HER, from which we conclude that terminal H atom is the reaction intermediate in HER and the recombination of two terminal H atoms is the rate-determining step. The quantitative analysis of the infrared data also revealed that the adsorption of terminal H follows the Frumkin isotherm with repulsive interaction

  6. Surface morphology of titanium dioxide (TiO{sub 2}) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    Energy Technology Data Exchange (ETDEWEB)

    Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP) Kangar, Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP) Kangar, Perlis (Malaysia); School of Microelectronic Engineering Universiti Malaysia Perlis (UniMAP) Kangar, Perlis (Malaysia)

    2016-07-06

    Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  7. Polymeric ionic liquid and carbon black composite as a reusable supporting electrolyte: modification of the electrode surface.

    Science.gov (United States)

    Yoo, Seung Joon; Li, Long-Ji; Zeng, Cheng-Chu; Little, R Daniel

    2015-03-16

    One of the major impediments to using electroorganic synthesis is the need for large amounts of a supporting electrolyte to ensure the passage of charge. Frequently this causes separation and waste problems. To address these issues, a polymeric ionic liquid-Super P carbon black composite has been formulated. The system enables electrolyses to be performed without adding an additional supporting electrolyte, and its efficient recovery and reuse. In addition, the ability of the composite to modify the electrode surface in situ leads to improved kinetics. A practical consequence is that one can decrease catalyst loading without sacrificing efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Psychotic and Bipolar Disorders: Bipolar Disorder.

    Science.gov (United States)

    Holder, Sarah D

    2017-04-01

    Bipolar disorder is a severe chronic mental illness that affects a large number of individuals. This disorder is separated into two major types, bipolar I disorder, with mania and typically recurrent depression, and bipolar II disorder, with recurrent major depression and hypomania. Patients with bipolar disorder spend the majority of time experiencing depression, and this typically is the presenting symptom. Because outcomes are improved with earlier diagnosis and treatment, physicians should maintain a high index of suspicion for bipolar disorder. The most effective long-term treatments are lithium and valproic acid, although other drugs also are used. In addition to referral to a mental health subspecialist for initiation and management of drug treatment, patients with bipolar disorder should be provided with resources for psychotherapy. Several comorbidities commonly associated with bipolar disorder include other mental disorders, substance use disorders, migraine headaches, chronic pain, stroke, metabolic syndrome, and cardiovascular disease. Family physicians who care for patients with bipolar disorder should focus their efforts on prevention and management of comorbidities. These patients should be assessed continually for risk of suicide because they are at high risk and their suicide attempts tend to be successful. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  9. Enhanced quantum efficiency of photoelectron emission, through surface textured metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Anna; Bandaru, Prabhakar R., E-mail: pbandaru@ucsd.edu [Program in Materials Science, Department of Mechanical Engineering, University of California, San Diego, La Jolla, California, 92130 (United States); Moody, Nathan A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    It is predicted that the quantum efficiency (QE) of photoelectron emission from metals may be enhanced, possibly by an order of magnitude, through optimized surface texture. Through extensive computational simulations, it is shown that the absorption enhancement in select surface groove geometries may be a dominant contributor to enhanced QE and corresponds to localized Fabry–Perot resonances. The inadequacy of extant analytical models in predicting the QE increase, and suggestions for further improvement, are discussed.

  10. Poisoning the active site of electrochemical reduction of dioxygen on metal monolayer modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I.; Biggin, M.E.; Gewirth, A.A.

    2000-02-08

    The four electron electroreduction of dioxygen to water on the (2 x 2) Bi upd adlattice on Au(111) has been studied by deliberately poisoning the adlattice with thiocyanate and ethanethiol during the course of electroreduction activity. The diminution in reduction activity was monitored using chronoamperometry. For SCN{sup {minus}}, the drop in current could be modeled using a Langmuir kinetic expression yielding an adsorption rate constant of 1.1 x 10{sup 4}s{sup {minus}1}M{sup {minus}1}. The rate for ethanethiol could not be measured exactly but is approximately the same. STM images of the surface obtained following introduction of SCN{sup {minus}} revealed a (4 x 4) adlattice, which was partially (6%) defected. The percentage of defects agreed well with the percentage of residual current found at long times (3%) leading the authors to associate these defects with sites of catalytic activity. STM images obtained from surfaces poisoned with ethanethiol revealed two lattices: a (8 x 8) structure which was unstable and a more stable ({radical}57 x 3) structure which is consistent with an overlayer of thiols lying flat on the surface. IR studies of the SCN{sup {minus}}-poisoned surface showed that the SCN{sup {minus}} was S-bound to the surface at almost the same energy as that expected from SCN{sup {minus}} bound to a bare Au(111) surface. XPS measurements on emersed samples showed that Bi and S were present on the surface. Analysis of these data suggests that the site of dioxygen association with the (2 x 2) Bi unpoisoned surface is the uncoordinated Au atom in the (2 x 2) unit cell.

  11. Bipolar resistive switching behaviors of ITO nanowire networks

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-02-01

    Full Text Available We have fabricated indium tin oxide (ITO nanowire (NW networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.

  12. Noise properties of textile, capacitive EEG electrodes

    OpenAIRE

    Asl Sara Nazari; Ludwig Frank; Schilling Meinhard

    2015-01-01

    The rigid surface of the conventional PCB-based capacitive electrode produces an undefined distance between the skin and the electrode surface. Therefore, the capacitance introduced by them is uncertain and can vary from electrode to electrode due to their different positions on the scalp. However, textile electrodes which use conductive fabric as electrode surfaces, are bendable over the scalp. Therefore, it provides a certain value of the capacitance which is predictable and calculable accu...

  13. Nutrition and Bipolar Depression.

    Science.gov (United States)

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    Science.gov (United States)

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  15. Bipolar Treatment: Are Bipolar I and Bipolar II Treated Differently?

    Science.gov (United States)

    ... management strategies. In addition to medications and other types of treatment, successful management of your bipolar disorder includes living a healthy lifestyle, such as getting enough sleep, eating a healthy diet and being physically active. ...

  16. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  17. All-diamond functional surface micro-electrode arrays for brain-slice neural analysis

    Czech Academy of Sciences Publication Activity Database

    Vahidpour, F.; Curley, L.; Biró, I.; McDonald, M.; Croux, D.; Pobedinskas, P.; Haenen, K.; Giugliano, M.; Vlčková Živcová, Zuzana; Kavan, Ladislav; Nesládek, M.

    2017-01-01

    Roč. 214, č. 2 (2017), č. článku 1532347. ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : impedance spectroscopy * microelectrode arrays * surface termination Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.775, year: 2016

  18. The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response.

    Science.gov (United States)

    Laurinavichyute, Veronika K; Nizamov, Shavkat; Mirsky, Vladimir M

    2017-06-20

    Surface plasmon resonance, being widely used in bioanalytics and biotechnology, is influenced by the electrical potential of the resonant gold layer. To evaluate the mechanism of this effect, we have studied it in solutions of various inorganic electrolytes. The magnitude of the effect decreases according to the series: KBr>KCl>KF>NaClO 4 . The data were treated by using different models of the interface. A quantitative description was obtained for the model, which takes into account the local dielectric function of gold being affected by the free electron charge, diffuse ionic layer near the gold/water interface, and specific adsorption of halides to the gold surface with partial charge transfer. Taking into account that most biological experiments are performed in chloride-containing solutions, detailed analysis of the model at these conditions was performed. The results indicate that the chloride adsorption is the main mechanism for the influence of potential on the surface plasmon resonance. The dependencies of surface concentration and residual charge of chloride on the applied potential were determined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrochemistry of Single Metalloprotein and DNA‐Based Molecules at Au(111) Electrode Surfaces

    DEFF Research Database (Denmark)

    Salvatore, Princia; Zeng, Dongdong; Karlsen, Kasper Kannegård

    2013-01-01

    have been primary targets, with a view on stabilizing the ds‐ONs and improving voltammetric signals of intercalating electrochemical redox probes. Voltammetric signals of the intercalator anthraquinone monosulfonate (AQMS) at ds‐DNA/Au(111) surfaces diluted by mercaptohexanol are significantly...

  20. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces

    NARCIS (Netherlands)

    Lai, Stanley; Lazenby, R.A.; Kirkman, P.M.; Unwin, P.R.

    2015-01-01

    The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of

  1. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime

    Science.gov (United States)

    Waller, G. H.; Brooke, P. D.; Rainwater, B. H.; Lai, S. Y.; Hu, R.; Ding, Y.; Alamgir, F. M.; Sandhage, K. H.; Liu, M. L.

    2016-02-01

    Aluminum oxide coatings deposited on LiMn2O4/carbon fiber electrodes by atomic layer deposition (ALD) are shown to enhance cathode performance in lithium-ion batteries. With a thin Al2O3 coating derived from 10 ALD cycles, the electrodes exhibit 2.5 times greater capacity retention over 500 cycles at a rate of 1C as well as enhanced rate capability and decreased polarization resistance. Structural and surface studies of the electrodes before and after cycling reveal that a near-surface phenomenon is responsible for the improved electrochemical performance. The crystal structure and overall morphology of the LiMn2O4 electrode are found to be unaffected by electrochemical cycling, both for coated and uncoated samples. However, evidence of Mn diffusion into the ALD coatings is observed from both transmission electron microscopy/energy-dispersive X-ray spectroscopy (TEM-EDS) and X-ray Photoelectron Spectroscopy (XPS) after electrochemical cycling. Furthermore, XPS analysis of the Al 2p photoemission peak for the ALD coated electrodes reveal a significant shift in binding energy and peak shape, suggesting the presence of an Al-O-F compound formed by sequestering HF in the electrolyte. These observations provide new insight toward understanding the mechanism in which ultrathin coatings of amphoteric oxides can inhibit capacity loss for LiMn2O4 cathodes in lithium-ion batteries.

  2. Voltammetric and surface-enhanced resonance Raman spectroscopic characterization of cytochrome C adsorbed on a 4-mercaptopyridine monolayer on silver electrodes

    NARCIS (Netherlands)

    Millo, D.; Bonifacio, A.; Ranieri, A.; Borsari, M.; Gooijer, C.; van der Zwan, G.

    2007-01-01

    To combine voltammetric techniques with surface-enhanced resonance Raman scattering (SERRS), cytochrome c (cyt c) was immobilized on a roughened silver electrode chemically modified with a self-assembled monolayer (SAM) of 4-mercaptopyridine (PySH). All measurements were performed on the same

  3. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Salvatore, Princia; Karlsen, K.

    2013-01-01

    We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 50-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer under...

  4. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    positively charged and electrostatically neutral, hydrophobic and hydrophilic, aliphatic and aromatic, and variable-length micro-environments, as well as their combinations. Optimal conditions for enzyme function seems to be a combination of hydrophobic and hydrophilic surface linker properties, which can...... lead to close to complete non-catalytic monolayer interfacial electron transfer function and electrocatalysis with activity approaching enzyme activity in homogeneous solution. Thiophenol (combined hydrophobic stacking and interdispersed water molecules), 4-methyl-thiophenol (hydrophobic and water...

  5. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    RuO2 thin layers were deposited on Ti supports by thermal decomposition of RuCl3 at 400°C. Some of the samples were subjected to laser irradiation between 0.5 and 1.5 J cm-2. Some others to Kr bombardment with doses between 1015 and 1016 cm-2. Modifications introduced by the surface treatments were monitored ...

  6. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density

    Czech Academy of Sciences Publication Activity Database

    Černocká, Hana; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 174, AUG 2015 (2015), s. 356-360 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Bovine serum albumin * sensing of surface-attached protein stability * protein structural transition at Hg Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  7. Surface-Modified Electrodes: Enhancing Performance Guided by Insitu Spectroscopy and Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chueh, William [Stanford Univ., CA (United States)

    2016-12-01

    The aim of this project is to understand the nature of active sites and degradation mechanisms in solid-oxide fuel cells cathodes. Using Co and Fe-based perovskite oxides as model systems, we developed a comprehensive understanding of the active site and degradation. In particular, we correlated cation segregation, precipitation and surface reconstruction to electrochemical activity and stability. We show that in conventional materials, the most active cathodes are not the most stable ones. A novel strategy of cation segregation buffer layer was proposed and developed to overcome this limitation. A nanoscale barrier layer was inserted a few nanometer below the surface of the cathodes which prevents the cations from diffusing from the bulk to the surface. We report a LSCF-based cathode with record performance and stability, reach an impressive 0.03 Ω cm2 at 650 °C in air. This modification strategy is expected to lead to more active and stable solid-oxide fuel cells, and ultimately lead to lower cost in commercial systems.

  8. Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes.

    Science.gov (United States)

    Cook, John B; Kim, Hyung-Seok; Lin, Terri C; Robbennolt, Shauna; Detsi, Eric; Dunn, Bruce S; Tolbert, Sarah H

    2017-06-07

    This work aims to improve the poor cycle lifetime of silicon-based anodes for Li-ion batteries by tuning microstructural parameters such as pore size, pore volume, and specific surface area in chemically synthesized mesoporous silicon. Here we have specifically produced two different mesoporous silicon samples from the magnesiothermic reduction of ordered mesoporous silica in either argon or forming gas. In situ X-ray diffraction studies indicate that samples made in Ar proceed through a Mg 2 Si intermediate, and this results in samples with larger pores (diameter ≈ 90 nm), modest total porosity (34%), and modest specific surface area (50 m 2 g -1 ). Reduction in forming gas, by contrast, results in direct conversion of silica to silicon, and this produces samples with smaller pores (diameter ≈ 40 nm), higher porosity (41%), and a larger specific surface area (70 m 2 g -1 ). The material with smaller pores outperforms the one with larger pores, delivering a capacity of 1121 mAh g -1 at 10 A g -1 and retains 1292 mAh g -1 at 5 A g -1 after 500 cycles. For comparison, the sample with larger pores delivers a capacity of 731 mAh g -1 at 10 A g -1 and retains 845 mAh g -1 at 5 A g -1 after 500 cycles. The dependence of capacity retention and charge storage kinetics on the nanoscale architecture clearly suggests that these microstructural parameters significantly impact the performance of mesoporous alloy type anodes. Our work is therefore expected to contribute to the design and synthesis of optimal mesoporous architectures for advanced Li-ion battery anodes.

  9. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Vinke, I.C.; de Vries, K.J.; Burggraaf, A.J.

    1989-01-01

    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The

  10. Indirect bipolar electrodeposition.

    Science.gov (United States)

    Loget, Gabriel; Roche, Jérome; Gianessi, Eugenio; Bouffier, Laurent; Kuhn, Alexander

    2012-12-12

    Based on the principles of bipolar electrochemistry, localized pH gradients are generated at the surface of conducting particles in solution. This allows the toposelective deposition of inorganic and organic polymer layers via a pH-triggered precipitation mechanism. Due to the intrinsic symmetry breaking of the process, the concept can be used to generate in a straightforward way Janus particles, with one section consisting of deposits obtained from non-electroactive precursors. These indirect electrodeposits, such as SiO(2), TiO(2), or electrophoretic paints, can be further used as an immobilization matrix for other species like dyes or nanoparticles, thus opening promising perspectives for the synthesis of a variety of bifunctional objects with a controlled shape.

  11. Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photoelectrochemical properties of dye-sensitized porous semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sayama, K.; Hara, K.; Arakawa, H. [National Institute of Materials and Chemical Research,NIMC, Ibaraki (Japan); Ohga, Y.; Shinpou, A.; Suga, S. [Hayashibara Biochemical Lab., Inc, Okayama (Japan)

    2001-02-01

    The incident photon-to-current conversion efficiency (IPCE) of a porous TiO{sub 2} electrode sensitized by cyanine dyes increased with decreasing distance between the skeleton of the dye and the TiO{sub 2} surface. The photocurrent of oxide semiconductor electrodes sensitized by a cyanine dye increased with the positive shift of the conduction band potential of the oxide semiconductor in the following order: Nb{sub 2}O{sub 5} < TiO{sub 2} < ZnO < SnO{sub 2}. The SnO{sub 2} semiconductor cell showed the best light-to-electric conversion efficiency among the four semiconductors. (author)

  12. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  13. Magnetic loading of TiO{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xinyue; Yang, Juan [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China); Zhang, Jingdong, E-mail: zhangjd@mail.hust.edu.cn [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. Black-Right-Pointing-Pointer Magnetically attached TSF electrode shows high photoelectrochemical activity. Black-Right-Pointing-Pointer Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. Black-Right-Pointing-Pointer Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  14. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Demetriou, Anna; Welinder, Anne Christina

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1 V (vs....... SCE) in phosphate buffer pH 7.7. The peak half-widths are about 25 mV at a scan rate of 10 mV s(-1). This is much smaller than for a one-electron Faradaic process (90.6 mV) under similar conditions. The coverage of homocysteine is 6.1 (+/- 0.2) x 10(-10) Mol cm(-2), or 5.9 x 10(-5) C cm(-2), from Au...... and lower pH. The midpoint potential shows biphasic behaviour, decreasing linearly with increasing pH until pH 10.4 towards a constant value at higher pH. The cathodic and anodic peak charges decay at pH both higher and lower than 7.7. The homocysteine monolayer was investigated by in situ STM at different...

  15. Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM of Inconel 625 super alloy by cryogenic treated tool electrode

    Directory of Open Access Journals (Sweden)

    Ashish Goyal

    2017-10-01

    Full Text Available The present investigation focuses the effect of process parameters on material removal rate (MRR and surface roughness (Ra in wire electric discharge machining of Inconel 625. Machining was done by using a normal zinc coated wire and cryogenic treated zinc coated wire. The experiments were performed by considering different process parameters viz. tool electrode, current intensity, pulse on time, pulse off time, wire feed and wire tension. The thickness of work material and dia. of wire are kept constant. Taguchi L18 (21 * 35 orthogonal array of experimental design is used to perform the experiments. Analysis of variance (ANOVA is employed to optimize the material removal rate and surface roughness. Based on analysis it is found that pulse on time, tool electrode and current intensity are the significant parameters that affect the material removal rate and surface roughness. The scanning electron microscopy (SEM are used to identify the microstructure of the machined work piece.

  16. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    International Nuclear Information System (INIS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-01-01

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance

  17. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  18. Disposable biomedical electrode

    Science.gov (United States)

    Frost, J. D., Jr.; Hillman, C. E., Jr.

    1977-01-01

    Reusable recording cap equipped with compressible snap-on bioelectronic electrodes is worn by patient to allow remote monitoring of electroencephalogram and electro-oculogram waveforms. Electrodes can be attached to inside surface of stretch-textile cap at twelve monitoring positions and at one or two ground positions.

  19. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Juan J. [Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia 46022 (Spain); Pérez-Cajaraville, Juan J. [Pain Unit and Department of Anesthesia and Critical Care, Clínica Universidad de Navarra, University of Navarra, Pamplona 31008 (Spain); Muñoz, Víctor [Neurotherm Spain, Barcelona 08303 (Spain); Berjano, Enrique, E-mail: eberjano@eln.upv.es [Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València 46022 (Spain)

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  20. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1979-10-01

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm -2 , and at 35 to 90 0 C. Current densities up to 0.3 A cm -2 have been achieved in continuous operation, at 80 to 90 0 C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H 2 O at 0.2 A cm -2 and 5.0 kwh/kg H 2 O at 0.5 A cm -2 current density, compared to 6.4 and 8.0 kwh/kg H 2 O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  1. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries

    Science.gov (United States)

    Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, Ch.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.

    2016-07-01

    Carbon felt electrodes for vanadium redox flow batteries are obtained by the graphitization of polyacrylonitrile based felts at different temperatures. Subsequently, the surface of the felts is modified via thermal oxidation at various temperatures. A single-cell experiment shows that the voltage efficiency is increased by this treatment. Electrode potentials measured with reference electrode setup show that this voltage efficiency increase is caused mainly by a reduction of the overpotential of the negative half-cell reaction. Consequently, this reaction is investigated further by cyclic voltammetry and the electrode activity is correlated with structural and surface chemical properties of the carbon fibers. By Raman, X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy the role of edge sites and oxygen containing functional groups (OCFs) for the electrochemical activity are elucidated. A significant activity increase is observed in correlation with these two characteristics. The amount of OCFs is correlated with structural defects (e.g. edge sites) of the carbon fibers and therefore decreases with an increasing graphitization degree. Thus, for the same thermal oxidation temperature carbon fibers graphitized at a lower temperature show higher activities than those graphitized at a higher temperature.

  2. Bipolar Disorder - Multiple Languages

    Science.gov (United States)

    ... MP3 Bipolar Disorder (An Introduction) - English MP4 Bipolar Disorder (An Introduction) - español (Spanish) MP4 Healthy Roads Media Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  3. Magnetic bipolar transistor

    OpenAIRE

    Fabian, Jaroslav; Zutic, Igor; Sarma, S. Das

    2003-01-01

    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.

  4. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Science.gov (United States)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.

  5. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  6. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  7. Bipolar zinc/oxygen battery development

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C. [Swiss Federal Inst. of Technology, Lausanne (Switzerland)

    1997-06-01

    A bipolar electrically rechargeable Zn/O{sub 2} battery has been developed. Reticulated copper foam served as substrate for the zinc deposit on the anodic side, and La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-catalyzed bifunctional oxygen electrodes were used on the cathodic side of the cells. The 100 cm{sup 2} unit cell had an open circuit voltage of 1,4 V(O{sub 2}) in moderately alkaline electrolyte. The open circuit voltage and the peak power measured for a stack containing seven cells were ca. 10V and 90W, respectively. The current-potential behaviour was determined as a function of the number of bipolar cells, and the maximum discharge capacity was determined at different discharge rates. (author) 4 figs., 1 ref.

  8. Electrochemistry on nanopillared electrodes

    Directory of Open Access Journals (Sweden)

    Chandni Lotwala

    2017-02-01

    Full Text Available The addition of nanopillars to electrodes increases their electrochemical capabilities through an increase in electroactive surface area. The nanopillars can be applied on either cathodes or anodes to engage in reduction-oxidation reactions. This minireview summaries some work on cyclic voltammetry, chronoamperometry, impedance change on nanopillared surface and compared their electrochemistry behavior on planar surfaces.

  9. Bipolar Disorder in Children

    Science.gov (United States)

    2014-01-01

    Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005). Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered. PMID:24800202

  10. Bipolar Disorder in Children

    Directory of Open Access Journals (Sweden)

    Kimberly Renk

    2014-01-01

    Full Text Available Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005. Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered.

  11. Single-molecule conductivity of non-redox and redox molecules at pure and gold-mined Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Ulstrup, Jens

    media supported by comprehensive theoretical frames, have emerged as core approaches in these exciting areas. Single-molecule redox electrochemistry is rooted in two major areas. One is the preparation of well-defined (atomically planar) electrode surfaces modified by molecular monolayers (SAMs). High...... to surface-mined Au-atoms. In addition the SAMs ensure protein/enzyme immobilization gentle enough that the proteins retain electron transfer or enzyme activity in a variety of local environments. The second area is the mapping and control of the immobilized redox molecules and metalloproteins themselves...

  12. Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder.

    Science.gov (United States)

    Večerková, Renata; Hernychová, Lenka; Dobeš, Petr; Vrba, Jiří; Josypčuk, Bohdan; Bartošík, Martin; Vacek, Jan

    2014-06-09

    Recently, it was shown that electrochemical methods can be used for analysis of poorly water-soluble proteins and for study of their structural changes and intermolecular (protein-ligand) interactions. In this study, we focused on complex electrochemical investigation of recombinant protein FTT1103, a disulfide oxidoreductase with structural similarity to well described DsbA proteins. This thioredoxin-like periplasmic lipoprotein plays an important role in virulence of bacteria Francisella tularensis. For electrochemical analyses, adsorptive transfer (ex situ) square-wave voltammetry with pyrolytic graphite electrode, and alternating-current voltammetry and constant-current chronopotentiometric stripping analysis with mercury electrodes, including silver solid amalgam electrode (AgSAE) were used. AgSAE was used in poorly water-soluble protein analysis for the first time. In addition to basic redox, electrocatalytic and adsorption/desorption characterization of FTT1103, electrochemical methods were also used for sensitive determination of the protein at nanomolar level and study of its interaction with surface of AgSA microparticles. Proposed electrochemical protocol and AgSA surface-inhibition approach presented here could be used in future for biochemical studies focused on proteins associated with membranes as well as on those with disulfide oxidoreductase activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    Science.gov (United States)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  14. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    Science.gov (United States)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  15. Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures.

    Science.gov (United States)

    Song, Jun Hyuk; Kim, Young-Tae; Cho, Sunghwan; Song, Woo-Jin; Moon, Sungmin; Park, Chan-Gyung; Park, Soojin; Myoung, Jae Min; Jeong, Unyong

    2017-11-01

    Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms.

    Science.gov (United States)

    Martinek, Radek; Kahankova, Radana; Nazeran, Homer; Konecny, Jaromir; Jezewski, Janusz; Janku, Petr; Bilik, Petr; Zidek, Jan; Nedoma, Jan; Fajkus, Marcel

    2017-05-19

    This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N ) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.

  17. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  18. Genetics of bipolar disorder

    OpenAIRE

    Kerner, Berit

    2014-01-01

    Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs) and bipolar ...

  19. The use of in situ Fourier-transform infrared spectroscopy for the study of surface phenomena on electrodes in selected lithium battery electrolyte solutions

    Science.gov (United States)

    Aurbach, D.; Chusid, O.

    This paper presents some examples of surface studies of noble metals and Li electrodes in Li battery electrolyte solutions using in situ FT-IR spectroscopic techniques. These examples include the study of a mixture of solvents, the role of the reduction of salt in the build-up of surface films on the electrodes and the impact of contaminants such as traces of oxgen and water. The techniques included multiple and single internal reflectance modes and external reflectance (SNIFTIRS-type) mode. The following conclusions were drawn from this study: (i) salts containing the -SO 2CF 3 group are much more reactive on Li than LiAsF 6. Their reduction dominates the surface chemistry developed on Li in ethereal solutions; (ii) water reduction on Li in wet 1,3-dioxolane solution may not form stable LiOH films due to the further reaction of the hydroxy group with the solvent; (iii) in spite of its low solubility, oxygen dissolved in propylene carbonate and tetrahydrofuran solutions has some impact on the surface chemistry developed on Li in these solutions (probably due to Li 2O formation).

  20. [Antidepressants in bipolar disorder].

    Science.gov (United States)

    Courtet, P; Samalin, L; Olié, E

    2011-12-01

    Whereas mania defines the bipolar disorder, depression is the major challenge of treatment. In general, depressions are more frequent, longer, with a major prognostic impact in terms of disability and suicide. How should we treat a patient with bipolar depression? Antidepressants are the treatment of choice for depression, but not in the bipolar disorder. In this context, we have traditionally accepted that antidepressants are effective but they were inducing a significant risk of destabilization of the bipolar disorder, because of the transitions to mania and rapid cycling. Current data reconsider both the two aspects of this risk-benefit ratio. The effectiveness of antidepressants finally seems very limited, especially after the more recent studies with a robust methodology. Manic switches and rapid cycling may not be increased, particularly with new antidepressants and mood stabilizer combinations. The current literature reminds us that these course's modalities are inherent to the disease, with numerous risk factors, and among them, exposure to antidepressants. Who are the bipolar patients who only get the benefits of antidepressant treatment? Research will tell. They are in any case limited. How to navigate in our treatment strategies ? By choosing first drugs that demonstrated efficacy in bipolar depression. When the situation is more complex, "primum non nocere" should lead to support the prescription of the antidepressant in association with mood stabilizer. Copyright © 2011 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  1. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles

    Science.gov (United States)

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-01

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  2. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    Science.gov (United States)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  3. Depression and Bipolar Support Alliance

    Science.gov (United States)

    Depression and Bipolar Support Alliance Crisis Hotline Information Coping with a Crisis Suicide Prevention Information Psychiatric Hospitalization ... sign-up Education info, training, events Mood Disorders Depression Bipolar Disorder Anxiety Screening Center Co-occurring Illnesses/ ...

  4. Bipolar Affective Disorder and Migraine

    Directory of Open Access Journals (Sweden)

    Birk Engmann

    2012-01-01

    Full Text Available This paper consists of a case history and an overview of the relationship, aetiology, and treatment of comorbid bipolar disorder migraine patients. A MEDLINE literature search was used. Terms for the search were bipolar disorder bipolar depression, mania, migraine, mood stabilizer. Bipolar disorder and migraine cooccur at a relatively high rate. Bipolar II patients seem to have a higher risk of comorbid migraine than bipolar I patients have. The literature on the common roots of migraine and bipolar disorder, including both genetic and neuropathological approaches, is broadly discussed. Moreover, bipolar disorder and migraine are often combined with a variety of other affective disorders, and, furthermore, behavioural factors also play a role in the origin and course of the diseases. Approach to treatment options is also difficult. Several papers point out possible remedies, for example, valproate, topiramate, which acts on both diseases, but no first-choice treatments have been agreed upon yet.

  5. Noise properties of textile, capacitive EEG electrodes

    Directory of Open Access Journals (Sweden)

    Asl Sara Nazari

    2015-09-01

    Full Text Available The rigid surface of the conventional PCB-based capacitive electrode produces an undefined distance between the skin and the electrode surface. Therefore, the capacitance introduced by them is uncertain and can vary from electrode to electrode due to their different positions on the scalp. However, textile electrodes which use conductive fabric as electrode surfaces, are bendable over the scalp. Therefore, it provides a certain value of the capacitance which is predictable and calculable accurately if the effective distance to the scalp surface can be determined. In this paper noise characteristics of textile electrodes with different fabric sizes as electrode’s surface and capacity calculations related to each size are presented to determine the effective distances for each electrode size.

  6. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  7. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy.

    Science.gov (United States)

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.

  8. Depressive and bipolar disorders

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hansen, Hanne Vibe; Demyttenaere, Koen

    2005-01-01

    BACKGROUND: There is increasing evidence that attitudes and beliefs are important in predicting adherence to treatment and medication in depressive and bipolar disorders. However, these attitudes have received little study in patients whose disorders were sufficiently severe to require...... hospitalization. METHOD: The Antidepressant Compliance Questionnaire (ADCQ) was mailed to a large population of patients with depressive or bipolar disorder, representative of patients treated in hospital settings in Denmark. RESULTS: Of the 1005 recipients, 49.9% responded to the letter. A large proportion....... Moreover, their partners agreed on these negative views. Women had a more negative view of the doctor-patient relationship than men, and patients with a depressive disorder had a more negative view of antidepressants than patients with bipolar disorder. The number of psychiatric hospitalizations...

  9. Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells.

    Science.gov (United States)

    Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J

    2018-03-01

    With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.

  10. Electric modelling and image analysis of channel flow in bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Gonzalez, L.; Garcia-Alegre, M.C.; Guinea, D. [Instituto de Automatica Industrial, Consejo Superior de Investigaciones Cientificas, 28500 Arganda, Madrid (Spain); Guinea, D.M.; Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, Kelsen 5, 28049 Madrid (Spain)

    2007-07-15

    Bipolar plates are an essential part of Polymer Electrolyte Membrane Fuel Cells (PEMFC) and are related to fluid conduction. The topology of a bipolar plate is critical to the homogeneous distribution of the feeding gases over the accessible zone of the electrode. An electric model that simulates flow in bipolar plates and permits the optimisation of gas feeding in PEMFCs is proposed. As a first approach, an analogy is made between the gas pressure P and an electric voltage U in a circuit and a gas flow F and an electric current I. The fluidic resistance in a bipolar plate channel is thus R=P/F and is equivalent to the electric resistance R=U/I in a branch of a circuit. Computer image processing techniques allow the validation of the present flow estimation approach based on electrical variables. Separate plates were developed to experimentally implement a complete parallel bipolar topology. (author)

  11. Surface-enhanced Raman scattering studies on the interaction of phosphonate derivatives of imidazole, thiazole, and pyridine with a silver electrode in aqueous solution.

    Science.gov (United States)

    Podstawka, Edyta; Kudelski, Andrzej; Olszewski, Tomasz K; Boduszek, Bogdan

    2009-07-23

    Surface-enhanced Raman scattering (SERS) spectra from phosphonate derivatives of N-heterocyclic aromatic compounds immobilized on an electrochemically roughened silver electrode surface are reported and compared to Raman spectra of the corresponding solid species. The tested compounds contain imidazole [ImMeP ([hydroxy-(1H-imidazol-5-yl)-methyl]-phosphonic acid) and (ImMe)2P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]-phosphinic acid)]; thiazole [BAThMeP ((butylamino-thiazol-2-yl-methyl)-phosphonic acid) and BzAThMeP ((benzylamino-thiazol-2-yl-methyl)-phosphonic acid)]; and pyridine ((PyMe)2P (bis[(hydroxy-pyridin-3-yl-methyl)]-phosphinic acid) aromatic rings. Changes in wavenumber, broadness, and the enhancement of N-heterocyclic aromatic ring bands upon adsorption are consistent with the adsorption primarily occurring through the N lone pair of electrons with the ring arranged in a largely edge-on manner for ImMeP and BzAThMeP or in a slightly inclined orientation to the silver electrode surface at an intermediate angle from the surface normal for (ImMe)2P, BAThMeP, and (PyMe)2P. A strong enhancement of a roughly 1500 cm(-1) SERS signal for ImMeP and (PyMe)2P is also observed. This phenomenon is attributed to the formation of a localized C=C bond, which is accompanied by a decrease in the ring-surface pi-electrons' overlap. In addition, more intense SERS bands due to the benzene ring in BzAThMeP are observed than those observed for the thiazole ring, which suggests a preferential adsorption of benzene. Some interaction of a phosphonate unit is also suggested but with moderate strength between biomolecules. The strength of the P=O coordination to the silver electrode is highest for ImMeP but lowest for BzAThMeP. For all studied biomolecules, the contribution of the structural components to their ability to interact with their receptors was correlated with the SERS patterns.

  12. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study

    International Nuclear Information System (INIS)

    Leroy, S.; Martinez, H.; Dedryvere, R.; Lemordant, D.; Gonbeau, D.

    2007-01-01

    The formation of a passivation film (solid electrolyte interphase, SEI) at the surface of the negative electrode of full LiCoO 2 /graphite lithium-ion cells using different salts (LiBF 4 , LiPF 6 , LiTFSI, LiBETI) in carbonate solvents as electrolyte was investigated by X-ray photoelectron spectroscopy (XPS). The analyzes were carried out at different potential stages of the first cycle, showing the potential-dependent character of the surface film species formation and the specificity of each salt. At 3.8 V, for all salts, we have mainly identified carbonated species. Beyond this potential, the specific behavior of LiPF 6 was identified with a high LiF deposit, whereas for other salts, the formation process of the SEI appears controlled by the solvent decomposition of the electrolyte

  13. Sensing local pH and ion concentration at graphene electrode surfaces using in situ Raman spectroscopy.

    Science.gov (United States)

    Shi, Haotian; Poudel, Nirakar; Hou, Bingya; Shen, Lang; Chen, Jihan; Benderskii, Alexander V; Cronin, Stephen B

    2018-02-01

    We report a novel approach to probe the local ion concentration at graphene/water interfaces using in situ Raman spectroscopy. Here, the upshifts observed in the G band Raman mode under applied electrochemical potentials are used to determine the charge density in the graphene sheet. For voltages up to ±0.8 V vs. NHE, we observe substantial upshifts in the G band Raman mode by as much as 19 cm -1 , which corresponds to electron and hole carrier densities of 1.4 × 10 13 cm -2 and Fermi energy shifts of ±430 meV. The charge density in the graphene electrode is also measured independently using the capacitance-voltage characteristics (i.e., Q = CV), and is found to be consistent with those measured by Raman spectroscopy. From charge neutrality requirements, the ion concentration in solution per unit area must be equal and opposite to the charge density in the graphene electrode. Based on these charge densities, we estimate the local ion concentration as a function of electrochemical potential in both pure DI water and 1 M KCl solutions, which span a pH range from 3.8 to 10.4 for pure DI water and net ion concentrations of ±0.7 mol L -1 for KCl under these applied voltages.

  14. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-01-01

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g −1 . • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m 2 g −1 ) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g −1 at 0.5 A g −1 and still 120 F g −1 at a high rate of 30 A g −1 . There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg −1 and 4.03 Wh kg −1 with the corresponding power densities of 108 W kg −1 and 6.49 kW kg −1 , respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  15. A novel non-enzymatic glucose sensor based on the modification of carbon paste electrode with CuO nanoflower: Designing the experiments by response surface methodology (RSM).

    Science.gov (United States)

    Amani-Beni, Zahra; Nezamzadeh-Ejhieh, Alireza

    2017-10-15

    A non enzymatic modified electrode was constructed based on the modification of carbon paste electrode with CuO nanoflower (CuO-CPE). The raw and modified samples were characterized by XRD, TEM, SEM-EDX and X-ray mapping techniques. The proposed CuO-CPE showed a well voltammetric peak pair in cyclic voltammetry which of peak currents were decreased in the presence of glucose. Hence, this decrease in peak current was used for voltammetric determination of glucose. To evaluate interactions between the influencing variables, experiments were designed by response surface methodology (RSM) and the results showed CuO%-pH have the most effect on square wave voltammetric response. The best response was obtained in a run including 20% CuO modifier, pH 3.6, amplitude 0.106V, step potential 0.0074V and frequency 17.75Hz. Calibration curve was constructed and a linear response between ΔIp (difference of peak current in the presence and absence of glucose in SqW voltammograms) and glucose concentration was obtained in concentration range from 0.06 to 10mmolL -1 [calibration equation: ΔI (μA)=91.35 C glucose +523.12, R 2 =0.9967] with detection and quantification limits of 7.49×10 -10 and 2.49×10 -9 molL -1 , respectively. The modified electrode can be used satisfactory in determination of glucose in real samples such as human blood serum. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Novel multiple criteria decision making methods based on bipolar neu trosophic sets and bipolar neutrosophic graphs

    OpenAIRE

    Muhammad Akram; Musavarah Sarwar

    2017-01-01

    In this research article, we present certain notions of bipolar neutrosophic graphs. We study the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs.

  17. Synchronization of EEG activity in patients with bipolar disorder

    International Nuclear Information System (INIS)

    Panischev, O Yu; Demin, S A; Muhametshin, I G; Yu Demina, N

    2015-01-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome. (paper)

  18. Synchronization of EEG activity in patients with bipolar disorder

    Science.gov (United States)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  19. Discrete bipolar universal integrals

    Czech Academy of Sciences Publication Activity Database

    Greco, S.; Mesiar, Radko; Rindone, F.

    2014-01-01

    Roč. 252, č. 1 (2014), s. 55-65 ISSN 0165-0114 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : bipolar integral * universal integral * Choquet integral Subject RIV: BA - General Mathematics Impact factor: 1.986, year: 2014 http://library.utia.cas.cz/separaty/2014/E/mesiar-0432224.pdf

  20. Surface Electrical Stimulation for Treating Swallowing Disorders after Stroke: A Review of the Stimulation Intensity Levels and the Electrode Placements

    Directory of Open Access Journals (Sweden)

    Marziyeh Poorjavad

    2014-01-01

    Full Text Available Neuromuscular electrical stimulation (NMES for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by stroke. The present review aimed to introduce and discuss studies that have evaluated the efficacy of this method amongst dysphagic patients following stroke with emphasis on the intensity of stimulation (sensory or motor level and the method of electrode placement on the neck. The majority of the reviewed studies describe some positive effects of the NMES on the neck musculature in the swallowing performance of poststroke dysphagic patients, especially when the intensity of the stimulus is adjusted at the sensory level or when the motor electrical stimulation is applied on the infrahyoid muscles during swallowing.

  1. [Spouses and bipolar disorder].

    Science.gov (United States)

    Ellouze, F; Ayedi, S; Cherif, W; Ben Abla, T; M'rad, M F

    2011-02-01

    To assess the quality of life of a population of spouses of bipolar patients compared with a control population. We conducted a cross-sectional study which included two groups: a group of 30 spouses of patients followed for bipolar I disorder according to DSM IV criteria and a second group of 30 subjects from the general population. Both groups were matched by age, sex, marital status and socioeconomic level. This device was designed to limit the differences between the two groups solely those of the bipolar illness. Evaluating the quality of life was achieved using the quality of life scale: SF-36. This is a scale that has already been translated and validated in dialect Arabic. Regarding sociodemographic variables, the two study groups differed only for: recreation, friendly relations and the couple relationship that included more and better skills among the control group. In the categorical approach, the quality of life was impaired in 60% of spouses and 40% of controls with a statistically significant difference. The following standardized dimensions: mental health (D4), limitation due to mental health (D5), life and relationship with others (D6) and perceived health (D8) and mental component (CM) were significantly altered in patients' spouses compared to controls. We found significant differences between the two groups for: overall average score (51.1 vs. 68.2), mental health (D4), limitation due to mental health (D5), life and relationship with others (D6), perceived health (D8) and perceived health (D8) standards. The impairment of quality of life of bipolar patients' spouses is related to the extra responsibility, stress, financial problems and health problems, stigma, and loss of security of the person loved. Considering the consequences that the appearance of bipolar disorder on the patient's spouse may have, certain measures must be proposed to improve their quality of life. Copyright © 2010 L'Encéphale, Paris. Published by Elsevier Masson SAS. All

  2. Voltammetric Detection of S100B Protein Using His-Tagged Receptor Domains for Advanced Glycation End Products (RAGE Immobilized onto a Gold Electrode Surface

    Directory of Open Access Journals (Sweden)

    Edyta Mikuła

    2014-06-01

    Full Text Available In this work we report on an electrochemical biosensor for the determination of the S100B protein. The His-tagged VC1 domains of Receptors for Advanced Glycation End (RAGE products used as analytically active molecules were covalently immobilized on a monolayer of a thiol derivative of pentetic acid (DPTA complex with Cu(II deposited on a gold electrode surface. The recognition processes between the RAGE VC1 domain and the S100B protein results in changes in the redox activity of the DPTA-Cu(II centres which were measured by Osteryoung square-wave voltammetry (OSWV. In order to verify whether the observed analytical signal originates from the recognition process between the His6–RAGE VC1 domains and the S100B protein, the electrode modified with the His6–RAGE C2 and His6–RAGE VC1 deleted domains which have no ability to bind S100B peptides were applied. The proposed biosensor was quite sensitive, with a detection limit of 0.52 pM recorded in the buffer solution. The presence of diluted human plasma and 10 nM Aβ1-40 have no influence on the biosensor performance.

  3. Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: a counter electrode of dye-sensitized solar cells.

    Science.gov (United States)

    Miao, Xiaohuan; Pan, Kai; Wang, Guofeng; Liao, Yongping; Wang, Lei; Zhou, Wei; Jiang, Baojiang; Pan, Qingjiang; Tian, Guohui

    2014-01-07

    With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye-sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non-uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost-effective DSSC is also comparable to that of noble metal Pt-based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS-CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3 (-) . Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Broumi, Said; Talea, Mohamed; Bakali, Assia; Smarandache, Florentin

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  5. The investigation of movement dynamics of an AC electric arc attachment along the working surface of a hollow cylindrical electrode under the action of gas-dynamic and electromagnetic forces

    International Nuclear Information System (INIS)

    Surov, A V; Popov, S D; Serba, E O; Nakonechny, G V; Spodobin, V A; Ovchinnikov, R V; Kumkova, I I; Shabalin, S A

    2012-01-01

    Stationary electric arc alternating current plasma torches are used today for realization of plasma chemical technologies requiring relatively high energy input. Waste treatment is one these directions. The paper reports on experiment results directed towards the increase in the lifetime characteristics of electrode units of the powerful high-voltage electric-arc AC plasma torches. The solution to the problem of obtainment the uniform wear of a copper hollow cylindrical electrode achieved by the controlled movement of the arc attachment along the working surface was offered. Organization of gas supply in the near electrode area and application of alternating magnetic field ensured movement of arc attachment along the surface with average speed from 2 to 14 m/s. Arc current was about 47 A and 84 A, gas flow rate in near electrode area was about 5 and 4.5 g/s. Due to researches on the experimental prototype of a hollow cylindrical electrode, the erosion of its material reached only 3 μg/C, that enables production of the electrode assembly with life time above 1000 hours at currents in the arc up to 100–200 A.

  6. Optimization and Surface Modification of Al-6351 Alloy Using SiC-Cu Green Compact Electrode by Electro Discharge Coating Process

    Science.gov (United States)

    Chakraborty, Sujoy; Kar, Siddhartha; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-06-01

    This paper introduces the surface modification of Al-6351 alloy by green compact SiC-Cu electrode using electro-discharge coating (EDC) process. A Taguchi L-16 orthogonal array is employed to investigate the process by varying tool parameters like composition and compaction load and electro-discharge machining (EDM) parameters like pulse-on time and peak current. Material deposition rate (MDR), tool wear rate (TWR) and surface roughness (SR) are measured on the coated specimens. An optimum condition is achieved by formulating overall evaluation criteria (OEC), which combines multi-objective task into a single index. The signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) is employed to investigate the effect of relevant process parameters. A confirmation test is conducted based on optimal process parameters and experimental results are provided to illustrate the effectiveness of this approach. The modified surface is characterized by optical microscope and X-ray diffraction (XRD) analysis. XRD analysis of the deposited layer confirmed the transfer of tool materials to the work surface and formation of inter-metallic phases. The micro-hardness of the resulting composite layer is also measured which is 1.5-3 times more than work material’s one and highest layer thickness (LT) of 83.644μm has been successfully achieved.

  7. Experimental Study of the Course of Threshold Current, Voltage and Electrode Impedance During Stepwise Stimulation From the Skin Surface to the Human Cortex

    NARCIS (Netherlands)

    Szelenyi, Andrea; Journee, Henricus Louis; Herrlich, Simon; Galistu, Gianni M.; van den Berg, Joris; van Dijk, J. Marc C.

    Background: Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. Objective: Threshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the

  8. Early Intervention in Bipolar Disorder.

    Science.gov (United States)

    Vieta, Eduard; Salagre, Estela; Grande, Iria; Carvalho, André F; Fernandes, Brisa S; Berk, Michael; Birmaher, Boris; Tohen, Mauricio; Suppes, Trisha

    2018-01-24

    Bipolar disorder is a recurrent disorder that affects more than 1% of the world population and usually has its onset during youth. Its chronic course is associated with high rates of morbidity and mortality, making bipolar disorder one of the main causes of disability among young and working-age people. The implementation of early intervention strategies may help to change the outcome of the illness and avert potentially irreversible harm to patients with bipolar disorder, as early phases may be more responsive to treatment and may need less aggressive therapies. Early intervention in bipolar disorder is gaining momentum. Current evidence emerging from longitudinal studies indicates that parental early-onset bipolar disorder is the most consistent risk factor for bipolar disorder. Longitudinal studies also indicate that a full-blown manic episode is often preceded by a variety of prodromal symptoms, particularly subsyndromal manic symptoms, therefore supporting the existence of an at-risk state in bipolar disorder that could be targeted through early intervention. There are also identifiable risk factors that influence the course of bipolar disorder, some of them potentially modifiable. Valid biomarkers or diagnosis tools to help clinicians identify individuals at high risk of conversion to bipolar disorder are still lacking, although there are some promising early results. Pending more solid evidence on the best treatment strategy in early phases of bipolar disorder, physicians should carefully weigh the risks and benefits of each intervention. Further studies will provide the evidence needed to finish shaping the concept of early intervention.

  9. Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder

    Science.gov (United States)

    Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.

    2013-01-01

    Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582

  10. Experimental and modelling study of the effect of airflow orientation with respect to strip electrode on ozone production of surface dielectric barrier discharge

    Science.gov (United States)

    Mikeš, J.; Pekárek, S.; Soukup, I.

    2016-11-01

    This study examines the effect of airflow orientation with respect to the strip active electrode on concentration of ozone and nitrogen dioxide produced in a planar generator based on the surface dielectric barrier discharge. The orientation of the airflow was tested in parallel and perpendicular with respect to the strips. It was found that in the investigated range of average discharge power, the ozone concentration increases approximately by 25% when airflow was oriented in parallel with respect to the strips in comparison with perpendicular orientation of the airflow. Similarly the increase of nitrogen dioxide concentration was observed for parallel orientation of the airflow with respect to the strips in comparison with the perpendicular orientation of the airflow. Within the range of wavelengths from 250 to 1100 nm, the changes of intensities of spectral lines associated with airflow orientation have been observed. A 3D numerical model describing ion trajectories and airflow patterns have also been developed.

  11. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  12. Life expectancy in bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2015-01-01

    OBJECTIVE: Life expectancy in patients with bipolar disorder has been reported to be decreased by 11 to 20 years. These calculations are based on data for individuals at the age of 15 years. However, this may be misleading for patients with bipolar disorder in general as most patients have a later...... onset of illness. The aim of the present study was to calculate the remaining life expectancy for patients of different ages with a diagnosis of bipolar disorder. METHODS: Using nationwide registers of all inpatient and outpatient contacts to all psychiatric hospitals in Denmark from 1970 to 2012 we...... remaining life expectancy in bipolar disorder and that of the general population decreased with age, indicating that patients with bipolar disorder start losing life-years during early and mid-adulthood. CONCLUSIONS: Life expectancy in bipolar disorder is decreased substantially, but less so than previously...

  13. Bipolar Disorder and Alcoholism: Are They Related?

    Science.gov (United States)

    ... Is there a connection between bipolar disorder and alcoholism? Answers from Daniel K. Hall-Flavin, M.D. Bipolar disorder and alcoholism often occur together. Although the association between bipolar ...

  14. In Situ Growth of Highly Adhesive Surface Layer on Titanium Foil as Durable Counter Electrodes for Efficient Dye-sensitized Solar Cells

    Science.gov (United States)

    Liu, Wantao; Xu, Peng; Guo, Yanjun; Lin, Yuan; Yin, Xiong; Tang, Guangshi; He, Meng

    2016-01-01

    Counter electrodes (CEs) of dye-sensitized solar cells (DSCs) are usually fabricated by depositing catalytic materials on substrates. The poor adhesion of the catalytic material to the substrate often results in the exfoliation of catalytic materials, and then the deterioration of cell performance or even the failure of DSCs. In this study, a highly adhesive surface layer is in situ grown on the titanium foil via a facile process and applied as CEs for DSCs. The DSCs applying such CEs demonstrate decent power conversion efficiencies, 6.26% and 4.37% for rigid and flexible devices, respectively. The adhesion of the surface layer to the metal substrate is so strong that the photovoltaic performance of the devices is well retained even after the CEs are bended for 20 cycles and torn twice with adhesive tape. The results reported here indicate that the in situ growth of highly adhesive surface layers on metal substrate is a promising way to prepare durable CEs for efficient DSCs. PMID:27694905

  15. Modeling of Impedance of Porous Electrodes

    Science.gov (United States)

    Lasia, Andrzej

    Porous electrodes are very important in practical applications of electrocatalysis, where an increase in the real surface area leads to an increase in catalytic activity. Porous electrodes are used in gas evolution (water electrolysis, hydrogen and oxygen evolution, chlorine evolution), electrocatalytic hydrogenation or oxidation of organic compounds, in batteries, fuel cells, etc. Good knowledge of the porous electrode theory permits for the construction of the electrodes with optimal utilization of the active electrode material. The porous electrode model was first developed by several authors for dc conditions (1-6) and later applied to the impedance studies.

  16. Control of edge effects of oxidant electrode

    Science.gov (United States)

    Carr, Peter; Chi, Chen H.

    1981-09-08

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  17. [Creativity and bipolar disorder].

    Science.gov (United States)

    Maçkalı, Zeynep; Gülöksüz, Sinan; Oral, Timuçin

    2014-01-01

    The relationship between creativity and bipolar disorder has been an intriguing topic since ancient times. Early studies focused on describing characteristics of creative people. From the last quarter of the twentieth century, researchers began to focus on the relationship between mood disorders and creativity. Initially, the studies were based on biographical texts and the obtained results indicated a relationship between these two concepts. The limitations of the retrospective studies led the researchers to develop systematic investigations into this area. The systematic studies that have focused on artistic creativity have examined both the prevalence of mood disorders and the creative process. In addition, a group of researchers addressed the relationship in terms of affective temperaments. Through the end of the 90's, the scope of creativity was widened and the notion of everyday creativity was proposed. The emergence of this notion led researchers to investigate the associations of the creative process in ordinary (non-artist) individuals. In this review, the descriptions of creativity and creative process are mentioned. Also, the creative process is addressed with regards to bipolar disorder. Then, the relationship between creativity and bipolar disorder are evaluated in terms of aforementioned studies (biographical, systematic, psychobiographical, affective temperaments). In addition, a new model, the "Shared Vulnerability Model" which was developed to explain the relationship between creativity and psychopathology is introduced. Finally, the methodological limitations and the suggestions for resolving these limitations are included.

  18. Effects of Nb and Ti Addition and Surface Treatments on the Electrical Conductivity of 316 Stainless Steel as Bipolar Plates for PEMFC

    International Nuclear Information System (INIS)

    Lee, Seok Hyun; Chun, Dong Hyun; Wee, Dang Moon; Kim, Jeong Heon; Kim, Min Chul

    2007-01-01

    Nb and Ti were added to 316 stainless steel, and then heat-treatments and surface treatments were performed on the 316 stainless steel and the Nb- and Ti-added alloys. All samples indicated enhanced electrical conductivity after surface treatments, whereas they showed low electrical conductivity before surface treatments due to the existence of non-conductive passive film on the allot surface. In particular, the Nb- and Ti-added alloys showed remarkable enhancement of electrical conductivity compared to the original alloy, 316 stainless steel. Surface characterization revealed that small carbide particles formed on the alloy surface after surface treatments, while the alloys indicated flat surface structure before surface treatments. Cr 23 C 6 mainly formed on the 316 stainless steel, and NbC and TiC mainly formed on the Nb- and Ti-added alloys, respectively. We attribute the enhanced electrical conductivity after surface treatments to the formation of these carbide particles, possibly acting as a means of electro-conductive channel through the passive film. Furthermore, NbC and TiC are supposed to be more effective carbides than Cr 23 C 6 as electro-conductive channels of stainless steel

  19. Bipolar Disorder and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2010-04-01

    Full Text Available Comorbid endocrine and cardiovascular situations with bipolar disorder usually result from the bipolar disorder itself or as a consequence of its treatment. With habits and lifestyle, genetic tendency and side effects, this situation is becoming more striking. Subpopulations of bipolar disorders patients should be considered at high risk for diabetes mellitus. The prevalence of diabetes mellitus in bipolar disorder may be three times greater than in the general population. Comorbidity of diabetes causes a pathophysiological overlapping in the neurobiological webs of bipolar cases. Signal mechanisms of glycocorticoid/insulin and immunoinflammatory effector systems are junction points that point out the pathophysiology between bipolar disorder and general medical cases susceptible to stress. Glycogen synthetase kinase (GSK-3 is a serine/treonine kinase and inhibits the transport of glucose stimulated by insulin. It is affected in diabetes, cancer, inflammation, Alzheimer disease and bipolar disorder. Hypoglycemic effect of lithium occurs via inhibiting glycogen synthetase kinase. When comorbid with diabetes, the other disease -for example bipolar disorder, especially during its acute manic episodes-, causes a serious situation that presents its influences for a lifetime. Choosing pharmacological treatment and treatment adherence are another important interrelated areas. The aim of this article is to discuss and review the etiological, clinical and therapeutic properties of diabetes mellitus and bipolar disorder comorbidity.

  20. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang

    2006-01-01

    In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which ...

  1. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... The subject low cost alkaline electrochemical capacitor designs are based upon titanium nitride electrodes which exhibit 125 mF/sq cm surface capacitance density and remarkable electrochemical...

  2. Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H{sub 2}O{sub 2} sensor

    Energy Technology Data Exchange (ETDEWEB)

    Suazo-Dávila, D.; Rivera-Meléndez, J. [NASA-MIRO Center for Advanced Nanoscale Materials (CANM), Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00936 (United States); Koehne, J.; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Cabrera, C.R., E-mail: carlos.cabrera2@upr.edu [NASA-MIRO Center for Advanced Nanoscale Materials (CANM), Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00936 (United States)

    2016-10-30

    Highlights: • Vertically aligned carbon nanofibers were intercalated with SiO{sub 2} for mechanical strength and isolation of individual electrodes. • Stable and robust electrochemical hydrogen peroxide sensor is stable and robust. • Five consecutive calibration curves were done with different hydrogen peroxide concentrations over a period of 3 days without any deterioration in the electrochemical response. • The sensor was also used for the measurement of hydrogen peroxide as one of the by-products of the reaction of cholesterol oxidase with cholesterol and the sensor response exhibited linear behavior from 50 μM to 1 mM in cholesterol concentration. • In general, the electrochemical sensor is robust, stable, and reproducible, and the detection limit and sensitivity responses were among the best when compared with the literature. - Abstract: A vertically aligned carbon nanofiber-based (VACNF) electrode platform was developed for an enzymeless hydrogen peroxide sensor. Vertical nanofibers have heights on the order of 2–3 μm, and diameters that vary from 50 to 100 nm as seen by atomic force microscopy. The VACNF was grown as individual, vertically, and freestanding structures using plasma-enhanced chemical vapor deposition. The electrochemical sensor, for the hydrogen peroxide measurement in solution, showed stability and reproducibility in five consecutive calibration curves with different hydrogen peroxide concentrations over a period of 3 days. The detection limit was 66 μM. The sensitivity for hydrogen peroxide electrochemical detection was 0.0906 mA cm{sup −2} mM{sup −1}, respectively. The sensor was also used for the measurement of hydrogen peroxide as the by-product of the reaction of cholesterol with cholesterol oxidase as a biosensor application. The sensor exhibits linear behavior in the range of 50 μM–1 mM in cholesterol concentrations. The surface analysis and electrochemistry characterization is presented.

  3. Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage

    Science.gov (United States)

    Wu, Haoran; Lian, Keryn

    2018-02-01

    A novel asymmetrical-bipolar electrochemical capacitor system leveraging the contributions of a Zn-CNT asymmetrical electrode and a KOH-H2SO4 dual-pH electrolyte was developed. The positive and negative electrodes operated in electrolytes with different pH, exploiting the maximum potential of both electrodes, which led to a cell voltage of 2.4 V. The potential tracking of both electrodes revealed that the Zn negative electrode could maintain a potential at -1.2 V, while the CNT positive electrode can be charged to +1.2 V without significant irreversible reactions. A bipolar ion exchange membrane has effectively separated the acid and alkaline from neutralization, which resulted in stable performance of the device with capacitance retention of 94% and coulombic efficiency of 99% over 10,000 cycles. This asymmetrical-bipolar design overcomes the thermodynamic limit of water decomposition, opening a new avenue towards high energy and high power density aqueous-based ECs.

  4. Ellipsometric and Electrochemical Characterization of Charge Transport in Electroactive Polymers and of the Surface Phase Produced by Electrochemical Activation of Glassy Carbon Electrodes

    Science.gov (United States)

    Kepley, Larry Joe

    1990-01-01

    In situ ellipsometry was used to study the electrodeposition of polymer films formed by oxidation of bipyrazine, polyvinylferrocene (PVF), and aniline; the deposition of a viologen-containing siloxane polymer (PQ^{2+/+}) formed by electroreduction of N,N^' -bis (-3-(trimethoxysilyl)propyl) -4,4^ '-bipyridinium dichloride (I) solutions and by spin-casting solutions of I; and the oxidation-dependent swelling of spin-cast films of two structurally similar, ferrocene-containing polyamides. Electrodeposited films displayed good optical characteristics (i.e., high reflectivity, uniform coverage, and homogeneity) for thicknesses up to 400 nm in some cases. Nonideal illipsometric behavior was observed when film morphology varied with film growth. The complex refractive index, film thickness, and the viologen and ferrocene concentrations in the films were measured as a function of oxidation state, both during depositions and after transferring coated-electrodes into blank electrolyte solutions. The voltammetry of the redox polymers was studied and charge-transport modeled by finite -difference simulations of charge diffusion and diffusion coupled to dimerization/monomerization reactions. Equations were derived for linear-sweep voltammetry of a reversible couple in equilibrium with its dimer in a thin-layer cell. Ellipsometric data during electrolysis of the redox films by potential sweeps and steps were compared to theoretical curves for diffusional transport to determine the mechanism of charge transport and to optically measure its rate. The influence of redox-induced thickness changes and solvent sorption on charge transport and voltammetric behavior is described. The electrochemical activation of glassy carbon electrodes for electrolysis of aromatic molecules, such as catechol and hydroquinone, was studied by combined ellipsometric and voltammetric measurements. Ellipsometry was used to detect the anodic growth of nearly transparent layer which activated the surface. X

  5. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  6. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    Science.gov (United States)

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  7. Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode.

    Science.gov (United States)

    Zhang, Weikang; Liu, Tao; Zheng, Xiaojiang; Huang, Wensheng; Wan, Chidan

    2009-11-01

    The insoluble multi-walled carbon nanotubes (MWNT) was successfully dispersed into water in the presence of hydrophobic surfactant. After that, MWNT film-coated glassy carbon electrode (GCE) was achieved via dip-coating and evaporating water. Owing to huge surface area, high sorption capacity and subtle electronic properties, MWNT film exhibits highly efficient accumulation efficiency as well as considerable surface enhancement effects to Sunset Yellow and Tartrazine. As a result, the oxidation peak currents of Sunset Yellow and Tartrazine remarkably increase at the MWNT film-modified GCE. Based on this, a novel electrochemical method was developed for the simultaneous determination of Sunset Yellow and Tartrazine. The limits of detection are 10.0 ng mL(-1) (2.2 x 10(-8)mol L(-1)) and 0.1 microg mL(-1) (1.88 x 10(-7)mol L(-1)) for Sunset Yellow and Tartrazine. Finally, the proposed method was successfully used to detect Sunset Yellow and Tartrazine in soft drinks.

  8. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  9. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    Science.gov (United States)

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied.

  10. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  11. Bipolar resistive switching behaviours in ZnMn2O4 film deposited on ...

    Indian Academy of Sciences (India)

    Ohm's law, trap-filled-limited and Child's law conduction procedure at room temperature. Keywords. ZnMn2O4; bipolar; resistive switching; chemical solution deposition. 1. Introduction. Non-volatile memories (NVMs) based on resistive switch- ing between two-terminal electrodes induced by an exter- nal electric field were ...

  12. The impact of bipolar depression.

    Science.gov (United States)

    Post, Robert M

    2005-01-01

    Bipolar disorder is a chronic, intermittent illness that is associated with high morbidity and mortality. In addition, patients with bipolar disorder often have comorbid psychiatric conditions (such as anxiety disorders, alcohol or substance abuse, and eating disorders) or medical disorders (such as obesity), which result in increased burden of illness for the patients, family members, and treating clinicians. Although bipolar disorder consists of recurring episodes of mania and depression, patients spend more time depressed than manic. Bipolar depression is associated with a greater risk of suicide and of impairment in work, social, or family life than mania. This health burden also results in direct and indirect economic costs to the individual and society at large. Bipolar depression is often undiagnosed or misdiagnosed as unipolar depression, resulting in incorrect or inadequate treatment. Available treatments for bipolar depression include medications such as lithium, selected anticonvulsants, and the atypical antipsychotics. Traditional antidepressants are not recommended as monotherapy for bipolar depression as they can induce switching to mania. Early and accurate diagnosis, aggressive management, and earlier prophylactic treatment regimens are needed to overcome the impact of depressive episodes in patients with bipolar disorder.

  13. Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell

    International Nuclear Information System (INIS)

    Walther, J.F.

    1982-01-01

    Electrical energy is generated from acid-base neutralization reactions in electrodialytic cells. Permselective bipolar membranes in these cells are contacted on their cation selective faces by aqueous acid streams and on their anion-selective faces by aqueous base streams. Spontaneous neutralization reactions between the basic anions and acidic cations through the bipolar membranes produce electrical potential differences between the acid and base streams. These potential differences are transmitted to electrodes to produce electrical energy which is withdrawn from the cell

  14. Scientific attitudes towards bipolar disorders

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Biglu

    2014-02-01

    Full Text Available Introduction: Bipolar disorder is a psychiatric condition that is also called manic-depressive disease. It causes unusual changes in mood, energy, activity levels, and the ability to carry out day-to-day tasks. In the present study, 3 sets of data were considered and analyzed: first, all papers categorized under Bipolar Disorders in Science Citation Index Expanded (SCI-E database through 2001-2011; second, papers published by the international journal of Bipolar Disorders indexed in SCI-E during a period of 11 years; and third, all papers distributed by the international journal of Bipolar Disorders indexed in MEDLINE during the period of study. Methods: The SCI-E database was used to extract all papers indexed with the topic of Bipolar Disorders as well as all papers published by The International Journal of Bipolar Disorders. Extraction of data from MEDLINE was restricted to the journals name from setting menu. The Science of Science Tool was used to map the co-authorship network of papers published by The International Journal of Bipolar Disorders through 2009-2011. Results: Analysis of data showed that the majority of publications in the subject area of bipolar disorders indexed in SCI-E were published by The International Journal of Bipolar Disorders. Although journal articles consisted of 59% of the total publication type in SCI-E, 65% of publications distributed by The Journal of Bipolar Disorders were in the form of meetingabstracts. Journal articles consisted of only 23% of the total publications. USA was the leading country regarding sharing data in the field of bipolar disorders followed by England, Canada, and Germany. Conclusion: The editorial policy of The International Journal of Bipolar Disorders has been focused on new themes and new ways of researching in the subject area of bipolar disorder. Regarding the selection of papers for indexing, the SCI-E database selects data more comprehensively than MEDLINE. The number of papers

  15. Determination of the effective thickness of a porous electrode in a flow-through reactor: effect of the specific surface area of stainless steel fibres, used as a porous cathode, during the deposition of Ag(I) ions

    OpenAIRE

    Nava Montes de Oca, José Luis; Oropeza Guzmán, Mercedes T.; Ponce de León Albarrán, Carlos; González García, José; Frías Ferrer, Ángel

    2007-01-01

    This study discusses the use of potential distribution analysis during the deposition of metal ions, at limiting current conditions and determines the optimum electrode thickness at which no hydrogen evolution occurs. The potential distribution studies were carried out on stainless-steel fibres of three different surface areas. The fibres were used as cathodic porous electrodes during the deposition of Ag(I) ions contained in 0.1 mol dm? 3 KNO3 and 0.6 mol dm? 3 NH4OH electrolyte. The compari...

  16. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  17. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  18. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  19. Photoelectrochemical performance of CuO electrodes by surface modification with ZnO in water splitting process

    Science.gov (United States)

    Choudhary, Surbhi; Yadav, Yamini; Satsangi, Vibha R.; Shrivastav, Rohit; Dass, Sahab

    2016-05-01

    Nanostructured CuO thin film photoelectrodes of altering thickness modified by overlayering of ZnO thin films were used in photoelectrochemical (PEC) water splitting. The influence of surface modification, by layering of wide band gap semiconductor over small band gap semiconductor with appropriate thickness, on PEC performance and the stability has been investigated. It was found that modified CuO thin films showed significant enhancement in photocurrent density and photoconversion efficiency and better stability than that of pristine CuO photoelectrodes. Maximum photocurrent 2 density 1.52 mA/cm2 at -0.8 V/SCE under visible light illumination for CuO/ZnO thin films was observed offering 1.23% photoconversion efficiency. An energy band diagram of CuO/ZnO junction has also been discussed to explore the charge transfer process across the interface.

  20. Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs

    OpenAIRE

    Muhammad, Akram; Musavarah, Sarwar

    2016-01-01

    In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs.

  1. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  2. An amperometric uric acid biosensor based on Bis[sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode

    International Nuclear Information System (INIS)

    Ahuja, Tarushee; Rajesh; Kumar, Devendra; Tanwar, Vinod Kumar; Sharma, Vikash; Singh, Nahar; Biradar, Ashok M.

    2010-01-01

    A label free, amperometric uric acid biosensor is described by immobilizing enzyme uricase through a self assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) using a crosslinker, Bis[sulfosuccinimidyl]suberate (BS 3 ) on an indium-tin-oxide (ITO) coated glass plate. The biosensor (uricase/BS 3 /APTES/ITO) was characterized by, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical techniques. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4). The biosensor shows a linear response over a concentration range of 0.05 to 0.58 mM with a sensitivity of 39.35 μA mM -1 . The response time is 50 s reaching to a 95% steady state current value and about 90% of enzyme activity is retained for about 7 weeks. These results indicate an efficient binding of enzyme with the crosslinker over the surface of APTES modified ITO glass plates, which leads to an improved sensitivity and shelf life of the biosensor.

  3. Analysis of charge injection and contact resistance as a function of electrode surface treatment in ambipolar polymer transistors

    Science.gov (United States)

    Lee, Seon Jeng; Kim, Chaewon; Jung, Seok-Heon; Di Pietro, Riccardo; Lee, Jin-Kyun; Kim, Jiyoung; Kim, Miso; Lee, Mi Jung

    2018-01-01

    Ambipolar organic field-effect transistors (OFETs) have both of hole and electron enhancements in charge transport. The characteristics of conjugated diketopyrrolopyrrole ambipolar OFETs depend on the metal-contact surface treatment for charge injection. To investigate the charge-injection characteristics of ambipolar transistors, these devices are processed via various types of self-assembled monolayer treatments and annealing. We conclude that treatment by the self-assembled monolayer 1-decanethiol gives the best enhancement of electron charge injection at both 100 and 300 °C annealing temperature. In addition, the contact resistance is calculated by using two methods: One is the gated four-point probe (gFPP) method that gives the voltage drop between channels, and the other is the simultaneous contact resistance extraction method, which extracts the contact resistance from the general transfer curve. We confirm that the gFPP method and the simultaneous extraction method give similar contact resistance, which means that we can extract contact resistance from the general transfer curve without any special contact pattern. Based on these characteristics of ambipolar p- and n-type transistors, we fabricate inverter devices with only one active layer. [Figure not available: see fulltext.

  4. Application of response surface optimization technique to the preparation of cathode electrode for the molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ozkan, G.; Basarir, E.; Ozkan, G.

    2017-01-01

    One of the fuel cells, the molten carbonate fuel cell (MCFC), comes into prominence due to its high energy potential and suitability for industrial applications. Nickel porous structures are used as anodes and cathodes for MCFC. In this study; Green sheets were obtained by means of tape casting method performing on the prepared mixtures. 23% - 37% by weight nickel oxide was used in the mixture for the purpose of synthesizing cathode green sheets. Different slurry were prepared using different ratios of polyethylene glycol (PEG) as plasticizer, polyvinyl butyral (PVB) as binder, glycerol as dispersant and butanol with hexanol as a solvent. The optimum mixture formulation for the tape casting has been determined by measuring, tensile strength on the green tape. Tensile elongation of green tape refers to resistance to dissolution, cracking and breakage for the green tape slurry. Tensile force parameters were evaluated for the green tape’s slurries. Maximum tensile force and thickness of the green tape is critical factor in order to choose the optimum mixture formulation of cathode slurries. Optimum composition was determined as 23% nickel oxide, 3% binder and 3% plasticizer according to analyze two level experimental factorial design and response surface optimization technique. (author)

  5. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    Science.gov (United States)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  6. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  7. Effective immobilization of Ru(bpy)32+ by functional composite phosphomolybdic acid anion on an electrode surface for solid-state electrochemiluminescene to sensitive determination of NADH

    International Nuclear Information System (INIS)

    Li Yali; Yang Xiurong; Yang Fan; Wang Yingping; Zheng Peihua; Liu Xiaoxu

    2012-01-01

    Phosphomolybdic acid anion ([PMo 12 O 40 ] 3− ) was used for the immobilization of ruthenium(II) tris(bipyridine) (Ru(bpy) 3 2+ ) on an electrode surface to yield a sensitive solid-state electrogenerated chemiluminescence (ECL) sensor. [PMo 12 O 40 ] 3− anion in the prepared sensor had catalytic ability to the NADH oxidation. The ECL signal of the Ru(bpy) 3 2+ /[PMo 12 O 40 ] 3− film was about 3-fold enhancement than that for the Ru(bpy) 3 2+ /Nafion film to NADH determination. The resulting ECL sensor exhibited a wide linear range from 2.5 × 10 −7 to 5.0 × 10 −3 M (R = 0.99) with the detection limit of 1.67 × 10 −8 M (S/N = 3). In addition, it had good reproducibility and excellent long-term stability, and the relative average deviation was 0.77% of ECL intensity–time curve under continuous potential scanning for 21 cycles; after being used in two weeks, the sensor was able to keep over 90% activity toward 25 μM NADH. Fabrication of the ECL sensor by this method is simple and easy. Such superior properties will promote the application of polyoxometalates in fabricating sensors for using in electroanalytical and biochemical analysis.

  8. A PROSPECTIVE STUDY COMPARING MONOPOLAR AND BIPOLAR TRANSURETHRAL RESECTION OF PROSTATE

    Directory of Open Access Journals (Sweden)

    L. N. Raju

    2016-07-01

    Full Text Available In the past few years, the bipolar technique of resecting the prostate has become available worldwide, and currently alongside other minimally invasive techniques, especially different laser modalities, challenges the monopolar transurethral resection of the prostate (TURP as being the gold standard in treating benign prostatic hyperplasia (BPH. The proposed advantages of bipolar resection are improved haemostasis, better intraoperative visualisation, use of saline as an irrigant, which reduces the risk for TUR syndrome, shorter catheterisation time and reduced hospital stay. This study compares monopolar and bipolar TURP with respect to safety, efficacy and complications. MATERIALS AND METHODS This study was performed in the Department of Urology, Rajarajeswari Medical College and Hospital, Bangalore from March 2015 to March 2016 after ethics committee clearance. Fifty patients with bladder outlet obstruction due to BPH were randomised into two groups (the first managed by standard monopolar TURP and the second managed by bipolar TURP. RESULTS Resection and operative time is comparable in both groups. Volume of the irrigation fluid used was less in Bipolar group, but this difference was statistically insignificant. In Bipolar TURP, change in Serum Na levels postoperatively is less compared to monopolar group and this difference is statistically significant. Postoperative catheter duration was found same in both groups. Although postoperative hospital stay and patients requiring blood transfusion was less in bipolar group, this difference was not found significant statistically. Postoperative complication rate in bipolar group was less but it was not statistically significant. CONCLUSION Bipolar TURP has an equivalent complication profile; however, the elimination of a patient return electrode pad and toxicity from hypo-osmolar irrigation fluids may provide an extra level of patient safety. Longer followup is needed to determine if this

  9. Asenapine for bipolar disorder

    Directory of Open Access Journals (Sweden)

    Scheidemantel T

    2015-12-01

    Full Text Available Thomas Scheidemantel,1 Irina Korobkova,2 Soham Rej,3,4 Martha Sajatovic1,2 1University Hospitals Case Medical Center, 2Case Western Reserve University School of Medicine, Cleveland, OH, USA; 3Department of Psychiatry, University of Toronto, Toronto, ON, 4Geri PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada Abstract: Asenapine (Saphris® is an atypical antipsychotic drug which has been approved by the US Food and Drug Administration for the treatment of schizophrenia in adults, as well as the treatment of acute manic or mixed episodes of bipolar I in both adult and pediatric populations. Asenapine is a tetracyclic drug with antidopaminergic and antiserotonergic activity with a unique sublingual route of administration. In this review, we examine and summarize the available literature on the safety, efficacy, and tolerability of asenapine in the treatment of bipolar disorder (BD. Data from randomized, double-blind trials comparing asenapine to placebo or olanzapine in the treatment of acute manic or mixed episodes showed asenapine to be an effective monotherapy treatment in clinical settings; asenapine outperformed placebo and showed noninferior performance to olanzapine based on improvement in the Young Mania Rating Scale scores. There are limited data available on the use of asenapine in the treatment of depressive symptoms of BD, or in the maintenance phase of BD. The available data are inconclusive, suggesting the need for more robust data from prospective trials in these clinical domains. The most commonly reported adverse effect associated with use of asenapine is somnolence. However, the somnolence associated with asenapine use did not cause significant rates of discontinuation. While asenapine was associated with weight gain when compared to placebo, it appeared to be modest when compared to other atypical antipsychotics, and its propensity to cause increases in hemoglobin A1c or serum lipid levels appeared to be

  10. Effect of different surface treatments on the stability of stainless steels for use as bipolar plates in low and high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.; Schmidt, K. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Wolfsburg (Germany); Tuebke, J.; Cremers, C. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    The stability of different stainless steels against corrosion under simulated low and high temperature proton exchange membrane fuel cell (PEMFC) operating conditions was studied. These investigations showed a moderate corrosion resistance for a couple of steels under LT-PEMFC conditions. However, for the HT-PEMFC conditions all specimens except one exhibit visible corrosion traces. With regards to their corrosion resistance after different surface treatments results show a minor improvement in corrosion resistance after the electro polishing process for most of the tested stainless steel samples. (orig.)

  11. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity

    Science.gov (United States)

    Chung, T.; Wang, J. Q.; Wang, J.; Cao, B.; Li, Y.; Pang, S. W.

    2015-10-01

    Objective. Although electrode size should be miniaturized to provide higher selectivity for neural signal recording and to avoid tissue damage, small sized electrodes induce high impedance, which decreases recording quality. In this work, the electrode surface was modified to increase the effective surface area to lower the electrode impedance and to improve the neural signal detection quality by optimizing plasma conditions. Approach. A tetrafluoromethane (CF4) plasma was used to increase the effective surface area of gold electrode sites of polyimide-based neural probes. In vitro electrode impedance and in vivo neural signal recording and stimulation were characterized. Main results. For 15 μm diameter (dia.) electrode size, the average surface roughness could be increased from 1.7 to 22 nm after plasma treatment, and the electrode impedance was decreased by 98%. Averaged background noise power in the range of 1 to 1000 Hz was decreased to -106 dB after the 30 μm dia. electrodes were plasma modified—lower than the noise level of -86 dB without plasma treatment. Neural probes with plasma-modified electrode sites of 15 and 30 μm dia. were implanted to the anterior cingulate cortex (ACC) region for acute recording of spontaneous and electrical evoked local field potential (LFP) of neural signals. Spontaneous LFP recorded in vivo by the plasma-modified electrodes of 30 μm dia. was two times higher compared to electrodes without treatment. For a stimulation current of 400 μA, electrically evoked LFP recorded by the plasma-modified electrodes was seven times higher than those without plasma exposure. Significance. A controllable technology was developed to increase the effective surface area of electrodes using a CF4 plasma. Plasma-modified electrodes improved the quality of the neural probe recording and more sensitive to record spontaneous and evoked LFP in the ACC region.

  12. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells

    Science.gov (United States)

    Gao, Xianfeng; Guan, Dongsheng; Huo, Jingwan; Chen, Junhong; Yuan, Chris

    2013-10-01

    Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications. Electronic supplementary information (ESI) available: UV-Vis spectra of desorbed N719 dyes from

  13. Ion bipolar junction transistors.

    Science.gov (United States)

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  14. Genetics of bipolar disorder.

    Science.gov (United States)

    Kerner, Berit

    2014-01-01

    Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs) and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a "risk" allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are currently not fulfilled for common genomic variants in psychiatric disorders. Further work is clearly needed before genetic testing for common variants in

  15. Performance of dedicated versus integrated bipolar defibrillator leads with CRT-defibrillators: results from a Prospective Multicenter Study.

    Science.gov (United States)

    Freedman, Roger A; Petrakian, Alex; Boyce, Ker; Haffajee, Charles; Val-Mejias, Jesus E; Oza, Ashish L

    2009-02-01

    Right ventricular (RV) anodal stimulation may occur in cardiac resynchronization therapy defibrillators (CRT-D) when left ventricular (LV) pacing is configured between the LV lead and an electrode on the RV defibrillator lead. RV defibrillator leads can have a dedicated proximal pacing ring electrode (dedicated bipolar) or utilize the distal shocking coil as the proximal pacing electrode (integrated bipolar). This study compares the performance of integrated versus dedicated leads with respect to anodal stimulation incidence, sensing, and inappropriate ventricular tachyarrhythmia detection in patients implanted with CRT-D. Two hundred ninety-two patients were randomly assigned to receive dedicated or integrated bipolar RV leads at the time of CRT-D implantation. Patients were followed for 6 months. Patients with dedicated bipolar RV leads exhibited markedly higher rates of anodal stimulation than did patients with integrated leads. The incidence of anodal stimulation was 64% at implant for dedicated bipolar RV leads compared to 1% for integrated bipolar RV leads. The likelihood of anodal stimulation in patients with dedicated leads fell progressively during the 6-month follow-up (51.5%), but always exceeded the incidence of anodal stimulation in patients with integrated leads (5%). Clinically detectable undersensing and oversensing were very unusual and did not differ significantly between lead designs. There were no inappropriate ventricular tachyarrhythmia detections for either lead type. Integrated bipolar RV defibrillator leads had a significantly lower incidence of RV anodal stimulation when compared to dedicated bipolar RV defibrillation leads, with no clinically detectable oversensing or undersensing, and with no inappropriate ventricular tachyarrhythmia detections for either lead type.

  16. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    Science.gov (United States)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  17. Modeling suicide in bipolar disorders.

    Science.gov (United States)

    Malhi, Gin S; Outhred, Tim; Das, Pritha; Morris, Grace; Hamilton, Amber; Mannie, Zola

    2018-02-19

    Suicide is a multicausal human behavior, with devastating and immensely distressing consequences. Its prevalence is estimated to be 20-30 times greater in patients with bipolar disorders than in the general population. The burden of suicide and its high prevalence in bipolar disorders make it imperative that our current understanding be improved to facilitate prediction of suicide and its prevention. In this review, we provide a new perspective on the process of suicide in bipolar disorder, in the form of a novel integrated model that is derived from extant knowledge and recent evidence. A literature search of articles on suicide in bipolar disorder was conducted in recognized databases such as Scopus, PubMed, and PsycINFO using the keywords "suicide", "suicide in bipolar disorders", "suicide process", "suicide risk", "neurobiology of suicide" and "suicide models". Bibliographies of identified articles were further scrutinized for papers and book chapters of relevance. Risk factors for suicide in bipolar disorders are well described, and provide a basis for a framework of epigenetic mechanisms, moderated by neurobiological substrates, neurocognitive functioning, and social inferences within the environment. Relevant models and theories include the diathesis-stress model, the bipolar model of suicide and the ideation-to-action models, the interpersonal theory of suicide, the integrated motivational-volitional model, and the three-step theory. Together, these models provide a basis for the generation of an integrated model that illuminates the suicidal process, from ideation to action. Suicide is complex, and it is evident that a multidimensional and integrated approach is required to reduce its prevalence. The proposed model exposes and provides access to components of the suicide process that are potentially measurable and may serve as novel and specific therapeutic targets for interventions in the context of bipolar disorder. Thus, this model is useful not only

  18. Finite element study of contact pressure distribution on inner and outer liner in the bipolar hip prosthesis

    Science.gov (United States)

    Saputra, Eko; Anwar, Iwan Budiwan; Ismail, Rifky; Jamari, J.; van der Heide, Emile

    2016-04-01

    Wear in the hip prosthesis due to sliding contact as a product of human activity is a phenomenon which cannot be avoided. In general, there are two modelof hip prostheses which are widely used in total hip replacement, i.e. unipolar and bipolar models. Wear in the bipolar model is more complex than the unipolar model due to its contact motion. The bipolar model has two contact mechanisms while the unipolar model has only one contact mechanism. It means that the bipolar model has two wear positions, i.e. wear on inner and outer liner surface. Fortunately, wear phenomena in the hip prosthesis can be predicted by analytical or numerical method. Wear on the inner and outer liner surface in the bipolar model itself can be early predicted by contact pressure distribution that is obtained from contact mechanic analysis.The contact pressure distribution itself is an essential variable in wear equations. This paper is aimed to studythe difference of the contact pressure distribution on the inner and outer liner surface in the bipolar model. To obtain the contact pressure distribution at each surface, contact mechanic analysis on the inner and outer liner surface by analytical and numerical method were performed. Results showedthat there was significant difference of the contact pressure distribution on the inner and outer liner surface in the bipolar model. Therefore, it is expected that there is significant wear difference on the inner and outer liner in the bipolar model.

  19. Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy

    KAUST Repository

    Brightman, E.

    2012-01-01

    A novel miniaturised heated stage for in operando optical measurements on solid oxide fuel cell electrode surfaces is described. The design combines the advantages of previously reported designs, namely, (i) fully controllable dual atmosphere operation enabling fuel cell pellets to be tested in operando with either electrode in any atmosphere being the focus of study, and (ii) combined electrochemical measurements with optical spectroscopy measurements with the potential for highly detailed study of electrochemical processes; with the following advances, (iii) integrated fitting for mounting on a mapping stage enabling 2-D spatial characterisation of the surface, (iv) a compact profile that is externally cooled, enabling operation on an existing microscope without the need for specialized lenses, (v) the ability to cool very rapidly, from 600 °C to 300 °C in less than 5 min without damaging the experimental apparatus, and (vi) the ability to accommodate a range of pellet sizes and thicknesses. © 2012 American Institute of Physics.

  20. A gallium phosphide high-temperature bipolar junction transistor

    Science.gov (United States)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  1. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena; Accion de las sustancias extranas en la superficie de los electrodos. Estudio mediante radiotrazadores

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1961-07-01

    Radioactive stearic acid ({sup 1}4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs.

  2. Detection of regional myocardial ischaemia by a novel 80-electrode body surface Delta map in patients presenting to the emergency department with cardiac-sounding chest pain.

    Science.gov (United States)

    Zeb, Mehmood; Mahmoudi, Michael; Garty, Florence; Bannister, Clare; Reddiar, Richard; Nicholas, Zoe; Crouch, Robert; Heyworth, John; Curzen, Nicholas

    2014-04-01

    Presentation with acute chest pain is common, but the conventional 12-lead ECG has limitations in the detection of regional myocardial ischaemia. The previously described method of the body surface mapping system (BSM) Delta map, derived from an 80-electrode BSM, as well as a novel parameter total ischaemic burden (IB), may offer improved diagnostic sensitivity and specificity in patients with myocardial ischaemia. The feasibility of using the novel BSM Delta map technique, and IB, for transient regional myocardial ischaemia was assessed in comparison with 12-lead ECG in 49 patients presenting to the emergency department (ED) with cardiac-sounding chest pain. The sensitivity and specificity of 12-lead ECG for the diagnosis of acute coronary syndrome (ACS) was 67 and 55%, respectively, positive likelihood ratio (+LR) 1.52 [95% confidence interval (CI) 0.86, 2.70] and negative likelihood ratio (-LR) 0.58 [95% CI 0.30, 1.12]. The sensitivity and specificity of the BSM Delta map for the diagnosis of ACS was 71 and 78%, +LR 3.19 [95% CI 1.31, 7.80], -LR 0.37 [95% CI 0.20, 0.68]. There was a significantly positive correlation between peak troponin-I concentration and IB (r=0.437; Psounding chest pain and suggests that it has promising diagnostic accuracy and has superior sensitivity and specificity to the 12-lead ECG. The novel parameter of IB shows a significant correlation with troponin-I and is a promising tool for describing the extent of ischaemia. The use of the BSM Delta map in the ED setting could improve the diagnosis of clinically important ischaemic heart disease and furthermore presents the result in an intuitive manner, requiring little specialist experience. Further larger scale study is now warranted.

  3. Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors

    Science.gov (United States)

    Gopiraman, Mayakrishnan; Deng, Dian; Kim, Byoung-Suhk; Chung, Ill-Min; Kim, Ick Soo

    2017-07-01

    Highly porous carbon nanoarchitectures (HPCNs) were derived from biomass materials, namely, corn fibers (CF), corn leafs (CL), and corn cobs (CC). We surprisingly found that by a very simple activation process the CF, CL, and CC materials can be transformed into exciting two-dimensional (2D) and three-dimensional (3D) carbon nanoarchitectures with excellent physicochemical properties. FESEM and HRTEM results confirmed a three different carbon forms (such as foams-like carbon, carbon sheets with several holes and cheese-like carbon morphology) of HPCNs. Huge surface area (2394-3475 m2/g) with excellent pore properties of HPCNs was determined by BET analysis. Well condensed graphitic plans of HPCNs were confirmed by XRD, XPS and Raman analyses. As an electrode material, HPCNs demonstrated a maximum specific capacitance (Cs) of 575 F/g in 1.0 M H2SO4 with good stability over 20,000 cycles. The CC-700 °C showed a tremendous Cs of 375 F/g even at 20000th cycles. To the best of our knowledge, this is the highest Cs by the biomass derived activated carbons in aqueous electrolytes. The CC-700 °C exhibited excellent charge-discharge behavior at various current densities (0.5-10 A g-1). Notably, CC-700 °C demonstrated an excellent Cs of 207 F/g at current density of 10 A g-1. An extraordinary change-discharge behavior was noticed at low current density of 0.5 A g-1.

  4. Cortical complexity in bipolar disorder applying a spherical harmonics approach.

    Science.gov (United States)

    Nenadic, Igor; Yotter, Rachel A; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-05-30

    Recent studies using surface-based morphometry of structural magnetic resonance imaging data have suggested that some changes in bipolar disorder (BP) might be neurodevelopmental in origin. We applied a novel analysis of cortical complexity based on fractal dimensions in high-resolution structural MRI scans of 18 bipolar disorder patients and 26 healthy controls. Our region-of-interest based analysis revealed increases in fractal dimensions (in patients relative to controls) in left lateral orbitofrontal cortex and right precuneus, and decreases in right caudal middle frontal, entorhinal cortex, and right pars orbitalis, and left fusiform and posterior cingulate cortices. While our analysis is preliminary, it suggests that early neurodevelopmental pathologies might contribute to bipolar disorder, possibly through genetic mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Modeling the thermal effect of the bipolar electrocautery for neurosurgery simulation.

    Science.gov (United States)

    Delorme, Sébastien; Cabral, Anne; Ayres, Fábio; Jiang, Di

    2011-01-01

    Real-time surgical simulation requires computationally-fast models describing the interaction between surgical instrument and tissues. In this study, a model for predicting the temperature distribution in brain tissue when using a bipolar electrocautery is proposed and validated against experimental in vitro animal data. Joule heat generation and heat conduction in the tissue are considered. The agreement between simulated temperature distributions and experimental data could be improved by modeling the output power as a function of electrical resistance between the electrodes, and by considering the heat exchange with surrounding air and bipolar tips.

  6. Aqueous processing of composite lithium ion electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianlin; Armstrong, Beth L.; Daniel, Claus; Wood, III, David L.

    2017-06-20

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  7. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  8. Quetiapine monotherapy for bipolar depression

    Directory of Open Access Journals (Sweden)

    Michael E Thase

    2008-03-01

    Full Text Available Michael E ThaseDepartments of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; the Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA; and the University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: Bipolar depression is more common, disabling, and difficult-to-treat than the manic and hypomanic phases that define bipolar disorder. Unlike the treatment of so-called “unipolar” depressions, antidepressants generally are not indicated as monotherapies for bipolar depressions and recent studies suggest that - even when used in combination with traditional mood stabilizers – antidepressants may have questionable value for bipolar depression. The current practice is that mood stabilizers are initiated first as monotherapies; however, the antidepressant efficacy of lithium and valproate is modest at best. Within this context the role of atypical antipsychotics is being evaluated. The combination of olanzapine and the antidepressant fluoxetine was the first treatment to receive regulatory approval in the US specifically for bipolar I depression. Quetiapine was the second medication to be approved for this indication, largely as the result of two pivotal trials known by the acronyms of BOLDER (BipOLar DEpRession I and II. Both studies demonstrated that two doses of quetiapine (300 mg and 600 mg given once daily at bedtime were significantly more effective than placebo, with no increased risk of patients switching into mania. Pooling the two studies, quetiapine was effective for both bipolar I and bipolar II depressions and for patients with (and without a history of rapid cycling. The two doses were comparably effective in both studies. Although the efficacy of quetiapine monotherapy has been established, much additional research is necessary. Further studies are needed to more fully investigate dose-response relationships and comparing quetiapine monotherapy to other mood stabilizers

  9. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  10. New electrodes for biofuel cells

    Science.gov (United States)

    Stom, D. I.; Zhdanova, G. O.; Lashin, A. F.

    2017-11-01

    Two new types of electrodes for biofuel elements (BFC) are proposed. One of them is based on a microchannel plate (MCP). Its peculiarity is a special structure with a large number of glass channels being 6-10 μm in diameter with an internal semiconducting surface. The MCP operation is based on the principle of the channel secondary emission multiplication of the electrons. The second type of electrode presented in the work is made of silicon carbide. This type of electrodes has a developed porous structure. The electrode pores account for at least 30% of the total volume. The pore size varies from 10 to 100 μm. Such porosity greatly increases the anode area and volume. This allows us to achieve sorption of a larger number of microorganisms interacting with the anode and transformed by electron donors. The work of the electrodes developed in BFC was tested, their effectiveness was estimated. A comparison is made with electrodes made of carbon cloth, the most widely used material for working with BFC. It is shown that the MCP based electrode is not inferior to the power characteristics of carbon cloth. The generated power when using silicon carbide was slightly lower than the other two electrodes. However, the stability of silicon carbide to aggressive media (alkalis, acids, strong oxidants, etc.), as well as to mechanical damages gives additional advantages to such electrodes compared to the materials that are commonly used in BFC. The noted features are extremely important for the BFC to work in harsh conditions of treatment facilities and to utilize wastewater components.

  11. Effect of Electrode Geometry on the Classification Performance of Rapid Evaporative Ionization Mass Spectrometric (REIMS) Bacterial Identification.

    Science.gov (United States)

    Bodai, Zsolt; Cameron, Simon; Bolt, Frances; Simon, Daniel; Schaffer, Richard; Karancsi, Tamas; Balog, Julia; Rickards, Tony; Burke, Adam; Hardiman, Kate; Abda, Julia; Rebec, Monica; Takats, Zoltan

    2018-01-01

    The recently developed automated, high-throughput monopolar REIMS platform is suited for the identification of clinically important microorganisms. Although already comparable to the previously reported bipolar forceps method, optimization of the geometry of monopolar electrodes, at the heart of the system, holds the most scope for further improvements to be made. For this, sharp tip and round shaped electrodes were optimized to maximize species-level classification accuracy. Following optimization of the distance between the sample contact point and tube inlet with the sharp tip electrodes, the overall cross-validation accuracy improved from 77% to 93% in negative and from 33% to 63% in positive ion detection modes, compared with the original 4 mm distance electrode. As an alternative geometry, round tube shaped electrodes were developed. Geometry optimization of these included hole size, number, and position, which were also required to prevent plate pick-up due to vacuum formation. Additional features, namely a metal "X"-shaped insert and a pin in the middle were included to increase the contact surface with a microbial biomass to maximize aerosol production. Following optimization, cross-validation scores showed improvement in classification accuracy from 77% to 93% in negative and from 33% to 91% in positive ion detection modes. Supervised models were also built, and after the leave 20% out cross-validation, the overall classification accuracy was 98.5% in negative and 99% in positive ion detection modes. This suggests that the new generation of monopolar REIMS electrodes could provide substantially improved species level identification accuracies in both polarity detection modes. Graphical abstract.

  12. Effect of Electrode Geometry on the Classification Performance of Rapid Evaporative Ionization Mass Spectrometric (REIMS) Bacterial Identification

    Science.gov (United States)

    Bodai, Zsolt; Cameron, Simon; Bolt, Frances; Simon, Daniel; Schaffer, Richard; Karancsi, Tamas; Balog, Julia; Rickards, Tony; Burke, Adam; Hardiman, Kate; Abda, Julia; Rebec, Monica; Takats, Zoltan

    2018-01-01

    The recently developed automated, high-throughput monopolar REIMS platform is suited for the identification of clinically important microorganisms. Although already comparable to the previously reported bipolar forceps method, optimization of the geometry of monopolar electrodes, at the heart of the system, holds the most scope for further improvements to be made. For this, sharp tip and round shaped electrodes were optimized to maximize species-level classification accuracy. Following optimization of the distance between the sample contact point and tube inlet with the sharp tip electrodes, the overall cross-validation accuracy improved from 77% to 93% in negative and from 33% to 63% in positive ion detection modes, compared with the original 4 mm distance electrode. As an alternative geometry, round tube shaped electrodes were developed. Geometry optimization of these included hole size, number, and position, which were also required to prevent plate pick-up due to vacuum formation. Additional features, namely a metal "X"-shaped insert and a pin in the middle were included to increase the contact surface with a microbial biomass to maximize aerosol production. Following optimization, cross-validation scores showed improvement in classification accuracy from 77% to 93% in negative and from 33% to 91% in positive ion detection modes. Supervised models were also built, and after the leave 20% out cross-validation, the overall classification accuracy was 98.5% in negative and 99% in positive ion detection modes. This suggests that the new generation of monopolar REIMS electrodes could provide substantially improved species level identification accuracies in both polarity detection modes. [Figure not available: see fulltext.

  13. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  14. [Genetics of bipolar disorder].

    Science.gov (United States)

    Budde, M; Forstner, A J; Adorjan, K; Schaupp, S K; Nöthen, M M; Schulze, T G

    2017-07-01

    Bipolar disorder (BD) has a multifactorial etiology. Its development is influenced by genetic as well as environmental factors. Large genome-wide association studies (GWAS), in which genetic risk allelic variants for the disorder could be replicated for the first time, marked the breakthrough in the identification of the responsible risk genes. In addition to these common genetic variants with moderate effects identified by GWAS, rare variants with a higher penetrance are expected to play a role in disease development. The results of recent studies suggest that copy number variants might contribute to BD development, although to a lesser extent than in other psychiatric disorders, such as schizophrenia or autism. Results from the initial next generation sequencing studies indicate an enrichment of rare variants in pathways and genes that were previously found to be associated with BD. In the field of pharmacogenetics, a risk gene that influences the individual variance in the response to lithium treatment was identified for the first time in a recent large international GWAS. Currently the reported risk alleles do not sufficiently explain the phenotypic variance to be used for individual prediction of disease risk, disease course or response to medication. Future genetic research will provide important insights into the biological basis of BD by the identification of additional genes associated with BD. This knowledge of genetics will help identify potential etiological subgroups as well as cross-diagnostic disease mechanisms.

  15. Connecting electrodes with light: one wire, many electrodes.

    Science.gov (United States)

    Choudhury, Moinul H; Ciampi, Simone; Yang, Ying; Tavallaie, Roya; Zhu, Ying; Zarei, Leila; Gonçales, Vinicius R; Gooding, J Justin

    2015-12-01

    The requirement of a wire to each electrode is central to the design of any electronic device but can also be a major restriction. For example it entails space restrictions and rigid device architecture in multi-electrode devices. The finite space that is taken up by the array of electrical terminals and conductive pads also severely limits the achievable density of electrodes in the device. Here it is shown that a travelling light pointer can be used to form transient electrical connections anywhere on a monolithic semiconductor electrode that is fitted with a single peripheral electrical terminal. This is achieved using hydrogen terminated silicon electrodes that are modified with well-defined organic monolayers. It is shown that electrochemical information can be either read from or written onto these surfaces. Using this concept it is possible to form devices that are equivalent to a conventional electrode array but that do not require a predetermined architecture, and where each element of the array is temporally "connected" using light stimulus; a step change in capability for electrochemistry.

  16. Bipolar Disorder in Children and Teens

    Science.gov (United States)

    ... I do? Share Bipolar Disorder in Children and Teens Download PDF Download ePub Order a free hardcopy ... Think about death or suicide Can children and teens with bipolar disorder have other problems? Young people ...

  17. Modeling Unipolar and Bipolar Stimulation of Cardiac Tissue

    Science.gov (United States)

    Galappaththige, Suran Kokila

    Out of all non-communicable diseases, heart diseases have become the leading cause of death and disease burden worldwide. Heart diseases describe a variety of circumstances that affect your heart. One common condition is the heart rhythm problem often called an arrhythmia. The rhythmic beating of the human heart can be altered due to various reasons. This inconsistency in beating can lead to a lethal form of arrhythmia that we call ventricular fibrillation. We treat fibrillation by applying an electrical shock to the heart using a unipolar electrode or bipolar electrodes. To build better pace makers and defibrillators, we must understand how the heart responds to an electrical shock. One way to study cardiac arrhythmias is using a mathematical model. The computational biology of the heart is one of the most important recent applications of mathematical modeling in biology. By using mathematical models, we can understand the mechanisms responsible of the heart's electrical behavior. We investigate if the time-independent, inwardly rectifying potassium current through the cell membrane inhibits the hyperpolarization after a stimulus electrical pulse is applied to the resting heart tissue. The inhibition of hyperpolarization is due to long duration stimulus pulses, but not short duration pulses. We also investigate the minimum conditions required for the dip in strength-interval curves using a simple but not so simple parsimonious ionic current model coupled with the bidomain model. Unipolar anodal stimulations still results in the dip in the strength-interval curves and this explains the minimum conditions for this phenomenon to occur. Bipolar stimulation of cardiac tissue using the parsimonious ionic current model revels that the strength-interval curves are sensitive to the separation between electrodes and the electrode orientation relative to the fiber direction. One of the ionic currents in the parsimonious ionic current model mimics the time

  18. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    Science.gov (United States)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  19. Exercising control over bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; Byrow, Yulisha

    2016-11-01

    Following extensive research exercise has emerged as an effective treatment for major depressive disorder, and it is now a recognised therapy alongside other interventions. In contrast, there is a paucity of research examining the therapeutic effects of exercise for those with bipolar disorder. Given that dysfunctional reward processing is central to bipolar disorder, research suggests that exercise can perhaps be framed as a reward-related event that may have the potential to precipitate a manic episode. The behavioural activation system (BAS) is a neurobehavioural system that is associated with responding to reward and provides an appropriate framework to theoretically examine and better understand the effects of exercise treatment on bipolar disorder. This article discusses recent research findings and provides an overview of the extant literature related to the neurobiological underpinnings of BAS and exercise as they relate to bipolar disorder. This is important clinically because depending on mood state in bipolar disorder, we postulate that exercise could be either beneficial or deleterious with positive or negative effects on the illness. Clearly, this complicates the evaluation of exercise as a potential treatment in terms of identifying its optimal characteristics in this population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Imunologia do transtorno bipolar Immunology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2009-01-01

    Full Text Available OBJETIVO: Pesquisas recentes têm implicado fatores imunes na patogênese de diversos transtornos neuropsiquiátricos. O objetivo do presente trabalho é revisar os trabalhos que investigaram a associação entre transtorno bipolar e alterações em parâmetros imunes. MÉTODOS: Artigos que incluíam as palavras-chave: "bipolar disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" e "tumor necrosis factor" foram selecionados em uma revisão sistemática da literatura. As bases de dados avaliadas foram MedLine e Scopus, entre os anos de 1980 e 2008. RESULTADOS: Foram identificados 28 trabalhos que estudaram alterações imunes em pacientes com transtorno bipolar. Seis artigos investigaram genes relacionados à resposta imune; cinco, autoanticorpos; quatro, populações leucocitárias; 13, citocinas e/ou moléculas relacionadas à resposta imune e seis, leucócitos de pacientes in vitro. CONCLUSÕES: Embora haja evidências na literatura correlacionando o transtorno bipolar a alterações imunes, os dados não são conclusivos. O transtorno bipolar parece estar associado a níveis mais elevados de autoanticorpos circulantes, assim como à tendência à ativação imune com produção de citocinas pró-inflamatórias e redução de parâmetros anti-inflamatórios.OBJECTIVE: Emerging research has implicated immune factors in the pathogenesis of a variety of neuropsychiatric disorders. The objective of the present paper is to review the studies that investigated the association between bipolar disorder and immune parameters. METHODS: Papers that included the keywords "bipolar to disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" and "tumor necrosis factor" were selected in a systematic review of the literature. The evaluated databases were MedLine and Scopus in the period between 1980 and 2008. RESULTS: Twenty eight works were found. Six studies investigated immune response

  1. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  2. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  3. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  4. Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants

    Directory of Open Access Journals (Sweden)

    Sung June Kim

    2008-09-01

    Full Text Available Polyimide has been widely applied to neural prosthetic devices, such as the retinal implants, due to its well-known biocompatibility and ability to be micropatterned. However, planar films of polyimide that are typically employed show a limited ability in reducing the distance between electrodes and targeting cell layers, which limits site resolution for effective multi-channel stimulation. In this paper, we report a newly designed device with a pillar structure that more effectively interfaces with the target. Electrode arrays were successfully fabricated and safely implanted inside the rabbit eye in suprachoroidal space. Optical Coherence Tomography (OCT showed well-preserved pillar structures of the electrode without damage. Bipolar stimulation was applied through paired sites (6:1 and the neural responses were successfully recorded from several regions in the visual cortex. Electrically evoked cortical potential by the pillar electrode array stimulation were compared to visual evoked potential under full-field light stimulation.

  5. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  6. Estudo voltamétrico do complexo de cobre(II com o ligante vermelho de alizarina S, adsorvido na superfície do eletrodo de grafite pirolítico Voltammetric study of complex of copper (II with alizarin red S ligand, absorbed on surface of pyrolytic graphite electrode

    Directory of Open Access Journals (Sweden)

    Victor E. Mouchrek Filho

    1999-06-01

    Full Text Available The alizarin red S (ARS has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II from the solution.

  7. Transcultural aspects of bipolar disorder

    OpenAIRE

    Sanches, Marsal; Jorge, Miguel Roberto

    2004-01-01

    Considerando-se que existem diferenças importantes na maneira como as emoções são vivenciadas e expressas em diferentes culturas, a apresentação e o manejo do transtorno afetivo bipolar sofrem influência de fatores culturais. O presente artigo realiza uma breve revisão da evidência referente aos aspectos transculturais do transtorno bipolar.Cultural variations in the expression of emotions have been described. Consequently, there are cross-cultural influences on the diagnosis and management o...

  8. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    may be masked by memory effects. The aim of the present work is clarify to what extent the picture of a point electrode as a surface in intimate contact surrounded by a reaction zone is influenced by these processes, and to obtain more information on the mechanisms. The basic idea....... A condition for this to work in a reproducible manner is that the properties of the reaction zone are stable. Recent studies have shown that the activity of the reaction zone is influenced by the electrode reaction itself and changes in the morphology have been observed by AFM (1,2,3). As consequence results...

  9. Electronic monitoring in bipolar disorder.

    Science.gov (United States)

    Faurholt-Jepsen, Maria

    2018-03-01

    Major reasons for the insufficient effects of current treatment options in bipolar disorder include delayed intervention for prodromal depressive and manic symptoms and decreased adherence to psychopharmacological treatment. The reliance on subjective information and clinical evaluations when diagnosing and assessing the severity of depressive and manic symptoms calls for less biased and more objective markers. By using electronic devices, fine-grained data on complex psychopathological aspects of bipolar disorder can be evaluated unobtrusively over the long term. Moreover, electronic data could possibly represent candidate markers of diagnosis and illness activity in bipolar disorder and allow for early and individualized intervention for prodromal symptoms outside clinical settings. 
The present dissertation concerns the use of electronic monitoring as a marker and treatment intervention in bipolar disorder and investigated the scientific literature and body of evidence within the area, which includes ten original study reports and two systematic reviews, one of which included a meta-analysis, conducted by the author of the dissertation. 
Taken together, the literature presented in this dissertation illustrates that 1) smartphone-based electronic self-monitoring of mood seems to reflect clinically assessed depressive and manic symptoms and enables the long-term characterization of mood

instability in bipolar disorder; 2) preliminary results suggest that smartphone-based automatically generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had no effects on the severity of depressive and manic symptoms in bipolar disorder, according to a randomized controlled trial; and 4) electronic monitoring of psychomotor

  10. Epidemiologia do transtorno bipolar Epidemiology of bipolar disorders

    Directory of Open Access Journals (Sweden)

    Maurício Silva de Lima

    2005-01-01

    Full Text Available A formulação de políticas em saúde mental depende essencialmente de informações a respeito da freqüência e distribuição dos transtornos mentais. Nas últimas duas décadas, pesquisas de base populacional em epidemiologia psiquiátrica têm sido conduzidas, gerando informações detalhadas sobre freqüência, fatores de risco, incapacidade social e utilização de serviços de saúde. Neste artigo, dados sobre a epidemiologia do transtorno bipolar (TB são discutidos, a partir de resultados de recentes pesquisas populacionais: o estudo da Área de Captação Epidemiológica do Instituto Nacional de Saúde Mental dos Estados Unidos (ECA-NIMH, a Pesquisa Nacional de Comorbidade (NCS, a Pesquisa de Morbidade Psiquiátrica na Grã-Bretanha (OPCS, o Estudo Brasileiro Multicêntrico de Morbidade Psiquiátrica e os estudos longitudinais conduzidos por Angst, em Zurique. As estimativas de prevalências de transtorno bipolar são relativamente baixas, independentemente do lugar onde a pesquisa foi conduzida, do tipo de instrumento diagnóstico usado e dos períodos de tempo para os quais a prevalência se aplica. A partir da introdução do conceito de espectro bipolar, ampliando as fronteiras diagnósticas do TB, as estimativas de prevalências encontradas são substancialmente mais altas. Tais estimativas, entretanto, ainda carecem de validação em estudos populacionais. O transtorno afetivo bipolar é igualmente prevalente entre homens e mulheres, sendo mais freqüente entre solteiros ou separados. Indivíduos acometidos têm maiores taxas de desemprego e estão mais sujeitos a utilizarem serviços médicos e serem hospitalizados. O custo e a eficácia dos tratamentos do TB devem ser balanceados com o alto custo individual e social associados à enfermidade.Information about the epidemiology of bipolar disorders is essential for providing a framework for the formulation of effective mental health policy. In the last two decades, population

  11. Textile electrode characterization: dependencies in the skin-clothing-electrode interface

    International Nuclear Information System (INIS)

    Macías, R; Fernández, M; Bragós, R

    2013-01-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.

  12. Textile electrode characterization: dependencies in the skin-clothing-electrode interface

    Science.gov (United States)

    Macías, R.; Fernández, M.; Bragós, R.

    2013-04-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.

  13. Production method of nickel electrode

    Science.gov (United States)

    Ikeda, H.; Ohira, T.

    1982-01-01

    A nickel electrode having improved charging efficiency, an increased coefficient of discharging utilization, and large capacity is disclosed. Nickel hydroxide or nickel oxide is retained in a porous nickel substrate which is immersed in an aqueous solution of cobalt acetate with a pH 4.0 to 6.8. The electrode thus obtained is then immersed in an alkaline solution or heated to change cobalt acetate into cobalt hydroxide or cobalt oxide whereby the surface of nickel active material is covered with cobalt crystals and alloying of cobalt and nickel is promoted at the same time.

  14. Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve

    2017-06-06

    A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.

  15. Mixed features in bipolar disorder.

    Science.gov (United States)

    Solé, Eva; Garriga, Marina; Valentí, Marc; Vieta, Eduard

    2017-04-01

    Mixed affective states, defined as the coexistence of depressive and manic symptoms, are complex presentations of manic-depressive illness that represent a challenge for clinicians at the levels of diagnosis, classification, and pharmacological treatment. The evidence shows that patients with bipolar disorder who have manic/hypomanic or depressive episodes with mixed features tend to have a more severe form of bipolar disorder along with a worse course of illness and higher rates of comorbid conditions than those with non-mixed presentations. In the updated Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5), the definition of "mixed episode" has been removed, and subthreshold nonoverlapping symptoms of the opposite pole are captured using a "with mixed features" specifier applied to manic, hypomanic, and major depressive episodes. However, the list of symptoms proposed in the DSM-5 specifier has been widely criticized, because it includes typical manic symptoms (such as elevated mood and grandiosity) that are rare among patients with mixed depression, while excluding symptoms (such as irritability, psychomotor agitation, and distractibility) that are frequently reported in these patients. With the new classification, mixed depressive episodes are three times more common in bipolar II compared with unipolar depression, which partly contributes to the increased risk of suicide observed in bipolar depression compared to unipolar depression. Therefore, a specific diagnostic category would imply an increased diagnostic sensitivity, would help to foster early identification of symptoms and ensure specific treatment, as well as play a role in suicide prevention in this population.

  16. Polymeric electrodes

    Science.gov (United States)

    Appel, G.; Mikalo, R.; Henkel, K.; Oprea, A.; Yfantis, A.; Paloumpa, I.; Schmeißer, D.

    2000-05-01

    We report experiments on conducting polymer polypyrrole leading to sensor applications. The resonance frequency, stability and sensitivity of AT-cut quartz crystals, electrochemically covered with polypyrrole tosylate, were tested under various operating conditions. The interaction of this organic semiconductor with thin metallic films was analysed by photoelectron investigations. Shifts of the valence band spectra during silver deposition are explained by the neutralization of positive charged surface defects. Thus the existence of a space charge region in polypyrrole is demonstrated spectroscopically.

  17. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    Highly capacitive (high surface area) electrodes that are electrochemically stable in strong alkaline electrolyte will form the basis for a new generation of electrical and electrochemical energy storage and conversion devices...

  18. An in situ spectroelectrochemical study on the orientation changes of an [FeiiiLN2O3] metallosurfactant deposited as LB Films on gold electrode surfaces.

    Science.gov (United States)

    Brand, Izabella; Juhaniewicz-Debinska, Joanna; Wickramasinghe, Lanka; Verani, Claudio N

    2018-03-28

    In this paper we analyze the changes in molecular orientation triggered by electrochemical reduction of an iron-containing surfactant in Langmuir-Blodgett films deposited onto gold electrodes. The metallosurfactant [Feiii(LN2O3)] (1) is an established molecular rectifier capable of unidirectional electron transfer between two electrodes. A gradual decrease in the activity is observed in sequential current vs. potential curves upon repeated cycles. Here we evaluate the redox response associated with the reduction of the Feiii/Feii couple in a single monolayer, as well as in a 5-layer LB film of 1. We use polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) to follow structural and orientation changes associated with such applied potential scans. We observe that the reduction of the Fe center becomes increasingly irreversible because an Fe-Ophenolate bond is cleaved. This transformation is accompanied by an almost vertical change in the orientation of metallosurfactant molecules in LB films.

  19. Integrated Neurobiology of Bipolar Disorder

    Science.gov (United States)

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of

  20. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces

    International Nuclear Information System (INIS)

    Yang Guimei; Chen Xing; Li Jie; Guo Zheng; Liu Jinhuai; Huang Xingjiu

    2011-01-01

    Highlights: → We synthesize the Pd nanostructures by bubbles dynamic templated. → We obtain Pd nanobuds and Pd nanodendrites by changing the reaction precursor. → We obtain Pd macroelectrode voltammertric behavior using small amount of Pd materials. → We proved a ECE process. → The Pd nanostructures/GCE for O 2 reduction is a 2-step 4-electron process. - Abstract: Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40-70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.

  1. Method for control of edge effects of oxidant electrode

    Science.gov (United States)

    Carr, Peter; Chi, Chen H.

    1980-12-23

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  2. Performance of electromyography recorded using textile electrodes in classifying arm movements.

    Science.gov (United States)

    Li, Guanglin; Geng, Yanjuan; Tao, Dandan; Zhou, Ping

    2011-01-01

    Electromyography (EMG) signals are commonly recorded using the Ag/AgCl gel electrodes in myoelectric prosthetic control. While a gelled electrode may provide high-quality EMG recordings, it is inconvenient in clinical application of a myoelectric prosthesis. A novel type of signal sensors-textile electrodes should be ideal in control of myoelectric prostheses. However, it is unknown whether the performance of textile electrodes is comparable to commonly used electrodes in classifying arm movements. In this study, the custom-made bipolar textile electrodes were fabricated using copper-based nickel-plated conductive fabric and were used to record EMG signals. The performance of EMG signals recorded with textile electrodes in identifying nine arm and hand movements were investigated. Our pilot results showed that the average classification accuracy across six able-bodied subjects was 94.05% when using textile electrodes and 94.26% when using conventional electrodes, with no significant difference between the two types of electrodes (p=0.81). The pilot results suggest that the textile electrodes could achieve similar performance in classifying arm movements in control of myoelectric prostheses as the gelled metal electrodes.

  3. Graphene Electrodes

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo

    The production of graphene and the other 2D materials is presented in the beginning of this thesis. Micromechanical exfoliation is the best method for obtaining relatively small and top quality samples. The invention of Graphene Finder simplifies the procedure of finding the exfoliated flakes...... in copper thin films is studied and found to be detrimental for the growth of graphene. The modified synthesis of rGO is introduced, as rGO represents a cheap alternative to CVD for large scale production of graphene. The transfer of flakes is performed by several methods, such as with PVA/PMMA support, CAB...... wedging and the pick-up technique with hBN. Several important improvements of the pick-up technique are introduced. These allowed us to transfer any 2D crystals and patterned graphene flakes with PMMA residues. We also developed the drop-down technique, which is used to release any crystal on the surface...

  4. Doped graphene electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Park, Hyesung; Kim, Ki Kang; Bulovic, Vladimir; Kong, Jing; Rowehl, Jill A

    2010-01-01

    In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl 3 doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.

  5. Mixed hemi/ad-micelles coated magnetic nanoparticles for the entrapment of hemoglobin at the surface of a screen-printed carbon electrode and its direct electrochemistry and electrocatalysis.

    Science.gov (United States)

    Amiri-Aref, Mohaddeseh; Raoof, Jahan Bakhsh; Kiekens, Filip; De Wael, Karolien

    2015-12-15

    An efficient procedure for the physical entrapment of proteins within a biocompatible matrix and their immobilization on electrode surfaces is of utmost importance in the fabrication of biosensors. In this work, the magnetic entrapment of hemoglobin (Hb) at the surface of a screen-printed carbon electrode (SPCE), through mixed hemi/ad-micelles (MHAM) array of positively charged surfactant supported iron oxide magnetic nanoparticles (Mag-NPs), is reported. The Hb/MHAM@Mag-NPs biocomposite is captured at SPCE by a super magnet (Hb/MHAM@Mag-NPs/SPCE). To gain insight in the configuration of the mixed hemi/ad-micelles of CTAB at Mag-NPs, zeta-potential measurements were performed. The entrapment of Hb at MHAM@Mag-NPs was confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). Direct electron transfer of the Hb intercalated into the composite film showed a pair of well-defined quasi-reversible redox peak at formal potential of -0.255 V vs. Ag/AgCl corresponding to heme Fe(III)/Fe(II) redox couple. It shows that the MHAM@Mag-NPs composite could increase the adsorption ability for Hb, thus provides a facile direct electron transfer between the Hb and the substrate. The proposed biosensor showed excellent electrocatalytic activity to the H2O2 reduction in the wide concentration range from 5.0 to 300.0 µM obtained by amperometric measurement. The Michaelis-Menten constant (Km) value of Hb at the modified electrode is 55.4 µM, showing its high affinity. Magnetic entrapment offers a promising design for fast, convenient and effective immobilization of protein within a few minutes for determination of the target molecule in low sample volume at disposable cost-effective SPCE. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Non-aqueous sers: Pyridine in N,N'-dimethylformamide solution at a silver electrode

    Science.gov (United States)

    Hutchinson, K.; McQuillan, A. J.; Hester, R. E.

    1983-06-01

    Surface-enhanced Raman spectra are reported from pyridine in N,N'-dimethylformamide at a silver electrode. Potential and time-dependent results are presented and discussed in terms of the electrode surface morphology.

  7. Bipolar polygenic loading and bipolar spectrum features in major depressive disorder

    NARCIS (Netherlands)

    Wiste, Anna; Robinson, Elise B.; Milaneschi, Yuri; Meier, Sandra; Ripke, Stephan; Clements, Caitlin C.; Fitzmaurice, Garrett M.; Rietschel, Marcella; Penninx, Brenda W.; Smoller, Jordan W.; Perlis, Roy H.

    Objectives Family and genetic studies indicate overlapping liability for major depressive disorder and bipolar disorder. The purpose of the present study was to determine whether this shared genetic liability influences clinical presentation. Methods A polygenic risk score for bipolar disorder,

  8. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  9. Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-xPbx O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media

    Directory of Open Access Journals (Sweden)

    Oliveira-Sousa Adriana de

    2002-01-01

    Full Text Available In this work a systematic investigation was carried out of the surface characterization and electrocatalytic activity of Ti/Ir0.3Ti(0.7-xPb x O2-coated electrodes (0 <= x <= 0.7, using the oxygen evolution reaction (OER in 0.5 mol dm-3 H2SO4 as model. The electrodes were prepared by thermal decomposition of IrCl3, TiCl3 and Pb(NO32 at 600 °C for 1 h using Ti as support. X-ray diffraction shows that the layers are crystalline and that the corresponding metal oxides are present. The surface morphology of the samples, before and after use under extensive oxygen evolution (Tafel experiment, was characterized by Scanning Electron Microscopy and the micrograph analyses show that the OER promotes the dissolution of the oxide layer. The redox processes occurring on the surface were characterized by cyclic voltammetry at 20 mV s-1 in 0.5 mol dm-3 aqueous H2SO4, at room temperature, and were controlled by the Ir3+/Ir4+ couple. The measured anodic voltammetric charge is related to the active area of the electrode showing that the replacement of TiO2 by PbO2 increases the surface area with the higher value being at 50 mol% PbO2. After oxygen evolution, the surface area increases slightly. Tafel slopes are independent of Pb content with the values around 60 mV decade-1, which suggest that only Ir sites are active for OER. The values of normalized current (i/q a show some inhibition of the OER as TiO2 is replaced by PbO2 suggesting that PbO2, can be a good choice, with potential to improve the selectivity of the system. The reaction order with respect to H+ ion is zero at constant overpotential and ionic strength. The values of Tafel slope and reaction order indicate that a single reaction mechanism is operating.

  10. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.

    Science.gov (United States)

    Majdi, Joseph A; Minnikanti, Saugandhika; Peixoto, Nathalia; Agrawal, Anant; Cohen, Ethan D

    2015-02-01

    Epiretinal prostheses seek to effectively stimulate the retina by positioning electrode arrays close to its surface so current pulses generate narrow retinal electric fields. Our objective was to evaluate the use of the electrical impedance of insulated platinum electrodes as a measure of the proximity of insulated platinum electrodes to the inner surface of the retina. We examined the impedance of platinum disk electrodes, 0.25 mm in diameter, insulated with two widths (0.8 and 1.6 mm outer diameter) of transparent fluoropolymer in a rabbit retinal eyecup preparation. Optical coherence tomography measured the electrode's proximity to the retinal surface which was correlated with changes in the voltage waveform at the electrode. Electrode impedance changes during retinal deformation were also studied. When the 1.6 mm diameter insulated electrodes advanced towards the retinal surface from 1000 μm, their voltage step at current pulse onset increased, reflecting an access resistance increase of 3880 ± 630 Ω, with the 50% midpoint averaging 30 μm, while thin 0.8 mm insulated electrode advancement showed an access resistance increase 50% midpoint averaging 16 μm. Using impedance spectroscopy, electrode-retina proximity differences were seen in the 1.6 mm insulated electrode impedance modulus between 1 and 100 kHz and the waveform phase angle at 0.3-10 kHz, while thin 0.8 mm insulated electrode advancement produced smaller impedance modulus changes with retinal proximity between 3 and 100 kHz. These impedance changes with retinal proximity may reflect different sized zones of eye wall being coupled in series with the insulated platinum electrode. The proximity of stimulus electrodes to neural tissue in fluid-filled spaces can be estimated from access resistance changes in the stimulus pulse waveform. Because many prosthetic devices allow back telemetry communication of the stimulus electrode waveform, it is possible these series resistance increases observed with

  11. Unsplit bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A [Pleasanton, CA

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  12. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  13. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  14. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  15. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  16. Course of Subthreshold Bipolar Disorder in Youth: Diagnostic Progression from Bipolar Disorder Not Otherwise Specified

    Science.gov (United States)

    Axelson, David A.; Birmaher, Boris; Strober, Michael A.; Goldstein, Benjamin I.; Ha, Wonho; Gill, Mary Kay; Goldstein, Tina R.; Yen, Shirley; Hower, Heather; Hunt, Jeffrey I.; Liao, Fangzi; Iyengar, Satish; Dickstein, Daniel; Kim, Eunice; Ryan, Neal D.; Frankel, Erica; Keller, Martin B.

    2011-01-01

    Objective: To determine the rate of diagnostic conversion from an operationalized diagnosis of bipolar disorder not otherwise specified (BP-NOS) to bipolar I disorder (BP-I) or bipolar II disorder (BP-II) in youth over prospective follow-up and to identify factors associated with conversion. Method: Subjects were 140 children and adolescents…

  17. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... determination; morphology; oxidation state of components and stability.  Electrode composition investigation: optimization on ionomer content and electrode protonic conductivity.  Interaction between electrode components  Morphology of electrode surface and MEA cross section. The above efforts all contribute...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  18. Bipolar (spectrum) disorder and mood stabilization: standing at the crossroads?

    OpenAIRE

    De Fruyt, Jurgen; Demyttenaere, Koen

    2007-01-01

    Diagnosis and treatment of bipolar disorder has long been a neglected discipline. Recent years have shown an upsurge in bipolar research. When compared to major depressive disorder, bipolar research still remains limited and more expert based than evidence based. In bipolar diagnosis the focus is shifting from classic mania to bipolar depression and hypomania. There is a search for bipolar signatures in symptoms and course of major depressive episodes. The criteria for hypomania are softened,...

  19. [Bipolar disorders in DSM-5].

    Science.gov (United States)

    Severus, E; Bauer, M

    2014-05-01

    In spring 2013 the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) edited by the American Psychiatric Association was published. The DSM-5 has also brought some important changes regarding bipolar disorders. The goal of this manuscript is to review the novelties in DSM-5 and to evaluate the implications of these changes. The diagnostic criteria as well as the additional remarks provided in the running text of DSM-5 were carefully appraised. For the first time diagnostic criteria are provided for disorders which up to now have been considered as subthreshold bipolar disorders. Furthermore, mixed episodes were eliminated and instead a mixed specifier was introduced. An increase in goal-directed activity/energy is now one of the obligatory symptoms for a (hypo)manic episode. Diagnostic guidance is provided as to when a (hypo)manic episode that has developed during treatment with an antidepressant has to be judged to be causally related to antidepressants and when this episode has only occurred coincidentally with antidepressant use. While some of the novelties are clearly useful, e.g. addition of increased goal-directed activity/energy as obligatory symptom for (hypo)manic episodes, this remains to be demonstrated for others, such as the definition of various subthreshold bipolar disorders.

  20. A wearable healthcare system for cardiac signal monitoring using conductive textile electrodes.

    Science.gov (United States)

    Lim, Chae Young; Jang, Kuk Jin; Kim, Hyun-Woo; Kim, Young Hwan

    2013-01-01

    Accurate cardiac signal monitoring feasible for long-term monitoring is important for a practical, cost-effective health monitoring system. In this study, we propose a wearable healthcare system based on conductive fabric-based electrodes allowing monitoring of electrocardiogram (ECG) waveforms and demonstrated the potential for arrhythmia detection using the system. The measurement system uses conductive fabric-based electrodes arranged in a modified bipolar electrode configuration on the chest area of the patient. An adaptive impulse correlation filter (AICF) algorithm and a band pass filter to enable accurate R-peak detection in noisy environments.

  1. Bipolar Disorder and Obsessive Compulsive Disorder Comorbidity

    Directory of Open Access Journals (Sweden)

    Necla Keskin

    2014-08-01

    Full Text Available The comorbidity of bipolar disorder and anxiety disorders is a well known concept. Obsessive-compulsive disorder is the most commonly seen comorbid anxiety disorder in bipolar patients. Some genetic variants, neurotransmitters especially serotonergic systems and second-messenger systems are thought to be responsible for its etiology. Bipolar disorder alters the clinical aspects of obsessive compulsive disorder and is associated with poorer outcome. The determination of comorbidity between bipolar disorder and obsessive compulsive disorder is quite important for appropriate clinical management and treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 429-437

  2. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  3. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES

    Directory of Open Access Journals (Sweden)

    P. A. Magomedova

    2017-01-01

    Full Text Available Objective. The development of light-emitting bipolar semiconductor structures having a low level of parasitic heat release.Methods. A method for converting thermoelectric heat in bipolar semiconductor structures into optical radiation to divert the excess energy into the environment was developed. At the same time, the cooling effect on thermoelectric junctions remains. Instead of an inertial process of conductive or convective heat transfer, practically instantaneous heat removal from electronic components to the environment takes place.Results. As a result, light-emitting bipolar semiconductor structures will allow more powerful devices with greater speed and degree of integration to be created. It is possible to produce transparent LED matrices with a two-way arrangement of transparent solar cells and mirror metal electrodes along the perimeter. When current is applied, the LED matrix on one of the transitions will absorb thermal energy; on other electrodes, it will emit radiation that is completely recovered into electricity by means of transparent solar cells following repeated reflection between the mirror electrodes. The low efficiency of solar cells will be completely compensated for with the multiple passages of photons through these batteries.Conclusion. Light-emitting bipolar semiconductor structures will not only improve the reliability of electronic components in a wide range of performance characteristics, but also improve energy efficiency through the use of optical radiation recovery. Semiconductor thermoelectric devices using optical phenomena in conjunction with the Peltier effect allow a wide range of energy-efficient components of radio electronic equipment to be realised, both for discrete electronics and for microsystem techniques. Systems for obtaining ultra-low temperatures in order to achieve superconductivity are of particular value. 

  4. Sensitized mass change detection using Au nanoporous electrode for biosensing

    Science.gov (United States)

    Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi

    2017-06-01

    Nanostructured Au was obtained on an electrode of a quartz crystal microbalance (QCM) chip by anodization in an oxalic acid solution. The effective surface area was expanded by these nanostructures and evaluated by electrochemical measurement, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Several morphologies, such as a nanosphere and a spongy structure, were observed under various anodic conditions. We demonstrated that a QCM chip with an anodized Au electrode was effective in biosensing because of its large surface area. The frequency shift corresponding to an antigen-antibody reaction improved on a Au nanosphere electrode compared with a flat surface electrode and spongy structure.

  5. Bipolar mixed features - Results from the comparative effectiveness for bipolar disorder (Bipolar CHOICE) study.

    Science.gov (United States)

    Tohen, Mauricio; Gold, Alexandra K; Sylvia, Louisa G; Montana, Rebecca E; McElroy, Susan L; Thase, Michael E; Rabideau, Dustin J; Nierenberg, Andrew A; Reilly-Harrington, Noreen A; Friedman, Edward S; Shelton, Richard C; Bowden, Charles L; Singh, Vivek; Deckersbach, Thilo; Ketter, Terence A; Calabrese, Joseph R; Bobo, William V; McInnis, Melvin G

    2017-08-01

    DSM-5 changed the criteria from DSM-IV for mixed features in mood disorder episodes to include non-overlapping symptoms of depression and hypomania/mania. It is unknown if, by changing these criteria, the same group would qualify for mixed features. We assessed how those meeting DSM-5 criteria for mixed features compare to those meeting DSM-IV criteria. We analyzed data from 482 adult bipolar patients in Bipolar CHOICE, a randomized comparative effectiveness trial. Bipolar diagnoses were confirmed through the MINI International Neuropsychiatric Interview (MINI). Presence and severity of mood symptoms were collected with the Bipolar Inventory of Symptoms Scale (BISS) and linked to DSM-5 and DSM-IV mixed features criteria. Baseline demographics and clinical variables were compared between mood episode groups using ANOVA for continuous variables and chi-square tests for categorical variables. At baseline, the frequency of DSM-IV mixed episodes diagnoses obtained with the MINI was 17% and with the BISS was 20%. Using DSM-5 criteria, 9% of participants met criteria for hypomania/mania with mixed features and 12% met criteria for a depressive episode with mixed features. Symptom severity was also associated with increased mixed features with a high rate of mixed features in patients with mania/hypomania (63.8%) relative to those with depression (8.0%). Data on mixed features were collected at baseline only and thus do not reflect potential patterns in mixed features within this sample across the study duration. The DSM-5 narrower, non-overlapping definition of mixed episodes resulted in fewer patients who met mixed criteria compared to DSM-IV. Copyright © 2017. Published by Elsevier B.V.

  6. Experimental study of the course of threshold current, voltage and electrode impedance during stepwise stimulation from the skin surface to the human cortex.

    Science.gov (United States)

    Szelényi, Andrea; Journée, Henricus Louis; Herrlich, Simon; Galistu, Gianni M; van den Berg, Joris; van Dijk, J Marc C

    2013-07-01

    Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. Threshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the cerebral cortex. Data of 10 patients (6f, 53 ± 11 years) were analyzed. Motor evoked potentials were elicited by constant current stimulation with corkscrew type electrodes (CS) at C3 and C4 in line with standard transcranial electric stimulation. A monopolar anodal ball tip shaped probe was used for all other measurements being performed at the level of the skin, dura and cortex, as well as within the skull by stepwise performed burr holes close to C3 resp. C4. Average stimulation intensity, corresponding voltage and impedance for muscle MEPs at current motor threshold (CMT) were recorded: CS 54 ± 23 mA (mean ± SD), 38 ± 21 V, 686 ± 146 Ω; with the monopolar probe on skin 55 ± 28 mA, 100 ± 44 V, 1911 ± 683 Ω and scalp 59 ± 32 mA, 56 ± 28 V, 1010 ± 402 Ω; within the skull bone: outer compact layer 33 ± 23 mA, 91 ± 53 V, 3734 ± 2793 Ω; spongiform layer 33 ± 23 mA, 70 ± 44 V, 2347 ± 1327 Ω; inner compact layer (ICL) 28 ± 19 mA, 48 ± 23 V, 2103 ± 1498 Ω; on dura 25 ± 12 mA, 17 ± 12 V, 643 ± 244 Ω and cortex 14 ± 6 mA, 11 ± 5 V, 859 ± 300 Ω. CMTs were only significantly different for CS (P = 0.02) and for the monopolar probe between the cortex and ICL (P = 0.03), scalp (P = 0.01) or skin (P = 0.01) and between ICL and CS (P ≤ 0.01) or skin (P ≤ 0.01). The mean stimulation current of the CMT along the extracranial to intracranial anodal trajectory followed a stepwise reduction. VMT was strongly dependent on electrode impedance. CMT within the skull layers was noted to have relative strong shunting currents in scalp layers. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. [Thinking organization and defense mechanisms in bipolar disorders. Clinical and psychopathological study on bipolar I and bipolar II].

    Science.gov (United States)

    Lo Baido, Rosa; Di Blasi, Marie; Alfano, Pietro; Audino, Palma; Bellavia, Carmela; Blando, Anna Antonia; Merendino, Adelaide; Messina, Rossana; Poma, Maria Luisa; La Grutta, Sabina

    2013-01-01

    The aim of this research is to explore the psychical functioning in bipolar I or bipolar II disorder people through the analysis and comparison of their thought styles and defense patterns. 29 bipolar I and bipolar II people afferent to Palermo University Policlinical Psychriatic Hospital Department were selected during the whole 2009-2010 year. The following tests were administred: Wechsler Adult Intelligent Scale-R (WAIS-R) in order to measure the general cognitive function; Defense Mechanisms Inventory (DMI) in order to measure defense patterns. Afterwards, the results of the two tests were analysed and compared. Bipolar disorder people use cognitive mechanisms and defense strategies that are very different from standard population. Bipolar I subjects show both wider and more serious cognitive deterioration and stricter defense mechanisms than bipolar II subjects. Generally bipolar patients show an immature personality based on archaic mechanisms that can be found in all the spheres of their personality: emotions, cognition, Ego-strength, adaptability to reality. The peculiar achieved cognitive and defense profile leads to important considerations about how psychological strategies can contribute to use "bespoke" treatments for these patients.

  8. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    International Nuclear Information System (INIS)

    Huang Chao; Ma Xiuqin; Sun Youshan; Wang Meiyan; Zhang Changping; Lou Yueya

    2015-01-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m 3 , output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0–6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of −3.2. (paper)

  9. Poorer sustained attention in bipolar I than bipolar II disorder

    Directory of Open Access Journals (Sweden)

    Chen Shih-Heng

    2010-02-01

    Full Text Available Abstract Background Nearly all information processing during cognitive processing takes place during periods of sustained attention. Sustained attention deficit is among the most commonly reported impairments in bipolar disorder (BP. The majority of previous studies have only focused on bipolar I disorder (BP I, owing to underdiagnosis or misdiagnosis of bipolar II disorder (BP II. With the refinement of the bipolar spectrum paradigm, the goal of this study was to compare the sustained attention of interepisode patients with BP I to those with BP II. Methods In all, 51 interepisode BP patients (22 with BP I and 29 with BP II and 20 healthy controls participated in this study. The severity of psychiatric symptoms was assessed by the 17-item Hamilton Depression Rating Scale and the Young Mania Rating Scale. All participants undertook Conners' Continuous Performance Test II (CPT-II to evaluate sustained attention. Results After controlling for the severity of symptoms, age and years of education, BP I patients had a significantly longer reaction times (F(2,68 = 7.648, P = 0.001, worse detectability (d' values (F(2,68 = 6.313, P = 0.003 and more commission errors (F(2,68 = 6.182, P = 0.004 than BP II patients and healthy controls. BP II patients and controls scored significantly higher than BP I patients for d' (F = 6.313, P = 0.003. No significant difference was found among the three groups in omission errors and no significant correlations were observed between CPT-II performance and clinical characteristics in the three groups. Conclusions These findings suggested that impairments in sustained attention might be more representative of BP I than BP II after controlling for the severity of symptoms, age, years of education and reaction time on the attentional test. A longitudinal follow-up study design with a larger sample size might be needed to provide more information on chronological sustained attention deficit in BP patients, and to illustrate

  10. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain.

    Science.gov (United States)

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-08-06

    Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Male C57 black mice (initial ages of 6-8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4-6 months of repetitive stimulation/recording. We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models.

  11. Bipolar electrochemiluminescence on thread: A new class of electroanalytical sensors.

    Science.gov (United States)

    Liu, Rui; Liu, Cuiling; Li, Huijie; Liu, Min; Wang, Dan; Zhang, Chunsun

    2017-08-15

    This paper introduces a new and simple concept for fabricating low-cost, easy-to-use capillary microchannel (CMC) assisted thread-based microfluidic analytical devices (CMCA-μTADs) for bipolar electrochemiluminescence (BP-ECL) application. The thread with patterns of carbon screen-printed electrodes and bare thread zones (BTZs) is embedded into a CMC. Such CMCA-μTADs can produce a strong and stable BP-ECL signal, and have an extremely low cost ($0.01 per device). Interestingly, the CMCA-μTADs are ultraflexible, and can be bent with a 135° bending angle at the BTZ or with a 150° bending angle at the middle of bipolar electrode (BPE), with no loss of analytical performance. Additionally, the two commonly-used ECL systems of Ru(bpy) 3 2+ /TPA and luminol/H 2 O 2 are applied to demonstrate the quantitative ability of the BP-ECL CMCA-μTADs. It has been shown that the proposed devices have successfully fulfilled the detection of TPA and H 2 O 2 , with detection limits of 0.00432mM and 0.00603mM, respectively. Based on the luminol/H 2 O 2 ECL system, the CMCA-μTADs are further applied for the glucose measurement, with the detection limit of 0.0205mM. Finally, the applicability and validity of the CMCA-μTADs are demonstrated for the measurements of H 2 O 2 in milk, and glucose in human urine and serum. The results indicate that the proposed devices have the potential to become an important new tool for a wide range of applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  13. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    In the first part of the paper, equations and methodology are discussed and in the second, we discuss results. 2. Methodology. In the atmospheric electricity, the earth's surface is one electrode and electrode layer or electrical boundary layer is a region near the surface of the earth in which profiles of atmospheric electrical.

  14. Swimming in Deep Water: Childhood Bipolar Disorder

    Science.gov (United States)

    Senokossoff, Gwyn W.; Stoddard, Kim

    2009-01-01

    The authors focused on one parent's struggles in finding a diagnosis and intervention for a child who had bipolar disorder. The authors explain the process of identification, diagnosis, and intervention of a child who had bipolar disorder. In addition to the personal story, the authors provide information on the disorder and outline strategies…

  15. Bipolar disorder diagnosis: challenges and future directions

    Science.gov (United States)

    Phillips, Mary L; Kupfer, David J

    2018-01-01

    Bipolar disorder refers to a group of affective disorders, which together are characterised by depressive and manic or hypomanic episodes. These disorders include: bipolar disorder type I (depressive and manic episodes: this disorder can be diagnosed on the basis of one manic episode); bipolar disorder type II (depressive and hypomanic episodes); cyclothymic disorder (hypomanic and depressive symptoms that do not meet criteria for depressive episodes); and bipolar disorder not otherwise specified (depressive and hypomanic-like symptoms that do not meet the diagnostic criteria for any of the aforementioned disorders). Bipolar disorder type II is especially difficult to diagnose accurately because of the difficulty in differentiation of this disorder from recurrent unipolar depression (recurrent depressive episodes) in depressed patients. The identification of objective biomarkers that represent pathophysiologic processes that differ between bipolar disorder and unipolar depression can both inform bipolar disorder diagnosis and provide biological targets for the development of new and personalised treatments. Neuroimaging studies could help the identification of biomarkers that differentiate bipolar disorder from unipolar depression, but the problem in detection of a clear boundary between these disorders suggests that they might be better represented as a continuum of affective disorders. Innovative combinations of neuroimaging and pattern recognition approaches can identify individual patterns of neural structure and function that accurately ascertain where a patient might lie on a behavioural scale. Ultimately, an integrative approach, with several biological measurements using different scales, could yield patterns of biomarkers (biosignatures) to help identify biological targets for personalised and new treatments for all affective disorders. PMID:23663952

  16. Transient Stuttering in Catatonic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    Anthony B. Joseph

    1991-01-01

    Full Text Available Two cases of transient stuttering occurring in association with catatonia and bipolar disorder are described. Affective decompensation has been associated with lateralized cerebral dysfunction, and it is hypothesized that in some bipolar catatonic patients a concomitant disorder of the lateralization of language function may lead to a variety of clinical presentations including aphasia, mutism, and stuttering.

  17. Cognitive behavioral therapy for bipolar disorders

    OpenAIRE

    Lotufo Neto, Francisco

    2004-01-01

    Descrição dos objetivos e principais técnicas da terapia comportamental cognitiva usadas para a psicoterapia das pessoas com transtorno bipolar.Objectives and main techniques of cognitive behavior therapy for the treatment of bipolar disorder patients are described.

  18. NO signaling in retinal bipolar cells.

    Science.gov (United States)

    Agurto, A; Vielma, A H; Cadiz, B; Couve, E; Schmachtenberg, O

    2017-08-01

    Nitric oxide (NO) is a neuromodulator involved in physiological and pathological processes in the retina. In the inner retina, a subgroup of amacrine cells have been shown to synthesize NO, but bipolar cells remain controversial as NO sources. This study correlates NO synthesis in dark-adapted retinas, through labeling with the NO marker DAF-FM, with neuronal nitric oxide synthase (nNOS) and inducible NOS expression, and presence of the NO receptor soluble guanylate cyclase in bipolar cells. NO containing bipolar cells were morphologically identified by dialysis of DAF fluorescent cells with intracellular dyes, or by DAF labeling followed by immunohistochemistry for nNOS and other cellular markers. DAF fluorescence was observed in all types of bipolar cells that could be identified, but the most intense DAF fluorescence was observed in bipolar cells with severed processes, supporting pathological NO signaling. Among nNOS expressing bipolar cells, type 9 was confirmed unequivocally, while types 2, 3a, 3b, 4, 5, 7, 8 and the rod bipolar cell were devoid of this enzyme. These results establish specific bipolar cell types as NO sources in the inner retina, and support the involvement of NO signaling in physiological and pathological processes in the inner retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of air bipolar ionization effects in cheese and kajmak craft production

    International Nuclear Information System (INIS)

    Pešić-Mikulec, D.; Puđa, P.D.; Blagić, G.S.; Miočinović, J.B.; Slović, M.D.

    2010-01-01

    Milk and dairy products are sustainable to the development of numerous microorganisms, especially pathogens. Therewith, it is necessary to achieve a high level of hygiene in dairy plants, in order to get safe and high quality products. Based on that, modern food production implies application of different air treatments. Microbiological status of air and working surfaces in the cheese and kajmak craft production, before and after air treatment by bipolar ionization, was investigated. It is concluded that bipolar ionization may be considered as an efficient method for improving of microbiological status of air, as well as surfaces that are in contact with the air

  20. Thyroid Functions and Bipolar Affective Disorder

    Directory of Open Access Journals (Sweden)

    Subho Chakrabarti

    2011-01-01

    Full Text Available Accumulating evidence suggests that hypothalamo-pituitary-thyroid (HPT axis dysfunction is relevant to the pathophysiology and clinical course of bipolar affective disorder. Hypothyroidism, either overt or more commonly subclinical, appears to the commonest abnormality found in bipolar disorder. The prevalence of thyroid dysfunction is also likely to be greater among patients with rapid cycling and other refractory forms of the disorder. Lithium-treatment has potent antithyroid effects and can induce hypothyroidism or exacerbate a preexisting hypothyroid state. Even minor perturbations of the HPT axis may affect the outcome of bipolar disorder, necessitating careful monitoring of thyroid functions of patients on treatment. Supplementation with high dose thyroxine can be considered in some patients with treatment-refractory bipolar disorder. Neurotransmitter, neuroimaging, and genetic studies have begun to provide clues, which could lead to an improved understanding of the thyroid-bipolar disorder connection, and more optimal ways of managing this potentially disabling condition.

  1. Diagnostic stability in pediatric bipolar disorder

    DEFF Research Database (Denmark)

    Vedel Kessing, Lars; Vradi, Eleni; Andersen, Per Kragh

    2015-01-01

    BACKGROUND: The diagnostic stability of pediatric bipolar disorder has not been investigated previously. The aim was to investigate the diagnostic stability of the ICD-10 diagnosis of pediatric mania/bipolar disorder.METHODS: All patients below 19 years of age who got a diagnosis of mania/bipolar...... disorder at least once in a period from 1994 to 2012 at psychiatric inpatient or outpatient contact in Denmark were identified in a nationwide register.RESULTS: Totally, 354 children and adolescents got a diagnosis of mania/bipolar disorder at least once; a minority, 144 patients (40.7%) got the diagnosis...... at the first contact whereas the remaining patients (210; 59.3%) got the diagnosis at later contacts before age 19. For the latter patients, the median time elapsed from first treatment contact with the psychiatric service system to the first diagnosis with a manic episode/bipolar disorder was nearly 1 year...

  2. 2017 Bipolar Plate Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kopasz, John P. [Argonne National Lab. (ANL), Argonne, IL (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States); Schenck, Deanna [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-17

    The Bipolar Plate (BP) Workshop was held at USCAR1 in Southfield, Michigan on February 14, 2017 and included 63 participants from industry, government agencies, universities, and national laboratories with expertise in the relevant fields. The objective of the workshop was to identify research and development (R&D) needs, in particular early-stage R&D, for bipolar plates for polymer electrolyte membrane (PEM) fuel cells for transportation applications. The focus of the workshop was on materials, manufacturing, and design aspects of bipolar plates with the goal of meeting DOE’s 2020 bipolar plate targets. Of special interest was the cost target of ≤$3/kW for the bipolar plate.

  3. A view of aqueous electrochemical carbon dioxide reduction to formate at indium electrodes, and the reversible electrodeposition of silver in ionic liquids through the lens of fundamental surface science

    Science.gov (United States)

    Detweiler, Zachary M.

    Two systems were studied using in situ measurement techniques, demonstrating the importance of creative experimental design. The electroreduction of CO2 at heterogeneous indium electrodes in aqueous solution was analyzed by cyclic voltammetry. Bulk electrolyses showed that increased indium oxide presence prior to electrolysis improved the Faradaic efficiency of CO 2 reduction to formate in 0.5 M K2SO2 aqueous solutions at a pH of 4.4. In order to more accurately assign speciation at the electrode surface ex situ O2 and H2O dosing of metallic indium under UHV was studied with XPS, HREELS and TPD. Ambient pressure XPS showed that the ratio of oxide to hydroxide at the indium interface is strongly dependent on the partial pressure of water; decreasing as P(H2O) increases. Using this information, a qualitative picture of the indium interface could be generated. In situ ATR-FTIR with an indium thin film as the working electrode showed that bulk oxide quickly reduces with applied potential, but an interfacial oxide is still present at high reductive overpotential. Additionally, an adsorbed carbonate at the thin film interface was observed upon introducing CO 2 to the cell. The implication of a surface bound carbonate as the CO 2 reduction intermediate draws on a mechanism that has not previously been discussed in the electrochemical reduction of CO2. The previous study of this mechanism from Ficscher-Tropsch literature helps to predict the further reduced products found at more electropositive metals, such as copper or magnesium, the latter of which is described here. Additionaly described here is a series of ILs that were employed as electrolyte for reversible silver deposition. BMIM N(TfO)2 was found to be the most promising of those studied, intrinsically giving a more uniform deposit that was bright and reversible. Deposit formation was studied using SEM and EDX as a function of deposition potential and deposition time. In situ reflectometry was employed to get a

  4. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  5. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  6. Comparison of depressive episodes in bipolar disorder and in major depressive disorder within bipolar disorder pedigrees.

    Science.gov (United States)

    Mitchell, Philip B; Frankland, Andrew; Hadzi-Pavlovic, Dusan; Roberts, Gloria; Corry, Justine; Wright, Adam; Loo, Colleen K; Breakspear, Michael

    2011-10-01

    Although genetic epidemiological studies have confirmed increased rates of major depressive disorder among the relatives of people with bipolar affective disorder, no report has compared the clinical characteristics of depression between these two groups. To compare clinical features of depressive episodes across participants with major depressive disorder and bipolar disorder from within bipolar disorder pedigrees, and assess the utility of a recently proposed probabilistic approach to distinguishing bipolar from unipolar depression. A secondary aim was to identify subgroups within the relatives with major depression potentially indicative of 'genetic' and 'sporadic' subgroups. Patients with bipolar disorder types 1 and 2 (n = 246) and patients with major depressive disorder from bipolar pedigrees (n = 120) were assessed using the Diagnostic Interview for Genetic Studies. Logistic regression was used to identify distinguishing clinical features and assess the utility of the probabilistic approach. Hierarchical cluster analysis was used to identify subgroups within the major depressive disorder sample. Bipolar depression was characterised by significantly higher rates of psychomotor retardation, difficulty thinking, early morning awakening, morning worsening and psychotic features. Depending on the threshold employed, the probabilistic approach yielded a positive predictive value ranging from 74% to 82%. Two clusters within the major depressive disorder sample were found, one of which demonstrated features characteristic of bipolar depression, suggesting a possible 'genetic' subgroup. A number of previously identified clinical differences between unipolar and bipolar depression were confirmed among participants from within bipolar disorder pedigrees. Preliminary validation of the probabilistic approach in differentiating between unipolar and bipolar depression is consistent with dimensional distinctions between the two disorders and offers clinical utility in

  7. A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis.

    Science.gov (United States)

    Han, Ying; Lu, Zhenyu; Du, Zhenguang; Luo, Qi; Chen, Sheng

    2018-05-01

    Bipolar disorder is often mis-diagnosed as unipolar depression in the clinical diagnosis. The main reason is that, different from other diseases, bipolarity is the norm rather than exception in bipolar disorder diagnosis. YinYang bipolar fuzzy set captures bipolarity and has been successfully used to construct a unified inference mathematical modeling method to bipolar disorder clinical diagnosis. Nevertheless, symptoms and their interrelationships are not considered in the existing method, circumventing its ability to describe complexity of bipolar disorder. Thus, in this paper, a YinYang bipolar fuzzy multi-criteria group decision making method to bipolar disorder clinical diagnosis is developed. Comparing with the existing method, the new one is more comprehensive. The merits of the new method are listed as follows: First of all, multi-criteria group decision making method is introduced into bipolar disorder diagnosis for considering different symptoms and multiple doctors' opinions. Secondly, the discreet diagnosis principle is adopted by the revised TOPSIS method. Last but not the least, YinYang bipolar fuzzy cognitive map is provided for the understanding of interrelations among symptoms. The illustrated case demonstrates the feasibility, validity, and necessity of the theoretical results obtained. Moreover, the comparison analysis demonstrates that the diagnosis result is more accurate, when interrelations about symptoms are considered in the proposed method. In a conclusion, the main contribution of this paper is to provide a comprehensive mathematical approach to improve the accuracy of bipolar disorder clinical diagnosis, in which both bipolarity and complexity are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Quasi-monopolar stimulation: a novel electrode design configuration for performance optimization of a retinal neuroprosthesis.

    Directory of Open Access Journals (Sweden)

    Gita Khalili Moghadam

    Full Text Available In retinal neuroprostheses, spatial interaction between electric fields from various electrodes - electric crosstalk - may occur in multielectrode arrays during simultaneous stimulation of the retina. Depending on the electrode design and placement, this crosstalk can either enhance or degrade the functional characteristics of a visual prosthesis. To optimize the device performance, a balance must be satisfied between the constructive interference of crosstalk on dynamic range and power consumption and its negative effect on artificial visual acuity. In the present computational modeling study, we have examined the trade-off in these positive and negative effects using a range of currently available electrode array configurations, compared to a recently proposed stimulation strategy - the quasi monopolar (QMP configuration - in which the return current is shared between local bipolar guards and a distant monopolar electrode. We evaluate the performance of the QMP configuration with respect to the implantation site and electrode geometry parameters. Our simulation results demonstrate that the beneficial effects of QMP are only significant at electrode-to-cell distances greater than the electrode dimensions. Possessing a relatively lower activation threshold, QMP was found to be superior to the bipolar configuration in terms of providing a relatively higher visual acuity. However, the threshold for QMP was more sensitive to the topological location of the electrode in the array, which may need to be considered when programming the manner in which electrode are simultaneously activated. This drawback can be offset with a wider dynamic range and lower power consumption of QMP. Furthermore, the ratio of monopolar return current to total return can be used to adjust the functional performance of QMP for a given implantation site and electrode parameters. We conclude that the QMP configuration can be used to improve visual information

  9. Can neuroimaging disentangle bipolar disorder?

    Science.gov (United States)

    Hozer, Franz; Houenou, Josselin

    2016-05-01

    Bipolar disorder heterogeneity is large, leading to difficulties in identifying neuropathophysiological and etiological mechanisms and hindering the formation of clinically homogeneous patient groups in clinical trials. Identifying markers of clinically more homogeneous groups would help disentangle BD heterogeneity. Neuroimaging may aid in identifying such groups by highlighting specific biomarkers of BD subtypes or clinical dimensions. We performed a systematic literature search of the neuroimaging literature assessing biomarkers of relevant BD phenotypes (type-I vs. II, presence vs. absence of psychotic features, suicidal behavior and impulsivity, rapid cycling, good vs. poor medication response, age at onset, cognitive performance and circadian abnormalities). Consistent biomarkers were associated with suicidal behavior, i.e. frontal/anterior alterations (prefrontal and cingulate grey matter, prefrontal white matter) in patients with a history of suicide attempts; and with cognitive performance, i.e. involvement of frontal and temporal regions, superior and inferior longitudinal fasciculus, right thalamic radiation, and corpus callosum in executive dysfunctions. For the other dimensions and sub-types studied, no consistent biomarkers were identified. Studies were heterogeneous both in methodology and outcome. Though theoretically promising, neuroimaging has not yet proven capable of disentangling subtypes and dimensions of bipolar disorder, due to high between-study heterogeneity. We issue recommendations for future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Brief Report: A Family Risk Study Exploring Bipolar Spectrum Problems and Cognitive Biases in Adolescent Children of Bipolar Parents

    Science.gov (United States)

    Espie, Jonathan; Jones, Steven H.; Vance, Yvonne H.; Tai, Sara J.

    2012-01-01

    Children of parents with bipolar disorder are at increased risk of bipolar spectrum diagnoses. This cross-sectional study explores cognitive factors in the prediction of vulnerability to bipolar disorder. Adolescents at high-risk (with a parent with bipolar disorder; n = 23) and age and gender matched adolescents (n = 24) were recruited. Parent…

  11. Lower switch rate in depressed patients with bipolar II than bipolar I disorder treated adjunctively with second-generation antidepressants

    NARCIS (Netherlands)

    Altshuler, LL; Suppes, T; Nolen, WA; Leverich, G; Keck, PE; Frye, MA; Kupka, R; McElroy, SL; Grunze, H; Kitchen, CMR; Post, R; Black, D.O.

    Objectives: The authors compared the switch rate into hypomania/mania in depressed patients treated with second-generation antidepressants who had either bipolar I or bipolar II disorder. Method: In a 10-week trial, 184 outpatients with bipolar depression (134 with bipolar I disorder, 48 with

  12. Polyaniline-deposited porous carbon electrode for supercapacitor

    International Nuclear Information System (INIS)

    Chen, W.-C.; Wen, T.-C.; Teng, H.

    2003-01-01

    Electrodes for supercapacitors were fabricated by depositing polyaniline (PANI) on high surface area carbons. The chemical composition of the PANI-deposited carbon electrode was determined by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H 2 SO 4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode

  13. Heavily doped silicon electrode for dielectrophoresis in high conductivity media

    Science.gov (United States)

    Zhu, Xiongfeng; Tung, Kuan-Wen; Chiou, Pei-Yu

    2017-10-01

    A hemispherically shaped, heavily doped (N++) silicon electrode is proposed to overcome the challenges of dielectrophoretic (DEP) manipulation using a conventional metal electrode operating in high conductivity media. An N++ electrode decouples the strong electric field region from the electrode interface and provides a large interface capacitance to prevent surface charging in high conductivity media, thereby effectively suppressing electrochemical reactions. Compared to a conventional metal electrode, an N++ electrode can provide 3 times higher threshold voltage and a corresponding 9-fold enhancement of maximum DEP force in 1× phosphate-buffered saline buffer with an electrical conductivity of 1 S/m. Furthermore, an N++ silicon electrode has excellent thermal conductivity and low electrical impedance, ideal for powering massively parallel DEP manipulation in high conductivity media across a large area.

  14. Violence in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Volavka, Jan

    2013-03-01

    Although most psychiatric patients are not violent, serious mental illness is associated with increased risk of violent behavior. Most of the evidence available pertains to schizophrenia and bipolar disorder. MEDLINE data base was searched for articles published between 1966 and November 2012 using the combination of key words 'schizophrenia' or 'bipolar disorder' with 'aggression' or 'violence'. For the treatment searches, generic names were used in combination with key words 'schizophrenia' or 'bipolar disorder' and 'aggression' No language constraint was applied. Only articles dealing with adults were included. The lists of references were searched manually to find additional articles. There were statistically significant increases of risk of violence in schizophrenia and in bipolar disorder in comparison with general population. The evidence suggests that the risk of violence is greater in bipolar disorder than in schizophrenia. Most of the violence in bipolar disorder occurs during the manic phase. The risk of violence in schizophrenia and bipolar disorder is increased by comorbid substance use disorder. Violence among adults with schizophrenia may follow at least two distinct pathways-one associated with antisocial conduct, and another associated with the acute psychopathology of schizophrenia. Clozapine is the most effective treatment of aggressive behavior in schizophrenia. Emerging evidence suggests that olanzapine may be the second line of treatment. Treatment adherence is of key importance. Non-pharmacological methods of treatment of aggression in schizophrenia and bipolar disorder are increasingly important. Cognitive behavioral approaches appear to be effective in cases where pharmacotherapy alone does not suffice. Violent behavior of patients with schizophrenia and bipolar disorder is a public health problem. Pharmacological and non-pharmacological approaches should be used to treat not only violent behavior, but also contributing comorbidities such

  15. Steam activation of boron doped diamond electrodes

    International Nuclear Information System (INIS)

    Ohashi, Tatsuya; Zhang Junfeng; Takasu, Yoshio; Sugimoto, Wataru

    2011-01-01

    Highlights: → Steam activation of boron doped diamond (BDD) electrodes. → Steam activated BDD has a porous columnar texture. → Steam activated BDD has a wide potential window. - Abstract: Boron doped diamond (BDD) electrodes were activated in steam at various temperatures, resulting in high quality BDD electrodes with a porous microstructure. Distinct columnar structures were observed by scanning electron microscopy. The electrochemically active surface area of the steam-activated BDD was up to 20 times larger than the pristine BDD electrode owing to the porous texture. In addition, a widening of the potential window was observed after steam activation, suggesting that the quality of BDD was enhanced due to oxidative removal of graphitic impurities during the activation process.

  16. Electrode placement during electro-desalination of

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Andersson, Lovisa C. H.

    2017-01-01

    Carved stone sculptures and ornaments can be severely damaged by salt induced decay. Often the irregular surfaces are decomposed, and the artwork is lost. The present paper is an experimental investigation on the possibility for using electro-desalination for treatment of stone with irregular shape....... Electro-desalination experiments were made with different duration to follow the progress. Successful desalination of the whole stone piece was obtained, showing that also parts not being placed directly between the electrodes were desalinated. This is important in case of salt damaged carved stones......, where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring...

  17. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  18. Tratamento do transtorno bipolar: eutimia Bipolar disorder treatment: euthymia

    Directory of Open Access Journals (Sweden)

    Fábio Gomes de Matos e Souza

    2005-01-01

    Full Text Available O transtorno bipolar é um quadro complexo caracterizado por episódios de depressão, mania ou hipomania e fases assintomáticas. O tratamento visa ao controle de episódios agudos e prevenção de novos episódios. O tratamento farmacológico iniciou-se com o lítio. Até o momento, o lítio permanece como o tratamento com mais evidências favoráveis na fase de manutenção. Outros tratamentos demonstram eficácia nessa fase, como o valproato, a carbamazepina e os antipsicóticos atípicos. Dos antipsicóticos atípicos o mais estudado nesta fase do tratamento é a olanzapina. Mais estudos prospectivos são necessários para confirmar a ação profilática de novos agentes.Bipolar disorder is a complex disorder characterized by depression episodes, mania or hypomania and asymptomatic phases. The treatment aims at the control of acute episodes and prevention of new episodes. The pharmacological treatment was inaugurated with lithium. Until the moment, lithium remains as the treatment with more favorable evidences in the maintenance phase. Other treatments demonstrate efficacy in this phase, as valproate, carbamazepine and atypical antipsychotics. Of the atypical antipsychotics, the most studied in this phase of treatment is olanzapine. More prospective studies are necessary to confirm prophylactic action of new agents.

  19. Ionizing radiations simulation on bipolar components

    International Nuclear Information System (INIS)

    Montagner, X.

    1999-01-01

    This thesis presents the ionizing radiation effects on bipolar components and more specially their behavior facing the total dose. The first part is devoted to the radiation environments with a special attention to the spatial environments and new emergent environments. The specificities of bipolar components are then presented and their behavior facing the interactions. The physical mechanisms bound to the dose rate are also discussed. The second part presents a physical analysis of degradations induced by the cumulated dosimetry on bipolar components and simulation with the ATLAS code. The third part exposes an electric empirical simulation induced by the cumulated dose in static conditions. (A.L.B.)

  20. Bipolar Disorder and Early Affective Trauma.

    Science.gov (United States)

    de Codt, Aloise; Monhonval, Pauline; Bongaerts, Xavier; Belkacemi, Ikram; Tecco, Juan Martin

    2016-09-01

    Bipolar disorder is a chronic psychiatric disease with a high prevalence and is a major psychosocial and medical burden. The exact etiological pathways of bipolar disorder are not fully understood. Genetic factors are known to play an important role in the etiology of bipolar disorder. However, high rates of discordance among identical twins and a growing body of evidence that environmental factors such as early stress can influence the onset and course of psychiatric diseases underline the importance of additional etiological mechanisms of bipolar disorders. There has been little investigation about early trauma in bipolar disorder. The aim of this study was to review the literature on the association between early traumatic interactions like child neglect, mistreatment, abuse or early parental separation and the occurrence of bipolar disorder in adulthood or impact on the course of the disease. Studies investigating associations between child neglect, mistreatment, abuse or early parental separation and occurrence of bipolar disorder in adulthood or impact on the course of the disease were searched in the Pubmed database. More than 700 articles were sorted independently by two of the authors using predefined criteria. Only research articles, reviews and meta-analyses were selected for this review. 53 articles met the inclusion criteria. To date, four systematic reviews partially addressed our research question. Early trauma is more frequently found in the past of bipolar patients than in the general population. Studies support a harmful effect of childhood trauma on the course of bipolar disease, with more anxious, depressive or psychotic symptoms, an early age of onset and a worse prognosis. Early trauma is more often found in the past of bipolar adult patients than the general population and studies support a harmful effect of childhood trauma on the course of bipolar disease, with more anxious, depressive or psychotic symptoms, an early age of onset and a

  1. Cognitive Behavioral Therapy in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Zeynep Mackali

    2011-12-01

    Full Text Available Bipolar disorder is an early-onset, chronic disorder. It impairs occupational, social, and family functioning, which makes learning to adapt living with the disorder and its treatment critically important. Therefore, it has now become common knowledge that psychosocial interventions are also necessary in the treatment of bipolar disorder adjunctive to pharmacotherapy. Thus, whichever psychosocial interventions are more effective in bipolar disorder is a crucial research question. In this article, cognitive-behavioral therapy, which is applied adjunctive to pharmacotherapy, will be addressed and the findings of research about the effectiveness of these applications will be reviewed.

  2. Sexuality and Sexual Dysfunctions in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Zeynep Namli

    2016-12-01

    Full Text Available In the clinical course of bipolar disorder, there is a reduction in sexual will during depressive episodes and inappopriate sexual experiences and hypersexuality occurs during manic episodes. Up to now, studies focused on sexual side effects of drugs. Sexual violence, sexually transmitted diseases, contraception methods, unplanned pregnancies need to be assessed carefully in bipolar disorder patients. This review focused on sexuality and sexual dysfunctions in the course of bipolar disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(4.000: 309-320

  3. Progression along the Bipolar Spectrum: A Longitudinal Study of Predictors of Conversion from Bipolar Spectrum Conditions to Bipolar I and II Disorders

    Science.gov (United States)

    Alloy, Lauren B.; Urošević, Snežana; Abramson, Lyn Y.; Jager-Hyman, Shari; Nusslock, Robin; Whitehouse, Wayne G.; Hogan, Michael

    2011-01-01

    Little longitudinal research has examined progression to more severe bipolar disorders in individuals with “soft” bipolar spectrum conditions. We examine rates and predictors of progression to bipolar I and II diagnoses in a non-patient sample of college-age participants (n = 201) with high General Behavior Inventory scores and childhood or adolescent onset of “soft” bipolar spectrum disorders followed longitudinally for 4.5 years from the Longitudinal Investigation of Bipolar Spectrum (LIBS) project. Of 57 individuals with initial cyclothymia or bipolar disorder not otherwise specified (BiNOS) diagnoses, 42.1% progressed to a bipolar II diagnosis and 10.5% progressed to a bipolar I diagnosis. Of 144 individuals with initial bipolar II diagnoses, 17.4% progressed to a bipolar I diagnosis. Consistent with hypotheses derived from the clinical literature and the Behavioral Approach System (BAS) model of bipolar disorder, and controlling for relevant variables (length of follow-up, initial depressive and hypomanic symptoms, treatment-seeking, and family history), high BAS sensitivity (especially BAS Fun Seeking) predicted a greater likelihood of progression to bipolar II disorder, whereas early age of onset and high impulsivity predicted a greater likelihood of progression to bipolar I (high BAS sensitivity and Fun-Seeking also predicted progression to bipolar I when family history was not controlled). The interaction of high BAS and high Behavioral Inhibition System (BIS) sensitivities also predicted greater likelihood of progression to bipolar I. We discuss implications of the findings for the bipolar spectrum concept, the BAS model of bipolar disorder, and early intervention efforts. PMID:21668080

  4. Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Jadhav, Nitin A; Singh, Pramod K; Rhee, Hee Woo; Bhattacharya, Bhaskar

    2014-01-01

    Mesoporous ZnO nanoparticles have been synthesized with tremendous increase in specific surface area of up to 578 m(2)/g which was 5.54 m(2)/g in previous reports (J. Phys. Chem. C 113:14676-14680, 2009). Different mesoporous ZnO nanoparticles with average pore sizes ranging from 7.22 to 13.43 nm and specific surface area ranging from 50.41 to 578 m(2)/g were prepared through the sol-gel method via a simple evaporation-induced self-assembly process. The hydrolysis rate of zinc acetate was varied using different concentrations of sodium hydroxide. Morphology, crystallinity, porosity, and J-V characteristics of the materials have been studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), BET nitrogen adsorption/desorption, and Keithley instruments.

  5. The role of surface chemistry at ceramic/electrolyte intefaces in the generation of pulsed corona discharges in water using porous ceramic-coated rod electrodes

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    2009-01-01

    Roč. 6, č. 11 (2009), s. 719-728 ISSN 1612-8850 R&D Projects: GA AV ČR IAAX00430802 Institutional research plan: CEZ:AV0Z20430508 Keywords : non-thermal plasma * electrical discharge * water * surface chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.037, year: 2009 http://www3.interscience.wiley.com/cgi-bin/fulltext/122593644/PDFSTART

  6. Fabrication techniques for reverse electrode coaxial germanium nuclear radiation detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1980-11-01

    Germanium detectors with reverse polarity coaxial electrodes have been shown to exhibit improved resistance to radiation damage as compared with conventional electrode devices. However, the production of reverse electrode devices involves the development of new handling and fabrication techniques which has limited their wider application. We have developed novel techniques which lead to a device which is simple to fabricate, environmentally passivated and surface state adjusted

  7. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  8. Comments on determination of bandgap narrowing from activation plots. [for bipolar transistors

    Science.gov (United States)

    Park, J.-S.; Neugroschel, A.; Lindholm, F. A.

    1986-01-01

    A determination is made of the temperature-dependence of emitter saturation current in bipolar devices which allows the derivation of a value for bandgap narrowing that is in better agreement with other determinations than previous results based on ohmic contact measurements of temperature dependence. The new values were obtained by varying the surface recombination velocity at the emitter surface. This improves accuracy by varying the minority carrier surface recombination velocity at the emitter contacts of otherwise indistinguishable emitters.

  9. Resistivity tomography using line electrode; Sendenryugen wo tsukatta hiteiko tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y. [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    Resistivity tomography (RT) using line electrode was studied. Although line electrode is available even for RT, in casing line electrode, only one kind of electrode data is obtained. The calculation method of potential and sensitivity distributions based on line electrode is not yet established. Since various data in various measurement arrangements are required for analysis of RT, the new measurement method was devised which measures resistivities while successively changing the tip depth of line electrode. Until now, although potential has been calculated under the assumption that outflow current per unit length of line electrode is uniform, this assumption is incorrect. The new potential distribution calculation method was thus proposed. Sensitivity distribution calculation for inverse analysis is also described. RT using line electrode could precisely obtain deep information which couldn`t be obtained only by measurement along the surface measuring line. Although RT is poorer in accuracy than the previous point electrode method, it will be probably improved by 3-electrode arrangement. RT is also useful in the case difficult to apply point electrode method. 3 refs., 10 figs.

  10. Recent advances in graphite powder-based electrodes.

    Science.gov (United States)

    Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma

    2013-04-01

    Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.

  11. Bipolar disorder and neurophysiologic mechanisms

    Directory of Open Access Journals (Sweden)

    Simon M McCrea

    2008-11-01

    Full Text Available Simon M McCreaDepartments of Neurology and Neuroophthalmology, University of British Columbia, 2550 Willow Street, Vancouver, British Columbia, Canada V5Z 3N9Abstract: Recent studies have suggested that some variants of bipolar disorder (BD may be due to hyperconnectivity between orbitofrontal (OFC and temporal pole (TP structures in the dominant hemisphere. Some initial MRI studies noticed that there were corpus callosum abnormalities within specific regional areas and it was hypothesized that developmentally this could result in functional or effective connectivity changes within the orbitofrontal-basal ganglia-thalamocortical circuits. Recent diffusion tensor imaging (DTI white matter fiber tractography studies may well be superior to region of interest (ROI DTI in understanding BD. A “ventral semantic stream” has been discovered connecting the TP and OFC through the uncinate and inferior longitudinal fasciculi and the elusive TP is known to be involved in theory of mind and complex narrative understanding tasks. The OFC is involved in abstract valuation in goal and sub-goal structures and the TP may be critical in binding semantic memory with person–emotion linkages associated with narrative. BD patients have relative attenuation of performance on visuoconstructional praxis consistent with an atypical localization of cognitive functions. Multiple lines of evidence suggest that some BD alleles are being selected for which could explain the enhanced creativity in higher-ability probands. Associations between ROI’s that are not normally connected could explain the higher incidence of artistic aptitude, writing ability, and scientific achievements among some mood disorder subjects.Keywords: bipolar disorder, diffusion tensor imaging, white matter tractography, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, mood dysphoria, creativity, ventral semantic stream, writing ability, artistic aptitude

  12. Climatic factors and bipolar affective disorder

    DEFF Research Database (Denmark)

    Christensen, Ellen Margrethe; Larsen, Jens Knud; Gjerris, Annette

    2008-01-01

    In bipolar disorder, the factors provoking a new episode are unknown. As a seasonal variation has been noticed, it has been suggested that weather conditions may play a role. The aim of the study was to elucidate whether meteorological parameters influence the development of new bipolar phases....... A group of patients with at least three previous hospitalizations for bipolar disorder was examined every 3 months for up to 3 years. At each examination an evaluation of the affective phase was made according to the Hamilton Depression Scale (HAM-D(17)), and the Bech-Rafaelsen Mania Rating Scale (MAS......). In the same period, daily recordings from the Danish Meteorological Institute were received. We found no correlations between onset of bipolar episodes [defined as MAS score of 11 or more (mania) and as HAM-D(17) score of 12 or more (depression)] and any meteorological parameters. We found a statistical...

  13. Gene environment interactions in bipolar disorder.

    Science.gov (United States)

    Pregelj, Peter

    2011-09-01

    It has been estimated that the heritable component of bipolar disorder ranges between 80 and 90%. However, even genome-wide association studies explain only a fraction of phenotypic variability not resolving the problem of "lost heritability". Although direct evidence for epigenetic dysfunction in bipolar disorder is still limited, methodological technologies in epigenomic profiling have advanced, offering even single cell analysing and resolving the problem of cell heterogeneity in epigenetics research. Gene overlapping with other mental disorders represents another problem in identifying potential susceptibility genes in bipolar disorder. Better understanding of the interplay between multiple environmental and genetic factors involved in the patogenesis of bipolar disorder could provide relevant information for treatment of patients with this complex disorder. Future studies on the role of these factors in psychopathological conditions, subphenotypes and endophenotypes may greatly benefit by using more precise clinical data and a combined approach with multiple research tools incorporated into a single study.

  14. Are rates of pediatric bipolar disorder increasing?

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2014-01-01

    Studies from the USA suggest that rates of pediatric bipolar disorder have increased since the mid-90s, but no study outside the USA has been published on the rates of pediatric bipolar disorder. Further, it is unclear whether an increase in rates reflects a true increase in the illness or more...... diagnostic attention. Using nationwide registers of all inpatients and outpatients contacts to all psychiatric hospitals in Denmark, we investigated (1) gender-specific rates of incident pediatric mania/bipolar disorder during a period from 1995 to 2012, (2) whether age and other characteristics...... for pediatric mania/bipolar disorder changed during the calendar period (1995 to 2003 versus 2004 to 2012), and (3) whether the diagnosis is more often made at first psychiatric contact in recent time compared to earlier according to gender. Totally, 346 patients got a main diagnosis of a manic episode (F30...

  15. Internet use by patients with bipolar disorder

    DEFF Research Database (Denmark)

    Bauer, Rita; Conell, Jörn; Glenn, Tasha

    2016-01-01

    There is considerable international interest in online education of patients with bipolar disorder, yet little understanding of how patients use the Internet and other sources to seek information. 1171 patients with a diagnosis of bipolar disorder in 17 countries completed a paper-based, anonymous...... survey. 81% of the patients used the Internet, a percentage similar to the general public. Older age, less education, and challenges in country telecommunications infrastructure and demographics decreased the odds of using the Internet. About 78% of the Internet users looked online for information...... for information on bipolar disorder consulted medical professionals plus a mean of 2.3 other information sources such as books, physician handouts, and others with bipolar disorder. Patients not using the Internet consulted medical professionals plus a mean of 1.6 other information sources. The percentage...

  16. Thyroid Functions and Bipolar Affective Disorder

    OpenAIRE

    Chakrabarti, Subho

    2011-01-01

    Accumulating evidence suggests that hypothalamo-pituitary-thyroid (HPT) axis dysfunction is relevant to the pathophysiology and clinical course of bipolar affective disorder. Hypothyroidism, either overt or more commonly subclinical, appears to the commonest abnormality found in bipolar disorder. The prevalence of thyroid dysfunction is also likely to be greater among patients with rapid cycling and other refractory forms of the disorder. Lithium-treatment has potent antithyroid effects and c...

  17. Biological dysrhythm in remitted bipolar I disorder.

    Science.gov (United States)

    Iyer, Aishwarya; Palaniappan, Pradeep

    2017-12-01

    Recent treatment guidelines support treatment of biological rhythm abnormalities as a part of treatment of bipolar disorder, but still, literature examining various domains (Sleep, Activity, Social, and Eating) of biological rhythm and its clinical predictors are less. The main aim of our study is to compare various domains of biological rhythm among remitted bipolar I subjects and healthy controls. We also explored for any association between clinical variables and biological rhythm among bipolar subjects. 40 subjects with Bipolar I disorder and 40 healthy controls who met inclusion and exclusion criteria were recruited for the study. Diagnoses were ascertained by a qualified psychiatrist using MINI 5.0. Sociodemographic details, biological rhythm (BRIAN-Biological Rhythm Interview of assessment in Neuropsychiatry) and Sleep functioning (PSQI- Pittsburgh Sleep Quality Index) were assessed in all subjects. Mean age of the Bipolar subjects and controls were 41.25±11.84years and 38.25±11.25 years respectively. Bipolar subjects experienced more biological rhythm disturbance when compared to healthy controls (total BRIAN score being 34.25±9.36 vs 28.2±6.53) (p=0.002). Subsyndromal depressive symptoms (HDRS) had significant positive correlation with BRIAN global scores(r=0.368, p=0.02). Linear regression analysis showed that number of episodes which required hospitalization (β=0.601, t=3.106, P=0.004), PSQI (β=0.394, t=2.609, p=0.014), HDRS (β=0.376, t=2.34, t=0.036) explained 31% of variance in BRIAN scores in remitted bipolar subjects. Biological rhythm disturbances seem to persist even after clinical remission of bipolar illness. More studies to look into the impact of subsyndromal depressive symptoms on biological rhythm are needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bipolar transistor in VESTIC technology: prototype

    Science.gov (United States)

    Mierzwiński, Piotr; Kuźmicz, Wiesław; Domański, Krzysztof; Tomaszewski, Daniel; Głuszko, Grzegorz

    2016-12-01

    VESTIC technology is an alternative for traditional CMOS technology. This paper presents first measurement data of prototypes of VES-BJT: bipolar transistors in VESTIC technology. The VES-BJT is a bipolar transistor on the SOI substrate with symmetric lateral structure and both emitter and collector made of polysilicon. The results indicate that VES-BJT can be a device with useful characteristics. Therefore, VESTIC technology has the potential to become a new BiCMOS-type technology with some unique properties.

  19. Transtorno afetivo bipolar: um enfoque transcultural

    OpenAIRE

    Sanches,Marsal; Jorge,Miguel Roberto

    2004-01-01

    Considerando-se que existem diferenças importantes na maneira como as emoções são vivenciadas e expressas em diferentes culturas, a apresentação e o manejo do transtorno afetivo bipolar sofrem influência de fatores culturais. O presente artigo realiza uma breve revisão da evidência referente aos aspectos transculturais do transtorno bipolar.

  20. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena; Accion de las sustancias extranas en la superficies de los electrodos. Estudio mediante radiotrazadores. II. Influencia en los procesos de electrocristalizacion

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1963-07-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs.

  1. O transtorno bipolar na mulher Bipolar disorder in women

    Directory of Open Access Journals (Sweden)

    Alexandro de Borja Gonçalves Guerra

    2005-01-01

    Full Text Available Diferenças sexuais, descritas em vários transtornos psiquiátricos, também parecem estar presentes no transtorno afetivo bipolar (TAB. A prevalência do TAB tipo I se distribui igualmente entre mulheres e homens. Mulheres parecem estar sujeitas a um risco maior de ciclagem rápida e mania mista, condições que fariam do TAB um transtorno com curso mais prejudicial no sexo feminino. Uma diátese depressiva mais marcante, uso excessivo de antidepressivos e diferenças hormonais surgem como hipóteses para explicar essas diferenças fenomenológicas, apesar das quais, mulheres e homens parecem responder igualmente ao tratamento medicamentoso. A indicação de anticonvulsivantes como primeira escolha em mulheres é controversa, a não ser para o tratamento da mania mista e, talvez, da ciclagem rápida. O tratamento do TAB na gravidez deve levar em conta tanto os riscos de exposição aos medicamentos quanto à doença materna. A profilaxia do TAB no puerpério está fortemente indicada em decorrência do grande risco de recorrência da doença nesse período. Embora, de modo geral, as medicações psicotrópicas estejam contra-indicadas durante a amamentação, entre os estabilizadores do humor, a carbamazepina e o valproato são mais seguros do que o lítio. Mais estudos são necessários para a confirmação das diferenças de curso do TAB entre mulheres e homens e a investigação de possíveis diferenças na efetividade dos tratamentos.Gender differences, described in several psychiatric disorders, seem to be also present in bipolar disorder (BD. The prevalence of bipolar I disorder is equally distributed between women and men. Women seem to be at higher risk for rapid cycling and mixed mania, conditions that could make BD a disorder with a more severe course in the female sex. A marked depressive diathesis among women, greatest use of antidepressants and hormonal differences have been mentioned as hypotheses to explain these

  2. Comorbidity bipolar disorder and personality disorders.

    Science.gov (United States)

    Latalova, Klara; Prasko, Jan; Kamaradova, Dana; Sedlackova, Jana; Ociskova, Marie

    2013-01-01

    Outcome in bipolar patients can be affected by comorbidity of other psychiatric disorders. Comorbid personality disorders are frequent and may complicate the course of bipolar illness. We have much information about treating patients with uncomplicated bipolar disorder (BD) but much less knowledge about possibilities for patients with the comorbidity of BD and personality disorder. We conducted a series of literature searches using, as key words or as items in indexed fields, bipolar disorder and personality disorder or personality traits. Articles were obtained by searching MEDLINE from 1970 to 2012. In addition, we used other papers cited in articles from these searches, or cited in articles used in our own work. Tests of personality traits indicated that euthymic bipolar patients have higher scores on harm avoidance, reward dependence, and novelty seeking than controls. Elevation of novelty seeking in bipolar patients is associated with substance abuse comorbidity. Comorbidity with personality disorders in BD patients is associated with a more difficult course of illness (such as longer episodes, shorter time euthymic, and earlier age at onset) and an increase in comorbid substance abuse, suicidality and aggression. These problems are particularly pronounced in comorbidity with borderline personality disorder. Comorbidity with antisocial personality disorder elicits a similar spectrum of difficulties; some of the antisocial behavior exhibited by patients with this comorbidity is mediated by increased impulsivity.

  3. Sexual health and women with bipolar disorder.

    Science.gov (United States)

    McCandless, Fiona; Sladen, Claire

    2003-10-01

    The aim of this paper is to illustrate the importance of sexual health promotion strategies for women with bipolar disorder in order to stimulate interest and debate in this area of care. Sexual health promotion is an important aspect of holistic nursing care. However, the literature indicates that nurses are reluctant to discuss sexual health and sexual behaviour with their clients. People with bipolar disorder warrant special consideration with regards to sexual health because the nature of the manic, or hypomanic, mood state is associated in some cases with sexually risky behaviour. For women with bipolar disorder, the associated risks include the threat of unplanned pregnancy or sexually transmitted diseases. To ignore sexual health and sexual behaviour in mental health care increases the vulnerability of women who may already be at risk of sexual exploitation. CASE EXAMPLE: A brief case example is included to demonstrate how the sexual health of a young woman with bipolar disorder was promoted. The sexual health promotion that was incorporated into her care enabled her to make a choice about appropriate contraception, and also provided her with the opportunity to explore acceptable boundaries in different types of interpersonal relationships. As a result of the episodic nature of Bipolar disorder, it is impossible to state whether the positive outcomes from this strategy will be enduring or not. Consideration of sexual health is an essential element of the care of women with Bipolar disorder. To ignore it is to neglect an important sphere of human behaviour that can be affected by the condition.

  4. The role of sleep in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Gold AK

    2016-06-01

    Full Text Available Alexandra K Gold,1 Louisa G Sylvia,1,2 1Department of Psychiatry, Massachusetts General Hospital, 2Harvard Medical School, Boston, MA, USA Abstract: Bipolar disorder is a serious mental illness characterized by alternating periods of elevated and depressed mood. Sleep disturbances in bipolar disorder are present during all stages of the condition and exert a negative impact on overall course, quality of life, and treatment outcomes. We examine the partnership between circadian system (process C functioning and sleep–wake homeostasis (process S on optimal sleep functioning and explore the role of disruptions in both systems on sleep disturbances in bipolar disorder. A convergence of evidence suggests that sleep problems in bipolar disorder result from dysregulation across both process C and process S systems. Biomarkers of depressive episodes include heightened fragmentation of rapid eye movement (REM sleep, reduced REM latency, increased REM density, and a greater percentage of awakenings, while biomarkers of manic episodes include reduced REM latency, greater percentage of stage I sleep, increased REM density, discontinuous sleep patterns, shortened total sleep time, and a greater time awake in bed. These findings highlight the importance of targeting novel treatments for sleep disturbance in bipolar disorder. Keywords: bipolar disorder, circadian rhythms, sleep–wake homeostasis

  5. Classification of cognitive performance in bipolar disorder.

    Science.gov (United States)

    Sparding, Timea; Silander, Katja; Pålsson, Erik; Östlind, Josefin; Ekman, Carl Johan; Sellgren, Carl M; Joas, Erik; Hansen, Stefan; Landén, Mikael

    2017-09-01

    To understand the etiology of cognitive impairment associated with bipolar disorder, we need to clarify potential heterogeneity in cognitive functioning. To this end, we used multivariate techniques to study if the correlation structure of cognitive abilities differs between persons with bipolar disorder and controls. Clinically stable patients with bipolar disorder (type I: n = 64; type II: n = 44) and healthy controls (n = 86) were assessed with a wide range of cognitive tests measuring executive function, speed, memory, and verbal skills. Data were analysed with multivariate techniques. A distinct subgroup (∼30%) could be identified that performed significantly poorer on tests concerning memory function. This cognitive phenotype subgroup did not differ from the majority of bipolar disorder patients with respect to other demographic or clinical characteristics. Whereas the majority of patients performed similar to controls, a subgroup of patients with bipolar disorder differed substantially from healthy controls in the correlation pattern of low-level cognitive abilities. This suggests that cognitive impairment is not a general trait in bipolar disorder but characteristic of a cognitive subgroup. This has important clinical implications for cognitive rehabilitation and remediation.

  6. Early maladaptive schemas in bipolar disorder.

    Science.gov (United States)

    Ak, Mehmet; Lapsekili, Nergis; Haciomeroglu, Bikem; Sutcigil, Levent; Turkcapar, Hakan

    2012-09-01

    According to the cognitive model of depression, negative schemas, formed in early life, increase susceptibility to depression. The objective of this study was to investigate schemas that are proposed to increase susceptibility of depression in bipolar disorder patients who have had depressive episodes. Eighteen patients diagnosed with bipolar disorder according to DSM-IV and a healthy control group (N= 20) constituted the sample of the study. The Beck Depression Inventory, Young Mania Rating Scale, and Young Schema Scale were applied to patients in order to determine the level of symptoms and schemas. When the scores obtained from Young Schema Scale were compared between groups, significant differences were observed between bipolar patients and control group on all the schemas except abandonment, emotional deprivation, defectiveness, vulnerability to harm or illness, and approval seeking. The negative schema scores of bipolar patients were significantly higher than those of the control group. Of all schemas included in the Young Schema Scale, the scores of bipolar group were higher than the scores of the control group. These findings suggest that, in cognitive-based psychotherapeutic approaches for patients with bipolar disorder, it would be more effective to focus on schemas related to the perception and allowance of feelings at the proper time and the instability of self-perceptions. © 2011 The British Psychological Society.

  7. Preparation of bipolar membranes by electrospinning

    International Nuclear Information System (INIS)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen

    2017-01-01

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  8. Preparation of bipolar membranes by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen, E-mail: twxu@ustc.edu.cn

    2017-01-15

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  9. Near-infrared spectroscopy and plasma homovanillic acid levels in bipolar disorder: a case report

    Directory of Open Access Journals (Sweden)

    Miura I

    2014-03-01

    Full Text Available Itaru Miura,1,2 Soichi Kono,1 Sachie Oshima,1 Keiko Kanno-Nozaki,1 Hirobumi Mashiko,1 Shin-Ichi Niwa,1 Hirooki Yabe11Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; 2Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USAAbstract: Misdiagnosis of bipolar disorder is a serious, but not unusual problem for patients. Nevertheless, there are few biomarkers for distinguishing unipolar and bipolar disorder. Near-infrared spectroscopy (NIRS is a noninvasive and useful method for the measurement of hemoglobin concentration changes in the cortical surface area, which enables the assessment of brain function. We measured NIRS and plasma monoamine metabolite levels in a patient with bipolar disorder. A 22-year-old man was admitted due to major depression. At admission, NIRS findings showed oxygenated hemoglobin reincrease in the posttask period, which is characteristic of schizophrenia. After treatment with paroxetine, he became manic with psychotic symptoms. His plasma level of homovanillic acid just before the manic switch was ten times higher than that just after paroxetine initiation. Treatment with lithium and antipsychotics was successful, and plasma homovanillic acid decreased after treatment. In this case, the NIRS findings may predict a possible risk of a manic switch, which is likely induced by paroxetine. NIRS may be able to help distinguish unipolar and bipolar disorder in clinical settings.Keywords: near-infrared spectroscopy, bipolar disorder, homovanillic acid, diagnosis, biomarker

  10. Analysis of oxidation of self-baking electrodes (Soederberg electrodes) by means of three-dimensional model

    Science.gov (United States)

    Pashnin, S. V.

    2017-10-01

    The paper presents the methodology and results of the development of the temperature dependence of the oxidation speed of the self-baking electrode (Soederberg Electrodes) in the ore-thermal furnaces. For the study of oxidation, the working ends of the self-baking electrodes, which were taken out from the ore-thermal furnaces after their scabbings, were used. The temperature of the electrode surface by its height was calculated with the help of the mathematical model of heat work of self-baking electrode. The comparison of electrode surface temperatures with the speed of oxidation of the electrode allowed one to obtain the temperature dependency of the oxidation of the lateral electrode surface. Comparison of the experimental data, obtained in the laboratory by various authors, showed their qualitative coincidence with results of calculations of the oxidation rate presented in this article. With the help of the mathematical model of temperatures fields of electrode, the calculations of the sizes of the cracks, appearing after burnout ribs, were performed. Calculations showed that the sizes of the cracks after the ribs burnout, calculated by means of the obtained temperature dependence, coincide with the experimental data with sufficient accuracy.

  11. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  12. The observation of valence band change on resistive switching of epitaxial Pr0.7Ca0.3MnO3 film using removable liquid electrode

    Science.gov (United States)

    Lee, Hong-Sub; Park, Hyung-Ho

    2015-12-01

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr0.7Ca0.3MnO3 (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO3 (100) single crystal as the substrate to observe changes in the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.

  13. Building Better Electrodes for Electrical Resistivity and Induced Polarization Data

    Science.gov (United States)

    Adkins, P. L.; La Brecque, D. J.

    2007-12-01

    In the third year of a project to understand and mitigate the systematic noise in resistivity and induced polarization measurements, we put a significant effort into understanding and developing better electrodes. The simple metal electrodes commonly used for both transmitting and receiving of electrical geophysical data are likely the Achilles" heal of the resistivity method. Even stainless steel, a commonly used electrode material because of its durability, showed only average results in laboratory tests for electrode noise. Better results have been found with non-polarizing metal-metal salt electrodes, which are widely used as surface electrodes and in IP surveys. But although they produce small measurement errors, they are not durable enough for in-situ borehole resistivity surveys, and often contain compounds that are toxic to the environment. They are also very seldom used as transmitters. In laboratory studies, we are exploring other materials and configurations for low-noise compound electrodes that will be nontoxic, inexpensive, and durable and can be used as both transmitters and receivers. Testing of the electrical noise levels of electrodes is an arduous task involving repeated measurements under varying conditions at field scales. Thus it is important to find methods of sorting out likely candidates from the mass of possible electrode configurations and construction methods. Testing of electrode impedance versus current density appears to provide simple criteria for predicting the suitability of electrodes. The best electrodes show relatively low overall contact impedance, relatively small changes in impedance with increased current density, and relatively small changes in impedance with time. Furthermore it can be shown that resistivity and induced polarization performance of electrodes is strongly correlated, so that methods of finding electrodes with low impedance and good direct current performance usually provide better quality induced

  14. Organophosphonate biofunctionalization of diamond electrodes.

    Science.gov (United States)

    Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K

    2014-08-27

    The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.

  15. Tratamento da depressão bipolar The treatment of bipolar depression

    Directory of Open Access Journals (Sweden)

    Beny Lafer

    2005-01-01

    Full Text Available O tratamento da depressão bipolar tem sido tema de debate. O uso de antidepressivos, principalmente tricíclicos, nestes pacientes está associado a piores desfechos clínicos. Estudos apontam para uma eficácia limitada de estabilizadores tradicionais como lítio, valproato e carbamazepina no tratamento da depressão bipolar. Em casos de depressão mais grave, há indicativos de que os antidepressivos podem ser úteis, sendo recomendado o uso concomitante de um estabilizador do humor. Novos agentes como a lamotrigina têm sido propostos como efetivos no tratamento da depressão bipolar. Estudos recentes utilizando lamotrigina sugerem a sua eficácia e seguraça no tratamento da depressão bipolar.The treatment of bipolar depression has been an area of debate. The use of antidepressants, particularly the triciclics, has been associated with worse clinical outcomes. Evidence points to a limited efficacy of traditional mood stabilizers such as lithium, valproate and carbamazepine in the treatment of bipolar depression. In cases where depression is more severe, there is evidence that antidepressants may be useful. The use of antidepressants should be in association with a mood stabilizer. New agents such as lamotrigine have been put forward as effective in the treatment of bipolar depression. Recent studies using lamotrigine suggest its efficacy and safety in the treatment of bipolar depression.

  16. Clinical, Demographic, and Familial Correlates of Bipolar Spectrum Disorders among Offspring of Parents with Bipolar Disorder

    Science.gov (United States)

    Goldstein, Benjamin I.; Shamseddeen, Wael; Axelson, David A.; Kalas, Cathy; Monk, Kelly; Brent, David A.; Kupfer, David J.; Birmaher, Boris

    2010-01-01

    Objective: Despite increased risk, most offspring of parents with bipolar disorder (BP) do not manifest BP. The identification of risk factors for BP among offspring could improve preventive and treatment strategies. We examined this topic in the Pittsburgh Bipolar Offspring Study (BIOS). Method: Subjects included 388 offspring, ages 7-17 years,…

  17. Terapia comportamental cognitiva para pessoas com transtorno bipolar Cognitive behavioral therapy for bipolar disorders

    Directory of Open Access Journals (Sweden)

    Francisco Lotufo Neto

    2004-10-01

    Full Text Available Descrição dos objetivos e principais técnicas da terapia comportamental cognitiva usadas para a psicoterapia das pessoas com transtorno bipolar.Objectives and main techniques of cognitive behavior therapy for the treatment of bipolar disorder patients are described.

  18. [Circadian markers and genes in bipolar disorder].

    Science.gov (United States)

    Yeim, S; Boudebesse, C; Etain, B; Belliviera, F

    2015-09-01

    Bipolar disorder is a severe and complex multifactorial disease, characterized by alternance of acute episodes of depression and mania/hypomania, interspaced by euthymic periods. The etiological determinants of bipolar disorder yet, are still poorly understood. For the last 30 years, chronobiology is an important field of investigation to better understand the pathophysiology of bipolar disorder. We conducted a review using Medline, ISI Database, EMBase, PsyInfo up to January 2015, using the following keywords combinations: "mood disorder", "bipolar disorder", "depression", "unipolar disorder", "major depressive disorder", "affective disorder", for psychiatric conditions; and "circadian rhythms", "circadian markers", "circadian gene", "clock gene", "melatonin" for circadian rhythms. The search critera was presence of word in any field of the article. Quantitative and qualitative circadian abnormalities are associated with bipolar disorders both during acute episodes and euthymic periods, suggesting that these altered circadian rhythms may represent biological trait markers of the disorder. These circadian dysfunctions were assessed by various validated tools including polysomnography, actigraphy, sleep diaries, chronotype assessments and blood melatonin/cortisol measures. Other altered endogenous circadian activities have also been reported in bipolar patients, such as hormones secretion, core body temperature or fibroblasts activity. Moreover, these markers were also altered in healthy relatives of bipolar patients, suggesting a degree of heritability. Several genetic association studies have also showed associations between multiple circadian genes and bipolar disorder, such as CLOCK, ARTNL1, GSK3β, PER3, NPAS2, NR1D1, TIMELESS, RORA, RORB, and CSNK1ε. Thus, these circadian gene variants may contribute to the genetic susceptibility of the disease. Furthermore, the study of the clock system may help to better understand some phenotypic aspects like the

  19. Flexible Capacitive Electrodes for Minimizing Motion Artifacts in Ambulatory Electrocardiograms

    Directory of Open Access Journals (Sweden)

    Jeong Su Lee

    2014-08-01

    Full Text Available This study proposes the use of flexible capacitive electrodes for reducing motion artifacts in a wearable electrocardiogram (ECG device. The capacitive electrodes have conductive foam on their surface, a shield, an optimal input bias resistor, and guarding feedback. The electrodes are integrated in a chest belt, and the acquired signals are transmitted wirelessly for ambulatory heart rate monitoring. We experimentally validated the electrode performance with subjects standing and walking on a treadmill at speeds of up to 7 km/h. The results confirmed the highly accurate heart rate detection capacity of the developed system and its feasibility for daily-life ECG monitoring.

  20. Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction

    Directory of Open Access Journals (Sweden)

    Marcin Opallo

    2011-01-01

    Full Text Available The recent development of nanostructured electrodes for bioelectrocatalytic dioxygen reduction catalysed by two copper oxidoreductases, laccase and bilirubin oxidase, is reviewed. Carbon-based nanomaterials as carbon nanotubes or carbon nanoparticles are frequently used for electrode modification, whereas there are only few examples of biocathodes modified with metal or metal oxide nanoparticles. These nanomaterials are adsorbed on the electrode surface or embedded in multicomponent film. The nano-objects deposited act as electron shuttles between the enzyme and the electrode substrate providing favourable conditions for mediatorless bioelectrocatalysis.