WorldWideScience

Sample records for bipolar lead-acid batteries

  1. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  2. Progress and challenges in bipolar lead-acid battery development

    Science.gov (United States)

    Bullock, Kathryn R.

    1995-05-01

    Bipolar lead-acid batteries have higher power densities than any other aqueous battery system. Predicted specific powers based on models and prototypes range from 800 kW/kg for 100 ms discharge times to 1.6 kW/kg for 10 s. A 48 V automotive bipolar battery could have 2 1/2 times the cold cranking rate of a monopolar 12 V design in the same size. Problems which have precluded the development of commercial bipolar designs include the instability of substrate materials and enhanced side reactions. Design approaches include pseudo-bipolar configurations, as well as true bipolar designs in planar and tubular configurations. Substrate materials used include lead and lead alloys, carbons, conductive ceramics, and tin-oxide-coated glass fibers. These approaches are reviewed and evaluated.

  3. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  4. Dimensionally stable PbO{sub 2} electrodes for lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Devos, B.; Groult, H. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C-Electrochimie

    2007-07-15

    Dimensionally stable anodes (DSAs) are regularly used in industrial electrolytic cells. The titanium substrate in these electrodes is covered by an electrocatalytic layer containing a precious metal oxide. The concept of PbO{sub 2}-dimensionally stable electrodes with a light metal substrate may also be applied to generators, particularly for bipolar lead acid batteries. However, one of the issues with bipolar lead-acid batteries is the stability of the bipolar electrode substrate, particularly on the side onto which the positive active mass is deposited. This article presented the results of a study that characterized the performance of different electrode substrates onto which PbO{sub 2} was electrodeposited using cyclic voltammetry performed with PbO{sub 2} in sulphuric acid. The article discussed the experiment with reference to the titanium substrates; modification of the substrates; x-ray diffraction; and cyclic voltammetry experiments with PbO{sub 2} electrodes. It also presented a discussion of the results. The study concluded that titanium covered by the mixed oxides layer titanium dioxide (TiO{sub 2})-tin dioxide (SnO{sub 2})-antimony oxide (Sb{sub 2}O{sub 3}) constitutes a suitable substrate for PbO{sub 2} electrodes. It can be used in lead acid batteries and allows the preparation of compact bipolar batteries. 36 refs., 1 tab., 5 figs.

  5. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  6. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery

    International Nuclear Information System (INIS)

    Zhang, C.P.; Sharkh, S.M.; Li, X.; Walsh, F.C.; Zhang, C.N.; Jiang, J.C.

    2011-01-01

    Highlights: → We compared the electrochemical characteristics of two types of the batteries. → SLAFB shows as good performance as SLAB under the same current density. → The cycle life of two batteries is strongly influenced by the depth of discharge. → The cycle life of SLAFB can be extended by treatment with hydrogen peroxide. - Abstract: The electrochemistry of static lead-acid and soluble lead-acid flow batteries is summarised and the differences between the two batteries are highlighted. A general comparison of the performance of an unoptimised soluble lead-acid flow laboratory cell and a commercial lead-acid battery during charge and discharge is reported. The influence of the depth of discharge on cycle life for both batteries is also considered. The flow battery was found to have a better charge efficiency than the static one, but the cells were found to have comparable energy efficiencies. The self-discharge characteristics of the soluble lead-acid battery were also measured and compared to reported values for a commercial static battery. Some self-discharge of the soluble lead-acid flow battery is observed during prolonged periods on open-circuit but the battery could recover its normal performance after a single charge-discharge cycle.

  7. Technological progress in sealed lead/acid batteries

    Science.gov (United States)

    Yamashita, J.; Nakashima, H.; Kasai, Y.

    A brief review is given of the history of the research and development of sealed lead/acid batteries during the 30 years since, in 1959, the Yuasa Battery Co. introduced a small-sized sealed battery as the power supply for portable television sets. In 1965, Yuasa began the full-scale mass production and sale of a small-sized sealed lead/acid battery under the NOYPER brand. In 1970, the use of a PbCa alloy grid was adopted, and there followed the successful development of a sealed battery with an oxygen-recombination facility. In 1976, Yuasa more or less established the basic technology for the valve-regulated sealed lead/acid battery — the NP battery — which is now the type in general use. Throughout the 1980s, Yuasa, has continued development in order to expand the sphere of application for the production technology of valve-regulated batteries for motorcycles, as well as for stationary duties with large capacities of 100 to 3000 A h. Recently, in order to improve the reliability and boost the output of sealed lead/acid batteries for employment in UPS power sources, Yuasa has been working intently on the design of a valve-regulated lead/acid battery with outstanding characteristics for high-rate discharge and resistance to high temperatures.

  8. Lead-acid battery technologies fundamentals, materials, and applications

    CERN Document Server

    Jung, Joey; Zhang, Jiujun

    2015-01-01

    Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications offers a systematic and state-of-the-art overview of the materials, system design, and related issues for the development of lead-acid rechargeable battery technologies. Featuring contributions from leading scientists and engineers in industry and academia, this book:Describes the underlying science involved in the operation of lead-acid batteriesHighlights advances in materials science and engineering for materials fabricationDelivers a detailed discussion of the mathematical modeling of lead-acid batteriesAnalyzes the

  9. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  10. Monitoring sealed automotive lead-acid batteries by sparse ...

    Indian Academy of Sciences (India)

    Unknown

    knowledge of its internal resistance, which could be estimated from electrochemical ... rechargeable battery market and, in terms of value, the present world market for lead-acid ... the importance of a suitable battery monitoring and management will increase even .... automobiles to monitor the SOH of lead-acid battery bank.

  11. The lead and lead-acid battery industries during 2002 and 2007 in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.Y.; Li, A.J.; Finlow, D.E. [Key Lab of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2009-06-01

    In the past 15 years, the center of the international lead market has shifted to China. China has become the largest producer of raw and refined lead, plus the largest consumer. This paper reviews the status of the lead and lead-acid battery industries in China, including lead mining, lead refining, secondary lead production, the lead-acid battery industry, new opportunities for lead-acid batteries, and the environmental problems associated with lead and lead-acid batteries. The output of raw and refined lead has increased annually in China, and now accounts for more than 30% of the world total. As a result of a change in the Chinese government's policy regarding the export of lead, plus an increase in the price of lead, the profits of Chinese lead manufacturers were significantly reduced, the trade deficit of the Chinese lead industry increased, the operating rates of lead smelter enterprises greatly reduced, and some small enterprises were forced to shut down. At the present time, an increasing number of enterprises have begun to produce secondary lead, and the scale of production has expanded from tens of tons to tens of thousands of tons. In 2006, the output of secondary lead in China reached 700,000 tons, but outdated technology and equipment limited development of the secondary lead industry. Because of serious pollution problems, raw material shortages, and fierce price competition in the battery market, changes in the development of the lead-acid battery industry have been dramatic; approximately one thousand medium-sized and small lead-acid battery producers have been closed in the past 3 years. The output of large lead-acid battery enterprises has not been reduced, however, as a result of their manufacturing technology and equipment being comparable to those in other advanced industrial countries. In China, the flourishing development of electric bicycles, electric tricycles, and photovoltaic energy systems should provide ongoing opportunities for

  12. The lead and lead-acid battery industries during 2002 and 2007 in China

    International Nuclear Information System (INIS)

    Chen, H.Y.; Li, A.J.; Finlow, D.E.

    2009-01-01

    In the past 15 years, the center of the international lead market has shifted to China. China has become the largest producer of raw and refined lead, plus the largest consumer. This paper reviews the status of the lead and lead-acid battery industries in China, including lead mining, lead refining, secondary lead production, the lead-acid battery industry, new opportunities for lead-acid batteries, and the environmental problems associated with lead and lead-acid batteries. The output of raw and refined lead has increased annually in China, and now accounts for more than 30% of the world total. As a result of a change in the Chinese government's policy regarding the export of lead, plus an increase in the price of lead, the profits of Chinese lead manufacturers were significantly reduced, the trade deficit of the Chinese lead industry increased, the operating rates of lead smelter enterprises greatly reduced, and some small enterprises were forced to shut down. At the present time, an increasing number of enterprises have begun to produce secondary lead, and the scale of production has expanded from tens of tons to tens of thousands of tons. In 2006, the output of secondary lead in China reached 700,000 tons, but outdated technology and equipment limited development of the secondary lead industry. Because of serious pollution problems, raw material shortages, and fierce price competition in the battery market, changes in the development of the lead-acid battery industry have been dramatic; approximately one thousand medium-sized and small lead-acid battery producers have been closed in the past 3 years. The output of large lead-acid battery enterprises has not been reduced, however, as a result of their manufacturing technology and equipment being comparable to those in other advanced industrial countries. In China, the flourishing development of electric bicycles, electric tricycles, and photovoltaic energy systems should provide ongoing opportunities for the

  13. Lightweight, durable lead-acid batteries

    Science.gov (United States)

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  14. Recycling and management of waste lead-acid batteries: A mini-review.

    Science.gov (United States)

    Li, Malan; Liu, Junsheng; Han, Wei

    2016-04-01

    As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. © The Author(s) 2016.

  15. The refining of secondary lead for use in advanced lead-acid batteries

    International Nuclear Information System (INIS)

    Ellis, Timothy W.; Mirza, Abbas H.

    2010-01-01

    Secondary lead, i.e. material produced by the recycling of lead-acid batteries has become the primary source of lead in much of the world. This has been important to the secondary lead industry as other uses have dwindled, e.g. lead based pigments, chemicals, fuel additives, solders and CRT glasses. Presently, battery manufacturing accounts for greater than 80% of lead consumption while recycled lead accounts for approximately the same market share of lead supply. These two facts strongly demonstrate the battery manufacturing and recycled lead are intimately coupled in everyday life. In this paper we will explore how recycled lead has become the material of choice for battery construction through the development of a recovery and refining process that exceeds the industries requirements. Particular focus will be on addressing the results presented by Prengaman on the effects of contaminant or tramp elements on gassing in lead-acid batteries. (author)

  16. Changing corporate culture within the European lead/acid battery industry

    International Nuclear Information System (INIS)

    Mayer, M.G.

    1994-01-01

    Recent economic and political factors have had a strong influence on the lead/acid battery industry in both West and East Europe. Since the publication in 1989 by Batteries International and the Lead Development Association of a map of European battery factories, the number of battery companies has declined. By 1992, a significant shift had taken place in the share of the lead/acid battery market in Europe with the result that a few companies came to influence a major proportion of battery production and sales. The reasons for this relatively fast structural change are examined. Under the pressure from continuing internal and external forces, likely outcomes for battery business in Europe are proposed as the lead/acid industry changes to meet new challenges. (orig.)

  17. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  18. Residual learning rates in lead-acid batteries: Effects on emerging technologies

    International Nuclear Information System (INIS)

    Matteson, Schuyler; Williams, Eric

    2015-01-01

    The low price of lead-acid, the most popular battery, is often used in setting cost targets for emerging energy storage technologies. Future cost reductions in lead acid batteries could increase investment and time scales needed for emerging storage technologies to reach cost-parity. In this paper the first documented model of cost reductions for lead-acid batteries is developed. Regression to a standard experience curve using 1989–2012 data yield a poor fit, with R 2 values of 0.17 for small batteries and 0.05 for larger systems. To address this problem, battery costs are separated into material and residual costs, and experience curves developed for residual costs. Depending on the year, residual costs account for 41–86% of total battery cost. Using running-time averages to address volatility in material costs, a 4-year time average experience curve for residual costs yield much higher R 2 , 0.78 for small and 0.74 for large lead-acid batteries. The learning rate for residual costs in lead-acid batteries is 20%, a discovery with policy implications. Neglecting to consider cost reductions in lead-acid batteries could result in failure of energy storage start-ups and public policy programs. Generalizing this result, learning in incumbent technologies must be understood to assess the potential of emerging ones. -- Highlights: •We analyze potential cost reductions in lead-acid batteries. •Modified experience curve for non-material costs gives good empirical fit. •Historical learning rate for non-material costs from 1985–2012 is 19–24%. •Progress in incumbent technology raises barrier to new entrants

  19. Blood lead levels among rural Thai children exposed to lead-acid batteries from solar energy conversion systems.

    Science.gov (United States)

    Swaddiwudhipong, Witaya; Tontiwattanasap, Worawit; Khunyotying, Wanlee; Sanreun, Cherd

    2013-11-01

    We evaluate blood lead levels among Thai children to determine if exposure to lead-acid batteries is associated with elevated blood lead levels (EBLL). We screened 254 children aged 1-14 years old from 2 rural Thai villages for blood lead levels. We also screened 18 of 92 houses in these 2 villages for the presence of environmental lead. The overall prevalence of EBLL (> or = 10 microg/dl) was 43.3% and the mean lead level among study subjects was 9.8 +/- 5.1 microg/dl. The blood lead levels significantly decreased with increasing age. Fifty point eight percent of children who lived in a house with vented lead-acid batteries had EBLL while 23.3% of children who lived in a house without vented lead-acid batteries had EBLL. Multiple logistic regression analysis revealed a significant positive association between the presence of vented lead-acid batteries and EBLL, after adjusting for other variables. Forty-two point nine percent of house floor dust samples collected near the batteries had elevated lead levels, 7.1% of house floor dust samples collected from other areas in the house had elevated lead levels and 0% of the house floor dust samples collected in houses without vented lead-acid batteries had elevated lead levels. In the sampled houses with vented lead-acid batteries, lead contamination was found in the drinking-water kept in household containers, but not in the tap water or other village sources of water. Improper care and placement of vented lead-acid batteries can result in lead contamination in the home environment causing EBLL in exposed children.

  20. Abolition Of The Lead-Acid Battery Consumption Tax Is Suggested

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Zhang Tianren,an NPC representative and chairman of Tianneng Group suggests cessation or deferment in the collection or differentiated collection of lead-acid battery consumption taxes.Lead-acid batteries play a fundamental role in China’s transport,communications,power generation and wind energy storage,smart grid

  1. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead.

    Science.gov (United States)

    Sun, Zhi; Cao, Hongbin; Zhang, Xihua; Lin, Xiao; Zheng, Wenwen; Cao, Guoqing; Sun, Yong; Zhang, Yi

    2017-06-01

    Lead is classified to be one of the top heavy metal pollutants in China. The corresponding environmental issues especially during the management of spent lead-acid battery have already caused significant public awareness and concern. This research gives a brief overview on the recycling situation based on an investigation of the lead industry in China and also the development of technologies for spent lead-acid batteries. The main principles and research focuses of different technologies including pyrometallurgy, hydrometallurgy and greener technologies are summarized and compared. Subsequently, the circulability of lead based on the entire life cycle analyses of lead-acid battery is calculated. By considering different recycling schemes, the recycling situation of spent lead-acid battery in China can be understood semi-quantitatively. According to this research, 30% of the primary lead production can be shut down that the lead production can still ensure consecutive life cycle operation of lead-acid battery, if proper management of the spent lead-acid battery is implemented according to current lead industry situation in China. This research provides a methodology on the view of lead circulability in the whole life cycle of a specific product and is aiming to contribute more quantitative guidelines for efficient organization of lead industry in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Serum Neuron-Specific Enolase, Biogenic Amino-Acids and Neurobehavioral Function in Lead-Exposed Workers from Lead-Acid Battery Manufacturing Process

    OpenAIRE

    K Ravibabu; T Barman; HR Rajmohan

    2015-01-01

    Background: The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. Objective: To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). Methods: In a c...

  3. The impact of the new 36 V lead-acid battery systems on lead consumption

    Science.gov (United States)

    Prengaman, R. David

    The production of vehicles utilizing 36 V battery systems has begun with the introduction of the Toyota Crown. Other vehicles with 36 V batteries are in the near horizon. These vehicles may contain single or dual battery systems. These vehicles will most likely contain valve-regulated lead-acid (VRLA) batteries. The battery systems developed to date utilize significantly more lead than conventional 12 V batteries. This paper will evaluate the different proposed 36 V battery systems and estimate the lead requirements for each of the competing systems. It will also project the penetration of and resultant increased lead usage of these new batteries into the future.

  4. Recycling of spent lead/acid batteries. The case of Greece

    International Nuclear Information System (INIS)

    Zabaniotou, A.; Kouskoumvekaki, E.; Sanopoulos, D.

    1999-01-01

    In this study, the application of modern recycling technologies in accordance with the European and Greek legislation, aiming at the recovery of lead, polypropylene and sulfuric acid from spent lead (Pb)/acid batteries, is presented. The present state of their disposal and exploitation is also depicted. The international situation is reviewed, the general trends are marked and the main technologies related to lead/acid battery treatment are reported. General recommendations are given regarding the collection of spent batteries and the installation of a recycling plant in Greece. A sensitivity analysis is carried out in order to define the most significant parameters affecting the viability of a recycling scheme. The present study proves that a possible installation of a Pb/acid batteries recycling process unit, treating 17 000 t/year (estimated total quantity) and situated in the industrial area of the greater Athens region, seems to be economically profitable. The already existing operation of small-scale battery recycling plants, common in small countries, should be discouraged as they demonstrate a rather not environmentally acceptable recycling operation

  5. Lead-acid batteries for micro- and mild-hybrid applications

    Science.gov (United States)

    Valenciano, J.; Fernández, M.; Trinidad, F.; Sanz, L.

    Car manufactures have announced the launch in coming months of vehicles with reduced emissions due to the introduction of new functions like stop-start and regenerative braking. Initial performance request of automotive lead-acid batteries are becoming more and more demanding and, in addition to this, cycle life with new accelerated ageing profiles are being proposed in order to determine the influence of the new functions on the expected battery life. This paper will show how different lead-acid battery technologies comply with these new demands, from an improved version of the conventional flooded SLI battery to the high performance of spiral wound valve-regulated lead-acid (VRLA) battery. Different approaches have been studied for improving conventional flooded batteries, i.e., either by the addition of new additives for reducing electrolyte stratification or by optimisation of the battery design to extend cycling life in partial state of charge conditions. With respect to VRLA technology, two different battery designs have been compared. Spiral wound design combines excellent power capability and cycle life under different depth of discharge (DoD) cycling conditions, but flat plate design outperform the latter in energy density due to better utilization of the space available in a prismatic enclosure. This latter design is more adequate for high end class vehicles with high electrical energy demand, whereas spiral wound is better suited for high power/long life demand of commercial vehicle. High temperature behaviour (75 °C) is rather poor for both designs due to water loss, and then VRLA batteries should preferably be located out of the engine compartment.

  6. Lifetime modelling of lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-04-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole life cycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies with specific reference to their use in hybrid renewable energy systems. Alongside this, results from battery tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yielded battery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by the European Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries as this technology is the most commonly used. Through this work the project partner institutions have intended to provide useful tools to improve the design capabilities of organizations, private and public, in remote power systems. (au)

  7. Lead/acid batteries for photovoltaic applications. Test results and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Copetti, J B [CIEMAT, Inst. de Energias Renovables, Madrid (Spain); Chenlo, F [CIEMAT, Inst. de Energias Renovables, Madrid (Spain)

    1994-01-01

    This work presents the results of experiments carried out on lead/acid batteries during charge and discharge processes at different currents and temperatures, selected to a cover a large range of operating conditions, including those encountered in photovoltaic (PV) system applications. The results allow us to verify the relations among the battery external parameters (voltage, current, state-of-charge and temperature), the behaviour of the internal resistance, and to deduce a model that represents the discharge and charge processes, including the overcharge. Finally, normalized equations with respect to the battery capacity are proposed, which allow us to fix the values of parameters and hence the model is valid for any type and size of lead/acid battery. (orig.)

  8. Serum neuron-specific enolase, biogenic amino-acids and neurobehavioral function in lead-exposed workers from lead-acid battery manufacturing process.

    Science.gov (United States)

    Ravibabu, K; Barman, T; Rajmohan, H R

    2015-01-01

    The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests---simple reaction time (SRT), symbol digit substitution test (SDST), and serial digit learning test (SDLT). There was a significant correlation (r 0.199, pSDLT and SRT had also a significant positive correlation (r 0.238, p<0.01). NSE had a negative correlation (r -0.194, p<0.05) with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the "attention and perception" (SDST).

  9. Fuzzy Control of a Lead Acid Battery Charger

    Directory of Open Access Journals (Sweden)

    A. DAOUD

    2005-03-01

    Full Text Available In this paper, an alternative battery charging control technique based on fuzzy logic for photovoltaic (PV applications is presented. A PV module is connected to a buck type DC/DC power converter and a microcontroller based unit is used to control the lead acid battery charging voltage. The fuzzy control is used due to the simplicity of implementation, robustness and independence from the complex mathematical representation of the battery. The usefulness of this control method is confirmed by experiments.

  10. Serum Neuron-Specific Enolase, Biogenic Amino-Acids and Neurobehavioral Function in Lead-Exposed Workers from Lead-Acid Battery Manufacturing Process

    Directory of Open Access Journals (Sweden)

    K Ravibabu

    2015-01-01

    Full Text Available Background: The interaction between serum neuron-specific enolase (NSE, biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. Objective: To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs. Methods: In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests—simple reaction time (SRT, symbol digit substitution test (SDST, and serial digit learning test (SDLT. Results: There was a significant correlation (r 0.199, p<0.05 between SDST and BLL. SDLT and SRT had also a significant positive correlation (r 0.238, p<0.01. NSE had a negative correlation (r –0.194, p<0.05 with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Conclusion: Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the “attention and perception” (SDST.

  11. Bipolar nickel-hydrogen battery development - A program review

    Science.gov (United States)

    Manzo, Michelle; Lenhart, Stephen; Hall, Arnold

    1989-01-01

    An overview of spacecraft power system design trends, focusing on higher power bus voltages and improved energy storage systems, is followed by a discussion of bipolar Ni/H2 battery development efforts. Several 10-cell batteries and one 50-cell battery are described, and performance results are presented. A comparison of individual-pressure-vessel and bipolar Ni/H2 technologies is used to suggest a new direction for bipolar Ni/H2 battery development efforts, toward a large number of passively cooled cells in parallel.

  12. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  13. Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia

    International Nuclear Information System (INIS)

    Adventini, N; Santoso, M; Lestiani, D D; Syahfitri, W Y N; Rixson, L

    2017-01-01

    A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in C f index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia. (paper)

  14. Bipolar lead acid batteries with ceramic partitioning walls. Forming and characterization of negative electrodes; Bipolaera blybatterier med keramiska mellanvaeggar. Tillverkning och karaktaerisering av negativa elektroder

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ove; Haraldsen, Britta [Chalmers Univ. of Technology, Goeteborg (Sweden). Environmental Inorganic Chemistry

    2001-01-01

    Bipolar electrodes are built with positive and negative paste on each side of a partitioning wall (PW). The PW must be dimensional stable and shall not allow electrolyte to flow through. The process of lead infiltration in porous ceramic plates is studied in this report in combination with different methods of forming pos. and neg. halves. Plante formed negative paste can not withstand a high pressure - relief details must be included in the design. The expanders in NAM are necessary to maintain the capacity. Positive Plante formed electrodes are not proper formed due to a too high current density. Furthermore, they are very brittle. The usefulness of paste plates has been shown and the future work will be directed towards such bipolar electrodes to be included in prototype batteries.

  15. Advanced valve-regulated lead-acid batteries for hybrid vehicle applications

    Science.gov (United States)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.

  16. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  17. Eco-Balance analysis of the disused lead-acid-batteries recycling technology

    Science.gov (United States)

    Kamińska, Ewa; Kamiński, Tomasz

    2017-10-01

    The article presents the results of the eco-balance analysis of the disused lead-acid batteries recycling process. Test-dedicated technology offers the possibility to recover other elements, for example, polypropylene of the battery case or to obtain crystalline sodium sulphate. The life cycle assessment was made using ReCiPe and IMPACT2002 + methods. The results are shown as environmental points [Pt]. The results are shown in the environmental categories, specific for each of the methods grouped in the impact categories. 1 Mg of the processed srap was a dopted as the functional unit. The results of the analyses indicate that recycling processes may provide the environmental impact of recycling technology less harmful. Repeated use of lead causes that its original sources are not explored. Similarly, the use of granule production-dedicated polypropylene extracted from battery casings that are used in the plastics industry, has environmental benefits. Due to the widespread use of lead-acid batteries, the attention should be paid to their proper utilization, especially in terms of heavy metals, especially lead. According to the calculations, the highest level of environmental benefits from the use of lead from secondary sources in the production of new products, was observed in the refining process.

  18. Eco-Balance analysis of the disused lead-acid-batteries recycling technology

    Directory of Open Access Journals (Sweden)

    Kamińska Ewa

    2017-01-01

    Full Text Available The article presents the results of the eco-balance analysis of the disused lead-acid batteries recycling process. Test-dedicated technology offers the possibility to recover other elements, for example, polypropylene of the battery case or to obtain crystalline sodium sulphate. The life cycle assessment was made using ReCiPe and IMPACT2002 + methods. The results are shown as environmental points [Pt]. The results are shown in the environmental categories, specific for each of the methods grouped in the impact categories. 1 Mg of the processed srap was a dopted as the functional unit. The results of the analyses indicate that recycling processes may provide the environmental impact of recycling technology less harmful. Repeated use of lead causes that its original sources are not explored. Similarly, the use of granule production-dedicated polypropylene extracted from battery casings that are used in the plastics industry, has environmental benefits. Due to the widespread use of lead-acid batteries, the attention should be paid to their proper utilization, especially in terms of heavy metals, especially lead. According to the calculations, the highest level of environmental benefits from the use of lead from secondary sources in the production of new products, was observed in the refining process.

  19. Determination of SoH of Lead-Acid Batteries by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Kwiecien

    2018-05-01

    Full Text Available The aging mechanisms of lead-acid batteries change the electrochemical characteristics. For example, sulfation influences the active surface area, and corrosion increases the resistance. Therefore, it is expected that the state of health (SoH can be reflected through differentiable changes in the impedance of a lead-acid battery. However, for lead-acid batteries, no reliable SoH algorithm is available based on single impedance values or the spectrum. Additionally, the characteristic changes of the spectrum during aging are unknown. In this work, lead-acid test cells were aged under specific cycle regimes known as AK3.4, and periodic electrochemical impedance spectroscopy (EIS measurements and capacity tests were conducted. It was examined that single impedance values increased linearly with capacity decay, but with varying slopes depending on the pre-history of the cell and measurement frequency of impedance. Thereby, possible reasons for ineffective SoH estimation were found. The spectra were fitted to an equivalent electrical circuit containing, besides other elements, an ohmic and a charge-transfer resistance of the negative electrode. The linear increase of the ohmic resistance and the charge-transfer resistance were characterized for the performed cyclic aging test. Results from chemical analysis confirmed the expected aging process and the correlation between capacity decay and impedance change. Furthermore, the positive influence of charging on the SoH could be detected via EIS. The results presented here show that SoH estimation using EIS can be a viable technique for lead-acid batteries.

  20. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those ...

  1. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electro- chemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about. 75% lighter than ...

  2. A review of physical properties of separators for valve-regulated lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zguris, G.C. [Hovosorb Separators, Hollingsworth and Vose Co., West Groton, MA (United States)

    1996-03-01

    The microglass separator has been used from the conception of valve-regulated lead/acid (VRLA) technology. There is increasing recognition that the separator has a critical role in battery performance. Research is supporting the position that compression exerted by the separator has an important role in premature capacity loss. Some companies have suggested that the separator compression set/creep plays a critical role in the battery failure mechanism in float applications. ALABC studies have shown that designs with higher compression improve the cycle life of batteries. Increasing numbers of manufacturers are designing their separators around the end-application of the battery. The separator in a VRLA battery is not an inactive spacer/barrier, as in a flooded lead/acid cell. Instead, these separators function as a key element, the third electrode. This paper reviews aspects of the microglass separator used in VRLA batteries. Information is provided to make a better separator selection, since a 100% microglass media, or any recombinant battery separator mat (RBSM) for a VRLA battery has a critical role in assuring the performance of the battery. A poor design can thus decrease the expected life of the battery. (orig.)

  3. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Science.gov (United States)

    Collins, John; Li, Xiaohong; Pletcher, Derek; Tangirala, Ravichandra; Stratton-Campbell, Duncan; Walsh, Frank C.; Zhang, Caiping

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm × 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%.

  4. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John; Stratton-Campbell, Duncan [C-Tech Innovation Ltd., Capenhurst, Chester CH1 6EH (United Kingdom); Li, Xiaohong; Tangirala, Ravichandra; Walsh, Frank C.; Zhang, Caiping [Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, University Road, Southampton SO17 1BJ (United Kingdom); Pletcher, Derek [Electrochemistry and Surface Science Group, School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-05-01

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm x 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%. (author)

  5. A low pressure bipolar nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  6. Ionic liquid as an electrolyte additive for high performance lead-acid batteries

    Science.gov (United States)

    Deyab, M. A.

    2018-06-01

    The performance of lead-acid battery is improved in this work by inhibiting the corrosion of negative battery electrode (lead) and hydrogen gas evolution using ionic liquid (1-ethyl-3-methylimidazolium diethyl phosphate). The results display that the addition of ionic liquid to battery electrolyte (5.0 M H2SO4 solution) suppresses the hydrogen gas evolution to very low rate 0.049 ml min-1 cm-2 at 80 ppm. Electrochemical studies show that the adsorption of ionic liquid molecules on the lead electrode surface leads to the increase in the charge transfer resistance and the decrease in the double layer capacitance. I also notice a noteworthy improvement of battery capacity from 45 mAh g-1 to 83 mAh g-1 in the presence of ionic liquid compound. Scanning electron microscopy and energy dispersive X-ray analysis confirm the adsorption of ionic liquid molecules on the battery electrode surface.

  7. Effect of polysulfone concentration on the performance of membrane-assisted lead acid battery

    Directory of Open Access Journals (Sweden)

    Ahmad Fauzi Ismail

    2002-11-01

    Full Text Available The application of lead acid battery in tropical countries normally faces the problem of water decomposition. This phenomenon is due to the factor of charge-discharge reaction in the battery and heat accumulation caused by hot tropical climate and heat generated from engine compartment. The objective of this study is to analyze the effect of polysulfone concentration on the performance of membrane-assisted lead-acid battery. Gas separation membranes, prepared through wet-dry phase inversion method and using various polysulfone concentrated formulations, were applied on the battery vent holes, for the purpose of preventing electrolyte from evaporating to the atmosphere. The best membrane, which retains the most electrolyte, will be chosen to be applied on the soon-to-be-developed “membrane-assisted maintenance- free battery”. This maintenance-free battery will need no topping up of deionized water every time the electrolyte level goes low.

  8. Bipolar nickel-hydrogen battery development

    Science.gov (United States)

    Koehler, C. W.; Applewhite, A. Z.; Hall, A. M.; Russell, P. G.

    1985-01-01

    A comparison of the bipolar Ni-H2 battery with other energy systems to be used in future high-power space systems is presented. The initial design for the battery under the NASA-sponsored program is described and the candidate stack components are evaluated, including electrodes, separator, electrolyte reservoir plate, and recombination sites. The compressibility of the cell elements, electrolyte activation, and thermal design are discussed. Manufacturing and prototype test results are summarized.

  9. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-Acid Storage Batteries for Nuclear Power Plants.'' The draft guide describes methods that the NRC staff..., testing, and replacement of vented lead-acid storage batteries in nuclear power plants. DATES: Submit...

  10. A Comparative Study of Lithium Ion to Lead Acid Batteries for use in UPS Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Uninterruptible power supply (UPS) systems have incorporated in their structure an electrochemical battery which allows for smooth power supply when a power failure occurs. In general, UPS systems are based on lead acid batteries; mainly a valve regulated lead acid (VRLA) battery. Recently, lithium...... ion batteries are getting more and more attention for their use in the back-up power systems and UPSs, because of their superior characteristics, which include increased safety and higher gravimetric and volumetric energy densities. This fact allows them to be smaller in size and weight less than VRLA...... batteries, which are currently used in UPS applications. The main purpose of this paper is to analyze how Li-ion batteries can become a useful alternative to present VRLA. In this study, three different electrochemical battery technologies were investigated; two of the most appealing Li-ion chemistries...

  11. Research on SOC Calibration of Large Capacity Lead Acid Battery

    Science.gov (United States)

    Ye, W. Q.; Guo, Y. X.

    2018-05-01

    Large capacity lead-acid battery is used in track electric locomotive, and State of Charge (SOC) is an important quantitative parameter of locomotive power output and operating mileage of power emergency recovery vehicle. But State of Charge estimation has been a difficult part in the battery management system. In order to reduce the SOC estimation error better, this paper uses the linear relationship of Open Circuit Voltage (OCV) and State of Charge to fit the SOC-OCV curve equation by MATLAB. The method proposed in this paper is small, easy to implement and can be used in the battery non-working state SOC estimation correction, improve the estimation accuracy of SOC.

  12. Contemporary Trends in Research and Development of Lead-Acid Batteries

    Czech Academy of Sciences Publication Activity Database

    Micka, Karel

    2004-01-01

    Roč. 8, - (2004), s. 932-933 ISSN 1432-8488 R&D Projects: GA ČR GA102/02/0794 Institutional research plan: CEZ:AV0Z4040901 Keywords : lead-acid batteries * electrical system * trends Subject RIV: CG - Electrochemistry Impact factor: 0.984, year: 2004

  13. Multikilowatt Bipolar Nickel/Hydrogen Battery

    Science.gov (United States)

    1986-01-01

    High energy densities appear feasible. Nickel/hydrogen battery utilizing bipolar construction in common pressure vessel, addressing needs for multikilowatt storage for low-Earth-orbit applications, designed and 10-cell prototype model tested. Modular-concept-design 35-kW battery projected energy densities of 20 to 24 Wh/b (160 to 190 kj/kg) and 700 to 900 Wh/ft3 (90 to 110 MJ/m3) and incorporated significant improvements over state-of-the-art storage systems.

  14. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  15. An overview of the development of lead/acid traction batteries for electric vehicles in India

    Science.gov (United States)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  16. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries

    Science.gov (United States)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Lwin, T.; Rand, D. A. J.

    Raw lead materials contain many residual elements. With respect to setting 'safe' levels for these elements, each country has its own standard, but the majority of the present specifications for the lead used to prepare battery oxide apply to flooded batteries that employ antimonial grids. In these batteries, the antimony in the positive and negative grids dominates gassing characteristics so that the influence of residual elements is of little importance. This is, however, not the case for valve-regulated lead-acid (VRLA) batteries, which use antimony-free grids and less sulfuric acid solution. Thus, it is necessary to specify 'acceptable' levels of residual elements for the production of VRLA batteries. In this study, 17 elements are examined, namely: antimony, arsenic, bismuth, cadmium, chromium, cobalt, copper, germanium, iron, manganese, nickel, selenium, silver, tellurium, thallium, tin, and zinc. The following strategy has been formulated to determine the acceptable levels: (i) selection of a control oxide; (ii) determination of critical float, hydrogen and oxygen currents; (iii) establishment of a screening plan for the elements; (iv) development of a statistical method for analysis of the experimental results. The critical values of the float, hydrogen and oxygen currents are calculated from a field survey of battery failure data. The values serve as a base-line for comparison with the corresponding measured currents from cells using positive and negative plates produced either from the control oxide or from oxide doped with different levels of the 17 elements in combination. The latter levels are determined by means of a screening plan which is based on the Plackett-Burman experimental design. Following this systematic and thorough exercise, two specifications are proposed for the purity of the lead to be used in oxide production for VRLA technology.

  17. Preventive maintenance basis: Volume 24 -- Battery -- flooded lead-acid (lead-calcium, lead antimony, plante). Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear power plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This document provides a program of preventive maintenance tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. This document provides a program of preventive maintenance (PM) tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, system engineers, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  18. Injury Surveillance and Safety Considerations for Large-Format Lead-Acid Batteries Used in Mining Applications.

    Science.gov (United States)

    Reyes, Miguel Angel; Novak, Thomas

    2016-03-01

    Large lead-acid batteries are predominantly used throughout the mining industry to power haulage, utility, and personnel-carrier vehicles. Without proper operation and maintenance, the use of these batteries can introduce mechanical and electrical hazards, particularly in the confined, and potentially dangerous, environment of an underground coal mine. A review of the Mine Safety and Health Administration accident/illness/injury database reveals that a significant number of injuries occur during the maintenance and repair of lead-acid batteries. These injuries include burns from electrical arcing and acid exposure, as well as strained muscles and crushed hands. The National Institute for Occupational Safety and Health investigated the design and implementation of these batteries to identify safety interventions that can mitigate these inherent hazards. This paper promotes practical design modifications, such as reducing the size and weight of battery assembly lids in conjunction with lift assists, as well as using five-pole cable connectors to improve safety.

  19. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  20. Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges

    Science.gov (United States)

    Gyenge, Elod; Jung, Joey; Mahato, Basanta

    Reticulated, open-cell structures based on vitreous carbon substrates electroplated with a Pb-Sn (1 wt.%) alloy were investigated as current collectors for lead-acid batteries. Scanning and backscattered electron microscopy, cyclic voltammetry, anodic polarization and flooded 2 V single-cell battery testing was employed to characterize the performance of the proposed collectors. A battery equipped with pasted electroplated reticulated vitreous carbon (RVC) electrodes of 137 cm 2 geometric area, at the time of manuscript submission, completed 500 cycles and over 1500 h of continuous operation. The cycling involved discharges at 63 A kg PAM-1 corresponding to a nominal 0.75 h rate and a positive active mass (PAM) utilization efficiency of 21%. The charging protocol was composed of two voltage limited (i.e. 2.6 V/cell), constant current steps of 35 and 9.5 A kg PAM-1, respectively, with a total duration of about 2 h. The charge factor was 1.05-1.15. The observed cycling behavior in conjunction with the versatility of electrodeposition to produce application-dependent optimized lead alloy coating thickness and composition shows promise for the development of lead-acid batteries using electroplated reticulated vitreous carbon collectors.

  1. Bipolar nickel-hydrogen battery design

    Science.gov (United States)

    Koehler, C. W.; Applewhite, A. Z.; Kuo, Y.

    1985-01-01

    The initial design for the NASA-Lewis advanced nickel-hydrogen battery is discussed. Fabrication of two 10-cell boilerplate battery stacks will soon begin. The test batteries will undergo characterization testing and low Earth orbit life cycling. The design effectively deals with waste heat generated in the cell stack. Stack temperatures and temperature gradients are maintained to acceptable limits by utilizing the bipolar conduction plate as a heat path to the active cooling fluid panel external to the edge of the cell stack. The thermal design and mechanical design of the battery stack together maintain a materials balance within the cell. An electrolyte seal on each cell frame prohibits electrolyte bridging. An oxygen recombination site and electrolyte reservoir/separator design does not allow oxygen to leave the cell in which it was generated.

  2. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    Science.gov (United States)

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-08-03

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead-acid

  3. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  4. Test results of a 60 volt bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, Robert L.; Gonzalez-Sanabria, Olga; Gahn, Randall F.; Manzo, Michelle A.; Gemeiner, Russel P.

    1987-01-01

    In July 1986, a high-voltage nickel-hydrogen battery was assembled at the NASA Lewis Research Center. This battery incorporated bipolar construction techniques to build a 50-cell stack with approximately 1.0 A-hr capacity (C) and an open-circuit voltage of 65 V. The battery was characterized at both low and high current rates prior to pulsed and nonpulsed discharges. Pulse discharges at 5 and 10 C were performed before placing the battery on over 1400, 40-percent depth-of-discharge, low-earth-orbit cycles. The successful demonstration of a high-voltage bipolar battery in one containment vessel has advanced the technology to where nickel-hydrogen high-voltage systems can be constructed of several modules instead of hundreds of individual cells.

  5. The lead-acid eloflux cell. Research tool and candidate for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kullmeine, U.; Kappus, W.

    1982-12-01

    The discharge capacity of usual lead-acid cells is limited by several mechanisms among which acid depletion is the most incisive. It is shown that the use of the so-called eloflux principle which is characterized by the flow of electrolyte through the porous electrodes, allows a significant deepe discharge and that by avoiding acid depletion the study of the other limiting processes and their functional dependence on the discharge conditions is possible. From the results it is concluded that an eloflux lead-acid cell is a promising candidate for advanced batteries with high energy density and performance.

  6. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    Science.gov (United States)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-01-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  7. Parametric and cycle tests of a 40-AH bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, R. L.

    1986-01-01

    The performance of a 12 V, 40 ampere-hour bipolar battery during various charge current, discharge current, temperature, and pressure operating conditions is investigated. The cell voltages, temperatures, ampere-hours, and watt-hours derived from the charge/discharge cycle tests are studied. Consideration is given to battery voltage and discharge capacity as a function of discharge current, the correlation between energy delivered on a discharge and battery temperature, battery voltage response to pulse discharges, and the voltage-temperature relationship. The data reveal that the bipolar Ni-H battery is applicable to high power systems.

  8. Lifetime modelling of lead acid batteries

    DEFF Research Database (Denmark)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-01-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole lifecycle costs. Poor prediction of lifetime can......, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies withspecific reference to their use in hybrid renewable energy systems. Alongside this, results from battery...... tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yieldedbattery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has...

  9. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... for Nuclear Power Plants.'' The guide describes methods that the NRC staff considers acceptable for... replacement of vented lead-acid storage batteries in nuclear power plants. ADDRESSES: Please refer to Docket...

  10. Effect of antimony on lead-acid battery negative

    International Nuclear Information System (INIS)

    Mahato, B.K.; Bullock, K.R.; Strebe, J.L.; Wilkinson, D.F.

    1985-01-01

    The role of antimony on the lead-acid battery negative in terms of its effect on charge efficiency, its effect on gassing overpotential, its interactive influence with lignin expander in controlling the charge efficiency, and its retentive behavior or purging characteristics as SbH 3 in the overcharge gas stream was investigated. Linear potential sweep (LPS) cycling of Plante-type lead electrodes were used to determine the effect of antimony on gassing overpotential and to monitor its concentration either in the active material or the exit gas stream. Results showed a significant contribution of antimony in decreasing charge efficiency and an overwhelming role of lignin expander in suppressing the effect of antimony on charge efficiency. The critical lead-electrode potential for purging antimony from the electrode is close to -1275 mV (vs. Hg/Hg 2 SO 4 )

  11. Curing pasted plates for lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Napoleon, E.S.

    1987-02-15

    This paper covers various aspects of the hydroset process and final drying of battery plates in a controlled chamber. Through the use of such chambers, battery makers are obtaining finished plates of consistent quality in 48 h or less, including final drying. Added benefits include: (i) reduced free-lead in plates; (ii) reduced floor space requirements; (iii) better knitting of paste to grid; (iv) reduced inventories; (v) reduced battery rejects.

  12. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O. [BMW Group, 80788 Muenchen (Germany); Albers, J. [Johnson Controls Power Solutions EMEA, 30419 Hannover (Germany); Weirather-Koestner, D. [ZSW Ulm, 89081 Ulm (Germany); Kabza, H. [Universitaet Ulm, Institut fuer Energiewandlung und -speicherung, 89081 Ulm (Germany)

    2011-02-01

    In the first part of this work selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already. (author)

  13. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Albers, J.; Weirather-Koestner, D.; Kabza, H.

    In the first part of this work [1] selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. [1,6]. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already.

  14. Absorptive glass-mat separators for valve-regulated lead/acid batteries - thoughts on compression

    Energy Technology Data Exchange (ETDEWEB)

    Zguris, G.C. [Hovosorb Separators, Hollingsworth and Vose Co., West Groton, MA (United States)

    1997-07-01

    In the past few years valve-regulated lead/acid (VRLA) batteries have come under increased study. Their use has become more widespread, yet their expected life has not always been realized. This paper discusses some thoughts relating to the property of compression of the microglass separator and the impact of compression on VRLA battery life. Ideas are suggested for the design engineer to consider in selecting a battery separator. Additionally, several long-term battery separator tests are described. As more is learned about the complex interactions that are taking place in the VRLA recombination process, a greater appreciation is being given to the role of the separator. Today, battery designers can help improve expected battery performance by incorporating the latest information regarding battery separators, compression factors, and impact on life. (orig.)

  15. Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts

    Science.gov (United States)

    2013-01-01

    Despite China’s leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children’s blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China’s lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world’s leading producer, refiner, and consumer of both lead and lead-acid batteries. This review assesses the role of China’s rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure. This paper is the first to integrate the market factors, production processes, and health impacts of China’s growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health

  16. A NOVEL GEL ELECTROLYTE FOR VALVE-REGULATED LEAD ACID BATTERY

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2017-03-01

    Full Text Available A novel gel electrolyte system used in lead-acid batteries was investigated in this work. The gel systems were prepared by addition different amount of Al2O3, TiO2 and B2O3 into the gelled system consisting of 6 wt% fumed silica and 30 wt% sulfuric acid solution. The anodic peak currents and peak redox capacities of the gel electrolytes were characterized by cyclic voltammetric method. They decreased by the time B2O3 and Al2O3 were used as additives in fumed silica based gel electrolyte system. However, these values increased by the adding 3.0 wt% of TiO2. The solution and charge transfer resistances of the gel electrolytes were investigated by electrochemical impedance spectroscopy. While the solution resistances were lower in gel systems having different amount additives than pure fumed silica based gel, the charge transfer resistance was the lowest in gel electrolytes consisting fumed silica and fumed silica-TiO2. The battery performances were studied by obtaining discharge curves of prepared gel electrolytes. The performance of gelled systems were higher than that of non-gelled electrolyte at room temperature. The mixture of fumed silica-TiO2 was suggested an alternative gel formulation for gel VRLA batteries.

  17. Modified performance test of vented lead acid batteries for stationary applications

    International Nuclear Information System (INIS)

    Uhlir, K.W.; Fletcher, R.J.

    1995-01-01

    The concept of a modified performance test for vented lead acid batteries in stationary applications has been developed by the IEEE Battery Working Group. The modified performance test is defined as a test in the ''as found'' condition of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle) that will confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. This paper will begin by reviewing performance and service test requirements and concerns associated with both types of tests. The paper will then discuss the rationale for developing a modified performance test along with the benefits that can be derived from performing a modified performance test in lieu of a capacity test and/or a service test. The paper will conclude with an example on how to apply a modified performance test and test acceptance criteria

  18. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    Science.gov (United States)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  19. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site.

    Science.gov (United States)

    Zhang, Zhuo; Guo, Guanlin; Teng, Yanguo; Wang, Jinsheng; Rhee, Jae Seong; Wang, Sen; Li, Fasheng

    2015-05-15

    Lead exposure via ingestion of soil and dust generally occurs at lead-acid battery manufacturing and recycling sites. Screening solidification/stabilization (S/S) amendments suitable for lead contaminated soil in an abandoned lead-acid battery factory site was conducted based on its chemical forms and environmental risks. Twelve amendments were used to immobilize the Pb in soil and assess the solidification/stabilization efficiency by toxicity leaching tests. The results indicated that three amendments, KH₂PO₄ (KP), KH₂PO₄:oyster shell power=1:1 (by mass ratio; SPP), and KH₂PO₄:sintered magnesia=1:1 (by mass ratio; KPM) had higher remediation efficiencies that led to a 92% reduction in leachable Pb with the addition of 5% amendments, while the acid soluble fraction of Pb (AS-Pb) decreased by 41-46% and the residual fraction (RS-Pb) increased by 16-25%. The S/S costs of the three selected amendments KP, SPP, and KPM could be controlled to $22.3 per ton of soil when the Pb concentration in soil ranged from 2000 to 3000 mg/kg. The results of this study demonstrated that KP, SPP, and KPM can effectively decrease bioavailability of Pb. These findings could provide basis for decision-making of S/S remediation of lead-acid battery contaminated sites. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Features of the low-power charge controller of lead-acid current sources charged by solar batteries

    International Nuclear Information System (INIS)

    Tukfatullin, O.F.; Yuldoshev, I.A.; Solieva, N.A.

    2008-01-01

    Influence of different factors on exploitations characteristics of solar photoelectric plant is investigated by field-performance data. A construction of charge controller of the lead-acid accumulator battery charging by means of solar battery is analyzed taking into account these factors. (authors)

  1. Test Results of a Ten Cell Bipolar Nickel-hydrogen Battery

    Science.gov (United States)

    Cataldo, R. L.

    1984-01-01

    A study was initiated to design and evaluate a new design concept for nickel-hydrogen cells. This concept involved constructing a battery in a bipolar stack with cells consisting of a one plate for each nickel and hydrogen electrode. Preliminary designs at the system level of this concept promised improvements in both volumetric and gravimetric energy densities, thermal management, life extension, costs, and peak power capability over more conventional designs. Test results were most encouraging. This preprototype battery, built with less than ideal components and hardware, exceeded expectations. A total of 2000 LEO cycles at 80 percent depth of discharge were accrued. A cycle life goal of 30,000 cycles appears achievable with minor design changes. These improvements include advanced technology nickel electrodes, insulated bipolar plates and specifically designed frames to minimize shunt currents. The discharge rate capability of this design exceeds 25C. At the 10C discharge rate, 80% of the battery capacity can be withdrawn in six minutes. This data shows that the bipolar design is well suited for those applications requiring high peak power pulses.

  2. Bipolar zinc/oxygen battery development

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C [Swiss Federal Inst. of Technology, Lausanne (Switzerland)

    1997-06-01

    A bipolar electrically rechargeable Zn/O{sub 2} battery has been developed. Reticulated copper foam served as substrate for the zinc deposit on the anodic side, and La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-catalyzed bifunctional oxygen electrodes were used on the cathodic side of the cells. The 100 cm{sup 2} unit cell had an open circuit voltage of 1,4 V(O{sub 2}) in moderately alkaline electrolyte. The open circuit voltage and the peak power measured for a stack containing seven cells were ca. 10V and 90W, respectively. The current-potential behaviour was determined as a function of the number of bipolar cells, and the maximum discharge capacity was determined at different discharge rates. (author) 4 figs., 1 ref.

  3. The addition of red lead to flat plate and tubular valve regulated miners cap lamp lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ferg, E.E.; Loyson, P. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Poorun, A. [Willard Batteries, P.O. Box 1844, Port Elizabeth 6000 (South Africa)

    2006-04-21

    The study looked at the use of red lead in the manufacturing of valve regulated lead acid (VRLA) miners cap lamp (MCL) batteries that were made with either flat plate or tubular positive electrodes. A problem with using only grey oxide in the manufacture of thick flat plate or tubular electrodes is the poor conversion of the active material to the desired lead dioxide. The addition of red lead to the initial starting material improves the formation efficiency but is considerably more expensive thereby increasing the cost of manufacturing. The study showed that by carefully controlling the formation conditions in terms of the voltage and temperature of a battery, good capacity performance can be achieved for cells made with flat plate electrodes that contain up to 25% red lead. The small amount of red lead in the active cured material reduces the effect of electrode surface sulphate formation and allows the battery to achieve its rated capacity within the first few cycles. Batteries made with flat plate positive electrodes that contained more that 50% red lead showed good initial capacity but had poor structural active material bonding. The study showed that MCL batteries made with tubular positive electrodes that contained less than 75% red lead resulted in a poorly formed electrode with limited capacity utilization. Pickling and soaking times of the tubular electrodes should be kept at a minimum thereby allowing higher active material utilization during subsequent capacity cycling. The study further showed that it is beneficial to use higher formation rates in order to reduce manufacturing time and to improve the active material characteristics. (author)

  4. Influence of safety vlave pressure on gelled electrolyte valve-regulated lead/acid batteries under deep cycling applications

    International Nuclear Information System (INIS)

    Oh, Sang Hyub; Kim, Myung Soo; Lee, Jin Bok; Lee, Heung Lark

    2002-01-01

    Cycle life tests have been carried out to evaluate the influence of safety valve pressure on vlave regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100 % DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18 % after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than 50 μm, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performance and the failure modes of the gelled electrolyte valve-regulated lead acid batteries

  5. Synthesis and application of a novel Cu/RGO@Pb alloy for lead-acid batteries

    International Nuclear Information System (INIS)

    Wu, Yumeng; Zhao, Ruirui; Zhou, Huawen; Zhang, Dejing; Zhao, Wei; Chen, Hongyu

    2016-01-01

    In this work, a novel Cu/RGO@Pb alloy was prepared successfully and tested in the simulated lead-acid battery environment. In preparing the novel alloy, Cu/RGO composite was firstly synthesized in order to increase the wettability of RGO to Pb, and then the composite was added to the molten lead to obtain the target alloy. Scanning electron microscope, energy dispersive spectrometer, X-ray diffraction as well as electrochemical measurements were employed to evaluate the performance of the obtained composite and alloy. Results show that the prepared Cu/RGO@Pb possessed higher oxygen evolution over-potential and lower hydrogen evolution over-potential than the contrast alloy, indicating this novel alloy was more suitable for using as positive grids in lead acid batteries. Moreover, the RGO additive could inhibit the formation of Pb(II) and Pb(IV) film on the surface of the alloy, which could enhance the deep-charge/discharge performance of the grids and improve the corrosion resistance.

  6. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    Science.gov (United States)

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  7. Identification of lead acid battery parameters using kalman filtering in photovoltaic system

    International Nuclear Information System (INIS)

    Boutte, Aissa

    2006-01-01

    The conventional methods of battery identification parameters consist in estimating the state of charge (SOC), and in establishing a command adapted to charge or to discharge the battery, based on electrical model developed with fixed parameters, These methods are inefficient. The causes of this ineffectiveness are different: In the first place model does not adapt itself with the battery (fixed parameters, lack of modulated parameters, a big non-linearity ...).Secondly, the impossibility for the developed algorithms, to adapt itself with the change of the battery's parameters. New models of identification are used by combining the conventional methods with adaptive and dynamic techniques. They already used in other domains where they have proved a good efficiency and a robustness. Taking into consideration the problems mentioned, and trying to resolve them, we have chosen among the various methods of estimation, Kalman filter (KF) known for its efficiency, in the field of tracking parameters. In this work we try tp represent new ideas, to identify battery parameters using KF method and make an experimental analysis of the performance of this method by using Lead Acid Battery, which is a part of a photovoltaic system (PV).(Author)

  8. Energy-saving management modelling and optimization for lead-acid battery formation process

    Science.gov (United States)

    Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.

    2017-11-01

    In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.

  9. Design of a 1-kWh bipolar nickel hydrogen battery

    Science.gov (United States)

    Cataldo, R. L.

    1984-01-01

    The design of a nickel hydrogen battery utilizing bipolar construction in a common pressure vessel is discussed. Design features are as follows: 40 ampere-hour capacity, 1 kWh stored energy as a 24 cell battery, 1.8 kW delivered in a LEO Cycle and maximum pulse power of 18.0 kW.

  10. Development of a large scale bipolar NiH2 battery

    Science.gov (United States)

    Adler, E.; Perez, F.

    1983-01-01

    The bipolar battery concept, developed in cooperation with NASA, is described in the context of the advantages afforded by near-term IPV and CVP cell technology. The projected performance, development requirements, and a possible approach to bipolar battery design are outlined. Consideration is given to packaging electrodes within a common hydrophobic plastic frame, electrode technology that involves a photochemically etched 0.1 mm thick nickel substrate coated with a 10 mg/sq cm mixture of platinum powder and TFE30, and an electrode design that eliminates the screen and doubles the electrode thickness (from the currently used 0.8 mm) while retaining the active material loading of 1.6-1.8 gm/cu cm. Also covered are thermal management, and electrolyte and oxygen management. It is concluded that a high voltage, high capacity, bipolar NiH2 cell can be configured with proper development for use in large power systems, and that it can provide considerable weight savings.

  11. COBAT: collection and recycling spent lead/acid batteries in Italy

    Science.gov (United States)

    Sancilio, Cosmo

    The European Economic Community (EEC) introduced a very clear Directive (157/91) aimed at solving the problem of collecting and recycling scrap accumulators and lead/acid batteries. This waste has a potentially harmful effect on the environment if the recycling process is not carried out correctly at all stages. COBAT is a Consortium created in 1990 in order to meet the requirements of the Italian law 475/88 which preceded the above-mentioned EEC Directive. This Consortium has a broad basis comprising all sectors involved in the battery cycle life (battery producers, battery fitters, collectors and recyclers). So far the organization, using the following approach has had very positive results since its inception three years ago. The public sector, representatives from the Environmental Ministry and the Ministry of Industry are responsible for supplying guidelines and the overall supervision, whereas the private sector is in charge of the organization and the enforcement of the law. This paper explains in detail the structure and tasks of COBAT, and will proceed on to explain how COBAT is organized and how the collection network and recycling plants work. The economical aspects will be examined in detail, and emphasis will be put on how little the public will have to pay in order to safeguard the environment, and the harmful effect of a competitively run regime to the ecosystem.

  12. Parametric and cycle tests of a 40-A-hr bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, R. L.

    1986-01-01

    A series of tests was performed to characterize battery performance relating to certain operating parameters which included charge current, discharge current, temperature and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions. Spacecraft power requirements are constantly increasing. Special spacecraft such as the Space Station and platforms will require energy storage systems of 130 and 25 kWh, respectively. The complexity of these high power systems will demand high reliability, and reduced mass and volume. A system that uses batteries for storage will require a cell count in excess of 400 units. These cell units must then be assembled into several batteries with over 100 cells in a series connected string. In an attempt to simplify the construction of conventional cells and batteries, the NASA Lewis Research Center battery systems group initiated work on a nickel-hydrogen battery in a bipolar configuration in early 1981. Features of the battery with this bipolar construction show promise in improving both volumetric and gravimetric energy densities as well as thermal management. Bipolar construction allows cooling in closer proximity to the cell components, thus heat removal can be accomplished at a higher rejection temperature than conventional cell designs. Also, higher current densities are achievable because of low cell impedance. Lower cell impedance is achieved via current flow perpendicular to the electrode face, thus reducing voltage drops in the electrode grid and electrode terminals tabs.

  13. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  14. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

  15. SUNRAYCE 1993: Working safely with lead-acid batteries and photovoltaic power systems

    Science.gov (United States)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-11-01

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have 'hands-on' contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  16. Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery

    Directory of Open Access Journals (Sweden)

    Kasprzyk Leszek

    2017-01-01

    Full Text Available The paper presents the methodology of minimisation of the unit cost of production of energy generated in the hybrid system compatible with the lead-acid battery, and used to power a load with the known daily load curve. For this purpose, the objective function in the form of the LCOE and the genetic algorithm method were used. Simulation tests for three types of load with set daily load characteristics were performed. By taking advantage of the legal regulations applicable in the territory of Poland, regarding the energy storing in the power system, the optimal structure of the prosumer solar-wind system including the lead-acid battery, which meets the condition of maximum rated power, was established. An assumption was made that the whole solar energy supplied to the load would be generated in the optimised system.

  17. Life cycle test results of a bipolar nickel hydrogen battery

    Science.gov (United States)

    Cataldo, R. L.

    1985-01-01

    A history is given of low Earth orbit (LEO) laboratory test data on a 6.5 ampere-hour bipolar nickel hydrogen battery designed and built at the NASA Lewis Research Center. The bipolar concept is a means of achieving the goal of producing an acceptable battery, of higher energy density, able to withstand the demands of low-Earth-orbit regimes. Over 4100 LEO cycles were established on a ten cell battery. It seems that any perturbation on normal cycling effects the cells performance. Explanations and theories of the battery's behavior are varied and widespread among those closely associated with it. Deep discharging does provide a reconditioning effect and further experimentation is planned in this area. The battery watt-hour efficiency is about 75 percent and the time averaged, discharge voltage is about 1.26 volts for all cells at both the C/4 and LEO rate. Since a significant portion of the electrode capacity has degraded, the LEO cycle discharges are approaching depths of 90 to 100 percent of the high rate capacity. Therefore, the low end-of-discharge voltages occur precipitously after the knee of the discharge curve and is more an indication of electrode capacity and is a lesser indicator of overall cell performance.

  18. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  19. Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries

    International Nuclear Information System (INIS)

    Shen, Yanqing

    2014-01-01

    Accurate prediction of cell SOC (state of charge) is important for the safety and functional capabilities of the battery energy storage application system. This paper presents a hybrid UPF (unscented particle filter) based SOC determination combined model for batteries. To simulate the entire dynamic electrical characteristics of batteries, a novel combined state space model, which takes current as a control input and let SOC and two constructed parameters as state variables, is advanced to represent cell behavior. Besides that, an improved UPF method is used to evaluate cell SOC. Taking lead-acid batteries for example, we apply the established model for test. Results show that the evolved combined state space cell model simulates battery dynamics robustly with high accuracy and the prediction value based on the improved UPF method converges to the real SOC very quickly within the error of±2%. - Highlights: • This paper introduces a hybrid UPF based SOC determination model for batteries. • The evolved model takes SOC and two constructed parameters as state variables. • The combined state space cell model simulates battery dynamics robustly. • NLMS based method is employed to lessen search space and fasten convergence process. • Novel model converges to the real SOC robustly and quickly with fewer particles

  20. Failure modes of valve-regulated lead-acid batteries for electric bicycle applications in deep discharge

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yonglang; Tang, Shengqun [College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Meng, Gang; Yang, Shijun [Hubei Camel Storage Battery Co. Ltd., Gucheng 441705 (China)

    2009-06-01

    The 36 or 48 V valve-regulated lead-acid (VRLA) battery packs have been widely applied to the power sources of electric bicycles or light electric scooters in China. The failure modes of the 12 V/10 Ah VRLA batteries have been studied by the cycle life test at C{sub 2} discharge rate and 100% depth of discharge (DOD). It indicates that the main cause of the battery failure in this cycle duty is the softening and shedding of positive active mass (PAM) rather than individual water loss, recombination efficiency or sulfation, etc. When the electrolyte saturation falls to a certain extent, the high oxygen recombination current leads to the depolarization of the negative plate and the shift of the positive plate to a higher potential. The violent oxygen evolution accelerates the softening of PAM and the end of cycle life. (author)

  1. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    Science.gov (United States)

    Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael

    2018-06-01

    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.

  2. The Lithium Battery: assessing the neurocognitive profile of lithium in bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; McAulay, Claire; Gershon, Samuel; Gessler, Danielle; Fritz, Kristina; Das, Pritha; Outhred, Tim

    2016-03-01

    The aim of the present study was to characterize the neurocognitive effects of lithium in bipolar disorder to inform clinical and research approaches for further investigation. Key words pertaining to neurocognition in bipolar disorder and lithium treatment were used to search recognized databases to identify relevant literature. The authors also retrieved gray literature (e.g., book chapters) known to them and examined pertinent articles from bibliographies. A limited number of studies have examined the effects of lithium on neurocognition in bipolar disorder and, although in some domains a consistent picture emerges, in many domains the findings are mixed. Lithium administration appears to reshape key components of neurocognition - in particular, psychomotor speed, verbal memory, and verbal fluency. Notably, it has a sophisticated neurocognitive profile, such that while lithium impairs neurocognition across some domains, it seemingly preserves others - possibly those vulnerable to the effects of bipolar disorder. Furthermore, its effects are likely to be direct and indirect (via mood, for example) and cumulative with duration of treatment. Disentangling the components of neurocognition modulated by lithium in the context of a fluctuating and complex illness such as bipolar disorder is a significant challenge but one that therefore demands a stratified and systematic approach, such as that provided by the Lithium Battery. In order to delineate the effects of lithium therapy on neurocognition in bipolar disorder within both research and clinical practice, a greater understanding and measurement of the relatively stable neurocognitive components is needed to examine those that indeed change with lithium treatment. In order to achieve this, we propose a Lithium Battery-Clinical and a Lithium Battery-Research that can be applied to these respective settings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Using Diagnostic Assessment to Help Teachers Understand the Chemistry of the Lead-Acid Battery

    Science.gov (United States)

    Cheung, Derek

    2011-01-01

    Nineteen pre-service and in-service teachers taking a chemistry teaching methods course at a university in Hong Kong were asked to take a diagnostic assessment. It consisted of seven multiple-choice questions about the chemistry of the lead-acid battery. Analysis of the teachers' responses to the questions indicated that they had difficulty in…

  4. LEO life tests on a 75 Ah bipolar nickel-hydrogen battery

    Science.gov (United States)

    Lenhart, S.; Koehler, C.; Applewhite, A.

    1988-01-01

    The design, building, and testing of an actively cooled 10-cell 75-Ah bipolar nickel/hydrogen battery are discussed. During the last 1000 cycles, the battery has shown some evidence of elecrical performance degradation. In particular, EOC and EOD voltages have increased and decreased by several millivolts, respectively, and deep discharge capacities to a 1.0 V/cell average cutoff voltage have decreased.

  5. Hydrogen generation comparison between lead-calcium and lead-antimony batteries in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Hongjun; Qi Suoni; Shen Yan; Li Jia

    2014-01-01

    Battery type selection is performed with the help of technical information supplied by vendors, and according to relevant criteria. Analysis and comparison of the hydrogen generation differences between two different lead-acid battery types are carried out through calculation. The analysis result may provide suggestions for battery type selection in nuclear power plant. (authors)

  6. SUNRAYCE 95: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

    1994-05-27

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  7. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  8. Quality Control of Lead-Acid Battery according to Its Condition Test for UPS Supplier and Manufacturers

    Directory of Open Access Journals (Sweden)

    Tsung-Chih Hsiao

    2014-01-01

    Full Text Available The risk of insufficient petroleum resources has forced human beings to emphasize the acquisition and storage of energy. To avoid such situation, this study tends to explore the effective management of lead-acid batteries for effective utilization conforming to the industrial requirements.

  9. State of the art of smelting lead-acid battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Melin, A

    1977-02-01

    A discussion is given of the economic importance of lead recovery and of scrap recycling in the battery industry. Various possibiliies of processing battery scrap, either by direct smelting or by smelting after preparaton are discussed, and the BBU, the Stolberger, and the Tonnolli methods are compared

  10. Application of ionic liquids as an electrolyte additive on the electrochemical behavior of lead acid battery

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad; Mallakpour, Shadpour; Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2009-02-15

    Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead-antimony-tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb{sup 3+} and ionic liquids. Crystalline structure of PbSO{sub 4} layer changed with presence of ionic liquids and larger PbSO{sub 4} crystals were formed with some of them. These additives decrease the porosity of PbSO{sub 4} perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon-PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased. (author)

  11. Six years of operational experience with a lead acid battery in the autonomous PV-hydrogen plant phoebus Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Meurer, C.; Brocke, W.A.; Emonts, B.; Heuts, G.; Mai, H.; Croe, D. [Forschungszentrum Juelich GmbH, Juelich (Germany). Inst. for Materials and Processes in Energy Systems IWV-3

    1999-07-01

    A set of 110 lead acid battery cells with a capacity of 1380 Ah was operated for six years in the PV-hydrogen plant PHOEBUS Juelich under realistic consumer and solar conditions. The plant is controlled by an energy management system that is specially designed for the use of a battery combined with a hydrogen long-term storage. The energy management system uses the state of charge SOC, which is determined by measurements of the battery current using validated models of the gassing current and the equilibrium voltage. It was found that after six years of operation there is hardly any fading of battery capacity. (orig.)

  12. The problem of auto-discharge in lead-acid batteries; O problema da auto-descarga em baterias chumbo acido

    Energy Technology Data Exchange (ETDEWEB)

    Avaca, L A; Gonzalez, E R; Tremiliosi Filho, G; Silva, C.C. da; Maezuru, M [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica

    1985-12-31

    Storage batteries used together with photovoltaic cells in remote locations must have special characteristics to fit the charge and discharge profiles to which they are submitted. Therefore, to avoid over dimensioning of the photovoltaic cells, the batteries must have particularly low self-discharge characteristics. The problem of self-discharge is directly connected to the degree of technological development in the fabrication of the batteries. The self-discharge of the SLI batteries made locally was measured under standardized conditions and the results were correlated with the kinetics of the electrochemical hydrogen evolution reaction on the lead alloys in acid medium. (author). 7 figs., 4 tabs., 11 refs

  13. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Culpin, Barry [11 Bluebell Close, Whittle -le -Woods, Chorley PR6 7RH (United Kingdom); Peters, Ken [Battery Design and Manfg Systems, Glenbank, 77 Chatsworth Road, Worsley, Manchester M28 2GG (United Kingdom)

    2006-08-25

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions. (author)

  14. SureCure{sup (R)}-A new material to reduces curing time and improve curing reproducibility of lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boden, David P.; Loosemore, Daniel V.; Botts, G. Dean [Hammond Lead Products Division, Hammond Group Inc., 2323 165th Street, Hammond, IN 46320 (United States)

    2006-08-25

    This paper introduces a technology that considerably reduces the time to cure the positive plates of lead-acid batteries. In each of several full-scale trials at automotive and industrial battery manufacturers, the simple replacement of 1wt.% of leady oxide with finely-divided tetrabasic lead sulfate (SureCure(TM) by Hammond Group Inc.) is shown to accelerate significantly the conversion of tribasic lead sulfate (3BS) to tetrabasic lead sulfate (4BS) in the curing process while improving crystal structure and reproducibility. Shorter curing times result in reduced labour and energy costs, as well as reduced fixed (curing chambers and plant footprint) and working (plate inventory) capital investment. (author)

  15. Comparative study for "36 V" vehicle applications: advantages of lead-acid batteries

    Science.gov (United States)

    Lailler, Patrick; Sarrau, Jean-François; Sarrazin, Christian

    From thermal engine equipped vehicles to completely electric ones, evolution of light weight vehicles in the future will take several steps in so far as there is no adequate battery or fuel cell presently available to power these vehicles for "on the road" driving. On the other hand, for city driving, vehicles can be improved a lot in terms of fuel efficiency as well as air pollution, if partly or totally electric propulsion can be developed, manufactured and marketed for appropriate applications. The 36-42 V battery is part of this orientation towards improving the efficiency of thermal vehicles in city driving, while keeping adequate autonomy on the roads. Actually, in city traffic, thermal engines are idle most of the time and stop periods represent a large part of the time spent "driving", using up fuel and polluting air for no use at all. The idea of stopping the engine during these periods, if appropriately managed, might potentially lead to a large improvement in fuel economy as well as air pollution reduction. The association of a higher voltage battery to an alternator-starter device in thermal vehicles, seems to be an interesting way towards that end. In this paper, we are presenting our results of a study we have just completed in relationship with RENAULT & VALEO, supported by the French Ministry of Industry, concerning a comparative evaluation of different automobile energy storage systems, and the definition of specifications as the final step of this study. The main conclusion is that lead-acid will still remain dominant in this role, since its operational cost versus efficiency is by far the lowest of every battery presently considered, more particularly in the less expensive car segments.

  16. Teardown analysis of a ten cell bipolar nickel-hydrogen battery

    Science.gov (United States)

    Manzo, M. A.; Gonzalez-Sanabria, O. D.; Herzau, J. S.; Scaglione, L. J.

    1984-01-01

    Design studies have identified bipolar nickel-hydrogen batteries as an attractive storage option for high power, high voltage applications. A pre-prototype Ni-H2 battery was designed, assembled and tested in the early phases of a concept verification program. The initial stack was built with available hardware and components from past programs. The stack performed well. After 2000 low-earth-orbit cycles the stack was dismantled in order to allow evaluation and analysis of the design and components. The results of the teardown analysis and recommended modifications are discussed.

  17. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  18. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  19. Mass lead intoxication from informal used lead-acid battery recycling in dakar, senegal.

    Science.gov (United States)

    Haefliger, Pascal; Mathieu-Nolf, Monique; Lociciro, Stephanie; Ndiaye, Cheikh; Coly, Malang; Diouf, Amadou; Faye, Absa Lam; Sow, Aminata; Tempowski, Joanna; Pronczuk, Jenny; Filipe Junior, Antonio Pedro; Bertollini, Roberto; Neira, Maria

    2009-10-01

    Between November 2007 and March 2008, 18 children died from a rapidly progressive central nervous system disease of unexplained origin in a community involved in the recycling of used lead-acid batteries (ULAB) in the suburbs of Dakar, Senegal. We investigated the cause of these deaths. Because autopsies were not possible, the investigation centered on clinical and laboratory assessments performed on 32 siblings of deceased children and 23 mothers and on 18 children and 8 adults living in the same area, complemented by environmental health investigations. All 81 individuals investigated were poisoned with lead, some of them severely. The blood lead level of the 50 children tested ranged from 39.8 to 613.9 microg/dL with a mean of 129.5 microg/dL. Seventeen children showed severe neurologic features of toxicity. Homes and soil in surrounding areas were heavily contaminated with lead (indoors, up to 14,000 mg/kg; outdoors, up to 302,000 mg/kg) as a result of informal ULAB recycling. Our investigations revealed a mass lead intoxication that occurred through inhalation and ingestion of soil and dust heavily contaminated with lead as a result of informal and unsafe ULAB recycling. Circumstantial evidence suggested that most or all of the 18 deaths were due to encephalopathy resulting from severe lead intoxication. Findings also suggest that most habitants of the contaminated area, estimated at 950, are also likely to be poisoned. This highlights the severe health risks posed by informal ULAB recycling, in particular in developing countries, and emphasizes the need to strengthen national and international efforts to address this global public health problem.

  20. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  1. fractionation of lead-acid battery soil amended with biochar 36

    African Journals Online (AJOL)

    USER

    Biochar has a high surface area, highly porous, variable – charge organic material that has the potential to ... Keywords: Biochar, Lead–acid Battery, Fractionation and Heavy metals. INTRODUCTION .... toxicity of heavy metal ions in the soils.

  2. Study on residual discharge time of lead-acid battery based on fitting method

    Science.gov (United States)

    Liu, Bing; Yu, Wangwang; Jin, Yueqiang; Wang, Shuying

    2017-05-01

    This paper use the method of fitting to discuss the data of C problem of mathematical modeling in 2016, the residual discharge time model of lead-acid battery with 20A,30A,…,100A constant current discharge is obtained, and the discharge time model of discharge under arbitrary constant current is presented. The mean relative error of the model is calculated to be about 3%, which shows that the model has high accuracy. This model can provide a basis for optimizing the adaptation of power system to the electrical motor vehicle.

  3. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  4. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  5. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Temperature controlled formation of lead/acid batteries

    Science.gov (United States)

    Bungardt, M.

    At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.

  7. Analysis of lead/acid battery life cycle factors: their impact on society and the lead industry

    Science.gov (United States)

    Robertson, J. G. S.; Wood, J. R.; Ralph, B.; Fenn, R.

    The underlying theme of this paper is that society, globally, is undergoing a fundamental conceptual shift in the way it views the environment and the role of industry within it. There are views in certain quarters that this could result in the virtual elimination of the lead industry's entire product range. Despite these threats, it is argued that the prospects for the lead industry appear to be relatively favourable in a number of respects. The industry's future depends to a significant degree, however, upon its ability to argue its case in a number of key areas. It is contended, therefore, that if appropriate strategies and means are promulgated, the prospects of the industry would appear to be relatively healthy. But, for this to happen with optimal effectiveness, a conceptual change will be necessary within the industry. New strategies and tools will have to be developed. These will require a significantly more integrated, holistically based and 'reflexive' approach than previously. The main elements of such an approach are outlined. With reference to the authors' ongoing research into automotive lead/acid starting lighting ignition (SLI) batteries, the paper shows how the technique of in-depth life cycle assessment (LCA), appropriately adapted to the needs of the industry, will provide a crucial role in this new approach. It also shows how it may be used as an internal design and assessment tool to identify those stages in the battery life cycle that give rise to the greatest environmental burdens, and to assess the effects of changes in the cycle to those burdens. It is argued that the development of this approach requires the serious and urgent attention of the whole of the lead industry. Also to make the LCA tool fully effective, it must be based on a 'live' database that is produced, maintained and continually updated by the industry.

  8. An exploratory study of lead recovery in lead-acid battery lifecycle in US market: An evidence-based approach

    International Nuclear Information System (INIS)

    Genaidy, A.M.; Sequeira, R.; Tolaymat, T.; Kohler, J.; Rinder, M.

    2008-01-01

    Background: This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling rates for LAB in the published literature and is derived from a single source. Therefore, its recycling efforts in the US has been unclear so as to determine the maximum opportunities for metal recovery and recycling in the face of significant demands for LAB particularly in the auto industry. Objectives: The research utilizes an evidence-based approach to: (1) determine recycling rates for lead recovery in the LAB product lifecycle for the US market; and (2) quantify and identify opportunities where lead recovery and recycling can be improved. Methods: A comprehensive electronic search of the published literature was conducted to gather information on different LAB recycling models and actual data used to calculate recycling rates based on product lifecycle for the US market to identify strategies for increasing lead recovery and recycling. Results: The electronic search yielded five models for calculating LAB recycling rates. The description of evidence was documented for each model. Furthermore, an integrated model was developed to identify and quantify the maximum opportunities for lead recovery and recycling. Results showed that recycling rates declined during the period spanning from 1999 to 2006. Opportunities were identified for recovery and recycling of lead in the LAB product lifecycle. Concluding remarks: One can deduce the following from the analyses undertaken in this report: (1) lead recovery and recycling has been stable between 1999 and 2006; (2) lead consumption has increased at an annual rate of 2.25%, thus, the values derived in this study for opportunities dealing with lead recovery and recycling underestimate the amount of lead in scrap and waste generated; and (3) the

  9. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  10. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    Science.gov (United States)

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  11. Determination of regression functions for the charging and discharging processes of valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available Following a deep discharge of AGM SVT 300 valve-regulated lead-acid batteries using the ten-hour discharge current, the batteries were charged using variable current. In accordance with the obtained results, exponential and polynomial functions for the approximation of the specified processes were analyzed. The main evaluation instrument for the quality of the implemented approximations was the adjusted coefficient of determination R-2. It was perceived that the battery discharge process might be successfully approximated with both an exponential and the second order polynomial function. On all the occasions analyzed, values of the adjusted coefficient of determination were greater than 0.995. The charging process of the deeply discharged batteries was successfully approximated with the exponential function; the measured values of the adjusted coefficient of determination being nearly 0.95. Apart from the high measured values of the adjusted coefficient of determination, polynomial approximations of the second and third order did not provide satisfactory results regarding the interpolation of the battery charging characteristics. A possibility for a practical implementation of the procured regression functions in uninterruptible power supply systems was described.

  12. Recycling abandoned lead battery sites

    International Nuclear Information System (INIS)

    Montgomery, A.H.

    1993-01-01

    In the past, automobile batteries were recycled principally for their lead content. The waste generated at battery wrecking facilities consisted of spent acid, crushed casings (ebonite and plastic), and where secondary smelting was involved, matte, slag, and carbon from the smelting process. These waste products were generally disposed in an on-site in a landfill or stored in piles. If the facility shut down because further commercial operations were not financially viable, the waste piles remained to be addressed at a later date through remedial action or reclamation programs. There are many of these facilities in the US. Nationally, about 28 sites have been discovered by the US Environmental Protection Agency (EPA) under the Superfund program and are under investigation or administrative orders for remedial action. A major remediation effort is now underway at the Gould Superfund Site in Portland, Oregon, which was operated as a secondary smelting facility between 1949 and 1981. This paper describes the nature of the contamination at the Gould site and the work conducted by Canonie Environmental Services Corp. (Canonie) to develop a process which would treat the waste from battery wrecking operations and produce revenue generating recyclable products while removing the source contamination (lead) from the site. The full-scale commercial plant is now operating and is expected to achieve a throughput rate of between 200 and 250 tons per day in the coming weeks

  13. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    Science.gov (United States)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  14. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    Science.gov (United States)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-01-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  15. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenhua H.; Zhu Ying [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States); Tatarchuk, Bruce J., E-mail: brucet@eng.auburn.edu [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States)

    2011-08-15

    Highlights: {yields} Pb-acid battery is reexamined in electrode structure and capacitance enhancement. {yields} Pb-acid batteries were tested through the electrochemical impedance at loads. {yields} Electrode behaviors are evaluated by simulation using an equivalent circuit model. {yields} A defective and a failed Pb-acid battery was used in non-destructive analysis. {yields} Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the

  16. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu Ying; Tatarchuk, Bruce J.

    2011-01-01

    Highlights: → Pb-acid battery is reexamined in electrode structure and capacitance enhancement. → Pb-acid batteries were tested through the electrochemical impedance at loads. → Electrode behaviors are evaluated by simulation using an equivalent circuit model. → A defective and a failed Pb-acid battery was used in non-destructive analysis. → Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the improved electrode

  17. Obtaining of barium sulfate from solution formed after desulfation of the active mass of scrap lead-acid batteries

    Directory of Open Access Journals (Sweden)

    O. A. Kalko

    2014-03-01

    Full Text Available Analyses of literature data about processes for solution utilization formed after desulfation of the active mass of scrap lead-acid batteries is performed. Optimal conditions for obtaining of barium sulfate sediment from ammonium sulfate solute and chemically pure Ba(OH2×8H2O и BaCl2×2H2O were found experimentally. In laboratory the commercial barium sulfate from sulfate solutions, that are waste of recycling process of battery scrap, with application of chloride and barium hydroxide was production. The possibility of using this product were discussed.

  18. Performance of lead-acid batteries. Experimental study and discharge process modelling; Desempenho de baterias chumbo-acido. Estudo experimental e modelamento do processo de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, G; Bottura, C P [Universidade Estadual de Campinas, SP (Brazil); Oliveira, M G [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica

    1985-12-31

    Commercial lead-acid batteries performance when continuously discharge is valued in this work. The model relating battery capacity and discharge current is confirmed through the analysis of experimental results relating voltage to time for various discharge currents. Such model was determined for the tested batteries and can be interpreted in terms of diffusional limitations and plate passivation. (author). 2 figs., 1 tab., 12 refs

  19. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Jorge Marcos-Acevedo

    2012-08-01

    Full Text Available In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product ( of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for  measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  20. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    International Nuclear Information System (INIS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    2007-01-01

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials. (author)

  1. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    Science.gov (United States)

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  2. Synthesis of uniform nano-structured lead oxide by sonochemical method and its application as cathode and anode of lead-acid batteries

    International Nuclear Information System (INIS)

    Karami, Hassan; Karimi, Mohammad Ali; Haghdar, Saeed

    2008-01-01

    This paper discusses the results of a research aimed at investigating the synthesis of nano-structured lead oxide through reaction of lead nitrate solution and sodium carbonate solution by the sonochemical method. At the first, lead carbonate was obtained in a synthesized solution and then, after filtration, it was calcinated at the temperature of 320 deg. C so that nano-structured lead oxide can be produced. The effects of different parameters on particle size and morphology of final lead oxide powder were optimized by a 'one at a time' method. The prepared lead oxide powder was characterized by scanning electron microscopy (SEM), transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Under optimum conditions, uniformed and homogeneous nano-structured lead oxide powder with more spongy morphology and particle size of 20-40 nm was obtained. The synthesized lead oxide, as anode and cathode of lead-acid batteries, showed an excellent discharge capacity (140 mA h/g)

  3. Occupational health programme for lead workers in battery plants

    Science.gov (United States)

    Lee, Byung-Kook

    The realization of problems resulting from the exposure to undue high lead levels of workers in lead-using industries, particularly in storage battery plants, has given rise to a new occupational health service, the so-called type specific (harmful agent specific) group occupational health. In 1988, the Korean Ministry of Labor designated the Institute of Industrial Medicine, Soonchunhyang University, as an authorized organization to take care of lead workers in lead industries. The following occupational health services are provided by the Institute: (i) physical health examination; (ii) biological monitoring with zinc protoporphyrin, urine δ-aminolevulinic acid and blood lead; (iii) respiratory protection with maintenance-free respirators; (iv) measurement of the environmental condition of workplaces; (v) health education. A three-year occupational health programme for lead workers has contributed to improvements in the working conditions of lead industries, particularly in large-scale battery plants, and has decreased the unnecessary high lead burden of workers through on-going medical surveillance with biological monitoring and health education schemes. The strong commitment of both employers and the government to improve the working conditions of lead industries, together with the full cooperation of lead workers, has served to reduce the high lead burdens of lead workers. This decreases the number of lead-poisoning cases and provides more comfortable workplaces, particularly in battery plants.

  4. Characterization testing of a 40 ampere hour bipolar nickel-hydrogen battery

    Science.gov (United States)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1990-01-01

    Extensive characterization testing has been done on a second 40-ampere hour (A h), 10-cell, bipolar nickel-hydrogen (Ni-H2) battery, to study the effects of operating parameters such as charge and discharge rates, temperature, and pressure on capacity, A h and watt hour (W h) efficiencies, and end-of-charge and midpoint discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout the test matrix except during the high-rate (5 C and 10 C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 in. x 2 in. battery tests are to be used in studying this problem. Low earth orbit cycle life testing at a 40-percent depth of discharge and 10 C is scheduled to follow the characterization testing.

  5. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter

    International Nuclear Information System (INIS)

    Vasebi, A.; Bathaee, S.M.T.; Partovibakhsh, M.

    2008-01-01

    This paper describes and introduces a new nonlinear predictor and a novel battery model for estimating the state of charge (SoC) of lead-acid batteries for hybrid electric vehicles (HEV). Many problems occur for a traditional SoC indicator, such as offset, drift and long term state divergence, therefore this paper proposes a technique based on the extended Kalman filter (EKF) in order to overcome these problems. The underlying dynamic behavior of each cell is modeled using two capacitors (bulk and surface) and three resistors (terminal, surface and end). The SoC is determined from the voltage present on the bulk capacitor. In this new model, the value of the surface capacitor is constant, whereas the value of the bulk capacitor is not. Although the structure of the model, with two constant capacitors, has been previously reported for lithium-ion cells, this model can also be valid and reliable for lead-acid cells when used in conjunction with an EKF to estimate SoC (with a little variation). Measurements using real-time road data are used to compare the performance of conventional internal resistance (R int ) based methods for estimating SoC with those predicted from the proposed state estimation schemes. The results show that the proposed method is superior to the more traditional techniques, with accuracy in estimating the SoC within 3%

  6. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China

    International Nuclear Information System (INIS)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-01-01

    Manufacture of lead-acid batteries is of widespread interest because of its emissions of heavy metals and metalloids into environment, harming environmental quality and consequently causing detrimental effects on human health. In this study, exposure pathways and health risks of children to heavy metal(loid)s (Pb, Cd, As, etc) were investigated based on field sampling and questionnaire. Pb was one of the most abundant elements in children's blood, with an elevated blood lead level of 12.45 μg dL −1 . Soil/dust and food were heavily polluted by targeted metal(loid)s. Food ingestion accounted for more than 80% of the total exposure for most metal(loid)s. The non-cancer risks to children were 3–10 times higher than the acceptable level of 1, while the cancer risks were 5–200 times higher than the maximum acceptable level of 1.0 × 10 −4 . The study emphasized the significance of effective environmental management, particularly to ensure food security near battery facilities. - Highlights: • The health risks of children living around a typical lead-acid battery was analyzed. • The exposure pathways of children to 12 heavy metal(loid)s were assessed. • Courtyard soil and indoor dust and duplicate food were contaminated by metal(loid)s. • Food ingestion was the major pathway for children's exposure to most metal(loid)s. • Higher potentially non-cancer and cancer risks happened to the local children. - The children living around a typical lead-acid battery plant suffered from serious health risks, which mainly attributed to food ingestion and air inhalation exposure

  7. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    Science.gov (United States)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  8. Development of a lead acid battery suitable for electric vehicle propulsion. Final report. [96 V, 20 kWh, 50 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Schlotter, W J

    1977-08-26

    This report contains two detailed designs, and the design rationale, for an improved state-of-the-art electric vehicle battery incorporating expanded metal grids. The nominal 96-volt and 20-kWh battery incorporating this improved design is expected to cost about 25% less when manufactured in a mature plant. This report also contains detailed estimates for the capital cost and operating cost of a pilot plant to produce electric vehicle battery plates incorporating expanded metal grids. It is expected that the first electric vehicle batteries incorporating expanded metal grids can be available fifteen months after approval of this program. An additional program to improve lead acid batteries for electric vehicles further is also described. The advanced batteries resulting from this program are expected to incorporate either expanded metal grids and/or composite lead/plastic grids. In addition, these batteries are expected to contain low-density active materials. It is anticipated that those additional developments will result in an advanced battery capable of delivering 45 to 50 watt-hours/kg. As a result of the design and cost study, a ''First Buy'' improved state-of-the art vehicle battery proposed is included as part of this report. Eltra proposes to manufacture and deliver the required 2500 vehicle batteries within the time limits set forth by the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. 20 figures, 13 tables.

  9. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  10. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    Science.gov (United States)

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass

  11. Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hung-I. Hsieh

    2013-01-01

    Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.

  12. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  13. Lead paste recycling based on conversion into battery grade oxides. Electrochemical tests and industrial production of new batteries

    Science.gov (United States)

    Fusillo, G.; Rosestolato, D.; Scura, F.; Cattarin, S.; Mattarozzi, L.; Guerriero, P.; Gambirasi, A.; Brianese, N.; Staiti, P.; Guerriero, R.; La Sala, G.

    2018-03-01

    We present the preparation and characterization of pure lead monoxide obtained through recycling of the lead paste recovered from exhausted lead acid batteries. The recycling is based on a hydrometallurgical procedure reported in a STC Patent, that includes simple chemical operations (desulphurisation, leaching, precipitation, filtration) and a final thermal conversion. Materials obtained by treatment at 600 °C consist predominantly of β-PbO. The electrochemical behaviour of Positive Active Mass (PAM) prepared from different materials (or mixtures) is then investigated and compared. An optimized oxide material, obtained by prolonged (8 h) thermal treatment at 600 °C, consists of pure β-PbO and appears suitable for preparation of battery elements, alone or in mixture with a small fraction (10%-30%) of traditional industrial leady oxide. The resulting battery performances are similar to those obtained from pure leady oxide. In comparison with traditional recycling processes, the proposed method guarantees lower energy consumption, limited environmental impact and reduced operating risk for industry workers.

  14. An Influence Study of Hydrogen Evolution Characteristics on the Negative Strap Corrosion of Lead Acid Battery

    Directory of Open Access Journals (Sweden)

    Zhong Guobin

    2015-01-01

    Full Text Available Negative strap corrosion is an important reason for the failure of valve regulated lead acid battery. This paper selected the Pb-Sb alloy material and Pb-Sn alloy material, made an investigation on the negative corrosion resistance and hydrogen evolution of these two alloy materials by scanning electron microscope analysis, metallographic analysis, chemical study and linear sweep voltammetry, and discussed the influence of lead alloy hydrogen evolution on the negative strap corrosion. The results showed that the hydrogen evolution reaction rates of the alloys had an impact on the corrosion areas with the maximum thickness of the alloys and the depth of corrosion layers. Greater hydrogen evolution reaction rate can lead to shorter distance between the corrosion area with the maximum thickness and the liquid level; whereas the greater corrosion layer thickness can bring aggravated risk of negative strap corrosion failure.

  15. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)

    2009-05-01

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  16. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  17. Optimization of the lead-acid battery for powering electric road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Friedheim, G [Accumulatorenfabriken Wilhem Hagen A.G., Soest (Germany, F.R.)

    1977-01-01

    A report is given on tests for the optimization of the lead accumulator for electric vehicles. The aim is to increase the specific energy (with adequate strength per cycle) and service life. For investigating this function systematic tests were made with different plate thicknesses and suitable plate surface. Further improvements were made by such factors, as the specific energy, which give low maintenance for the lead battery. Improved properties can be achieved by the construction and material of the casing and supports, and of the plate insulation.

  18. Update on Recovering Lead From Scrap Batteries

    Science.gov (United States)

    Cole, E. R.; Lee, A. Y.; Paulson, D. L.

    1985-02-01

    Previous work at the Bureau of Mines Rolla Research Center, U.S. Department of the Interior, resulted in successful development of a bench-scale, combination electrorefining-electrowinning method for recycling lead from scrap batteries by using waste fluosilicic acid (H2SiF6) as electrolyte.1,2 This paper describes larger scale experiments. Prior attempts to electrowin lead failed because large quantities of insoluble lead dioxide were deposited on the anodes at the expense of lead deposition on the cathodes. A major breakthrough was achieved with the discovery that lead dioxide formation at the anodes is prevented by adding a small amount of phosphorus to the electrolyte. The amount of PbO2 formed on the anodes during lead electrowinning was less than 1% of the total lead deposited on the cathodes. This work recently won the prestigious IR·100 award as one of the 100 most significant technological advances of 1984.

  19. Status of the lead/acid battery industry in Malaysia

    Science.gov (United States)

    Wong, J.

    The Malaysian automotive battery industry has an over-capacity and is experiencing a highly competitive situation in the domestic market. In the medium term, therefore, the industry will concentrate on making advances in battery design and technology, and on improving productivity. The manufacture of industrial batteries is similarly under pressure, particularly from foreign products. At present, it is not feasible to produce locally all the various types of industrial batteries required by the home market.

  20. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  1. Process and device for comminution of lead batteries

    Energy Technology Data Exchange (ETDEWEB)

    Legner, H; Metzger, E; Dlaska, H; Egger, E

    1981-01-22

    The invention refers to a process and a device for reducing lead batteries, in order to recover lead from the battery scrap. In the reduction process by cutting the batteries with a knife, each battery is taken by gravity from above to the horizontal level of a movable knife, fixed in a certain position relative to the knife, and cut once or several times, after which the solid and liquid parts of the battery are separated and treated in the usual way.

  2. Interactions between lignosulphonates and the components of the lead-acid battery. Part 1. Adsorption isotherms

    Science.gov (United States)

    Myrvold, Bernt O.

    The expander performs at least five different tasks in the battery. It is a fluidiser for the negative paste. It controls the formation stage of the battery. It controls the shape and size of the lead sulphate crystals formed upon discharge, and thus prevents the sintering of the active mass. It controls the rate of the lead to lead sulphate oxidation during discharge. Finally, it affects the charge acceptance. To gain more understanding of these different effects the interaction between lead, lead(II) oxide, lead(IV) oxide, lead sulphate, barium sulphate and carbon black and the experimental lignosulphonate (LS) expander UP-414 has been investigated. We also compared with Vanisperse A and several other lignosulphonates, to elucidate the mechanisms operating. In most cases, we have studied concentration ranges that are both higher and lower than those normally encountered in batteries. There is no adsorption of lignosulphonates to pure lead surfaces. Adsorption to lead sulphate is a slow process. In the presence of lead ions lignosulphonates will also adsorb to lead. The adsorption to lead(II) oxide is a fast process, and a strong adsorption occurs. In all these cases, it is preferably the high molecular weight fraction that interacts with the solid surfaces. Lead ions leaching from the surface complexes with lignosulphonates to give a more hydrophobic species. This allows the normally negatively charged lignosulphonate to adsorb to the negatively charged substrates. The lignosulphonates have an ability to complex lead ions and keep them solvated. This confirms previous observations of the lignosulphonates ability to promote the dissolution-precipitation mechanism for lead sulphate formation on the expense of the solid-state reaction.

  3. On the reaction in the lead-acid battery (as the special review-article by the 2005' Gaston Planté Medal recipient)

    Science.gov (United States)

    Takehara, Zen-ichiro

    It is my great pleasure to be awarded with the 2005' Gaston Planté Medal for significant contribution to the development of lead-acid battery science and technology. I would like to thank most heartily to Prof. D. Pavlov of Chairman, and all members of the Organic Committee of LABAT'2005 for the best treatment to select me as a 2005' Gaston Planté Medallist.

  4. Study of the influence of carbon on the negative lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Bača, P.; Micka, Karel; Křivík, P.; Tonar, K.; Tošer, P.

    2011-01-01

    Roč. 196, č. 8 (2011), s. 3988-3992 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : lead battery electrodes * doping with carbon * accelerated testing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.951, year: 2011

  5. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  6. Negative plate macropore surfaces in lead-acid batteries: Porosity, Brunauer-Emmett-Teller area, and capacity

    Energy Technology Data Exchange (ETDEWEB)

    D' Alkaine, C.V.; de O. Brito, G.A. [Group of Electrochemistry and Polymers, DQ-UFSCar, Rodovia Washington Luis, Km 235, CP 676, 13565-905 Sao Carlos (SP) (Brazil)

    2009-06-01

    We propose an explanation for the production of an electrochemically active area during the electrochemical formation of lead-acid battery negative plates based on solid-state reactions. Our proposal is supported by experimental data. This study includes a critical review of the literature on charge/discharge mechanisms, porosity, and BET area. The critical review, through the latter two parameters, indicates the existence of both macro and micropores in positive plates, but only macropores in negative plates, with characteristic surface roughness. In the present paper the surface sulfation of the precursor is controlled using various acidic, neutral and alkaline solutions during an electrochemical formation process that does not include soaking. Our results confirm that variable roughness can be produced at the negative plate macropore surfaces. The morphological changes produced by different formation conditions are assessed by measuring the macroporosity, BET area, and capacity of single negative plates. Based on these concepts, a method was developed and applied to measure independently the contributions of geometrical surface macroporosity and roughness to the negative plate capacity. (author)

  7. Lead evaluation in blood of workers of batteries industries

    International Nuclear Information System (INIS)

    Valbuena P, John J; Duarte, Martha; Marciales Clara

    2001-01-01

    In order to evaluate the occupational risk of exposure to lead of employees working in three small industries that recycle and manufacture acid lead batteries, the lead and zinc protoporphyrine (ZPP) blood content was determined. The determination was also performed on people not exposed in order to establish comparison values. Venous blood was collected in metal free heparinized glass tubes. Lead was analyzed by atomic absorption with graphite furnace and ZPP by fluorescence. According to Colombian legislation, it was found that around 31 % workers in this type of industries are in dangerous and intoxication exposure. It was also found that 91 % of workers exceed the level of 30 mg Pb/dL blood established as standard by the American Conference governmental Industrial Hygienists (ACGIH)

  8. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  9. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  10. VRLA Refined™ lead — A must for VRLA batteries. Specification and Performance

    Science.gov (United States)

    Stevenson, M. W.; Lakshmi, C. S.; Manders, J. E.; Lam, L. T.

    VRLA Refined™ lead produced and marketed by Pasminco since 1997 is a very high purity lead with guaranteed low levels of the gassing elements but with optimum bismuth content that produces oxide of finer particle size, higher acid absorption and imparts outstanding electrical performance and endurance especially under conditions of deep cycling. VRLA batteries suffer dry-out, self-discharge, negative plate capacity loss and poor cycle life unless special lead is used for the grids and active material. This paper addresses the lead used for active material.

  11. Feasibility of recycling lead batteries in GCC region

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.

    1992-09-01

    The dwindling resources of primary lead and growing environmental awareness figure out the recycling of lead as a necessity all over the world. Estimated demands of the Gulf Cooperative Countries Region reveals a lead supply deficiency around 40.000 tonnes per year. Globally, with a stagnation of primary lead production, the spent lead batteries within GCC region provide an excellent potential for a secondary lead industry. This paper deals with the feasibility of recycling lead batteries and highlights its benefits to the region. (orig.).

  12. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    International Nuclear Information System (INIS)

    Manzo, M.A.; Hoberecht, M.A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life

  13. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    Science.gov (United States)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  14. The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead

    Directory of Open Access Journals (Sweden)

    Sha Chen

    2017-11-01

    Full Text Available Lead-acid batteries (LABs, a widely used energy storage equipment in cars and electric vehicles, are becoming serious problems due to their high environmental impact. In this study, an integrated method, combining material flow analysis with life cycle assessment, was developed to analyze the environmental emissions and burdens of lead in LABs. The environmental burdens from other materials in LABs were not included. The results indicated that the amount of primary lead used in LABs accounted for 77% of the total lead production in 2014 in China. The amount of discharged lead into the environment was 8.54 × 105 tonnes, which was mainly from raw material extraction (57.2%. The largest environmental burden was from the raw materials extraction and processing, which accounted for 81.7% of the total environmental burdens. The environmental burdens of the environmental toxicity potential, human toxicity potential-cancer, human toxicity potential-non-cancer, water footprint and land use accounted for more than 90% at this stage. Moreover, the environmental burdens from primary lead was much more serious than regenerated lead. On the basis of the results, main practical measures and policies were proposed to reduce the lead emissions and environmental burdens of LABs in China, namely establishing an effective LABs recycling system, enlarging the market share of the legal regenerated lead, regulating the production of regenerated lead, and avoiding the long-distance transportation of the waste LABs.

  15. Alterations in peripheral fatty acid composition in bipolar and unipolar depression.

    Science.gov (United States)

    Scola, Gustavo; Versace, Amelia; Metherel, Adam H; Monsalve-Castro, Luz A; Phillips, Mary L; Bazinet, Richard P; Andreazza, Ana C

    2018-06-01

    Lipid metabolism has been shown to play an important role in unipolar and bipolar depression. In this study, we aimed to evaluate levels of fatty acids in patients with unipolar (MDD) and bipolar depression (BDD) in comparison to patients with bipolar disorder in euthymia (BDE) and non-psychiatric controls. Levels of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were assessed in serum of (87) patients with BD (31 euthymic, 22 depressive) or MDD (34) and (31) non-psychiatric controls through GC-FID. No significant difference in total levels of PUFAs (polyunsaturated fatty acids), SFAs (saturated fatty acids), MUFAs (monounsaturated fatty acids) and total fatty acids were found between groups. Our results demonstrated higher levels AA: EPA and AA: EPA+DHA in patients with BDD. Additionally, we observed that overall omega-6 present a positive correlation with illness duration in patients with BDD and AA: EPA ratio positively associated with illness duration in MDD group. Depression severity was positively associated with AA: EPA+DHA ratio in all participants. Together, our results support the relevance for the balance of omega-3 and omega-6 in BDD. Also, our results suggest a potential subset of stage-related lipid biomarkers that further studies are needed to help clarify the dynamics of lipid alteration in BD and MDD. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    Science.gov (United States)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  17. Positive synergistic effect of the reuse and the treatment of hazardous waste on pyrometallurgical process of lead recovery from waste lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Marija Štulović

    2014-09-01

    Full Text Available Modification and optimization of the pyrometallurgical process of lead recovering from the waste lead-acid batteries have been studied in this paper. The aim of this research is to develop a cleaner production in the field of the secondary lead metallurgy. Lead smelting process with the addition of flux (sodium(I-carbonate and reducing agents (coke, iron has been followed. The modified smelting process with the addition of hazardous waste (activated carbon as alternative reducing agents has shown positive results on the quality of the secondary lead, the generated slag and the process gases. Filtration efficiency of the gases, the return of baghouse dust to the process and use of oxygen burners have positive effect on the environment protection and energy efficiency. Optimization of the recycling process has been based on the properties of the slag. Stabilization of slag is proposed in the furnace with addition of waste dust from the recycling of cathode ray tube (CRT monitors. Phosphorus compounds from dust reduce leachability of toxic elements from the generated slag. Reduction the slag amount and its hazardous character through the elimination of migratory heavy metals and valorization of useful components have been proposed in the patented innovative device - cylindrical rotating washer/separator.

  18. Fluid-transfer properties of recombinant battery separator media

    Energy Technology Data Exchange (ETDEWEB)

    Zguris, G.C. [Hollingsworth and Vose, Groton, MA (United States)

    2000-05-01

    The fluid-transfer properties of the separator play a critical role in both acid- and alkaline-based batteries. These properties are of particular importance in a lead-acid battery since the sulfuric acid is an active component of the battery reaction; the acid is depleted as the battery discharges. In a flooded lead-acid, the function of the separator to deliver acid is less significant than in a valve-regulated design. This paper discusses some issues with regards to this important interaction. (orig.)

  19. Evaluation of Pb and Fe tenors present in the sediments nearby the activities of taking advantage of lead-acid batteries

    International Nuclear Information System (INIS)

    Soares, Fernanda; Andrade, Crescencio; Monteiro, Carlos; Oliveira, Daniela; Valentim, Eliane

    2011-01-01

    The region chosen for this study was the Municipality of Belo Jardim, Pernambuco State, Brazil, which is considered an important industrial complex of the production and repairing of lead-acid batteries. Sediment samples were collected near to the illegal smelting industries and analyzed by ionic exchange method using a alpha-beta proportional counter for determining the activity of Pb-210, radionuclide used as geochronological tool. The chemical elements Pb and Fe were determined by means of flame atomic absorption spectrometry. The obtained results indicated an expressive increasing of lead and iron concentrations in the last 20 years. The concentrations in the sampled profile varied from 318 to 15487 mg.kg-1 and from 19 to 1524 mg.kg-1 for Fe and Pb, respectively. (author)

  20. Battery diagnosis and battery monitoring in hybrid electric vehicles; Batteriediagnostik und Batteriemonitoring in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.; Kowal, J.; Waag, W.; Gerschler, J.B.; Sauer, D.U. [RWTH Aachen (DE). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA)

    2007-07-01

    Even in conventional passenger cars the load on the batteries is at its limit due to the increasing number of electrical loads. It is therefore of special importance to know the status and the power capability of the battery at any time. To fulfil these requirements it is necessary that the battery diagnostics has a precise current measurement available in addition to the voltage and temperature measurements. Battery diagnosis is most successful of different algorithms are combined and errors from the measurements and the algorithms are taken actively into account. The general structure of battery diagnosis algorithms can be used for lead-acid, lithium-ion and NiMH batteries. However, the complexity is highest for lead-acid batteries. (orig.)

  1. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  2. The importance of observation of structural changes of lead acid battery active mass in special applications in the mining industry

    Directory of Open Access Journals (Sweden)

    Jana Zimáková

    2015-10-01

    Full Text Available To be able to use lead acid batteries in particularly difficult conditions in the mining industry, it is very important to understand the events that occur during traction operation of mining carts, or auxiliary lighting. Failure of lead accumulators in the hazardous environments, where it is desired non-explosive embodiment, may have fatal consequences. The paper describes the possibility of observing changes in active materials at the microscopic level. The process of charging and discharging lead-acid accumulator has been described in many publications. The aim of this article is to supplement known information about a series of images and analysis that will accurately show progressive changes in the structure of the negative electrode. Negative electrodes are, at each cycle, charged and discharged under the same conditions, scanned with a scanning electron microscope, the elemental analysis (EDS is performed, and the size of the individual sulfate crystals is measured. Previously measured results indicate that during the charging the conversion of PbSO4 crystals into a charged form of the active mass is not complete, and there is a rapid increase in the size of lead sulfate crystals on the negative electrode. This article compares changes in electrode surface composition after two cycles. There is a clear loss of lead and, on the other hand, the visible growth of sulfur. This indicates progressive surface sulfation.

  3. Childhood Lead Exposure from Battery Recycling in Vietnam.

    Science.gov (United States)

    Daniell, William E; Van Tung, Lo; Wallace, Ryan M; Havens, Deborah J; Karr, Catherine J; Bich Diep, Nguyen; Croteau, Gerry A; Beaudet, Nancy J; Duy Bao, Nguyen

    2015-01-01

    Battery recycling facilities in developing countries can cause community lead exposure. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL) measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL) were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results.

  4. Effects of lead-foam grids on performance of VRLA battery

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Changsong; Yi, Tingfeng; Wang, Dianlong; Hu, Xinguo [Department of Applied Chemistry, Harbin Institute of Technology, P.O. Box 411, Harbin 150001 (China)

    2006-08-25

    Lead-foam grids have been prepared by electrodepositing lead on a copper-foam substrate that has good conductibility and a symmetrically three-dimensional reticulated structure. VRLA batteries with lead foam as the negative electrode current collector material have been fabricated; the effects of the lead foam on the specific capacity, the active material utilization efficiency and the negative active material transformation process of the VRLA batteries have been studied. The results show that a lead-foam grid has a bigger specific surface area than a cast grid. The charge voltage of a VRLA battery with a lead-foam negative electrode is significantly lower than that of a VRLA battery with a cast grid electrode during a charge process. The discharge capacity, the mass specific capacity, and the active material utilization efficiency of a VRLA battery with a lead-foam electrode can be greatly improved at different states of discharge. The EIS research revealed that a lead-foam negative electrode has higher electrochemical reactivity. Observed by means of a scanning electron microscope, it was found that the spongy Pb crystals at a lead-foam grid negative electrode are smaller than that of a cast grid negative electrode at a state of charge; while the PbSO{sub 4} crystals are smaller than that of a cast grid negative electrode at a state of discharge. (author)

  5. Lead-acid batteries life time prolongation in renewable energy source plants

    Directory of Open Access Journals (Sweden)

    Костянтин Ігорович Ткаченко

    2015-11-01

    Full Text Available Charge controllers with microprocessor control are recognized to be almost optimal process control devices for collecting and storing energy in batteries in power systems with renewable energy sources such as solar photoelectric batteries, wind electrogenerators and others. The task of the controller is charging process control, that is such as charging and discharging the batteries while providing maximum charging speed and battery saving parameters that characterize the state of the battery, within certain limits, preventing overcharging, overheating and the batteries deep discharge. The possibility of archiving data that keeps the battery parameters time dependance is also important. Thus, the concept of a charge controller with Texas Instruments microcontroller device MSP430G2553 was introduced in the study. The program saved in the ROM microcontroller provides for: charge regime(with a particular algorithm; control and training cycle followed by charging; continuous charge-discharge regime to restore the battery or the study of charge regime algorithms influence on repair effectiveness. The device can perform its functions without being connected to a personal computer, but this connection makes it possible to observe in real time the characteristics of a number of discharge and charge regimes parameters, as well as reading the stored data from microcontroller flash memory and storing these data on the PC hard disk for further analysis. A four stages charging algorithm with reverse charging regime was offered by the author and correctness of algorithm was proved

  6. Development and Application of a Fuzzy Control System for a Lead-Acid Battery Bank Connected to a DC Microgrid

    Directory of Open Access Journals (Sweden)

    Juan José Martínez

    2018-01-01

    Full Text Available This study presents the development and application of a fuzzy control system (FCS for the control of the charge and discharge process for a bank of batteries connected to a DC microgrid (DC-MG. The DC-MG runs on a maximum power of 1 kW with a 190 V DC bus using two photovoltaic systems of 0.6 kW each, a 1 kW bidirectional DC-AC converter to interconnect the DC-MG with the grid, a bank of 115 Ah to 120 V lead-acid batteries, and a general management system used to define the operating status of the FCS. This FCS uses a multiplexed fuzzy controller, normalizing the controller’s inputs and outputs in each operating status. The design of the fuzzy controller is based on a Mamdani inference system with AND-type fuzzy rules. The input and output variables have two trapezoidal membership functions and three triangular membership functions. LabVIEW and the NI myRIO-1900 embedded design device were used to implement the FCS. Results show the stability of the DC bus of the microgrid when the bank of batteries is in the charging and discharging process, with the bus stabilized in a range of 190 V ± 5%, thus demonstrating short response times to perturbations considering the microgrid’s response dynamics.

  7. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  8. Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2016-12-01

    Full Text Available In this study, the effect of temperature on the electrochemical behaviors of gel electrolyte systems was investigated for valve regulated lead-acid battery at 0≤ T ≤50 oC. Fumed silica and mixture of fumed silica and TiO2 were used as gel electrolytes. TiO2 has a good combination with fumed silica. They were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and battery tests. The anodic peak currents and redox capacities of the gel electrolytes increased with increasing of temperature. The highest anodic peak current and redox capacity were observed at 30 oC in fumed silica and at 40 oC in fumed silica:TiO2 based gel systems. The solution and charge transfer resistance values decreased in fumed silica:TiO2 gel system by increasing temperature. In battery tests, discharge curves were obtained for each gel system at 0, 25 and 50 oC. The discharge time of mixture gel electrolyte system was higher than that of fumed silica based gel electrolyte at low (0 oC and high (50 oC temperatures. The best performance was obtained in fumed silica based gel electrolyte at 25 oC.

  9. Response of lead-acid batteries to chopper-controlled discharge

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses at up to 25 percent compared to constant current discharges at the same average discharge current of 100 A. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-A pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.

  10. High rate lithium/thionyl chloride bipolar battery development

    Science.gov (United States)

    Russell, P. G.; Goebel, F.

    The lithium/thionyl chloride ( {Li}/{SOCl2}) electrochemistry is capable of providing high power and high specific power, especially under pulse discharge conditions, when cells containing thin components are arranged in a bipolar configuration. This paper describes recent work concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells for Sonobuoy application.

  11. High rate lithium/thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    The lithium/thionyl chloride (Li/SOCl{sub 2}) electrochemistry is capable of providing high power and high specific power, especially under pulse discharge conditions, when cells containing thin components are arranged in a bipolar configuration. This paper describes recent work concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells for Sonobuoy application. (orig.)

  12. Rapid battery depletion and loss of therapy due to a short circuit in bipolar DBS for essential tremor.

    Science.gov (United States)

    Allert, Niels; Barbe, Michael Thomas; Timmermann, Lars; Coenen, Volker Arnd

    2017-05-01

    Technical dysfunctions have been reported reducing efficacy of deep brain stimulation (DBS). Here, we report on an essential-tremor patient in whom a short circuit in bipolar DBS resulted not only in unilateral loss of therapy but also in high current flow and thereby rapid decline of the impulse-generator battery voltage from 2.83 V a week before the event to 2.54 V, indicating the need for an impulse-generator replacement. Immediate re-programming restored therapeutic efficacy. Moreover, the reduction in current flow allowed the battery voltage to recover without immediate surgical intervention to 2.81 V a week later.

  13. Childhood Lead Exposure from Battery Recycling in Vietnam

    Directory of Open Access Journals (Sweden)

    William E. Daniell

    2015-01-01

    Full Text Available Background. Battery recycling facilities in developing countries can cause community lead exposure. Objective. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. Methods. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. Results. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. Discussion. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results.

  14. Studies of doped negative valve-regulated lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Micka, Karel; Calábek, M.; Bača, P.; Křivák, P.; Lábus, R.; Bilko, R.

    2009-01-01

    Roč. 191, č. 1 (2009), s. 154-158 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : lead-acid * negative electrode * sulfation suppression Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  15. High rate lithium-thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G.; Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1994-12-31

    The lithium/thionyl chloride system is capable of providing both high power and high energy density when cells containing thin components are arranged in a bipolar configuration. Electrode current densities in excess of 300mA/cm{sup 2} are achieved during pulse discharge. The present work is concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells.

  16. Comparison of electrochemical performance of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2010-03-15

    A comparative experimental study of the electrochemical features of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys is carried out with a view to applications in the manufacture of lead-acid battery components. The as-cast samples are obtained using a water-cooled unidirectional solidification system. Pb-Sn and Pb-Sb alloy samples having similar coarse cell arrays are subjected to corrosion tests in order to assess the effect of Sn or Sb segregation in the cell boundary on the electrochemical performance. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis are used to evaluate the electrochemical parameters in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Both the experimental and simulated EIS parameters evidence different kinetics of corrosion. The Pb-1 wt.% Sn alloy is found to have a current density which is of about three times lower than that of the Pb-1 wt.% Sb alloy which indicates that dilute Pb-Sn alloys have higher potential for application as positive grid material in maintenance-free Pb-acid batteries. (author)

  17. Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, D.; Rogachev, T.; Nikolov, P.; Petkova, G. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 10, Sofia 1113 (Bulgaria)

    2009-06-01

    It is known that negative plates of lead-acid batteries have low charge acceptance when cycled at high rates and progressively accumulate lead sulphate on high-rate partial-state-of-charge (HRPSoC) operation in hybrid-electric vehicle (HEV) applications. Addition of some carbon or graphite forms to the negative paste mix improves the charge efficiency and slows down sulfation of the negative plates. The present investigation aims to elucidate the contribution of electrochemically active carbon (EAC) additives to the mechanism of the electrochemical reactions of charge of the negative plates. Test cells are assembled with four types of EAC added to the negative paste mix in five different concentrations. Through analysis of the structure of NAM (including specific surface and pore radius measurements) and of the electrochemical parameters of the test cells on HRPSoC cycling, it is established that the electrochemical reaction of charge Pb{sup 2+} + 2e{sup -} {yields} Pb proceeds at 300-400 mV lower over-potentials on negative plates doped with EAC additives as compared to the charge potentials of cells with no carbon additives. Hence, electrochemically active carbons have a highly catalytic effect on the charge reaction and are directly involved in it. Consequently, the reversibility of the charge/discharge processes is improved, which eventually leads to longer battery cycle life. Thus, charging of the negative plates proceeds via a parallel mechanism on the surfaces of both Pb and EAC particles, at a higher rate on the EAC phase. Cells with EAC in NAM have the longest cycle life when their NAM specific surface is up to 4 m{sup 2} g{sup -1} against 0.5 m{sup 2} g{sup -1} for the lead surface. The proposed parallel mechanism of charge is verified experimentally on model Pb/EAC/PbSO{sub 4} and Pb/EAC electrodes. During the charge and discharge cycles of the HRPSoC test, the EAC particles are involved in dynamic adsorption/desorption on the lead sulfate and lead

  18. Description and drawing of a mini-plant to lead-acid batteries active material production; Descricao e desenho de uma mini-planta piloto para producao de material ativo para baterias de chumbo-acido

    Energy Technology Data Exchange (ETDEWEB)

    D` Alkaine, C V; Mattos, J S.D.; Machado, D M; Nart, F C [Sao Carlos Univ., SP (Brazil). Dept. de Quimica

    1985-12-31

    As a part of the UFSCAR/Solar Energy/FINEP program, a pilot plant for the production of the active material for lead-acid batteries was developed. The basic operations are: milling and lead oxidation in ball mill, classifying of lead monoxide in the proper particle size by means of a cyclone, monoxide mixture with water and sulphuric acid, thus forming the paste. The paste is then placed on grids and finally scrapped and compacted. The plates pass through a 300 deg C oven and are cured in controlled atmosphere. (author). 4 refs

  19. Process for using lead battery scrap. Verfahren zum Verarbeiten von Bleiakkumulatorenschrott

    Energy Technology Data Exchange (ETDEWEB)

    Sycev, A P; Kim, G V; Larin, V F; Sidorova, G D; Vicharev, I G; Kuur, V P; Achmetov, R S; Moiseev, G L; Maslov, V I; Kabacek, V G

    1986-06-26

    The process for using lead battery scrap is such that it leads to an increase of lead metal without the use of fluxes for forming the melt. According to the invention, the battery scrap is broken up, dangerous parts (organic substances containing chlorine) are removed and large pieces of lead (pole bridges, grids, contact pins) are sorted out. The remainder is chopped up into pieces less than 10 mm in size. The small pieces are melted by the suspension melting process at a temperature of 1300 to 1500/sup 0/C in an oxidising atmosphere (air or oxygen) without using any fuel. As the small pieces contain parts of the battery case (= organic substances free of chlorine), they burn in air generating heat, which is then used to melt the sulphate oxide lead compounds. The previously sorted large lead parts are then added to the lead oxide melt. Finally, the lead oxide is reduced to lead metal with coke in a furnace. After the reduction of lead oxide to lead, less than 0.2% of the initial lead content in the battery scrap being processed is lost in the dumped slag.

  20. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  1. Estimating the Size of the Renewable Energy Generators in an Isolated Solar-Biodiesel Microgrid with Lead-Acid Battery Storage

    Directory of Open Access Journals (Sweden)

    GRAMA Alin

    2015-10-01

    Full Text Available Climate change, fossil fuel decline, expensive power grid extensions focused the attention of scientist in developing electrical power systems that use as primary resources renewable energy generators. Romania has a high renewable energy potential and presents interest in developing renewable energy microgrids using: solar energy, wind energy, biomass Hydro, etc. The paper presents a method of estimating the size of the renewable energy generators in an isolated solar-biodiesel microgrid with lead-acid battery storage. The mathematical model is first presented and then an algorithm is developed to give an estimation of the size of the microgrid. The microgrid is installed in the region of Oradea, Romania. The results are validated through comparison with existing sizing software programs like: PV*Sol and PVSyst.

  2. Survey of mercury, cadmium and lead content of household batteries

    Energy Technology Data Exchange (ETDEWEB)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  3. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  4. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  5. Soil contamination from lead battery manufacturing and recycling in seven African countries.

    Science.gov (United States)

    Gottesfeld, Perry; Were, Faridah Hussein; Adogame, Leslie; Gharbi, Semia; San, Dalila; Nota, Manti Michael; Kuepouo, Gilbert

    2018-02-01

    Lead battery recycling is a growing hazardous industry throughout Africa. We investigated potential soil contamination inside and outside formal sector recycling plants in seven countries. We collected 118 soil samples at 15 recycling plants and one battery manufacturing site and analyzed them for total lead. Lead levels in soils ranged from battery industry in Africa continues to expand, it is expected that the number and size of lead battery recycling plants will grow to meet the forecasted demand. There is an immediate need to address ongoing exposures in surrounding communities, emissions from this industry and to regulate site closure financing procedures to ensure that we do not leave behind a legacy of lead contamination that will impact millions in communities throughout Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Battery lead recycling and environmental pollution hazards

    Energy Technology Data Exchange (ETDEWEB)

    Collivignarelli, C; Urbini, G; Riganti, V

    1986-01-01

    In Italy, lead recycling from discarded electric storage batteries has been developing on an industrial scale, with a yield of approximately 98% and a saving of 37% on lead imports. Moreover, battery plastic coverings can also be profitably recycled. However, the recovery industry has proved to be very polluting, as shown by the recent example of a factory sited in a vast agricultural area south of Milan, Italy. Lead in the atmosphere affects workers exposed to lead concentrations above A.C.G.I.H. standards while lead in wastewaters and fumes from smelting furnaces is the cause of environmental pollution. In particular, pollution over large tracts of cultivated lands surrounding such factories is shown by the considerable quantity of lead in forage which is harmful to cattle fed on it. Tests on dead oxen have revealed lead concentrations in kidneys and liver ranging from 9.1 to 17.4 mg/kg and 6 to 7 mg/kg respectively. Quantities exceeding safety limits have been found also in cattle blood and milk, with maximum values of 51 ..mu..g/100 ml and 0.072 mg/1 respectively. These results prove the need for extremely efficient control systems in this particular recovery industry. (author).

  7. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  8. Additional electrodes on the Quartet™ LV lead provide more programmable pacing options than bipolar and tripolar equivalents.

    Science.gov (United States)

    O'Donnell, David; Sperzel, Johannes; Thibault, Bernard; Rinaldi, Christopher A; Pappone, Carlo; Gutleben, Klaus-Jürgen; Leclercq, Christopher; Razavi, Hedi; Ryu, Kyungmoo; Mcspadden, Luke C; Fischer, Avi; Tomassoni, Gery

    2017-04-01

    The aim of this study was to evaluate any benefits to the number of viable pacing vectors and maximal spatial coverage with quadripolar left ventricular (LV) leads when compared with tripolar and bipolar equivalents in patients receiving cardiac resynchronization therapy (CRT). A meta-analysis of five previously published clinical trials involving the Quartet™ LV lead (St Jude Medical, St Paul, MN, USA) was performed to evaluate the number of viable pacing vectors defined as capture thresholds ≤2.5 V and no phrenic nerve stimulation and maximal spatial coverage of viable vectors in CRT patients at pre-discharge (n = 370) and first follow-up (n = 355). Bipolar and tripolar lead configurations were modelled by systematic elimination of two and one electrode(s), respectively, from the Quartet lead. The Quartet lead with its four pacing electrodes exhibited the greatest number of pacing vectors per patient when compared with the best bipolar and the best tripolar modelled equivalents. Similarly, the Quartet lead provided the highest spatial coverage in terms of the distance between two furthest viable pacing cathodes when compared with the best bipolar and the best tripolar configurations (P tripolar configurations, elimination of the second proximal electrode (M3) resulted in the highest number of viable pacing options per patient. There were no significant differences observed between pre-discharge and first follow-up analyses. The Quartet lead with its four electrodes and the capability to pace from four anatomical locations provided the highest number of viable pacing vectors at pre-discharge and first follow-up visits, providing more flexibility in device programming and enabling continuation of CRT in more patients when compared with bipolar and tripolar equivalents. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  9. Electrochemical Investigation of Carbon as Additive to the Negative Electrode of Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    Fernandez Matthew M.

    2015-01-01

    Full Text Available The increasing demand of cycle life performance of Pb-acid batteries requires the improvement of the negative Pb electrode’s charge capacity. Electrochemical investigations were performed on Pb electrode and Pb+Carbon (Carbon black and Graphite electrodes to evaluate the ability of the additives to enhance the electrochemical faradaic reactions that occur during the cycle of Pb-acid battery negative electrode. The electrodes were characterized through Cyclic Voltammetry (CV, Potentiodynamic Polarization (PP, and Electrochemical Impedance Spectroscopy (EIS. CV revealed that the addition of carbon on the Pb electrode increased anodic and cathodicreactions by tenfold. The kinetics of PbSO4 passivation measured through PPrevealed that the addition of Carbon on the Pb electrode accelerated the oxide formation by tenfold magnitude. The Nyquist plot measured through EIS suggest that the electrochemical mechanism and reaction kinetics is under charge-transfer. From the equivalent circuit and physical model, Pb+CB1 electrode has the lowest EIS parameters while Pb+G has the highest which is attributed to faster faradaic reaction.The Nyquist plot of the passivated Pb+CB1 electrode showed double semicircular shape. The first layer represents to the bulk passive PbSO4 layer and the second layer represents the Carbon+PbSO4 layer. The enhancements upon addition of carbon on the Pb electrode were attributed to the additive’s electrical conductivity and total surface area. The electrochemical active sites for the PbSO4 to nucleate and spread increases upon addition of electrical conductive and high surface area carbon additives.

  10. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    Science.gov (United States)

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  11. High power valve regulated lead-acid batteries for new vehicle requirements

    Science.gov (United States)

    Trinidad, Francisco; Sáez, Francisco; Valenciano, Jesús

    The performance of high power VRLA ORBITAL™ batteries is presented. These batteries have been designed with isolated cylindrical cells, providing high reliability to the recombination process, while maintaining, at the same time, a very high compression (>80 kPa) over the life of the battery. Hence, the resulting VRLA modules combine a high rate capability with a very good cycle performance. Two different electrochemically active material compositions have been developed: high porosity and low porosity for starting and deep cycle applications, respectively (depending on the power demand and depth of discharge). Although, the initial performance of the starting version is higher, after a few cycles the active material of the deep cycle version is fully developed, and this achieves the same high rate capability. Both types are capable of supplying the necessary reliability for cranking at the lowest temperature (-40°C). Specific power of over 500 W/kg is achievable at a much lower cost than for nickel-metal hydride systems. Apart from the initial performance, an impressive behaviour of the cycling version has been found in deep cycle applications, due to the highly compressed and high density active material. When submitted to continuous discharge-charge cycles at 75% (IEC 896-2 specification) and 100% (BCI deep cycle) DoD, it has been found that the batteries are still healthy after more than 1000 and 700 cycles, respectively. However, it has been proven that the application of an IUi algorithm (up to 110% of overcharging) with a small constant current charging period at the end of the charge is absolutely necessary to achieve the above results. Without the final boosting period, the cycle life of the battery could be substantially shortened. The high specific power and reliability observed in the tests carried out, would allow ORBITAL™ batteries to comply with the more demanding requirements that are being introduced in conventional and future hybrid electric

  12. Bipolar disorders

    DEFF Research Database (Denmark)

    Vieta, Eduard; Berk, Michael; Schulze, Thomas G

    2018-01-01

    Bipolar disorders are chronic and recurrent disorders that affect >1% of the global population. Bipolar disorders are leading causes of disability in young people as they can lead to cognitive and functional impairment and increased mortality, particularly from suicide and cardiovascular disease...... and accurate diagnosis is difficult in clinical practice as the onset of bipolar disorder is commonly characterized by nonspecific symptoms, mood lability or a depressive episode, which can be similar in presentation to unipolar depression. Moreover, patients and their families do not always understand...... a bipolar disorder from other conditions. Optimal early treatment of patients with evidence-based medication (typically mood stabilizers and antipsychotics) and psychosocial strategies is necessary....

  13. Sizing of lithium-ion stationary batteries for nuclear power plant use

    International Nuclear Information System (INIS)

    Exavier, Zakaria Barie; Chang, Choong-koo

    2017-01-01

    Class 1E power system is very essential in preventing significant release of radioactive materials to the environment. Batteries are designed to provide control power for emergency operation of safety-related equipment or equipment important to safety, including power for automatic operation of the Reactor Protection System (RPS) and Engineered Safety Features (ESF) protection systems during abnormal and accident conditions through associated inverters. Technical challenges that are involved in the life cycle of batteries used in the nuclear power plants (NPP) are significant. The extension of dc battery backup time used in the dc power supply system of the Nuclear Power Plants also remains a challenge. The lead acid battery is the most popular utilized at the present. And it is generally the most popular energy storage device, because of its low cost and wide availability. The lead acid battery is still having some challenges since many phenomenon are occurred inside the battery during its lifecycle. The image of Lithium-ion battery in 1991 is considered as alternative for lead acid battery due to better performance which Lithium-ion has over Lead acid. It has high energy density and advanced gravimetric and volumetric properties. It is known that industrial standards for the stationary Lithium-Ion battery are still under development. The aim of this paper is to investigate the possibility of replacing of lead acid battery with lithium-ion battery. To study the ongoing research activities and ongoing developed industrial standards for Lithium-ion battery and suggest the method for sizing including, capacity, dimensions, operational conditions, aging factor and safety margin for NPP use. (author)

  14. Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell

    International Nuclear Information System (INIS)

    Walther, J.F.

    1982-01-01

    Electrical energy is generated from acid-base neutralization reactions in electrodialytic cells. Permselective bipolar membranes in these cells are contacted on their cation selective faces by aqueous acid streams and on their anion-selective faces by aqueous base streams. Spontaneous neutralization reactions between the basic anions and acidic cations through the bipolar membranes produce electrical potential differences between the acid and base streams. These potential differences are transmitted to electrodes to produce electrical energy which is withdrawn from the cell

  15. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  16. Monitoring of lead batteries by means of optical-fibre refractometry; Ueberwachung von Bleiakkumulatoren mittels Faseroptischer Refraktometrie

    Energy Technology Data Exchange (ETDEWEB)

    Gernhold, H P; Hanitsch, R

    1994-12-31

    Electricity storage is an integral part of photovoltaic systems. At the moment, the most economical device for this is the lead battery. Battery life is determined by the charging technique applied and by the efficiency of monitoring. The optimum charging technique is selected in dependence of battery age and charge state. The authors present a method for online charge state monitoring in which the acid concentration is measured by means of optical-fibre refractometry. (orig.) [Deutsch] Ein aeusserst wichtiger Teilbereich von Photovoltaik-Anlagen ist die Speicherung von elektrischer Energie. Diesen Zweck erfuellen Bleiakkumulatoren zur Zeit am wirtschaftlichsten. Es hat sich gezeigt, dass sowohl die angewandte Ladetechnik als auch eine gute Batterieueberwachung entscheidend fuer die Lebensdauer dieser Systemkomponente sind. Die Wahl der optimalen Ladetechnik richtet sich wiederum nach dem Alter und dem Entladegrad der Batterie. Gegenstand dieser Arbeit ist es, eine Methode vorzustellen, mit der die Saeuredichte mittels faseroptischer Refraktometrie gemessen und so der Ladezustand jeder einzelnen Batteriezelle zu jedem Zeitpunkt on-line ueberwacht werden kann. (orig.)

  17. Structures of battery- and energy management systems using lead-acid batteries and ultracaps; Strukturen von Batterie- und Energiemanagementsystemen mit Bleibatterien und Ultracaps

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, D.

    2007-07-01

    The publication presents methods of damage-free operation of lead batteries in electric road vehicles. The original charging method used in the citySTROMer car was based on the total voltage, causing permanent overload and fast ageing of modules. The charge state of the vehicle is defined on the basis of the residual charge state, a charge balance, and an evaluation of the temperature-compensated minimum module voltage. The time when current limiting is necessary is recognized reliably, and the charge state indicator works reliably soon after starting. The vehicle has an integrated power-assist store. Ultracap modules of various capacities were characterized in the laboratory. A variant was constructed in which the battery is discharged permanently with average driving current while the ultracap is used for making up the difference to the load at a given moment. The load cases for power-assist were identified on the basis of real driving cycles. The system can be described as an onboard dual-voltage system. The higher voltage of the ultracap provides higher power for acceleration. The availability of the ultracap is ensured in 90 percent of all accelerations. The first battery set installed in the car is now in its fourth winter, with a mileage of nearly 7000 km. In March 2006, 63 Ah were recorded in battery driving cycle in urban traffic at temperatures below freezing point. After commissioning in May 2002, 71 Ah were recorded. [German] Die vorliegende Arbeit entwickelt Verfahren zum schaedigungsfreien Betrieb von Bleibatterien in elektrischen Strassenfahrzeugen. Das urspruenglich im untersuchten citySTROMer eingesetzte Ladeverfahren war an der Gesamtspannung orientiert und hat Module hoeherer Spannungslage ueberladen. Die permanente Ueberladung fuehrt zu einem sehr schnellen Alterungsprozess. Die Ladezustandsbestimmung im Fahrzeug erfolgt ueber die Bestimmung des Restladegrades, eine Ladungsbilanzierung und die Auswertung der temperaturkompensierten

  18. The hydrogen economy: a threat or an opportunity for lead-acid batteries?

    Science.gov (United States)

    Rand, D. A. J.; Dell, R. M.

    There is mounting concern over the sustainability of global energy supplies. Among the key drivers are: (i) global warming, ocean surface acidification and air pollution, which imply the need to control and reduce anthropogenic emissions of greenhouse gases, especially emissions from transportation and thermal power stations; (ii) the diminishing reserves of oil and natural gas; (iii) the need for energy security adapted to each country, such as decreasing the dependence on fossil fuel imports (in particular, the vulnerability to volatile oil prices) from regions where there is political or economic instability; (iv) the expected growth in world population with the ever-increasing aspiration for an improved standard-of-living for all, especially in developing and poor nations. Hydrogen is being promoted world-wide as a total panacea for energy problems. As a versatile carrier for storing and transporting energy from any one of a myriad of sources to an electricity generator, it is argued that hydrogen will eventually replace, or at least greatly reduce, the reliance on fossil fuels. Not unexpectedly, the building of a 'hydrogen economy' presents great scientific and technological challenges in production, delivery, storage, conversion, and end-use. In addition, there are many policy, regulatory, economic, financial, investment, environmental and safety questions to be addressed. Notwithstanding these obstacles, it is indeed plausible that hydrogen will become increasingly deployed and will compete with traditional systems of energy storage and supply. Moreover, the case for hydrogen will be greatly strengthened if fuel cells, which are the key enabling technology, become more reliable, more durable, and less expensive. This paper examines the prospects for hydrogen as a universal energy-provider and considers the impact that its introduction might have on the present deployment of lead-acid batteries in mobile, stationary and road transportation applications.

  19. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    Richards, Justin Frederick

    2015-01-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  20. New developments in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J

    1982-01-01

    Practical, high energy density alternatives to the lead-acid battery are considered for both vehicular and utility load-leveling use, in view of year 2000 potential markets. After demonstrating the high costs and low energy densities and life cycles of lead/acid, nickel/iron and nickel/zinc systems, as well as batteries using gaseous electrodes such as the nickel/hydrogen system employed by communication satellites and those taking advantage of light metals like lithium and sodium, a description is given of the design features and operational characteristics of the sodium/sulfur battery. Attention is given to both internal and external sodium volume battery configurations, both of which employ beta alumina as a solid electrolyte with high sodium ion conductivity, and molten sodium and sulfur at 350 C. It is the thermal insulation of the sodium/sulfur battery that makes its application to electric vehicles difficult, despite a very high energy density.

  1. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  2. Response of lead-acid batteries to chopper-controlled discharge: Preliminary results

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses up to 25 percent compared to constant current discharges at the same average discharge current of 100 amperes. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-ampere pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.

  3. Second International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-24

    This is a collection of essays presented at the above-named conference held at New Port Beach, U.S., from July 24 through 28, 1989. At the utility energy storage session, it is found that the 100kW-capable Na-S battery system of the Kansai Electric Power Company, Inc., works effectively in levelling peakloads at storage efficiency of 70%. A Chino lead-acid battery system is also described. A lead-acid battery system of the BEWAG Corporation of Germany equipped with tubular electrodes is described. For application by the consuming party, system behavior relative to duty cycle control, sudden request for energy storage, power factor, and load adjustment is discussed. Use of a valve-controlled lead-acid battery is introduced, which is to be used as a stand-by system (such as an uninterruptible power supply) or for certain types of cyclic duties. At the 4th session, economic and technical models are exhibited. Computer-aided peakload prediction, battery storage system technology, economic parameters, profitability, etc., are explained for use by the consuming party in a peakload shaving battery system. The Zn/Br battery, redox-flow battery, and other advanced technologies are also presented. (NEDO)

  4. Status of life cycle inventories for batteries

    International Nuclear Information System (INIS)

    Sullivan, J.L.; Gaines, L.

    2012-01-01

    Highlights: ► Cradle-to-gate (ctg) energy and emissions compared among five battery systems. ► Calculate material production values fall well within observed ranges. ► Values based on recycled materials in poor agreement with observed ranges. ► Material production data needed for recycled and some virgin battery materials. ► Battery manufacturing data range widely and hence also need updating. - Abstract: This study reviews existing life-cycle inventory (LCI) results for cradle-to-gate (ctg) environmental assessments of lead-acid (PbA), nickel–cadmium (NiCd), nickel-metal hydride (NiMH), sodium-sulfur (Na/S), and lithium-ion (Li-ion) batteries. LCI data are evaluated for the two stages of cradle-to-gate performance: battery material production and component fabrication and assembly into purchase ready batteries. Using existing production data on battery constituent materials, overall battery material production values were calculated and contrasted with published values for the five battery technologies. The comparison reveals a more prevalent absence of material production data for lithium ion batteries, though such data are also missing or dated for a few important constituent materials in nickel metal hydride, nickel cadmium, and sodium sulfur batteries (mischmetal hydrides, cadmium, β-alumina). Despite the overall availability of material production data for lead acid batteries, updated results for lead and lead peroxide are also needed. On the other hand, LCI data for the commodity materials common to most batteries (steel, aluminum, plastics) are up to date and of high quality, though there is a need for comparable quality data for copper. Further, there is an almost total absence of published LCI data on recycled battery materials, an unfortunate state of affairs given the potential benefit of battery recycling. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and

  5. Stockage pour les énergies renouvelables : évaluation et modélisation de la batterie plomb-acide

    OpenAIRE

    Coupan , Frédéric

    2017-01-01

    This work has two parts. A first more "strategic" part concerning the importance of storage for renewable energies. An increasingly technical and increasingly precise part concerning the positioning of the electrochemical storage, the position of the Lead Acid battery, the technological variants, to arrive at a detailed electrochemical modeling of the type of battery retained.In the first section, Chapter 1 of the thesis highlights the good positioning of electrochemical storage for the needs...

  6. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  7. Remaining Sites Verification Package for the 120-B-1, 105-B Battery Acid Sump. Attachment to Waste Site Reclassification Form 2006-057

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2006-01-01

    The 120-B-1 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of a concrete battery acid sump that was used from 1944 to 1969 to neutralize the spent sulfuric acid from lead cell batteries of emergency power packs and the emergency lighting system. The battery acid sump was associated with the 105-B Reactor Building and was located adjacent to the building's northwest corner. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River

  8. Effect of additives on the performance of negative lead-acid battery electrodes during formation and partial state of charge operation

    Czech Academy of Sciences Publication Activity Database

    Křivík, P.; Micka, Karel; Bača, P.; Tonar, K.; Tošer, P.

    2012-01-01

    Roč. 209, JUL 1 2012 (2012), s. 15-19 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : load acid battery electrodes * Doping with carbon * PSoC cycling Subject RIV: CG - Electrochemistry Impact factor: 4.675, year: 2012

  9. VRLA automotive batteries for stop&go and dual battery systems

    Science.gov (United States)

    May, G. J.; Calasanzio, D.; Aliberti, R.

    The electrical power requirements for vehicles are continuing to increase and evolve. A substantial amount of effort has been directed towards the development of 36/42 V systems as a route to higher power with reduced current levels but high implementation costs have resulted in the introduction of these systems becoming deferred. In the interim, however, alternator power outputs at 14 V are being increased substantially and at the same time the requirements for batteries are becoming more intensive. In particular, stop&go systems and wire-based vehicle systems are resulting in new demands. For stop&go, the engine is stopped each time the vehicle comes to rest and is restarted when the accelerator is pressed again. This results in an onerous duty cycle with many shallow discharge cycles. Flooded lead-acid batteries cannot meet this duty cycle and valve-regulated lead-acid (VRLA) batteries are needed to meet the demands that are applied. For wire-based systems, such as brake-by-wire or steer-by-wire, electrical power has become more critical and although the alternator and battery provide double redundancy, triple redundancy with a small reserve battery is specified. In this case, a small VRLA battery can be used and is optimised for standby service rather than for repeated discharges. The background to these applications is considered and test results under simulated operating conditions are discussed. Good performance can be obtained in batteries adapted for both applications. Battery management is also critical for both applications: in stop&go service, the state-of-charge (SOC) and state-of-health (SOH) need to be monitored to ensure that the vehicle can be restarted; for reserve or back-up batteries, the SOC and SOH are monitored to verify that the battery is always capable of carrying out the duty cycle if required. Practical methods of battery condition monitoring will be described.

  10. Bipolar electrochemistry.

    Science.gov (United States)

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Vijayakumar, M; Luo, Qingtao; Lloyd, Ralph; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-21

    The microstructure of perfluorinated sulfonic acid proton-exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox-flow battery (VRB). In this work, Nafion membranes with various equivalent weights ranging from 1000 to 1500 are prepared and the morphology-property-performance relationship is investigated. NMR and small-angle X-ray scattering studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium-ion permeation. Their performances are further characterized as VRB membranes. On the basis of this understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50 mA·cm -2 ) was achieved along with a stable cyclical capacity over prolonged cycling.

  12. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  13. Performance Comparison of Rechargeable Batteries for Stationary Applications (Ni/MH vs. Ni–Cd and VRLA)

    OpenAIRE

    Michael A. Zelinsky; John M. Koch; Kwo-Hsiung Young

    2017-01-01

    The stationary power market, particularly telecommunications back-up (telecom) applications, is dominated by lead-acid batteries. A large percentage of telecom powerplants are housed in outdoor enclosures where valve-regulated lead-acid (VRLA) batteries are commonly used because of their low-maintenance design. Batteries in these enclosures can be exposed to temperatures which can exceed 70 °C, significantly reducing battery life. Nickel–cadmium (Ni–Cd) batteries have traditionally been deplo...

  14. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  15. Study on the influence of storage life expectancy of the Valve Regulated Lead-Acid - VRLA battery; Estudo sobre a influencia da estocagem na expectativa de vida util da bateria chumbo-acida regulada por valvula - VRLA

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A. Pinhel [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)], Email: pinhel@furnas.com.br; Rosolem, Maria de F.N.C.; Santos, G.R. dos; Frare, P.T.; Arioli, V.T.; Beck, R.F. [Telecomunicacoes do CPqD, Campinas, SP (Brazil)], Emails: mfatima@cpqd.com.br, glauco@cpqd.com.br, pfrare@cpqd.com.br, varioli@cpqd.com.br, raul@cpqd.com; Soares, L.A., Email: luiz.las@gmail.com

    2009-07-01

    When valve regulated lead-acid (VRLA) batteries are acquired and are not placed in operation immediately and remain stored in open circuit, they can loose autonomy and life. In these cases the current practice recommends, that the batteries receive quarterly recharges, which is often unfeasible. Given this scenario, Furnas by the CPqD, decided to verify the real impact of stockpiling in the expectancy of VRLAs battery life to establish the veracity of practice adopted or establish new procedures. The influences of time, the temperature of the local storage and application of charges are evaluated. It was also studied the application of techniques for measuring the internal resistance battery (conductance and impedance) for degradation monitoring and identification of the need for application of charges. As final products, it was developed novel diagnostic techniques that allow more accurate monitoring of the storage process.

  16. Acute lead intoxication in a female battery worker: Diagnosis and management

    Directory of Open Access Journals (Sweden)

    Hadjichristodoulou Christos

    2010-07-01

    Full Text Available Abstract Lead is a significant occupational and environmental hazard. Battery industry is one of the settings related to lead intoxication. Published information on the use of oral chelating agents for the treatment of anaemia in the context of acute lead intoxication is limited. The patient was a 33 year immigrant female worker in a battery manufacture for 3 months. She complained for malaise that has been developed over the past two weeks. Pallor of skin and conjunctiva was the only sign found in physical examination. The blood test on admission revealed normochromic anaemia. Endoscopic investigation of the gastrointestinal system was negative for bleeding. The bone marrow biopsy was unrevealing. At baseline no attention has been paid to patient's occupational history. Afterwards the patient's occupational history has been re-evaluated and she has been screened for lead intoxication. The increased levels of the lead related biomarkers of exposure and effect confirmed the diagnosis. The patient received an oral chelating agent and an improvement in clinical picture, and levels of haematological and lead related biochemical parameters have been recorded. No side effect and no rebound effect were observed. This case report emphasizes the importance of the occupational history in the context of the differential diagnosis. Moreover, this report indicates that lead remains a significant occupational hazard especially in the small scale battery industry

  17. Acute lead intoxication in a female battery worker: Diagnosis and management.

    Science.gov (United States)

    Dounias, George; Rachiotis, George; Hadjichristodoulou, Christos

    2010-07-07

    Lead is a significant occupational and environmental hazard. Battery industry is one of the settings related to lead intoxication. Published information on the use of oral chelating agents for the treatment of anaemia in the context of acute lead intoxication is limited. The patient was a 33 year immigrant female worker in a battery manufacture for 3 months. She complained for malaise that has been developed over the past two weeks. Pallor of skin and conjunctiva was the only sign found in physical examination. The blood test on admission revealed normochromic anaemia. Endoscopic investigation of the gastrointestinal system was negative for bleeding. The bone marrow biopsy was unrevealing.At baseline no attention has been paid to patient's occupational history. Afterwards the patient's occupational history has been re-evaluated and she has been screened for lead intoxication. The increased levels of the lead related biomarkers of exposure and effect confirmed the diagnosis. The patient received an oral chelating agent and an improvement in clinical picture, and levels of haematological and lead related biochemical parameters have been recorded. No side effect and no rebound effect were observed. This case report emphasizes the importance of the occupational history in the context of the differential diagnosis. Moreover, this report indicates that lead remains a significant occupational hazard especially in the small scale battery industry.

  18. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  19. Assessment and Remediation of Lead Contamination in Senegal

    OpenAIRE

    Donald E. Jones, MS; Assane Diop, BS; Meredith Block, MPA; Alexander Smith-Jones, BS; Andrea Smith-Jones, MS

    2011-01-01

    Background. This paper describes the impact of improper used lead-acid battery (ULAB) handling and disposal. A specific case study is presented describing the field assessment and remediation of lead contamination in a community in Senegal where at least 18 children died from lead poisoning. Objectives. The assessment and remediation process utilized to address the Senegal lead contamination has been used as a model approach to solving used lead-acid battery (ULAB) contamination in other e...

  20. Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.

  1. Development of a Woven-Grid Quasi-BiPolar Battery

    National Research Council Canada - National Science Library

    Tokumaru, P

    1998-01-01

    .... Even so, quasi-bipolar batteries can be designed, with ten times better thermal uniformity, that meet or exceed current state of the art hybrid electric vehicle battery pack performance, even using...

  2. Used Battery Collection and Recycling

    International Nuclear Information System (INIS)

    Pistoia, G.; Wiaux, J.P.; Wolsky, S.P.

    2001-01-01

    This book covers all aspects of spent battery collection and recycling. First of all, the legislative and regulatory updates are addressed and the main institutions and programs worldwide are mentioned. An overview of the existing battery systems, of the chemicals used in them and their hazardous properties is made, followed by a survey of the major industrial recycling processes. The safety and efficiency of such processes are stressed. Particular consideration is given to the released emissions, i.e. to the impact on human health and the environment. Methods for the evaluation of this impact are described. Several chapters deal with specific battery chemistries: lead-acid, nickel-cadmium and nickel-metal hydride, zinc (carbon and alkaline), lithium and lithium-ion. For each type of battery, details are provided on the collection/recycling process from the technical, economic and environmental viewpoint. The chemicals recoverable from each process and remarketable are mentioned. A chapter deals with recovering of the large batteries powering electric vehicles, e.g. lead-acid, nickel-metal hydride and lithium-ion. The final chapter is devoted to the important topic of collecting batteries from used electrical and electronic equipment. The uncontrolled disposal of these devices still containing their batteries contributes to environmental pollution

  3. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Chang

    2016-05-01

    Full Text Available All-vanadium redox flow batteries (VRBs are potential energy storage systems for renewable power sources because of their flexible design, deep discharge capacity, quick response time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional design, a flow field is machined on two electrically insulated frames with a graphite plate in between. A traditional bipolar plate (BP of a VRB consists of many components, and thus, the assembly process is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize the manufacturing cost. First, the effects of the mold design and injection parameters on frame formability were analyzed by simulation. Second, a new graphite plate design for integral molding was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show that gate position significantly affects air traps and the maximum volume shrinkage occurs at the corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within the frame.

  4. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Luo, Qingtao; Lloyd, Ralph B.; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent L.; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-23

    The microstructure of the perfluorinated sulfonic acid proton exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox flow battery (VRB). In this work, Nafion membranes with various equivalent weights (EW) ranging from 1000 to 1500 are prepared and the structure-property-performance relationship is investigated. Nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium ion permeation. Their performances are further characterized as VRB membranes. Based on those understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion® 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50mA∙cm-2) was achieved along with a stable cyclical capacity over prolonged cycling.

  5. Exhaust lead-acid batteries recycling as a tool of the environmental protection policy. Energy, environmental and economic issues; Il riciclaggio delle batterie al piombo-acido esauste come strumento della politica di salvaguardia ambiental. Aspetti energetici, ambientali ed economici

    Energy Technology Data Exchange (ETDEWEB)

    Picini, P; Battista, A [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy)

    2001-07-01

    Lead is an heavy metal that has a major impact on human health and his removal from the environment is an important action for its protection. The aim of the present work is to provide a framework of the Italian lead recycling with respect to the economic and environmental aspects of COBAT activities (COBAT is the Mandatory Consortium to collect and recycle the exhaust lead-acid batteries and lead wastes). In order to better understand the context in which COBAT works, some statistical data on the lead production, consumption and end uses in Italy and in the world are provided. An estimate of the energy consumptions and the environmental impact related to Italian lead production was also carried out. [Italian] Il piombo e' uno dei metalli pesanti a maggiore impatto ambientale e sanitario e la sua rimozione dall'ambiente costituisce un'importante azione di protezione e tutela della salute umana. Lo scopo del presente lavoro e' quello di fornire un quadro di riferimento relativo al riciclaggio del piombo in Italia evidenziandone gli aspetti ambientali ed economici in relazione alle attivita' condotte dal COBAT (Consorzio Obbligatorio delle Batterie Esauste e dei rifiuti piombosi). In tal senso, per disporre di una visione piu' completa del contesto in cui si inserisce l'attivita' del Consorzio, vengono forniti alcuni dati di carattere statistico sulla produzione, sul consumo e sugli utilizzi del piombo in Italia e nel mondo e viene effettuata una stima dei consumi energetici e dell'impianto ambientale associati alla produzione di piombo nazionale.

  6. Exhaust lead-acid batteries recycling as a tool of the environmental protection policy. Energy, environmental and economic issues; Il riciclaggio delle batterie al piombo-acido esauste come strumento della politica di salvaguardia ambiental. Aspetti energetici, ambientali ed economici

    Energy Technology Data Exchange (ETDEWEB)

    Picini, P.; Battista, A. [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy)

    2001-07-01

    Lead is an heavy metal that has a major impact on human health and his removal from the environment is an important action for its protection. The aim of the present work is to provide a framework of the Italian lead recycling with respect to the economic and environmental aspects of COBAT activities (COBAT is the Mandatory Consortium to collect and recycle the exhaust lead-acid batteries and lead wastes). In order to better understand the context in which COBAT works, some statistical data on the lead production, consumption and end uses in Italy and in the world are provided. An estimate of the energy consumptions and the environmental impact related to Italian lead production was also carried out. [Italian] Il piombo e' uno dei metalli pesanti a maggiore impatto ambientale e sanitario e la sua rimozione dall'ambiente costituisce un'importante azione di protezione e tutela della salute umana. Lo scopo del presente lavoro e' quello di fornire un quadro di riferimento relativo al riciclaggio del piombo in Italia evidenziandone gli aspetti ambientali ed economici in relazione alle attivita' condotte dal COBAT (Consorzio Obbligatorio delle Batterie Esauste e dei rifiuti piombosi). In tal senso, per disporre di una visione piu' completa del contesto in cui si inserisce l'attivita' del Consorzio, vengono forniti alcuni dati di carattere statistico sulla produzione, sul consumo e sugli utilizzi del piombo in Italia e nel mondo e viene effettuata una stima dei consumi energetici e dell'impianto ambientale associati alla produzione di piombo nazionale.

  7. Development and Testing of an UltraBattery-Equipped Honda Civic

    Energy Technology Data Exchange (ETDEWEB)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  8. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  9. Battery requirements and technologies for micro hybrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Spijker, Engbert [Ford Forschungszentrum Aachen GmbH (Germany); Kok, Daniel [Ford Dunton Engineering Center, Basildon, Essex (United Kingdom)

    2010-07-01

    Micro hybrids are part of all European carmakers' CO{sub 2} roadmaps and will get high market share, becoming a standard fit for mainstream powertrains. Starting from vehicle level, the paper outlines system requirements and typical technical solutions. A case study demonstrates potential and limitations of regenerative braking in micro hybrid systems. The lead/acid battery dynamic charge acceptance (DCA) is a major limitation for efficient energy recuperation, and hence fuel and CO{sub 2} saving in micro hybrids. Strengths and weaknesses of the lead/acid battery are discussed with respect to both classical automotive as well as the new micro hybrid applications. The latter impose characteristic high demands on the starting - lighting - ignition (SLI) battery or the storage system that is going to replace it, namely extensive shallow cycling at partial state of charge (PSOC) and significantly improved DCA. Delivering these additional functions robustly and reliably at minimum on-cost for high-volume applications is the key challenge that the automotive lead/acid battery industry is currently confronted with. (orig.)

  10. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell.

    Science.gov (United States)

    Pan, Junqing; Sun, Yanzhi; Li, Wei; Knight, James; Manthiram, Arumugam

    2013-01-01

    The automobile industry consumed 9 million metric tons of lead in 2012 for lead-acid batteries. Recycling lead from spent lead-acid batteries is not only related to the sustainable development of the lead industry, but also to the reduction of lead pollution in the environment. The existing lead pyrometallurgical processes have two main issues, toxic lead emission into the environment and high energy consumption; the developing hydrometallurgical processes have the disadvantages of high electricity consumption, use of toxic chemicals and severe corrosion of metallic components. Here we demonstrate a new green hydrometallurgical process to recover lead based on a hydrogen-lead oxide fuel cell. High-purity lead, along with electricity, is produced with only water as the by-product. It has a >99.5% lead yield, which is higher than that of the existing pyrometallurgical processes (95-97%). This greatly reduces lead pollution to the environment.

  11. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance.

    Science.gov (United States)

    Ross, Brian M; Maxwell, Ross; Glen, Iain

    2011-03-30

    Oxidative stress has been reported to be elevated in mental illness. Preliminary evidence suggests this phenomenon can be assessed non-invasively by determining breath levels of the omega-3 polyunsaturated fatty acid (PUFA) oxidation product ethane. This study compares alkane levels in chronic, medicated, patients with schizophrenia or bipolar disorder with those in healthy controls. Both ethane and butane levels were significantly increased in patients with schizophrenia or bipolar disorder, although elevated butane levels were likely due to increased ambient gas concentrations. Ethane levels were not correlated with symptom severity or with erythrocyte omega-3 PUFA levels. Our results support the hypothesis that oxidative stress is elevated in patients with schizophrenia and bipolar disorder leading to increased breath ethane abundance. This does not appear to be caused by increased abundance of omega-3 PUFA, but rather is likely due to enhanced oxidative damage of these lipids. As such, breath hydrocarbon analysis may represent a simple, non-invasive means to monitor the metabolic processes occurring in these disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Method of handling of scrap lead from lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sytschev, A P; Kim, G V; Larin, V F; Sidorova, G D; Vicharev, I G; Kuur, V P; Achmetov, R S; Moiseev, G L; Maslov, V I; Kabatschek, V G

    1979-12-13

    Scrap lead and the casings of accumulators are mined and molten together in oxidixing atmosphere at a temperature of 1300 to 1500/sup 0/C. The lead oxide contained in the melt is then reduced to blue lead. Due to the combustion of the accumulator casings consisting of organic substances the fuel consumption in the melting process is reduced in accordance. The oxidizing atmosphere in the melting process is produced by use of air or oxygen.

  13. A randomized clinical trial of high eicosapentaenoic acid omega-3 fatty acids and inositol as monotherapy and in combination in the treatment of pediatric bipolar spectrum disorders: a pilot study.

    Science.gov (United States)

    Wozniak, Janet; Faraone, Stephen V; Chan, James; Tarko, Laura; Hernandez, Mariely; Davis, Jacqueline; Woodworth, K Yvonne; Biederman, Joseph

    2015-11-01

    We conducted a 12-week, randomized, double-blind, controlled clinical trial to evaluate the effectiveness and tolerability of high eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) omega-3 fatty acids and inositol as monotherapy and in combination in children with bipolar spectrum disorders. Participants were children 5-12 years of age meeting DSM-IV diagnostic criteria for bipolar spectrum disorders (bipolar I or II disorder or bipolar disorder not otherwise specified [NOS]) and displaying mixed, manic, or hypomanic symptoms. Subjects with severe illness were excluded. Subjects were randomized to 1 of 3 treatment arms: inositol plus placebo, omega-3 fatty acids plus placebo, and the combined active treatment of omega-3 fatty acids plus inositol. Data were collected from February 2012 to November 2013. Twenty-four subjects were exposed to treatment (≥ 1 week of study completed) (inositol [n = 7], omega-3 fatty acids [n = 7], and omega-3 fatty acids plus inositol [n =10]). Fifty-four percent of the subjects completed the study. Subjects randomized to the omega-3 fatty acids plus inositol arm had the largest score decrease comparing improvement from baseline to end point with respect to the Young Mania Rating Scale (P < .05). Similar results were found for the Children's Depression Rating Scale (P < .05) and the Brief Psychiatric Rating Scale (P <.05). Results of this pilot randomized, double-blind, controlled trial suggest that the combined treatment of omega-3 fatty acids plus inositol reduced symptoms of mania and depression in prepubertal children with mild to moderate bipolar spectrum disorders. Results should be interpreted in light of limitations, which include exclusion of severely ill subjects, 54% completion rate, and small sample size. ClinicalTrials.gov identifier: NCT01396486. © Copyright 2015 Physicians Postgraduate Press, Inc.

  14. Standby battery requirements for telecommunications power

    Energy Technology Data Exchange (ETDEWEB)

    May, G.J. [The Focus Partnership, 126 Main Street, Swithland, Loughborough, Leics LE12 8TJ (United Kingdom)

    2006-08-25

    The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed

  15. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  16. Wheelchair batteries. II: Capacity, sizing, and life.

    Science.gov (United States)

    Kauzlarich, J J

    1990-01-01

    The characteristics of lead-acid batteries for wheelchairs in terms of a new empirical equation for the capacity, application of the Palmgren-Miner Rule for sizing the battery, and the effect of depth of discharge on the life cycles is presented. A brief section about selecting an economical battery for an electric wheelchair is included.

  17. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  18. Preparation of bipolar membranes by electrospinning

    International Nuclear Information System (INIS)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen

    2017-01-01

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  19. Preparation of bipolar membranes by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen, E-mail: twxu@ustc.edu.cn

    2017-01-15

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  20. Portable Battery Charger Berbasis Sel Surya

    OpenAIRE

    Anto, Budhi; Hamdani, Edy; Abdullah, Rizki

    2014-01-01

    A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power ...

  1. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  3. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    María E. Riveros

    2018-06-01

    Full Text Available Bipolar disorder (BD is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.

  4. Does lead have a future? A twenty-year vision

    International Nuclear Information System (INIS)

    Stewart, D.M.

    1994-01-01

    There is a clear interdependence between the lead-producing industry and battery producers. An ever-increasing percentage of total lead production is consumed in batteries. Trends in lead production, consumption and uses, as well as lead prices are reviewed. A discussion is given of the impact of environmental pressures from government authorities and public opinion. A number of significant future opportunities are identified for the battery industry (and, hence, the lead industry) that together with the convenience and the cost competitiveness of the lead/acid battery ensures a strong future for the industry into the 21st century. (orig.)

  5. 75 Ah and 10 boilerplate nickel-hydrogen battery designs and test results

    Science.gov (United States)

    Daman, M. E.; Manzo, Michelle A.; Chang, R.; Cruz, E.

    1992-01-01

    The results of initial characterization testing of 75 Ah actively cooled bipolar battery designs and 10 boilerplate nickel-hydrogen battery designs are presented. The results demonstrate the extended cycle life capability of the Ah batteries and the high capacity utilizations at various discharge rates of the nickel-hydrogen batteries.

  6. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  7. Determination of the load state of lead-acid batteries using neural networks; Determinacion del estado de carga de baterias plomo-acido utilizando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Cristin V, Miguel A; Ortega S, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    The charge of lead-acid batteries (LAB), as in any other type of batteries, consists of replacing the energy consumed during the discharge. Nevertheless, as no physical or chemical process is good enough to totality recharge a battery, it is necessary to supply to it more than the 100% of the energy demanded during its discharge. A critical factor to make a suitable load control of the batteries is to determine its own state of load. That is to say, to have an efficient load control, it is necessary to count on means that allow to accurately determining the residual capacity of the battery to deliver load. This one is the one of the aspects of greater interest in the research centers around world. For this reason, in this work it was pretended to develop a calculation algorithm of the state of load of batteries based on a fuzzy-neural network that could calculate the state of load without using the battery current as an input. This is because one of the main problems for the designers of battery load controllers is the correct supervision of the current that circulates around the system in all the rank of operation of the same one because the sensors do not have a linear behavior. [Spanish] La recarga de baterias plomo-acido (BPA), como cualquier otro tipo de baterias, consiste en reponer la energia consumida durante la descarga. Sin embargo, como ningun proceso fisico o quimico es lo bastante eficiente para recargar a totalidad una bateria, es necesario suministrarle mas del 100% de la energia demandada durante su descarga. Un factor critico para realizar un adecuado control de carga de las baterias, es determinar su propio estado de carga. Es decir, para tener un control de carga eficiente, es necesario contar con un medio que permita determinar con precision la capacidad remanente de la bateria para entregar carga. Este es uno de los aspectos de mayor interes en los centros de investigacion alrededor el mundo. Por tal razon, en este trabajo se propuso

  8. DC Batteries in NPP, Present and Future Solutions

    International Nuclear Information System (INIS)

    Bonduelle, Gery

    2015-01-01

    Electrical batteries are important for addressing the coping time in SBO condition. An overview of different types of batteries with their pros and cons was given. Today, lead acid type still seems to be the most reliable technology

  9. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits.

    Science.gov (United States)

    Petito Boyce, Catherine; Sax, Sonja N; Cohen, Joel M

    2017-08-01

    Inhalation plays an important role in exposures to lead in airborne particulate matter in occupational settings, and particle size determines where and how much of airborne lead is deposited in the respiratory tract and how much is subsequently absorbed into the body. Although some occupational airborne lead particle size data have been published, limited information is available reflecting current workplace conditions in the U.S. To address this data gap, the Battery Council International (BCI) conducted workplace monitoring studies at nine lead acid battery manufacturing facilities (BMFs) and five secondary smelter facilities (SSFs) across the U.S. This article presents the results of the BCI studies focusing on the particle size distributions calculated from Personal Marple Impactor sampling data and particle deposition estimates in each of the three major respiratory tract regions derived using the Multiple-Path Particle Dosimetry model. The BCI data showed the presence of predominantly larger-sized particles in the work environments evaluated, with average mass median aerodynamic diameters (MMADs) ranging from 21-32 µm for the three BMF job categories and from 15-25 µm for the five SSF job categories tested. The BCI data also indicated that the percentage of lead mass measured at the sampled facilities in the submicron range (i.e., lead) was generally small. The estimated average percentages of lead mass in the submicron range for the tested job categories ranged from 0.8-3.3% at the BMFs and from 0.44-6.1% at the SSFs. Variability was observed in the particle size distributions across job categories and facilities, and sensitivity analyses were conducted to explore this variability. The BCI results were compared with results reported in the scientific literature. Screening-level analyses were also conducted to explore the overall degree of lead absorption potentially associated with the observed particle size distributions and to identify key issues

  10. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  11. Test and data reduction algorithm for the evaluation of lead-acid battery packs

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, D.

    1986-01-15

    Experience from the DOE Electric Vehicle Demonstration Project indicated severe battery problems associated with driving electric cars in temperature extremes. The vehicle batteries suffered from a high module failure rate, reduced capacity, and low efficiency. To assess the nature and the extent of the battery problems encountered at various operating temperatures, a test program was established at the University of Alabama in Huntsville (UAH). A test facility was built that is based on Propel cycling equipment, the Hewlett Packard 3497A Data Acquisition System, and the HP85F and HP87 computers. The objective was to establish a cost effective facility that could generate the engineering data base needed for the development of thermal management systems, destratification systems, central watering systems and proper charge algorithms. It was hoped that the development and implementation of these systems by EV manufacturers and fleet operators of EVs would eliminate the most pressing problems that occurred in the DOE EV Demonstration Project. The data reduction algorithm is described.

  12. Humic acid batteries derived from vermicomposts at different C/N ratios

    Science.gov (United States)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  13. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian; Lin, Nan; Zhang, Wenli; Lin, Zheqi; Zhang, Ziqing; Wang, Yue; Shi, Jun; Bao, Jinpeng; Lin, Haibo

    2018-01-01

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  14. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian

    2018-03-27

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  15. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    Science.gov (United States)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  16. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  17. Thermal management of electric vehicle`s batteries using phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Rafalovich, A.; Longardner, W.; Keller, G.; Schmidter, T.C. [SHAPE, Inc., Indianapolis (United States); Fleming, F. [Hawker Energy Products Ltd, Newport (United Kingdom)

    1994-12-31

    SHAPE, Inc. (USA) and Hawker Energy Products Ltd. (UK) have successfully developed a passive thermal management system for sealed lead acid batteries featuring Phase Change Materials (PCM`s). The system utilizes a reversible, high energy density PCM with a transition temperature that is comparable to the optimum operating temperature of lead acid batteries. SHAPE`s thermal storage, containing non-toxic, non-hazardous, non-flammable PCM, absorbs excess heat generated by a battery and thus provides a substantial improvement in thermal stability, operating performance, and battery life. This thermal management system also assists in maintaining higher battery temperatures in cold weather environments. A mathematical model has been developed to accurately predict the thermal behavior of a battery, with and without PCM, during cycling. The results of this model have been verified through experimental battery cycling as well as through actual battery testing. The success of the model permits analysis of a thermally managed battery through an extreme range of ambient temperatures (-40 deg C to 40 deg C). (orig.)

  18. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion

    Science.gov (United States)

    1984-06-01

    Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.

  19. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  20. Progress in batteries and solar cells. Volume 5

    International Nuclear Information System (INIS)

    Shimotake, H.

    1984-01-01

    The 89 articles in this book are on research in batteries, solar cells and fuel cells. Topics include uses of batteries in electric powered vehicles, load management in power plants, batteries for miniature electronic devices, electrochemical processes, and various electrode and electrolyte materials, including organic compounds. Types of batteries discussed are lithium, lead-acid, manganese dioxide, Silver cells, Air cells, Nickel cells and solar cells. Problems of recharging and life cycle are also discussed

  1. Abnormalities in the fatty acid composition of the postmortem entorhinal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Hamazaki, Tomohito; Inadera, Hidekuni

    2013-11-30

    Previous studies of postmortem orbitofrontal cortex have shown abnormalities in levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), in individuals with schizophrenia, bipolar disorder, and major depressive disorder (MDD). We have previously measured PUFA levels in the postmortem hippocampus from patients with schizophrenia or bipolar disorder and control subjects; however, we found no significant differences between the groups except for small changes in n-6 PUFAs. Furthermore, our study of the postmortem amygdala showed no significant differences in major PUFAs in individuals with schizophrenia, bipolar disorder, or MDD in comparison with controls. In the present study, we investigated whether there were any changes in PUFAs in the entorhinal cortexes of patients with schizophrenia (n=15), bipolar disorder (n=15), or MDD (n=15) compared with unaffected controls (n=15) matched for characteristics including age and sex. In contrast to previous studies of the orbitofrontal cortex and hippocampus, we found no significant differences in major PUFAs. However, we found a 34.3% decrease in docosapentaenoic acid (DPA) (22:5n-3) in patients with MDD and an 8.7% decrease in docosatetraenoic acid (22:4n-6) in those with schizophrenia, compared with controls. Changes in PUFAs in patients with these psychiatric disorders may be specific to certain brain regions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Thermal management of batteries

    Science.gov (United States)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  3. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    Science.gov (United States)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  4. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  5. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  6. Improved electrolyte for zinc-bromine flow batteries

    Science.gov (United States)

    Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.

    2018-04-01

    Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.

  7. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  8. Lead evaluation in blood of workers of batteries industries; Evaluacion de plomo en sangre de trabajadores de industrias de baterias

    Energy Technology Data Exchange (ETDEWEB)

    Valbuena P, John J; Duarte, Martha; Clara, Marciales

    2001-07-01

    In order to evaluate the occupational risk of exposure to lead of employees working in three small industries that recycle and manufacture acid lead batteries, the lead and zinc protoporphyrine (ZPP) blood content was determined. The determination was also performed on people not exposed in order to establish comparison values. Venous blood was collected in metal free heparinized glass tubes. Lead was analyzed by atomic absorption with graphite furnace and ZPP by fluorescence. According to Colombian legislation, it was found that around 31 % workers in this type of industries are in dangerous and intoxication exposure. It was also found that 91 % of workers exceed the level of 30 mg Pb/dL blood established as standard by the American Conference governmental Industrial Hygienists (ACGIH)

  9. Extraction of uranium from wet process phosphoric acid in centrifugal and mixer-settler batteries

    International Nuclear Information System (INIS)

    Poczynajlo, A.; Giers, M.

    1986-01-01

    Five stage countercurrent batteries were comparatively applied for the extraction of uranium from wet phosphoric acid (Chemical Works, Police) in semitechnical scale. As an extractant phase the 0.16 M equimolar solution of mono- and dinonylphenyolphosphoric acids in kerosene was used. The optimum hydrodynamic and extraction conditions for the batteries were found. Process efficiencies of the apparatus were also determined. 5 refs., 5 figs., 2 tabs. (author)

  10. High rate partial-state-of-charge operation of VRLA batteries

    Science.gov (United States)

    Moseley, Patrick T.

    The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in

  11. A review of battery life-cycle analysis : state of knowledge and critical needs.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  12. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  13. Validity and reliability of the Cognitive Complaints in Bipolar Disorder Rating Assessment (COBRA) in Japanese patients with bipolar disorder.

    Science.gov (United States)

    Toyoshima, Kuniyoshi; Fujii, Yutaka; Mitsui, Nobuyuki; Kako, Yuki; Asakura, Satoshi; Martinez-Aran, Anabel; Vieta, Eduard; Kusumi, Ichiro

    2017-08-01

    In Japan, there are currently no reliable rating scales for the evaluation of subjective cognitive impairment in patients with bipolar disorder. We studied the relationship between the Japanese version of the Cognitive Complaints in Bipolar Disorder Rating Assessment (COBRA) and objective cognitive assessments in patients with bipolar disorder. We further assessed the reliability and validity of the COBRA. Forty-one patients, aged 16-64, in a remission period of bipolar disorder were recruited from Hokkaido University Hospital in Sapporo, Japan. The COBRA (Japanese version) and Frankfurt Complaint Questionnaire (FCQ), the gold standard in subjective cognitive assessment, were administered. A battery of neuropsychological tests was employed to measure objective cognitive impairment. Correlations among the COBRA, FCQ, and neuropsychological tests were determined using Spearman's correlation coefficient. The Japanese version of the COBRA had high internal consistency, good retest reliability, and concurrent validity-as indicated by a strong correlation with the FCQ. A significant correlation was also observed between the COBRA and objective cognitive measurements of processing speed. These findings are the first to demonstrate that the Japanese version of the COBRA may be clinically useful as a subjective cognitive impairment rating scale in Japanese patients with bipolar disorder. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. The Use of a Quadripolar Left Ventricular Lead Increases Successful Implantation Rates in Patients with Phrenic Nerve Stimulation and/or High Pacing Thresholds Undergoing Cardiac Resynchronisation Therapy with Conventional Bipolar Leads

    Directory of Open Access Journals (Sweden)

    Marc-Alexander Ohlow, MD

    2013-03-01

    Conclusions: Excessively HPT and/or PNS are frequently encountered when conventional bipolar leads are used for CRT. A new quadripolar LV lead increases the rate of successful biventricular stimulation. Lower pacing threshold and freedom from PNS are maintained at follow-up.

  15. Epidemiology in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Caner Mutlu

    2015-12-01

    Full Text Available Childhood and adolescent bipolar disorder diagnosis has been increasing recently. Since studies evaluating attempted suicide rates in children and adolescents have shown bipolarity to be a significant risk factor, diagnosis and treatment of bipolarity has become a very important issue. Since there is a lack of specific diagnostic criteria for especially preadolescent samples and evaluations are made mostly symptomatically, suspicions about false true diagnosis and increased prevalence rates have emerged. This situation leads to controversial data about the prevalence rates of bipolar disorder in children and adolescents. The aim of this article is to review the prevalence of childhood and adolescent bipolar disorder in community, inpatient and outpatient based samples in literature.

  16. Beller Lectureship: Materials for Li & Na Batteries :A Computational Materials Science Point of View

    Science.gov (United States)

    Ahuja, Rajeev

    Energy storage has been a theme for scientists for two hundred years. The Lead acid battery research on batteries occupied some of the best minds of 19th century. Plante in 1859 invented lead acid battery which starts your car and ignites internal combustion which takes over the propulsion. Although the lead battery is over 150 years old but the origin of its open circuit voltage (OCV) of 2.1 V is still known. In present talk, I will show how one can explain the origin of OCV of 2.1 V based on foundations of relativistic quantum mechanics. Surprisingly, seems to be the first time its chemistry has been theoretically modeled from the first principles. The main message of this work is that most of the electro-motoric force of the common lead battery comes from relativistic effects. In second part, I will provide an overview of the most recent theoretical studies undertaken by us in the field of materials for Li & Na ion batteries. For selected examples, I will show how ab initio calculations can be of use in the effort to reach a better understanding of battery materials and to occasionally also guide the search for new promising materials.

  17. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    Science.gov (United States)

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  18. Using Neutron-based techniques to investigate battery behaviour

    International Nuclear Information System (INIS)

    Pramudita, James C.; Goonetilleke, Damien; Sharma, Neeraj; Peterson, Vanessa K.

    2016-01-01

    The extensive use of portable electronic devices has given rise to increasing demand for reliable high energy density storage in the form of batteries. Today, lithium-ion batteries (LIBs) are the leading technology as they offer high energy density and relatively long lifetimes. Despite their widespread adoption, Li-ion batteries still suffer from significant degradation in their performance over time. The most obvious degradation in lithium-ion battery performance is capacity fade – where the capacity of the battery reduces after extended cycling. This talk will focus on how in situ time-resolved neutron powder diffraction (NPD) can be used to gain a better understanding of the structural changes which contribute to the observed capacity fade. The commercial batteries studied each feature different electrochemical and storage histories that are precisely known, allowing us to elucidate the tell-tale signs of battery degradation using NPD and relate these to battery history. Moreover, this talk will also showcase the diverse use of other neutron-based techniques such as neutron imaging to study electrolyte concentrations in lead-acid batteries, and the use of quasi-elastic neutron scattering to study Na-ion dynamics in sodium-ion batteries.

  19. A vision for the Asian battery industry

    Science.gov (United States)

    Billard, G.

    A very positive future is forecast for the battery manufacturing industry in Asia, and for the further development of sustainable and profitable long-term markets. In detail, it is argued that the lead/acid battery has a longer and more promising future than its detractors would like others to believe; that the supply of lead will remain fairly stable in both quantity and price; and that the regulatory and environmental pressures in other parts of the world can be turned to favour Asian manufacture, and to increase the global market share of the region.

  20. Biochemical effects of lead exposure on oxidative stress and antioxidant status of battery manufacturing workers of Western Maharashtra, India.

    Science.gov (United States)

    Ghanwat, Ganesh Haribhau; Patil, Arun Jalindar; Patil, Jyotsna A; Kshirsagar, Mandakini S; Sontakke, Ajit; Ayachit, Ram Krishna

    2016-03-01

    Lead induces oxidative stress and alters the antioxidant status of population exposed to high lead levels, i.e. battery manufacturing workers. The aim of this study was to know the current scenario of blood lead (PbB) levels and their effect on the oxidative stress parameter, i.e. serum lipid peroxide (LP), and antioxidant parameters, such as red blood cell (RBC)-superoxide dismutase (SOD), RBC-catalase (CAT), plasma ceruloplasmin (CP), and serum nitrite, of battery manufacturing workers. Forty-three battery manufacturing workers from Western Maharashtra, India, with ages between 19 and 42 years, were selected as study group and compared with 38 age-matched, healthy male subjects (control group). From both group subjects, 10 mL of blood sample was drawn by puncturing the antecubital vein, and PbB, serum LP, RBC-SOD, RBC-CAT, plasma CP, and serum nitrite were estimated using standard methods. The PbB levels of the battery manufacturing workers were significantly higher (pworkers as compared with the control subjects. Despite modern techniques used to reduce lead exposure in battery manufacturing workers, PbB levels remain high, inducing oxidative stress and altering the antioxidant status of battery manufacturing workers.

  1. Stabilization/solidification of battery debris ampersand lead impacted material at Schuylkill Metals, Plant City, Florida

    International Nuclear Information System (INIS)

    Anguiano, T.; Floyd, D.

    1997-01-01

    The Schuylkill Metals facility in Plant City Florida (SMPCI) operated as a battery recycling facility for approximately 13 years. During its operation, the facility disposed of battery components in surrounding wetland areas. In March of 1991 the U.S. EPA and SMPCI entered into a Consent Decree for the remediation of the SMPCI site using stabilization/solidification and on-site disposal. In November of 1994, ENTACT began remediation at the facility and to date has successfully stabilized/solidified over 228,000 tons of lead impacted battery components and lead impacted material. The ENTACT process reduces the size of the material to be treated to ensure that complete mixing of the phosphate/cement additive is achieved thereby promoting the chemical reactions of stabilization and solidification. ENTACT has met the following performance criteria for treated material at the SMPCI site: (1) Hydraulic Conductivity less than 1x10 -6 cm/s, (2) Unconfined Compressive Strength greater than 50 psi, (3) Lead, Cadmium, Arsenic, Chromium TCLP Leachability below hazardous levels

  2. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder.

    Science.gov (United States)

    Huber, Rebekah S; Kondo, Douglas G; Shi, Xian-Feng; Prescot, Andrew P; Clark, Elaine; Renshaw, Perry F; Yurgelun-Todd, Deborah A

    2018-01-01

    Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1 H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1 H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p NAA and GABA levels increased. Small sample size and lack of control for medications. These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  4. Proceedings of the fifth international seminar on battery waste management: Volume 5

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    These proceedings contain 26 papers covering the following aspects of battery waste management: regulatory policies; disposal options; recycling options; battery production; landfilling; environmental effects; and metals recovery. Some of the types of batteries discussed include: lead-acid, nickel-cadmium, lithium, and rechargeable alkaline. Papers have been processed separately for inclusion on the data base

  5. Neuropsychology, Social Cognition and Global Functioning Among Bipolar, Schizophrenic Patients and Healthy Controls: Preliminary Data

    Directory of Open Access Journals (Sweden)

    Elisabetta eCaletti

    2013-10-01

    Full Text Available This study aimed to determine the extent of impairment in social and non-social cognitive domains in an ecological context comparing bipolar (BD, schizophrenic patients (SKZ and healthy controls (HC. The sample was enrolled at the Department of Psychiatry of Policlinico Hospital, University of Milan, it includes stabilized schizophrenic patients (n = 30, euthymic bipolar patients (n = 18 and healthy controls (n = 18. Patients and controls completed psychiatric assessment rating scales, the Brief Assessment of Cognition in Schizophrenia (BACS and the Executive and Social Cognition Battery (ESCB that contains both ecological tests of executive function and social cognition, in order to better detect cognitive deficits in patients with normal results in standard executive batteries. The three groups differed significantly for gender and substance abuse, however the differences did not influence the results. Bipolar patients showed less impairment on cognitive performance compared to schizophrenic patients, even in ecological tests that mimic real life scenarios. In particular, BD performed better than SKZ in verbal memory (p

  6. The Basel Convention: effect on the Asian secondary lead industry

    Science.gov (United States)

    Elmer, J. W.

    The Basel Convention has had a dramatic effect on the world trade in scrap materials. The scope of implementation is broader than was originally intended. This is due mainly to uncertainties created by a failure to distinguish between waste for disposal and waste destined for recycling. Spent lead/acid batteries and other lead scrap flows from OECD to non-OECD countries have been restricted to the point where secondary lead production is being affected. Export-import flows between OECD members have also changed as recycling is being contained within those countries. The economics of recycling in OECD countries may result in a smaller percentage of scrap being recycled. The established lead/acid battery industry in the Asian region, which relies heavily on imported scrap, will now be forced to import more finished metal, to maintain output. With strong economic growth forecast for the region, and no substitute for the lead-based battery, the supply situation is unlikely to ease.

  7. Plasma homovanillic acid and family history of psychotic disorders in bipolar I patients.

    Science.gov (United States)

    Zumárraga, Mercedes; Dávila, Ricardo; Basterreche, Nieves; Arrue, Aurora; Goienetxea, Biotza; González-Torres, Miguel Angel; Guimón, José

    2009-04-01

    It has been suggested that the family history of psychotic disorders is useful in defining homogeneous groups of bipolar patients. The plasma homovanillic acid (pHVA) concentrations have been related to the effect of antipsychotic treatment in psychotic patients. We have studied the influence of a positive family history of psychotic disorders both on the variation of pHVA levels and on the relation between pHVA concentrations and the clinical response to treatment. Clinical status and pHVA levels were assessed in 58 medication free patients before and after 4 weeks of treatment with olanzapine and lithium. Clinical improvement correlated positively with pHVA levels on the 28th day of treatment only in the patients having first degree relatives with psychotic disorders. The pHVA levels did not decrease after 28 days of treatment. Our results reinforce the idea that a positive family history of psychosis in psychotic bipolar disorders may constitute a good basis for sub-grouping these patients.

  8. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.; Takada, T.; Monma, D. [The Furukawa Battery Co., Ltd., R and D Division, 23-6 Kuidesaku, Shimofunao-machi, Joban, Iwaki-city, 972-8501 (Japan); Lam, L.T. [CSIRO Energy Technology, Bayview Avenue, Clayton South, Vic. 3169 (Australia)

    2010-02-15

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO{sub 2} emissions (cf., 98.8 with 96 g km{sup -1}) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack

  9. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste.

    Science.gov (United States)

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina

    2017-02-01

    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  11. A technology for production of a ''Cureless'' paste containing a high concentration of tetrabasic lead sulfate and a low concentration of free lead

    Energy Technology Data Exchange (ETDEWEB)

    Boden, David P.; Loosemore, Daniel [Hammond Lead Products, Division of Hammond Group Inc., 6544 Osborn Avenue, Hammond, IN 46320 (United States)

    2007-05-25

    The conventional paste used to produce plates for lead-acid batteries comprises a mixture of leady oxide, water and sulfuric acid. Fibre and other additives, such as expander in negative plates, are added to improve paste properties and battery performance. Following pasting of the plates, they have to be cured to provide the correct chemical composition and crystal morphology, and to oxidize any residual free lead metal to lead monoxide. The desired result of the curing process is a positive plate with a high concentration of uniformly sized tetrabasic lead sulfate (4BS) crystals and with both positive and negative plates having a low concentration of free lead. Curing is a time-consuming and expensive process, which requires large numbers of chambers capable of being heated to 85 C and containing an atmosphere with a relative humidity greater than 95%. This process adds significant cost to the battery. (author)

  12. Flywheel-battery hydrid: a new concept for vehicle propulsion

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A new concept was examined for powering the automobile: a flywheel-battery hybrid that can be developed for near-term use from currently available lead-acid batteries and state-of-the-art flywheel designs. To illustrate the concept, a calculation is given of the range and performance of the hybrid power system in a typical commute vehicle, and the results are compared to the measured range and performance of an all-battery vehicle. This comparison shows improved performance and a twofold urban-range increase for the hybrid over the all-battery power system

  13. Contamination of Soil with Pb and Sb at a Lead-Acid Battery Dumpsite and Their Potential Early Uptake by Phragmites australis

    Directory of Open Access Journals (Sweden)

    Abraham Jera

    2017-01-01

    Full Text Available Recycling of spent Lead-Acid Batteries (LABs and disposal of process slag potentially contaminate soil with Pb and Sb. Total and available concentrations of Pb and Sb in three soil treatments and parts of Phragmites australis were determined by atomic absorption spectrophotometry. Soil with nonrecycled slag (NR had higher total metal concentrations than that with recycled slag (RS. Low available fractions of Pb and Sb were found in the soil treatments before planting P. australis. After 16 weeks of growth of P. australis, the available fractions of Pb had no statistical difference from initial values (p>0.05 while available Sb fractions were significantly lower when compared with their initial values (p<0.05. Metal transfer factors showed that P. australis poorly accumulate Pb and Sb in roots and very poorly translocate them to leaves after growing for 8 and 16 weeks. It may be a poor phytoextractor of Pb and Sb in metal-contaminated soil at least for the 16 weeks of its initial growth. However, the plant established itself on the metalliferous site where all vegetation had been destroyed. This could be useful for potential ecological restoration. The long-term phytoextraction potential of P. australis in such environments as LABs may need further investigation.

  14. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China).

    Science.gov (United States)

    Xue, Jian-long; Zhi, Yu-you; Yang, Li-ping; Shi, Jia-chun; Zeng, Ling-zao; Wu, Lao-sheng

    2014-06-01

    Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28%, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92%), followed by the agronomic practices (21.65%), and soil parent materials (12.43%). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.

  15. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  16. Fuzzy logic-based battery charge controller

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    Photovoltaic power system are generally classified according to their functional and operational requirements, their component configurations, and how the equipment is connected to other power sources and electrical loads, photovoltaic systems can be designed to provide DC and/or AC power service, can operate interconnected with or independent of the utility grid, and can be connected with other energy sources and energy storage systems. Batteries are often used in PV systems for the purpose of storing energy produced by the PV array during the day, and to supply it to electrical loads as needed (during the night and periods of cloudy weather). The lead acid battery, although know for more than one hundred years, has currently offered the best response in terms of price, energetic efficiency and lifetime. The main function of controller or regulator in PV system is too fully charge the battery without permitting overcharge while preventing reverse current flow at night. If a no-self-regulating solar array is connected to lead acid batteries with no overcharge protection, battery life will be compromised. Simple controllers contain a transistor that disconnects or reconnects the PV in the charging circuit once a pre-set voltage is reached. More sophisticated controllers utilize pulse with modulation (PWM) to assure the battery is being fully charged. The first 70% to 80% of battery capacity is easily replaced, but the last 20% to 30% requires more attention and therefore more complexity. This complexity is avoided by using a skilled operators experience in the form of the rules. Thus a fuzzy control system seeks to control the battery that cannot be controlled well by a conventional control such as PID, PD, PI etc., due to the unavailability of an accurate mathematical model of the battery. In this paper design of an intelligent battery charger, in which the control algorithm is implemented with fuzzy logic is discussed. The digital architecture is implemented with

  17. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  18. 78 FR 63148 - Approval and Promulgation of Implementation Plans; Tennessee; Bristol; 2010 Lead Base Year...

    Science.gov (United States)

    2013-10-23

    ... Tennessee, through the Tennessee Department of Environment and Conservation (TDEC) on April 11, 2013. The... per year within the Bristol Area is Exide Technologies Facility, a lead acid battery manufacturing and recycling facility which processes lead and reclaimed lead into batteries for the auto industry. Pursuant to...

  19. Parametric tests of a 40-Ah bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, R. L.

    1986-01-01

    A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.

  20. On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Piromalis, Dimitrios D.; Arvanitis, Konstantinos G.; Dounis, Anastasios I.; Papadakis, George

    2015-01-01

    Highlights: • A battery-less autonomous polygeneration microgrid is technically feasible. • Laboratory testing of hybrid capacitors. • Investigation of hybrid capacitors utilization along with hydrogen subsystem. - Abstract: The autonomous polygeneration microgrid topology aims to cover holistically the needs in remote areas as far as electrical power, potable water through desalination, fuel for transportation in the form of hydrogen, heating and cooling are concerned. Deep discharge lead acid batteries are mostly used in such systems, associated with specific disadvantages, both technical and environmental. This paper investigated the possibility of replacing the battery bank from a polygeneration microgrid with a hybrid capacitor bank and more intensive utilization of a hydrogen subsystem. Initially commercial hybrid capacitors were tested under laboratory conditions and based on the respective results a case study was performed. The optimized combination of hybrid capacitors and higher hydrogen usage was then investigated through simulations and compared to a polygeneration microgrid featuring deep discharge lead acid batteries. From the results it was clear that it is technically possible to exchange the battery bank with a hybrid capacitor bank and higher hydrogen utilization. From the economic point of view, the current cost of the hybrid capacitors and the hydrogen components is high which leads to higher overall cost in comparison with deep discharge lead acid batteries. Taking into account, though, the decreasing cost prospects and trends of both the hybrid capacitors and the hydrogen components it is expected that this approach will become economically competitive in a few years

  1. Neuropsychological Impairments in Schizophrenia and Psychotic Bipolar Disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study

    Science.gov (United States)

    Hill, S. Kristian; Reilly, James L.; Keefe, Richard S.E.; Gold, James M.; Bishop, Jeffrey R.; Gershon, Elliot S.; Tamminga, Carol A.; Pearlson, Godfrey D.; Keshavan, Matcheri S.; Sweeney, John A.

    2017-01-01

    Objective Familial neuropsychological deficits are well established in schizophrenia but remain less well characterized in other psychotic disorders. This study from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium 1) compares cognitive impairment in schizophrenia and bipolar disorder with psychosis, 2) tests a continuum model of cognitive dysfunction in psychotic disorders, 3) reports familiality of cognitive impairments across psychotic disorders, and 4) evaluates cognitive impairment among nonpsychotic relatives with and without cluster A personality traits. Method Participants included probands with schizophrenia (N=293), psychotic bipolar disorder (N=227), schizoaffective disorder (manic, N=110; depressed, N=55), their first-degree relatives (N=316, N=259, N=133, and N=64, respectively), and healthy comparison subjects (N=295). All participants completed the Brief Assessment of Cognition in Schizophrenia (BACS) neuropsychological battery. Results Cognitive impairments among psychotic probands, compared to healthy comparison subjects, were progressively greater from bipolar disorder (z=−0.77) to schizoaffective disorder (manic z=−1.08; depressed z=−1.25) to schizophrenia (z=−1.42). Profiles across subtests of the BACS were similar across disorders. Familiality of deficits was significant and comparable in schizophrenia and bipolar disorder. Of particular interest were similar levels of neuropsychological deficits in relatives with elevated cluster A personality traits across proband diagnoses. Nonpsychotic relatives of schizophrenia probands without these personality traits exhibited significant cognitive impairments, while relatives of bipolar probands did not. Conclusions Robust cognitive deficits are present and familial in schizophrenia and psychotic bipolar disorder. Severity of cognitive impairments across psychotic disorders was consistent with a continuum model, in which more prominent affective features and less

  2. Thwarted interpersonal needs and suicide ideation: Comparing psychiatric inpatients with bipolar and non-bipolar mood disorders.

    Science.gov (United States)

    Taylor, Nathanael J; Mitchell, Sean M; Roush, Jared F; Brown, Sarah L; Jahn, Danielle R; Cukrowicz, Kelly C

    2016-12-30

    Psychiatric inpatients are at heightened risk for suicide, and evidence suggests that psychiatric inpatients with bipolar mood disorders may be at greater risk for suicide ideation compared to those with non-bipolar mood disorders. There is a paucity of research directly comparing risk factors for suicide ideation in bipolar versus non-bipolar mood disorders in an inpatient sample. The current study sought to clarify the association between two constructs from the interpersonal theory of suicide (i.e., perceived burdensomeness and thwarted belongingness) in leading to suicide ideation among psychiatric inpatients with bipolar and non-bipolar mood disorders. Participants were (N=90) psychiatric inpatients with a bipolar (n = 20) or non-bipolar mood disorder (n=70; per their medical charts). Perceived burdensomeness, but not thwarted belongingness, was significantly associated with suicide ideation after adjusting for other covariates. This suggests perceived burdensomeness may play a key role in suicide ideation among psychiatric inpatients with any mood disorder and highlights the importance of assessment and intervention of perceived burdensomeness in this population. Contrary to our hypothesis, mood disorder group (i.e., bipolar versus non-bipolar) did not moderate the relations between perceived burdensomeness/thwarted belongingness and suicide ideation. Published by Elsevier Ireland Ltd.

  3. Sony Co., Ltd.: An outlook is made for merchandising of the manganese acid lithium ion battery; Mangansan richiumuion denchi no shohinka ni medo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Sony Co., Ltd. sells the manganese acid lithium ion battery that a battery is 1 by 2 as to the next generation lithium ion during 99 years. It is characteristics that a price is restrained because manganese is used for the proper pole material instead of cobalt of the rare metal. It becomes mass production by Koriyama factory where a lithium ion battery is being manufactured improving an existent production line. It is seen when some percents of manufacture cost goes down more than cobalt acid battery of news file before. A manganese acid lithium ion battery uses manganese acid lithium for the proper pole of the battery. The efficiency of the charge of the usual lithium ion battery is good, and composition is easy, and uses cobalt acid lithium, which is easy to produce. One side where a material fee is cheap, the stability at the high temperature of manganese acid is low, and composition is difficult. Only NEC Moli Energy corporation who is the subsidiary company of NEC succeeds in the mass production. NEC Moli Energy corporation is extending market share by the price competition power. It seems to have the possibility that manganese acid becomes the main force with a battery by two by new entering of Sony Co., Ltd. of the lithium ion battery extreme big enterprises. (translated by NEDO)

  4. A broad look at separator material technology for valve-regulated lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zguris, G.C. [Hollingsworth and Vose, West Groton, MA (United States)

    1998-05-18

    Recent research has proved the importance of a constant force of 40 kPa or greater on the paste solidus-grid interface. This has lead to increased interest in re-examining the microglass separator and the system that the plate-separator interaction forms. This renewed interest has resulted in new separator ideas and the revisiting of concepts tried in the early days of valve-regulated lead/acid (VRLA) technology. The paper is divided into two parts. The first part examines some past separator developments that have been tried but are presently not accepted by the general VRLA community. This is due to the excellent performance of the microglass separator used so successfully during the last 20 years. Many fundamental questions that need to be asked regarding the selection of a new separator system have long ago been forgotten. The second part of the paper reviews some fundamental aspects of separator selection, and some important attributes that the separator must provide based on current knowledge of the separator system. Attributes such as toughness, corrosion resistance, compression, wicking, stratification, porosity and conformability are discussed. (orig.)

  5. IEEE Standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard

  6. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.

    1987-01-01

    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells

  7. Study of two step constant current charging method with EV`s valve-regulated lead acid batteries for nighttime load leveling; Yakan denryoku wo yuko katsuyo dekiru denki jidoshayo namari denchi no nidantei denryu judenho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, T.; Mita, Y.; Iwahori, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Iwasaki, M.; Takagi, S.; Sugii, Y.; Yada, M.; Sakabe, T.; Kosaka, E.; Tsuchiya, H.; Kanetsuki, M.; Nasu, H.; Ono, M.; Adachi, K.; Narisoko, H.; Nishiyama, K.

    1997-02-01

    In the constant-current/constant-voltage charging method that has been in application for EV (electric vehicle) lead-acid batteries, power load is generated only at the initial part of the charging process, and therefore the method cannot be said to be sufficiently contributory to the levelling of power loads. In this report, a proposed 2-step constant-current charging method is assessed for applicability, and another charging method is introduced, which extends battery life and utilizes low-cost night-time power more effectively. It is found that the proposed 2-step constant-current charging method (1st step: 12A, 2nd step: 3A) completes the charging process in eight hours, that it assumes a charging pattern more suitable for contributing to the effective use of night-time power than the conventional method, and that it extends the battery life of approximately 170 cycles to approximately 300 cycles. In a study seeking for a charging method capable of utilizing night-time power more efficiently, the 1st-step current of 12A is increased to 30A for shortening the charging time, and then it is found that this change extends the battery cycle life and improves on charging efficiency. The conclusion is that possibilities are high that an increase in the 1st-step current prolongs the battery life cycle and shortens the charting time. 16 refs., 28 figs., 8 tabs.

  8. Omega-3 fatty acid monotherapy for pediatric bipolar disorder: a prospective open-label trial.

    Science.gov (United States)

    Wozniak, Janet; Biederman, Joseph; Mick, Eric; Waxmonsky, James; Hantsoo, Liisa; Best, Catherine; Cluette-Brown, Joanne E; Laposata, Michael

    2007-01-01

    To test the effectiveness and safety of omega-3 fatty acids (Omegabrite(R) brand) in the treatment of pediatric bipolar disorder (BPD). Subjects (N=20) were outpatients of both sexes, 6 to 17 years of age, with a DSM-IV diagnosis of BPD and Young Mania Rating Scale (YMRS) score of >15 treated over an 8-week period in open-label trial with omega-3 fatty acids 1290 mg-4300 mg combined EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Subjects experienced a statistically significant but modest 8.9+/-2.9 point reduction in the YMRS scores (baseline YMRS=28.9+/-10.1; endpoint YMRS=19.1+/-2.6, pDHA increased in treated subjects. As only 35% of these subjects had a response by the usual accepted criteria of >50% decrease on the YMRS, omega-3 fatty acids treatment was associated with a very modest improvement in manic symptoms in children with BPD.

  9. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    Science.gov (United States)

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-04-26

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.

  10. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    Science.gov (United States)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  11. Batteries in network-independent electric power supply plants. Demands on batteries, storage concepts, lead batteries, load condition, operation management; Batterien in netzfernen Stromversorgungsanlagen. Anforderungen an Batterien, Speicherkonzepte, Bleibatterien, Ladezustand, Betriebsfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.; Sauer, D.U. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg (Germany)

    2005-07-01

    In principal there are the storage possibilities, which mainly distinguish themselves by the type of energy for storage:1) electric storage; a) supra-conducting ring storage, b) condensers; 2) mechanical storage; a) water high storage, b) flywheels, c) (cavern-) pressurized air storage; 3) electro-chemical storage; a) gas storage systems (with electrolysis or fuel cell unit), b) accumulators with external storage (e.g. FeCR-Redox system), c) accumulators with internal storage (e.g.) Pb/PbO{sub 2}, NiCd). A few electro-chemical storage systems only are economically and technically feasible today. This contribution focuses on these systems, in particular on lead-acid accumulators. An overview of terms, which are often used related to battery storage, can be found at the end. A detailed bibliography is supposed to give the reader specific answers to various questions. (orig.)

  12. 40 CFR 60.372 - Standards for lead.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for lead. 60.372 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Lead-Acid Battery Manufacturing Plants § 60.372 Standards for lead. (a) On and after the date on which the performance test...

  13. Methanesulfonic acid solution as supporting electrolyte for zinc-vanadium redox battery

    International Nuclear Information System (INIS)

    Tang Chao; Zhou Debi

    2012-01-01

    Highlights: ► Methanesulfonic acid as supporting electrolyte for V(V)/V(IV) was discussed. ► V(V)/V(IV) concentration as high as 3 mol L −1 was obtained. ► A Zn-V battery was assembled. ► The assembled Zn-V battery has good cycle performance and high cell voltage. - Abstract: The present work was performed in order to evaluate methanesulfonic acid (MSA) as electrolyte medium for V(IV)/V(V) redox couple as positive species applied in redox flow battery (RFB). V-MSA solutions containing more than 3.0 mol L −1 vanadium ions were obtained. Conductivity and viscosity of 3.0 mol L −1 V(IV)/V(V) electrolyte were determined to be 0.10 cm s −1 and 12.37 mPa s respectively. Cyclic voltammetry was conducted to investigate the electrochemical behavior of V(IV)/V(V) redox couple. The diffusion coefficients of V(IV) on Pt electrode in 1.0, 2.0 and 3.0 mol L −1 V(IV)/V(V) electrolytes determined were 3.606 × 10 −6 , 1.813 × 10 −6 and 0.5244 × 10 −6 cm 2 s −1 , respectively. A Zn-V battery was assembled with V(IV)/V(V)-MSA positive species and Zn/Zn(II)-MSA negative species. The cell voltage in charged state was 1.9–2.0 V and discharge voltage reached up to 1.7 V. The average coulombic efficiency and energy efficiency of the assembled cell were 95.85% and 63.90% respectively and it showed a good cyclic charge–discharge performance, which indicates that MSA has a promise application prospect in vanadium redox battery.

  14. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  15. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Carla P D Fernandes

    Full Text Available Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders.Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar disorder were generated from a genome-wide association study (GWAS on a sample comprising 670 healthy Norwegian adults who were phenotyped for a broad battery of cognitive tests. These gene sets were then tested for enrichment of association in GWASs of schizophrenia and bipolar disorder. The GWAS data was derived from three independent single-centre schizophrenia samples, three independent single-centre bipolar disorder samples, and the multi-centre schizophrenia and bipolar disorder samples from the Psychiatric Genomics Consortium.The strongest enrichments were observed for visuospatial attention and verbal abilities sets in bipolar disorder. Delayed verbal memory was also enriched in one sample of bipolar disorder. For schizophrenia, the strongest evidence of enrichment was observed for the sets of genes associated with performance in a colour-word interference test and for sets associated with memory learning slope.Our results are consistent with the increasing evidence that cognitive functions share genetic factors with schizophrenia and bipolar disorder. Our data provides evidence that genetic studies using polygenic and pleiotropic models can be used to link specific cognitive functions with psychiatric disorders.

  16. Characterization of lithium batteries for application to photovoltaic systems

    International Nuclear Information System (INIS)

    Guzman Ortiz, S.

    2015-01-01

    This master's thesis addresses the characterization of four different types of Battery technologies; the li-ion, the LiFePO4, the lead crystal and the lead acid. Because these devices are used in electric applications, calculations were made to assess the capacities and energies of the batteries while at different discharges ratios in runs from 5 to 50 hours, which are the most common on the photovoltaic sector. Also, we observed the behavior of the batteries when put through a rise of temperature to measure the fluctuations in the voltage, capacity and energy. Tests were performed at constant power to observe the behavior of the discharge intensity. When making the comparisons of the capacity and the energy, the LiFePO4 battery proved to be the best and better behavior in the tests at constant discharge rates. (Author)

  17. A systemic ecological risk assessment based on spatial distribution and source apportionment in the abandoned lead acid battery plant zone, China.

    Science.gov (United States)

    Zhang, Yimei; Li, Shuai; Chen, Zhuang; Wang, Fei; Chen, Jie; Wang, Liqun

    2018-07-15

    In China, potential heavy metal hazard around abandoned lead-acid battery plant (ALBP) area has been a great concern but without detailed report. The distribution and sources of heavy metals in soils and so by risk assessment associated with ALBP are conducted in this contribution, based on geographies and statistics. Pb and Zn are quantitively identified to be still emitted from ALBP soil, and Cd as well As are from agricultural activity. We investigate vertical metal distribution, and fortunately find that metals migrate within limit of 40 cm below topsoil, which is higher than groundwater table. The visualized stable depths are Zn 40 cm, Pb, As 20 cm, and Cd 40 cm. The mapped pollution load index (PLI) suggests a high pollution level exists in ALBP soil. The estimation of potential ecological risk index (PERI) indicates a light ecological risk in studied area, while As and Cd mainly from agricultural activity possess 54% of total E ri . Health risk index (THI) is 0.178 for children, indicating non-cancer risks may be ignored in observed area. Though calculated risk is temporarily affordable, soil remediation and reduction of agricultural chemical reagents are recommended for preventing potential cumulative risk from further bioconcentration of heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. ETK's experience in the application of VRLA batteries

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, I. [Ericsson Nikola Tesla d.d., Zagreb (Croatia)

    2000-07-01

    This paper presents the experience of the company Ericsson Nikola Tesla (ETK) in the application of VRLA batteries. After a short comment on conventional lead acid batteries, the paper explains the reasons for introduction of VRLA batteries and presents our experience considering their quality, performance, hydrogen evolution, safety, service life etc. Stress is put on some internal and external factors which affect useful life, such as positive grid corrosion, ambient temperature and charging voltage. ETK also gained experience in relation to adaptation of some UPS systems to VRLA batteries. The article concludes with the list of important advantages and disadvantages of VRLA batteries compared with the flooded ones. (orig.)

  19. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  20. Vanadium Redox Flow Battery : Sizing of VRB in electrified heavy construction equipment

    OpenAIRE

    Zimmerman, Nathan

    2014-01-01

    In an effort to reduce global emissions by electrifying vehicles and machines with internal combustion engines has led to the development of batteries that are more powerful and efficient than the common lead acid battery.  One of the most popular batteries being used for such an installation is lithium ion, but due to its short effective usable lifetime, charging time, and costs has driven researcher to other technologies to replace it.  Vanadium redox flow batteries have come into the spotl...

  1. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  2. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  3. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  4. Transient Stuttering in Catatonic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    Anthony B. Joseph

    1991-01-01

    Full Text Available Two cases of transient stuttering occurring in association with catatonia and bipolar disorder are described. Affective decompensation has been associated with lateralized cerebral dysfunction, and it is hypothesized that in some bipolar catatonic patients a concomitant disorder of the lateralization of language function may lead to a variety of clinical presentations including aphasia, mutism, and stuttering.

  5. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  6. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  7. Design And Construction Of Microcontroller Based Solar Battery Charger

    Directory of Open Access Journals (Sweden)

    Zar Ni Tun

    2015-08-01

    Full Text Available This research paper describes a microcontroller based battery charger by using solar energy. Solar-powered charging systems are already available in rural as well as urban areas. Solar energy is widely used around the worldwide. This system converts solar energy to electrical energy and stores it in a battery. Photovoltaic panel is used to convert solar energy to electrical energy and stored in a 12V battery. Battery is the main component in solar charging system to store the energy generated from sunlight for various application. This system requires sensor to sense whether the battery is fully charged or not. Microcontroller is the heart of the circuit. Lead-acid batteries are the most commonly used power source for many applications. This system consists of voltage sensing charging controlling and display unit.

  8. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    Science.gov (United States)

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  9. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  10. Genotoxicity Assessment of Chlorotrifluoroethylene Tetramer Acid using a Battery of In Vitro and In Vivo/In Vitro Assays

    Science.gov (United States)

    1990-12-01

    hypolipidemic ixgent, clofibrate (Lalwani et al., 1983). However, numerous industrial chemicals such as phthalate eater plasticizers and phenoxy acid ...AD-A240 492 AA..MRL-TR-90-069 ~l~iiIIi1111fl GENOTOXICITY ASSESSMENT OF CHLOROTRIFLUOROETHYLENE TETRAMER ACID USING A BATTERY OF IN VITRO AND IN VIVO... Acid Using a Battery of In Vitro and In Vivo,/n Vitro Assays PE 62202F 6. AUTHOR(S) PR 6302 TA 630201 C. S. Godin, B. C. Myhr, T. E. Lawlor, R. R. Young

  11. Optimization of station battery replacement

    International Nuclear Information System (INIS)

    Jancauskas, J.R.; Shook, D.A.

    1994-01-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability of quickly analyze proposed modifications and response to internal and external audits

  12. Tiagabine in treatment refractory bipolar disorder : a clinical case series

    NARCIS (Netherlands)

    Suppes, T; Chisholm, KA; Dhavale, D; Frye, MA; Atshuler, LL; McElroy, SL; Keck, PE; Nolen, WA; Kupka, R; Denicoff, KD; Leverich, GS; Rush, AJ; Post, RM

    2002-01-01

    Objectives: Anticonvulsants have provided major treatment advances for patients with bipolar disorder. Many of these drugs, including several with proven efficacy in bipolar mania or depression, enhance the activity of the gamma-amino butyric acid (GABA) neurotransmitter system. A new

  13. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  14. Scientific attitudes towards bipolar disorders

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Biglu

    2014-02-01

    Full Text Available Introduction: Bipolar disorder is a psychiatric condition that is also called manic-depressive disease. It causes unusual changes in mood, energy, activity levels, and the ability to carry out day-to-day tasks. In the present study, 3 sets of data were considered and analyzed: first, all papers categorized under Bipolar Disorders in Science Citation Index Expanded (SCI-E database through 2001-2011; second, papers published by the international journal of Bipolar Disorders indexed in SCI-E during a period of 11 years; and third, all papers distributed by the international journal of Bipolar Disorders indexed in MEDLINE during the period of study. Methods: The SCI-E database was used to extract all papers indexed with the topic of Bipolar Disorders as well as all papers published by The International Journal of Bipolar Disorders. Extraction of data from MEDLINE was restricted to the journals name from setting menu. The Science of Science Tool was used to map the co-authorship network of papers published by The International Journal of Bipolar Disorders through 2009-2011. Results: Analysis of data showed that the majority of publications in the subject area of bipolar disorders indexed in SCI-E were published by The International Journal of Bipolar Disorders. Although journal articles consisted of 59% of the total publication type in SCI-E, 65% of publications distributed by The Journal of Bipolar Disorders were in the form of meetingabstracts. Journal articles consisted of only 23% of the total publications. USA was the leading country regarding sharing data in the field of bipolar disorders followed by England, Canada, and Germany. Conclusion: The editorial policy of The International Journal of Bipolar Disorders has been focused on new themes and new ways of researching in the subject area of bipolar disorder. Regarding the selection of papers for indexing, the SCI-E database selects data more comprehensively than MEDLINE. The number of papers

  15. A pilot study differentiating recurrent major depression from bipolar disorder cycling on the depressive pole

    Directory of Open Access Journals (Sweden)

    Marty Hinz

    2010-11-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USAPurpose: A novel method for differentiating and treating bipolar disorder cycling on the depressive pole from patients who are suffering a major depressive episode is explored in this work. To confirm the diagnosis of type 1 or type 2 bipolar disorder, the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV criteria require that at least one manic or hypomanic episode be identified. History of one or more manic or hypomanic episodes may be impossible to obtain, representing a potential blind spot in the DSM-IV diagnostic criteria. Many bipolar patients who cycle primarily on the depressive side for many years carry a misdiagnosis of recurrent major depression, leading to treatment with antidepressants that achieve little or no relief of symptoms. This article discusses a novel approach for diagnosing and treating patients with bipolar disorder cycling on the depressive pole versus patients with recurrent major depression.Patients and methods: Patients involved in this study were formally diagnosed with recurrent major depression under DSM-IV criteria and had no medical history of mania or hypomania to support the diagnosis of bipolar disorder. All patients had suffered multiple depression treatment failures in the past, when evaluated under DSM-IV guidelines, secondary to administration of antidepressant drugs and/or serotonin with dopamine amino acid precursors.Results: This study contained 1600 patients who were diagnosed with recurrent major depression under the DSM-IV criteria. All patients had no medical history of mania or hypomania. All patients experienced no relief of depression symptoms on level 3 amino acid dosing values of the amino acid precursor dosing protocol. Of 1600 patients studied, 117 (7.3% nonresponder patients were identified

  16. Kinetic study on recovery of metal values in anode slime from used lead batteries

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.; Nagasaka, T. [Tohoku Univ., Sendai (Japan). Dept. of Environmental Studies; Ono, J.; Hino, M. [Tohoku Univ., Sendai (Japan). Dept. of Metallurgy

    2004-07-01

    Oxidation experiments were conducted with pure antimony and antimony-lead bismuth alloys to examine the oxidation kinetics and mechanisms used to treat the anode slime produced during lead electrorefining and recovery of antimony from used lead batteries. In order to recycle and recover valuable metals from the used lead batteries, the oxidation experiments were conducted with pure liquid antimony at temperatures between 973 and 1373 K. The study showed that the gas phase mass transfer step is the basic mechanisms that controls the oxidation rate for pure antimony. It was noted that the oxidation rate of the alloy was identical to that of the pure antimony, suggesting that an oxidation reaction of the anode slime proceeds at the same rate as pure antimony. This is one of the advantages of treating anode slime through oxidation. Mass transfer in the gas phase was the rate-determining step in the alloy oxidation reaction. It was concluded that a higher oxygen partial pressure and sufficient gas flow rate at temperature of 1073 K is needed to conserve energy and recovery antimony oxide. 13 refs., 2 tabs., 12 figs.

  17. Remote monitoring of VRLA batteries for telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Tomonobu; Matsushima, Toshio [NTT Facilities Inc., G.H.Y. Building, 2-13-1 Kita-Otsuka, Toshima-ku, Tokyo 170-0004 (Japan)

    2007-05-25

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures. (author)

  18. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery.

    Science.gov (United States)

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D; Martin, Norbert; Schubert, Ulrich S

    2017-04-01

    By combining a viologen unit and a 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical in one single combi-molecule, an artificial bipolar redox-active material, 1-(4-(((1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)oxy)carbonyl)benzyl)-1'-methyl-[4,4'-bipyridine]-1,1'-diium-chloride ( VIOTEMP ), was created that can serve as both the anode (-0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water-based redox-flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox-flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity-inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented.

  19. Development of new positive-grid alloy and its application to long-life batteries for automotive industry

    Science.gov (United States)

    Furukawa, Jun; Nehyo, Y.; Shiga, S.

    Positive-grid corrosion and its resulting creep or growth is one of the major causes of the failure of automotive lead-acid batteries. The importance of grid corrosion and growth is increasing given the tendency for rising temperatures in the engine compartments of modern vehicles. In order to cope with this situation, a new lead alloy has been developed for positive-grids by utilizing an optimized combination of lead-calcium-tin and barium. In addition to enhanced mechanical strength at high temperature, the corrosion-resistance of the grid is improved by as much as two-fold so that the high temperature durability of batteries using such grids has been demonstrated in both hot SAE J240 tests and in field trials in Japan and Thailand. A further advantage of the alloy is its recycleability compared with alloys containing silver. The new alloy gives superior performance in both 12-V flooded and 36-V valve-regulated lead-acid (VRLA) batteries.

  20. TO DETERMINE THE PERSONALITY TRAITS, CLINICAL CHARACTERISTICS AND COGNITIVE FUNCTIONS IN BIPOLAR DISORDER PATIENTS WITH COMORBID ALCOHOL USE DISORDERS

    Directory of Open Access Journals (Sweden)

    Ahalya Thinaharan

    2016-12-01

    Full Text Available BACKGROUND Comorbidity of bipolar disorder and substance use disorder is common. It is difficult to treat bipolar disorder patients with comorbid alcohol use disorder since the disease course is more severe and they have greater difficulties in cognitive functions than those without alcohol use. Whether alcohol negatively affects specific cognitive functions or the deficits are more diffuse in nature is unclear. Alcoholic bipolar patients present with high scores in openness to experience and neuroticism personality traits. Personality to an extent mediates the co-occurrence of substance use in bipolar disorder. Thus, identifying these personality traits in bipolar or substance use disorder patients, will help us to prevent the co-occurrence of the second disorder. The aim of the study is to evaluate the clinical characteristics, personality traits and cognitive functions of patients with bipolar and comorbid alcohol use disorders. MATERIALS AND METHODS A sample of 100 patients, 50 with bipolar and alcohol use disorder (cases and 50 with bipolar disorder (controls attending tertiary care hospital outpatient department at Chennai was selected. Alcohol status was assessed using AUDIT (alcohol use disorder identification test and SADQ (severity of alcohol dependence questionnaire. Personality was assessed using NEO-five factor inventory. Cognition was assessed using frontal lobe assessment battery, Stroop test, DSST (digit symbol substitution test and verbal N back test. RESULTS The cases group had more number of hospitalisations and mixed episodes than control group. They also performed poorer on frontal lobe assessment battery, Stroop test and digit symbol substitution test. Duration of alcohol use was associated positively with total number of hospitalisations and number of episodes. The cases group scored significantly higher on the personality traits of neuroticism and openness to experience. CONCLUSION The study confirmed the higher

  1. USED BATTERIES - REMINDER NOTE FROM THE TIS COMMISSION

    CERN Multimedia

    1999-01-01

    Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid, which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely.The disposal of used batteries in the Host State could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometres from CERN, will dispose of your batteries free of charge.So we ask you to use a little common sense and to help protect the environment from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured.It doesn't take much effort to do this in the co...

  2. PERSONAL AND ENVIRONMENTAL RISK FACTORS SIGNIFICANTLY ASSOCIATED WITH ELEVATED BLOOD LEAD LEVELS IN RURAL THAI CHILDREN.

    Science.gov (United States)

    Swaddiwudhipong, Witaya; Kavinum, Suporn; Papwijitsil, Ratchadaporn; Tontiwattanasap, Worawit; Khunyotying, Wanlee; Umpan, Jiraporn; BoonthuM, Ratchaneekorn; Kaewnate, Yingyot; Boonmee, Sasis; Thongchub, Winai; Rodsung, Thassanee

    2014-11-01

    A community-based study was conducted to determine personal risk factors and environmental sources of lead exposure for elevated blood lead levels (≥ 10 µg/dl, EBLLs) among rural children living at the Thailand-Myanmar border in Tak Province, northwestern Thailand. Six hundred ninety-five children aged 1-14 years old were screened for BLLs. Environmental specimens for lead measurements included samples of water from the streams, taps, and household containers, house floor dust, and foods. Possible lead release from the cooking ware was determined using the leaching method with acetic acid. The overall prevalence of EBLLs was 47.1% and the geometric mean level of blood lead was 9.16 µg/dl. Personal risk factors significantly associated with EBLLs included being male, younger age, anemia, and low weight-for-age. Significant environmental risk factors were exposure to a lead-acid battery of solar energy system and use of a non-certified metal cooking pot. Some families whose children had high BLLs reported production of lead bullets from the used batteries at home. About one-third of the house dust samples taken near batteries contained lead content above the recommended value, compared with none of those taken from other areas and from the houses with no batteries. The metal pots were safe for cooking rice but might be unsafe for acidic food preparation. Both nutritional intervention and lead exposure prevention programs are essential to reduce EBLLs in this population.

  3. A pilot study differentiating recurrent major depression from bipolar disorder cycling on the depressive pole.

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2010-11-09

    A novel method for differentiating and treating bipolar disorder cycling on the depressive pole from patients who are suffering a major depressive episode is explored in this work. To confirm the diagnosis of type 1 or type 2 bipolar disorder, the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria require that at least one manic or hypomanic episode be identified. History of one or more manic or hypomanic episodes may be impossible to obtain, representing a potential blind spot in the DSM-IV diagnostic criteria. Many bipolar patients who cycle primarily on the depressive side for many years carry a misdiagnosis of recurrent major depression, leading to treatment with antidepressants that achieve little or no relief of symptoms. This article discusses a novel approach for diagnosing and treating patients with bipolar disorder cycling on the depressive pole versus patients with recurrent major depression. Patients involved in this study were formally diagnosed with recurrent major depression under DSM-IV criteria and had no medical history of mania or hypomania to support the diagnosis of bipolar disorder. All patients had suffered multiple depression treatment failures in the past, when evaluated under DSM-IV guidelines, secondary to administration of antidepressant drugs and/or serotonin with dopamine amino acid precursors. This study contained 1600 patients who were diagnosed with recurrent major depression under the DSM-IV criteria. All patients had no medical history of mania or hypomania. All patients experienced no relief of depression symptoms on level 3 amino acid dosing values of the amino acid precursor dosing protocol. Of 1600 patients studied, 117 (7.3%) nonresponder patients were identified who experienced no relief of depression symptoms when the serotonin and dopamine amino acid precursor dosing values were adjusted to establish urinary serotonin and urinary dopamine levels in the Phase III therapeutic ranges. All of the 117

  4. How compressible is recombinant battery separator mat?

    Energy Technology Data Exchange (ETDEWEB)

    Pendry, C. [Hollingsworth and Vose, Postlip Mills Winchcombe (United Kingdom)

    1999-03-01

    In the past few years, the recombinant battery separator mat (RBSM) for valve-regulated lead/acid (VRLA) batteries has become the focus of much attention. Compression, and the ability of microglass separators to maintain a level of `springiness` have helped reduce premature capacity loss. As higher compressions are reached, we need to determine what, if any, damage can be caused during the assembly process. This paper reviews the findings when RBSM materials, with different surface areas, are compressed under forces up to 500 kPa in the dry state. (orig.)

  5. Clinical, Toxicological, Biochemical, and Hematologic Parameters in Lead Exposed Workers of a Car Battery Industry

    OpenAIRE

    Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud

    2013-01-01

    Background: Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Methods: Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto...

  6. Comparative familial aggregation of bipolar disorder in patients with bipolar I and bipolar II disorders.

    Science.gov (United States)

    Parker, Gordon B; Romano, Mia; Graham, Rebecca K; Ricciardi, Tahlia

    2018-05-01

    We sought to quantify the prevalence and differential prevalence of a bipolar disorder among family members of patients with a bipolar I or II disorder. The sample comprised 1165 bipolar and 1041 unipolar patients, with the former then sub-typed as having either a bipolar I or II condition. Family history data was obtained via an online self-report tool. Prevalence of a family member having a bipolar disorder (of either sub-type) was distinctive (36.8%). Patients with a bipolar I disorder reported a slightly higher family history (41.2%) compared to patients with a bipolar II disorder (36.3%), and with both significantly higher than the rate of bipolar disorder in family members of unipolar depressed patients (18.5%). Findings support the view that bipolar disorder is heritable. The comparable rates in the two bipolar sub-types support the positioning of bipolar II disorder as a valid condition with strong genetic underpinnings.

  7. Biochemical effects of lead exposure and toxicity on battery manufacturing workers of Western Maharashtra (India): with respect to liver and kidney function tests

    OpenAIRE

    Mandakini Kshirsagar; Jyotsna Patil; Arun Patil; Ganesh Ghanwat; Ajit Sontakke; R.K. Ayachit

    2015-01-01

    Background: The battery recycling and manufacturing involves the use of metallic lead for making grids, bearing and solder. The process results in release of lead particles and lead oxide causing environmental pollution and severe lead poisoning. Aims and Objectives: To know the present scenario of the blood lead level and its biochemical effects on occupational lead-exposed population, mainly battery manufacturing workers in Western Maharashtra (India) with respect to liver and kidney functi...

  8. Energy and environmental impacts of electric vehicle battery production and recycling

    International Nuclear Information System (INIS)

    Gaines, L.; Singh, M.

    1995-01-01

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle

  9. The Italian contribution to battery science and technology

    Science.gov (United States)

    Scrosati, Bruno

    The activities in the battery field currently in progress in Italian academic and industrial laboratories will be briefly reviewed. After reporting the key achievements obtained in lead-acid batteries, the presentation will be focused on systems of more recent development with particular attention to the lithium batteries. Interestingly, there is in Italy quite an intense research and development activity on these new-concept batteries which are now the power sources of choice for popular electronic devices, e.g. cellular phones, and in prospect valid systems for powering electric vehicles. Basic research is carried out in various university and government centers with the aim of characterizing new lithium ion electrode and electrolyte materials. This intense research is backed by substantial development activity since few Italian industries are presently engaged in the production of lithium batteries of different size and characteristics. Italy is then well established in battery R&D, confirming the country's historical involvement in the field since Volta's pile invention in 1800.

  10. Comparative techno-economic analysis of hybrid micro-grid systems utilizing different battery types

    International Nuclear Information System (INIS)

    Ciez, Rebecca E.; Whitacre, J.F.

    2016-01-01

    Highlights: • Comparative analysis of 3 battery chemistries in microgrid storage application. • At discount rates >1%, diesel-only generation still cheapest electricity option. • Optimal battery chemistry highly dependent on discount rate. • For discount rates <4%, lead acid is the cheapest storage options. • High energy density li-ion the cheapest storage option for discount rates >4%. - Abstract: A systems-level lifetime cost-of-use optimization model was applied to a hypothetical hybrid off-grid power system to compare the impacts of different battery technologies. Specifically, a time-step battery degradation model was used to account for unit degradation over a 20-year system lifetime for three different batteries. Variables examined included: battery type, allowed state of charge swing during cycling, number of battery replacements, fractional renewable energy requirements, and applied discount rate. Our analyses show that storage packs with high energy, low cost lithium-ion cells have the potential to compete with a non-renewable solution in some cases. The discount rate also proves to be significant in determining the cost competitiveness of the hybrid systems: at low discount rates, the levelized cost of electricity (LCOE) is only slightly higher than diesel generation, with costs diverging as the discount rate increases. The discount rate also determines which battery technology delivers the lowest cost of electricity: lead acid batteries are favorable at low rates, while high-energy lithium-ion batteries deliver lower cost electricity at higher rates. Similarly, market forces, like fuel or battery price changes, feed-in tariffs, or carbon taxes, required to trigger a switch to a hybrid system vary substantially with the discount rate.

  11. A VRLA battery simulation model

    International Nuclear Information System (INIS)

    Pascoe, Phillip E.; Anbuky, Adnan H.

    2004-01-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet

  12. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Advani, Suresh G.

    2013-01-01

    The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control...... strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical...

  13. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  14. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    Science.gov (United States)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  15. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  16. [Validation of the Cognitive Impairment in Psychiatry (SCIP-S) Screen Scale in Patients with Bipolar Disorder I].

    Science.gov (United States)

    Castaño Ramírez, Oscar Mauricio; Martínez Ramírez, Yeferson André; Marulanda Mejía, Felipe; Díaz Cabezas, Ricardo; Valderrama Sánchez, Lenis Alexandra; Varela Cifuentes, Vilma; Aguirre Acevedo, Daniel Camilo

    2015-01-01

    The Spanish version of the cognitive impairment in psychiatry scale screening scale has been developed as a response to the needs arising in clinical practice during the evaluation of mental illness patients, but the performance is not known in the Colombian population with bipolar disorder I. This paper tries to establish construct validity and stability of the scale in patients with bipolar disorder I in the city of Manizales. Construct validity was estimated by comparing the measurement in two divergent groups, a control group and a group with bipolar disorder I. It was also compared to a Neuropsychological battery measuring the same scale domains. The correlation between each one of the sub-tests of the scale and stability was evaluated through the reliability test-retest in the group with bipolar disorder I. The scale showed discriminatory capacity in cognitive functioning between the control group and the group with bipolar disorder I. The correlation with the neuropsychological battery was estimated by the Spearman test showing results between 0.36 and 0.77, and the correlation between each sub-test of the scale showed correlations between 0.39 and 0.72. Test-retest was measured with the intraclass correlation coefficient (ICC) and their values were between 0.77 and 0.91. The Spanish version of screening scale in the cognitive disorder in psychiatry shows acceptable validity and reliability as a measurement tool in clinical psychiatric practice. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. Evaluation of Pb and Fe tenors present in the sediments nearby the activities of taking advantage of lead-acid batteries; Avaliacao dos teores de Pb e Fe presentes nos sedimentos proximos as atividades de reaproveitamento de baterias chumbo-acidas

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Fernanda; Andrade, Crescencio; Monteiro, Carlos; Oliveira, Daniela; Valentim, Eliane, E-mail: candrade@cnen.gov.b, E-mail: valentim@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN/PE), Recife, PE (Brazil)

    2011-07-01

    The region chosen for this study was the Municipality of Belo Jardim, Pernambuco State, Brazil, which is considered an important industrial complex of the production and repairing of lead-acid batteries. Sediment samples were collected near to the illegal smelting industries and analyzed by ionic exchange method using a alpha-beta proportional counter for determining the activity of Pb-210, radionuclide used as geochronological tool. The chemical elements Pb and Fe were determined by means of flame atomic absorption spectrometry. The obtained results indicated an expressive increasing of lead and iron concentrations in the last 20 years. The concentrations in the sampled profile varied from 318 to 15487 mg.kg-1 and from 19 to 1524 mg.kg-1 for Fe and Pb, respectively. (author)

  18. Clinical, toxicological, biochemical, and hematologic parameters in lead exposed workers of a car battery industry.

    Science.gov (United States)

    Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud

    2013-03-01

    Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000) and hematologic (using Cell Counter Sysmex; Model KX21N) parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA) was used to determine lead concentration in blood and urine by heated graphite atomization technique. A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR) 22.3%, and decreased DTR (18.7%). Blood lead concentration (BLC) was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044) but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r(2)=0.711; Psugar or FBS (r=-0.258; P=0.010). Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS.

  19. Fatty acid composition of the postmortem corpus callosum of patients with schizophrenia, bipolar disorder, or major depressive disorder.

    Science.gov (United States)

    Hamazaki, K; Maekawa, M; Toyota, T; Dean, B; Hamazaki, T; Yoshikawa, T

    2017-01-01

    Studies investigating the relationship between n-3 polyunsaturated fatty acid (PUFA) levels and psychiatric disorders have thus far focused mainly on analyzing gray matter, rather than white matter, in the postmortem brain. In this study, we investigated whether PUFA levels showed abnormalities in the corpus callosum, the largest area of white matter, in the postmortem brain tissue of patients with schizophrenia, bipolar disorder, or major depressive disorder. Fatty acids in the phospholipids of the postmortem corpus callosum were evaluated by thin-layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to some previous studies, no significant differences were found in the levels of PUFAs or other fatty acids in the corpus callosum between patients and controls. A subanalysis by sex gave the same results. No significant differences were found in any PUFAs between suicide completers and non-suicide cases regardless of psychiatric disorder diagnosis. Patients with psychiatric disorders did not exhibit n-3 PUFAs deficits in the postmortem corpus callosum relative to the unaffected controls, and the corpus callosum might not be involved in abnormalities of PUFA metabolism. This area of research is still at an early stage and requires further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  1. Latest position in battery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Staeger, H J

    1960-03-17

    A short survey of the development of electrochemical properties as batteries is followed by an account of the construction, properties, and fields of application of lead, iron--nickel, and silver--zinc batteries, and their more recent developments, such as the hollow-rod plates in lead batteries, sintered plates, and sealed batteries. The work in progress on fuel cells is discussed and different practical cells are compared. There is no battery which is the best for all applications, each system has its own advantages or disadvantages. The lead battery in its different forms still remains the most universally applied.

  2. Five-year follow-up of cognitive impairment in older adults with bipolar disorder.

    Science.gov (United States)

    Schouws, Sigfried N T M; Comijs, Hannie C; Dols, Annemieke; Beekman, Aartjan T F; Stek, Max L

    2016-03-01

    To date, cognitive impairment has been thought to be an integral part of bipolar disorder. In clinical staging models, cognitive impairment is one of the hallmarks to define the clinical stage and it plays an important role in identifying the risk factors for progression to later stages of the illness. It is important to examine neurocognitive performance over longer periods to test the hypothesis of neuroprogression of bipolar disorder. A comprehensive neuropsychological test battery was applied at baseline and five years later to 56 euthymic older outpatients with bipolar disorder (mean age = 68.35 years, range: 60-90 years) and to a demographically matched sample of 44 healthy subjects. A group-by-time repeated measures multivariate analysis of variance was performed to measure changes over time for the two groups. The impact of baseline illness characteristics on the intra-individual change in neurocognitive performance within the bipolar disorder group was studied by using logistic regression analysis. At baseline and at follow-up, patients with bipolar disorder performed worse on all neurocognitive measures compared to the matched healthy subjects. However, there was no significant group-by-time interaction between the patients with bipolar disorder and the comparison group. Although older patients with bipolar disorder had worse cognitive function than healthy subjects, they did not have greater cognitive decline over a five-year period. The change in acquired cognitive impairment of patients with bipolar disorder might parallel the cognitive development as seen in normal aging. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Design, Build and Validation of a Low-Cost Programmable Battery Cycler

    DEFF Research Database (Denmark)

    Propp, Karsten; Fotouhi, Abbas; Knap, Vaclav

    2016-01-01

    The availability of laboratory grade equipment for battery tests is usually limited due to high costs of the hardware. Especially for lithium-sulfur (Li-S) batteries these experiments can be time intensive since the cells need to be precycled and are usually cycled with relatively low loads....... To improve the availability of test hardware, this paper conducts a study to design and test a low cost solution for cycling and testing batteries for tasks that do not necessarily need the high precision of professional hardware. While the described solution is in principle independent of the cell chemistry......, here it is specifically optimized to fit to Li-S batteries. To evaluate the accuracy of the presented battery cycler, the hardware is tested and compared with a professional Kepco bipolar power source. The results indicate the usefulness for application oriented battery tests with real life cycles...

  4. Effect of Acid- and Ultraviolet/Ozonolysis-Treated MWCNTs on the Electrical and Mechanical Properties of Epoxy Nanocomposites as Bipolar Plate Applications

    Directory of Open Access Journals (Sweden)

    Nishata Royan Rajendran Royan

    2013-01-01

    Full Text Available Carbon nanotubes (CNTs have a huge potential as conductive fillers in conductive polymer composites (CPCs, particularly for bipolar plate applications. These composites are prepared using singlefiller and multifiller reinforced multiwalled carbon nanotubes (MWCNTs that have undergone a chemical functionalization process. The electrical conductivity and mechanical properties of these composites are determined and compared between the different functionalization processes. The results show that UV/O3-treated functionalization is capable of introducing carboxylic functional groups on CNTs. Acid-treated CNT composites give low electrical conductivity, compared with UV/O3-treated and As-produced CNTs. The in- and through-plane electrical conductivities and flexural strength of multifiller EP/G/MWCNTs (As-produced and UV/O3-treated achieved the US Department of Energy targets. Acid-treated CNT composites affect the electrical conductivity and mechanical properties of the nanocomposites. These data indicate that the nanocomposites developed in this work may be alternative attributers of bipolar plate requirements.

  5. Energy storage and the environment: the role of battery technology

    Science.gov (United States)

    Ruetschi, Paul

    Batteries can store energy in a clean, convenient and efficient manner. Battery-powered electric vehicles are expected to contribute to a cleaner environment. In today's world, batteries are used everywhere: in electronic watches, pocket calculators, flashlights, toys, radios, tape recorders, cameras, camcorders, laptop computers, cordless telephones, paging devices, hearing aids, heart pacers, instruments, detectors, sensors, memory back-up devices, drug dispensing, wireless tools, toothbrushes, razors, stationary emergency power equipment, automobile starters, electric vehicles, boats, submarines, airplanes and satellites. Worldwide, about 15 billion primary batteries, and well over 200 million starter batteries are produced per year. What is the impact of this widespread use of batteries on the environment? What role can battery technology play in order to reduce undue effects on the environment? Since this paper is presented at a lead/acid battery conference, the discussion refers, in particular, to this system. The following aspects are covered: (i) the three "E" criteria that are applicable to batteries: Energy, Economics, Environment; (ii) service life and environment; (iii) judicious use and service life; (iv) recycling.

  6. Clinical, Toxicological, Biochemical, and Hematologic Parameters in Lead Exposed Workers of a Car Battery Industry

    Science.gov (United States)

    Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud

    2013-01-01

    Background: Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Methods: Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000) and hematologic (using Cell Counter Sysmex; Model KX21N) parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA) was used to determine lead concentration in blood and urine by heated graphite atomization technique. Results: A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR) 22.3%, and decreased DTR (18.7%). Blood lead concentration (BLC) was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044) but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r2=0.711; Psugar or FBS (r=-0.258; P=0.010). Conclusion: Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS. PMID:23645955

  7. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  8. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y.

    2010-01-01

    . This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first

  9. IEEE Std 535-1986: IEEE standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 308-1980 can be demonstrated by using the procedures provided in this standard in accordance with ANSI/IEEE Std 323-1983. Battery sizing, maintenance, capacity testing, installation, charging equipment, and consideration of other type batteries are beyond the scope of this standard

  10. Identifying Functional Neuroimaging Biomarkers of Bipolar Disorder: Toward DSM-V

    OpenAIRE

    Phillips, Mary L.; Vieta, Eduard

    2007-01-01

    Bipolar disorder is one of the most debilitating and common illnesses worldwide. Individuals with bipolar disorder frequently present to clinical services when depressed but are often misdiagnosed with unipolar depression, leading to inadequate treatment and poor outcome. Increased accuracy in diagnosing bipolar disorder, especially during depression, is therefore a key long-term goal to improve the mental health of individuals with the disorder. The attainment of this goal can be facilitated...

  11. The functional neuroanatomy of bipolar disorder: a consensus model

    Science.gov (United States)

    Strakowski, Stephen M; Adler, Caleb M; Almeida, Jorge; Altshuler, Lori L; Blumberg, Hilary P; Chang, Kiki D; DelBello, Melissa P; Frangou, Sophia; McIntosh, Andrew; Phillips, Mary L; Sussman, Jessika E; Townsend, Jennifer D

    2013-01-01

    Objectives Functional neuroimaging methods have proliferated in recent years, such that functional magnetic resonance imaging, in particular, is now widely used to study bipolar disorder. However, discrepant findings are common. A workgroup was organized by the Department of Psychiatry, University of Cincinnati (Cincinnati, OH, USA) to develop a consensus functional neuroanatomic model of bipolar I disorder based upon the participants’ work as well as that of others. Methods Representatives from several leading bipolar disorder neuroimaging groups were organized to present an overview of their areas of expertise as well as focused reviews of existing data. The workgroup then developed a consensus model of the functional neuroanatomy of bipolar disorder based upon these data. Results Among the participants, a general consensus emerged that bipolar I disorder arises from abnormalities in the structure and function of key emotional control networks in the human brain. Namely, disruption in early development (e.g., white matter connectivity, prefrontal pruning) within brain networks that modulate emotional behavior leads to decreased connectivity among ventral prefrontal networks and limbic brain regions, especially amygdala. This developmental failure to establish healthy ventral prefrontal–limbic modulation underlies the onset of mania and ultimately, with progressive changes throughout these networks over time and with affective episodes, a bipolar course of illness. Conclusions This model provides a potential substrate to guide future investigations and areas needing additional focus are identified. PMID:22631617

  12. Levels and source apportionment of children's lead exposure: Could urinary lead be used to identify the levels and sources of children's lead pollution?

    International Nuclear Information System (INIS)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-01-01

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as 207 Pb/ 206 Pb, 208 Pb/ 206 Pb and 204 Pb/ 206 Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. - Highlights: • Pb isotopes of environmental media and children's blood and urine were analyzed. • Pb exposure and pollution source were studied in lead-acid battery and coking areas. • Pb isotope ratios in blood and urine were similar to those of food, water and PM. • Urine Pb level may not be used as a proxy for indicating the lead levels in blood. • Urine Pb isotope ratios is an alternative to identify source and exposure pathways. - Urinary lead is not a preferable proxy to estimate blood lead level, but urinary lead isotope ratios could be an alternative for identifying the sources of lead exposure in children

  13. The Asian battery market—a decade of change

    Science.gov (United States)

    Eckfeld, S.; Manders, J. E.; Stevenson, M. W.

    The Asian battery industry will undergo significant change over the next decade as it adapts to the enormous economic and technological pressures of our rapidly changing world. Europe and North America in recent years have seen significant rationalisation in battery manufacturing capacity and ownership for a variety of reasons. Into the future, Asia will be no exception, but the rate and magnitude of change may conceivably be greater than that already experienced elsewhere. Rationalisation in battery manufacturing plants will occur as a result of the establishment of super plants to manufacture batteries in order to improve the economies of scale and to facilitate the heavy investment in new capital and equipment that will be required to supply the newer technology battery types. The impact of 42 V automotive systems and valve-regulated lead-acid (VRLA) batteries will be influential on this scenario. It is expected that China, Japan, South Korea, and Thailand will feature heavily in the future Asian battery scene at the expense of some established countries and producers. The current state of the battery industry in Asia, factors driving change in Asia, and the likely implications for those companies that are currently manufacturing batteries in Asia or considering a future role in Asia within the coming decade are examined in this paper.

  14. Advances in VRLA battery technology for telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sudhan S. [SPM Consultants LLC, 112 Gwynmont Circle, North Wales, PA 19454 (United States)

    2007-05-25

    Wide scale use of the newly emergent VRLA (valve-regulated lead-acid) battery in telecommunication applications and the subsequent problems encountered early in their deployment history spurred intense efforts to improve the design as a continuous endeavor. After implementing improvements to battery placement and containment design to prevent the sudden onset of thermal runaway, the focus of the development work has been on cell internals. These include improved grid and strap alloys, superior AGM (absorbent glass mat) separator that retains compression in the cell, use of beneficial additives to the active materials and the need to avoid contaminants that promote detrimental side reactions. These improvements are now resulting in a vastly superior VRLA experience in the telecommunication applications. To further improve the reliability demanded by today's communication and internet environment VRLA battery installations should include continuous cell/module and system monitoring similar to that incorporated in competing advanced battery systems under development. (author)

  15. Nanostructuring effect of multi-walled carbon nanotubes on electrochemical properties of carbon foam as constructive electrode for lead acid battery

    Science.gov (United States)

    Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.

    2015-01-01

    In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.

  16. Properties, ageing behavior and stability of bipolar films containing nano-layers of allylamine and acrylic acid plasma polymers

    Science.gov (United States)

    Aziz, Gaelle; Asadian, Mahtab; Declercq, Heidi; Morent, Rino; De Geyter, Nathalie

    2018-06-01

    In this work, a dielectric barrier discharge (DBD) has been used for the deposition of bipolar films containing alternating nano-layers of plasma polymerized allylamine (PPAam) and acrylic acid (PPAac). Various films were obtained by varying the single-layer thickness of each plasma polymer while maintaining a constant total film thickness and two kinds of films were fabricated via different depositing sequences (PPAam/Aac and PPAac/Aam). Films properties, ageing in air and stability in water over a 7 days period were investigated. Results showed that, COO- and NH3+ polar entities, generated from the interaction of PPAam and PPAac, are present in the bipolar films. Concerning the films stability, the different reaction mechanisms involved in the formation of each kind of films resulted in a higher amount of polar groups in the PPAam/Aac films; this conferred these films a higher stability than PPAac/Aam. Concerning the films ageing behavior, all prepared samples underwent some kind of ageing which was found to be dependent on the deposition sequence. Results also showed that bipolar coatings exhibited better cell-material interactions compared to PPAam and PPAac films; with a better cell viability observed on PPAam/Aac coatings after 1 and 7 days culture.

  17. IEEE Std 535-1979: IEEE standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1971 and IEE Std 308-1978, can be demonstrated by using the procedures provided in this standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other type batteries are beyond the scope of this standard

  18. Studies of doped negative valve-regulated lead-acid battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Micka, K. [J. Heyrovsky Institute of Physical Chemistry, ASCR, 182 23 Prague 8 (Czech Republic); Calabek, M.; Baca, P.; Krivak, P.; Labus, R.; Bilko, R. [Department of Electrotechnology, University of Technology, 602 00 Brno (Czech Republic)

    2009-06-01

    Accelerated cycling in the partial state of charge regime showed conclusively that the improvement in cycle life of negative lead accumulator electrodes can be brought about not only by the addition of various sorts of powdered carbon into the active mass but also by the addition of other powdered inert materials like glass fibers, alumina, or titanium dioxide. Steric hindrance of the crystallization of lead sulfate in the electrode pores evidenced by ESEM microphotographs is considered as the main reason for this effect. The added powdered substances were practically without influence on the hydrogen overpotential; and their effect on the active material resistance was also negligible. (author)

  19. Apparatus and methods for recovery of lead oxide from production and application wastes of lead storage battery production or of lead storage batteries themselves. Verfahren und Anordnung zur Rueckgewinnung von Bleioxyd aus Produktions- und Anwendungsabfaellen der Bleiakkumulatorherstellung beziehungsweise der Bleiakkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Szalay, G; Gyoeroek, A; Orgovan, G

    1982-11-04

    For reasons of economy and pollution control, aqueous lead-oxide-containing wastes from the various steps of lead storage battery production are reprocessed involving e.g. a vibrating screen for separating foreign matter and particles larger than 0.2 mm, dewatering of the residual paste by centrifuging for recycling the thickened product to the production process at an H/sub 2/O content of some 20 wt%. Largish particles separated by the screen can be re-used after being finely ground; the water may be recycled just as well or be discharged following neutralisation.

  20. Bipolar Treatment: Are Bipolar I and Bipolar II Treated Differently?

    Science.gov (United States)

    ... The diagnosis and management of bipolar I and bipolar II disorders: Clinical practice update. Mayo Clinic Proceedings. 2017;92:1532. Haynes PL, et al. Social rhythm therapies for mood disorders: An update. Current Psychiatry Reports. ...

  1. Lithium is associated with decrease in all-cause and suicide mortality in high-risk bipolar patients: A nationwide registry-based prospective cohort study.

    Science.gov (United States)

    Toffol, Elena; Hätönen, Taina; Tanskanen, Antti; Lönnqvist, Jouko; Wahlbeck, Kristian; Joffe, Grigori; Tiihonen, Jari; Haukka, Jari; Partonen, Timo

    2015-09-01

    Mortality rates, in particular due to suicide, are especially high in bipolar patients. This nationwide, registry-based study analyses the associations of medication use with hospitalization due to attempted suicides, deaths from suicide, and overall mortality across different psychotropic agents in bipolar patients. Altogether 826 bipolar patients hospitalized in Finland between 1996-2003 because of a suicide attempt were followed-up for a mean of 3.5 years. The relative risk of suicide attempts leading to hospitalization, completed suicide, and overall mortality during lithium vs. no-lithium, antipsychotic vs. no-antipsychotic, valproic acid vs. no-valproic acid, antidepressant vs. no-antidepressant and benzodiazepine vs. no-benzodiazepine treatment was measured. The use of valproic acid (RR=1.53, 95% CI: 1.26-1.85, p<0.001), antidepressants (RR=1.49, 95% CI: 1.23-1.8, p<0.001) and benzodiazepines (RR=1.49, 95% CI: 1.23-1.80, p<0.001) was associated with increased risk of attempted suicide. Lithium was associated with a (non-significantly) lower risk of suicide attempts, and with significantly decreased suicide mortality in univariate (RR=0.39, 95% CI: 0.17-0.93, p=0.03), Cox (HR=0.37, 95% CI: 0.16-0.88, p=0.02) and marginal structural models (HR=0.31, 95% CI: 0.12-0.79, p=0.02). Moreover, lithium was related to decreased all-cause mortality by 49% (marginal structural models). Only high-risk bipolar patients hospitalized after a suicide attempt were studied. Diagnosis was not based on standardized diagnostic interviews; treatment regimens were uncontrolled. Maintenance therapy with lithium, but not with other medications, is linked to decreased suicide and all-cause mortality in high-risk bipolar patients. Lithium should be considered for suicide prevention in high-risk bipolar patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, J.B. (comp.)

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  3. [Clinical manifestations of lead levels in children exposed to automobile battery recycling processes in Soacha and Bogotá, D.C].

    Science.gov (United States)

    Hurtado, Carlos Mauricio; Gutiérrez, Myriam; Echeverry, Jairo

    2008-03-01

    Lead is a harmless metal if not handled directly in the industrial process. Even thought lead has been eliminated from the gasoline in many countries, automobile battery recycling continues to be a potential source of exposure and intoxication for the workers and their families, particularly of low income. The current investigation was initiated after an index case of lead poisoning was reported from Soacha, Cundinamarca, in central Colombia. Clinical investigation established lead levels and lead poison frequency in children with para-occupational lead exposure in the process of recycling automobile batteries. This was designed as a descriptive study, with selection of subjects with high risk of possible lead exposure. Minors, mostly of school age were recruited based on referral by relatives, neighbors or acquaintances, all of whom were involved in para-occupational exposure. Thirty two children, less than 12 years old (majority school age), were included. General and specific examinations of the children were made, and blood samples were taken for lead and hematological determinations. All subjects showed high levels of lead (2-9 times the maximum acceptable value) and, according to established criteria, two-thirds were rated as severely poisoned. The children with high levels of lead had tendency toward more specific hematological compromise and showing black gingival bordering (Burton border). This study communicates to the sanitary authorities and government a clear sign of alarm in that measures must be taken to diminish the occupational or para-occupational lead exposure of children by way of the automobile battery recycling industry.

  4. Clinical, Toxicological, Biochemical, and Hematologic Parameters in Lead Exposed Workers of a Car Battery Industry

    Directory of Open Access Journals (Sweden)

    Sina Kianoush

    2013-03-01

    Full Text Available Background: Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Methods: Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000 and hematologic (using Cell Counter Sysmex; Model KX21N parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA was used to determine lead concentration in blood and urine by heated graphite atomization technique. Results: A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR 22.3%, and decreased DTR (18.7%. Blood lead concentration (BLC was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044 but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r2=0.711; P<0.001, mean corpuscular hemoglobin (r=-0.280; P=0.011, mean corpuscular hemoglobin concentration (r=-0.304; P=0.006 and fasting blood sugar or FBS (r=-0.258; P=0.010. Conclusion: Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS.

  5. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  6. A low cost, microprocessor-based battery charge controller

    Energy Technology Data Exchange (ETDEWEB)

    Pulfrey, D L; Hacker, J [Pulfrey Solar Inc., Vancouver, BC (Canada)

    1990-01-01

    This report describes the design, construction, testing, and evaluation of a microprocessor-based battery charge controller that uses charge integration as the method of battery state-of-charge estimation. The controller is intended for use in medium-size (100-1000W) photovoltaic systems that employ 12V lead-acid batteries for charge storage. The controller regulates the charge flow to the battery and operates in three, automatically-determined modes, namely: charge, equalize, and float. The prototype controller is modular in nature and can handle charge/discharge currents of magnitude up to 80A, depending on the number of circuit boards employed. Evaluation tests and field trials have shown the controller to be very accurate and reliable. Based on the cost of the prototype, it appears that an original equipment manufacturer's selling price of $400 for a 40A (500W) unit may be realistic. 18 figs., 2 tabs.

  7. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; O`Donnell, P.M. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-12-31

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (>30,000 cycles), the current cycle life of 4,000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft.

  8. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  9. Cognitive impairment in a Brazilian sample of patients with bipolar disorder Prejuízo cognitivo em uma amostra brasileira de pacientes com transtorno do humor bipolar

    Directory of Open Access Journals (Sweden)

    Júlia J Schneider

    2008-09-01

    Full Text Available OBJECTIVE: Persistent neurocognitive deficits have been described in bipolar mood disorder. As far as we are aware, no study have examined whether the cognitive impairment is presented in the same way in a Brazilian sample. METHOD: Cognitive function of 66 patients with bipolar disorder (32 with depressive symptoms and 34 euthymic and 28 healthy subjects was examined using a complete cognitive battery. RESULTS: Patients with bipolar disorder presented a significantly poorer performance in eight of the 12 subtests when compared to healthy subjects. There was no significant difference between the subgroups of patients. These patients showed impairment in both verbal and non-verbal cognitive function. CONCLUSION: Cognitive impairment was found in both groups of patients with bipolar disorder. The findings described here suggest an overall impairment of cognitive function, independent of mood symptoms. This is in line with data showing that cognitive deficits may be a persistent characteristic of bipolar disorder.OBJETIVO: Déficits neurocognitivos persistentes têm sido descritos no transtorno do humor bipolar; entretanto, não há estudos em amostras brasileiras para avaliar se o prejuízo se apresenta da mesma forma. MÉTODO: Foi realizada uma avaliação cognitiva em 66 pacientes bipolares (32 com sintomas depressivos e 34 eutímicos e 28 controles, utilizando-se uma bateria cognitiva completa. RESULTADOS: Em oito dos 12 subtestes avaliados os pacientes apresentaram desempenho significativamente inferior em relação aos controles. Não houve diferença significativa entre os grupos de pacientes. Foram encontrados prejuízos cognitivos tanto na área verbal como na área não verbal da cognição. CONCLUSÃO: Foi observada uma performance inferior em ambos os grupos de pacientes com transtorno bipolar. As dificuldades cognitivas encontradas apontam para um prejuízo global no funcionamento cognitivo, independente da presença de sintomas

  10. Markers of glutamate signaling in cerebrospinal fluid and serum from patients with bipolar disorder and healthy controls.

    Science.gov (United States)

    Pålsson, Erik; Jakobsson, Joel; Södersten, Kristoffer; Fujita, Yuko; Sellgren, Carl; Ekman, Carl-Johan; Ågren, Hans; Hashimoto, Kenji; Landén, Mikael

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the brain. Aberrations in glutamate signaling have been linked to the pathophysiology of mood disorders. Increased plasma levels of glutamate as well as higher glutamine+glutamate levels in the brain have been demonstrated in patients with bipolar disorder as compared to healthy controls. In this study, we explored the glutamate hypothesis of bipolar disorder by examining peripheral and central levels of amino acids related to glutamate signaling. A total of 215 patients with bipolar disorder and 112 healthy controls from the Swedish St. Göran bipolar project were included in this study. Glutamate, glutamine, glycine, L-serine and D-serine levels were determined in serum and in cerebrospinal fluid using high performance liquid chromatography with fluorescence detection. Serum levels of glutamine, glycine and D-serine were significantly higher whereas L-serine levels were lower in patients with bipolar disorder as compared to controls. No differences between the patient and control group in amino acid levels were observed in cerebrospinal fluid. The observed differences in serum amino acid levels may be interpreted as a systemic aberration in amino acid metabolism that affects several amino acids related to glutamate signaling. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  11. Secondary lead production

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, R.G.

    1990-10-16

    This invention is concerned with the efficient recovery of soft lead from the paste component of used automobile lead-acid storage batteries. According to the invention, a scrap which contains lead oxide, lead sulfate, and antimony in an oxidized state is processed in the following steps to recover lead. A refractory lined reaction vessel is continuously charged with the scrap, along with a reductant effective for reducing lead oxide. The charged material is melted and agitated by means of a submerged lance at 900-1150{degree}C whereby some of the lead oxide of the scrap is reduced to form molten lead. A slag layer is then formed above the molten lead, and an amount of lead oxide is maintained in the slag layer. The molten lead, now containing under 0.5 wt % of antimony, is removed, and the antimony oxide in the scrap is concentrated as oxide in the slag layer. Preferred embodiments of the invention result in the production, in a single step, of a soft lead substantially free of antimony. The slag may be subsequently treated to reduce the antimony oxide and produce a valuable antimony-lead product. Further advantages of the process are that a wet battery paste may be used as the feed without prior drying, and the process can be conducted at a temperature 100-150{degree}C lower than in previously known methods. In addition, a smaller reactor can be employed which reduces both capital cost and fuel costs. The process of the invention is illustrated by descriptions of pilot plant tests. 1 fig.

  12. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979. [165 Ah, 36. 5 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Bodamer, G.W.; Branca, G.C.; Cash, H.R.; Chrastina, J.R.; Yurick, E.M.

    1980-06-01

    Progress during the 1979 fiscal year is reported. All the tooling and capital equipment required for the pilot line production has been installed. A limited amount of plate production has been realized. A highly automated and versatile testing facility was established. The fabrication and testing of the initial calculated design is discussed. Cell component adjustments and the trade-offs associated with those changes are presented. Cells are being evaluated at the 3-hour rate. They have a capacity of 165 Ah and an energy density of 36.5 Wh/kg, and have completed 105 cycles to date. Experimental results being pursued under the advanced battery development program to enhance energy density and cycle life are presented. Data on the effects of different electrolyte specific gravity, separators, retainers, paste densities, battery additives and grid alloy composition on battery performance are presented and evaluated. Advanced battery prototype cells are under construction. Quality Assurance activities are summarized. They include monitoring the cell and battery fabrication and testing operations as well as all relevant documentation procedures. 12 figures, 28 tables.

  13. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part II. Effect of carbon additives on the processes of charge and discharge of negative plates

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, D.; Nikolov, P.; Rogachev, T. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, bl. 10, Sofia 1113 (Bulgaria)

    2010-07-15

    Lead-acid batteries operated in the high-rate partial-state-of-charge (HRPSoC) duty rapidly lose capacity on cycling, because of sulfation of the negative plates. As the battery operates from a partially discharged state, the small PbSO{sub 4} crystals dissolve and precipitate onto the bigger crystals. The latter have low solubility and hence PbSO{sub 4} accumulates progressively in the negative plates causing capacity loss. In order to suppress this process, the rate of the charge process should be increased. In a previous publication of ours we have established that reduction of Pb{sup 2+} ions to Pb may proceed on the surface of both Pb and carbon black particles. Hence, the reversibility of the charge-discharge processes improves, which leads to improved cycle life performance of the batteries in the HRPSoC mode. However, not all carbon forms accelerate the charge processes. The present paper discusses the electrochemical properties of two groups of carbon blacks: Printex and active carbons. The influence of Vaniseprse A and BaSO{sub 4} (the other two components of the expander added to the negative plates) on the reversibility of the charge-discharge processes on the negative plates is also considered. It has been established that lignosulfonates are adsorbed onto the lead surface and retard charging of the battery. BaSO{sub 4} has the opposite effect, which improves the reversibility of the processes on cycling and hence prolongs battery life in the HRPSoC duty. It has been established that the cycle life of lead-acid cells depends on the type of carbon black or active carbon added to the negative plates. When the carbon particles are of nano-sizes (<180 nm), the HRPSoC cycle life is between 10,000 and 20,000 cycles. Lignosulfonates suppress this beneficial effect of carbon black and activated carbon additives to about 10,000 cycles. Cells with active carbons have the longest cycle life when they contain also BaSO{sub 4} but no lignosulfonate. A summary of

  14. Development of a Fe-Ni battery for electric vehicle use. Denki jidoshayo tetsu nickel denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Okuda, K. (The Tohoku Electric Power Co. Inc., Sendai (Japan))

    1993-08-11

    Development has been made on an iron-nickel battery as a low polluting electric vehicle battery that is superior in low-temperature performance to lead-acid batteries. This paper summarizes the battery. The battery uses NiOOH for positive electrodes, Fe for negative electrodes, and alkaline aqueous solution for electrolyte. The battery was manufactured in the following manners to make it suit the electric vehicle application: The iron electrode was manufactured by mixing reduced iron powder having grain sizes from 5[mu] to 6[mu] with electrolyzed iron powder with grain sizes from 20[mu] to 30[mu] in a bonding agent, and sintered at temperatures from 750[degree]C to 800[degree]C in H2 atmosphere; iron electrodes that have superior life and material utilization factor were found to have reduced iron powder ratios from 20% to 30%; the nickel electrode consists of a substrate obtained by coating metallic Ni powder on a sheet and sintering it and filling it with NiOH; the electrolyte is composed of KOH containing LiOH and KS; the separator uses a ribbed PVC porous sheet; the container is made of PP; performance evaluation tests were conducted on discharge performance, energy density, output density, temperature characteristics, charge efficiency, and cycle life; and the results of vehicle driving tests surpassed those from lead-acid batteries. 6 refs., 18 figs., 6 tabs.

  15. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g) and...

  16. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Zhang, Qiuxiang; Zhao, Junfeng; Lu, Hongbin; Meng, Xiangkang

    2017-12-01

    Conductive polymer coating doped with large molecular organic acid is an alternative method used to protect stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). However, it is difficult to select the proper doping acid, which improves the corrosion resistance of the coating without affecting its conductivity. In this study, large spatial molecular group camphorsulfonic acid (CSA) doped polypyrrole (PPY) conductive coating was prepared by galvanostatic electropolymerization on 304SS. The electrochemical properties of the coating were evaluated in 0.1 M H2SO4 solution in order to simulate the PEMFC service environment. The results indicate that the coating increased the corrosion potential and shifted Ecorr towards more positive value, particularly the jcorr value of PPY-CSA coated 304SS was dropped from 97.3 to 0.00187 μA cm-2. The long-term immersion tests (660 h) show that the PPY-CSA coating exhibits better corrosion resistance in comparison with the small acid (SO42-) doped PPY-SO42- or PPY/PPY-SO42- coatings. Moreover, the PPY-CSA coating presents low contact resistance and maintains strong corrosion resistance during the prolonged exposure time due to barrier effect and anodic protection.

  17. Suicide in bipolar disorder: a review.

    Science.gov (United States)

    Latalova, Klara; Kamaradova, Dana; Prasko, Jan

    2014-06-01

    Suicide is a leading cause of death in patients with bipolar disorder. Risk factors and prevention of suicide in this illness are the focus of considerable current research. MEDLINE data base was searched for the key words "bipolar disorder" with "suicide", "lithium" with "suicide", "anticonvulsants" with "bipolar disorder", and "anticonvulsants" with "bipolar disorder" and with "suicide". No language or time constraints were applied. The lists of references were searched manually to find additional articles. It is estimated that 25% to 50% of patients with bipolar disorder will attempt suicide at least once over their lifetime, and that 8% to 19% will complete suicide. Mortality rates from cardiovascular diseases are elevated in bipolar disorder. Risk factors for suicide include younger age of onset of the illness, history of past suicidal behavior, family history of suicide acts, comorbid borderline personality disorder and substance use disorders, and hopelessness. The warning signs calling for immediate action include the patients threatening to harm themselves, or looking for ways to kill themselves (seeking access to pills or weapons), or the patient talking or writing about death. Robust evidence supports the effects of lithium treatment in reducing suicidal attempts and completions in bipolar disorder. The evidence for antisuicidal effects of anticonvulsants is weaker. Nevertheless, valproate and other anticonvulsants are frequently prescribed as mood stabilizers. There have been controversial suggestions that this treatment may elevate the risk of suicide, but the data supporting this are not convincing. Psychoeducation can reduce the number of suicide attempts and completions. Suicide in bipolar disorder is a major public health problem. Recent research has expanded our knowledge of risk factors and warning signs. Nevertheless, it appears that the introduction of lithium treatment in the 1970s was the most recent important breakthrough in the prevention

  18. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries; Untersuchungen an a-C:H:Me beschichteten Substraten zur Eignung als alternatives Bipolarplattenmaterial fuer waessrige Vanadium Redox-Flow Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Justin Frederick

    2015-07-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  19. Storage battery for electric vehicles. Energiespeicher fuer ein Elektrokraftfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-22

    Lead batteries in electric vehicles tend to produce electrolytic gas which will entrain acid from the cells during its discharge. The loss of acid will reduce the recombinator efficiency and tends to cause corrosion. To prevent this, an acid separation stage is arranged in the gas discharge duct. The acid separation stage consists of a gas washer and a dry filter. Acid separation is enhanced by small plastic elements arranged in the gas discharge chamber of the gas washer and the gas supply chamber of the dry filter. The gas outlet chamber above the washing liquid has a large volume in order to prevent washing liquid from slopping out.

  20. Phase transformations of high-purity PbI{sub 2} nanoparticles synthesized from lead-acid accumulator anodes

    Energy Technology Data Exchange (ETDEWEB)

    Malevu, T.D., E-mail: malevutd@ufs.ac.za; Ocaya, R.O.; Tshabalala, K.G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI{sub 2} that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5–5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor–acceptor pair and luminescence bands from the deep levels.

  1. Perturbational Profiling of Metabolites in Patient Fibroblasts Implicates α-Aminoadipate as a Potential Biomarker for Bipolar Disorder

    Science.gov (United States)

    Huang, Joanne H.; Berkovitch, Shaunna S.; Iaconelli, Jonathan; Watmuff, Bradley; Park, Hyoungjun; Chattopadhyay, Shrikanta; McPhie, Donna; Öngür, Dost; Cohen, Bruce M.; Clish, Clary B.; Karmacharya, Rakesh

    2016-01-01

    Many studies suggest the presence of aberrations in cellular metabolism in bipolar disorder. We studied the metabolome in bipolar disorder to gain insight into cellular pathways that may be dysregulated in bipolar disorder and to discover evidence of novel biomarkers. We measured polar and nonpolar metabolites in fibroblasts from subjects with bipolar I disorder and matched healthy control subjects, under normal conditions and with two physiologic perturbations: low-glucose media and exposure to the stress-mediating hormone dexamethasone. Metabolites that were significantly different between bipolar and control subjects showed distinct separation by principal components analysis methods. The most statistically significant findings were observed in the perturbation experiments. The metabolite with the lowest p value in both the low-glucose and dexamethasone experiments was α-aminoadipate, whose intracellular level was consistently lower in bipolar subjects. Our study implicates α-aminoadipate as a possible biomarker in bipolar disorder that manifests under cellular stress. This is an intriguing finding given the known role of α-aminoadipate in the modulation of kynurenic acid in the brain, especially as abnormal kynurenic acid levels have been implicated in bipolar disorder. PMID:27606323

  2. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F; Castillo, S; Laberty- Robert, C; Pellizon-Birelli, M [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France); and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  3. Influence of bismuth on the age-hardening and corrosion behaviour of low-antimony lead alloys in lead/acid battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Lam, L.T. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Huynh, T.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Haigh, N.P. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Douglas, J.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Rand, D.A.J. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Lakshmi, C.S. [Pasminco Research Centre, Boolaroo, NSW (Australia); Hollingsworth, P.A. [Pasminco Research Centre, Boolaroo, NSW (Australia); See, J.B. [Pasminco Research Centre, Boolaroo, NSW (Australia); Manders, J. [Pasminco Ltd., Melbourne, VIC (Australia); Rice, D.M. [Pasminco Ltd., Melbourne, VIC (Australia)

    1995-01-01

    The effects of bismuth additions in the range 0.006-0.086 wt.% on the metallurgical and electrochemical properties of Pb-1.5 wt.% Sb alloy are investigated. The self-discharge behaviour of batteries produced with grids of the doped alloys is also evaluated. Addition of bismuth is found to exert no significant effects on the age-hardening behaviour, general microstructure or grain size of the alloy. It does, however, influence the morphology of the eutectic in the inter-dendritic regions. The latter changes from a mainly lamellar to an irregular type with increasing bismuth content. The corrosion rate of the grid decreases with increase of the bismuth content. Attack occurs preferentially in the inter-dendritic regions where there is an enrichment of both antimony and bismuth. Electron-probe microanalysis shows that the corrosion zone consists of a tri-layered structure, namely: a dense, continuous, inner layer (PbO{sub 1.1}); a central layer (PbO{sub 1.8}.PbSO{sub 4}); a porous outer layer n(PbO{sub 1.8}).PbSO{sub 4}, with n=2-8. In the latter, the value of n increases in the direction of corrosive penetration into the grid. Data from atomic absorption spectrometric analysis reveal that bismuth, after oxidative leaching from the grid substrate, is retained mainly in the corrosion layer. A key observation is that bismuth (i.e., up to {approx}0.09 wt.%) does not affect the self-discharge behaviour of batteries. (orig.)

  4. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  5. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  6. Air Force electrochemical power research and technology program for space applications

    Science.gov (United States)

    Allen, Douglas

    1987-01-01

    An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.

  7. Is bipolar always bipolar? Understanding the controversy on bipolar disorder in children

    Science.gov (United States)

    Grimmer, Yvonne; Hohmann, Sarah

    2014-01-01

    Dramatically increasing prevalence rates of bipolar disorder in children and adolescents in the United States have provoked controversy regarding the boundaries of manic symptoms in child and adolescent psychiatry. The serious impact of this ongoing debate on the treatment of affected children is reflected in the concomitant increase in prescription rates for antipsychotic medication. A key question in the debate is whether this increase in bipolar disorder in children and adolescents is based on a better detection of early-onset bipolar disorder—which can present differently in children and adolescents—or whether it is caused by an incorrect assignment of symptoms which overlap with other widely known disorders. So far, most findings suggest that the suspected symptoms, in particular chronic, non-episodic irritability (a mood symptom presenting with easy annoyance, temper tantrums and anger) do not constitute a developmental presentation of childhood bipolar disorder. Additional research based on prospective, longitudinal studies is needed to further clarify the developmental trajectories of bipolar disorder and the diagnostic status of chronic, non-episodic irritability. PMID:25580265

  8. Omega-3 fatty acids decreased irritability of patients with bipolar disorder in an add-on, open label study

    Directory of Open Access Journals (Sweden)

    Baldassano Claudia F

    2005-02-01

    Full Text Available Abstract This is a report on a 37-patient continuation study of the open ended, Omega-3 Fatty Acid (O-3FA add-on study. Subjects consisted of the original 19 patients, along with 18 new patients recruited and followed in the same fashion as the first nineteen. Subjects carried a DSM-IV-TR diagnosis of Bipolar Disorder and were visiting a Mood Disorder Clinic regularly through the length of the study. At each visit, patients' clinical status was monitored using the Clinical Monitoring Form. Subjects reported on the frequency and severity of irritability experienced during the preceding ten days; frequency was measured by way of percentage of days in which subjects experienced irritability, while severity of that irritability was rated on a Likert scale of 1 – 4 (if present. The irritability component of Young Mania Rating Scale (YMRS was also recorded quarterly on 13 of the 39 patients consistently. Patients had persistent irritability despite their ongoing pharmacologic and psychotherapy. Omega-3 Fatty Acid intake helped with the irritability component of patients suffering from bipolar disorder with a significant presenting sign of irritability. Low dose (1 to 2 grams per day, add-on O-3FA may also help with the irritability component of different clinical conditions, such as schizophrenia, borderline personality disorder and other psychiatric conditions with a common presenting sign of irritability.

  9. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  10. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.

    Science.gov (United States)

    Zhu, L M; Lei, A W; Cao, Y L; Ai, X P; Yang, H X

    2013-01-21

    An all-organic rechargeable battery is realized by use of polyparaphenylene as both cathode- and anode-active material. This new battery can operate at a high voltage of 3.0 V with fairly high capacity, offering a renewable and cheaper alternative to conventional batteries.

  11. Test Report : GS Battery, EPC power HES RESCU

    Energy Technology Data Exchange (ETDEWEB)

    Rose, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borneo, Daniel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

  12. Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Francesco Ferella

    2010-01-01

    Full Text Available The paper is focused on the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Metals are extracted by sulphuric acid leaching in the presence of citric acid as reducing agent. Leaching tests are carried out according to a 24 full factorial design, and empirical equations for Mn and Zn extraction yields are determined from experimental data as a function of pulp density, sulphuric acid concentration, temperature, and citric acid concentration. The highest values experimentally observed for extraction yields were 97% of manganese and 100% of zinc, under the following operating conditions: temperature 40∘C, pulp density 20%, sulphuric acid concentration 1.8 M, and citric acid 40 g L-1. A second series of leaching tests is also performed to derive other empirical models to predict zinc and manganese extraction. Precipitation tests, aimed both at investigating precipitation of zinc during leaching and at evaluating recovery options of zinc and manganese, show that a quantitative precipitation of zinc can be reached but a coprecipitation of nearly 30% of manganese also takes place. The achieved results allow to propose a battery recycling process based on a countercurrent reducing leaching by citric acid in sulphuric solution.

  13. Investigation and Evaluation of Children’s Blood Lead Levels around a Lead Battery Factory and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-05-01

    Full Text Available Lead pollution incidents have occurred frequently in mainland China, which has caused many lead poisoning incidents. This paper took a battery recycling factory as the subject, and focused on measuring the blood lead levels of environmental samples and all the children living around the factory, and analyzed the relationship between them. We collected blood samples from the surrounding residential area, as well as soil, water, vegetables. The atomic absorption method was applied to measure the lead content in these samples. The basic information of the generation procedure, operation type, habit and personal protect equipment was collected by an occupational hygiene investigation. Blood lead levels in 43.12% of the subjects exceeded 100 μg/L. The 50th and the 95th percentiles were 89 μg/L and 232 μg/L for blood lead levels in children, respectively, and the geometric mean was 94 μg/L. Children were stratified into groups by age, gender, parents’ occupation, distance and direction from the recycling plant. The difference of blood lead levels between groups was significant (p < 0.05. Four risk factors for elevated blood lead levels were found by logistic regression analysis, including younger age, male, shorter distance from the recycling plant, and parents with at least one working in the recycling plant. The rate of excess lead concentration in water was 6.25%, 6.06% in soil and 44.44% in leaf vegetables, which were all higher than the Chinese environment standards. The shorter the distance to the factory, the higher the value of BLL and lead levels in vegetable and environment samples. The lead level in the environmental samples was higher downwind of the recycling plant.

  14. Lead and nutrient allocation in vegetables grown in soil from a battery site

    Directory of Open Access Journals (Sweden)

    Francisco Sousa Lima

    2015-08-01

    Full Text Available The steady growth of the Brazilian automotive industry and the resulting development of the battery market, which represent a large proportion of the lead (Pb used in the country, have made battery recycling one of the main sources of Pb soil contamination in Brazil. Plants cultivated in Pb-contaminated soil can take up this metal, which can affect the plant’s nutritional metabolism. The Pb can also be transferred into the edible parts of plants, thereby imposing threats to human health. This study was conducted to evaluate the concentration of Pb in edible parts of vegetables grown on soil contaminated by battery recycling activities. This study also investigated the effects of Pb on nutrient concentrations in plants. Plant species biomass, Pb concentration, and concentrations of macronutrients (P, K, Ca, Mg and micronutrients (Fe, Mn, Zn, Cu in plant parts were measured. The results showed that Pb concentrations in the edible parts of vegetables grown in contaminated soil were above the threshold acceptable for human consumption. Among the vegetables evaluated, only lettuce dry matter production was reduced because of the high concentration of Pb in soil. The presence of Pb altered the concentration of micronutrients in the edible parts of kale, carrots, and okra, stimulating higher Mn and Cu concentrations in these plants when cultivated in contaminated soil.

  15. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  16. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox‐Flow Battery

    Science.gov (United States)

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D.; Martin, Norbert

    2017-01-01

    Abstract By combining a viologen unit and a 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO) radical in one single combi‐molecule, an artificial bipolar redox‐active material, 1‐(4‐(((1‐oxyl‐2,2,6,6‐tetramethylpiperidin‐4‐yl)oxy)carbonyl)benzyl)‐1′‐methyl‐[4,4′‐bipyridine]‐1,1′‐diium‐chloride (VIOTEMP), was created that can serve as both the anode (−0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water‐based redox‐flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox‐flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity‐inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented. PMID:28413754

  17. Bipolar Disorder in Pregnancy: A Review of Pregnancy Outcomes.

    Science.gov (United States)

    Scrandis, Debra A

    2017-11-01

    Women with bipolar disorder may benefit from continuation of their medications during pregnancy, but there may be risks to the fetus associated with some of these medications. This article examines the evidence relating to the effect of bipolar disorder and pharmacologic treatments for bipolar disorder on pregnancy outcomes. MEDLINE, CINAHL, ProQuest Dissertation & Theses, and the Cochrane Database of Systematic Reviews were searched for English-language studies published between 2000 and 2017, excluding case reports and integrative reviews. Twenty articles that met inclusion criteria were included in this review. Women with bipolar disorder have a higher risk for pregnancy complications and congenital abnormalities than do women without bipolar disorder. In addition, illness relapse can occur if psychotropic medications are discontinued. There are limited data to recommend discontinuing lithium, lamotrigine, or carbamazepine during pregnancy. Valproic acid is not recommended during pregnancy due to increased odds of neural tube defects associated with its use. Atypical antipsychotics are used more frequently during pregnancy, with mixed evidence regarding an association between these agents and congenital malformations or preterm birth. The knowledge of benefits and risks of bipolar disorder and its treatment can help women and health care providers make individualized decisions. Prenatal care providers can discuss the evidence about safety of medications used to treat bipolar disorder with women in collaboration with their mental health care providers. In addition, women being treated for bipolar disorder require close monitoring for depressive and manic/hypomanic episodes that impact pregnancy outcomes. © 2017 by the American College of Nurse-Midwives.

  18. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  19. Progression along the Bipolar Spectrum: A Longitudinal Study of Predictors of Conversion from Bipolar Spectrum Conditions to Bipolar I and II Disorders

    Science.gov (United States)

    Alloy, Lauren B.; Urošević, Snežana; Abramson, Lyn Y.; Jager-Hyman, Shari; Nusslock, Robin; Whitehouse, Wayne G.; Hogan, Michael

    2011-01-01

    Little longitudinal research has examined progression to more severe bipolar disorders in individuals with “soft” bipolar spectrum conditions. We examine rates and predictors of progression to bipolar I and II diagnoses in a non-patient sample of college-age participants (n = 201) with high General Behavior Inventory scores and childhood or adolescent onset of “soft” bipolar spectrum disorders followed longitudinally for 4.5 years from the Longitudinal Investigation of Bipolar Spectrum (LIBS) project. Of 57 individuals with initial cyclothymia or bipolar disorder not otherwise specified (BiNOS) diagnoses, 42.1% progressed to a bipolar II diagnosis and 10.5% progressed to a bipolar I diagnosis. Of 144 individuals with initial bipolar II diagnoses, 17.4% progressed to a bipolar I diagnosis. Consistent with hypotheses derived from the clinical literature and the Behavioral Approach System (BAS) model of bipolar disorder, and controlling for relevant variables (length of follow-up, initial depressive and hypomanic symptoms, treatment-seeking, and family history), high BAS sensitivity (especially BAS Fun Seeking) predicted a greater likelihood of progression to bipolar II disorder, whereas early age of onset and high impulsivity predicted a greater likelihood of progression to bipolar I (high BAS sensitivity and Fun-Seeking also predicted progression to bipolar I when family history was not controlled). The interaction of high BAS and high Behavioral Inhibition System (BIS) sensitivities also predicted greater likelihood of progression to bipolar I. We discuss implications of the findings for the bipolar spectrum concept, the BAS model of bipolar disorder, and early intervention efforts. PMID:21668080

  20. Evidence-Based Family Interventions for Adolescents and Young Adults With Bipolar Disorder.

    Science.gov (United States)

    Miklowitz, David J

    2016-01-01

    An individual can develop bipolar disorder at any age, but emergence during adolescence and young adulthood can lead to a number of problematic behaviors and outcomes. Several drugs are available as first-line treatments, but even optimal pharmacotherapy rarely leads to complete remission and recovery. When added to pharmacologic treatment, certain targeted psychosocial treatments can improve outcomes for young patients with bipolar disorder. Because bipolar disorder affects family members as well as patients, and because adolescents and young adults often live with and are dependent on their parents, the patient's family should usually be included in treatment. Family-focused treatment and dialectical behavior therapy are promising methods of conducting family intervention. With effective treatment and the support of their families, young patients with bipolar disorder can learn to manage their disorder and become independent and healthy adults. © Copyright 2016 Physicians Postgraduate Press, Inc.

  1. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  2. Remediation of lead contaminated soil

    International Nuclear Information System (INIS)

    Urban, W.; Krishnamurthy, S.

    1992-01-01

    Lead contaminated soil in urban area is of major concern because of the potential health risk to children. Many studies have established a direct correlation between lead in soil and elevated blood lead levels in children. In Minneapolis, Minnesota, Mielke et al. (1983) reported that 50% of the Hmong children with lead poisioning were in areas where soil lead levels were between 500 and 1000 micrograms per gram (ug/g), and 40% of the children suffering from lead poisioning lived in areas where soil lead levels exceeded 1000 ug/g. In urban areas, lead pollution in soil has come from many different sources. The sources include lead paint, lead batteries and automobile exhaust. Olson and Skogerbee (1975) found the following lead compounds in soils where the primary source of pollution was from automobiles: lead sulfate, lead oxide, lead dioxide, lead sulfide, and metallic lead. The primary form of lead found was lead sulfate. Lead sulfate, lead tetraoxide, white lead, and other forms of lead have been used in the manufacture of paints for houses. At present, two remediation techniques, solidification and Bureau of Mines fluosilicic acid leaching, are available for lead-contaminated sites. The objective of the present investigation at the Risk Reduction Engineering Laboratory (RREL), Edison, was to try to solubilize the lead species by appropriate reagents and then recover the contaminants by precipitation as lead sulfate, using environmentally acceptable methods. The apparatus used for mixing was a LabMaster mixer, with variable speed and high-shear impeller. Previous work had used nitric acid for dissolving metallic lead. Owing to the environmental concerns, it was decided to use acetic acid in the presence of oxygen. The theoretical justification for this approach is the favorable redox potential for the reaction between metallic lead, acetic acid, and gaseous oxygen

  3. Report on achievements in technological development in fiscal 1999. Development of technology to put photovoltaic power generation system into practical use (Research and development of high reliability storage batteries for photovoltaic power generation use); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Kenkyu kaihatsu kanri (taiyoko hatsuden'yo chikudenchi kaihatsu bukai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Storage batteries used in household photovoltaic systems must be free of electrolyte leakage and maintenance, and be readily installable in residential houses. Lead-acid batteries that can meet these requirements and have been put into practical use may include the sealed storage batteries. However, these batteries currently in use have drawbacks in life performance and price. Therefore, development is under way on lead-acid batteries for household photovoltaic systems by improving said sealed lead-acid batteries. The targeted batteries should have as long life as passing 3,000 cycles under a condition of 0.1 to 1 CA discharge (at depth of discharge of 50%), energy density of more than 70 Wh per liter, and cost of 12 yen or lower per watt-hour. A prototype battery as the final candidate was fabricated, that uses silica powder as the electrolyte retainer (silica powder filled between plates, and into clearance between plate groups), pasted plates made of expanded metal grids for positive plates, and micro conductive network plates with increased addition amount of carbon to micro active material (PbO{sub 2}) as negative plates. Life performance testes thereon are being performed. This lead-acid battery is estimated to be capable of satisfying the intended performance based on the result of discussions having been made so far. (NEDO)

  4. A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis.

    Science.gov (United States)

    Han, Ying; Lu, Zhenyu; Du, Zhenguang; Luo, Qi; Chen, Sheng

    2018-05-01

    Bipolar disorder is often mis-diagnosed as unipolar depression in the clinical diagnosis. The main reason is that, different from other diseases, bipolarity is the norm rather than exception in bipolar disorder diagnosis. YinYang bipolar fuzzy set captures bipolarity and has been successfully used to construct a unified inference mathematical modeling method to bipolar disorder clinical diagnosis. Nevertheless, symptoms and their interrelationships are not considered in the existing method, circumventing its ability to describe complexity of bipolar disorder. Thus, in this paper, a YinYang bipolar fuzzy multi-criteria group decision making method to bipolar disorder clinical diagnosis is developed. Comparing with the existing method, the new one is more comprehensive. The merits of the new method are listed as follows: First of all, multi-criteria group decision making method is introduced into bipolar disorder diagnosis for considering different symptoms and multiple doctors' opinions. Secondly, the discreet diagnosis principle is adopted by the revised TOPSIS method. Last but not the least, YinYang bipolar fuzzy cognitive map is provided for the understanding of interrelations among symptoms. The illustrated case demonstrates the feasibility, validity, and necessity of the theoretical results obtained. Moreover, the comparison analysis demonstrates that the diagnosis result is more accurate, when interrelations about symptoms are considered in the proposed method. In a conclusion, the main contribution of this paper is to provide a comprehensive mathematical approach to improve the accuracy of bipolar disorder clinical diagnosis, in which both bipolarity and complexity are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Genotoxicity Assessment of Perfluorodecanoic Acid Using a Battery of In Vitro and In Vivo/in Vitro Assays.

    Science.gov (United States)

    1990-12-01

    clofibrate (Lalwani et al., 1983) and industrial chemicals such as phthalate ester plasticizers and phsnoxy acid herbicides (Reddy at al., 1976; Kawashima at...of hypolipideaic drugs ( clofibrate , nafenopin, tibric acid and WY-14643) on hepatic peroxisomes and p-3roxisome associated enzymes. Am. .7. Pathol. 90...AD-A240 490 AAMRL-TR-90-070 GENOTOXICITY ASSESSMENT OF PERFLUORODECANOIC ACID USING A BATTERY OF IN VITRO AND IN VIVO/IN VITRO ASSAYS C. S. Godin NSI

  6. Cognitive Impairment in Bipolar Disorder: Treatment and Prevention Strategies

    Science.gov (United States)

    Solé, Brisa; Jiménez, Esther; Torrent, Carla; Reinares, Maria; Bonnin, Caterina del Mar; Torres, Imma; Varo, Cristina; Grande, Iria; Valls, Elia; Salagre, Estela; Sanchez-Moreno, Jose; Martinez-Aran, Anabel; Carvalho, André F

    2017-01-01

    Abstract Over the last decade, there has been a growing appreciation of the importance of identifying and treating cognitive impairment associated with bipolar disorder, since it persists in remission periods. Evidence indicates that neurocognitive dysfunction may significantly influence patients’ psychosocial outcomes. An ever-increasing body of research seeks to achieve a better understanding of potential moderators contributing to cognitive impairment in bipolar disorder in order to develop prevention strategies and effective treatments. This review provides an overview of the available data from studies examining treatments for cognitive dysfunction in bipolar disorder as well as potential novel treatments, from both pharmacological and psychological perspectives. All these data encourage the development of further studies to find effective strategies to prevent and treat cognitive impairment associated with bipolar disorder. These efforts may ultimately lead to an improvement of psychosocial functioning in these patients. PMID:28498954

  7. Does bipolar pacemaker current activate blood platelets?

    DEFF Research Database (Denmark)

    Gjesdal, Grunde; Hansen, Annebirthe Bo; Brandes, Axel

    2009-01-01

    OBJECTIVE: The aim of this study was to investigate whether bipolar pacemaker current lead can activate blood platelets. The null hypothesis was that 1 minute of electrical stimulation of platelets would not influence their subsequent reactivity to adenosine diphosphate (ADP). BACKGROUND: Both...... platelets and muscle cells contain actin and myosin filaments, and both cells are activated following calcium influx. Muscle cells open their calcium channels and contract when exposed to an electric current. Current through a bipolar pacemaker lead will expose a small volume of blood, including platelets......, to the depolarizing current. Platelet activation may ensue, resulting in aggregation, release reaction, and contraction. In contrast, a unipolar pacemaker system will not depolarize blood, but transmit current directly into the myocardium, and the current afterward passes through other tissues before returning...

  8. Room temperature rechargeable polymer electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. [EIC Labs., Inc., Norwood, MA (United States); Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-03-01

    Polyacrylonitrile (PAN)- and poly(vinyl chloride) (PVC)-based Li{sup +}-conductive thin-film electrolytes have been found to be suitable in rechargeable Li and Li-ion cells. Li/Li{sub x}Mn{sub 2}O{sub y} and carbon/LiNiO{sub 2} cells fabricated with these electrolytes have demonstrated rate capabilities greater than the C-rate and more than 375 full depth cycles. Two-cell carbon/LiNiO{sub 2} bipolar batteries could be discharged at pulse currents as high as 50 mA/cm{sup 2}. (orig.)

  9. Can bipolar disorder be viewed as a multi-system inflammatory disease?

    Science.gov (United States)

    Leboyer, Marion; Soreca, Isabella; Scott, Jan; Frye, Mark; Henry, Chantal; Tamouza, Ryad; Kupfer, David J.

    2012-01-01

    Background Patients with bipolar disorder are known to be at high risk of premature death. Comorbid cardio-vascular diseases are a leading cause of excess mortality, well above the risk associated with suicide. In this review, we explore comorbid medical disorders, highlighting evidence that bipolar disorder can be effectively conceptualized as a multi-systemic inflammatory disease. Methods We conducted a systematic PubMed search of all English-language articles recently published with bipolar disorder cross-referenced with the following terms: mortality and morbidity, cardio-vascular, diabetes, obesity, metabolic syndrome, inflammation, auto-antibody, retro-virus, stress, sleep and circadian rhythm. Results Evidence gathered so far suggests that the multi-system involvement is present from the early stages, and therefore requires proactive screening and diagnostic procedures, as well as comprehensive treatment to reduce progression and premature mortality. Exploring the biological pathways that could account for the observed link show that dysregulated inflammatory background could be a common factor underlying cardio-vascular and bipolar disorders. Viewing bipolar disorder as a multi-system disorder should help us to re-conceptualize disorders of the mind as “disorders of the brain and the body”. Limitations The current literature substantially lacks longitudinal and mechanistic studies, as well as comparison studies to explore the magnitude of the medical burden in bipolar disorder compared to major mood disorders as well as psychotic disorders. It is also necessary to look for subgroups of bipolar disorder based on their rates of comorbid disorders. Conclusions Comorbid medical illnesses in bipolar disorder might be viewed not only as the consequence of health behaviors and of psychotropic medications, but rather as an early manifestation of a multi-systemic disorder. Medical monitoring is thus a critical component of case assessment. Exploring common

  10. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part I: Effect of lignosulfonates and BaSO{sub 4} on the processes of charge and discharge of negative plates

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, D.; Nikolov, P.; Rogachev, T. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, bl. 10, Sofia 1113 (Bulgaria)

    2010-07-15

    This study investigates the influence of the organic expander component (Vanisperse A) and of BaSO{sub 4} on the performance of negative lead-acid battery plates on high-rate partial-state-of-charge (HRPSoC) cycling. Batteries operating in the HRPSoC mode should be classified as a separate type of lead-acid batteries. Hence, the additives to the negative plates should differ from the conventional expander composition. It has been established that lignosulfonates are adsorbed onto the lead surface and thus impede the charge processes, which results in impaired reversibility of the charge-discharge processes and hence shorter cycle life on HRPSoC operation, limited by sulfation of the negative plates. BaSO{sub 4} exerts the opposite effect: it improves the reversibility of the processes in the HRPSoC mode and hence prolongs the cycle life of the cells. The most pronounced effect of BaSO{sub 4} has been registered when it is added in concentration of 1.0 wt.% versus the leady oxide (LO) used for paste preparation. It has also been established that BaSO{sub 4} lowers the overpotential of PbSO{sub 4} nucleation. The results of the present investigation indicate that BaSO{sub 4} affects also the crystallization process of Pb during cell charging. Thus, BaSO{sub 4} eventually improves the performance characteristics of lead-acid cells on HRPSoC cycling. (author)

  11. Association of obesity and treated hypertension and diabetes with cognitive ability in bipolar disorder and schizophrenia.

    Science.gov (United States)

    Depp, Colin A; Strassnig, Martin; Mausbach, Brent T; Bowie, Christopher R; Wolyniec, Paula; Thornquist, Mary H; Luke, James R; McGrath, John A; Pulver, Ann E; Patterson, Thomas L; Harvey, Philip D

    2014-06-01

    People with bipolar disorder or schizophrenia are at greater risk for obesity and other cardio-metabolic risk factors, and several prior studies have linked these risk factors to poorer cognitive ability. In a large ethnically homogenous outpatient sample, we examined associations among variables related to obesity, treated hypertension and/or diabetes and cognitive abilities in these two patient populations. In a study cohort of outpatients with either bipolar disorder (n = 341) or schizophrenia (n = 417), we investigated the association of self-reported body mass index and current use of medications for hypertension or diabetes with performance on a comprehensive neurocognitive battery. We examined sociodemographic and clinical factors as potential covariates. Patients with bipolar disorder were less likely to be overweight or obese than patients with schizophrenia, and also less likely to be prescribed medication for hypertension or diabetes. However, obesity and treated hypertension were associated with worse global cognitive ability in bipolar disorder (as well as with poorer performance on individual tests of processing speed, reasoning/problem-solving, and sustained attention), with no such relationships observed in schizophrenia. Obesity was not associated with symptom severity in either group. Although less prevalent in bipolar disorder compared to schizophrenia, obesity was associated with substantially worse cognitive performance in bipolar disorder. This association was independent of symptom severity and not present in schizophrenia. Better understanding of the mechanisms and management of obesity may aid in efforts to preserve cognitive health in bipolar disorder. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  13. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  14. Apparent Consumption vs. Total Consumption--A Lead-Acid Battery Case Study

    Science.gov (United States)

    Wilburn, David R.; Buckingham, David A.

    2006-01-01

    Introduction: This report compares estimates of U.S. apparent consumption of lead with estimates of total U.S. consumption of this mineral commodity from a materials flow perspective. The difference, attributed to the amount of lead contained in imported and exported products, was found to be significant for this sector. The study also assesses the effects of including mineral commodities incorporated in manufactured products on the interpretation of observed trends in minerals consumption and trade. Materials flow is a systems approach to understanding what happens to the materials we use from the time a material is extracted, through its processing and manufacturing, to its ultimate disposition. The U.S. Geological Survey (USGS) provides accurate and detailed mineral production and mineral commodity consumption statistics that are essential for government, nongovernment organizations, and the public to gain a better understanding of how and where materials are used and their effect on the environment and society. Published statistics on mineral apparent consumption are limited to estimates of consumption of raw material forms (ore, concentrate, and [or] refined metal). For this study, apparent consumption is defined as mine production + secondary refined production + imports (concentrates and refined metal) ? exports (concentrates and refined metal) + adjustments for government and industry stock changes. These estimates do not account for the amount of mineral commodities contained in manufactured products that are imported to the United States, nor do they deduct the amount of these mineral commodities contained in manufactured products that are exported from the United States. When imports or exports of manufactured products contribute significantly to the total use of a particular raw material, an estimate of consumption that does not consider the incorporated forms of these mineral commodities within imported or exported manufactured products can be either

  15. Comparison of the U.S. lead recycling industry in 1998 and 2011

    Science.gov (United States)

    Wilburn, David R.

    2014-01-01

    Since 1998, the structure of the lead recycling industry has changed and trade patterns of the domestic lead recycling industry have shifted. Although the domestic demand for lead has remained relatively constant since 1998, production of lead has increasingly shifted to the domestic secondary lead industry. The last primary lead smelter in the United States closed at the end of 2013, at which time the secondary lead industry became the sole source of domestic lead production. The amount of lead recovered annually from scrap batteries generally increased from about 900,000 metric tons in 1995 to more than 1,100,000 metric tons in 2012. The percentage of total U.S. lead production attributed to battery scrap increased from 65 percent in 1995 to 87 percent in 2012. Since the North American Free Trade Agreement took effect in 1994, trade patterns among the United States, Canada, and Mexico have changed for recycled lead products. In the late 1990s, the principal sources of lead waste and scrap not derived from batteries were Canada, Mexico, and South America; by 2011, the principal sources were Central America and Asia, with decreasing amounts from Canada and South America. Since 1998, the amount of lead derived from imported batteries and scrap from Canada has ranged from 50 to 90 percent, and the amount imported from Mexico has ranged from 3 to 20 percent. Canada received about 50 percent of the lead contained in spent lead-acid batteries and scrap exported from the United States in 1998, and Mexico received about 4 percent. By 2012, however, the amount of lead scrap exported to Canada had decreased to about 10 percent, and the amount of lead-based scrap products, primarily batteries, exported to Mexico from the United States had increased to 47 percent. Vertical integration of the domestic secondary lead industry and higher costs required to implement more stringent ambient air standards in the United States have led some companies to shift lead recycling

  16. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  17. A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples

    Science.gov (United States)

    Piłatowicz, Grzegorz; Marongiu, Andrea; Drillkens, Julia; Sinhuber, Philipp; Sauer, Dirk Uwe

    2015-11-01

    The internal resistance (Ri) is one of the key parameters that determine the current state of electrochemical storage systems (ESS). It is crucial for estimating cranking capability in conventional cars, available power in modern hybrid and electric vehicles and for determining commonly used factors such as state-of-health (SoH) and state-of-function (SoF). However, ESS are complex and non-linear systems. Their Ri depends on many parameters such as current rate, temperature, SoH and state-of-charge (SoC). It is also a fact that no standardized methodologies exist and many different definitions and ways of Ri determination are being used. Nevertheless, in many cases authors are not aware of the consequences that occur when different Ri definitions are being used, such as possible misinterpretations, doubtful comparisons and false figures of merit. This paper focuses on an application-oriented separation between various Ri definitions and highlights the differences between them. The investigation was based on the following technologies: lead-acid, lithium-ion and nickel metal-hydride batteries as well as electrochemical double-layer capacitors. It is not the target of this paper to provide a standardized definition of Ri but to give researchers, engineers and manufacturers a possibility to understand what the term Ri means in their own work.

  18. Neutrality in bipolar structures

    DEFF Research Database (Denmark)

    Montero, Javier; Rodríguez, J. Tinguaro; Franco, Camilo

    2014-01-01

    In this paper, we want to stress that bipolar knowledge representation naturally allows a family of middle states which define as a consequence different kinds of bipolar structures. These bipolar structures are deeply related to the three types of bipolarity introduced by Dubois and Prade, but our...... approach offers a systematic explanation of how such bipolar structures appear and can be identified....

  19. Rare genomic variants link bipolar disorder to CREB regulated intracellular signaling pathways

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2013-11-01

    Full Text Available Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood stabilizing drugs, such as tricyclic antidepressants, lithium and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  20. Alkaline batteries for hybrid and electric vehicles

    Science.gov (United States)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  1. Alkaline batteries for hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Haschka, F.; Warthmann, W.; Benczur-Uermoessy, G. [DAUG Deutsche Automobilgesellschaft, Esslingen (Germany)

    1998-03-30

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g. nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries. (orig.)

  2. Experimental lead intoxication in dogs: a comparison of blood lead and urinary delta-aminolevulinic acid following intoxication and chelation therapy.

    Science.gov (United States)

    Green, R A; Selby, L A; Zumwalt, R W

    1978-01-01

    Intravenous lead administration to dogs produced an acute syndrome of lead intoxication charcterized by depression, vomiting, anorexia and weight loss. The effect of chelation therapy with calcium disodium ethylene diamine tetraacetate, penicillamine or both was determined by serially monitoring changes in blood lead and urine delta-aminolevulinic acid. Following therapy, blood lead values were significantly lower in chelated dogs than non-treated lead exposed dogs on days 7 and 10. Urine delta-aminolevulinic acid at day 7 was significantly higher in untreated lead exposed dogs than in other groups. There was no significant difference in blood lead or urine delta-aminolevulinic acid between lead intoxicated dogs which underwent the indicated chelation therapy protocols. There was, however, a trend for higher urinary delta-aminolevulinic acid excretion in those intoxicated dogs undergoing calcium disodium ethylene diamine tetraacetate therapy as opposed to those undergoing penicilamine therapy. There was no significant correlation between blood lead and urinary delta-aminolevulinic acid previous to lead exposure. However, after lead exposure significant correlation was present at days 4, 7, 10 and 14. Certain lead exposed dogs following chelation therapy were noted to have normal blood lead levels but elevated urinary delta-aminolevulinic acid suggesting that blood lead does not always correlate with metabolic effects of lead in the body. Urinary delta-aminolevulinic acid was therefore recommended as an additional laboratory parameter which improved assessment of lead exposure in dogs, particularly in determining adequacy of chelation therapy. PMID:667707

  3. Conceptual design of a sodium sulfur cell for US electric van batteries

    Science.gov (United States)

    Binden, Peter J.

    1993-05-01

    A conceptual design of an advanced sodium/sulfur cell for US electric-van applications has been completed. The important design factors included specific physical and electrical requirements, service life, manufacturability, thermal management, and safety. The capacity of this cell is approximately the same as that for the PB cell being developed by Silent Power Limited (10 Ah). The new cell offers a 50% improvement in energy capacity and nearly a 100% improvement in peak power over the existing PB cells. A battery constructed with such cells would significantly exceed the USABC's mid-term performance specifications. In addition, a similar cell and battery design effort was completed for an advanced passenger car application. A battery using the van cell would have nearly 3 times the energy compared to lead-acid batteries, yet weigh 40% less; a present-day battery using a cell specifically designed for this car would provide 50% more energy in a package 60% smaller and 50% lighter.

  4. Driving rural energy access: a second-life application for electric-vehicle batteries

    Science.gov (United States)

    Ambrose, Hanjiro; Gershenson, Dimitry; Gershenson, Alexander; Kammen, Daniel

    2014-09-01

    Building rural energy infrastructure in developing countries remains a significant financial, policy and technological challenge. The growth of the electric vehicle (EV) industry will rapidly expand the resource of partially degraded, ‘retired’, but still usable batteries in 2016 and beyond. These batteries can become the storage hubs for community-scale grids in the developing world. We model the resource and performance potential and the technological and economic aspects of the utilization of retired EV batteries in rural and decentralized mini- and micro-grids. We develop and explore four economic scenarios across three battery chemistries to examine the impacts on transport and recycling logistics. We find that EVs sold through 2020 will produce 120-549 GWh in retired storage potential by 2028. Outlining two use scenarios for decentralized systems, we discuss the possible impacts on global electrification rates. We find that used EV batteries can provide a cost-effective and lower environmental impact alternative to existing lead-acid storage systems in these applications.

  5. An application of on-line battery monitoring to the Vulcano PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Buonarota, A.; Menga, P.; Ostano, P.; Scarioni, V.

    1988-05-01

    The reliable knowledge of the state-of-charge (SOC) of the battery of a photovoltaic (PV) plant can contribute to improve system management. Unfortunately, the technologies currently adopted to determine the battery SOC are not fully satisfactory. The experience obtained by ENEL (Italian Electricity Board) on traction lead-acid batteries, operating under cyclic conditions, led to the formulation of a simple model capable of describing the relationships among the operating conditions (profile of current, temperature, etc.) and the internal SOC of the battery. This model was extended to the stationary accumulators to the Vulcano PV plant of ENEL, and checked by means of laboratory tests at the CESI (Italy) laboratories. Relevant to this work, an automatic system for the on-line evaluation of the SOC of the battery has recently been set up and installed at Vulcano. This paper presents the basis of the methodology, the layout of the system, and the preliminary results.

  6. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  7. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  8. Bipolar or unipolar? : A brain teasing question

    NARCIS (Netherlands)

    Rive, M.M.

    2017-01-01

    During the depressed or remitted states, major depressive disorder (MDD) and bipolar disorder (BD) are difficult to distinguish clinically. Treatments for both disorders differ, and inadequate treatment may lead to chronicity, poor psychosocial functioning, or even suicide. Although early

  9. 29 CFR 1917.157 - Battery charging and changing.

    Science.gov (United States)

    2010-07-01

    ... jumper battery is connected to a battery in a vehicle, the ground lead shall connect to ground away from...) Metallic objects shall not be placed on uncovered batteries. (m) When batteries are being charged, the vent caps shall be in place. (n) Chargers shall be turned off when leads are being connected or disconnected...

  10. The thermodynamics of bipolarity: a bifurcation model of bipolar illness and bipolar character and its psychotherapeutic applications.

    Science.gov (United States)

    Sabelli, H C; Carlson-Sabelli, L; Javaid, J I

    1990-11-01

    Two models dominate current formulations of bipolar illness: the homeostatic model implicit in Freud's psychodynamics and most neuroamine deficit/excess theories; and the oscillatory model of exaggerated biological rhythms. The homeostatic model is based on the closed systems approach of classic thermodynamics, while the oscillatory model requires the open systems approach of modern thermodynamics. Here we present a thermodynamic model of bipolarity that includes both homeostatic and oscillatory features and adds the most important feature of open systems thermodynamics: the creation of novel structures in bifurcation processes. According to the proposed model, bipolarity is the result of exaggerated biological energy that augments homeostatic, oscillatory and creative psychological processes. Only low-energy closed systems tend to rest ("point attractor") and entropic disorder. Open processes containing and exchanging energy fluctuate between opposite states ("periodic attractors"); they are characteristic of most physiological rhythms and are exaggerated in bipolar subjects. At higher energies, their strong fluctuations destroy pre-existing patterns and structures, produce turbulence ("chaotic attractors"), which sudden switches between opposite states, and create new and more complex structures. Likewise, high-energy bipolars develop high spontaneity, great fluctuations between opposite moods, internal and interpersonal chaos, and enhanced creativity (personal, artistic, professional) as well as psychopathology (personality deviations, psychotic delusions). Offered here is a theoretical explanation of the dual--creative and destructive--nature of bipolarity in terms of the new enantiodromic concept of entropy generalized by process theory. Clinically, this article offers an integrative model of bipolarity that accounts for many clinical features and contributes to a definition of the bipolar personality.

  11. Valproic Acid and Pregnancy

    Science.gov (United States)

    ... is possible. Studies have found that women with seizure disorders and women with bipolar disorder might have menstrual ... valproic acid to leave your body. Women with epilepsy or bipolar disorder who are planning a pregnancy ...

  12. Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Shuai; Li, Dan; Wang, Lihua; Yang, Haijun; Han, Xutong; Liu, Biqian

    2017-01-01

    Highlights: • Ethylenediamine functionalized graphene oxide. • Layered structure of functionalized graphene oxide block vanadium ions crossover. • Protonated N-containing groups suppress vanadium ions permeation. • Ion transport channels are narrowed by electrostatic interactions. • Vanadium crossover decreased due to enhanced Donnan effect and special structure. - Abstract: As a promising large-scale energy storage battery, vanadium redox flow battery (VRFB) is urgently needed to develop cost-effective membranes with excellent performance. Novel acid-base ion exchange membranes (IEMs) are fabricated based on sulfonated poly(ether ether ketone) (SPEEK) matrix and modified graphene oxide (GO) by solution blending. N-based functionalized graphene oxide (GO-NH 2 ) is fabricated by grafting ethylenediamine onto the edge of GO via a facile method. On one hand, the impermeable layered structures effectively block ion transport pathway to restrain vanadium ions crossover. On the other hand, acid-base pairs form between −SO 3 − groups and N-based groups on the edge of GO nanosheets, which not only suppress vanadium ions contamination but also provide a narrow pathway for proton migration. The structure is beneficial for achieving an intrinsic balance between conductivity and permeability. By altering amounts of GO-NH 2 , a sequence of acid-base IEMs are characterized in detail. The single cells assembled with acid-base IEMs show self-discharge time for 160 h, capacity retention 92% after 100 cycle, coulombic efficiency 97.2% and energy efficiency 89.5%. All data indicate that acid-base IEMs have promising prospects for VRFB applications.

  13. Advances in the development of ovonic nickel metal hydride batteries for industrial and electric vehicles

    International Nuclear Information System (INIS)

    Venkatesan, S.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R.

    1991-01-01

    This paper reports that increasing concerns over urban pollution and continued uncertainties about oil supplies have forced the government and industry to refocus their attention on electric vehicles. Despite enormous expenditures in research and development for the ideal battery system, no commercially viable candidate has emerged. The battery systems being considered today due to renewed environmental concerns are still the same systems that were so extensively tested over the last 15 years. For immediate application, an electric vehicle designer has very little choice other than the lead-acid battery despite the fact that energy density is so low as to make vehicle range inadequate, as well as the need for replacement every 20,000 miles. The high energy density projections of Na-S and other so-called high energy batteries have proven to be significantly less in practical modules and there are still concern over cycle life which can be attained under aggressive conditions, reliability under freeze/thaw cycling and consequences resulting from high temperature operation. The conventional nickel-based systems (Ni- Zn, Ni-Fe, Ni-Cd) provide near term higher energy density as compared to lead-acid, but still do not address other important issues such as long life, the need for maintenance-free operation, the use of nontoxic materials and low cost. Against this background, the development of Ovonic Nickel-Metal Hydride (Ni-MH) batteries for electric vehicles has been rapid and successful. Ovonic No-Mh battery technology is uniquely qualified for electric vehicles due to its high energy density, high discharge rate capability, non-toxic alloys, long cycle life. low cost, tolerance to abuse and ability to be sealed for totally maintenance free operation

  14. Influence of acid diffusion on the performance of lead-acid cells

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.; Bohmann, J.

    1983-11-01

    A model for the discharge performance of the lead-acid cell is proposed. Diffusion of acid into the porous electrodes, which is connected with diffusional polarization, is considered as the principal factor in the transport process. The end of discharge is determined either by acid depletion inside the electrodes or by exhaustion of the active material, where utilization of the active material as a function of the acid density and the specific current is determined from empirical expressions. Curves of diffusional polarizations as a function of the discharge time are presented. Calculated discharge capacities show the influence of various parameters such as electrode thickness, current, and acid density. Tubular and pasted plates are considered.

  15. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries.

    Science.gov (United States)

    Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa; Kim, Taek-Soo; Choi, Jang Wook; Coskun, Ali

    2014-12-17

    Covalent or Noncovalent? Systematic investigation of polymeric binders incorporating Meldrum's acid reveals most critical binder properties for silicon -anodes in lithium ion batteries, that is self-healing effect facilitated by a series of noncovalent interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cognitive Impairment in Bipolar Disorder: Treatment and Prevention Strategies.

    Science.gov (United States)

    Solé, Brisa; Jiménez, Esther; Torrent, Carla; Reinares, Maria; Bonnin, Caterina Del Mar; Torres, Imma; Varo, Cristina; Grande, Iria; Valls, Elia; Salagre, Estela; Sanchez-Moreno, Jose; Martinez-Aran, Anabel; Carvalho, André F; Vieta, Eduard

    2017-08-01

    Over the last decade, there has been a growing appreciation of the importance of identifying and treating cognitive impairment associated with bipolar disorder, since it persists in remission periods. Evidence indicates that neurocognitive dysfunction may significantly influence patients' psychosocial outcomes. An ever-increasing body of research seeks to achieve a better understanding of potential moderators contributing to cognitive impairment in bipolar disorder in order to develop prevention strategies and effective treatments. This review provides an overview of the available data from studies examining treatments for cognitive dysfunction in bipolar disorder as well as potential novel treatments, from both pharmacological and psychological perspectives. All these data encourage the development of further studies to find effective strategies to prevent and treat cognitive impairment associated with bipolar disorder. These efforts may ultimately lead to an improvement of psychosocial functioning in these patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  17. Lead isotope results of acid leaching experiments on acid volcanics and black shales in an ore environment

    International Nuclear Information System (INIS)

    Gulson, B.L.

    1977-01-01

    In the volcanogenic Woodlawn Cu-Pb-Zn deposit, where pyrite is the dominant sulphide phase in the ore and a ubiquitous mineral in the host volcanics and shales, leaching experiments using HNO 3 -HCl to overcome the ore/rock lead dominance, resulted in highly complex lead isotopic data, dependent mainly on the original lead concentration in the rock. For samples with higher (> 5 ppm) lead concentrations, the acid leaches are less radiogenic than the rocks or residues whereas for samples with 15 ppm lead, the data arrays are those expected for a dominance of ore/rock lead. In all except the very high lead samples (> 100 ppm), lead is derived from sources other than sulphides. Furthermore, in only the highest lead sample is the acid leach isotopic value compatible with that of the ore lead. As found in previous leaching investigations, the dominant component of lead and uranium is extracted in the acid leach. Acid-leaching experiments of this type may have possible applications in prospecting for basemetal sulphides. (auth.)

  18. Bipolar disorder in adolescence.

    Science.gov (United States)

    DeFilippis, Melissa; Wagner, Karen Dineen

    2013-08-01

    Bipolar disorder is a serious psychiatric condition that may have onset in childhood. It is important for physicians to recognize the symptoms of bipolar disorder in children and adolescents in order to accurately diagnose this illness early in its course. Evidence regarding the efficacy of various treatments is necessary to guide the management of bipolar disorder in youth. For example, several medications commonly used for adults with bipolar disorder have not shown efficacy for children and adolescents with bipolar disorder. This article reviews the prevalence, diagnosis, course, and treatment of bipolar disorder in children and adolescents and provides physicians with information that will aid in diagnosis and treatment.

  19. Effect of L-glutamic acid on the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liang, Xinxing; Peng, Sui; Lei, Ying; Gao, Chao; Wang, Nanfang; Liu, Suqin; Fang, Dong

    2013-01-01

    Highlights: ► Amino acid is used as additive for all-vanadium redox flow battery. ► The additive can significantly improve performance of positive electrolyte. ► Mechanism for the improvement is investigated. -- Abstract: L-Glutamic acid is used as an additive for the positive electrolyte of all-vanadium redox flow battery (VRFB), and its effect on the thermal stability and electrochemical activity is investigated. It is found that the addition of L-glutamic can significantly alleviate the precipitation of V 2 O 5 from positive electrolyte. The conservation rate of V(V) ion can be as high as 58% after 2 M V(V) solution being kept in 40 °C for 89 h. Besides, L-glutamic can also improve the mass transport and electrochemical performance of anolyte. A high coulombic efficiency of over 95% and energy efficiency of 74% are obtained. XPS spectra illustrate that L-glutamic can react with the surface of carbon felt electrode and introduce more oxygen-containing and nitrogen-containing groups, which should be responsible for the improvement of electrochemical performance

  20. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The influence of acid diffusion on the performance of lead-acid cells

    Science.gov (United States)

    Kappus, W.; Bohmann, J.

    1983-11-01

    A model for the discharge performance of the lead-acid cell is proposed. Diffusion of acid into the porous electrodes, which is connected with diffusio Curves of diffusional polarizations as a function of the discharge time are presented. Calculated discharge capacities show the influence of various pa

  2. Determination of the pollution with lead in the batteries factory in Al-Saffera (Aleppo) and surrounding area

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Al-Kharfan, K.; Al-Shamali, K.

    2007-10-01

    The study aimed to determine the lead concentrations in the ecosystem surrounding the batteries factory in Al-Saffera. The results showed that the lead levels were very high in both factory area and the surrounding agricultural area. Lead levels in air varied between 12 and 34 μg/m3 in the area outside the factory. The same trends were in both soil and plant samples, and normal washing does not decrease the lead level in plant samples to acceptable levels. Mean lead levels in blood was also high and ranged between 55 and 28 μg /dl for factory workers and village inhabitants respectively. In conclusion the authorities administration must take all necessary procedures to reduce the lead levels in the factory area and in the surrounding area.(Author)

  3. Determination of the pollution with lead in the batteries factory in Al-Saffera (Aleppo) and surrounding area

    Energy Technology Data Exchange (ETDEWEB)

    Al-Oudat, M; Al-Kharfan, K; Al-Shamali, K [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Protection and Safety

    2007-10-15

    The study aimed to determine the lead concentrations in the ecosystem surrounding the batteries factory in Al-Saffera. The results showed that the lead levels were very high in both factory area and the surrounding agricultural area. Lead levels in air varied between 12 and 34 {mu}g/m3 in the area outside the factory. The same trends were in both soil and plant samples, and normal washing does not decrease the lead level in plant samples to acceptable levels. Mean lead levels in blood was also high and ranged between 55 and 28 {mu}g /dl for factory workers and village inhabitants respectively. In conclusion the authorities administration must take all necessary procedures to reduce the lead levels in the factory area and in the surrounding area.(Author)

  4. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics

    Science.gov (United States)

    Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman

    2018-02-01

    Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.

  5. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  6. A hybrid PV-battery/diesel electricity supply on Peucang island: an economic evaluation

    Directory of Open Access Journals (Sweden)

    Matthias Günther

    2016-12-01

    Full Text Available Renewable energy technologies are currently under a dynamic cost development. This case holds especially for solar technology that has reached price levels that were unimaginable until a short time ago. It also holds for battery technologies the application of which is related to the increasing usage of photovoltaic energy converters and the growing interest in electric vehicles. With the decreasing prices more and more possible application cases of renewable energy technologies become economically viable. A case study was done for a location on a small island located on the west tip of Java. The levelized electricity cost of a hybrid electricity supply system composed of a solar generator and battery in combination with the existing diesel generators was compared to the electricity generation cost of the existing system. Two different battery options were taken into account, lead-acid batteries and lithium-ion batteries. The results of this study can give a rough orientation also for other locations with similar characteristics.

  7. Optimisation de stratégies de gestion des batteries au plomb utilisées dans les systèmes photovoltaïques

    OpenAIRE

    Karoui , Fathia

    2007-01-01

    Batteries used in photovoltaic systems are subjected to penalizing operating conditions due to the intermittency of the solar resource. Their effects may be reduced by the optimisation of energy management strategies. This study deals with the pulse charge of lead acid batteries, the most used ones for this application. The effects of this charge mode are shown both on experimental cells and commercial batteries. The influence of the parameters, frequency, duty cycle and charge factor, on the...

  8. IEEE standard for qualification of class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, was developed to provide guidance for demonstrating and documenting the adequacy of electrical equipment used in all Class 1E and interface systems. This standard, IEEE Std 535-1979, was developed to provide specific methods and type test procedures for lead storage batteries in reference to IEEE Std 323-1974

  9. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F; Hartinger, L; Kiehne, H A; Niklas, H; Schiele, R; Steil, H U

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  10. Bipolar Disorder

    Science.gov (United States)

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  11. Applications of porous electrodes to metal-ion removal and the design of battery systems

    International Nuclear Information System (INIS)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected

  12. Applications of porous electrodes to metal-ion removal and the design of battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  13. Cognitive performance and psychosocial functioning in patients with bipolar disorder, unaffected siblings, and healthy controls

    OpenAIRE

    Vasconcelos-Moreno, Mirela P.; Bücker, Joana; Bürke, Kelen P.; Czepielewski, Leticia; Santos, Barbara T.; Fijtman, Adam; Passos, Ives C.; Kunz, Mauricio; Bonnín, Caterina del Mar; Vieta i Pascual, Eduard, 1963-; Kapczinski, Flávio; Rosa, Adriane R.; Kauer-Sant'Anna, Marcia

    2016-01-01

    Objective: To assess cognitive performance and psychosocial functioning in patients with bipolar disorder (BD), in unaffected siblings, and in healthy controls. Methods: Subjects were patients with BD (n=36), unaffected siblings (n=35), and healthy controls (n=44). Psychosocial functioning was accessed using the Functioning Assessment Short Test (FAST). A sub-group of patients with BD (n=21), unaffected siblings (n=14), and healthy controls (n=22) also underwent a battery of neuropsychologic...

  14. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    Science.gov (United States)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  15. Optimal control of photovoltaic systems by a new battery state-of-charge observer

    Energy Technology Data Exchange (ETDEWEB)

    Giglioli, R; Zini, G; Conte, M; Raugi, M

    1988-06-01

    In photovoltaic power plants, the ability to accurately determine battery state-of-charge at any given time can reduce the risk of curtailed energy and allow more precise and less costly battery sizing. In this paper, a new state-of-charge observer, based on an original equivalent electric network of the lead-acid battery, is shown and used to develop an optimal control of the system. Hence, a management plan for a complete photovoltaic system is studied. Finally, a comparison between a simulation of the proposed plan and experimental data from a monitored photovoltaic plant, with very simple management requirements, is made and discussed. The present work was carried out within the framework of the Italian Finalized Energy Project-2.

  16. Decreasing emissions of a secondary lead smelter by installation of a battery breaker. Emissionsminderung einer Sekundaerbleihuette durch Integration einer Akkuschrott-Aufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, K F

    1986-11-01

    Dust and lead emissions of a secondary lead smelter mainly from the area of stockyards, handling, transport, charge preparing as well as the further treatment in rotary furnaces. A 60% decrease is obtained by compact assembling of covered battery stockyard, battery breaker and charge preparation and direct connection to the existing smelter area. The breaker itself contains a wet screen trommel and a filter press for separation of paste. The heavy-media sink-float-system has been replaced by dynamic water separation, which results in cleaner qualities of all fractions. In spite of a 100% wet separation plant, a bagfilter can be used with expected clean gas dust contents below 5 mg/m{sup 3} and below 2.5 mg Pb/m{sup 3}. Over a 2 years-period, dust and lead contents have been below 1 mg/m{sup 3}. (orig.) With 5 refs., 2 flowsheets, 10 figs.

  17. Knowledge management system for risk mitigation in supply chain uncertainty: case from automotive battery supply chain

    Science.gov (United States)

    Marie, I. A.; Sugiarto, D.; Surjasa, D.; Witonohadi, A.

    2018-01-01

    Automotive battery supply chain include battery manufacturer, sulphuric acid suppliers, polypropylene suppliers, lead suppliers, transportation service providers, warehouses, retailers and even customers. Due to the increasingly dynamic condition of the environment, supply chain actors were required to improve their ability to overcome various uncertainty issues in the environment. This paper aims to describe the process of designing a knowledge management system for risk mitigation in supply chain uncertainty. The design methodology began with the identification of the knowledge needed to solve the problems associated with uncertainty and analysis of system requirements. The design of the knowledge management system was described in the form of a data flow diagram. The results of the study indicated that key knowledge area that needs to be managed were the knowledge to maintain the stability of process in sulphuric acid process and knowledge to overcome the wastes in battery manufacturing process. The system was expected to be a media acquisition, dissemination and storage of knowledge associated with the uncertainty in the battery supply chain and increase the supply chain performance.

  18. A review of factors associated with greater likelihood of suicide attempts and suicide deaths in bipolar disorder: Part II of a report of the International Society for Bipolar Disorders Task Force on Suicide in Bipolar Disorder.

    Science.gov (United States)

    Schaffer, Ayal; Isometsä, Erkki T; Azorin, Jean-Michel; Cassidy, Frederick; Goldstein, Tina; Rihmer, Zoltán; Sinyor, Mark; Tondo, Leonardo; Moreno, Doris H; Turecki, Gustavo; Reis, Catherine; Kessing, Lars Vedel; Ha, Kyooseob; Weizman, Abraham; Beautrais, Annette; Chou, Yuan-Hwa; Diazgranados, Nancy; Levitt, Anthony J; Zarate, Carlos A; Yatham, Lakshmi

    2015-11-01

    Many factors influence the likelihood of suicide attempts or deaths in persons with bipolar disorder. One key aim of the International Society for Bipolar Disorders Task Force on Suicide was to summarize the available literature on the presence and magnitude of effect of these factors. A systematic review of studies published from 1 January 1980 to 30 May 2014 identified using keywords 'bipolar disorder' and 'suicide attempts or suicide'. This specific paper examined all reports on factors putatively associated with suicide attempts or suicide deaths in bipolar disorder samples. Factors were subcategorized into: (1) sociodemographics, (2) clinical characteristics of bipolar disorder, (3) comorbidities, and (4) other clinical variables. We identified 141 studies that examined how 20 specific factors influenced the likelihood of suicide attempts or deaths. While the level of evidence and degree of confluence varied across factors, there was at least one study that found an effect for each of the following factors: sex, age, race, marital status, religious affiliation, age of illness onset, duration of illness, bipolar disorder subtype, polarity of first episode, polarity of current/recent episode, predominant polarity, mood episode characteristics, psychosis, psychiatric comorbidity, personality characteristics, sexual dysfunction, first-degree family history of suicide or mood disorders, past suicide attempts, early life trauma, and psychosocial precipitants. There is a wealth of data on factors that influence the likelihood of suicide attempts and suicide deaths in people with bipolar disorder. Given the heterogeneity of study samples and designs, further research is needed to replicate and determine the magnitude of effect of most of these factors. This approach can ultimately lead to enhanced risk stratification for patients with bipolar disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  19. A review of factors associated with greater likelihood of suicide attempts and suicide deaths in bipolar disorder: Part II of a report of the International Society for Bipolar Disorders Task Force on Suicide in Bipolar Disorder

    Science.gov (United States)

    Schaffer, Ayal; Isometsä, Erkki T; Azorin, Jean-Michel; Cassidy, Frederick; Goldstein, Tina; Rihmer, Zoltán; Sinyor, Mark; Tondo, Leonardo; Moreno, Doris H; Turecki, Gustavo; Reis, Catherine; Kessing, Lars Vedel; Ha, Kyooseob; Weizman, Abraham; Beautrais, Annette; Chou, Yuan-Hwa; Diazgranados, Nancy; Levitt, Anthony J; Zarate, Carlos A; Yatham, Lakshmi

    2018-01-01

    Objectives Many factors influence the likelihood of suicide attempts or deaths in persons with bipolar disorder. One key aim of the International Society for Bipolar Disorders Task Force on Suicide was to summarize the available literature on the presence and magnitude of effect of these factors. Methods A systematic review of studies published from 1 January 1980 to 30 May 2014 identified using keywords ‘bipolar disorder’ and ‘suicide attempts or suicide’. This specific paper examined all reports on factors putatively associated with suicide attempts or suicide deaths in bipolar disorder samples. Factors were subcategorized into: (1) sociodemographics, (2) clinical characteristics of bipolar disorder, (3) comorbidities, and (4) other clinical variables. Results We identified 141 studies that examined how 20 specific factors influenced the likelihood of suicide attempts or deaths. While the level of evidence and degree of confluence varied across factors, there was at least one study that found an effect for each of the following factors: sex, age, race, marital status, religious affiliation, age of illness onset, duration of illness, bipolar disorder subtype, polarity of first episode, polarity of current/recent episode, predominant polarity, mood episode characteristics, psychosis, psychiatric comorbidity, personality characteristics, sexual dysfunction, first-degree family history of suicide or mood disorders, past suicide attempts, early life trauma, and psychosocial precipitants. Conclusion There is a wealth of data on factors that influence the likelihood of suicide attempts and suicide deaths in people with bipolar disorder. Given the heterogeneity of study samples and designs, further research is needed to replicate and determine the magnitude of effect of most of these factors. This approach can ultimately lead to enhanced risk stratification for patients with bipolar disorder. PMID:26175498

  20. Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs

    OpenAIRE

    Muhammad, Akram; Musavarah, Sarwar

    2016-01-01

    In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs.