WorldWideScience

Sample records for biphasic synaptic ca

  1. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  2. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    Science.gov (United States)

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  3. Biphasic effects of ethanol and sodium oleate on synaptic transport of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Foley, T.; Rhoads, D.E.

    1987-05-01

    The authors have examined the effects of ethanol and sodium oleate on the transport of aspartic acid (ASP) by nerve-ending preparations from rat cerebral cortex. Physiologically relevant ethanol concentrations of up to 100mM stimulated ASP uptake while concentrations greater than 200mM caused inhibition. A similar biphasic effect was observed with oleate stimulating ASP uptake at 0.1 to 1..mu..M and inhibiting ASP uptake at concentrations greater than 1..mu..M. Maximum stimulation was observed at 0.1..mu..M oleate and at 50mM ethanol. In contrast, when synaptosomes were prepared from rats that had been exposed for 2-3 weeks to 10% ethanol in their drinking water, higher concentrations of ethanol and oleate were required to obtain comparable stimulation of ASP uptake. These biphasic effects on ASP transport can be interpreted in terms of physicochemical alterations in the synaptic membranes, with from alcohol-exposed rats showing tolerance to these fluidizing effects.

  4. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength.

    Science.gov (United States)

    Barcomb, Kelsey; Buard, Isabelle; Coultrap, Steven J; Kulbe, Jacqueline R; O'Leary, Heather; Benke, Timothy A; Bayer, K Ulrich

    2014-08-01

    A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation. Synaptic strength was decreased by CaMKIIα knockdown and rescued by reexpression, but not by mutants impaired for autonomy (T286A) or binding to NMDA-type glutamate receptor subunit 2B (GluN2B; formerly NR2B; I205K). Full rescue was seen with constitutively autonomous mutants (T286D), but only if they could be further stimulated (additional T305/306A mutation), and not with two other mutations that additionally impair Ca(2+)/CaM binding. Compared to rescue with wild-type CaMKII, the CaM-binding-impaired mutants even had reduced synaptic strength. One of these mutants (T305/306D) mimicked an inhibitory autophosphorylation of CaMKII, whereas the other one (Δstim) abolished CaM binding without introducing charged residues. Inhibitory T305/306 autophosphorylation also reduced GluN2B binding, but this effect was independent of reduced Ca(2+)/CaM binding and was not mimicked by T305/306D mutation. Thus, even autonomous CaMKII activity must be further stimulated by Ca(2+)/CaM for enhancement of synaptic strength.

  5. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release.

    Science.gov (United States)

    Santello, M; Volterra, A

    2009-01-12

    In the past 15 years the classical view that astrocytes play a relatively passive role in brain function has been overturned and it has become increasingly clear that signaling between neurons and astrocytes may play a crucial role in the information processing that the brain carries out. This new view stems from two seminal observations made in the early 1990s: 1. astrocytes respond to neurotransmitters released during synaptic activity with elevation of their intracellular Ca2+ concentration ([Ca2+]i); 2. astrocytes release chemical transmitters, including glutamate, in response to [Ca2+]i elevations. The simultaneous recognition that astrocytes sense neuronal activity and release neuroactive agents has been instrumental for understanding previously unknown roles of these cells in the control of synapse formation, function and plasticity. These findings open a conceptual revolution, leading to rethink how brain communication works, as they imply that information travels (and is processed) not just in the neuronal circuitry but in an expanded neuron-glia network. In this review we critically discuss the available information concerning: 1. the characteristics of the astrocytic Ca2+ responses to synaptic activity; 2. the basis of Ca2+-dependent glutamate exocytosis from astrocytes; 3. the modes of action of astrocytic glutamate on synaptic function.

  6. CaCO{sub 3}/Ca-P biphasic materials prepared by microwave processing of natural aragonite and calcite

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J.; LeGeros, R.Z.; Rohanizadeh, R.; LeGeros, J.P. [New York Univ., NY (United States). Coll. of Dentistry

    2001-07-01

    The purpose of this study was to prepare CaCO{sub 3}/Ca-P biphasic or composite materials using microwave technology. Particles of coral (natural aragonite) and a porous limestone (natural calcite) were suspended in phosphate solutions of different pH and concentrations and heated for different periods (up to 5 hrs) using a domestic microwave. Parallel experiments were carried out using hydrolysis method. Higher extents of transformation were observed with microwave processed materials. Depending on the reaction pH and reaction period, partial transformation of aragonite (coral) or calcite (limestone) to acidic calcium (monetite) or basic (carbonatehydroxyapatite, CHA) calcium phosphates was achieved (orig.)

  7. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics.

    Science.gov (United States)

    Kong, Young-Min; Kim, Hyoun-Ee; Kim, Hae-Won

    2008-02-01

    In this study, we report a new observation on the phase conversion that occurs during the sintering of hydroxyapatite (HA)-tricalcium phosphate (TCP) biphasic ceramics. During the sintering of the HA-TCP mixture powders, a large amount of TCP was converted into HA, as detected by X-ray diffraction. The amount of TCP transformed into HA was approximately 10-90% of that initially added. From the electron probe microscopy analysis, the HA transformed from TCP was found to be Ca-deficient with Ca/P ratios of 1.62-1.64. The dissolution behavior and osteoblastic responses in a series of HA-TCP biphasic ceramics (10-90% TCP) were assessed. The solubility of the HA-TCP biphasic ceramics was intermediate between that of the HA and TCP pure ceramics. However, in the case of the HA-90% TCP biphasic ceramic, the solubility was even higher than that of pure TCP. The cell proliferation and alkaline phosphatase activity of the cells on the biphasic ceramics were lower than those on pure HA, but higher than those on pure TCP. However, particularly in the HA-50% TCP biphasic composition, the cellular responses were significantly higher than those on pure HA. It is considered that the Ca-deficient apatite newly formed from the TCP may affect in some way the solubility and biological properties of the HA-TCP biphasic ceramics.

  8. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury.

    Science.gov (United States)

    Norris, Christopher M; Sompol, Pradoldej; Roberts, Kelly N; Ansari, Mubeen; Scheff, Stephen W

    2016-02-01

    Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10 mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma.

  9. On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII.

    Directory of Open Access Journals (Sweden)

    Camilo Gouet

    Full Text Available Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR-dependent long-term potentiation (LTP is a major synaptic plasticity model. During LTP induction, Ca(2+/calmodulin-dependent protein kinase II (CaMKII is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca(2+ signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of

  10. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Directory of Open Access Journals (Sweden)

    Ayla eAksoy Aksel

    2013-08-01

    Full Text Available In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic path (pp-CA1 synapse and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse. Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We established that field excitatory postsynaptic potentials at the pp-CA1 have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (> 24h was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

  11. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Science.gov (United States)

    Aksoy-Aksel, Ayla; Manahan-Vaughan, Denise

    2013-01-01

    In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We observed that field excitatory postsynaptic potentials at the pp-CA1 synapse have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (>24 h) was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing. PMID:23986697

  12. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  13. Local Ca2+ detection and modulation of synaptic release by astrocytes.

    Science.gov (United States)

    Di Castro, Maria Amalia; Chuquet, Julien; Liaudet, Nicolas; Bhaukaurally, Khaleel; Santello, Mirko; Bouvier, David; Tiret, Pascale; Volterra, Andrea

    2011-09-11

    Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

  14. Apamin Boosting of Synaptic Potentials in CaV2.3 R-Type Ca2+ Channel Null Mice.

    Science.gov (United States)

    Wang, Kang; Kelley, Melissa H; Wu, Wendy W; Adelman, John P; Maylie, James

    2015-01-01

    SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.

  15. Dynamic impact of temporal context of Ca²⁺ signals on inhibitory synaptic plasticity.

    Science.gov (United States)

    Kawaguchi, Shin-Ya; Nagasaki, Nobuhiro; Hirano, Tomoo

    2011-01-01

    Neuronal activity-dependent synaptic plasticity, a basis for learning and memory, is tightly correlated with the pattern of increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, using combined application of electrophysiological experiments and systems biological simulation, we show that such a correlation dynamically changes depending on the context of [Ca(2+)](i) increase. In a cerebellar Purkinje cell, long-term potentiation of inhibitory GABA(A) receptor responsiveness (called rebound potentiation; RP) was induced by [Ca(2+)](i) increase in a temporally integrative manner through sustained activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, the RP establishment was canceled by coupling of two patterns of RP-inducing [Ca(2+)](i) increase depending on the temporal sequence. Negative feedback signaling by phospho-Thr305/306 CaMKII detected the [Ca(2+)](i) context, and assisted the feedforward inhibition of CaMKII through PDE1, resulting in the RP impairment. The [Ca(2+)](i) context-dependent dynamic regulation of synaptic plasticity might contribute to the temporal refinement of information flow in neuronal networks.

  16. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory.

    Science.gov (United States)

    O'Mara, S M; Commins, S; Anderson, M

    2000-01-01

    This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.

  17. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.

    Science.gov (United States)

    Oren, Iris; Mann, Edward O; Paulsen, Ole; Hájos, Norbert

    2006-09-27

    Gamma-frequency oscillations are prominent during active network states in the hippocampus. An intrahippocampal gamma generator has been identified in the CA3 region. To better understand the synaptic mechanisms involved in gamma oscillogenesis, we recorded action potentials and synaptic currents in distinct types of anatomically identified CA3 neurons during carbachol-induced (20-25 microM) gamma oscillations in rat hippocampal slices. We wanted to compare and contrast the relationship between excitatory and inhibitory postsynaptic currents in pyramidal cells and perisomatic-targeting interneurons, cell types implicated in gamma oscillogenesis, as well as in other interneuron subtypes, and to relate synaptic currents to the firing properties of the cells. We found that phasic synaptic input differed between cell classes. Most strikingly, the dominant phasic input to pyramidal neurons was inhibitory, whereas phase-coupled perisomatic-targeting interneurons often received a strong phasic excitatory input. Differences in synaptic input could account for some of the differences in firing rate, action potential phase precision, and mean action potential phase angle, both between individual cells and between cell types. There was a strong positive correlation between the ratio of phasic synaptic excitation to inhibition and firing rate over all neurons and between the phase precision of excitation and action potentials in interneurons. Moreover, mean action potential phase angle correlated with the phase of the peak of the net-estimated synaptic reversal potential in all phase-coupled neurons. The data support a recurrent mechanism of gamma oscillations, whereby spike timing is controlled primarily by inhibition in pyramidal cells and by excitation in interneurons.

  18. Activity-dependent regulation of synaptic strength by PSD-95 in CA1 neurons.

    Science.gov (United States)

    Zhang, Peng; Lisman, John E

    2012-02-01

    CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.

  19. Synaptotagmin 7 functions as a Ca2+-sensor for synaptic vesicle replenishment.

    Science.gov (United States)

    Liu, Huisheng; Bai, Hua; Hui, Enfu; Yang, Lu; Evans, Chantell S; Wang, Zhao; Kwon, Sung E; Chapman, Edwin R

    2014-02-25

    Synaptotagmin (syt) 7 is one of three syt isoforms found in all metazoans; it is ubiquitously expressed, yet its function in neurons remains obscure. Here, we resolved Ca(2+)-dependent and Ca(2+)-independent synaptic vesicle (SV) replenishment pathways, and found that syt 7 plays a selective and critical role in the Ca(2+)-dependent pathway. Mutations that disrupt Ca(2+)-binding to syt 7 abolish this function, suggesting that syt 7 functions as a Ca(2+)-sensor for replenishment. The Ca(2+)-binding protein calmodulin (CaM) has also been implicated in SV replenishment, and we found that loss of syt 7 was phenocopied by a CaM antagonist. Moreover, we discovered that syt 7 binds to CaM in a highly specific and Ca(2+)-dependent manner; this interaction requires intact Ca(2+)-binding sites within syt 7. Together, these data indicate that a complex of two conserved Ca(2+)-binding proteins, syt 7 and CaM, serve as a key regulator of SV replenishment in presynaptic nerve terminals. DOI: http://dx.doi.org/10.7554/eLife.01524.001.

  20. Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Beta-amyloid precursor protein cleaving enzyme 1 (BACE1, a major neuronal β-secretase critical for the formation of β-amyloid (Aβ peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD. Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs display presynaptic deficits, especially at the mossy fiber (MF to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR and the stratum lucidum (SL interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.

  1. Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice.

    Science.gov (United States)

    Wang, Hui; Megill, Andrea; Wong, Philip C; Kirkwood, Alfredo; Lee, Hey-Kyoung

    2014-01-01

    Beta-amyloid precursor protein cleaving enzyme 1 (BACE1), a major neuronal β-secretase critical for the formation of β-amyloid (Aβ) peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD). Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs) display presynaptic deficits, especially at the mossy fiber (MF) to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR) and the stratum lucidum (SL) interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.

  2. Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    Science.gov (United States)

    Ben-Ari, Y; Cherubini, E; Corradetti, R; Gaiarsa, J L

    1989-09-01

    1. Intracellular recordings were made from rat CA3 hippocampal neurones in vitro during the first eighteen days of postnatal life. The cells had resting membrane potentials more negative than -51 mV, action potentials greater than 55 mV and membrane input resistances of 117 +/- 12 M omega. An unusual characteristic of these cells was the presence of spontaneous giant depolarizing potentials (GDPs) which were observed during the first eight postnatal (P) days in over 85% of neurones. They were less frequent between P9 and P12 (48%) and disappeared after P12. 2. The GDPs were synchronously generated by a population of neurones; they reversed polarity at -27 mV when recorded with KCl-containing electrodes and at -51 mV with potassium acetate- or potassium methylsulphate-filled electrodes. 3. The GDPs were blocked by bath application of bicuculline (10 microM) or picrotoxin (100-200 microM). Exogenously applied gamma-aminobutyric acid (GABA; 0.2-1 mM) induced at resting membrane potential a bicuculline-sensitive membrane depolarization which reversed polarity at -25 and -51 mV when recorded with KCl- or potassium methylsulphate-filled electrodes respectively. 4. The GDPs were reduced in frequency or blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists DL-2-amino-7-phosphonoheptanoate (AP-7; 50 microM), D(-)2-amino-5-phosphonovalerate (AP-5, 10-50 microM) and (+-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10-50 microM) or NMDA channel blockers phencyclidine (2 microM) and ketamine (20 microM). 5. Stimulation of the hilus during the first week of life evoked a GDP followed by a hyperpolarization. The GDPs were generated by a population of synchronized neurones and reversed polarity at -27 mV with KCl-filled electrodes and at -52 mV with potassium acetate- or potassium methylsulphate-containing electrodes. 6. Bath application of bicuculline (1-10 microM) or picrotoxin (100-200 microM) reversibly blocked the evoked GDPs in the majority of cells

  3. The cumulative analgesic effect of repeated electroacupuncture involves synaptic remodeling in the hippocampal CA3 region

    Institute of Scientific and Technical Information of China (English)

    Qiuling Xu; Tao Liu; Shuping Chen; Yonghui Gao; Junying Wang; Lina Qiao; Junling Liu

    2012-01-01

    In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/ calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region.

  4. Microglial Intracellular Ca2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders

    Science.gov (United States)

    Mizoguchi, Yoshito; Monji, Akira

    2017-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by deficits in social interaction, difficulties with language and repetitive/restricted behaviors. Microglia are resident innate immune cells which release many factors including proinflammatory cytokines, nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) when they are activated in response to immunological stimuli. Recent in vivo imaging has shown that microglia sculpt and refine the synaptic circuitry by removing excess and unwanted synapses and be involved in the development of neural circuits or synaptic plasticity thereby maintaining the brain homeostasis. BDNF, one of the neurotrophins, has various important roles in cell survival, neurite outgrowth, neuronal differentiation, synaptic plasticity and the maintenance of neural circuits in the CNS. Intracellular Ca2+ signaling is important for microglial functions including ramification, de-ramification, migration, phagocytosis and release of cytokines, NO and BDNF. BDNF induces a sustained intracellular Ca2+ elevation through the upregulation of the surface expression of canonical transient receptor potential 3 (TRPC3) channels in rodent microglia. BDNF might have an anti-inflammatory effect through the inhibition of microglial activation and TRPC3 could play important roles in not only inflammatory processes but also formation of synapse through the modulation of microglial phagocytic activity in the brain. This review article summarizes recent findings on emerging dual, inflammatory and non-inflammatory, roles of microglia in the brain and reinforces the importance of intracellular Ca2+ signaling for microglial functions in both normal neurodevelopment and their potential contributing to neurodevelopmental disorders such as ASDs. PMID:28367116

  5. Regulation of Astroglia on Synaptic Plasticity in the CA1 Region of Rat Hippocampus

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The regulation of astroglia on synaptic plasticity in the CA1 region of rat hippocampus was examined. Rats were divided into three groups: the newly born (<24 h), the juvenile (28-30days) and the adult groups (90-100 days), with each group having 20 animals. The CA1 region of rat hippocampus was immunohistochemically and electron-microscopically examined, respectively,for the growth of astroglia and the ultrastructure of synapses. The high performance liquid chromatography was employed to determine the cholesterol content of rat hippocampus. In the newly-born rats, a large number of neurons were noted in the hippocampal CA1 region of the newly-born rats,and few astroglia and no synaptic structure were observed. In the juvenile group, a few astroglias and some immature synapses were found, which were less than those in adult rats (P<0.01). The cholesterol content was 2.92±0.03 mg/g, 11.20± 3.41 mg/g and 12.91 ± 1.25 mg/g for newly born, the juvenile and the adult groups, respectively, with the differences among them being statistically significant (P<0.01). Our study suggests that the astrocytes may play an important role in the synaptic formation and functional maturity of hippocampal neurons, which may be related to the secretion of cholesterol from astrocytes.

  6. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    Science.gov (United States)

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion.

  7. Multi-walled carbon nanotube inhibits CA1 glutamatergic synaptic transmission in rat's hippocampal slices.

    Science.gov (United States)

    Chen, Ting; Yang, Jiajia; Zhang, Hui; Ren, Guogang; Yang, Zhuo; Zhang, Tao

    2014-09-17

    The purpose of the study was to investigate the neurotoxic effect of multi-walled carbon nanotubes (MWCNTs) on the properties of glutamatergic synaptic transmission in rat's hippocampal slices using whole-cell patch clamp technique. The amplitude and frequency of excitatory postsynaptic current (EPSC) were accessed on the hippocampal pyramidal neurons. The alterations of glutamatergic synaptic transmission in CA3-CA1 were examined by measuring both the amplitude of evoked excitatory postsynaptic current (eEPSC) and paired-pulse ratio (PPR). The data showed that the amplitude of either spontaneous excitatory postsynaptic current (sEPSC) or miniature excitatory postsynaptic current (mEPSC) was significantly inhibited by 1 μg/mL MWCNTs. However, it was found that there was a trend of different change on the frequency index. When 1 μg/mL MWCNTs was applied, there were a decreased frequency of mEPSC and an increased frequency of sEPSC, which might be due to the effect of action potential. Furthermore, the amplitudes of eEPSC at CA3-CA1 synapses were remarkably decreased. And the mean amplitude of AMPAR-mediated eEPSC was significantly reduced as well. Meanwhile, a majority of PPRs data were greater than one. There were no significant differences of PPRs between control and MWCNTs states, but an increased trend of paired-pulse facilitation was found. These results suggested that MWCNT markedly inhibited hippocampal CA1 glutamatergic synaptic transmission in vitro, which provided new insights into the MWCNT toxicology on CNS at cellular level.

  8. Correlation between synaptic protein expression and synaptic reorganization in the hippocampal CA3 region in a rat model of post-traumatic epilepsy

    Institute of Scientific and Technical Information of China (English)

    Gaolian Zhang; Jianmin Huang; Bang Zhao; Haineng Huang; Yuanyang Deng; Huadong Huang; Qirong He; Jianping Liang

    2010-01-01

    Postsynaptic density protein-95 and synaptophysin participate in synaptic reorganization in the forebrain of epilepsy models.However,the time-effect relationship between dynamic synapsin expression in hippocampus and synaptic reorganization in the post-traumatic epilepsy model remains unclear.FeCl2 was injected into the hippocampal CA3 region of the right forebrain in rats to induce post-traumatic epilepsy.Postsynaptic density protein-95 and synaptophysin expression was detected using immunohistochemistry.Epileptiform discharge induced by FeCl2 injection was determined in rat forebrain neurons,revealing decreased postsynaptic density protein-95expression at 24 hours and lowest levels at 7 days.Synaptophysin expression was markedly reduced at 24 hours,but increased at 7 days.Postsynaptic density protein-95 and synaptophysin expression was consistent with abnormal mossy fiber sprouting and synaptic reorganization following neuronal injury in the hippocampal CA3 region of FeCl2-induced epilepsy models.

  9. Dynamics of free intracellular Ca2+ during synaptic and spike activity of cricket tibial motoneurons.

    Science.gov (United States)

    Baden, Tom; Hedwig, Berthold

    2009-04-01

    For all nervous systems, motoneurons are the main output pathway. They are involved in generating episodic motor activity as well as enduring motor rhythms. To determine whether changes in cytosolic Ca(2+) correlate with motor performance, we studied the spatiotemporal dynamics, mode of entry and role of free intracellular Ca(2+) in cricket (Gryllus bimaculatus) front leg tibial extensor and flexor motoneurons. Synaptic activation or intracellular depolarising current injection uniformly increased Ca(2+) with the same dynamics throughout the primary and secondary branches of the dendritic tree of all motoneurons. Ca(2+) rise times (mean tau(rise), 233-295 ms) were lower than decay times (mean tau(decay), 1927-1965 ms), and resulted in a Ca(2+) plateau during repetitive activation, such as during walking. The neurons therefore operate with a different Ca(2+) level during walking than during episodic leg movements. Ca(2+) enters the dendritic processes of motoneurons via a voltage-activated mechanism. Entry is driven by subthreshold excitation, and is largely independent of the neurons' spiking activity. To what extent ligand-activated mechanisms of Ca(2+) entry operate remains uncertain. We found no evidence for any prominent Ca(2+)-activated secondary currents in these motoneurons. Excitatory postsynaptic potentials evoked by extracellular stimulation of descending neurons were unaffected by the level of free intracellular Ca(2+). The activity of tibial motoneurons therefore appears to be only weakly dependent on the level of free intracellular Ca(2+) in dendrites. This is different to what has been found for many other neurons studied, and may represent an essential prerequisite for insect motoneurons to support a wide range of both episodic and rhythmic motor sequences underlying behaviour.

  10. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    Science.gov (United States)

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons.

  11. Persistent CaMKII activation mediates learning-induced long-lasting enhancement of synaptic inhibition.

    Science.gov (United States)

    Ghosh, Sourav; Reuveni, Iris; Lamprecht, Raphael; Barkai, Edi

    2015-01-07

    Training rats in a particularly difficult olfactory-discrimination task results in acquisition of high skill to perform the task superbly, termed "rule learning" or "learning set." Such complex learning results in enhanced intrinsic neuronal excitability of piriform cortex pyramidal neurons, and in their excitatory synaptic interconnections. These changes, while subserving memory maintenance, must be counterbalanced by modifications that prevent overspreading of activity and uncontrolled synaptic strengthening. Indeed, we have previously shown that the average amplitude of GABAA-mediated miniature IPSCs (mIPSCs) in these neurons is enhanced for several days after learning, an enhancement mediated via a postsynaptic mechanism. To unravel the molecular mechanism of this long-term inhibition enhancement, we tested the role of key second-messenger systems in maintaining such long-lasting modulation. The calcium/calmodulin-dependent kinase II (CaMKII) blocker, KN93, significantly reduced the average mIPSC amplitude in neurons from trained rats only to the average pretraining level. A similar effect was obtained by the CaMKII peptide inhibitor, tatCN21. Such reduction resulted from decreased single-channel conductance and not in the number of activated channels. The PKC inhibitor, GF109203X, reduced the average mIPSC amplitude in neurons from naive, pseudo-trained, and trained animals, and the difference between the trained and control groups remained. Such reduction resulted from a decrease in the number of activated channels. The PKA inhibitor H89 dihydrochloride did not affect the average mIPSC amplitude in neurons from any of the three groups. We conclude that learning-induced enhancement of GABAA-mediated synaptic inhibition is maintained by persistent CaMKII activation.

  12. Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus.

    Science.gov (United States)

    Zhang, Hui; Wang, Hui; Xiao, Xi; Zhang, Tao

    2016-01-01

    Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration.

  13. Development of synaptic connectivity onto interneurons in stratum radiatum in the CA1 region of the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Riebe Ilse

    2012-01-01

    Full Text Available Abstract Background The impact of a given presynaptic neuron on the firing probability of the postsynaptic neuron critically depends on the number of functional release sites that connect the two neurons. One way of determining the average functional synaptic connectivity onto a postsynaptic neuron is to compare the amplitudes of action potential dependent spontaneous synaptic currents with the amplitude of the synaptic currents that are independent of action potentials ("minis". With this method it has been found that average synaptic connectivity between glutamatergic CA3 and CA1 pyramidal cells increases from single connections in the neonatal rat, to multiple connections in the young adult rat. On the other hand, γ-aminobutyric acid (GABAergic interneurons form multiple connections onto CA1 pyramidal cells already in the neonatal rat, and the degree of multiple GABAergic connectivity is preserved into adulthood. In the present study, we have examined the development of glutamate and GABA connectivity onto GABAergic CA1 stratum radiatum interneurons in the hippocampal slice, and compared this to the connectivity onto CA1 pyramidal neurons. Results In GABAergic interneurons in the CA1 stratum radiatum, irrespective of developmental stage, we found that the average amplitude of action potential dependent spontaneous AMPA receptor-mediated synaptic currents were of the same magnitude as the mini AMPA receptor mediated synaptic currents. This finding indicates that these GABAergic interneurons, in contrast to the CA1 pyramidal neurons, preserve single glutamate connectivity throughout development. For GABA connectivity, on the other hand, we found multiple functional synaptic connections onto the interneurons, as onto the pyramidal cells. Conclusions The results presented here confirm that glutamate and GABA synaptic connectivity develop very differently in the hippocampal CA1 region. Thus, whereas average GABA connectivity is multiple

  14. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  15. Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3.

    Science.gov (United States)

    Jaffe, David B; Gutiérrez, Rafael

    2007-01-01

    Communication between the dentate gyrus (DG) and area CA3 of the hippocampus proper is transmitted via axons of granule cells--the mossy fiber (MF) pathway. In this review we discuss and compare the properties of transmitter release from the MFs onto pyramidal neurons and interneurons. An examination of the anatomical connectivity from DG to CA3 reveals a surprising interplay between excitation and inhibition for this circuit. In this respect it is particularly relevant that the major targets of the MFs are interneurons and that the consequence of MF input into CA3 may be inhibitory or excitatory, conditionally dependent on the frequency of input and modulatory regulation. This is further complicated by the properties of transmitter release from the MFs where a large number of co-localized transmitters, including GABAergic inhibitory transmitter release, and the effects of presynaptic modulation finely tune transmitter release. A picture emerges that extends beyond the hypothesis that the MFs are simply "detonators" of CA3 pyramidal neurons; the properties of synaptic information flow from the DG have more subtle and complex influences on the CA3 network.

  16. Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.

    Science.gov (United States)

    Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro

    2016-03-11

    Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons.

  17. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina.

    Science.gov (United States)

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-09-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca(2+) dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of IC l(Ca) confirmed that endogenous Ca(2+) buffering is equivalent to ~0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca(2+)] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca(2+) currents. Peak efficiency of ~0.2 vesicles/channel was similar to that of cones (~0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca(2+) buffering. However, weak Ca(2+) buffering speeded Ca(2+)/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca(2+) buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca(2+)] at nonribbon sites in cones with weak Ca(2+) buffering and by inhibiting Ca(2+) extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca(2+) buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca(2+)/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods.

  18. Regional differences in GABAergic modulation for TEA-induced synaptic plasticity in rat hippocampal CA1, CA3 and dentate gyrus.

    Science.gov (United States)

    Suzuki, Etsuko; Okada, Takashi

    2007-10-01

    Tetraethylammonium (TEA), a K(+)-channel blocker, reportedly induces long-term potentiation (LTP) of hippocampal CA1 synaptic responses, but at CA3 and the dentate gyrus (DG), the characteristics of TEA-induced plasticity and modulation by inhibitory interneurons remain unclear. This study recorded field EPSPs from CA1, CA3 and DG to examine the involvement of GABAergic modulation in TEA-induced synaptic plasticity for each region. In Schaffer collateral-CA1 synapses and associational fiber (AF)-CA3 synapses, bath application of TEA-induced LTP in the presence and absence of picrotoxin (PTX), a GABA(A) receptor blocker, whereas TEA-induced LTP at mossy fiber (MF)-CA3 synapses was detected only in the absence of GABA(A) receptor blockers. MF-CA3 LTP showed sensitivity to Ni(2+), but not to nifedipine. In DG, synaptic plasticity was modulated by GABAergic inputs, but characteristics differed between the afferent lateral perforant path (LPP) and medial perforant path (MPP). LPP-DG synapses showed TEA-induced LTP during PTX application, whereas at MPP-DG synapses, TEA-induced long-term depression (LTD) was seen in the absence of PTX. This series of results demonstrates that TEA-induced DG and CA3 plasticity displays afferent specificity and is exposed to GABAergic modulation in an opposite manner.

  19. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive.

    Science.gov (United States)

    Rosen, Zev B; Cheung, Stephanie; Siegelbaum, Steven A

    2015-12-01

    Dopamine (DA) is required for hippocampal-dependent memory and long-term potentiation (LTP) at CA1 Schaffer collateral (SC) synapses. It is therefore surprising that exogenously applied DA has little effect on SC synapses, but suppresses CA1 perforant path (PP) inputs. To examine DA actions under more physiological conditions, we used optogenetics to release DA from ventral tegmental area inputs to hippocampus. Unlike exogenous DA application, optogenetic release of DA caused a bidirectional, activity-dependent modulation of SC synapses, with no effect on PP inputs. Low levels of DA release, simulating tonic DA neuron firing, depressed the SC response through a D4 receptor-dependent enhancement of feedforward inhibition mediated by parvalbumin-expressing interneurons. Higher levels of DA release, simulating phasic firing, increased SC responses through a D1 receptor-dependent enhancement of excitatory transmission. Thus, tonic-phasic transitions in DA neuron firing in response to motivational demands may cause a modulatory switch from inhibition to enhancement of hippocampal information flow.

  20. Astragaloside Ⅳ inhibits spontaneous synaptic transmission and synchronized Ca2+ oscillations on hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Shao-qing ZHU; Lei QI; Yan-fang RUI; Ru-xin LI; Xiang-ping HE; Zuo-ping XIE

    2008-01-01

    Aim: To investigate the changes in the spontaneous neuronal excitability in-duced by astragaloside Ⅳ (AGS-Ⅳ) in the cultured hippocampal network. Methods: Hippocampal neurons in culture for 9-11 d were used for this study. The sponta-neous synaptic activities of these hippocampal neurons were examined by Ca2+ imaging and whole-cell patch-clamp techniques. In total, 40 mg/L AGS-Ⅳ dis-solved in DMSO and 2 mL/L DMSO were applied to the neurons under a micro-scope while the experiments were taking place. Results: AGS-Ⅳ inhibited the frequencies of synchronized spontaneous Ca2+ oscillations to 59.39%+3.25% (mean+SEM), the spontaneous postsynaptic currents to 43.78%±7.72% (mean±SEM), and the spontaneous excitatory postsynaptic currents to 49.25%±7.06% (mean±SEM) of those of the control periods, respectively, at 16 min after the AGS-Ⅳ applications. AGS-Ⅳ also decreased the peak values of the voltage-gated K+ and Na+ channel currents at that time point. Conclusion: These results indicate that AGS-Ⅳ suppresses the spontaneous neuronal excitabilities effectively. Such a modulation of neuronal activity could represent new evidence for AGS-Ⅳ as a neuroprotector.

  1. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses.

    Directory of Open Access Journals (Sweden)

    Rolando Berlinguer-Palmini

    Full Text Available Limited information is available on the brain expression and role of GPR35, a Gi/o coupled receptor activated by kynurenic acid (KYNA. In mouse cultured astrocytes, we detected GPR35 transcript using RT-PCR and we found that KYNA (0.1 to 100 µM decreased forskolin (FRSK-induced cAMP production (p<0.05. Both CID2745687 (3 µM, CID, a recently described GPR35 antagonist, and GPR35 gene silencing significantly prevented the action of KYNA on FRSK-induced cAMP production. In these cultures, we then evaluated whether GPR35 activation was able to modulate intracellular Ca(2+ concentration ([Ca(2+]i and [Ca(2+]i fluxes. We found that both KYNA and zaprinast, a phosphodiesterase (PDE inhibitor and GPR35 agonist, did not modify either basal or peaks of [Ca(2+]i induced by challenging the cells with ATP (30 µM. However, the [Ca(2+]i plateau phase following peak was significantly attenuated by these compounds in a store-operated Ca(2+ channel (SOC-independent manner. The activation of GPR35 by KYNA and zaprinast was also studied at the CA3-CA1 synapse in the rat hippocampus. Evoked excitatory post synaptic currents (eEPSCs were recorded from CA1 pyramidal neurons in acute brain slices. The action of KYNA on GPR35 was pharmacologically isolated by using NMDA and α7 nicotinic receptor blockers and resulted in a significant reduction of eEPSC amplitude. This effect was prevented in the presence of CID. Moreover, zaprinast reduced eEPSC amplitude in a PDE5- and cGMP-independent mechanism, thus suggesting that glutamatergic transmission in this area is modulated by GPR35. In conclusion, GPR35 is expressed in cultured astrocytes and its activation modulates cAMP production and [Ca(2+]i. GPR35 activation may contribute to KYNA effects on the previously reported decrease of brain extracellular glutamate levels and reduction of excitatory transmission.

  2. Differential alterations of synaptic plasticity in dentate gyrus and CA1 hippocampal area of Calbindin-D28K knockout mice

    NARCIS (Netherlands)

    Westerink, R.H.S.; Beekwilder, J.P.; Wadman, W.J.

    2012-01-01

    Regulation of the intracellular calcium concentration ([Ca(2+)](i)) is of critical importance for synaptic function. Therefore, neurons buffer [Ca(2+)](i) using intracellular Ca(2+)-binding proteins (CaBPs). Previous evidence suggests that Calbindin-D(28K) (CB), an abundantly expressed endogenous fa

  3. Activated CaMKII Couples GluN2B and Casein Kinase 2 to Control Synaptic NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Antonio Sanz-Clemente

    2013-03-01

    Full Text Available Synaptic activity triggers a profound reorganization of the molecular composition of excitatory synapses. For example, NMDA receptors are removed from synapses in an activity- and calcium-dependent manner, via casein kinase 2 (CK2 phosphorylation of the PDZ ligand of the GluN2B subunit (S1480. However, how synaptic activity drives this process remains unclear because CK2 is a constitutively active kinase, which is not directly regulated by calcium. We show here that activated CaMKII couples GluN2B and CK2 to form a trimolecular complex and increases CK2-mediated phosphorylation of GluN2B S1480. In addition, a GluN2B mutant, which contains an insert to mimic the GluN2A sequence and cannot bind to CaMKII, displays reduced S1480 phosphorylation and increased surface expression. We find that although disrupting GluN2B/CaMKII binding reduces synapse number, it increases synaptic-GluN2B content. Therefore, the GluN2B/CaMKII association controls synapse density and PSD composition in an activity-dependent manner, including recruitment of CK2 for the removal of GluN2B from synapses.

  4. Intrinsic variability in Pv, RRP size, Ca2+ channel repertoire and presynaptic potentiation in individual synaptic boutons

    Directory of Open Access Journals (Sweden)

    Pablo eAriel

    2013-01-01

    Full Text Available The strength of individual synaptic contacts is considered a key modulator of information flow across circuits. Presynaptically the strength can be parsed into two key parameters: the size of the readily-releasable pool (RRP and the probability that a vesicle in that pool will undergo exocytosis when an action potential fires (Pv. How these variables are controlled and the degree to which they vary across individual nerve terminals is crucial to understand synaptic plasticity within neural circuits. Here we report robust measurements of these parameters in rat hippocampal neurons and their variability across populations of individual synapses. We explore the diversity of presynaptic Ca2+ channel repertoires and evaluate their effect on synaptic strength at single boutons. Finally, we study the degree to which synapses can be differentially modified by a known potentiator of presynaptic function, forskolin. Our experiments revealed that both Pv and RRP spanned a large range, even for synapses made by the same axon, demonstrating that presynaptic efficacy is governed locally at the single synapse level. Synapses varied greatly in their dependence on N or P/Q type Ca2+ channels for neurotransmission, but there was no association between specific channel repertoires and synaptic efficacy. Increasing cAMP concentration using forskolin enhanced synaptic transmission in a Ca2+-independent manner that was inversely related with a synapse’s initial Pv, and independent of its RRP size. We propose a simple model based on the relationship between Pv and calcium entry that can account for the variable potentiation of synapses based on initial probability of vesicle fusion.

  5. Boosting of synaptic potentials and spine Ca transients by the peptide toxin SNX-482 requires alpha-1E-encoded voltage-gated Ca channels.

    Directory of Open Access Journals (Sweden)

    Andrew J Giessel

    Full Text Available The majority of glutamatergic synapses formed onto principal neurons of the mammalian central nervous system are associated with dendritic spines. Spines are tiny protuberances that house the proteins that mediate the response of the postsynaptic cell to the presynaptic release of glutamate. Postsynaptic signals are regulated by an ion channel signaling cascade that is active in individual dendritic spines and involves voltage-gated calcium (Ca channels, small conductance (SK-type Ca-activated potassium channels, and NMDA-type glutamate receptors. Pharmacological studies using the toxin SNX-482 indicated that the voltage-gated Ca channels that signal within spines to open SK channels belong to the class Ca(V2.3, which is encoded by the Alpha-1E pore-forming subunit. In order to specifically test this conclusion, we examined the effects of SNX-482 on synaptic signals in acute hippocampal slices from knock-out mice lacking the Alpha-1E gene. We find that in these mice, application of SNX-482 has no effect on glutamate-uncaging evoked synaptic potentials and Ca influx, indicating that that SNX-482 indeed acts via the Alpha-1E-encoded Ca(V2.3 channel.

  6. CaMKII is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain.

    Science.gov (United States)

    Pasch, Elisabeth; Muenz, Thomas Sebastian; Rössler, Wolfgang

    2011-12-15

    Calcium/calmodulin-dependent protein kinase II (CaMKII) has been linked to neuronal plasticity associated with long-term potentiation as well as structural synaptic plasticity. Previous work in adult honeybees has shown that a single CaMKII gene is strongly expressed in the mushroom bodies (MBs), brain centers associated with sensory integration, and learning and memory formation. To study a potential role of CaMKII in synaptic plasticity, the cellular and subcellular distribution of activated (phosphorylated) pCaMKII protein was investigated at various life stages of the honeybee using immunocytochemistry, confocal microscopy, and western blot analyses. Whereas at pupal stages 3-4 most parts of the brain showed high levels of pCaMKII immunoreactivity, the protein was predominantly concentrated in the MBs in the adult brain. The results show that pCaMKII is present in a specific subpopulation of Kenyon cells, the noncompact cells. Within the olfactory (lip) and visual (collar) subregion of the MB calyx neuropil pCaMKII was colocalized with f-actin in postsynaptic compartments of microglomeruli, indicating that it is enriched in Kenyon cell dendritic spines. This suggests a potential role of CaMKII in Kenyon cell dendritic plasticity. Interestingly, pCaMKII protein was absent in two other types of Kenyon cells, the inner compact cells associated with the multimodal basal ring and the outer compact cells. During adult behavioral maturation from nurse bees to foragers, pCaMKII distribution remained essentially similar at the qualitative level, suggesting a potential role in dendritic plasticity of Kenyon cells throughout the entire life span of a worker bee.

  7. Excitation/Inhibition Imbalance and Impaired Synaptic Inhibition in Hippocampal Area CA3 of Mecp2 Knockout Mice

    OpenAIRE

    Calfa, Gaston; Li, Wei; Rutherford, John M.; Pozzo-Miller, Lucas

    2014-01-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multi-unit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inh...

  8. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling.

    Science.gov (United States)

    Lipstein, Noa; Sakaba, Takeshi; Cooper, Benjamin H; Lin, Kun-Han; Strenzke, Nicola; Ashery, Uri; Rhee, Jeong-Seop; Taschenberger, Holger; Neher, Erwin; Brose, Nils

    2013-07-10

    Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca(2+)-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca(2+)-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca(2+)-Calmodulin signaling and show that the Ca(2+)-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.

  9. Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus.

    Science.gov (United States)

    Aradi, Ildiko; Maccaferri, Gianmaria

    2004-10-27

    Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.

  10. Ketogenic diets cause opposing changes in synaptic morphology in CA1 hippocampus and dentate gyrus of late-adult rats.

    Science.gov (United States)

    Balietti, Marta; Giorgetti, Belinda; Fattoretti, Patrizia; Grossi, Yessica; Di Stefano, Giuseppina; Casoli, Tiziana; Platano, Daniela; Solazzi, Moreno; Orlando, Fiorenza; Aicardi, Giorgio; Bertoni-Freddari, Carlo

    2008-06-01

    Ketogenic diets (KDs) have beneficial effects on several diseases, such as epilepsy, mitochondriopathies, cancer, and neurodegeneration. However, little is known about their effects on aging individuals. In the present study, late-adult (19-month-old) rats were fed for 8 weeks with two medium chain triglycerides (MCT)-KDs, and the following morphologic parameters reflecting synaptic plasticity were evaluated in stratum moleculare of hippocampal CA1 region (SM CA1) and outer molecular layer of hippocampal dentate gyrus (OML DG): average area (S), numeric density (Nv(s)), and surface density (Sv) of synapses, and average volume (V), numeric density (Nv(m)), and volume density (Vv) of synaptic mitochondria. In SM CA1, MCT-KDs induced the early appearance of the morphologic patterns typical of old animals (higher S and V, and lower Nv(s) and Nv(m)). On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nv(s) and Nv(m)) versus controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility to aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. Present findings provide the first evidence that MCT-KDs may cause opposite morphologic modifications, being potentially harmful for SM CA1 and potentially advantageous for OML DG. This implies risks but also promising potentialities for their therapeutic use during aging.

  11. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury.

    Science.gov (United States)

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-11-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  12. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lei Cao; Xiaohua Bie; Su Huo; Jubao Du; Lin Liu; Weiqun Song

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  13. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    DEFF Research Database (Denmark)

    Kang, J.; Kang, N.; Yu, Y.;

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10...... min induced long-term potentiation of intrinsic neuronal excitability (LTP-IE) and a long-lasting increase in evoked EPSCs (eEPSCs) in CA1 pyramidal neurons in hippocampal slices. The increase in intrinsic neuronal excitability was a result of negative shifts in the action potential (AP) threshold...... NMDAR currents, suggesting that SR101 enhances activation of synaptic NMDARs. SR101-induced LTP-IE and potentiation of synaptic transmission triggered spontaneous neuronal firing in slices and in vivo epileptic seizures. Our results suggest that SR101 is an epileptogenic agent that long-lastingly lowers...

  14. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo.

    Science.gov (United States)

    Gao, T M; Pulsinelli, W A; Xu, Z C

    1998-11-01

    Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to

  15. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus.

    Science.gov (United States)

    Vignes, M; Clarke, V R; Parry, M J; Bleakman, D; Lodge, D; Ornstein, P L; Collingridge, G L

    1998-01-01

    Activation of kainate receptors depresses excitatory synaptic transmission in the hippocampus. In the present study, we have utilised a GluR5 selective agonist, ATPA [(RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid], and a GluR5 selective antagonist, LY294486 [(3SR,4aRS,6SR,8aRS)-6-([[(1H-tetrazol-5-y l)methyl]oxy]methyl)-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3 -carboxylic acid], to determine whether GluR5 subunits are involved in this effect. ATPA mimicked the presynaptic depressant effects of kainate in the CA1 region of the hippocampus. It depressed reversibly AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor-mediated field excitatory postsynaptic potentials (field EPSPs) with an IC50 value of approximately 0.60 microM. The dual-component excitatory postsynaptic current (EPSC) and the pharmacologically isolated NMDA (N-methyl-D-aspartate) receptor-mediated EPSC were depressed to a similar extent by 2 microM ATPA (61 +/- 7% and 58 +/- 6%, respectively). Depressions were associated with an increase in the paired-pulse facilitation ratio suggesting a presynaptic locus of action. LY294486 (20 microM) blocked the effects of 2 microM ATPA on NMDA receptor-mediated EPSCs in a reversible manner. In area CA3, 1 microM ATPA depressed reversibly mossy fibre-evoked synaptic transmission (by 82 +/- 10%). The effects of ATPA were not accompanied by any changes in the passive properties of CA1 or CA3 neurones. However, in experiments where K+, rather than Cs+, containing electrodes were used, a small outward current was observed. These results show that GluR5 subunits comprise or contribute to a kainate receptor that regulates excitatory synaptic transmission in both the CA1 and CA3 regions of the hippocampus.

  16. A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release.

    Science.gov (United States)

    Briz, Victor; Liu, Yan; Zhu, Guoqi; Bi, Xiaoning; Baudry, Michel

    2015-09-28

    Estrogen is an important modulator of hippocampal synaptic plasticity and memory consolidation through its rapid action on membrane-associated receptors. Here, we found that both estradiol and the G-protein-coupled estrogen receptor 1 (GPER1) specific agonist G1 rapidly induce brain-derived neurotrophic factor (BDNF) release, leading to transient stimulation of activity-regulated cytoskeleton-associated (Arc) protein translation and GluA1-containing AMPA receptor internalization in field CA3 of hippocampus. We also show that type-I metabotropic glutamate receptor (mGluR) activation does not induce Arc translation nor long-term depression (LTD) at the mossy fiber pathway, as opposed to its effects in CA1, and it only triggers LTD after GPER1 stimulation. Furthermore, this form of mGluR-dependent LTD is associated with ubiquitination and proteasome-mediated degradation of GluA1, and is prevented by proteasome inhibition. Overall, our study identifies a novel mechanism by which estrogen and BDNF regulate hippocampal synaptic plasticity in the adult brain.

  17. Nicotine-induced enhancement of synaptic plasticity at CA3-CA1 synapses requires GABAergic interneurons in adult anti-NGF mice.

    Science.gov (United States)

    Rosato-Siri, Marcelo; Cattaneo, Antonino; Cherubini, Enrico

    2006-10-15

    The hippocampus, a key structure for learning and memory processes, receives an important cholinergic innervation and is densely packed with a variety of nicotinic acetylcholine receptors (nAChRs) localized on principal cells and interneurons. Activation of these receptors by nicotine or endogenously released acetylcholine enhances activity-dependent synaptic plasticity processes. Deficits in the cholinergic system produce impairment of cognitive functions that are particularly relevant during senescence and in age-related neurodegenerative pathologies. In particular, Alzheimer's disease (AD) is characterized by a selective loss of cholinergic neurons in the basal forebrain and nAChRs in particular regions controlling memory processes such as the cortex and the hippocampus. Field excitatory postsynaptic potentials were recorded in order to examine whether nicotine was able to regulate induction of long-term potentiation at CA3-CA1 synapses in hippocampal slices from adult anti-NGF transgenic mice (AD 11), a comprehensive animal model of AD, in which cholinergic deficits due to nerve growth factor depletion are accompanied by progressive Alzheimer-like neurodegeneration. Both AD 11 and wild-type (WT) mice exhibited short- and long-lasting synaptic plasticity processes that were boosted by nicotine. The effects of nicotine on WT and AD 11 mice were mediated by both alpha7- and beta2-containing nAChRs. In the presence of GABA(A) receptor antagonists, nicotine failed to boost synaptic plasticity in AD 11 but not in WT mice, indicating that in anti-NGF transgenic mice GABAergic interneurons are able to compensate for the deficit in cholinergic modulation of glutamatergic transmission. This compensation may occur at different levels and may involve the reorganization of the GABAergic circuit. However, patch-clamp whole-cell recordings from principal cells failed to reveal any change in spontaneous release of GABA following pressure application of nicotine to nearby

  18. Munc13 C[subscript 2]B domain is an activity-dependent Ca[superscript 2+] regulator of synaptic exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ok-Ho; Lu, Jun; Rhee, Jeong-Seop; Tomchick, Diana R.; Pang, Zhiping P.; Wojcik, Sonja M.; Camacho-Perez, Marcial; Brose, Nils; Machius, Mischa; Rizo, Josep; Rosenmund, Christian; Südhof, Thomas C. (Baylor); (MXPL-B); (MXPL); (UTSMC)

    2010-04-26

    Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C{sub 2}B domain of Munc13 functions as a Ca{sup 2+} regulator of short-term synaptic plasticity. The crystal structure of the C{sub 2}B domain revealed an unusual Ca{sup 2+}-binding site with an amphipathic {alpha}-helix. This configuration confers onto the C{sub 2}B domain unique Ca{sup 2+}-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca{sup 2+}-dependent phospholipid binding to the C{sub 2}B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca{sup 2+}-dependent phosphatidylinositolbisphosphate binding to the C{sub 2}B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca{sup 2+} and phosphatidylinositolphosphate binding to the Munc13 C{sub 2}B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.

  19. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry

    Science.gov (United States)

    Jennings, Alistair; Tyurikova, Olga; Bard, Lucie; Zheng, Kaiyu; Semyanov, Alexey; Henneberger, Christian

    2016-01-01

    Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole‐cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+] measurements, we also employed life‐time imaging of the Ca2+ indicator Oregon Green BAPTA‐1. We found that dopamine triggered a dose‐dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below‐baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine‐induced [Ca2+] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher‐threshold dopamine‐induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter—dopamine—could either elevate or decrease astrocyte [Ca2+] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447–459 PMID:27896839

  20. Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice.

    Science.gov (United States)

    Calfa, Gaston; Li, Wei; Rutherford, John M; Pozzo-Miller, Lucas

    2015-02-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multiunit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2(-/y) ). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2(-/y) slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2(-/y) neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAA Rs in the CA3 cell body layer of Mecp2(-/y) mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2(-/y) mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2(-/y) neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2(-/y) mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2(-/y) mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a

  1. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory

    Science.gov (United States)

    Niu, Yang; Dai, Zhonghua; Liu, Wenxue; Zhang, Cheng; Yang, Yanrui; Guo, Zhenzhen; Li, Xiaoyu; Xu, Chenchang; Huang, Xiahe; Wang, Yingchun; Shi, Yun S; Liu, Jia-Jia

    2017-01-01

    SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI: http://dx.doi.org/10.7554/eLife.20991.001 PMID:28134614

  2. NO regulates the strength of synaptic inputs onto hippocampal CA1 neurons via NO-GC1/cGMP signalling.

    Science.gov (United States)

    Neitz, A; Mergia, E; Neubacher, U; Koesling, D; Mittmann, T

    2015-06-01

    GABAergic interneurons are the predominant source of inhibition in the brain that coordinate the level of excitation and synchronization in neuronal circuitries. However, the underlying cellular mechanisms are still not fully understood. Here we report nitric oxide (NO)/NO-GC1 signalling as an important regulatory mechanism of GABAergic and glutamatergic synaptic transmission in the hippocampal CA1 region. Deletion of the NO receptor NO-GC1 induced functional alterations, indicated by a strong reduction of spontaneous and evoked inhibitory postsynaptic currents (IPSCs), which could be compensated by application of the missing second messenger cGMP. Moreover, we found a general impairment in the strength of inhibitory and excitatory synaptic inputs onto CA1 pyramidal neurons deriving from NO-GC1KO mice. Finally, we disclosed one subpopulation of GABAergic interneurons, fast-spiking interneurons, that receive less excitatory synaptic input and consequently respond with less spike output after blockage of the NO/cGMP signalling pathway. On the basis of these and previous findings, we propose NO-GC1 as the major NO receptor which transduces the NO signal into cGMP at presynaptic terminals of different neuronal subtypes in the hippocampal CA1 region. Furthermore, we suggest NO-GC1-mediated cGMP signalling as a mechanism which regulates the strength of synaptic transmission, hence being important in gating information processing between hippocampal CA3 and CA1 region.

  3. Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII.

    Science.gov (United States)

    Hardingham, Neil; Wright, Nick; Dachtler, James; Fox, Kevin

    2008-12-10

    Calcium/calmodulin kinase II (CaMKII) is required for LTP and experience-dependent potentiation in the barrel cortex. Here, we find that whisker deprivation increases LTP in the layer IV to II/III pathway and that PKA antagonists block the additional LTP. No LTP was seen in undeprived CaMKII-T286A mice, but whisker deprivation again unmasked PKA-sensitive LTP. Infusion of a PKA agonist potentiated EPSPs in deprived wild-types and deprived CaMKII-T286A point mutants but not in undeprived animals of either genotype. The PKA-dependent potentiation mechanism was not present in GluR1 knockouts. Infusion of a PKA antagonist caused depression of EPSPs in undeprived but not deprived cortex. LTD was occluded by whisker deprivation and blocked by PKA manipulation, but not blocked by cannabinoid antagonists. NMDA receptor currents were unaffected by sensory deprivation. These results suggest that sensory deprivation causes synaptic depression by reversing a PKA-dependent process that may act via GluR1.

  4. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke

    2015-01-01

    of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent...... cytosolic Ca2+ transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca2+ activities in neurons and astrocytes. Intermediate and high...... concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might...

  5. Cholinergic modulation of excitatory synaptic input integration in hippocampal CA1.

    Science.gov (United States)

    McQuiston, A Rory

    2010-10-01

    During theta rhythm, the timing of inputs to hippocampal CA1 from the perforant path (PP) of the entorhinal cortex and the Schaffer collaterals (SCs) from individual CA3 pyramidal neurons can vary within an individual theta period. Importantly, during theta rhythms these interactions occur during elevated acetylcholine concentrations. Thus, I examined the effect that PP inputs have on SC inputs in hippocampal CA1 during cholinergic receptor activation. To do this I measured the impact that a single electrical stimulus of the stratum lacunosum-moleculare (SLM, which contains the PP) had on excitation evoked by stimulation of the stratum radiatum (SR, which contains the SC) using voltage-sensitive dye imaging, field excitatory postsynaptic potentials and whole cell patch clamping in rat hippocampal brain slices. My data showed that SLM stimulation one half a theta cycle or less (25-75 ms) before SR stimulation resulted in the summation of excitatory events in SR and SP of hippocampal CA1. The summation was unaffected by cholinergic receptor activation by carbachol. SLM stimulation one theta cycle (150-225 ms) preceding SR stimulation significantly suppressed excitatory events measured in SR and SP. This SLM stimulus inhibition of SR-driven excitatory events was augmented by carbachol application. The carbachol effect was blocked by atropine and SLM-driven suppression of excitatory events was blocked by the GABA(B) receptor antagonist CGP 54626. SR field EPSP slopes were unaffected by SLM prepulses. Carbachol increased the probability of SR input to drive action potential firing in CA1 pyramidal neurons, which was inhibited by SLM prepulses (150-225 ms). Together these data provide important information regarding the integration of inputs in hippocampal CA1 during theta rhythms. More specifically, SR inputs can be differentially gated by SLM feedforward inhibition at varying temporal intervals within a theta cycle.

  6. GABA B receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons.

    Science.gov (United States)

    Lei, Saobo; McBain, Chris J

    2003-01-15

    Hippocampal stratum radiatum inhibitory interneurons receive glutamatergic excitatory innervation via the recurrent collateral fibers of CA3 pyramidal neurons and GABAergic inhibition from other interneurons. We examined both presynaptic- and postsynaptic-GABA(B) receptor-mediated responses at both synapse types. Postsynaptic GABA(B) receptor-mediated responses were absent in recordings from young (P16-18) but present in recordings from older animals (> or =P30) suggesting developmental regulation. In young animals, the GABA(B) receptor agonist, baclofen, inhibited the amplitude of evoked EPSCs and IPSCs, an effect blocked by prior application of the selective antagonist CGP55845. Baclofen enhanced the paired-pulse ratio and coefficient of variation of evoked EPSCs and IPSCs, consistent with a presynaptic mechanism of regulation. In addition, baclofen reduced the frequency of miniature IPSCs but not mEPSCs. However, baclofen reduced the frequency of KCl-induced mEPSCs; an effect blocked by Cd(2+), implicating presynaptic voltage-gated Ca(2+) channels as a target for baclofen modulation. In contrast, although Cd(2+) prevented the KCl-induced increase in mIPSC frequency, it failed to block baclofen's reduction of mIPSC frequency. Whereas N- and P/Q-types of Ca(2+) channels contributed equally to GABA(B) receptor-mediated inhibition of EPSCs, more P/Q-type Ca(2+) channels were involved in GABA(B) receptor-mediated inhibition of IPSCs. Finally, baclofen blocked the frequency-dependent depression of EPSCs and IPSCs, but was less effective at blocking frequency-dependent facilitation of EPSCs. Our results demonstrate that presynaptic GABA(B) receptors are expressed on the terminals of both excitatory and inhibitory synapses onto CA3 interneurons and that their activation modulates essential components of the release process underlying transmission at these two synapse types.

  7. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    Science.gov (United States)

    Dennis, Siobhan H; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G; Henley, Jeremy M; Mellor, Jack R

    2011-08-17

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.

  8. Oxygen/glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and A3 Receptors

    Science.gov (United States)

    Dennis, Siobhan H.; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Summary Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighbouring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+ resulting in delayed cell death. However, it is unclear if the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 minute OGD protocol a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by mGluR1 or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalisation of AMPARs after OGD. We also show a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists indicating that AMPARs are degraded following internalisation. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection. PMID:21849555

  9. Postsynaptic Target Specific Synaptic Dysfunctions in the CA3 Area of BACE1 Knockout Mice

    OpenAIRE

    2014-01-01

    Beta-amyloid precursor protein cleaving enzyme 1 (BACE1), a major neuronal β-secretase critical for the formation of β-amyloid (Aβ) peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD). Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs) display presynaptic deficits, especially at the mossy fiber (MF) to CA3 synapses. Whether the defect is specific to certain input...

  10. Deoxyschisandrin modulates synchronized Ca2+ oscillations and spontaneous synaptic transmission of cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Min FU; Zhao-hui SUN; Min ZONG; Xiang-ping HE; Huan-cong ZUO; Zuo-ping XIE

    2008-01-01

    Aim: Deoxyschisandrin is one of the most effective composites of Schisandra chinensis, a famous Chinese medicine widely used as an antistress, anti-aging, and neurological performance-improving herb. In this study, we examined its spe- cific mechanisms of action on cultured hippocampal neurons. Methods: Hippoc- ampal neurons, primarily cultured for 9-11 d in vitro, were used for this study. DS were dissolved in DMSO and applied to calcium imaging and whole-cell patch clamp. Results: The application of 3 mg/L DS decreased the frequency of sponta- neous and synchronous oscillations of intracellular Ca2+ to 72%±2% (mean±SEM), and the spontaneous inhibitory postsynaptic currents to 60%±3% (mean±SEM). The inhibitory concentraton 50% (IC50) for the effect of DS on calcium oscillations was 3.8 mg/L. DS also depressed the high voltage-gated Ca2+ channel and the voltage-gated Na+ channel currents at the same time point. It had no effect, however, on voltage-gated K+ and spontaneous excitatory postsynaptic currents. Conclusion: DS inhibited the spontaneous and synchronous oscillations of intra- cellular Ca2+ through the depression of influx of extracellular calcium and the initiation of action potential. By repressing the spontaneous neurotransmitter release, DS modulated the neuronal network activities.

  11. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.

    Science.gov (United States)

    Wheeler, D B; Randall, A; Tsien, R W

    1996-04-01

    It has been established that multiple types of Ca2+ channels participate in triggering neurotransmitter release at central synapses, but there is uncertainty about the nature of their combined actions. We investigated synaptic transmission at CA3-CA1 synapses of rat hippocampal slices and asked whether the dependence on omega-CTx-GVIA-sensitive N-type channels and omega-Aga-IVA-sensitive P/Q-type Ca2+ channels can be altered by physiological mechanisms. The reliance on multiple types of Ca2+ channels was not absolute but depended strongly on the amount of Ca2+ influx through individual channels, which was manipulated by prolonging the presynaptic action potential with the K+ channel blocker 4-aminopyridine (4-AP) and by varying the extracellular Ca2+ concentration ([Ca2+]o). We quantified the influence of spike broadening on Ca2+ influx through various Ca2+ channels by imposing mock action potentials on voltage-clamped cerebellar granule neurons. In field recordings of the EPSP in hippocampal slices, action potential prolongation increased the EPSP slope by 2-fold and decreased its reliance on either N-type or P/Q-type Ca2+ channels. The inhibition of synaptic transmission by N-type channel blockade was virtually eliminated in the presence of 4-AP, but it could be restored by lowering [Ca2+]o. These results rule out a scenario in which a significant fraction of presynaptic terminals rely solely on N-type channels to trigger transmission. The change in sensitivity to the neurotoxins with 4-AP could be explained in terms of a nonlinear relationship between Ca2+ entry and synaptic strength, which rises steeply at low [Ca2+]o, but approaches saturation at high [Ca2+]o. This relationship was evaluated experimentally by varying [CA2+]o in the absence and presence of 4-AP. One consequence of this relationship is that down-modulation of presynaptic Ca2+ channels by various modulators would increase the relative impact of spike broadening greatly.

  12. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats.

    Directory of Open Access Journals (Sweden)

    Diana M Sama

    Full Text Available The role of tumor necrosis factor α (TNF in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1 are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2 in aged (22 months but not young adult (6 months Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4-6 week intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca(2+ channel (VSCC activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.

  13. Slow feedback inhibition in the CA3 area of the rat hippocampus by synergistic synaptic activation of mGluR1 and mGluR5.

    Science.gov (United States)

    Mori, Masahiro; Gerber, Urs

    2002-11-01

    Interneurons are critical in regulating the excitability of principal cells in neuronal circuits, thereby modulating the output of neuronal networks. We investigated synaptically evoked inhibitory responses in CA3 pyramidal cells mediated by metabotropic glutamate receptors (mGluRs) expressed somatodendritically by interneurons. Although pharmacological activation of mGluRs in interneurons has been shown to enhance their excitability, the inability to record mGluR-mediated synaptic responses has precluded detailed characterization of mGluR function in hippocampal interneurons. We found that a single extracellular pulse in CA3 stratum pyramidale was sufficient to induce disynaptic inhibitory responses mediated by postsynaptic mGluRs of the interneurons in CA3 pyramidal cells of hippocampal slice cultures. The disynaptic inhibitory response followed a short-latency monosynaptic inhibitory response, and was observed at stimulus intensities evoking half-maximal monosynaptic IPSCs. Synergistic activation of mGluR1 and mGluR5 was required to induce the full inhibitory response. When recordings were obtained from interneurons in CA3 stratum radiatum or stratum oriens, a single extracellular stimulus induced a slow inward cationic current with a time course corresponding to the slow inhibitory response measured in pyramidal cells. DCG IV, a group II mGluR agonist, which specifically blocks synaptic transmission through mossy fibres, had no effect on mGluR-mediated synaptic responses in interneurons, suggesting that feed-forward inhibition via mossy fibres is not involved. Thus, postsynaptic mGluR1 and mGluR5 in hippocampal interneurons cooperatively mediate slow feedback inhibition of CA3 pyramidal cells. This mechanism may allow interneurons to monitor activity levels from populations of neighbouring principal cells to adapt inhibitory tone to the state of the network.

  14. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents.

  15. Aβ induces acute depression of excitatory glutamatergic synaptic transmission through distinct phosphatase-dependent mechanisms in rat CA1 pyramidal neurons.

    Science.gov (United States)

    Yao, Wen; Zou, Hao-Jun; Sun, Da; Ren, Si-Qiang

    2013-06-17

    Beta-amyloid peptide (Aβ) has a causal role in the pathophysiology of Alzheimer's disease (AD). Recent studies indicate that Aβ can disrupt excitatory glutamatergic synaptic function at synaptic level. However, the underlying mechanisms remain obscure. In this study, we recorded evoked and spontaneous EPSCs in hippocampal CA1 pyramidal neurons via whole-cell voltage-clamping methods and found that 1 μM Aβ can induce acute depression of basal glutamatergic synaptic transmission through both presynaptic and postsynaptic dysfunction. Moreover, we also found that Aβ-induced both presynaptic and postsynaptic dysfunction can be reversed by the inhibitor of protein phosphatase 2B (PP2B), FK506, whereas only postsynaptic disruption can be ameliorated by the inhibitor of PP1/PP2A, Okadaic acid (OA). These results indicate that PP1/PP2A and PP2B have overlapping but not identical functions in Aβ-induced acute depression of excitatory glutamatergic synaptic transmission of hippocampal CA1 pyramidal neurons.

  16. How Ca2+-permeable AMPA receptors, the kinase PKA, and the phosphatase PP2B are intertwined in synaptic LTP and LTD.

    Science.gov (United States)

    Hell, Johannes W

    2016-04-26

    Both synaptic long-term potentiation (LTP) and long-term depression (LTD) are thought to be critical for memory formation. Dell'Acqua and co-workers now demonstrate that transient postsynaptic incorporation of Ca(2+)-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is required for LTD in the exemplary hippocampal CA1 region in 2-week-old mice. Mechanistically, LTD depends on AKAP150-anchored protein kinase A (PKA) to promote the initial functional recruitment of CP-AMPARs during LTD induction and on AKAP150-anchored protein phosphatase 2B (PP2B) to trigger their subsequent removal as part of the lasting depression of synaptic transmission.

  17. Apolipoprotein E4 impairs in vivo hippocampal long-term synaptic plasticity by reducing the phosphorylation of CaMKIIα and CREB.

    Science.gov (United States)

    Qiao, Feng; Gao, Xiu-Ping; Yuan, Li; Cai, Hong-Yan; Qi, Jin-Shun

    2014-01-01

    Inheritance of the apolipoprotein E genotype ε4 (APOE4) is a powerful risk factor for most cases of late-onset Alzheimer's disease (AD). However, the effects of ApoE4 on the long-term synaptic plasticity and its underlying mechanism have not clearly investigated. In the present study, we examined the effects of ApoE4 on the hippocampal late-phase long-term potentiation (L-LTP) and investigated its probable molecular mechanisms by using in vivo field potential recording, immunohistochemistry, and western blotting. The results showed that: (1) intra-hippocampal injection of 0.2 μg ApoE4, but not ApoE2, before high frequency stimulations (HFSs) attenuated the induction of hippocampal L-LTP in the CA1 region, while injection of the same concentration of ApoE4 after HFSs, even at a higher concentration (2 μg), did not affect the long term synaptic plasticity; (2) ApoE4 injection did not affect the paired pulse facilitation in the hippocampal CA1 region; (3) ApoE4 injection before, not after, HFSs significantly decreased the levels of phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (p-CaMKIIα) and phosphorylated cAMP response element-binding protein (p-CREB) in the hippocampus. These results demonstrated for the first time that ApoE4 could impair hippocampal L-LTP by reducing p-CaMKIIα and p-CREB, suggesting that the ApoE4-induced suppression of hippocampal long-term synaptic plasticity may contribute to the cognitive impairments in genetic AD; and both CaMKIIα and CREB are important intracellular targets of the neurotoxic ApoE4.

  18. Effects of movement training on synaptic interface structure in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere in cerebral infarction rats

    Institute of Scientific and Technical Information of China (English)

    Min Yang; Jiyan Cheng

    2008-01-01

    BACKGROUND: Movement is an effective way to provide sensory, movement and reflectivity afferent stimulation to the central nervous system. Movement plays an important role in functional recombination and compensation in the brain. OBJECTIVE: To observe movement training effects on texture parameters of synaptic interfaces in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere and on motor function in cerebral infarction rats. DESIGN, TIME AND SETTING: This neural morphology and pathology randomized controlled animal experiment was performed at the Center Laboratory, Affiliated Hospital of Luzhou Medical College, China from November 2004 to April 2005. MATERIALS: A total of 32 healthy male Wistar rats aged 8 weeks were equally and randomly assigned into model and movement training groups. METHODS: Rat models of right middle cerebral artery occlusion were established using the suture occlusion method in both groups. Rats in the movement training group underwent balance training, screen training, and rotating rod training starting on day 5 after surgery, for 40 minutes every day, 6 days per week, for 4 weeks. MAIN OUTCOME MEASURES: Texture parameters of synaptic interfaces were determined using a transmission electron microscope and image analyzer during week 5 following model induction. The following parameters were measured: synaptic cleft width; postsynaptic density thickness; synaptic interface curvature; and active zone length. Motor function was assessed using balance training, screen training, and rotating rod training. The lower score indicated a better motor function. RESULTS: The postsynaptic density thickness, synaptic interface curvature, and active zone length were significantly increased in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere of rats from the movement training group compared with the model group (P < 0.05 or 0.01). Curved synapses and perforated synapses were seen in the sensorimotor cortex

  19. Ethanol exposure during the third trimester equivalent does not affect GABAA or AMPA receptor-mediated spontaneous synaptic transmission in rat CA3 pyramidal neurons

    OpenAIRE

    Baculis, Brian Charles; Valenzuela, Carlos Fernando

    2015-01-01

    Background Ethanol exposure during the rodent equivalent to the 3rd trimester of human pregnancy (i.e., first 1–2 weeks of neonatal life) has been shown to produce structural and functional alterations in the CA3 hippocampal sub-region, which is involved in associative memory. Synaptic plasticity mechanisms dependent on retrograde release of brain-derived neurotrophic factor (BDNF) driven by activation of L-type voltage-gated Ca2+ channels (L-VGCCs) are thought to play a role in stabilization...

  20. Propofol ameliorates electroconvulsive shock-induced learning and memory impairment by regulation of synaptic metaplasticity via autophosphorylation of CaMKIIa at Thr 305 in stressed rats.

    Science.gov (United States)

    Ren, Li; Zhang, Fan; Min, Su; Hao, Xuechao; Qin, Peipei; Zhu, Xianlin

    2016-06-30

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but it can induce learning and memory impairment. Our previous study found propofol (γ-aminobutyric acid (GABA) receptor agonist) could ameliorate electroconvulsive shock (ECS, an analog of ECT to animals)-induced cognitive impairment, however, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of propofol on metaplasticity and autophosphorylation of CaMKIIa in stressed rats receiving ECS. Depressive-like behavior and learning and memory function were assessed by sucrose preference test and Morris water test respectively. LTP were tested by electrophysiological experiment, the expression of CaMKIIa, p-T305-CaMKII in hippocampus and CaMKIIα in hippocampal PSD fraction were evaluated by western blot. Results suggested ECS raised the baseline fEPSP and impaired the subsequent LTP, increased the expression of p-T305-CaMKII and decreased the expression of CaMKIIα in hippocampal PSD fraction, leading to cognitive dysfunction in stressed rats. Propofol could down-regulate the baseline fEPSP and reversed the impairment of LTP partly, decreased the expression of p-T305-CaMKII and increased the expression of CaMKIIα in hippocampal PSD fraction and alleviated ECS-induced learning and memory impairment. In conclusion, propofol ameliorates ECS-induced learning and memory impairment, possibly by regulation of synaptic metaplasticity via p-T305-CaMKII.

  1. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells.

    Science.gov (United States)

    Cunha-Reis, Diana; Sebastião, Ana M; Wirkner, Kerstin; Illes, Peter; Ribeiro, Joaquim Alexandre

    2004-11-01

    Vasoactive intestinal peptide (VIP) is present in the hippocampus in three subtypes of GABAergic interneurones, two of which innervate preferentially other interneurones, responsible for pyramidal cell inhibition. We investigated how pre- and postsynaptic modulation of GABAergic transmission (to both pyramidal cells and interneurones) by VIP could influence excitatory synaptic transmission in the CA1 area of the hippocampus. VIP (0.1-100 nM) increased [(3)H]GABA release from hippocampal synaptosomes (maximum effect at 1 nM VIP; 63.8 +/- 4.0%) but did not change [(3)H]glutamate release. VIP (0.3-30 nM) enhanced synaptic transmission in hippocampal slices (maximum effect at 1 nM VIP; field excitatory postsynaptic potentials (epsp) slope: 23.7 +/- 1.1%; population spike amplitude: 20.3 +/- 1.7%). The action on field epsp slope was fully dependent on GABAergic transmission since it was absent in the presence of picrotoxin (50 microM) plus CGP55845 (1 microM). VIP (1 nM) did not change paired-pulse facilitation but increased paired-pulse inhibition in CA1 pyramidal cells (16.0 +/- 0.9%), reinforcing the involvement of GABAergic transmission in the action of VIP. VIP (1 nM) increased muscimol-evoked inhibitory currents by 36.4 +/- 8.7% in eight out of ten CA1 interneurones in the stratum radiatum. This suggests that VIP promotes increased inhibition of interneurones that control pyramidal cells, leading to disinhibition of synaptic transmission to pyramidal cell dendrites. In conclusion, concerted pre- and postsynaptic actions of VIP lead to disinhibition of pyramidal cell dendrites causing an enhancement of synaptic transmission.

  2. Characterisation of the effects of ATPA, a GLU(K5) receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices.

    Science.gov (United States)

    Clarke, V R J; Collingridge, G L

    2002-06-01

    Kainate receptors are involved in a variety of synaptic functions in the CNS including the regulation of excitatory synaptic transmission. Previously we described the depressant action of the GLU(K5) selective agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA) on synaptic transmission in the Schaffer collateral-commissural pathway of rat hippocampal slices. In the present study we report several new features of the actions of ATPA at this synapse. Firstly, the effectiveness of ATPA is developmentally regulated. Secondly, the effects of ATPA decline during prolonged or repeated applications. Thirdly, the effects of ATPA are not mediated indirectly via activation of GABA(A), GABA(B), muscarinic or adenosine A(1) receptors. Fourthly, elevating extracellular Ca(2+) from 2 to 4 mM antagonises the effects of ATPA. Some differences between the actions of ATPA and kainate on synaptic transmission in the Schaffer collateral-commissural pathway are also noted.

  3. Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice

    OpenAIRE

    Dieni, Sandra; Nestel, Sigrun; Sibbe, Mirjam; Frotscher, Michael; Hellwig, Sabine

    2015-01-01

    Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn), which is phenotypically characterized by: (i) spontaneous generalized epileptic seizure activity, representing...

  4. Dissociation of CA3 pyramidal cells with attached, functional, identified mossy fiber and interneuronal boutons for studying glutamatergic and GABAergic synaptic transmission.

    Science.gov (United States)

    Beltrán, Jesús Q; Reyes, Sebastián; Pérez-Guzmán, José A; Elías-Viñas, David; Gutiérrez, Rafael

    2012-07-15

    Pyramidal cells of CA3 area receive glutamatergic signals from the mossy fibers (MFs), perforant path and collaterals of other pyramidal cells, as well as GABAergic inputs from interneurons. In hippocampal slices, an extracellular stimulation electrode is often used to activate the MFs, with the disadvantage of possibly activating fibers other than MFs. We set-up a preparation that allows the analysis of the glutamatergic input from identified, giant MF boutons as well as of GABAergic inputs from boutons of interneurons on single CA3 pyramidal cells. Mossy fiber boutons were labeled by exposing hippocampal slices to a zinc-reactive fluorescent dye, or by injecting a fluorescent dye in the granule cell layer and allowing its transport along the MFs to their terminals in CA3 area. After conducting an enzyme-free, mechanical dissociation of CA3 area, we obtained pyramidal cells containing fluorescent, giant MF boutons attached to their apical dendrites, as well as boutons of interneuronal origin. Whole cell recordings were then performed, whereby synaptic responses could be evoked by selective stimulation of the identified boutons. The synaptic currents evoked by stimulation of MF boutons, unlike those evoked by stimulation of interneuronal boutons, underwent strong frequency potentiation and were depressed by activation of metabotropic glutamate receptors, which are characteristics of transmission of MF origin. Combination of fluorophores can be used to label different tracts/boutons allowing the study of the different characteristics of neurotransmitter release from a variety of sources on single target cells.

  5. Effect of chronic intracerebroventricular insulin administration in rats on the peripheral glucose metabolism and synaptic plasticity of CA1 hippocampal neurons.

    Science.gov (United States)

    Kamal, Amer; Ramakers, Geert M J; Gispen, Willem Hendrik; Biessels, Geert Jan

    2012-01-30

    In this study we examined the effects of sustained intracerebroventricular insulin infusion on hippocampal synaptic plasticity in rats. Insulin was infused intracerebroventricularly in male Wistar rats (n=12) for 3 months using osmotic minipumps. A control group (n=12) received a sham operation. Insulin infusion led to an initial reduction in food intake and body weight gain, but these differences attenuated over 12 weeks. Insulin infusion did not affect fasting or non-fasting blood glucose levels. Field synaptic potentials recording from the hippocampus demonstrated a defect in the expression of long-term potentiation. Sharp electrode current-clamp recording showed that CA1 pyramidal cells fire action potentials in response to prolonged depolarizing current injection and those action potentials showed progressive broadening. The action potential broadening in the insulin-perfused animals were significantly longer than the control. The amplitude of slow after hyperpolarization (sAHP) was measured after manually "clamping" the cells at -65 mV and injecting currents to evoke a train of four APs. The sAHP amplitude was significantly longer than in the control animals. We conclude that local insulin infusion into the brain of rats had significant effects on synaptic plasticity in the absence of marked effects on systemic glucose levels. These results indicate that long-term elevation of insulin levels can have adverse effects directly on the brain.

  6. Different Compartments of Apical CA1 Dendrites Have Different Plasticity Thresholds for Expressing Synaptic Tagging and Capture

    Science.gov (United States)

    Sajikumar, Sreedharan; Korte, Martin

    2011-01-01

    The consolidation process from short- to long-term memory depends on the type of stimulation received from a specific neuronal network and on the cooperativity and associativity between different synaptic inputs converging onto a specific neuron. We show here that the plasticity thresholds for inducing LTP are different in proximal and distal…

  7. Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice.

    Directory of Open Access Journals (Sweden)

    Sandra eDieni

    2015-10-01

    Full Text Available Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn, which is phenotypically characterized by: (i spontaneous generalized epileptic seizure activity, representing a chronically-imbalanced neuronal network, and (ii a dramatic increase in hippocampal brain-derived neurotrophic factor (BDNF protein concentration, a key player in synaptic plasticity. Detailed morphological and neurochemical analyses revealed that the increased BDNF levels are associated with: I. modified neuropeptide distribution, II. perturbed expression of selected markers of synaptic activation or plasticity, III. subtle changes to microglial structure, and IV. morphological alterations to the mossy fiber synapse. These findings emphasize the important contribution of Bassoon protein to normal hippocampal function, and further characterize the Bsn mutant as a useful model for studying the effects of chronic changes to network activity.

  8. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-12-01

    Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS-dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N-methyl-d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired-pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity-dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively.

  9. Dendritic GIRK channels gate the integration window, plateau potentials and induction of synaptic plasticity in dorsal but not ventral CA1 neurons.

    Science.gov (United States)

    Malik, Ruchi; Johnston, Daniel

    2017-03-09

    Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G protein-coupled inward-rectifying potassium channel (GIRK) mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation.SIGNIFICANCE STATEMENTThe dorsal and ventral parts of the hippocampus encode spatial information at very different scales. While the place specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for long-term potentiation (LTP) and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By

  10. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.

    Science.gov (United States)

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-07-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.

  11. Different patterns of synaptic transmission revealed between hippocampal CA3 stratum oriens and stratum lucidum interneurons and their pyramidal cell targets.

    Science.gov (United States)

    Aaron, G B; Wilcox, K S; Dichter, M A

    2003-01-01

    Stratum lucidum (SL) interneurons likely mediate feedforward inhibition between the dentate gyrus mossy fibers and CA3 pyramidal cells, while stratum oriens (SO) interneurons likely provide both feedforward and feedback inhibition within the CA3 commissural/associational network. Using dual whole-cell patch-clamp recordings between interneurons and CA3 pyramidal cells, we have examined SL and SO interneurons and their synapses within organotypic hippocampal slice cultures. Biocytin staining revealed different morphologies between these interneuron groups, both being very similar to those found previously in acute slices. The kinetics of IPSCs were similar between the two groups, but the reliability of synaptic transmission of SL interneuron (SL-INT) IPSCs was significantly lower than the virtually 100% reliability (non-existent failure rates) of SO-INT IPSCs. The SL-INT IPSCs also had a lower quantal content than the SO-INT IPSCs. In addition, SL-INTs were less likely than SO-INTs to innervate or to be innervated by nearby CA3 pyramidal cells. Paired-pulse stimulation at 100 ms interstimulus intervals produced similar paired-pulse depression in both interneuron synapses, despite the significantly higher failure rate of IPSCs produced by the SL-INTs compared with SO-INTs. CV analysis supported the hypothesis that paired-pulse depression was presynaptic. During repetitive, high frequency stimulation (>10 Hz for 500 ms) the two different synapses exhibited distinctly different forms of short-term plasticity: all SL interneurons displayed significant short-term facilitation (mean 113% facilitation, n=4), while, by contrast, SO interneuron synapses displayed either short-term depression (mean 42% depression, n=5 of 8) or no net facilitation or depression (n=3 of 8). These results indicate that the synaptic properties of interneurons can be quite different for interneurons in different hippocampal circuits.

  12. The biphasic increase of PIP2 in the fertilized eggs of starfish: new roles in actin polymerization and Ca2+ signaling.

    Directory of Open Access Journals (Sweden)

    Jong T Chun

    Full Text Available BACKGROUND: Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca(2+. Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 serves as the precursor of inositol 1,4,5 trisphosphate (InsP(3 and also regulates actin-binding proteins, PIP2 might be involved in these two processes. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca(2+ and F-actin imaging techniques and transmission electron microscopy. During fertilization, PIP2 increased at the plasma membrane in two phases rather than continually decreasing. The first increase was quickly followed by a decrease about 40 seconds after sperm-egg contact. However, these changes took place only after the Ca(2+ wave had already initiated and propagated. The fertilized eggs then displayed a prolonged increase of PIP2 that was accompanied by the appearance of numerous spikes in the perivitelline space during the elevation of the fertilization envelope (FE. These spikes, protruding from the plasma membrane, were filled with microfilaments. Sequestration of PIP2 by RFP-PH at higher doses resulted in changes of subplasmalemmal actin networks which significantly delayed the intracellular Ca(2+ signaling, impaired elevation of FE, and increased occurrences of polyspermic fertilization. CONCLUSIONS/SIGNIFICANCE: Our results suggest that PIP2 plays comprehensive roles in shaping Ca(2+ waves and guiding structural and functional changes required for successful fertilization. We propose that the PIP2 increase and the subsequent formation of actin spikes not only provide the mechanical supports for the elevating FE, but also accommodate increased membrane surfaces during cortical granule

  13. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina

    2011-04-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  14. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells

    OpenAIRE

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Iryna

    2011-01-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic i...

  15. Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3–CA1 connections in the hippocampus

    OpenAIRE

    Mohajerani, Majid H.; Sivakumaran, Sudhir; Zacchi, Paola; Aguilera, Pedro de (O.P.); Cherubini, Enrico

    2007-01-01

    At early developmental stages, correlated neuronal activity is thought to exert a critical control on functional and structural refinement of synaptic connections. In the hippocampus, between postnatal day 2 (P2) and P6, network-driven giant depolarizing potentials (GDPs) are generated by the synergistic action of glutamate and GABA, which is depolarizing and excitatory. Here the rising phase of GDPs was used to trigger Schaffer collateral stimulation in such a way that synchronized network a...

  16. Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3 CA1 connections in the hippocampus.

    Science.gov (United States)

    Mohajerani, Majid H; Sivakumaran, Sudhir; Zacchi, Paola; Aguilera, Pedro; Cherubini, Enrico

    2007-08-07

    At early developmental stages, correlated neuronal activity is thought to exert a critical control on functional and structural refinement of synaptic connections. In the hippocampus, between postnatal day 2 (P2) and P6, network-driven giant depolarizing potentials (GDPs) are generated by the synergistic action of glutamate and GABA, which is depolarizing and excitatory. Here the rising phase of GDPs was used to trigger Schaffer collateral stimulation in such a way that synchronized network activity was coincident with presynaptic activation of afferent input. This procedure produced a persistent increase in spontaneous and evoked alpha-amino-3-hydroxy-5-methyl-4-isoxadepropionic acid-mediated glutamatergic currents, an effect that required calcium influx through postsynaptic L-type calcium channels. No potentiation was observed when a delay of 3 sec was introduced between GDPs and afferent stimulation. Pairing-induced potentiation was prevented by scavengers of endogenous BDNF or tropomyosin-related kinase receptor B (TrkB) receptor antagonists. Blocking TrkB receptors in the postsynaptic cell did not prevent the effects of pairing, suggesting that BDNF, possibly secreted from the postsynaptic cell during GDPs, acts on TrkB receptors localized on presynaptic neurons. Application of exogenous BDNF mimicked the effects of pairing on synaptic transmission. In addition, pairing-induced synaptic potentiation was blocked by ERK inhibitors, suggesting that BDNF activates the MAPK/ERK cascade, which may lead to transcriptional regulation and new protein synthesis in the postsynaptic neuron. These results support the hypothesis that, during a critical period of postnatal development, GABAA-mediated GDPs are instrumental in tuning excitatory synaptic connections and provide insights into the molecular mechanisms involved in this process.

  17. Influence of Slow Oscillation on Hippocampal Activity and Ripples Through Cortico-Hippocampal Synaptic Interactions, Analyzed by a Cortical-CA3-CA1 Network Model

    Directory of Open Access Journals (Sweden)

    Jiannis eTaxidis

    2013-02-01

    Full Text Available Hippocampal sharp wave-ripple complexes (SWRs involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway. The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.

  18. Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3-CA1 synapses

    Science.gov (United States)

    Shahab, Lion; Plattner, Florian; Irvine, Elaine E; Cummings, Damian M; Edwards, Frances A

    2014-01-01

    Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3β rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long-term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3β that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long-term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:25208523

  19. Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse

    Directory of Open Access Journals (Sweden)

    Mauricio O. Nava-Mesa

    2013-07-01

    Full Text Available Last evidences suggest that, in Alzheimer's disease (AD early stage, Amyloid-β (Aβ peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of Aβ on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP followed by both early and late inhibitory potentials (IPSP was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. Aβ perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. Aβ action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK channels, mimicked all Aβ effects previously described. Thus, our findings suggest that Aβ altering GirK channels conductance in CA3 pyramidal neurons might have a key role in the septohippocampal activity dysfunction observed in AD.

  20. The effects of NR2 subunit-dependent NMDA receptor kinetics on synaptic transmission and CaMKII activation.

    Directory of Open Access Journals (Sweden)

    David M Santucci

    2008-10-01

    Full Text Available N-Methyl-D-aspartic acid (NMDA receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future

  1. Effects and wavelet spectral entropy analysis of rhubarb extracts rhein on synaptic transmission in rat hippocampal ca1 area in vitro

    Institute of Scientific and Technical Information of China (English)

    GU Jian-wen; ZHENG Chong-xun; ZHANG Ai-hua; Hiroshi Hasuo; Takashi Akasu; YANG Wen-tao; YANG li-bin; XIA Xun; MA Yuan

    2005-01-01

    Background 5-dihydroxyanthraquinone-2-carboxylic acid (rhein) inhibits oxidoreduction induced by reducing nicotingamide adenine dinucleotide in the mitochondria and reducing reactive oxygen species, it also suppresses lipid peroxidation in rat brain homogenates. This study was to assess the effects of anthraquinone derivatives, rhein on synaptic transmission in the rat hippocampal CA1 pyramidal cell layer by intracellular recording.Methods The excitatory postsynaptic potential (EPSP) evoked by stimulation of the Schaffer collaterals in the presence of bicuculline (15 μmol/L) was depressed by application of rhein (0.3-30 μmol/L). The amplitude of the EPSP was restored within 20 minutes after removal of rhein from the supernatant. At a concentration of 30 μmol/L, rhein reduced the amplitude of the EPSP to 42%±3.7% (n=24) of the control. Subsequently, wavelet spectral entropy was used to analyze the EPSP. Results A strong positive correlation was observed between the wavelet spectral entropy and other parameters such as amplitude, slope of rising phase and slope of descending phase of the EPSP. The paired-pulse facilitation (PPF) of the EPSP was significantly increased by rhein (30 μmol/L). The inhibitory postsynaptic potential (IPSP) recorded in the presence of CNQX (20 μmol/L) and APV (40 μmol/L) is not altered by rhein (30 μmol/L). Conclusions Rhein (30 μmol/L) can decrease the frequency but not the amplitude of the miniature EPSP (mEPSP). It is suggested that rhein inhibits excitatory synaptic transmission by decreasing the release of glutamate in rat hippocampal CA1 pyramidal neurons.

  2. Elevated potassium elicits recurrent surges of large GABAA-receptor-mediated post-synaptic currents in hippocampal CA3 pyramidal neurons.

    Science.gov (United States)

    Shin, Damian Seung-Ho; Yu, Wilson; Sutton, Alex; Calos, Megan; Carlen, Peter Louis

    2011-03-01

    Previously, we found that rat hippocampal CA3 interneurons become hyperactive with increasing concentrations of extracellular K(+) up to 10 mM. However, it is unclear how this enhanced interneuronal activity affects pyramidal neurons. Here we voltage-clamped rat hippocampal CA3 pyramidal neurons in vitro at 0 mV to isolate γ-aminobutyric acid (GABA)-activated inhibitory post-synaptic currents (IPSCs) and measured these in artificial cerebrospinal fluid (aCSF) and with 10 mM K(+) bath perfusion. In aCSF, small IPSCs were present with amplitudes of 0.053 ± 0.007 nA and a frequency of 0.27 ± 0.14 Hz. With 10 mM K(+) perfusion, IPSCs increased greatly in frequency and amplitude, culminating in surge events with peak amplitudes of 0.56 ± 0.08 nA, that appeared and disappeared cyclically with durations lasting 2.02 ± 0.37 min repeatedly, up to 10 times over a 30-min bath perfusion of elevated K(+). These large IPSCs were GABA(A)-receptor mediated and did not involve significant desensitization of this receptor. Perfusion of a GABA transporter inhibitor (NO-711), glutamate receptor inhibitors CNQX and APV, or a gap junctional blocker (carbenoxolone) prevented the resurgence of large IPSCs. Pressure ejected sucrose resulted in the abolishment of subsequent surges. No elevated K(+)-mediated surges were observed in CA3 interneurons from the stratum oriens layer. In conclusion, these cyclic large IPSC events observable in CA3 pyramidal neurons in 10 mM KCl may be due to transient GABA depletion from continuously active interneuronal afferents.

  3. [The effects of Mexidol on food conditioning and synaptic fine structure of hippocampal field CA1 in rats exposed to a single acoustic stimulation with ultrasonic components].

    Science.gov (United States)

    Alekseeva, T G; Loseva, E V; Mering, T A

    2004-01-01

    The effect of exposure of rats to a complex acoustic signal with ultrasonic components on line structure of synapses of the CA1 field of the hippocampus was studied during a course treatment (two weeks) with broad-spectrum antioxidant Mexidol. Under the same conditions, the time course of food conditioning by a conditioned tone stimulus and acquisition of trace conditioned reflex (time interval counting) were studied in the same rat group. Rats non-exposed to stress against the background of Mexidol and without Mexidol treatment served as control. Analysis of fine structure of the vesicle redistribution in CA1 synapses revealed a reduction of the efficacy of synaptic transmission a day after the exposure to the complex acoustic stimulus. We found a negative effect of the complex acoustic stimulus on conditioning by tone and acquisition of time-counting trace reflex by rats. This effect was shown to be normalized by the course Mexidol treatment. The results suggests the expediency of Mexidol application for prevention of cognitive disorders, which are frequent under stress-inducing conditions.

  4. Presynaptic calcium stores contribute to nicotine-elicited potentiation of evoked synaptic transmission at CA3-CA1 connections in the neonatal rat hippocampus.

    Science.gov (United States)

    Le Magueresse, Corentin; Cherubini, Enrico

    2007-01-01

    Nicotine acetylcholine (ACh) receptors (nAChRs) are ligand-gated ion channels that are widely expressed throughout the central nervous system. It is well established that presynaptic, alpha7-containing nAChRs modulate glutamate release in several brain areas, and that this modulation requires extracellular calcium. However, the intracellular mechanisms consecutive to nAChR opening are unclear. Recent studies have suggested a role for presynaptic calcium stores in the increase of neurotransmitter release following nAChR activation. Using the minimal stimulation protocol at low-probability Schaffer collateral synapses in acute hippocampal slices from neonatal rats, we show that nicotine acting on presynaptic alpha7 nAChRs persistently upregulates glutamate release. We tested the role of calcium stores in this potentiation. First, we examined the relationship between calcium stores and glutamate release. We found that bath application of SERCA pump inhibitors (cyclopiazonic acid and thapsigargin), as well as an agonist of ryanodine receptors (ryanodine 2 microM) increases the probability of glutamate release at CA3-CA1 synapses, decreases the coefficient of variation and the paired-pulse ratio, indicating that presynaptic activation of calcium-induced calcium release can modulate glutamatergic transmission. Next, we investigated whether blocking calcium release from internal stores could alter the effect of nicotine. Preincubation with thapsigargin (10 microM), cyclopiazonic acid (30 microM), or with a high (blocking) concentration of ryanodine (100 microM) for 30 min to 5 h failed to block the effect of nicotine. However, after preincubation in ryanodine, nicotine-elicited potentiation was significantly shortened. These results indicate that at immature Schaffer collateral-CA1 synapses, activation of presynaptic calcium stores is not necessary for but contributes to nicotine-elicited increase of neurotransmitter release.

  5. Streptozotocin Inhibits Electrophysiological Determinants of Excitatory and Inhibitory Synaptic Transmission in CA1 Pyramidal Neurons of Rat Hippocampal Slices: Reduction of These Effects by Edaravone

    Directory of Open Access Journals (Sweden)

    Ting Ju

    2016-12-01

    Full Text Available Background: Streptozotocin (STZ has served as an agent to generate an Alzheimer's disease (AD model in rats, while edaravone (EDA, a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs, AMPAR-mediated eEPSCs (eEPSCsAMPA, evoked inhibitory postsynaptic currents (eIPSCs, evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR, it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.

  6. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    Science.gov (United States)

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  7. Inhibition of a slow synaptic response by a metabotropic glutamate receptor antagonist in hippocampal CA3 pyramidal cells.

    Science.gov (United States)

    Gerber, U; Lüthi, A; Gähwiler, B H

    1993-11-22

    The effects of a novel antagonist of metabotropic glutamate receptors were investigated in CA3 pyramidal cells in hippocampal slice cultures of the rat. Earlier experiments showed that selective activation of metabotropic glutamate receptors with low concentrations of an agonist, 1S, 3R-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD), induced an inward current associated with a decrease in membrane conductance and inhibition of the slow calcium-dependent potassium current. These responses were strongly and reversibly reduced by the antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 0.5-1 mM). In the presence of antagonists of ionotropic glutamate receptors, stimulation of the afferent mossy fibres evoked postsynaptic responses in CA3 pyramidal cells which paralleled those observed with exogenously applied metabotropic glutamate receptor agonists, i.e. a slow inward current and a reduction of calcium-dependent potassium current. Both responses were greatly reduced by bath-applied MCPG (1 mM). These results show that MCPG acts as an effective antagonist at metabotropic glutamate receptors coupled to potassium conductances in the hippocampus. Furthermore, they confirm that glutamate release from presynaptic terminals can modulate postsynaptic properties by activation of metabotropic glutamate receptors.

  8. Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus.

    Science.gov (United States)

    Szabó, Gergely G; Holderith, Noémi; Gulyás, Attila I; Freund, Tamás F; Hájos, Norbert

    2010-06-01

    Perisomatic inhibition originates from three types of GABAergic interneurons in cortical structures, including parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as cholecystokinin-expressing regular-spiking basket cells (RSBCs). These interneurons may have significant impact in various cognitive processes, and are subjects of cholinergic modulation. However, it is largely unknown how cholinergic receptor activation modulates the function of perisomatic inhibitory cells. Therefore, we performed paired recordings from anatomically identified perisomatic interneurons and pyramidal cells in the CA3 region of the mouse hippocampus. We determined the basic properties of unitary inhibitory postsynaptic currents (uIPSCs) and found that they differed among cell types, e.g. GABA released from axon endings of AACs evoked uIPSCs with the largest amplitude and with the longest decay measured at room temperature. RSBCs could also release GABA asynchronously, the magnitude of the release increasing with the discharge frequency of the presynaptic interneuron. Cholinergic receptor activation by carbachol significantly decreased the uIPSC amplitude in all three types of cell pairs, but to different extents. M2-type muscarinic receptors were responsible for the reduction in uIPSC amplitudes in FSBC- and AAC-pyramidal cell pairs, while an antagonist of CB(1) cannabinoid receptors recovered the suppression in RSBC-pyramidal cell pairs. In addition, carbachol suppressed or even eliminated the short-term depression of uIPSCs in FSBC- and AAC-pyramidal cell pairs in a frequency-dependent manner. These findings suggest that not only are the basic synaptic properties of perisomatic inhibitory cells distinct, but acetylcholine can differentially control the impact of perisomatic inhibition from different sources.

  9. Synaptic conditions for auto-associative memory storage and pattern completion in Jensen et al.'s model of hippocampal area CA3.

    Science.gov (United States)

    Cheu, Eng Yeow; Yu, Jiali; Tan, Chin Hiong; Tang, Huajin

    2012-12-01

    Jensen et al. (Learn Memory 3(2-3):243-256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.

  10. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    OpenAIRE

    Dennis, Siobhan; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensi...

  11. Oxygen/glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and A3 Receptors

    OpenAIRE

    Dennis, Siobhan H.; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighbouring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+ resulting in delayed cell death. However, it is unclear if the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivit...

  12. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  13. Spontaneous vesicle recycling in the synaptic bouton.

    Science.gov (United States)

    Truckenbrodt, Sven; Rizzoli, Silvio O

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca(2+), which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca(2+) levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca(2+) sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca(2+). The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca(2+) fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  14. Voluntary Running Depreciates the Requirement of Ca[superscript 2+]-Stimulated cAMP Signaling in Synaptic Potentiation and Memory Formation

    Science.gov (United States)

    Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung; Wang, Hongbing

    2016-01-01

    Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term…

  15. Long Term Depression in the CA1 field is associated with a transient decrease in Pre-and Post-synaptic PKC substrate phosphorylation

    NARCIS (Netherlands)

    Gispen, W.H.; Ramakers, G.J.A.; Heinen, K.; Graan, P.N.E. de

    2000-01-01

    Induction of homosynaptic long term depression (LTD) in the CA1 field of the hippocampus is thought to require activation of N-methyl-D-aspartate receptors, an elevation of postsynaptic Ca2+ levels, and a subsequent increase in phosphatase activity. To investigate the spatial and temporal changes in

  16. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  17. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons.

    Science.gov (United States)

    Sharma, Mahima; Razali, Nuralyah Bte; Sajikumar, Sreedharan

    2016-06-01

    Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.

  18. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons.

    Science.gov (United States)

    Epsztein, Jérôme; Milh, Mathieu; Bihi, Rachid Id; Jorquera, Isabel; Ben-Ari, Yehezkel; Represa, Alfonso; Crépel, Valérie

    2006-06-28

    Ischemic strokes are often associated with late-onset epilepsy, but the underlying mechanisms are poorly understood. In the hippocampus, which is one of the regions most sensitive to ischemic challenge, global ischemia induces a complete loss of CA1 pyramidal neurons, whereas the resistant CA3 pyramidal neurons display a long-term hyperexcitability several months after the insult. The mechanisms of this long-term hyperexcitability remain unknown despite its clinical implication. Using chronic in vivo EEG recordings and in vitro field recordings in slices, we now report spontaneous interictal epileptiform discharges in the CA3 area of the hippocampus from post-ischemic rats several months after the insult. Whole-cell recordings from CA3 pyramidal neurons, revealed a permanent reduction in the frequency of spontaneous and miniature GABAergic IPSCs and a parallel increase in the frequency of spontaneous and miniature glutamatergic postsynaptic currents. Global ischemia also induced a dramatic loss of GABAergic interneurons and terminals together with an increase in glutamatergic terminals in the CA3 area of the hippocampus. Altogether, our results show a morpho-functional reorganization in the CA3 network several months after global ischemia, resulting in a net shift in the excitatory-inhibitory balance toward excitation that may constitute a substrate for the generation of epileptiform discharges in the post-ischemic hippocampus.

  19. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2010-10-06

    Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter release at CA3-CA1 synapses. This synaptic potentiation is due to CB1R-induced Ca(2+) elevations in astrocytes, which stimulate the release of glutamate that activates presynaptic metabotropic glutamate receptors. While endocannabinoids induce synaptic depression in the stimulated neuron by direct activation of presynaptic CB1Rs, they indirectly lead to synaptic potentiation in relatively more distant neurons by activation of CB1Rs in astrocytes. Hence, astrocyte calcium signal evoked by endogenous stimuli (neuron-released endocannabinoids) modulates synaptic transmission. Therefore, astrocytes respond to endocannabinoids that then potentiate synaptic transmission, indicating that astrocytes are actively involved in brain physiology.

  20. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells

    OpenAIRE

    Yu LIU; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-01-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca2+ and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the durati...

  1. Acute Biphasic Effects of Ayahuasca.

    Directory of Open Access Journals (Sweden)

    Eduardo Ekman Schenberg

    Full Text Available Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT, harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  2. Acute Biphasic Effects of Ayahuasca

    Science.gov (United States)

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D.; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A.; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  3. Acute Biphasic Effects of Ayahuasca.

    Science.gov (United States)

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  4. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus.

    Science.gov (United States)

    Whitehead, Garry; Jo, Jihoon; Hogg, Ellen L; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L; Kim, Kyungjin; Whitcomb, Daniel J; Collingridge, Graham L; Lightman, Stafford L; Cho, Kwangwook

    2013-12-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+ -permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.

  5. 丰富环境对快速老化小鼠海马CA1区突触可塑性的影响%Effects of enriched environment on synaptic plasticity in hippocampal CA1 region in senescence accelerated mouse

    Institute of Scientific and Technical Information of China (English)

    李建忠; 郝兴华; 崔慧先; 刘学敏; 武志兵; 李明; 吴海平; 李富德

    2015-01-01

    Objective To explore the effects of enriched environment on synaptic plasticity in hippocampal CA1 region in senescence accelerated mouse.Methods Both twenty-four five-month-old healthy male SAMP8 and twenty-four five-month-old healthy male SAMR1 were randomly divided into enriched environment(EE) group and standard environment(SE) group(12 mice in each group).Mice in the 2 groups were subjected to the two different environments for 60 days.The apical dendritic thorns density in hippocampal CA1 region was measured by Golgi staining.The expression of synaptophysin in hippocampal CA1 was determined by immunohistochemical staining and image analysis system.The synaptic number density(Nv) and surface density(Sv) in hippocampal CA1 region were observed and analyzed by transmission electron microscope,stereology and image analysis system.Results For SAMP8 in EE group,the density of dendritic spines in hippocampal CA1 region was (1.223±0.062)/ μm,the average absorbance of synaptophysin was (0.111±0.021) and the parameters of Nv and Sv were (3.742± 0.052)/lμm3 and (0.151±0.018) μm2/μm3.For SAMP8 in SE group,the density of dendritic spines in hippocampal CA1 region was (1.142±0.070)/μm,the average absorbance of synaptophysin was (0.091 ±0.022) and the parameters of Nv and Sv were (3.626±0.049)/μm3 and (0.124±0.018)μm2/μm3.For all indicators,there was a significant difference between two groups (P<0.01).There was statistically significant difference in all indicators between SAMR1 in EE group and SAMR1 in SE group(P<0.05).Conclusion Enriched environment can adjust synaptic plasticity in hippocampal CA1 neurons,significantly increase the density of dendritic spines,the expression of synaptophysin,synaptic number density and surface density,which may be the mechanism of enriched environment improving the learning and memory ability in mice with dementia.%目的 探讨丰富环境对快速老化小鼠海马CA1区突触可塑性的影响.方法 选用5

  6. Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices.

    Science.gov (United States)

    Clarke, V R J; Collingridge, G L

    2004-09-01

    Kainate receptors are implicated in a variety of physiological and pathological processes in the CNS. Previously we demonstrated that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA), a selective agonist for the GLU(K5) subtype of kainate receptor, depresses monosynaptically evoked inhibitory postsynaptic potentials (IPSPs) in the CA1 region of the rat hippocampus. In the current study, we provide a more detailed characterisation of this effect. Firstly, our data demonstrate a rank order of potency of domoate>kainate>ATPA>alpha-amino-3-(3-hydroxy-5-methyl-4-isoxalolyl)propionic acid Secondly, we confirm that the effects of ATPA are not mediated indirectly via the activation of gamma-aminobutyric acid receptors (i.e. either GABA(A) or GABA(B)). Thirdly, we show that the small increase in conductance induced by ATPA is insufficient to account for the depression of monosynaptic inhibition. Fourthly, we show that the effects of ATPA on IPSPs are antagonised by the GLU(K5)-selective antagonist (3S, 4aR, 6S, 8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY382884). However, LY382884 is less potent as an antagonist of the effects of ATPA on IPSPs compared to its depressant effect on EPSPs.

  7. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region.

    Science.gov (United States)

    Morton, Russell A; Valenzuela, C Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders.

  8. Synaptic vesicle endocytosis.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-09-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.

  9. Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements.

    Science.gov (United States)

    Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J

    2014-04-01

    Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca(2+) release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media.

  10. Simulation by two calcium store models of myocardial dynamic properties: potentiation, staircase, and biphasic tension development.

    Science.gov (United States)

    Wussling, M; Szymanski, G

    1986-04-01

    Most considerations and models concerning myocardial dynamic properties e.g. potentiation and staircase, are based upon the existence of storage structures in the heart muscle cell. The phenomenon of biphasic tension development (or two-component contraction) in heart muscle preparations of several mammalian species suggests that the sarcoplasmic reticulum is one, but by no means the major, source of activator calcium for the contractile system. The simulation of dynamic properties including biphasic tension development was performed in two steps by a simple "two-Ca store-model" and by an "expanded two-Ca store-model" with following results: Increasing potentiation indicated a decrease in the degree of coupling between the Ca stores. A shift of the interval strength curve to lower intervals as well as a decrease of the steady state contraction height implies a decrease of both, the coupling and the leakage time constant. There was no standard relation between staircase phenomena and structure parameters. Analog displays showed a late (or second) component at prolongated stimulation intervals, in the transient phase after a rest period, in the case of perfectly coupled or uncoupled stores, and at great time constant tau p (which characterizes the calcium pump activity). It is concluded that the late component of biphasic tension development is due to direct activation by the transsarcolemmal Ca flux of the myofilaments, whereas the early component is caused by the release of stored calcium. In the absence of an early component neither potentiation nor marked treppe may be expected.

  11. 消退训练对大鼠条件性恐惧行为及海马CA1区突触超微结构的影响%Effects of extinction training on conditioned fear behaviour and synaptic structure in hippocampal CA1 area in fear conditioned rats

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 李培培; 李敏; 韦美; 彭李

    2012-01-01

    Objective To determine the effect of fear extinction training on the behaviours and the ultrastructure of hippocampal CA1 area in fear conditioned rats. Methods Forty male adult SD rats were randomly divided into native group (re =8), extinction control group (re = 16) and extinction group (re = 16). In 24 h after fear condition was established by reference instruction in the later 2 groups, extinction training was carried out in the extinction group and extinction retention test was performed in 7 and 21 d after fear extinction. The test was performed in 8 and 22 d in extinction control group. The changes of synaptic structure in CA1 of hippocampus were observed at 7 and 21 d after fear extinction. Results Compared with the extinction control group, the scores of extinction retention was significantly increased (P<0.01) at 7 and 21 d after extinction in the extinction group. There was no significant difference between extinction group and native group at 7 and 21 d. At 7 d after extinction training, the synaptic density was significantly higher in extinction group than that in the extinction control group (P <0.05 ) , and there was no difference among groups at 21 d. Compared with native group, the width of synaptic gap was significantly lower at 7 and 21 d after extinction training in extinction group ( P <0.01, 0. 05 ). At 21 d, the width of synaptic gap was significantly lower in the extinction group than that in the control group (P <0. 05). But there was no significant difference between the extinction control group and native group at 7 and 21 d after extinction. Compared with native group, at 7 and 21 d after extinction training, postsynaptic density (PSD) was significantly thicker in extinction group (P<0.01). And at 21 d, the density was significantly thicker in extinction group than that in the extinction control group (P < 0.05 ). There was no significant difference among the groups in active zone length. Conclusion Fear extinction training changes

  12. 尼氟酸抑制慢性内脏痛大鼠海马CA1区突触长时程增强%Inhibition of niflumic acid on synaptic long-term potentiation in hippocampus CA1 region in rats with chronic visceral pain

    Institute of Scientific and Technical Information of China (English)

    祝福存; 陈瑜; 林春; 蔡琴燕; 陈爱琴

    2012-01-01

    Objective: To investigate the effect of niflumic acid ( NFA, the specific HCN2 bloker) on synaptic long term potentiation (LTP) in the hippocampus CA1 region in rats with chronic visceral pain. Methods; Model rats with chronic visceral pain received 60 mmHg colon stimulation (CI) once daily during post neonatal days 8 - 14. The amplitude of external oblique muscle of abdomen ( EOMA) discharge were tested to assess the visceral sensitivity of rats when they were adult. The field potential LTP was observed in control and model rats by the recording of field potential in hippocampal CA1 region in vitro. And the effect of NFA (25 -75 mg/L) in different doses on the LTP in hippocampus CA1 region slices were observed in model rats. Results: Compared with control rats, no significant difference was found between the amplitude or slope of the basal synaptic responses in hippocampus slices of the model rats and those of the control rats. However, the amplitude and slope of the field potential LTP that high-frequency stimulation (HFS) induced in model rats were significantly higher than those of the control rats ( P < 0.05 ). NFA had no effects on the amplitude and slope of the field potential LTP in hippocampus of the control rats. However, in model rat, the amplitude and slope of the field potential LTP in hippocampus were all dose-dependently decreased by NFA (25-75 mg/L). Conclusion.- HCN2 channel might be involved in the facilitation of LTP in hippocampus of chronic visceral pain.%目的:探讨尼氟酸(HCN2特异性阻断剂)对慢性内脏痛大鼠海马CA1(cornu ammonis 1)区突触长时程增强(LTP)的影响.方法:选用新生SD大鼠(雌雄不分)出生后8~14 d内,每天固定时间给予1次60 mmHg压力的结直肠扩张刺激建立慢性内脏痛模型,大鼠成年后通过测量腹外斜肌对结直肠扩张引起的放电反应来评估肠道痛觉的敏感性.采用离体脑片场电位的记录方法,观察慢性内脏痛大鼠海马CA1区场电位LTP

  13. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus.

    Science.gov (United States)

    Mitsushima, Dai; Ishihara, Kouji; Sano, Akane; Kessels, Helmut W; Takahashi, Takuya

    2011-07-26

    The hippocampus plays a central role in learning and memory. Although synaptic delivery of AMPA-type glutamate receptors (AMPARs) contributes to experience-dependent synaptic strengthening, its role in hippocampus-dependent learning remains elusive. By combining viral-mediated in vivo gene delivery with in vitro patch-clamp recordings, we found that the inhibitory avoidance task, a hippocampus-dependent contextual fear-learning paradigm, delivered GluR1-containing AMPARs into CA3-CA1 synapses of the dorsal hippocampus. To block the synaptic delivery of endogenous AMPARs, we expressed a fragment of the GluR1-cytoplasmic tail (the 14-aa GluR1 membrane-proximal region with two serines mutated to phospho-mimicking aspartates: MPR-DD). MPR-DD prevented learning-driven synaptic AMPAR delivery in CA1 neurons. Bilateral expression of MPR-DD in the CA1 region of the rat impaired inhibitory avoidance learning, indicating that synaptic GluR1 trafficking in the CA1 region of the hippocampus is required for encoding contextual fear memories. The fraction of CA1 neurons that underwent synaptic strengthening positively correlated with the performance in the inhibitory avoidance fear memory task. These data suggest that the robustness of a contextual memory depends on the number of hippocampal neurons that participate in the encoding of a memory trace.

  14. 基于类Hopfield脉冲神经网络模型由突触缺失导致海马CA3区联想记忆功能障碍的建模仿真研究%Modeling and simulating study on disorder of associative memory function of hippocampal CA3 region caused by synaptic deletion based on Hopfield-like spiking neural network model

    Institute of Scientific and Technical Information of China (English)

    赵旺兄; 乔清理; 王丹

    2010-01-01

    目的 建立1个类Hopfield脉冲神经网络模型,仿真海马中突触缺失导致的其联想记忆功能障碍.方法 根据海马CA3区的解剖结构,建立1个具有自联想记忆功能和异联想记忆功能的3层类Hopfield脉冲神经网络模型,并用Matlab对网络的2种联想记忆功能进行仿真,并根据Ruppin的‘突触缺失'理论,仿真了由突触缺失导致的CA3区联想记忆功能障碍.结果 随着突触缺失水平的增加,网络的2种联想记忆能力均下降.结论 海马CA3区神经元突触缺失不仅导致其自联想记忆能力下降,也会导致其异联想记忆能力下降.%Objective A spiking Hopfield-like neural network was proposed and used to simulate the disorder of hippocampal associative memory disorder caused by synaptic deletion.Methods A three-layered Hopfield-like spiking neural network model with auto-associative memory function and hetero-associative memory function was proposed according to anatomical structure of hippocampal CA3,and both associative memories of the models were simulated under Matlab platform.Disorder of hippocampal associative memory was also simulated according to Ruppin's 'synaptic deletion' theory.Results With the increasing of synaptic deletion level,both associative memory functions impaired gradually.Conclusion Synaptic deletion of hippocampal CA3 region can lead to the disorder of autoassociative memory as well as heteroassociative memory.

  15. Regulation of NMDA-receptor synaptic transmission by Wnt signaling

    Science.gov (United States)

    Cerpa, Waldo; Gambrill, Abigail; Inestrosa, Nibaldo C.; Barria, Andres

    2011-01-01

    Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections is not known. We found that Wnt-5a acutely and specifically up-regulates synaptic NMDAR currents in rat hippocampal slices facilitating induction of LTP, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca2+ and activation of non-canonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism. PMID:21715611

  16. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2015-05-01

    Full Text Available Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS followed by a rebound during rapid-eye-movement sleep (REM. The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes

  17. Effect of different Intensity Exercises in Treadmill on Learning and Memory and The Synaptic Ultrastructure in Hippocampal CA3 Area in Rats%不同强度跑台运动对大鼠学习记忆能力及海马CA3区突触超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    龚云

    2012-01-01

    Effect of the different intensity treadmill exercise on learning and memory ability and hippocampal CA3 area ultrastructure was studied in rats.40 SD rats were randomly divided into four groups(control group,low-intensity exercise group,medium-intensity exercise group and high-intensity exercise group),after 60d exercise according to their respective intensity,through the one-trial passive avoidance response,the time to step-through lateney(STL) of rats was measured in every exercise group.Then 5 rats were chosen from every group,through normal ultrathin section made method,hippocampal CA3 area was observed under JEM-1230EX transmission electron microscope and photographed.The results showed that: 24 hours of STL period after electrical shock was significantly longer(P0.05) in low-intensity exercise group rats,and the hippocampal CA3 area postsynaptic density material became significantly thicker(P0.01).The curved type of synaptic interface could be divided into positively curved,negatively curved and flat,the flat type was the main.As a result,low-intensity exercise can increase memory capacity,and make the neuron synapse occurring plastic changes in the hippocampal CA3 area.The thickness of postsynaptic density material came into being a positive correlation with the strength of memory.%探讨不同强度跑台运动对大鼠学习记忆能力及海马CA3区超微结构的影响。40只Wister大鼠随机被分为4组(对照组、低强度运动组、中强度运动组、高强度运动组,各10只),按各自强度运动60 d后,通过一次性被动回避反应实验,逐只测量其步入潜伏期的时间(STL);后每组任选5只大鼠,取右侧海马CA3区按常规方法制作超薄切片,60K倍透射电镜观察并拍照,Motic Images Advanced 3.1软件测量相关突触界面结构。结果表明:低强度运动组大鼠,电击后24 h步入潜伏期的时间显著延长(P〈0.05),海马CA3区突触后膜致密

  18. Metal separations using aqueous biphasic partitioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  19. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    Directory of Open Access Journals (Sweden)

    Rozan Vroman

    2014-05-01

    Full Text Available Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms, highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form

  20. Basic mechanisms for recognition and transport of synaptic cargos

    Directory of Open Access Journals (Sweden)

    Schlager Max A

    2009-08-01

    Full Text Available Abstract Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways – Ca2+ influx, CaMKII signaling and Rab GTPase activity – regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity.

  1. 吗啡依赖大鼠海马CA1区突触界面结构变化的易感性差异%The different susceptibility of the changes in synaptic interface structural in hippocampal CA1 area of morphine dependent rats

    Institute of Scientific and Technical Information of China (English)

    张清清; 叶敏捷; 王瑛; 张瑞岭; 谌红献

    2010-01-01

    目的 通过研究高、低吗啡条件性位置偏爱(conditioned place preference,CPP)大鼠海马CA1区突触界面结构参数的变化,为吗啡依赖易感性差异提供形态学依据.方法 将雄性SD大鼠随机分为实验组(130只)和生理盐水对照组(30只).实验组按剂量递增法腹腔注射吗啡建立吗啡依赖模型.分别对2组大鼠进行CPP训练和测评,根据测评值将实验组大鼠再次分为高、中、低偏爱组,中偏爱组淘汰.于末次吗啡注射后3h、戒断后3d和14d将高、低偏爱组和对照组各选取8只大鼠处死,取海马CAI区按照标准程序制成电镜样本,电镜观察摄像,图像分析软件分析测量突触界面结构参数.结果 ①预测试时3组大鼠CPP值之间的差异无显著性(F=0.78,P=0.47);处理因素终止后3h、3d、14d 3组大鼠CPP值差异有极显著性(P<0.01);两两比较显示高偏爱组CPP值高于低偏爱组,差异有极显著性(P<0.01).②在3h和3d时,3组大鼠PSD厚度(突触后致密物质厚度)、突触间隙宽度差异有极显著性(P=0.01~0.03),并且高偏爱组的PSD厚度[(15.20±3.65)nm]小于低偏爱组[(17.63±6.61)nm],差异具有显著性(P<0.05);高偏爱组间隙宽度[(5.77±2.08)nm]大于低偏爱组[(4.92±1.65)nm],差异具有显著性(P<0.05);在14d时,3组大鼠PSD厚度差异有极显著性(P=0.00),并且高偏爱组的PSD厚度[(16.22±4.93)nm]小于低偏爱组[(18.42±3.78)nm],差异具有显著性(P<0.01).结论 高偏爱组大鼠海马CA1区突触间隙宽度的测量值大于低偏爱组,PSD厚度的测量值小于低偏爱组,上述变化可能是吗啡依赖易感性差异的突触界面结构基础.%Objective To investigate changes of synaptic interface structural in the hippocampus Cal in high and low conditioned place preference(CPP) rats after chronic morphine treatment.Methods The male SD rats were randomly distributed to experiment group 130 cases(intraperitoneal injected morphine twice a day for ten days in an

  2. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  3. The roles of STP and LTP in synaptic encoding

    Directory of Open Access Journals (Sweden)

    Arturas Volianskis

    2013-02-01

    Full Text Available Long-term potentiation (LTP, a cellular model of learning and memory, is generally regarded as a unitary phenomenon that alters the strength of synaptic transmission by increasing the postsynaptic response to the release of a quantum of neurotransmitter. LTP, at CA3-CA1 synapses in the hippocampus, contains a stimulation-labile phase of short-term potentiation (STP, or transient LTP, t-LTP that decays into stable LTP. By studying the responses of populations of neurons to brief bursts of high-frequency afferent stimulation before and after the induction of LTP, we found that synaptic responses during bursts are potentiated equally during LTP but not during STP. We show that STP modulates the frequency response of synaptic transmission whereas LTP preserves the fidelity. Thus, STP and LTP have different functional consequences for the transfer of synaptic information.

  4. Achieving High-Frequency Optical Control of Synaptic Transmission

    Science.gov (United States)

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  5. Calcium as a trigger for cerebellar long-term synaptic depression.

    Science.gov (United States)

    Finch, Elizabeth A; Tanaka, Keiko; Augustine, George J

    2012-09-01

    Cerebellar long-term depression (LTD) is a form of long-term synaptic plasticity that is triggered by calcium(Ca2+) signals in the postsynaptic Purkinje cell. This Ca2+comes both from IP3-mediated release from intracellular Ca2+ stores, as well as from Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ signal that triggers LTD occurs locally within dendritic spines and is due to supralinear summation of signals coming from these two Ca2+ sources. The properties of this postsynaptic Ca2+signal can explain several features of LTD, such as its associativity, synapse specificity, and dependence on thetiming of synaptic activity, and can account for the slow kinetics of LTD expression. Thus, from a Ca2+ signaling perspective, LTD is one of the best understood forms of synaptic plasticity.

  6. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  7. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    Science.gov (United States)

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  8. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  9. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

    Science.gov (United States)

    Lu, Wei; Bushong, Eric A; Shih, Tiffany P; Ellisman, Mark H; Nicoll, Roger A

    2013-05-08

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.

  10. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    Energy Technology Data Exchange (ETDEWEB)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  11. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    Science.gov (United States)

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  12. Calcium channels, neuromuscular synaptic transmission and neurological diseases.

    Science.gov (United States)

    Urbano, Francisco J; Pagani, Mario R; Uchitel, Osvaldo D

    2008-09-15

    Voltage-dependent calcium channels are essential in neuronal signaling and synaptic transmission, and their functional alterations underlie numerous human disorders whether monogenic (e.g., ataxia, migraine, etc.) or autoimmune. We review recent work on Ca(V)2.1 or P/Q channelopathies, mostly using neuromuscular junction preparations, and focus specially on the functional hierarchy among the calcium channels recruited to mediate neurotransmitter release when Ca(V)2.1 channels are mutated or depleted. In either case, synaptic transmission is greatly compromised; evidently, none of the reported functional replacements with other calcium channels compensates fully.

  13. Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy.

    Directory of Open Access Journals (Sweden)

    David C Sterratt

    Full Text Available CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called "synaptic democracy". How this is established is unclear. The backpropagating action potential (BAP is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy.

  14. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  15. Bilinearity in spatiotemporal integration of synaptic inputs.

    Directory of Open Access Journals (Sweden)

    Songting Li

    2014-12-01

    Full Text Available Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient [Formula: see text]. The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient [Formula: see text] is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse.

  16. Enduring medial perforant path short-term synaptic depression at high pressure

    Directory of Open Access Journals (Sweden)

    Adolfo E Talpalar

    2010-10-01

    Full Text Available The high pressure neurological syndrome develops during deep diving (> 1.1 MPa involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP, connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca2+ ([Ca2+]o on FDD at the MPP synapses. At atmospheric pressure, high [Ca2+]o (4-6 mM saturated single MPP field EPSP (fEPSP and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa depressed single fEPSPs by 50 %. Increasing [Ca2+]o to 4 mM at HP saturated synaptic response at a subnormal level (only 20 % recovery of single fEPSPs, but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions.

  17. Optogenetics and synaptic plasticity.

    Science.gov (United States)

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  18. Acute encephalopathy with biphasic seizures and late reduced diffusion

    Directory of Open Access Journals (Sweden)

    Saroj S Yadav

    2013-01-01

    Full Text Available Acute encephalopathy with biphasic seizures and reduced diffusion (AESD is a syndrome of encephalopathy characterized by biphasic seizures and altered consciousness in the acute stage followed in the subacute stage by restricted diffusion in the subcortical white matter on magnetic resonance imaging. The etiology of AESD has been attributed to viral infection like influenza A and human herpes virus 6. The exact pathogenesis of AESD is uncertain. Here we report a case of AESD, diagnosed based on clinicoradiological correlation.

  19. Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1

    OpenAIRE

    Zemankovics, Rita; Veres, Judit M.; Oren, Iris; Hájos, Norbert

    2013-01-01

    Gamma frequency (30–80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse ...

  20. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses onto interneurons

    OpenAIRE

    Galván, Emilio J; Cosgrove, Kathleen E.; Barrionuevo, Germán

    2010-01-01

    The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells with inhibitory interneurons has emerged. These data have revealed an i...

  1. 小鼠海马CAl区高频刺激诱发的突触可塑性分析%Analysis of high-frequency stimulation-evoked synaptic plasticity in mouse hippocampal CA1 region

    Institute of Scientific and Technical Information of China (English)

    刘喜娟; 黄汾生; 黄辰; 杨章民; 冯新正

    2008-01-01

    Extracellular recordings of field excitatory postsynaptic potential (fEPSP) is one of the most common ways for studies ofsynaptic plasticity, such as long-term potentiation (LTP) and paired-pulse plasticity (PPP). The measurement of the changes in thedifferent components of fEPSP waveform, such as the initial slope, initial area, peak amplitude and whole area, were commonly usedas criteria for the judgement of potentiation or depression of synaptic plasticity. However, the differences in the conclusions drawnfrom measuring different components of fEPSP waveform at the same recording have still been largely ignored. Here we compared high-frequency stimulation (HFS)-evoked synaptic plasticity, both LTP and PPP, by measuring different components of fEPSP waveform,including the initial slope, initial area, peak amplitude, whole area and time course. The results not only indicated the acceleration of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor kinetics underlies LTP in hippocampal CAI region of mice,but also showed that different measurements of fEPSP waveform at the same recording'result in different magnitudes of LTP anddifferent forms of PPP in hippocampal CAl region of mice. After HFS, the paired-pulse ratio was slightly decreased by measurementof the initial area, but obviously increased by measurement of the initial slope of the pair fEPSPs. These results might draw apparentlycontradictory conclusions. Therefore, careful and complete analysis of the data from different parts of fEPSP waveforms is importantfor reflection of the faithful changes in synaptic plasticity.%通过细胞外记录方法记录场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)的变化是研究突触可塑性,诸如长时程增强(long-term potentiation,LTP)和双脉冲可塑性(paired.pulse plasticity,PPP)的最常见方法之一.fEPSP波形的起始斜率、起始面积、峰值及总面积等的变化常用作判断突触可塑性增强

  2. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  3. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers.

    Science.gov (United States)

    Gómez-Palacio-Schjetnan, Andrea; Escobar, Martha L

    2008-11-07

    Brain-derived neurotrophic factor (BDNF) has been proposed as a key regulator and mediator of long-term synaptic modifications related to learning and memory maintenance. Our previous studies show that application of high-frequency stimulation (HFS) sufficient to elicit LTP at the dentate gyrus (DG)-CA3 pathway produces mossy fiber structural modifications 7 days after tetanic stimulation. In the present study, we show that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the DG-CA3 projection of anesthetized adult rats. Furthermore, we show that BDNF functional modifications in synaptic efficacy are accompanied by a presynaptic structural long-lasting reorganization at the hippocampal mossy fiber pathway. These findings support the idea that BDNF plays an important role as synaptic messenger of activity-dependent synaptic plasticity in the adult mammalian brain, in vivo.

  4. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins.

    Science.gov (United States)

    Jockusch, Wolf J; Speidel, Dina; Sigler, Albrecht; Sørensen, Jakob B; Varoqueaux, Frederique; Rhee, Jeong-Seop; Brose, Nils

    2007-11-16

    Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters.

  5. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    Science.gov (United States)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  6. Synaptic impairment induced by paroxysmal ionic conditions in neocortex

    Science.gov (United States)

    Seigneur, Josée; Timofeev, Igor

    2011-01-01

    Summary Purpose Seizures are associated with a reduction in extracellular Ca2+ concentration ([Ca2+]o) and an increase in extracellular K+ concentration ([K+]o). The long-range synchrony observed between distant electrodes during seizures is weak. We hypothesized that changes in extracellular ionic conditions during seizures are sufficient to alter synaptic neuronal responses and synchrony in the neocortex. Methods We obtained in vivo and in vitro electrophysiologic recordings combined with microstimulation from cat/rat neocortical neurons during seizures and seizure-like ionic conditions. In vitro the [K+]o was 2.8, 6.25, 8.0, and 12 mM and the [Ca2+]o was 1.2 and 0.6 mM. Key Findings During seizures recorded in vivo, we observed abolition of evoked synaptic responses. In vitro, the membrane potential of both regular-spiking and fast-spiking neurons was depolarized in high [K+]o conditions and hyperpolarized in high [Ca2+]o conditions. During high [K+]o conditions, changes in [Ca2+]o did not affect membrane potential. The synaptic responsiveness of both regular-spiking and fast-spiking neurons was reduced during seizure-like ionic conditions. A reduction in [Ca2+]o to 0.6 mM increased failure rates but did not abolish responses. However, an increase in [K+]o to 12 mM abolished postsynaptic responses, which depended on a blockade in axonal spike propagation. Significance We conclude that concomitant changes in [K+]o and [Ca2+]o observed during seizures contribute largely to the alterations of synaptic neuronal responses and to the decrease in long-range synchrony during neocortical seizures. PMID:21126243

  7. Archaerhodopsin Selectively and Reversibly Silences Synaptic Transmission through Altered pH

    Directory of Open Access Journals (Sweden)

    Mohamady El-Gaby

    2016-08-01

    Full Text Available Tools that allow acute and selective silencing of synaptic transmission in vivo would be invaluable for understanding the synaptic basis of specific behaviors. Here, we show that presynaptic expression of the proton pump archaerhodopsin enables robust, selective, and reversible optogenetic synaptic silencing with rapid onset and offset. Two-photon fluorescence imaging revealed that this effect is accompanied by a transient increase in pH restricted to archaerhodopsin-expressing boutons. Crucially, clamping intracellular pH abolished synaptic silencing without affecting the archaerhodopsin-mediated hyperpolarizing current, indicating that changes in pH mediate the synaptic silencing effect. To verify the utility of this technique, we used trial-limited, archaerhodopsin-mediated silencing to uncover a requirement for CA3-CA1 synapses whose afferents originate from the left CA3, but not those from the right CA3, for performance on a long-term memory task. These results highlight optogenetic, pH-mediated silencing of synaptic transmission as a spatiotemporally selective approach to dissecting synaptic function in behaving animals.

  8. Synaptic encoding of temporal contiguity

    Directory of Open Access Journals (Sweden)

    Srdjan eOstojic

    2013-04-01

    Full Text Available Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity. Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain.

  9. Biphasic catalysis in water/carbon dioxide micellar systems

    Science.gov (United States)

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  10. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing

    Science.gov (United States)

    Wang, Zhongrui; Joshi, Saumil; Savel'Ev, Sergey E.; Jiang, Hao; Midya, Rivu; Lin, Peng; Hu, Miao; Ge, Ning; Strachan, John Paul; Li, Zhiyong; Wu, Qing; Barnell, Mark; Li, Geng-Lin; Xin, Huolin L.; Williams, R. Stanley; Xia, Qiangfei; Yang, J. Joshua

    2017-01-01

    The accumulation and extrusion of Ca2+ in the pre- and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. To emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca2+ dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy minimization, closely resembling synaptic influx and extrusion of Ca2+, respectively. The diffusive memristor and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses, representing an advance in hardware implementation of neuromorphic functionalities.

  11. The Relative Contribution of NMDARs to Excitatory Postsynaptic Currents is Controlled by Ca2+-Induced Inactivation

    OpenAIRE

    Fliza eValiullina; Yulia eZakharova; Andreas eDraguhn; Marat eMukhtarov; Nail eBurnashev; Andrei eRozov

    2016-01-01

    NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca2+. At the same time, they are themselves inhibited by the elevation of intracellular Ca2+ concentration. It is unclear however, whether the Ca2+ entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic exci...

  12. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  13. A model of synaptic reconsolidation

    Directory of Open Access Journals (Sweden)

    David B. Kastner

    2016-05-01

    Full Text Available Reconsolidation of memories has mostly been studied at the behavioral and molecular level. Here, we put forward a simple extension of existing computational models of synaptic consolidation to capture hippocampal slice experiments that have been interpreted as reconsolidation at the synaptic level. The model implements reconsolidation through stabilization of consolidated synapses by stabilizing entities combined with an activity-dependent reservoir of stabilizing entities that are immune to protein synthesis inhibition (PSI. We derive a reduced version of our model to explore the conditions under which synaptic reconsolidation does or does not occur, often referred to as the boundary conditions of reconsolidation. We find that our computational model of synaptic reconsolidation displays complex boundary conditions. Our results suggest that a limited resource of hypothetical stabilizing molecules or complexes, which may be implemented by protein phosphorylation or different receptor subtypes, can underlie the phenomenon of synaptic reconsolidation.

  14. Progress on the biphase turbine at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Cerini, D.; Hays, L.; Studhalter, W. [Douglas Energy Company, Placentia, CA (United States)

    1997-12-31

    The status of a Biphase turbine power plant being installed at the Cerro Prieto geothermal field is presented. The major modules for the power plant are completed except for a back pressure steam turbine. The power plant will be started in April 1997 with the Biphase turbine alone followed by the addition of the steam turbine module two months later. The current power plant performance level is 2780 kWe due to a decline in the well. An increase in power output to 4060 kWe by adding the flow from another well is planned. The addition of five Biphase power plants with a total power output of 21.2 megawatts is described.

  15. In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro

    Science.gov (United States)

    Song, Chang-Weon; Kim, Tae-Wan; Kim, Dong-Hyun; Jin, Hyeong-Ho; Hwang, Kyu-Hong; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2012-01-01

    In situ preparation of silicon (Si) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/ β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added silicon were varied with the phosphor in order to obtain constant Ca/(P+Si) ratios of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized silicon substituted BCP powders. The characterization revealed that the formation of biphasic mixtures of different HAp/ β-TCP ratios was dependent on the content of silicon. After immersing in Hanks' balanced salt solution (HBSS) for 1 week, 3 wt% silicon substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. In the case of 1 wt% silicon substituted BCP powders, the degradation behavior was detected after immersion in HBSS for 3 weeks. On the other hand, silicon unsubtituted BCP powders were not degraded even after that duration. On the basis of these results, silicon substituted BCP is able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. This enhanced reactivity resulted in reduction for the stability of the β-TCP structure due to SiO4 tetrahedral distortion and disorder at the hydroxyl site when silicon incorporates into BCP.

  16. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function

    OpenAIRE

    2013-01-01

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional seg...

  17. Biphasic Malignant Pleural Mesothelioma Masquerading as a Primary Skeletal Tumor

    Science.gov (United States)

    Diacovo, Maria Julia

    2016-01-01

    Biphasic malignant pleural mesothelioma is a rare malignant tumor, usually presenting as a pleural-based mass in a patient with history of chronic asbestos exposure. We herein report a case of a 41-year-old man who presented with chest pain and had a chest computed tomography (CT) scan suggestive of a primary skeletal tumor originating from the ribs (chondrosarcoma or osteosarcoma), with no history of asbestos exposure. CT-guided core needle biopsies were diagnosed as malignant sarcomatoid mesothelioma. Surgical resection and chest wall reconstruction were performed, confirming the diagnosis and revealing a secondary histologic component (epithelioid), supporting the diagnosis of biphasic malignant mesothelioma. PMID:27660729

  18. Biphasic Malignant Pleural Mesothelioma Masquerading as a Primary Skeletal Tumor

    Directory of Open Access Journals (Sweden)

    James Benjamin Gleason

    2016-01-01

    Full Text Available Biphasic malignant pleural mesothelioma is a rare malignant tumor, usually presenting as a pleural-based mass in a patient with history of chronic asbestos exposure. We herein report a case of a 41-year-old man who presented with chest pain and had a chest computed tomography (CT scan suggestive of a primary skeletal tumor originating from the ribs (chondrosarcoma or osteosarcoma, with no history of asbestos exposure. CT-guided core needle biopsies were diagnosed as malignant sarcomatoid mesothelioma. Surgical resection and chest wall reconstruction were performed, confirming the diagnosis and revealing a secondary histologic component (epithelioid, supporting the diagnosis of biphasic malignant mesothelioma.

  19. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.

    Science.gov (United States)

    Zemankovics, Rita; Veres, Judit M; Oren, Iris; Hájos, Norbert

    2013-07-24

    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.

  20. Cellular and molecular connections between sleep and synaptic plasticity.

    Science.gov (United States)

    Benington, Joel H; Frank, Marcos G

    2003-02-01

    The hypothesis that sleep promotes learning and memory has long been a subject of active investigation. This hypothesis implies that sleep must facilitate synaptic plasticity in some way, and recent studies have provided evidence for such a function. Our knowledge of both the cellular neurophysiology of sleep states and of the cellular and molecular mechanisms underlying synaptic plasticity has expanded considerably in recent years. In this article, we review findings in these areas and discuss possible mechanisms whereby the neurophysiological processes characteristic of sleep states may serve to facilitate synaptic plasticity. We address this issue first on the cellular level, considering how activation of T-type Ca(2+) channels in nonREM sleep may promote either long-term depression or long-term potentiation, as well as how cellular events of REM sleep may influence these processes. We then consider how synchronization of neuronal activity in thalamocortical and hippocampal-neocortical networks in nonREM sleep and REM sleep could promote differential strengthening of synapses according to the degree to which activity in one neuron is synchronized with activity in other neurons in the network. Rather than advocating one specific cellular hypothesis, we have intentionally taken a broad approach, describing a range of possible mechanisms whereby sleep may facilitate synaptic plasticity on the cellular and/or network levels. We have also provided a general review of evidence for and against the hypothesis that sleep does indeed facilitate learning, memory, and synaptic plasticity.

  1. Parallel-to-serial biphase-data converter

    Science.gov (United States)

    Truelove, R. D.

    1968-01-01

    Data converter produces a serial biphase output signal from parallel input data. Alternate bits are loaded into a shift register in complement form so that the bits appear at the end of the shift register in a true-complement form sequence.

  2. Biphasic dose response in low level light therapy - an update.

    Science.gov (United States)

    Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R

    2011-01-01

    Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments.

  3. A computational study of the role of spike broadening in synaptic facilitation of Hermissenda.

    Science.gov (United States)

    Flynn, Mark; Cai, Yidao; Baxter, Douglas A; Crow, Terry

    2003-01-01

    Pavlovian conditioning in Hermissenda produces a decrease in voltage-dependent (I(K,A) and I(Ca)) and Ca2+-dependent (I(K,Ca)) currents, and an increase in the action potential (AP) duration in type B-photoreceptors. In addition, synaptic connections between B and A photoreceptors and B photoreceptor and type I interneurons are facilitated. The increase in AP duration, produced by decreasing one or more K+ currents, may account for synaptic facilitation. The present study examined this issue by using a mathematical model of the B-photoreceptor and the neurosimulator SNNAP. In the model, decreasing g(K,A) by 70% increased the duration of the AP in the terminal by 41% and Ca2+ influx by 30%. However, if the decrease in g(K,A) was combined with a decrease in g(Ca), similar to what has been reported experimentally, the Ca2+ influx decreased by 54%. Therefore, the concomitant change in I(Ca) counter-acted the broadening-induced increase in Ca2+ influx in the synaptic terminal. This result suggests that a spike-duration independent process must contribute to the synaptic facilitation observed following Pavlovian conditioning.

  4. Synaptic dynamics in analog VLSI.

    Science.gov (United States)

    Bartolozzi, Chiara; Indiveri, Giacomo

    2007-10-01

    Synapses are crucial elements for computation and information transfer in both real and artificial neural systems. Recent experimental findings and theoretical models of pulse-based neural networks suggest that synaptic dynamics can play a crucial role for learning neural codes and encoding spatiotemporal spike patterns. Within the context of hardware implementations of pulse-based neural networks, several analog VLSI circuits modeling synaptic functionality have been proposed. We present an overview of previously proposed circuits and describe a novel analog VLSI synaptic circuit suitable for integration in large VLSI spike-based neural systems. The circuit proposed is based on a computational model that fits the real postsynaptic currents with exponentials. We present experimental data showing how the circuit exhibits realistic dynamics and show how it can be connected to additional modules for implementing a wide range of synaptic properties.

  5. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    Science.gov (United States)

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.

  6. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment

    Institute of Scientific and Technical Information of China (English)

    Miyoung Yang; Juhwan Kim; Sung-Ho Kim; Joong-Sun Kim; Taekyun Shin; Changjong Moon

    2012-01-01

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, cal-cium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated dur-ing the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.

  7. 天泰1号对自发阿尔茨海默病鼠海马CA1区分子层突触可塑性的影响超微结构定量研究%Influence of tiantai No. 1 recipe on synaptic plasticity of the hippocampal CA1 region of spontaneous Alzheimer disease models: Quantitative research of ultrastructure

    Institute of Scientific and Technical Information of China (English)

    李明; 吴正治; 李耀芳; 张永锋; 贾秀琴; 陈嫚茵

    2005-01-01

    BACKGROUND: The synaptic plasticity of central nerves is the key basis of behavior-dependent learning and memory, there have been few reports about weather the Chinese herbal medicine for treatment of Alzheimer disease is through enhancing synaptic plasticity to improve learning and memory.OBJECTIVE: To investigate the effect of tiantai No. 1 recipe on learning and memory function and synaptic plasticity of spontaneous Alzheimer disease models.DESIGN: A randomized and controlled trial.SETTING: Institute of Combination of Traditional Chinese Medicine and Western Medicine of Shenzhen.MATERIALS: The experiment was completed at the grade Ⅱ Laboratory of Institute of Combination of Traditional Chinese Medicine and Western Medicine of Shenzhen City. The experimental animals were mice of Kunming strain.METHODS: Totally 52 Kunming mice, aged 21 months, with spontaneous Alzheimer disease (memory impairment) were chosen, and at random divided into 4 groups: senile dementia, western drug control, tiantai No. 1recipe 6.80 g/kg and 20.41 g/kg groups; besides 13 mice with normal learning and memory power were chosen as normal senile group. Hydergine 0.6 mg/kg was given for mice in western drug control group, tiantai No. 1recipe 6.80 g/kg and 20.41 g/kg were respectively given for mice in tiantai No. 1 recipe 6.80 g/kg and 20.41 g/kg groups. The medicines above were all prepared into 0.5 mL solution and given by gavage, for consecutive 60 days. The mice in normal senile and senile dementia groups were given double distilled water of the same volume. The learning memory power was tested by jumping stand; ultrathin cerebral section of hippocampal CA1 region was examined with transmission electron microscope,and some parameters of synaptic plasticity was also quantitatively detected with automatic micrographic analysis system.MAIN OUTCOME MEASURES: ① The effect of tiantai No. 1 recipe in different doses on learning and memory of spontaneous Alzheimer disease mice.

  8. Information processing and synaptic plasticity at hippocampal mossy fiber terminals

    Directory of Open Access Journals (Sweden)

    Alesya eEvstratova

    2014-02-01

    Full Text Available Granule cells of the dentate gyrus receive cortical information and they transform and transmit this code to the CA3 area via their axons, the mossy fibers. Structural and functional complexity of this network has been extensively studied at various organizational levels. This review is focused on the anatomical and physiological properties of the mossy fiber system. We will discuss the mechanism by which dentate granule cells process signals from single action potentials, short bursts and longer stimuli. Various parameters of synaptic interactions at different target cells such as quantal transmission, short- and long-term plasticity will be summarized. Different types of synaptic contacts formed by mossy fibers have unique sets of rules for information processing during different rates of granule cell activity. We will investigate the complex interactions between key determinants of information transfer between the dentate gyrus and the CA3 area of the hippocampus.

  9. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the

  10. Effects of axonal topology on the somatic modulation of synaptic outputs.

    Science.gov (United States)

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji

    2012-02-22

    Depolarization of the neuronal soma augments synaptic output onto postsynaptic neurons via long-range, axonal cable properties. Here, we report that the range of this somatic influence is spatially restricted by not only axonal path length but also a branching-dependent decrease in axon diameter. Cell-attached recordings of action potentials (APs) from multiple axon branches of a rat hippocampal CA3 pyramidal cell revealed that an AP was broadened following a 20 mV depolarization of the soma and reverted to a normal width during propagation down the axon. The narrowing of the AP depended on the distance traveled by the AP and on the number of axon branch points through which the AP passed. These findings were confirmed by optical imaging of AP-induced calcium elevations in presynaptic boutons, suggesting that the somatic membrane potential modifies synaptic outputs near the soma but not long-projection outputs. Consistent with this prediction, whole-cell recordings from synaptically connected neurons revealed that depolarization of presynaptic CA3 pyramidal cells facilitated synaptic transmission to nearby CA3 pyramidal cells, but not to distant pyramidal cells in CA3 or CA1. Therefore, axonal geometry enables the differential modulation of synaptic output depending on target location.

  11. Inhibitory Gating of Input Comparison in the CA1 Microcircuit.

    Science.gov (United States)

    Milstein, Aaron D; Bloss, Erik B; Apostolides, Pierre F; Vaidya, Sachin P; Dilly, Geoffrey A; Zemelman, Boris V; Magee, Jeffrey C

    2015-09-23

    Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites.

  12. Biphasic effect of falcarinol on caco-2 cell proliferation, DNA damage, and apoptosis.

    Science.gov (United States)

    Young, Jette F; Duthie, Susan J; Milne, Lesley; Christensen, Lars P; Duthie, Garry G; Bestwick, Charles S

    2007-02-07

    The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.

  13. Layer selective presynaptic modulation of excitatory inputs to hippocampal CA1 by μ-opioid receptor activation

    OpenAIRE

    McQuiston, A. Rory

    2007-01-01

    Chronic and acute activation of μ-opioid receptors (MOR) in hippocampal CA1 disrupts rhythmic activity, alters activity-dependent synaptic plasticity and impairs spatial memory formation. In CA1, MORs act by hyperpolarizing inhibitory interneurons and suppressing inhibitory synaptic transmission. MOR modulation of inhibitory synaptic function translates into an increase in excitatory activity in all layers of CA1. However, the exact anatomical sites for MOR actions are not completely known. T...

  14. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons.

    Science.gov (United States)

    Magee, J C; Johnston, D

    1997-01-10

    The role of back-propagating dendritic action potentials in the induction of long-term potentiation (LTP) was investigated in CA1 neurons by means of dendritic patch recordings and simultaneous calcium imaging. Pairing of subthreshold excitatory postsynaptic potentials (EPSPs) with back-propagating action potentials resulted in an amplification of dendritic action potentials and evoked calcium influx near the site of synaptic input. This pairing also induced a robust LTP, which was reduced when EPSPs were paired with non-back-propagating action potentials or when stimuli were unpaired. Action potentials thus provide a synaptically controlled, associative signal to the dendrites for Hebbian modifications of synaptic strength.

  15. Synaptic determinants of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Elena M B Boggio

    2010-08-01

    Full Text Available There is mounting evidence showing that the structural and molecular organization of synaptic connections are affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett Syndrome (RS. RS (MIM312750 is an X-linked dominant neurological disorder that is caused, in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2. This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.

  16. Interlamellar CA1 network in the hippocampus

    OpenAIRE

    Yang, Sunggu; Yang, Sungchil; Moreira, Thais; Hoffman, Gloria; Carlson, Greg C.; Bender, Kevin J.; Alger, Bradley E.; Tang, Cha-Min

    2014-01-01

    It has generally been thought that CA1 cells form only negligible connections with each other along the longitudinal axis of the hippocampus. But if CA1 cells were interconnected in an effective autoassociational network, this information would add a critical new dimension to our understanding of cellular processing within this structure. Here, we report the existence of a well-organized, longitudinally projecting synaptic network among CA1 pyramidal neurons. We further show that synapses of ...

  17. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems.

    Science.gov (United States)

    Passos, Helena; Luís, Andreia; Coutinho, João A P; Freire, Mara G

    2016-02-04

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  18. Synaptic vesicle pools and dynamics.

    Science.gov (United States)

    Alabi, AbdulRasheed A; Tsien, Richard W

    2012-08-01

    Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.

  19. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  20. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events.

    Science.gov (United States)

    Spruston, N; Jaffe, D B; Williams, S H; Johnston, D

    1993-08-01

    1. The voltage- and space-clamp errors associated with the use of a somatic electrode to measure current from dendritic synapses are evaluated using both equivalent-cylinder and morphologically realistic models of neuronal dendritic trees. 2. As a first step toward understanding the properties of synaptic current distortion under voltage-clamp conditions, the attenuation of step and sinusoidal voltage changes are evaluated in equivalent cylinder models. Demonstration of the frequency-dependent attenuation of voltage in the cable is then used as a framework for understanding the distortion of synaptic currents generated at sites remote from the somatic recording electrode and measured in the voltage-clamp recording configuration. 3. Increases in specific membrane resistivity (Rm) are shown to reduce steady-state voltage attenuation, while producing only minimal reduction in attenuation of transient voltage changes. Experimental manipulations that increase Rm therefore improve the accuracy of estimates of reversal potential for electrotonically remote synapses, but do not significantly reduce the attenuation of peak current. In addition, increases in Rm have the effect of slowing the kinetics of poorly clamped synaptic currents. 4. The effects of the magnitude of the synaptic conductance and its kinetics on the measured synaptic currents are also examined and discussed. The error in estimating parameters from measured synaptic currents is greatest for synapses with fast kinetics and large conductances. 5. A morphologically realistic model of a CA3 pyramidal neuron is used to demonstrate the generality of the conclusions derived from equivalent cylinder models. The realistic model is also used to fit synaptic currents generated by stimulation of mossy fiber (MF) and commissural/associational (C/A) inputs to CA3 neurons and to estimate the amount of distortion of these measured currents. 6. Anatomic data from the CA3 pyramidal neuron model are used to construct a

  1. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  2. Interneurons targeting similar layers receive synaptic inputs with similar kinetics.

    Science.gov (United States)

    Cossart, Rosa; Petanjek, Zdravko; Dumitriu, Dani; Hirsch, June C; Ben-Ari, Yehezkel; Esclapez, Monique; Bernard, Christophe

    2006-01-01

    GABAergic interneurons play diverse and important roles in controlling neuronal network dynamics. They are characterized by an extreme heterogeneity morphologically, neurochemically, and physiologically, but a functionally relevant classification is still lacking. Present taxonomy is essentially based on their postsynaptic targets, but a physiological counterpart to this classification has not yet been determined. Using a quantitative analysis based on multidimensional clustering of morphological and physiological variables, we now demonstrate a strong correlation between the kinetics of glutamate and GABA miniature synaptic currents received by CA1 hippocampal interneurons and the laminar distribution of their axons: neurons that project to the same layer(s) receive synaptic inputs with similar kinetics distributions. In contrast, the kinetics distributions of GABAergic and glutamatergic synaptic events received by a given interneuron do not depend upon its somatic location or dendritic arborization. Although the mechanisms responsible for this unexpected observation are still unclear, our results suggest that interneurons may be programmed to receive synaptic currents with specific temporal dynamics depending on their targets and the local networks in which they operate.

  3. Effects of lateral fluid percussion injury of brain on the bilateral GFAP expression in hippocampus and synaptic transmission in hippocampal CA1 area of rats%单侧液压脑损伤对大鼠双侧海马GFAP表达和CA1区突触传递的影响

    Institute of Scientific and Technical Information of China (English)

    曹锐峰; 章翔; 王映梅; 马福成; 杨晓婷; 冯永芳; 宋蕾; 蓮尾博; 赤須崇

    2006-01-01

    目的 研究单侧液压脑损伤(FPI)对大鼠双侧海马区胶质纤维酸性蛋白(GFAP)表达和CA1区突触传递的影响.方法 建立大鼠单侧液压脑损伤模型,脑标本分为对照组(包括正常对照和假手术对照)、FPI损伤同侧组和FPI损伤对侧组.免疫组化法检测海马水平切片GFAP表达,对海马CA1区锥体神经元进行细胞内记录.结果 FPI大鼠双侧海马齿状回门区和CA1区GFAP表达均比对照组明显增强.FPI损伤同侧组兴奋性输入-输出关系曲线的斜率比其他两组显著增大(P<0.05);FPI损伤同侧组和对侧组双脉冲易化(PPF)比值和抑制性突触后电位(IPSP)幅值均比对照组显著减小(P<0.05);FPI损伤同侧组和对侧组双脉冲抑制(PPD)比值均比对照组显著增大(P<0.05).结论 大鼠单侧液压脑损伤对双侧海马均可产生影响,导致双侧海马CA1区兴奋性突触传递增强,抑制性突触传递减弱.

  4. 丙泊酚拮抗戊四氮对大鼠海马CA1区动作电位和突触传递的影响%Propofol antagonizes the effects of pentylenetetrazole on action potentials or synaptic transmission in hippocampal CA1 neurons of rats

    Institute of Scientific and Technical Information of China (English)

    谢玉波; 熊文勇; 徐林

    2006-01-01

    目的:观察戊四氮对大鼠海马CA1区动作电位(action potential,AP)和兴奋性突触后电流(excitatory postsynaptic current,EPSC)的影响和丙泊酚的拮抗作用.方法:断头法分离Wistar大鼠海马半脑,切片机切出400μm厚度的海马脑片,全细胞电流钳记录CA1区锥体神经元动作电位发放情况,全细胞电压钳记录电刺激Schaeffer侧支/联合纤维诱发的CA1区锥体神经元EPSC的变化.结果:戊四氮使动作电位发放频率增加,EPSC值降低;丙泊酚拮抗戊四氮的作用,使动作电位发放减少甚至消失,EPSC值上升至加入丙泊酚前的2倍左右.结论:丙泊酚拮抗戊四氮对动作电位和EPSC的作用,所以临床上可用于抗癫痫治疗.

  5. PKMzeta inhibition reverses learning-induced increases in hippocampal synaptic strength and memory during trace eyeblink conditioning.

    Directory of Open Access Journals (Sweden)

    Noelia Madroñal

    Full Text Available A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP, a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMzeta is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide, a PKMzeta inhibitor, on eyeblink-conditioned mice were studied. PKMzeta inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMzeta inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMzeta inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning.

  6. Synaptic plasticity: Building memories to last.

    Science.gov (United States)

    Thompson, S M

    2000-03-23

    A series of recent studies has provided long-awaited direct evidence that enduring changes in synaptic strength, presumably underlying the formation of persistent memories, may be encoded in a lasting form as a change in synaptic structure.

  7. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  8. Mitochondria, synaptic plasticity, and schizophrenia.

    Science.gov (United States)

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  9. Action potential broadening induced by lithium may cause a presynaptic enhancement of excitatory synaptic transmission in neonatal rat hippocampus.

    Science.gov (United States)

    Colino, A; García-Seoane, J J; Valentín, A

    1998-07-01

    Lithium enhances excitatory synaptic transmission in CA1 pyramidal cells, but the mechanisms remain unclear. The present study demonstrates that lithium enhances the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) receptor-mediated components of the excitatory postsynaptic current (EPSC). Lithium decreased the magnitude of paired-pulse facilitation and presented an inverse correlation between the lithium-induced enhancement of synaptic transmission and initial paired-pulse facilitation, which is consistent with a presynaptic mode of action. The enhancement of synaptic strength is likely to act, at least in part, by increasing the amplitude of the presynaptic Ca2+ transient. One mechanism which could account for this change of the presynaptic Ca2+ transient is an increase in the duration of the action potential. We investigated action potential in hippocampal pyramidal neurons and found that lithium (0.5-6 mM) increased the half-amplitude duration and reduced the rate of repolarization, whereas the rate of depolarization remained similar. To find out whether the lithium synaptic effects might be explained by spike broadening, we investigated the field recording of the excitatory postsynaptic potential (EPSP) in hippocampal slices and found three lines of evidence. First, the prolongation of the presynaptic action potential with 4-aminopyridine and tetraethylammonium blocked or reduced the synaptic effects of lithium. Second, the lithium-induced synaptic enhancement was modulated when presynaptic Ca2+ influx was varied by changing the external Ca2+ concentration. Finally, both effects, the synaptic transmission increment and the action potential broadening, were independent of inositol depletion. These results suggest that lithium enhances synaptic transmission in the hippocampus via a presynaptic site of action: the mechanism underlying the potentiating effect may be attributable to an increased Ca2+ influx consequent

  10. Synthesis, characterization and in vitro study of magnetic biphasic calcium sulfate-bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Akram, Muhammad; Alshemary, Ammar Z. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Darul Ta' zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta' zim (Malaysia)

    2015-08-01

    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol–gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV–vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeO{sub x} oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment. - Highlights: • Biphasic calcium sulphate-bioactive glass containing iron was prepared. • Composite bioglass was superparamagnetic in nature. • All samples promoted the growth of apatite layer with Ca/P close to 1.67.

  11. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory.

    Science.gov (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise

    2016-04-01

    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are "earmarked" for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength.The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.

  12. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory

    Science.gov (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise

    2016-01-01

    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories. PMID:26804338

  13. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components.

    Science.gov (United States)

    Carlson, Steven S; Valdez, Gregorio; Sanes, Joshua R

    2010-11-01

    At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the β2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/β2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel β subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.

  14. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag.

    Science.gov (United States)

    Szabó, Eszter C; Manguinhas, Rita; Fonseca, Rosalina

    2016-09-21

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.

  15. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Anubhuti Goel

    Full Text Available Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+-permeable AMPA receptors (CP-AMPARs. However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1 subunit at the serine 845 (S845 site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants, which is a substrate of cAMP-dependent kinase (PKA, show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  16. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Science.gov (United States)

    Goel, Anubhuti; Xu, Linda W; Snyder, Kevin P; Song, Lihua; Goenaga-Vazquez, Yamila; Megill, Andrea; Takamiya, Kogo; Huganir, Richard L; Lee, Hey-Kyoung

    2011-03-31

    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  17. Super-resolution microscopy of the synaptic active zone

    Directory of Open Access Journals (Sweden)

    Nadine eEhmann

    2015-01-01

    Full Text Available Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ a variety of specialised proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission.Calcium (Ca2+ channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modelling approaches has provided predictions of channel properties, numbers and even positions on the nanometre scale. However, elucidating the nanoscopic organisation of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how super-resolution microscopy can be used to obtain information on the organisation of AZ proteins.

  18. Biphasic Insulin Analogues in Type 2 Diabetes: Expert Panel Recommendations

    Directory of Open Access Journals (Sweden)

    Sema Akalın

    2011-09-01

    Full Text Available Recently, the prevalence of type 2 diabetes has reached pandemic levels all over the world, and the problem is still growing. Type 2 diabetes is a progressive disease, in which insulin resistance and decrease in beta cell function accompany obesity. Early disorder, which ensues in clinical progression of the disease, is the defect of early phase insulin secretion. Patients have already lost approximately half of their beta cell reserve at the time of diagnosis. Aims of type 2 diabetes treatment are to eliminate hyperglycemia caused by insufficient insulin secretion and/or insulin resistance, to slow down beta cell destruction/depletion, to improve concomitant metabolic problems and to prevent complications. In treatment algorithms, insulin is evaluated as a replacement therapy at the following stage after life style changes (medical nutrition therapy, exercise and oral anti-diabetic drugs (OADs options. Since beta cell depletion is present at initial stages of the disease, it transforms insulin therapy into an earlier approach in treatment stages. Premixed insulin forms are one of the proposed treatment options in patients with hyperglycemia that is not controlled by OADs. These types of insulins are developed to meet both basal and postprandial insulin requirements of patients. Currently, premixed human insulin forms are replaced by analogue insulin forms, which can mimic the physiological secretion in more acceptable manner. Biphasic analogue insulin is one of the readily available pre-mixed analogue insulin forms, an example of this, Biphasic Insulin aspart 30 which is the one of the premixed analoge insulin forms, contains 30% insulin aspart and 70% protaminated insulin aspart. Consensus recommending the individualized approach in insulin therapy implies that physicians should have more detailed information about the use of different insulin forms. Although a global consensus report about initiation, titration and intensification and the use

  19. A new kinetic biphasic approach applied to biodiesel process intensification

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Naples Univ. (Italy). Dept. of Chemistry

    2012-07-01

    Many different papers have been published on the kinetics of the transesterification of vegetable oil with methanol, in the presence of alkaline catalysts to produce biodiesel. All the proposed approaches are based on the assumption of a pseudo-monophasic system. The consequence of these approaches is that some experimental aspects cannot be described. For the reaction performed in batch conditions, for example, the monophasic approach is not able to reproduce the different plateau obtained by using different amount of catalyst or the induction time observed at low stirring rates. Moreover, it has been observed by operating in continuous reactors that micromixing has a dramatic effect on the reaction rate. At this purpose, we have recently observed that is possible to obtain a complete conversion to biodiesel in less than 10 seconds of reaction time. This observation is confirmed also by other authors using different types of reactors like: static mixers, micro-reactors, oscillatory flow reactors, cavitational reactors, microwave reactors or centrifugal contactors. In this work we will show that a recently proposed biphasic kinetic approach is able to describe all the aspects before mentioned that cannot be described by the monophasic kinetic model. In particular, we will show that the biphasic kinetic model can describe both the induction time observed in the batch reactors, at low stirring rate, and the very high conversions obtainable in a micro-channel reactor. The adopted biphasic kinetic model is based on a reliable reaction mechanism that will be validated by the experimental evidences reported in this work. (orig.)

  20. The Streptococcus pneumoniae pilus-1 displays a biphasic expression pattern.

    Directory of Open Access Journals (Sweden)

    Gabriella De Angelis

    Full Text Available The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1, which has three clonal variants (clade I, II and III and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation, and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus

  1. The relative contribution of NMDARs to excitatory postsynaptic currents is controlled by Ca2+-induced inactivation.

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available NMDA receptors (NMDARs are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca2+. At the same time, they are themselves inhibited by the elevation of intracellular Ca2+ concentration. It is unclear however, whether the Ca2+ entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca2+ buffers. Loading of pyramidal cells with exogenous Ca2+ buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSP and prolonged the time window for action potential generation.Our data indicate that the Ca2+ influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg2+ concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca2+ buffer capacity of postsynaptic neurons.

  2. ATP hydrolysis is critically required for function of CaV1.3 channels in cochlear inner hair cells via fueling Ca2+ clearance.

    Science.gov (United States)

    Weiler, Simon; Krinner, Stefanie; Wong, Aaron B; Moser, Tobias; Pangršič, Tina

    2014-05-14

    Sound encoding is mediated by Ca(2+) influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role of ATP in this process focusing on Ca(2+) current through CaV1.3 channels and Ca(2+) homeostasis in mouse inner hair cells. Patch-clamp recordings and Ca(2+) imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca(2+) influx in inner hair cells via fueling Ca(2+)-ATPases to avoid an increase in cytosolic [Ca(2+)] and subsequent Ca(2+)/calmodulin-dependent inactivation of CaV1.3 channels.

  3. Synaptic dynamics and decision making

    Science.gov (United States)

    Deco, Gustavo; Rolls, Edmund T.; Romo, Ranulfo

    2010-01-01

    During decision making between sequential stimuli, the first stimulus must be held in memory and then compared with the second. Here, we show that in systems that encode the stimuli by their firing rate, neurons can use synaptic facilitation not only to remember the first stimulus during the delay but during the presentation of the second stimulus so that they respond to a combination of the first and second stimuli, as has been found for “partial differential” neurons recorded in the ventral premotor cortex during vibrotactile flutter frequency decision making. Moreover, we show that such partial differential neurons provide important input to a subsequent attractor decision-making network that can then compare this combination of the first and second stimuli with inputs from other neurons that respond only to the second stimulus. Thus, both synaptic facilitation and neuronal attractor dynamics can account for sequential decision making in such systems in the brain. PMID:20360555

  4. Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics.

    Science.gov (United States)

    Gomes, Sandrine; Kaur, Amandeep; Grenèche, Jean-Marc; Nedelec, Jean-Marie; Renaudin, Guillaume

    2017-03-01

    Biphasic calcium phosphates (BCPs) are bioceramics composed of hydroxyapatite (HAp, Ca10(PO4)6(OH)2) and beta-Tricalcium Phosphate (β-TCP, Ca3(PO4)2). Because their chemical and mineral composition closely resembles that of the mineral component of bone, they are potentially interesting candidates for bone repair surgery, and doping can advantageously be used to improve their biological behavior. However, it is important to describe the doping mechanism of BCP thoroughly in order to be able to master its synthesis and then to fully appraise the benefit of the doping process. In the present paper we describe the ferric doping mechanism: the crystallographic description of our samples, sintered at between 500°C and 1100°C, was provided by Rietveld analyses on X-ray powder diffraction, and the results were confirmed using X-ray absorption spectroscopy and (57)Fe Mössbauer spectrometry. The mechanism is temperature-dependent, like the previously reported zinc doping mechanism. Doping was performed on the HAp phase, at high temperature only, by an insertion mechanism. The Fe(3+) interstitial site is located in the HAp hexagonal channel, shifted from its centre to form a triangular three-fold coordination. At lower temperatures, the Fe(3+) are located at the centre of the channel, forming linear two-fold coordinated O-Fe-O entities. The knowledge of the doping mechanism is a prerequisite for a correct synthesis of the targeted bioceramic with the adapted (Ca+Fe)/P ratio, and so to be able to correctly predict its potential iron release or magnetic properties.

  5. Synaptic vesicle pools: an update

    Directory of Open Access Journals (Sweden)

    Annette Denker

    2010-10-01

    Full Text Available During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or pools. We have argued in the past (Rizzoli SO and Betz WJ, 2005, Synaptic vesicle pools, Nat. Rev. Neurosci. 6, 57-69 that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation, the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation, and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation. We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are fixed. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool.

  6. Multiscale modeling and synaptic plasticity.

    Science.gov (United States)

    Bhalla, Upinder S

    2014-01-01

    Synaptic plasticity is a major convergence point for theory and computation, and the process of plasticity engages physiology, cell, and molecular biology. In its many manifestations, plasticity is at the hub of basic neuroscience questions about memory and development, as well as more medically themed questions of neural damage and recovery. As an important cellular locus of memory, synaptic plasticity has received a huge amount of experimental and theoretical attention. If computational models have tended to pick specific aspects of plasticity, such as STDP, and reduce them to an equation, some experimental studies are equally guilty of oversimplification each time they identify a new molecule and declare it to be the last word in plasticity and learning. Multiscale modeling begins with the acknowledgment that synaptic function spans many levels of signaling, and these are so tightly coupled that we risk losing essential features of plasticity if we focus exclusively on any one level. Despite the technical challenges and gaps in data for model specification, an increasing number of multiscale modeling studies have taken on key questions in plasticity. These have provided new insights, but importantly, they have opened new avenues for questioning. This review discusses a wide range of multiscale models in plasticity, including their technical landscape and their implications.

  7. Biphasic Chromatin Structure and FISH Signals Reflect Intranuclear Order

    Directory of Open Access Journals (Sweden)

    Jyoti P. Chaudhuri

    2005-01-01

    Full Text Available Background and Aim: One of the two parental allelic genes may selectively be expressed, regulated by imprinting, X-inactivation or by other less known mechanisms. This study aims to reflect on such genetic mechanisms. Materials and Methods: Slides from short term cultures or direct smears of blood, bone marrow and amniotic fluids were hybridized with FISH probes singly, combined or sequentially. Two to three hundred cells were examined from each preparation. Results and Aignificance: A small number of cells (up to about 5%, more frequent in leukemia cases, showed the twin features: (1 nuclei with biphasic chromatin, one part decondensed and the other condensed; and (2 homologous FISH signals distributed equitably in those two regions. The biphasic chromatin structure with equitable distribution of the homologous FISH signals may correspond to the two sets of chromosomes, supporting observations on ploidywise intranuclear order. The decondensed chromatin may relate to enhanced transcriptions or advanced replications. Conclusions: Transcriptions of only one of the two parental genomes cause allelic exclusion. Genomes may switch with alternating monoallelic expression of biallelic genes as an efficient genetic mechanism. If genomes fail to switch, allelic exclusion may lead to malignancy. Similarly, a genome-wide monoallelic replication may tilt the balance of heterozygosity resulting in aneusomy, initiating early events in malignant transformation and in predicting cancer mortality.

  8. Statistical theory of synaptic connectivity in the neocortex

    Science.gov (United States)

    Escobar, Gina

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can be mediated by modulation of existing synapses and structural reorganization of circuits through growth and retraction of dendritic spines. In the first part of this thesis, we describe a theoretical framework for the analysis of spine remodeling plasticity. New synaptic contacts appear in the neuropil where gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. We derive expressions for the densities of potential synapses in the neuropil. We calculate the ratio of actual to potential synapses, called the connectivity fraction, and use it to find the number of structurally different circuits attainable with spine remodeling. These parameters are calculated in four systems: mouse occipital cortex, rat hippocampal area CA1, monkey primary visual (V1), and human temporal cortex. The neurogeometric results indicate that a dendritic spine can choose among an average of 4-7 potential targets in rodents, while in primates it can choose from 10-20 potential targets. The potential of the neuropil to undergo circuit remodeling is found to be highest in rat CA1 (4.9-6.0 nats/mum 3) and lowest in monkey V1 (0.9-1.0 nats/mum3). We evaluate the lower bound of neuron selectivity in the choice of synaptic partners and find that post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. Another plasticity mechanism is included in the second part of this work: long-term potentiation and depression of excitatory synaptic connections. Because synaptic strength is correlated with the size of the synapse, the former can be inferred from the distribution of spine head volumes. To this end we analyze and compare 166

  9. Traumatic brain injury impairs synaptic plasticity in hippocampus in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-liang; CHEN Xin; TAN Tao; YANG Zhuo; CARLOS Dayao; JIANG Rong-cai; ZHANG Jian-ning

    2011-01-01

    Background Traumatic brain injury (TBl) often causes cognitive deficits and remote symptomatic epilepsy.Hippocampal regional excitability is associated with the cognitive function. However, little is known about injury-induced neuronal loss and subsequent alterations of hippocampal regional excitability. The present study was designed to determine whether TBl may impair the cellular circuit in the hippocampus.Methods Forty male Wistar rats were randomized into control (n=20) and TBl groups (n=20). Long-term potentiation,extracellular input/output curves, and hippocampal parvalbumin-immunoreactive and cholecystokinin-immunoreactive interneurons were compared between the two groups.Results TBI resulted in a significantly increased excitability in the dentate gyrus (DG), but a significantly decreased excitability in the cornu ammonis 1 (CA1) area. Using design-based stereological injury procedures, we induced interneuronal loss in the DG and CA3 subregions in the hippocampus, but not in the CA1 area.Conclusions TBl leads to the impairment of hippocampus synaptic plasticity due to the changing of interneuronal interaction. The injury-induced disruption of synaptic efficacy within the hippocampal circuit may underlie the observed cognitive deficits and symptomatic epilepsy.

  10. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    Science.gov (United States)

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.

  11. Biophysical and Biochemical Mechanisms in Synaptic Transmitter Release.

    Science.gov (United States)

    1992-01-31

    kinase (60 nM), 0.1% Nonidet - P40 . "Mock"-phospho-synapsin I was"treated as above except that both kinases. CaCI,. calmodulin. and Non- associated...cataly* tic subunit of cyclic AMIP-dependent protein kinase (64) nw/0-l1 %1 Nonidet -P441). Mock phospho-synapsin I was prepared as above except that...only with small (40-60 nm diameter) and not with idet- P40 were added, and ATP was omitted from the reaction mixture. large (>60 nm diameter) synaptic

  12. Evaluation of Biphasic Culture System for Mycobacterial Isolation from the Sputum of Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ghatole M

    2005-01-01

    Full Text Available Mycobacterial diseases continue to cause high morbidity and mortality. Isolation, identification and sensitivity testing form the backbone of laboratory investigations. M. tuberculosis isolation needs 6-8 weeks on conventional egg containing media. For rapid isolation various methods have been evaluated. We evaluated biphasic system (Middlebrook 7H11 agar slant + Middlebrook 9H broth in comparison with Lowenstein - Jensen (LJ medium. In smear positive cases biphasic system showed the recovery rate of 97.05% as against 79.41% on LJ on incubation for 21± 4.44 and 28±3.76 days respectively. In smear negative and culture positive cases biphasic system and LJ showed isolation rates of 91.66% and 66.6% after 36±3.44 and 41± 4.09 days respectively. Biphasic system showed lower contamination rate (1.33%. Biphasic medium is superior to LJ medium in isolation of M. tuberculosis .

  13. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.

    Science.gov (United States)

    Radwan, M M; Abd El-Hamid, H K; Mohamed, A F

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27-30 nm) was prepared by solid state reaction at 1450°C, while biphasic compound TCP/HAp (7-15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way.

  14. Reflections on the specificity of synaptic connections.

    Science.gov (United States)

    White, Edward L

    2007-10-01

    The principal focus of this treatise is the specificity of synaptic connectivity in the mammalian central nervous system. The occurrence of stereotypical patterns of connection at the macro level (e.g., the general consistency with which axonal pathways impinge on and originate within specific cortical areas and layers) implies that the cerebral cortex is a highly ordered structure. Order is seen also at the more micro level of synaptic connectivity, for instance, in the contrasting synaptic patterns of spiny vs. non-spiny neurons. Quantitative electron microscopic studies of synapses between identified neurons and correlative anatomical/electrophysiological investigations indicate that the high degree of order characterizing many aspects of cortical organization is mirrored by an equally ordered arrangement of synaptic connections between specific types of neurons. The recognition of recurring synaptic patterns has generated increased support for the notion of synaptic specificity as opposed to randomness, and we have begun now to understand the role of specificity in cortical function. At the core of cortical processing lie myriad possibilities for computation provided by the wealth of synaptic connections involving each neuron. Specificity, by limiting possibilities for connection, imposes an order on synaptic interactions even as processes of dynamic selection or synaptic remodeling ensure the constant formation and dissolution of cortical circuits. Collectively, these operations make maximal use of the richness of cortical synaptic connections to produce a highly flexible system, irrespective of the degree of hard-wiring, mutability, randomness or specificity that obtains for cortical wiring at any particular time. A brief, historical account of developments leading to our current understanding of cortical synaptic organization will precede the presentation of evidence for synaptic specificity.

  15. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms.

    Science.gov (United States)

    Li, Qin; Rothkegel, Martin; Xiao, Zhi Cheng; Abraham, Wickliffe C; Korte, Martin; Sajikumar, Sreedharan

    2014-02-01

    One conceptual mechanism for the induction of associative long-term memory is that a synaptic tag, set by a weak event, can capture plasticity-related proteins from a nearby strong input, thus enabling associativity between the 2 (synaptic tagging and capture, STC). So far, STC has been observed for only a limited time of 60 min. Nevertheless, association of weak memory forms can occur beyond this period and its mechanism is not well understood. Here we report that metaplasticity induced by ryanodine receptor activation or synaptic activation of metabotropic glutamate receptors prolongs the durability of the synaptic tag, thus extending the time window for associative interactions mediating storage of long-term memory. We provide evidence that such metaplasticity alters the mechanisms of STC from a CaMKII-mediated (in non-primed STC) to a protein kinase Mzeta (PKMζ)-mediated process (in primed STC). Thus the association of weak synapses with strong synapses in the "late" stage of associative memory formation occurs only through metaplasticity. The results also reveal that the short-lived, CaMKII-mediated tag may contribute to a mechanism for a fragile form of memory while metaplasticity enables a PKMζ-mediated synaptic tag capable of prolonged interactions that induce a more stable form of memory that is resistant to reversal.

  16. Injectable biphasic calcium phosphate bioceramic: The HYDROS concept.

    Science.gov (United States)

    Baroth, Serge; Bourges, Xavier; Goyenvalle, Eric; Aguado, Eric; Daculsi, Guy

    2009-01-01

    A new biphasic calcium phosphate ceramic material has been developed in our laboratory. It is composed of 60% of hydroxyapatite and 40% of beta-tricalcium phosphate, based on three granulometries (submicron, round microporous 80-200 mum and macro microporous 0.5-1 mm particles) and hydrated with water leading the formation of a putty filler for bone repair. Biocompatibility and osteogenicity were tested by filling femoral epiphyses critical size bone defect and lumbar muscles in rabbit. After 3, 6 and 12 weeks of implantation, explants were treated for histology. Results revealed the biocompatibility of the material and intensive resorption of the submicron particle fraction followed by important bone ingrowth whereas osteoconduction was provided by the larger particles.

  17. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Veronica Sebastian

    Full Text Available GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ and post-synaptic density-95 (PSD-95 are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML of the dentate gyrus (DG, stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.

  18. Opposing action of conantokin-G on synaptically and extrasynaptically-activated NMDA receptors.

    Science.gov (United States)

    Balsara, Rashna; Li, Neill; Weber-Adrian, Danielle; Huang, Louxiu; Castellino, Francis J

    2012-06-01

    Synaptic and extrasynaptic activation of the N-methyl-D-aspartate receptor (NMDAR) has distinct consequences on cell signaling and neuronal survival. Since conantokin (con)-G antagonism is NR2B-selective, which is the key subunit involved in extrasynaptic activation of the receptor, its ability to specifically elicit distinct signaling outcomes in neurons with synaptically or extrasynaptically-activated NMDARs was evaluated. Inhibition of Ca(2+) influx through extrasynaptic NMDAR ion channels was neuroprotective, as it effectively enhanced levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), activated cAMP response element binding protein (CREB), enhanced mitochondrial viability, and attenuated the actin disorganization observed by extrasynaptic activation of NMDARs. Conversely, the pro-signaling pathways stimulated by synaptically-induced Ca(2+) influx were abolished by con-G. Furthermore, subunit non-selective con-T was unable to successfully redress the impairments in neurons caused by extrasynaptically-activated NMDARs, thus indicating that NR2B-specific antagonists are beneficial for neuron survival. Neurons ablated for the NR2B subunit showed weak synaptic Ca(2+) influx, reduced sensitivity to MK-801 blockage, and diminished extrasynaptic current compared to WT and NR2A(-/-) neurons. This indicates that the NR2B subunit is an integral component of both synaptic and extrasynaptic NMDAR channels. Altogether, these data suggest that con-G specifically targets the NR2B subunit in the synaptic and extrasynaptic locations, resulting in the opposing action of con-G on differentially activated pools of NMDARs.

  19. DREAM (Downstream Regulatory Element Antagonist Modulator contributes to synaptic depression and contextual fear memory

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2010-01-01

    Full Text Available Abstract The downstream regulatory element antagonist modulator (DREAM, a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM, we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD but not long-term potentiation (LTP, was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory.

  20. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Ninan, Ipe; Bath, Kevin G; Dagar, Karishma; Perez-Castro, Rosalia; Plummer, Mark R; Lee, Francis S; Chao, Moses V

    2010-06-30

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.

  1. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    Science.gov (United States)

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses.

  2. Generation and behavior characterization of CaMKIIβ knockout mice.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available The calcium/calmodulin-dependent protein kinase II (CaMKII is abundant in the brain, where it makes important contributions to synaptic organization and homeostasis, including playing an essential role in synaptic plasticity and memory. Four genes encode isoforms of CaMKII (α, β, δ, γ, with CaMKIIα and CaMKIIβ highly expressed in the brain. Decades of molecular and cellular research, as well as the use of a large number of CaMKIIα mutant mouse lines, have provided insight into the pivotal roles of CaMKIIα in brain plasticity and cognition. However, less is known about the CaMKIIβ isoform. We report the development and extensive behavioral and phenotypic characterization of a CaMKIIβ knockout (KO mouse. The CaMKIIβ KO mouse was found to be smaller at weaning, with an altered body mass composition. The CaMKIIβ KO mouse showed ataxia, impaired forelimb grip strength, and deficits in the rotorod, balance beam and running wheel tasks. Interestingly, the CaMKIIβ KO mouse exhibited reduced anxiety in the elevated plus maze and open field tests. The CaMKIIβ KO mouse also showed cognitive impairment in the novel object recognition task. Our results provide a comprehensive behavioral characterization of mice deficient in the β isoform of CaMKII. The neurologic phenotypes and the construction of the genotype suggest the utility of this KO mouse strain for future studies of CaMKIIβ in brain structure, function and development.

  3. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  4. Synaptic Vesicle Proteins and Active Zone Plasticity.

    Science.gov (United States)

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  5. Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Ren, Wei; Ma, Xin-Ming

    2014-12-15

    Major depressive disorder is the most prevalent psychiatric condition, but the cellular and molecular mechanisms underlying this disorder are largely unknown, although multiple hypotheses have been proposed. The aim of this study was to characterize the progressive alteration of neuronal plasticity in the male rat hippocampus during depression induced by chronic unpredictable mild stress (CUMS), an established animal model of depression. The data in the hippocampus were collected on days 7, 14 and 21 after the onset of three-week CUMS. When analyzed on day 21, three-week CUMS induced typically depressive-like behaviors, impaired LTP induction, and decreased basal synaptic transmission at hippocampal CA3-CA1 synapses recorded in vivo, which was accompanied by decreased density of dendritic spines in CA1 and CA3 pyramidal neurons. The levels of both Kalirin-7 and brain-derived neurotrophic factor (BDNF) in the hippocampus were decreased at the same time. On day 14 (middle phase), some depressive-like behaviors were observed, which was accompanied by depressed basal synaptic transmission and enhanced LTP induction at the CA3-CA1 synapses. However, BDNF expression was decreased without alteration of Kalirin7 expression in comparison with no-stress control. Depressed basal synaptic transmission occurred in the middle phase of CUMS may contribute to decreased expression of BDNF. On day 7, depressive-like behaviors were not observed, and LTP induction, spine density, Kalirin-7 and BDNF expression were not altered by CUMS in comparison with no-stress control. These results showed that the functional changes at CA3-CA1synapses occurred earlier than the structural alteration during three-week CUMS as a strategy of neural adaptation, and rats required three weeks to develop depressive-like behaviors during CUMS. Our results suggest an important role of Kalirin-7 in CUMS-mediated alterations in spine density, synaptic function and overall depressive-like behaviors on day 21.

  6. Hormetic effect of amyloid-beta peptide in hippocampal synaptic plasticity and memory

    Directory of Open Access Journals (Sweden)

    Daniela Puzzo

    2012-09-01

    Full Text Available Background: The term hormesis refers to a biphasic dose-response phenomenon characterized by low-dose stimulation and high-dose inhibition represented by a J-shaped or U-shaped curve, depending on the parameter measured (Calabrese and Baldwin, Hum Exp Toxicol, 2002. Indeed, several, if not all, physiological molecules (i.e. glutamate, glucocorticoids, nitric oxide are likely to present a hormetic effect, exhibiting opposite effects at high or low concentrations. In the last few years, we have focused on amyloid-beta (A, a peptide widely known because it is produced in high amounts during Alzheimer’s disease (AD. A is considered a toxic fragment causing synaptic dysfunction and memory impairment (Selkoe, Science, 2002. However, the peptide is normally produced in the healthy brain and growing evidences indicate that it might have a physiologic function. Aim: Based on previous results showing that picomolar concentrations of A42 enhance synaptic plasticity and memory (Puzzo et al, J Neurosci, 2008 and that endogenous A is necessary for synaptic plasticity and memory (Puzzo et al, Ann Neurol, 2011, the aim of our study was to demonstrate the hormetic role of A in synaptic plasticity and memory. Methods: We used 3-month old wild type mice to analyze how synaptic plasticity, measured on hippocampal slices in vitro, and spatial reference memory were modified by treatment with different doses of A (from 2 pM to 20 μM. Results: We demonstrated that A has a hormetic effect (Puzzo et al, Neurobiol Aging, 2012 with low-doses (200 pM stimulating synaptic plasticity and memory and high-doses (≥ 200 nM inhibiting these processes. Conclusions: Our results suggest that, paradoxically, very low doses of A might serve to enhance memory at appropriate concentrations and conditions. These findings raise several issues when designing

  7. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis.

    Directory of Open Access Journals (Sweden)

    Wei Xiong

    Full Text Available AIM: Neurotransmitter release is elicited by an elevation of intracellular Ca(2+ concentration ([Ca(2+](i. The action potential triggers Ca(2+ influx through Ca(2+ channels which causes local changes of [Ca(2+](i for vesicle release. However, any direct role of extracellular Ca(2+ (besides Ca(2+ influx on Ca(2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG neurons and chromaffin cells, widely used models for studying vesicle exocytosis. RESULTS: Using photolysis of caged Ca(2+ and caffeine-induced release of stored Ca(2+, we found that extracellular Ca(2+ inhibited exocytosis following moderate [Ca(2+](i rises (2-3 µM. The IC(50 for extracellular Ca(2+ inhibition of exocytosis (ECIE was 1.38 mM and a physiological reduction (∼30% of extracellular Ca(2+ concentration ([Ca(2+](o significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca(2+](o. The calcimimetics Mg(2+, Cd(2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca(2+-sensing receptor (CaSR was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. CONCLUSION/SIGNIFICANCE: As an extension of the classic Ca(2+ hypothesis of synaptic release, physiological levels of extracellular Ca(2+ play dual roles in evoked exocytosis by providing a source of Ca(2+ influx, and by directly regulating quantal size and release probability in neuronal cells.

  8. Decrease of synaptic plasticity associated with alteration of information flow in a rat model of vascular dementia.

    Science.gov (United States)

    Xu, X; Li, Z; Yang, Z; Zhang, T

    2012-03-29

    This investigation examined whether the directional index of neural information flow (NIF) could be employed to characterize the synaptic plasticity in the CA3-CA1 pathway of the hippocampus and assessed which oscillatory rhythm was associated with cognitive impairments induced by vascular dementia (VD). Rats were randomly divided into control and VD groups. The animal model of VD used the two-vessel occlusion (2VO) method. Behavior was measured using the Morris water maze (MWM). Local field potentials (LFPs) from CA3 and CA1 were recorded after behavioral tests, followed by recording long-term potentiation (LTP) of the same CA3-CA1 pathway. General partial directed coherence (gPDC) approach was utilized to determine the directionality of NIF between CA3 and CA1 over five frequency bands, which were delta, theta, alpha, beta, and gamma. The results showed that the escape latencies were significantly prolonged in the VD group, whereas the swimming speeds of these two groups remained constant throughout testing. Moreover, the phase synchronization values between CA3 and CA1 regions were reduced in theta, alpha, beta, and gamma bands in the VD state compared to that in the normal state. The coupling directional index was considerably decreased in the previously given four frequency bands in VD rats, whereas the strength of CA3 driving CA1 was significantly reduced in the same frequency bands. Interestingly, LTP was significantly decreased in the VD group, which was consistent with the LFPs findings. The data suggest that the directionality index of NIF in these physiological oscillatory rhythms could be used as a measure of synaptic plasticity in the hippocampal CA3-CA1 pathway in VD states. The potential mechanism of the relationship between NIF direction and synaptic plasticity in VD state was discussed.

  9. Presynaptic [Ca2+] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses

    Directory of Open Access Journals (Sweden)

    Frank eSchmitz

    2014-02-01

    Full Text Available Changes in intracellular calcium ions [Ca2+] play important roles in photoreceptor signalling. Consequently, intracellular [Ca2+] levels need to be tightly controlled. In the light-sensitive outer segments (OS of photoreceptors, Ca2+ regulates the activity of retinal guanylate cyclases (ret-GCs thus playing a central role in phototransduction and light-adaptation by restoring light-induced decreases in cGMP. In the synaptic terminals, changes of intracellular Ca2+ trigger various aspects of neurotransmission. Photoreceptors employ tonically active ribbon synapses that encode light-induced, graded changes of membrane potential into different rates of synaptic vesicle exocytosis. The active zones of ribbon synapses contain large electron-dense structures, synaptic ribbons, that are associated with large numbers of synaptic vesicles. Synaptic coding at ribbon synapses differs from synaptic coding at conventional (phasic synapses. Recent studies revealed new insights how synaptic ribbons are involved in this process. This review focuses on the regulation of [Ca2+] in presynaptic photoreceptor terminals and on the function of a particular Ca2+-regulated protein, the neuronal calcium sensor protein GCAP2 (guanylate cyclase-activating protein-2 in the photoreceptor ribbon synapse. GCAP2, an EF hand-containing protein plays multiple roles in the OS and in the photoreceptor synapse. In the OS, GCAP2 works as a Ca2+-sensor within a Ca2+-regulated feedback loop that adjusts cGMP levels. In the photoreceptor synapse, GCAP2 binds to RIBEYE, a component of synaptic ribbons, and mediates Ca2+-dependent plasticity at that site. Possible mechanisms are discussed.

  10. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore......, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions...... and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward...

  11. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit

    Science.gov (United States)

    Prince, Luke Y.; Bacon, Travis J.; Tigaret, Cezar M.; Mellor, Jack R.

    2016-01-01

    The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval. PMID:27799909

  12. Neuromodulation of the feedforward dentate gyrus-CA3 microcircuit

    OpenAIRE

    Luke Yuri Prince; Travis J Bacon; Tigaret, Cezar M.; Mellor, Jack R.

    2016-01-01

    The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on...

  13. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit

    OpenAIRE

    Prince, Luke; Travis J Bacon; Tigaret, Cezar; Mellor, Jack

    2016-01-01

    The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on...

  14. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit.

    Science.gov (United States)

    Prince, Luke Y; Bacon, Travis J; Tigaret, Cezar M; Mellor, Jack R

    2016-01-01

    The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.

  15. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength.

    Science.gov (United States)

    Lee, Hakjoo; Raiker, Stephen J; Venkatesh, Karthik; Geary, Rebecca; Robak, Laurie A; Zhang, Yu; Yeh, Hermes H; Shrager, Peter; Giger, Roman J

    2008-03-12

    In the mature nervous system, changes in synaptic strength correlate with changes in neuronal structure. Members of the Nogo-66 receptor family have been implicated in regulating neuronal morphology. Nogo-66 receptor 1 (NgR1) supports binding of the myelin inhibitors Nogo-A, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), and is important for growth cone collapse in response to acutely presented inhibitors in vitro. After injury to the corticospinal tract, NgR1 limits axon collateral sprouting but is not important for blocking long-distance regenerative growth in vivo. Here, we report on a novel interaction between NgR1 and select members of the fibroblast growth factor (FGF) family. FGF1 and FGF2 bind directly and with high affinity to NgR1 but not to NgR2 or NgR3. In primary cortical neurons, ectopic NgR1 inhibits FGF2-elicited axonal branching. Loss of NgR1 results in altered spine morphologies along apical dendrites of hippocampal CA1 neurons in vivo. Analysis of synaptosomal fractions revealed that NgR1 is enriched synaptically in the hippocampus. Physiological studies at Schaffer collateral-CA1 synapses uncovered a synaptic function for NgR1. Loss of NgR1 leads to FGF2-dependent enhancement of long-term potentiation (LTP) without altering basal synaptic transmission or short-term plasticity. NgR1 and FGF receptor 1 (FGFR1) are colocalized to synapses, and mechanistic studies revealed that FGFR kinase activity is necessary for FGF2-elicited enhancement of hippocampal LTP in NgR1 mutants. In addition, loss of NgR1 attenuates long-term depression of synaptic transmission at Schaffer collateral-CA1 synapses. Together, our findings establish that physiological NgR1 signaling regulates activity-dependent synaptic strength and uncover neuronal NgR1 as a regulator of synaptic plasticity.

  16. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia [Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Medicine, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho; Wan, Chao [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Yang, Xuesong, E-mail: yang_xuesong@126.com [Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Medicine, Jinan University, Guangzhou 510632 (China); Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632 (China)

    2014-11-15

    increased in mesenchymal cell mass treated by low concentration of Dex. Mmp-13 expression was obviously up-regulated by Dex in both mesenchymal cells and primary chondrocyte cultures. And Col10a1 expression was also increased by Dex exposure in chondrocyte. In summary, we have revealed that different concentrations of Dex exposure during early gestation could exert a biphasic effect on vertebrate skeletal development. - Highlights: • Chick embryos occurred shortening of the long bone following Dex exposure. • Dex suppressed chondrocytes proliferation and promoted apoptosis. • Dex exposure decreased ALP production and up-regulated Runx-2 and Mmp-13. • Dex exhibited biphasic effects on chondrogenic proliferation and nodule formation. • The hypertrophy and ossification were accelerated by Dex both in vivo and in vitro.

  17. Gastrin-releasing peptide facilitates glutamatergic transmission in the hippocampus and effectively prevents vascular dementia induced cognitive and synaptic plasticity deficits.

    Science.gov (United States)

    Yang, Jiajia; Yao, Yang; Wang, Ling; Yang, Chunxiao; Wang, Faqi; Guo, Jie; Wang, Zhiyun; Yang, Zhuo; Ming, Dong

    2017-01-01

    Neuronal gastrin-releasing peptide (GRP) has been proved to be an important neuromodulator in the brain and involved in a variety of neurological diseases. Whether GRP could attenuate cognition impairment induced by vascular dementia (VD) in rats, and the mechanism of synaptic plasticity and GRP's action on synaptic efficiency are still poorly understood. In this study, we first investigated the effects of GRP on glutamatergic transmission with patch-clamp recording. We found that acute application of GRP enhanced the excitatory synaptic transmission in hippocampal CA1 neurons via GRPR in a presynaptic mechanism. Secondly, we examined whether exogenous GRP or its analogue neuromedin B (NMB) could prevent VD-induced cognitive deficits and the mechanism of synaptic plasticity. By using Morris water maze, long-term potentiation (LTP) recording, western blot assay and immunofluorescent staining, we verified for the first time that GRP or NMB substantially improved the spatial learning and memory abilities in VD rats, restored the impaired synaptic plasticity and was able to elevate the expression of synaptic proteins, synaptophysin (SYP) and CaMKII, which play pivotal roles in synaptic plasticity. These results suggest that the facilitatory effects of GRP on glutamate release may contribute to its long-term action on synaptic efficacy which is essential in cognitive function. Our findings present a new entry point for a better understanding of physiological function of GRP and raise the possibility that GRPR agonists might ameliorate cognitive deficits associated with neurological diseases.

  18. Comparison of monophasic and biphasic shocks for transthoracic cardioversion of atrial fibrillation

    NARCIS (Netherlands)

    M.F. Scholten (Marcoen); T. Szili-Torok (Tamas); L.J.L.M. Jordaens (Luc); A.P.J. Klootwijk (Peter)

    2003-01-01

    textabstractOBJECTIVE: To compare the efficacy of cardioversion in patients with atrial fibrillation between monophasic damped sine waveform and rectilinear biphasic waveform shocks at a high initial energy level and with a conventional paddle position. DESIGN: Prospective randomis

  19. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems.

    Science.gov (United States)

    Chakraborty, Arabinda; Sen, Kamalika

    2016-02-12

    The phase diagrams of aqueous biphasic systems impart a distinct idea regarding the feasibility of biphase formation by different water soluble substances at their optimum concentrations. Depending on nature of the components viz., the water soluble polymers, surfactants, salts, amino acids or ionic liquids, a general trend of the biphase formation with varying temperature, pH and concentration has been studied over the recent years. This critical review is an endeavor to assess the general trends of these phase forming components to form biphasic systems with varying conditions of temperature and pH in light of the reported phase diagrams. Suitable explanations for the mechanisms of such behavior have been sorted out. The avenue yet to be explored has been addressed as these systems have a tremendous potential to be the future platform to solve different analytical issues.

  20. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

    Directory of Open Access Journals (Sweden)

    Thom Griffith

    2016-05-01

    Full Text Available The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR and voltage-gated Ca2+ -channel (VGCC activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators.

  1. Ginkgolic acid protects against Aβ-induced synaptic dysfunction in the hippocampus

    Directory of Open Access Journals (Sweden)

    Dalila Mango

    2016-10-01

    Full Text Available Ginkgo leaf is the most used form of supplement for cognitive ailments. The standardized extract formulation EGb 761 is a dietary supplement with proven benefit in several neurological and psychiatric conditions including memory decline in Alzheimer’s disease, schizophrenia and dementia. Ginkgolic acid is a component of this extract which shows pleiotropic effects including antitumoral and anti-HIV action; however its effect on memory is still unknown. Here, we carried out an electrophysiological analysis to investigate the effects of ginkgolic acid on long term potentiation and synaptic transmission at CA1 hippocampal synapses. We also evaluated the potential rescuing effect of ginkgolic acid on the synaptic dysfunction following in vitro application of Aβ. Data obtained indicate that ginkgolic acid exerts neuroprotective effects against Aβ-induced impairment of neurotransmitter release and synaptic plasticity.

  2. Schisandra N-butanol extract improves synaptic morphology and plasticity in ovarectomized mice

    Institute of Scientific and Technical Information of China (English)

    Meiyan Yang; Zhaolin Cai; Peng Xiao; Chuhua Li

    2012-01-01

    Preliminary work by our research team revealed that Schisandra, a renowned traditional Chinese medicine, causes learning and memory improvements in ovariectomized mice. This activity was attributed to active ingredients extracted with N-butyl alcohol, named Schisandra N-butanol extract. In this study, ovariectomized mice were pretreated with Schisandra N-butanol extract given by intragastric administration. This treatment led to the enhancement of learning, and an increase in hippocampal CA1 synaptic, surface and postsynaptic density. A decrease in the average size of the synaptic active zone was also observed. These experimental findings showing that Schisandra N-butanol extract improved synaptic morphology indicate an underlying mechanism by which the ability of learning is enhanced in ovariectomized mice.

  3. Biphasic flow: structure and upscaling, consequences on macroscopic transport properties

    CERN Document Server

    Toussaint, Renaud; Méheust, Yves; Løvoll, Grunde; Jankov, Mihailo; Schäfer, Gerhard; Schmittbuhl, Jean

    2012-01-01

    In disordered porous media, two-phase flow of immiscible fluids (biphasic flow) is organized in patterns that sometimes exhibit fractal geometries over a range of length scales, depending on the capillary, gravitational and viscous forces at play. These forces, as well as the boundary conditions, also determine whether the flow leads to the appearance of fingering pathways, i.e., unstable flow, or not. We present here a short review of these aspects, focusing on drainage and summarizing when these flows are expected to be stable or not, what fractal dimensions can be expected, and in which range of scales. We base our review on experimental studies performed in two-dimensional Hele-Shaw cells, or addressing three dimensional porous media by use of several imaging techniques. We first present configurations in which solely capillary forces and gravity play a role. Next, we review configurations in which capillarity and viscosity are the main forces at play. Eventually, we examine how the microscopic geometry o...

  4. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques.

    Science.gov (United States)

    Shimomura, Kazunori; Moriguchi, Yu; Murawski, Christopher D; Yoshikawa, Hideki; Nakamura, Norimasa

    2014-10-01

    The management of osteoarthritis (OA) remains challenging and controversial. Although several clinical options exist for the treatment of OA, regeneration of the damaged articular cartilage has proved difficult due to the limited healing capacity. With the advancements in tissue engineering and cell-based technologies over the past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This review will focus on the feasibility of tissue-engineered biphasic scaffolds, which can mimic the native osteochondral complex, for osteochondral repair and highlight the recent development of these techniques toward tissue regeneration. Moreover, basic anatomy, strategy for osteochondral repair, the design and fabrication methods of scaffolds, as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. In turn, this will facilitate an understanding of the latest trends in osteochondral repair and contribute to the future application of such clinical therapies in patients with OA.

  5. Aqueous biphasic systems involving alkylsulfate-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Deive, Francisco J. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Rodriguez, Ana [Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Marrucho, Isabel M., E-mail: imarrucho@itqb.unl.pt [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Rebelo, Luis P.N. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal)

    2011-11-15

    Highlights: > K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4} act as phase promoter in aqueous solutions of ILs. > Remarkable influence of alkyl-chain length on solubility curves of alkylsulfate-based ILs. > Merchuck correlation was used for describing these systems. > {Delta}S{sub hyd} and Hofmeister series were used to discuss the different salting out effects. - Abstract: The specific effects of K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4}, as high charge-density inorganic salts and thus inducers of the formation of aqueous biphasic systems (ABS) containing several ethyl-methylimidazolium alkylsulfate ionic liquids, C{sub 2}MIM C{sub n}SO{sub 4} (n = 2, 4, 6, or 8), have been assessed at T = 298.15 K. The results are analyzed in the light of the Hofmeister series. The influence of different alkyl chain lengths in the anion, together with the ability of the selected inorganic salts to induce the formation of ABS, is discussed. Phase diagrams have been determined through turbidimetry, including tie lines assignments from mass phase ratios according to the lever - arm rule. The Merchuck equation was satisfactorily used to correlate the solubility curve.

  6. Biphasic oxidation of oxy-hemoglobin in bloodstains.

    Directory of Open Access Journals (Sweden)

    Rolf H Bremmer

    Full Text Available BACKGROUND: In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2 to met-hemoglobin (met-Hb and hemichrome (HC. The fractions of HbO(2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO(2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates. METHODOLOGY: The fractions of HbO(2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450-800 nm, were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach. CONCLUSIONS: The oxidation rate of HbO(2 in bloodstains is biphasic. At first, the oxidation of HbO(2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO(2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene.

  7. RADIOGRAPHIC IMAGING OF BIPHASIC SYNOVIAL SARCOMA ON LEFT ELBOW

    Directory of Open Access Journals (Sweden)

    Sitanggang Firman P

    2013-04-01

    Full Text Available Synovial sarcoma is the fourth most common type of sarcoma. It represents between 5% -10% of all soft tissue sarcomas and most prevalent in aged between 15 - 40 years. Synovial sarcoma is the most commonly misdiagnosed soft tissue malignancy, initially as an inflammation process,often because it may be slow-growing, have a benign appearance on imaging studies, may vary in size, and may have pain similar to that associated with trauma.    A rare case is presented of 17 years old women with a synovial sarcoma biphasic. The primary tumor originated in the left elbow since 2004. Since then, the patient has had repeated passive or active left elbow pain and tenderness. No history of trauma. She has not developed metastases of the lung. The patient refused to have surgery and others medical procedures that already planned and explained to her. The conclusion of this case report point that radiology is important to diagnosis and planning for further management

  8. Distance-dependent homeostatic synaptic scaling mediated by A-type potassium channels

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2009-11-01

    Full Text Available Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal gradient of synaptic strength along the dendrites. As the density of A-type potassium channels exhibits a similar gradient from proximal (low-to-distal (high dendrites, the A-current may play a role in coordinating local synaptic changes with the global synaptic strength gradient. Here we describe a form of homeostatic plasticity elicited by conventional activity blockade (with TTX coupled with a block of the A-type potassium channel. Following A-type potassium channel inhibition for 12 hrs, recordings from CA1 somata revealed a significantly higher miniature excitatory postsynaptic current (mEPSC frequency, whereas in dendritic recordings, there was no change in mEPSC frequency. Consistent with mEPSC recordings, we observed a significant increase in AMPA receptor density in stratum pyramidale but not stratum radiatum. Based on these data, we propose that the differential distribution of A-type potassium channels along the apical dendrites may create a proximal-to-distal membrane potential gradient. This gradient may regulate AMPA receptor distribution along the same axis. Taken together, our results indicate that A-type potassium channels play an important role in controlling synaptic strength along the dendrites, which may help to maintain the computational capacity of the neuron.

  9. The requirement of BDNF for hippocampal synaptic plasticity is experience‐dependent

    Science.gov (United States)

    Aarse, Janna; Herlitze, Stefan

    2016-01-01

    ABSTRACT Brain‐derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus‐dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience‐dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long‐term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long‐term potentiation (LTP) and long‐term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/−). We show that whereas early‐LTD (BDNF, short‐term depression (BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object‐place learning triggers LTD in the CA1 region of mice. We observed that object‐place memory was impaired and the object‐place exploration failed to induce LTD in BDNF+/− mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal‐dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning‐facilitated LTD and spatial reference memory are both impaired in BDNF+/− mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus‐dependent memory. © 2015 The Authors

  10. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    Science.gov (United States)

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  11. A biphasic theory for the viscoelastic behaviors of vocal fold lamina propria in stress relaxation.

    Science.gov (United States)

    Zhang, Yu; Czerwonka, Lukasz; Tao, Chao; Jiang, Jack J

    2008-03-01

    In this study, a biphasic theory is applied to investigate the viscoelastic behaviors of vocal fold lamina propria during stress relaxation. The vocal fold lamina propria tissue is described as a biphasic material composed of a solid phase and an interstitial fluid phase. The biphasic theory reveals the interaction between the solid and the fluid. For the one-dimensional case, the analytical solutions of solid displacement, fluid velocity, and stress are derived. The biphasic theory predicts the stress relaxation of the vocal fold lamina propria. The quasilinear viscoelastic model as well as its higher-order elastic parameters can be derived from this biphasic theory. Furthermore, the fluid is found to support the majority of the stress at the early stage of stress relaxation; however, when the time becomes sufficiently large, the solid eventually bears all the stress. The early fluid stress support is much higher than the eventual solid support and may be important for understanding the effects of dehydration on tissue damage. By considering the solid-fluid structure of the vocal fold lamina propria, the biphasic theory allows for a more physical theory of tissue viscoelasticity than a single phase solid description and may provide a valuable physical mechanism for the observed vocal fold rheologic behaviors.

  12. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse.

    Science.gov (United States)

    Goldberg, Ethan M; Watanabe, Shigeo; Chang, Su Ying; Joho, Rolf H; Huang, Z Josh; Leonard, Christopher S; Rudy, Bernardo

    2005-05-25

    Potassium (K+) channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and fast activation/deactivation kinetics when compared with other voltage-gated K+ channels, features that confer on Kv3 channels the ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determinant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0 mM tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyramidal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mM TEA, with a decrease in the paired pulse ratio (PPR), effects not reproduced by blockade of the non-Kv3 subfamily K+ channels also blocked by low concentrations of TEA. Moreover, in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from those of Kv1 and large-conductance Ca2+-activated K+ channels (also present at the FS cell synapse). We propose that at FS cell terminals synaptically localized Kv3 channels keep APs brief, limiting Ca2+ influx and hence release probability, thereby influencing synaptic depression at a synapse designed for sustained high-frequency synaptic transmission.

  13. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs

    Directory of Open Access Journals (Sweden)

    NL Davison

    2015-06-01

    Full Text Available It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs, and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of ≤ 1 μm trigger osteoinduction and osteoclast formation irrespective of macrostructure (e.g., concavities, interconnected macropores, interparticle space or surface chemistry. To test this, planar discs made of biphasic calcium phosphate (BCP: 80 % hydroxyapatite, 20 % tricalcium phosphate were prepared with different surface structural dimensions – either ~ 1 μm (BCP1150 or ~ 2-4 μm (BCP1300 – and no macropores or concavities. A third material was made by sputter coating BCP1150 with titanium (BCP1150Ti, thereby changing its surface chemistry but preserving its surface structure and chemical reactivity. After intramuscular implantation in 5 dogs for 12 weeks, BCP1150 formed ectopic bone in 4 out of 5 samples, BCP1150Ti formed ectopic bone in 3 out of 5 samples, and BCP1300 formed no ectopic bone in any of the 5 samples. In vivo, large multinucleated osteoclast-like cells densely colonised BCP1150, smaller osteoclast-like cells formed on BCP1150Ti, and osteoclast-like cells scarcely formed on BCP1300. In vitro, RAW264.7 cells cultured on the surface of BCP1150 and BCP1150Ti in the presence of osteoclast differentiation factor RANKL (receptor activator for NF-κB ligand proliferated then differentiated into multinucleated osteoclast-like cells with positive tartrate resistant acid phosphatase (TRAP activity. However, cell proliferation, fusion, and TRAP activity were all significantly inhibited on BCP1300. These results indicate that of the material parameters tested – namely, surface microstructure, macrostructure, and surface chemistry – microstructural dimensions are critical in promoting osteoclastogenesis and triggering ectopic bone formation.

  14. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  15. ApoE isoform-dependent changes in hippocampal synaptic function

    Directory of Open Access Journals (Sweden)

    Sullivan Patrick M

    2009-05-01

    Full Text Available Abstract The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure.

  16. Plasticity of inhibitory synaptic network interactions in the lateral amygdala upon fear conditioning in mice.

    Science.gov (United States)

    Szinyei, Csaba; Narayanan, Rajeevan T; Pape, Hans-Christian

    2007-02-01

    After fear conditioning, plastic changes of excitatory synaptic transmission occur in the amygdala. Fear-related memory also involves the GABAergic system, although no influence on inhibitory synaptic transmission is known. In the present study we assessed the influence of Pavlovian fear conditioning on the plasticity of GABAergic synaptic interactions in the lateral amygdala (LA) in brain slices prepared from fear-conditioned, pseudo-trained and naïve adult mice. Theta-burst tetanization of thalamic afferent inputs to the LA evoked an input-specific potentiation of inhibitory postsynaptic responses in projection neurons; the cortical input was unaffected. Philanthotoxin (10 microM), an antagonist of Ca2+-permeable AMPA receptors, disabled this plastic phenomenon. Surgical isolation of the LA, extracellular application of a GABA(B) receptor antagonist (CGP 55845A, 10 microM) or an NMDA receptor antagonist (APV, 50 microM), or intracellular application of BAPTA (10 mM), did not influence the plasticity. The plasticity also showed as a potentiation of monosynaptic excitatory responses in putative GABAergic interneurons. Pavlovian fear conditioning, but not pseudo-conditioning, resulted in a significant reduction in this potentiation that was evident 24 h after training. Two weeks after training, the potentiation returned to control levels. In conclusion, a reduction in potentiation of inhibitory synaptic interactions occurs in the LA and may contribute to a shift in synaptic balance towards excitatory signal flow during the processes of fear-memory acquisition or consolidation.

  17. Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.

    Science.gov (United States)

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatár, Jan; Ribeiro, Joaquim A; Maggi, Laura; Frenguelli, Bruno G; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.

  18. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  19. Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling.

    OpenAIRE

    Akam T; Oren I; Mantoan L; Ferenczi E; Kullmann DM.

    2012-01-01

    Gamma oscillations in the dentate gyrus and hippocampal CA3 show variable coherence in vivo, but the mechanisms and relevance for information flow are unknown. We found that carbachol-induced oscillations in rat CA3 have biphasic phase-response curves, consistent with the ability to couple with oscillations in afferent projections. Differences in response to stimulation of either the intrinsic feedback circuit or the dentate gyrus were well described by varying an impulse vector in a two-dime...

  20. Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons.

    Science.gov (United States)

    Ogawa, Hiroto; Baba, Yoshichika; Oka, Kotaro

    2002-02-15

    The relationship between electrical activity and spike-induced Ca2+ increases in dendrites was investigated in the identified wind-sensitive giant interneurons in the cricket. We applied a high-speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi- or contra-lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike-triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage-dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons.

  1. Ca/calmodulin-dependent phosphorylation of endocytic scaffold ITSN1

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2014-01-01

    Full Text Available ITSN1 is an endocytic scaffold protein with a prominent function in synaptic transmission. It is known that Ca signaling is crucial for the regulation of synaptic proteins functioning. Aim. Checking the possibility of Ca/calmodulin-dependent phosphorylation of ITSN1. Methods. Affinity chromatography, in vitro kinase reaction, Western blotting, gel staining with fluorescent stains. Results. We show that the fraction of calmodulin-binding proteins is able to phosphorylate the recombinant fragments encoding the coiled-coil region and the SH3 domain-containing region of ITSN1 in the presence of Ca ions and calmodulin. Conclusions. The coiled-coil region and the SH3 domain-containing region of ITSN1 undergo Ca/calmodulin-dependent phosphorylation in vitro, suggesting a possible regulation of ITSN1 by Ca signaling.

  2. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.

    Science.gov (United States)

    Mao, Wenjie; Watanabe, Takuya; Cho, Sukhee; Frost, Jeffrey L; Truong, Tina; Zhao, Xiaohu; Futai, Kensuke

    2015-04-01

    The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons.

  3. Astroglial calcium signaling displays short-term plasticity and adjusts synaptic efficacy

    Directory of Open Access Journals (Sweden)

    Jeremie eSibille

    2015-05-01

    Full Text Available Astrocytes are dynamic signaling brain elements able to sense neuronal inputs and to respond by complex calcium signals, which are thought to represent their excitability. Such signaling has been proposed to modulate, or not, neuronal activities ranging from basal synaptic transmission to epileptiform discharges. However, whether calcium signaling in astrocytes exhibits activity-dependent changes and acutely modulates short-term synaptic plasticity is currently unclear. We here show, using dual recordings of astroglial calcium signals and synaptic transmission, that calcium signaling in astrocytes displays, concomitantly to excitatory synapses, short-term plasticity in response to prolonged repetitive and tetanic stimulations of Schaffer collaterals. We also found that acute inhibition of calcium signaling in astrocytes by intracellular calcium chelation rapidly potentiates excitatory synaptic transmission and short-term plasticity of Shaffer collateral CA1 synapses, i.e. paired-pulse facilitation and responses to tetanic and prolonged repetitive stimulation. These data reveal that calcium signaling of astrocytes is plastic and down-regulates basal transmission and short-term plasticity of hippocampal CA1 glutamatergic synapses.

  4. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  5. Design and evaluation of lornoxicam bilayered tablets for biphasic release

    Directory of Open Access Journals (Sweden)

    Songa Ambedkar Sunil

    2012-12-01

    Full Text Available The objective of the present investigation was to develop bilayered tablets of lornoxicam to achieve biphasic release pattern. A bilayered tablet, consisting of an immediate and controlled release layer, was prepared by direct compression technique. The controlled release effect was achieved by using various hydrophilic natural, semi synthetic and synthetic controlled release polymers such as xanthan gum, hydroxypropyl methylcellulose (HPMC and polyethylene oxide (PEO to modulate the release of the drug. The in vitro drug release profiles showed the biphasic release behavior in which the immediate release (IR layer containing the lornoxicam was released within 15 minutes, whereas the controlled release (CR layer controlled the drug release for up to 24 h. All the bilayered tablets formulated have followed the zero order release with non-Fickian diffusion controlled release mechanism after the initial burst release. FTIR studies revealed that there was no interaction between the drug and polymers used in the study. Statistical analysis (ANOVA showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p O objetivo do presente trabalho foi desenvolver comprimidos bicamada de lornoxicam para atingir padrão de liberação bifásica. Preparou-se, por compressão direta, comprimido bicamada, consistindo de uma camada de liberação imediata e uma de liberação controlada. A liberação controlada foi obtida pelo uso de vários polímeros naturais hidrofílicos, semi-sintéticos e sintéticos, tais como goma xantana, hidroxipropilmetil celulose (HPMC e óxido de polietileno (PEO para modular a liberação do fármaco. Os perfis de liberação in vitro mostraram comportamento bifásico em que a camada de liberação imediata (IR contendo lornoxicam foi liberada em 15 minutos, enquanto a camada de liberação controlada (CR liberou o fármaco em mais de 24 horas, Todos os comprimidos bicamada

  6. An ID-like current that is downregulated by Ca2+ modulates information coding at CA3-CA3 synapses in the rat hippocampus.

    Science.gov (United States)

    Saviane, Chiara; Mohajerani, Majid H; Cherubini, Enrico

    2003-10-15

    Voltage-gated K+ channels localised on presynaptic nerve terminals control information coding by modulating presynaptic firing and synaptic efficacy in target neurones. We found that at CA3-CA3 connections in hippocampal slice cultures, a fast-activating, slowly inactivating K+ conductance similar to the so-called delay current (ID) is responsible for the delayed appearance of the first spike upon membrane depolarisation, for action potential repolarisation and for modulation of transmitter release. The ID-like current was downregulated by intracellular Ca2+, as indicated by the increased delay in the appearance of the first action potential following either the block of Ca2+ flux through voltage-dependent Ca2+ channels with Cd2+ or replacement of the bathing solution with one devoid of Ca2+. In both cases, this effect was reversed by blocking this conductance with a low concentration of 4-aminopyridine (4-AP, 10-50 muM). Application of 4-AP shortened the delay to the first spike generation, prevented the effect of Cd2+ and increased the spike duration. The earlier appearance of the first action potential was also observed in the presence of dendrotoxin-1 (100 nM). In voltage-clamp experiments larger currents were recorded in the absence of extracellular Ca2+, thus confirming the downregulation of the ID-like current by Ca2+ due to the positive shift of its inactivation. Spike broadening was associated with an enhancement of synaptic efficacy in target neurones, as assessed by the increase in EPSC amplitude and in the percentage of successes. Moreover, in the presence of 4-AP, EPSCs appeared with a longer latency and were more scattered. This conductance is therefore crucial for setting the timing and strength of synaptic transmission at CA3-CA3 connections. It is conceivable that switching off ID by increasing intracellular Ca2+ following activity-dependent processes may facilitate network synchronisation and crosstalk between CA3 pyramidal cells, leading to

  7. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation?

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and 'hard-wired' elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP, a cellular and molecular model for memory, post-synaptic calcium ion (Ca²⁺ flux activates the hexagonal Ca²⁺-calmodulin dependent kinase II (CaMKII, a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit. Thus each set of extended CaMKII kinases can potentially encode synaptic Ca²⁺ information via phosphorylation as ordered arrays of binary 'bits'. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs, cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six "bits", and thus "bytes", with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells.

  8. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    Institute of Scientific and Technical Information of China (English)

    Ling-ling Shen; Li-juan Yang; Ying Xu; Jun Dong; Ming-liang Jiang; Si-si Liu; Min-chun Cai; Zhong-qiu Hong; Li-qing Lin; Yan-yan Xing; Gui-lin Chen; Rui Pan

    2015-01-01

    Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extra-cellular microelectrode recording techniques, this study conifrmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.

  9. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    Directory of Open Access Journals (Sweden)

    Ling-ling Shen

    2015-01-01

    Full Text Available Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca 2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.

  10. Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents.

    Science.gov (United States)

    Walker, Harrison C; Lawrence, J Josh; McBain, Chris J

    2002-07-03

    Mossy fiber (MF) and CA3 collateral (CL) axons activate common interneurons via synapses comprised of different AMPA receptors to provide feedforward and feedback inhibitory control of the CA3 hippocampal network. Because synapses potentially occur over variable electrotonic distances that distort somatically recorded synaptic currents, it is not known whether the underlying afferent-specific synaptic conductances are associated with different time courses. Using a somatic voltage jump technique to alter the driving force at the site of the synapse, we demonstrate that MF and CL synapses overlap in electrotonic location yet differ in conductance time course. Thus, afferent-specific conductance time courses allow single interneurons to differentially integrate feedforward and feedback information without the need to segregate distinct AMPA receptor subunits to different electrotonic domains.

  11. A Hopfield-like hippocampal CA3 neural network model for studying associative memory in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Wangxiong Zhao; Qingli Qiao; Dan Wang

    2010-01-01

    Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area.

  12. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.

    Science.gov (United States)

    Van Hook, Matthew J; Parmelee, Caitlyn M; Chen, Minghui; Cork, Karlene M; Curto, Carina; Thoreson, Wallace B

    2014-11-01

    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.

  13. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  14. A subnanomolar concentration of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) pre-synaptically modulates glutamatergic transmission in the rat hippocampus acting through acetylcholine.

    Science.gov (United States)

    Pecoraro, Valeria; Sardone, Lara Maria; Chisari, Mariangela; Licata, Flora; Li Volsi, Guido; Perciavalle, Vincenzo; Ciranna, Lucia; Costa, Lara

    2017-01-06

    The neuropeptide PACAP modulates synaptic transmission in the hippocampus exerting multiple effects through different receptor subtypes: the underlying mechanisms have not yet been completely elucidated. The neurotransmitter acetylcholine (ACh) also exerts a well-documented modulation of hippocampal synaptic transmission and plasticity. Since PACAP was shown to stimulate ACh release in the hippocampus, we tested whether PACAP acting through ACh might indirectly modulate glutamate-mediated synaptic transmission at a pre- and/or at a post-synaptic level. Using patch clamp on rat hippocampal slices, we tested PACAP effects on stimulation-evoked AMPA receptor-mediated excitatory post-synaptic currents (EPSCsAMPA) in the CA3-CA1 synapse and on spontaneous miniature EPSCs (mEPSCs) in CA1 pyramidal neurons. A subnanomolar dose of PACAP (0.5nM) decreased EPSCsAMPA amplitude, enhanced EPSC paired-pulse facilitation (PPF) and reduced mEPSC frequency, indicating a pre-synaptic decrease of glutamate release probability: these effects were abolished by simultaneous blockade of muscarinic and nicotinic ACh receptors, indicating the involvement of endogenous ACh. The effect of subnanomolar PACAP was abolished by a PAC1 receptor antagonist but not by a VPAC receptor blocker. At a higher concentration (10nM), PACAP inhibited EPSCsAMPA: this effect persisted in the presence of ACh receptor antagonists and did not involve any change in PPF or in mEPSC frequency, thus was not mediated by ACh and was exerted post- synaptically on CA1 pyramidal neurons. We suggest that a high-affinity PAC1 receptor pre-synaptically modulates hippocampal glutamatergic transmission acting through ACh. Therefore, administration of PACAP at very low doses might be envisaged in cognitive diseases with reduced cholinergic transmission.

  15. Effects of the blood components on the AMPA and NMDA synaptic responses in brain slices in the onset of hemorrhagic stroke.

    Science.gov (United States)

    Mokrushin, Anatoly A; Pavlinova, Larisa I

    2013-12-01

    Blood-borne events play a major role in post bleeding disturbances of the neuronal network. However, very little is known about the early effects of blood plasma, leucocytes, and the red blood cells on the AMPA and NMDA-mediated synaptic responses in the onset of experimental intracranial hemorrhage (ICH). In this study, we used the technique of on-line monitoring of electrophysiological parameters referred to synaptic activity in piriform cortex of SHR rat slice. We exposed the olfactory cortex slices to diluted autologous blood or its components and compared with effects of ferric chloride. Whole blood exerted a total inhibition of synaptic activity in piriform cortex within first 5 min. Dilution of blood induced prolonged epileptic synaptic activation of NMDA receptors. Blood plasma and fraction of leucocytes induced hyperactivation of neurons transforming to epileptiform discharges. Fraction of red blood cells acted biphasic, an initial sharp activity of AMPA- and NMDA-mediated receptors replaced by a following total depression. Our slice-based models of experimental stroke revealed the mechanism of the earliest pathophysiologic events occur in brain tissue during bleeding that may be relevant to the human ICH.

  16. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons.

    Science.gov (United States)

    Galván, Emilio J; Cosgrove, Kathleen E; Barrionuevo, Germán

    2011-04-01

    The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells and inhibitory interneurons has emerged. These data have revealed an immense heterogeneity of long-term plasticity at MF synapses on various interneuron targets. Interestingly, these studies also indicate that the mechanisms of MF long-term plasticity in some interneuron subtypes may be more similar to pyramidal cells than previously appreciated. In this review, we first define the synapse types at each of the interneuron targets based on the receptors present. We then describe the different forms of long-term plasticity observed, and the mechanisms underlying each form as they are currently understood. Finally we highlight various open questions surrounding MF long-term plasticity in interneurons, focusing specifically on the induction and maintenance of LTP, and what the functional impact of persistent changes in efficacy at MF-interneuron synapses might be on the emergent properties of the inhibitory network dynamics in area CA3. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  17. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration.

    Science.gov (United States)

    Li, Jiao Jiao; Kim, Kyungsook; Roohani-Esfahani, Seyed-Iman; Guo, Jin; Kaplan, David L; Zreiqat, Hala

    2015-07-14

    Significant clinical challenges encountered in the effective long-term treatment of osteochondral defects have inspired advancements in scaffold-based tissue engineering techniques to aid repair and regeneration. This study reports the development of a biphasic scaffold produced via a rational combination of silk fibroin and bioactive ceramic with stratified properties to satisfy the complex and diverse regenerative requirements of osteochondral tissue. Structural examination showed that the biphasic scaffold contained two phases with different pore morphologies to match the cartilage and bone segments of osteochondral tissue, which were joined at a continuous interface. Mechanical assessment showed that the two phases of the biphasic scaffold imitated the load-bearing behaviour of native osteochondral tissue and matched its compressive properties. In vitro testing showed that different compositions in the two phases of the biphasic scaffold could direct the preferential differentiation of human mesenchymal stem cells towards the chondrogenic or osteogenic lineage. By featuring simple and reproducible fabrication and a well-integrated interface, the biphasic scaffold strategy established in this study circumvented the common problems experienced with integrated scaffold designs and could provide an effective approach for the regeneration of osteochondral tissue.

  18. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  19. Pannexin1 stabilizes synaptic plasticity and is needed for learning.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Pannexin 1 (Panx1 represents a class of vertebrate membrane channels, bearing significant sequence homology with the invertebrate gap junction proteins, the innexins and more distant similarities in the membrane topologies and pharmacological sensitivities with gap junction proteins of the connexin family. In the nervous system, cooperation among pannexin channels, adenosine receptors, and K(ATP channels modulating neuronal excitability via ATP and adenosine has been recognized, but little is known about the significance in vivo. However, the localization of Panx1 at postsynaptic sites in hippocampal neurons and astrocytes in close proximity together with the fundamental role of ATP and adenosine for CNS metabolism and cell signaling underscore the potential relevance of this channel to synaptic plasticity and higher brain functions. Here, we report increased excitability and potently enhanced early and persistent LTP responses in the CA1 region of acute slice preparations from adult Panx1(-/- mice. Adenosine application and N-methyl-D-aspartate receptor (NMDAR-blocking normalized this phenotype, suggesting that absence of Panx1 causes chronic extracellular ATP/adenosine depletion, thus facilitating postsynaptic NMDAR activation. Compensatory transcriptional up-regulation of metabotropic glutamate receptor 4 (grm4 accompanies these adaptive changes. The physiological modification, promoted by loss of Panx1, led to distinct behavioral alterations, enhancing anxiety and impairing object recognition and spatial learning in Panx1(-/- mice. We conclude that ATP release through Panx1 channels plays a critical role in maintaining synaptic strength and plasticity in CA1 neurons of the adult hippocampus. This result provides the rationale for in-depth analysis of Panx1 function and adenosine based therapies in CNS disorders.

  20. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.

    Science.gov (United States)

    Rosenbaum, Robert; Rubin, Jonathan; Doiron, Brent

    2012-01-01

    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.

  1. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels

    Directory of Open Access Journals (Sweden)

    Caixia Lv

    2016-06-01

    Full Text Available Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term “ghost ribbons.” Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.

  2. Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD.

    Science.gov (United States)

    Xie, X; Berger, T W; Barrionuevo, G

    1992-04-01

    1. The possibility of use-dependent, long-lasting modifications of pharmacologically isolated N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission was examined by intracellular recordings from granule cells of the hippocampal dentate gyrus in vitro. In the presence of the non-NMDA receptor antagonist 6-cyano-7-nitroquinaxaline-2,3-dione (CNQX, 10 microM) robust, long-term potentiation (LTP) of NMDA receptor-mediated synaptic potentials was induced by brief, high (50 Hz) and lower (10 Hz) frequency tetanic stimuli of glutamatergic afferents (60 +/- 6%, n = 8, P less than 0.001 and 43 +/- 12%, n = 3, P less than 0.05, respectively). 2. Hyperpolarization of granule cell membrane potential to -100 mV during 50-Hz tetanic stimuli reversibly blocked the induction of LTP (-6 +/- 2%, n = 6, P greater than 0.05) indicating that simultaneous activation of pre- and postsynaptic elements is a prerequisite for potentiation of NMDA receptor-mediated synaptic transmission. In contrast, hyperpolarization of the granule cell membrane potential to -100 mV during 10-Hz tetanic stimuli resulted in long-term depression (LTD) of NMDA receptor-mediated synaptic potentials (-34 +/- 8%, n = 8, P less than 0.01). 3. We also studied the role of [Ca2+]i in the induction of LTP and LTD of NMDA receptor-mediated synaptic responses. Before tetanization, [Ca2+]i was buffered by iontophoretic injections of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). BAPTA completely blocked the induction of LTP (3 +/- 5%, n = 13) and partially blocked LTD (-14.8 +/- 6%, n = 10).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex.

    Science.gov (United States)

    Neale, S A; Copeland, C S; Salt, T E

    2014-07-01

    Vesicular glutamate transporters (VGLUTs) are known to be important in the uptake of glutamate into vesicles in the presynaptic terminal; thereby playing a role in synaptic function. VGLUT dysfunction has also been suggested in neurological and psychiatric disorders such as epilepsy and schizophrenia. A number of compounds have been identified as VGLUT inhibitors; however, little is known as to how these compounds affect synaptic transmission. We therefore investigated the effects of structurally unrelated VGLUT inhibitors on synaptic transmission in the rodent hippocampus and prefrontal cortex. In the CA1 and dentate gyrus regions of the in vitro slice preparation of mouse hippocampus, AMPA receptor-mediated field excitatory postsynaptic potentials (fEPSPs) were evoked in response to Schaffer collateral/commissural pathway stimulation. Application of the VGLUT inhibitors Rose Bengal (RB), Congo Red (CR) or Chicago Sky Blue 6B (CB) resulted in a concentration-related reduction of fEPSP amplitudes. RB (30μM) or CB (300μM) also depressed NMDA receptor-mediated responses in the CA1 region. The naturally occurring kynurenine Xanthurenic Acid (XA) is reported to be a VGLUT inhibitor. We found XA attenuated both AMPA and NMDA receptor-mediated synaptic transmission. The potency order of the VGLUT inhibitors was consistent with literature Ki values for VGLUT inhibition. Impaired glutamatergic neurotransmission is believed to contribute to schizophrenia, and VGLUTs have also been implicated in this disease. We therefore investigated the effect of VGLUT inhibition in the prefrontal cortex. Application of the VGLUT inhibitors RB or CB resulted in a concentration-dependent reduction in the amplitude of glutamate receptor-mediated fEPSPs recorded in layer V/VI in response to stimulation in the forceps minor. We conclude that VGLUT inhibitors can modulate glutamatergic synaptic transmission in the PFC and hippocampus. This could be important in the pathophysiology of nervous

  4. The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Christie, B R; Magee, J C; Johnston, D

    1996-01-01

    Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold for action potentials, produced small changes in [Ca2+]i and failed to elicit LTD. Increasing the stimulus strength so that action potentials were generated produced both robust LTD and increases in [Ca2+]i. Back-propagating action potentials at 3 Hz in the absence of synaptic stimulation also produced increases in [Ca2+]i, but failed to induce LTD. When subthreshold synaptic stimulation was paired with back-propagating action potentials, however, large increases in [Ca2+]i were observed and robust LTD was induced. The LTD was blocked by the N-methyl-D-aspartate receptor (NMDAr) antagonist APV, and stimulus-induced increases in [Ca2+]i were reduced throughout the neuron under these conditions. The LTD was also dependent on Ca2+ influx via voltage-gated Ca2+ channels (VGCCs), because LTD was severely attenuated or blocked by both nimodipine and Ni2+. These findings suggest that back-propagating action potentials can exert a powerful control over the induction of LTD and that both VGCCs and NMDArs are involved in the induction of this form of plasticity.

  5. Synaptic connectivity in engineered neuronal networks.

    Science.gov (United States)

    Molnar, Peter; Kang, Jung-Fong; Bhargava, Neelima; Das, Mainak; Hickman, James J

    2014-01-01

    We have developed a method to organize cells in dissociated cultures using engineered chemical clues on a culture surface and determined their connectivity patterns. Although almost all elements of the synaptic transmission machinery can be studied separately in single cell models in dissociated cultures, the complex physiological interactions between these elements are usually lost. Thus, factors affecting synaptic transmission are generally studied in organotypic cultures, brain slices, or in vivo where the cellular architecture generally remains intact. However, by utilizing engineered neuronal networks complex phenomenon such as synaptic transmission or synaptic plasticity can be studied in a simple, functional, cell culture-based system. We have utilized self-assembled monolayers and photolithography to create the surface templates. Embryonic hippocampal cells, plated on the resultant patterns in serum-free medium, followed the surface clues and formed the engineered neuronal networks. Basic whole-cell patch-clamp electrophysiology was applied to characterize the synaptic connectivity in these engineered two-cell networks. The same technology has been used to pattern other cell types such as cardiomyocytes or skeletal muscle fibers.

  6. Different effects of bisphenol-A on memory behavior and synaptic modification in intact and estrogen-deprived female mice.

    Science.gov (United States)

    Xu, Xiaohong; Gu, Ting; Shen, Qiaoqiao

    2015-03-01

    Bisphenol-A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)-induced memory impairment, whereas co-exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up-regulated synaptic proteins synapsin I and PSD-95 and NMDA receptor NR2B but inhibited EB-induced increase in PSD-95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  7. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve.

    Science.gov (United States)

    Celik, Ilhan; Sürücü, Oguzkan; Dietz, Carsten; Heymach, John V; Force, Jeremy; Höschele, Iris; Becker, Christian M; Folkman, Judah; Kisker, Oliver

    2005-12-01

    We show here that recombinant endostatin protein has a biphasic effect on the inhibition of endothelial cell migration in vitro. In tumor-bearing animals, there is a similar biphasic effect on the inhibition of tumor growth and on circulating endothelial cells after once-daily s.c. injections. This biphasic effect is revealed as a U-shaped curve in which efficacy is optimal between very low and very high doses depending on the tumor type. This result may be applicable to other inhibitors of endothelial growth and to angiogenesis. Furthermore, these results have important implications for clinicians who administer angiogenesis inhibitors for cancer or other angiogenesis-dependent diseases. When these results are taken together with two previous reports of angiogenesis inhibitors with a U-shaped dose-response, they suggest that other regulators of endothelial growth may display a similar pattern.

  8. Biphasic Dependence of Glioma Survival and Cell Migration on CD44 Expression Level.

    Science.gov (United States)

    Klank, Rebecca L; Decker Grunke, Stacy A; Bangasser, Benjamin L; Forster, Colleen L; Price, Matthew A; Odde, Thomas J; SantaCruz, Karen S; Rosenfeld, Steven S; Canoll, Peter; Turley, Eva A; McCarthy, James B; Ohlfest, John R; Odde, David J

    2017-01-03

    While several studies link the cell-surface marker CD44 to cancer progression, conflicting results show both positive and negative correlations with increased CD44 levels. Here, we demonstrate that the survival outcomes of genetically induced glioma-bearing mice and of high-grade human glioma patients are biphasically correlated with CD44 level, with the poorest outcomes occurring at intermediate levels. Furthermore, the high-CD44-expressing mesenchymal subtype exhibited a positive trend of survival with increased CD44 level. Mouse cell migration rates in ex vivo brain slice cultures were also biphasically associated with CD44 level, with maximal migration corresponding to minimal survival. Cell simulations suggest that cell-substrate adhesiveness is sufficient to explain this biphasic migration. More generally, these results highlight the potential importance of non-monotonic relationships between survival and biomarkers associated with cancer progression.

  9. Apomorphine-induced biphasic circling behaviour in 6-hydroxydopamine-lesioned rats. A pharmacological kindling phenomenon.

    Science.gov (United States)

    Coward, D M

    1983-06-01

    Factors governing the development of apomorphine-induced biphasic circling behaviour in rats having unilateral 6-hydroxydopamine lesions of the substantia nigra were investigated. It was found that a post-lesion time of at least 2--3 weeks and the repeated exposure to apomorphine were essential for its development. Optimal results were obtained when animals received weekly apomorphine, 0.05 mg/kg sc, in post-lesion weeks 6, 7 and 8. Pretreatment with haloperidol, 1.0 and 2.0 mg/kg ip 1 h beforehand in post-lesion week 9, converted the biphasic response into an enhanced, uniphasic one. The findings suggest that the development of the biphasic response to apomorphine is a multi-factorial process representing a pharmacological kindling phenomenon.

  10. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    Energy Technology Data Exchange (ETDEWEB)

    Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge [Department of Physics and Applied Math., University of Navarra, Pamplona (Spain); Grigoriev, Roman O.; Fenton, Flavio H. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Cherry, Elizabeth M. [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States); Gilmour, Robert F. [University of Prince Edward Island, Charlottetown C1A 4P3 (Canada); Otani, Niels F. [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States); Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853 (United States)

    2013-12-15

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

  11. Bi-phasic Simulation of Metal Injection Moulding:Constitutive Determinations

    Institute of Scientific and Technical Information of China (English)

    Liu Baosheng(柳葆生); Barriere Thierry; Gelin Jean-Claude

    2003-01-01

    To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which conducts the simulation to be a cost-effective tool in MIM technology. In case of the bi-phasic simulation, the viscosity behaviours are necessary to be determined for the flows of each phase while only the viscosity of mixture is measurable by tests. It is a crucial problem for application of the bi-phasic simulation of MIM injection. A reasonable method is hence analysed and proposed to determine the viscosity behaviours of each phase. Even though this method may be furthermore modified in the future, it results in the practical simulation of segregation effects with reasonable parameters. The simulation results are compared with the measurements on injected specimens.

  12. Frequency-dependent gating of synaptic transmission and plasticity by dopamine

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2007-11-01

    Full Text Available The neurotransmitter dopamine (DA plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA pathway to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA's effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner.

  13. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    Science.gov (United States)

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens.

  14. Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease.

    Science.gov (United States)

    Pellman, Jessica J; Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay

    2015-08-01

    We investigated Ca(2+) handling in isolated brain synaptic and non-synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non-synaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca(2+) uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca(2+) capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca(2+) uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen because of mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca(2+) followed by recovery to near resting levels. Following recovery of cytosolic Ca(2+), mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca(2+), suggesting similar Ca(2+) release and, consequently, Ca(2+) loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca(2+) handling in brain mitochondria of YAC128 mice. We demonstrate that mutant huntingtin (mHtt) binds to brain synaptic and nonsynaptic mitochondria and the amount of mitochondria-bound mHtt correlates with increased mitochondrial Ca(2+) uptake capacity. We propose that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage.

  15. FCCP modulation of Ca2+ oscillation in rat megakaryocytes.

    Science.gov (United States)

    Uneyama, C; Uneyama, H; Takahashi, M; Akaike, N

    1994-08-16

    The effects of a mitochondrial uncoupler, FCCP, (carbonyl cyanide-p-trifluromethoxyphenyl-hydrazone) on the regulation of cytoplasmic Ca2+ were investigated in ATP-induced Ca2+ oscillation system of rat megakaryocyte. Application of FCCP did not induce any detectable Ca(2+)-activated K+ current (IKCa) but pretreatment with FCCP modulated the ATP-induced repetitive IKCa. FCCP abolished the IKCa induced by low concentrations of ATP. However, when the concentration of ATP was high, the uncoupler also changed the periodic current to a sustained one. Similar biphasic regulation by the uncoupler was observed in the case of IP3-evoked repetitive IKCa. These results indicate that FCCP inhibits both Ca2+ mobilization and elimination processes after IP3 liberation induced by agonist stimulation.

  16. Imaging synaptic zinc: promises and perils.

    Science.gov (United States)

    Kay, Alan R

    2006-04-01

    It is well established that some excitatory nerve terminals have high concentrations of Zn(2+) in their synaptic vesicles. For some time, it has been believed that synaptic Zn(2+) is released during neurotransmission and acts as a neuromodulator. Fluorescent Zn(2+) indicators that do not penetrate membranes offer the prospect of rendering the release of Zn(2+) visible. Here, I take a critical look at fluorimetric imaging experiments devised to determine whether Zn(2+) is released and show that they are particularly susceptible to artifacts. Moreover, I will argue that recent experiments suggest that, rather than being released, Zn(2+) is presented to the extracellular space firmly coordinated to presynaptic macromolecules.

  17. Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus.

    Science.gov (United States)

    Bui, Loc; Glavinović, Mladen I

    2013-04-01

    Short-term synaptic depression mainly reflects the depletion of the readily releasable pool (RRP) of quanta. Its dynamics, and especially the replenishment rate of the RRP, are still not well characterized in spite of decades of investigation. Main reason is that the vesicular storage and release system is treated as time-independent. If it is time-dependent all parameters thus estimated become problematic. Indeed the reports about how prolonged stimulation affects the dynamics are contradictory. To study this, we used patterned stimulation on the Schaeffer collateral fiber pathway and model-fitting of the excitatory post-synaptic currents (EPSC) recorded from CA1 neurons in rat hippocampal slices. The parameters of a vesicular storage and release model with two pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. This yields the 'basic' parameters (release coupling, replenishment coupling and RRP size) that underlie the 'derived' and commonly used parameters (fractional release and replenishment rate). The fractional release increases when [Ca(++)]o is raised, whereas the replenishment rate is [Ca(++)]o independent. Fractional release rises because release coupling increases, and the RRP becomes less able to contain quanta. During prolonged stimulation, the fractional release remains generally unaltered, whereas the replenishment rate decreases down to ~10 % of its initial value with a decay time of ~15 s, and this decrease in the replenishment rate significantly contributes to synaptic depression. In conclusion, the fractional release is [Ca(++)]o-dependent and stimulation-independent, whereas the replenishment rate is [Ca(++)]o-independent and stimulation-dependent.

  18. Effects of the kainate receptor agonist ATPA on glutamatergic synaptic transmission and plasticity during early postnatal development.

    Science.gov (United States)

    Sallert, Marko; Malkki, Hemi; Segerstråle, Mikael; Taira, Tomi; Lauri, Sari E

    2007-05-01

    Kainate type of glutamate receptors (KARs) modulate synaptic transmission in a developmentally regulated manner at several synapses in the brain. Previous studies have shown that KARs depress glutamatergic transmission at CA3-CA1 synapses in the hippocampus and these receptors are tonically active during early postnatal development. Here we use the GluR5 subunit specific agonist ATPA to further characterize the role of KARs in the modulation of synaptic transmission and plasticity in area CA1 during the first two weeks of life. We find that the depressant effect of ATPA on evoked fEPSPs/EPSCs is smaller in the neonate (P3-P6) than in the juvenile (P14-P18) rat CA1, due to endogenous activity of KAR in the neonate. Further, in the neonate but not juvenile CA1, ATPA downregulates action-potential independent transmission (mEPSCs) and its effects are dependent on protein kinase C activity. ATPA-induced depression of fEPSPs in the neonate occludes the presynaptic component of long-term depression (LTD). In contrast, at P14-P18, ATPA prevents LTD indirectly via GABAergic mechanisms. These data show that GluR5 signaling mechanisms are developmentally regulated and suggest distinct functional role for KARs in the modulation of synaptic transmission and plasticity at different stages of development.

  19. Coordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons Orchestrates Motor Control

    Directory of Open Access Journals (Sweden)

    Massimo Trusel

    2015-11-01

    Full Text Available The basal ganglia play a critical role in shaping motor behavior. For this function, the activity of medium spiny neurons (MSNs of the striatonigral and striatopallidal pathways must be integrated. It remains unclear whether the activity of the two pathways is primarily coordinated by synaptic plasticity mechanisms. Using a model of Parkinson’s disease, we determined the circuit and behavioral effects of concurrently regulating cell-type-specific forms of corticostriatal long-term synaptic depression (LTD by inhibiting small-conductance Ca2+-activated K+ channels (SKs of the dorsolateral striatum. At striatopallidal synapses, SK channel inhibition rescued the disease-linked deficits in endocannabinoid (eCB-dependent LTD. At striatonigral cells, inhibition of these channels counteracted a form of adenosine-mediated LTD by activating the ERK cascade. Interfering with eCB-, adenosine-, and ERK signaling in vivo alleviated motor abnormalities, which supports that synaptic modulation of striatal pathways affects behavior. Thus, our results establish a central role of coordinated synaptic plasticity at MSN subpopulations in motor control.

  20. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  1. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  2. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2.

  3. Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Deepak eRopireddy

    2011-07-01

    Full Text Available Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g. with electron microscopy or on regional connectivity (tract tracing. An individual pyramidal cell extends thousands of synapses over macroscopic distances (~cm. The contrasting requirements of high resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these ‘potential synapses’ functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto pyramidal cell dendrites from the axons of a dentate granule cell, three CA3 pyramidal cells, one CA2 pyramidal cell, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g. CA3 vs. CA1, layer (e.g. oriens vs. radiatum, and septo-temporal location (e.g. dorsal vs. ventral. The overall ratio between the numbers of actual and potential synapses was ~0.20 for the granule and CA3 pyramidal cells. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic

  4. Determining Ca2+-sensor binding time and its variability in evoked neurotransmitter release.

    Science.gov (United States)

    Yoon, Ava Chomee; Kathpalia, Vinnie; D'Silva, Sahana; Cimenser, Aylin; Hua, Shao-Ying

    2008-02-15

    The speed and reliability of neuronal reactions are important factors for proper functioning of the nervous system. To understand how organisms use protein molecules to carry out very fast biological actions, we quantified single-molecule reaction time and its variability in synaptic transmission. From the synaptic delay of crayfish neuromuscular synapses the time for a few Ca(2+) ions to bind with their sensors in evoked neurotransmitter release was estimated. In standard crayfish saline at room temperature, the average Ca(2+) binding time was 0.12 ms for the first evoked quanta. At elevated extracellular Ca(2+) concentrations this binding time reached a limit due to saturation of Ca(2+) influx. Analysis of the synaptic delay variance at various Ca(2+) concentrations revealed that the variability of the Ca(2+)-sensor binding time is the major source of the temporal variability of synaptic transmission, and that the Ca(2+)-independent molecular reactions after Ca(2+) influx were less stochastic. The results provide insights into how organisms maximize reaction speed and reliability.

  5. Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model.

    Science.gov (United States)

    Kiss, Eva; Gorgas, Karin; Schlicksupp, Andrea; Groß, Dagmar; Kins, Stefan; Kirsch, Joachim; Kuhse, Jochen

    2016-09-01

    The pathogenesis of Alzheimer disease (AD) is thought to begin many years before the diagnosis of dementia. Accumulating evidence indicates the involvement of GABAergic neurotransmission in the physiopathology of AD. However, in comparison to excitatory synapses, the structural and functional alterations of inhibitory synapses in AD are less well characterized. We studied the expression and distribution of proteins specific for inhibitory synapses in hippocampal areas of APPPS1 mice at different ages. Interestingly, by immunoblotting and confocal fluorescence microscopy, we disclosed a robust increase in the expression of gephyrin, an organizer of ligand-gated ion channels at inhibitory synapses in hippocampus CA1 and dentate gyrus of young presymptomatic APPPS1 mice (1 to 3 months) as compared to controls. The postsynaptic γ2-GABA(A)-receptor subunit and the presynaptic vesicular inhibitory amino acid transporter protein showed similar expression patterns. In contrast, adult transgenic animals (12 months) displayed decreased levels of these proteins in comparison to wild type in hippocampus areas devoid of amyloid plaques. Within most plaques, strong gephyrin immunoreactivity was detected, partially colocalizing with vesicular amino acid transporter and GABA(A)-receptor γ2 subunit immunoreactivities. Our results indicate a biphasic alteration in expression of hippocampal inhibitory synapse components in AD. Altered inhibition of neurotransmission might be an early prognostic marker and might even be involved in the pathogenesis of AD.

  6. Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems.

    Science.gov (United States)

    Ferreira, Ana M; Faustino, Vânia F M; Mondal, Dibyendu; Coutinho, João A P; Freire, Mara G

    2016-10-20

    Immunoglobulins G (IgG) could become widespread biopharmaceuticals if cost-efficient processes for their extraction and purification are available. In this work, aqueous biphasic systems (ABS) composed of polyethylene glycols and a buffered salt, and with ionic liquids (ILs) as adjuvants, have been studied as alternative extraction and purification platforms of IgG from a rabbit serum source. Eleven ILs were investigated to provide insights on the chemical features which maximize the IgG partitioning. It is shown that in polymer-salt systems pure IgG preferentially partitions to the polymer-rich phase; yet, the complete extraction was never attained. Remarkably, after the addition of 5wt% of adequate ILs to polymer-salt ABS, the complete extraction of pure IgG in a single-step was accomplished. The best systems and conditions were then applied to the extraction and purification of IgG directly from rabbit serum samples. The complete extraction of IgG in a single-step was maintained while its purity in the polymer-rich phase was enhanced by ca. 37% as compared to the IL-free ABS. The antibody stability was also evaluated revealing that appropriate ILs are able to maintain the IgG stability and can be used as phase-forming components of ABS when envisaging the purification of high-cost biopharmaceuticals.

  7. GABAergic synaptic transmission regulates calcium influx during spike-timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Trevor Balena

    2010-06-01

    Full Text Available Coincident pre- and postsynaptic activity of hippocampal neurons alters the strength of gamma-aminobutyric acid (GABAA-mediated inhibition through a Ca2+-dependent regulation of cation-chloride cotransporters. This long-term synaptic modulation is termed GABAergic spike-timing dependent plasticity (STDP. In the present study, we examined whether the properties of the GABAergic synapses themselves modulate the required postsynaptic Ca2+ influx during GABAergic STDP induction. To do this we first identified GABAergic synapses between cultured hippocampal neurons based on their relatively long decay time constants and their reversal potentials which lay close to the resting membrane potential. GABAergic STDP was then induced by coincidentally (± 1 ms firing the pre- and postsynaptic neurons at 5 Hz for 30 seconds, while postsynaptic Ca2+ was imaged with the Ca2+-sensitive fluorescent dye Fluo4-AM. In all cases, the induction of GABAergic STDP increased postsynaptic Ca2+ above resting levels. We further found that the magnitude of this increase correlated with the amplitude and polarity of the GABAergic postsynaptic current (GPSC; hyperpolarizing GPSCs reduced the Ca2+ influx in comparison to both depolarizing GPSCs, and postsynaptic neurons spiked alone. This relationship was influenced by both the driving force for Cl- and GABAA conductance (which had positive correlations with the Ca2+ influx. The spike-timing order during STDP induction did not influence the correlation between GPSC amplitude and Ca2+ influx, which is likely accounted for by the symmetrical GABAergic STDP window.

  8. Regulation of hippocampal synaptic strength by glial xCT.

    Science.gov (United States)

    Williams, Leena E; Featherstone, David E

    2014-11-26

    Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.

  9. Molecular mechanisms of synaptic plasticity and memory.

    Science.gov (United States)

    Elgersma, Y; Silva, A J

    1999-04-01

    To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.

  10. Targeting synaptic dysfunction in Alzheimer's disease therapy.

    Science.gov (United States)

    Nisticò, Robert; Pignatelli, Marco; Piccinin, Sonia; Mercuri, Nicola B; Collingridge, Graham

    2012-12-01

    In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer's disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of Aβ, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.

  11. Synaptic plasticity and the warburg effect

    KAUST Repository

    Magistretti, Pierre J.

    2014-01-01

    Functional brain imaging studies show that in certain brain regions glucose utilization exceeds oxygen consumption, indicating the predominance of aerobic glycolysis. In this issue, Goyal et al. (2014) report that this metabolic profile is associated with an enrichment in the expression of genes involved in synaptic plasticity and remodeling processes. © 2014 Elsevier Inc.

  12. Retinal synaptic regeneration via microfluidic guiding channels.

    Science.gov (United States)

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-08-28

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation.

  13. Synaptic Plasticity, Dementia and Alzheimer Disease.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-13

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparent that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid b-peptide (Ab) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Ab, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Ab oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic shafts

  14. Intracellular lactate-mediated induction of estrogen receptor beta (ERβ) in biphasic malignant pleural mesothelioma cells.

    Science.gov (United States)

    Manente, Arcangela G; Pinton, Giulia; Zonca, Sara; Cilli, Michele; Rinaldi, Maurizio; Daga, Antonio; Nilsson, Stefan; Moro, Laura

    2015-09-22

    Biphasic malignant pleural mesothelioma (MPM) is the second most common histotype of MPM. It is histologically characterized by the concomitant presence of epithelioid and sarcomatoid features, the latter associated with worse prognosis. In this report we describe that silencing of AKT1 in spindle-shaped biphasic MPM cells promotes the shift toward an epithelioid phenotype. Furthermore, AKT1 silencing resulted in decreased expression of the lactate/H+ symporter MCT4 and its chaperone CD147/Basigin, and in the induction of estrogen receptor β (ERβ) expression. We provide evidence that ERβ expression is induced by increased intracellular lactate concentration. Spheroid culturing and tumor growth of ERβ negative biphasic MPM in nude mice resulted in the induction of ERβ expression and response to the selective agonist KB9520. In both models, the treatment with the ERβ agonist results in reduced cell proliferation, decreased expression of MCT4 and CD147/Basigin and increased acetylation and inactivation of AKT1. Collectively, in response to metabolic changes, ERβ expression is induced and exerts an anti-tumor effect through selective agonist activation. The possibility to reverse the more aggressive biphasic mesothelioma histotype by targeting ERβ with a selective agonist could represent a new effective treatment strategy.

  15. CHRONIC ALCOHOL CONSUMPTION HAS BIPHASIC EFFECTS ON HEPATIC INSULIN SIGNALING DEPENDENT ON DOSE

    Science.gov (United States)

    Epidemiological studies have shown paradoxical biphasic effects of alcohol on health. Moderate drinkers have lower overall mortality than teetotalers or than heavy drinkers. There are protective effects of low levels of alcohol consumption (less than one drink day) on diabetes risk and other chroni...

  16. Modeling Biphasic Environmental Decay of Pathogens and Implications for Risk Analysis.

    Science.gov (United States)

    Brouwer, Andrew F; Eisenberg, Marisa C; Remais, Justin V; Collender, Philip A; Meza, Rafael; Eisenberg, Joseph N S

    2017-02-21

    As the appreciation for the importance of the environment in infectious disease transmission has grown, so too has interest in pathogen fate and transport. Fate has been traditionally described by simple exponential decay, but there is increasing recognition that some pathogens demonstrate a biphasic pattern of decay-fast followed by slow. While many have attributed this behavior to population heterogeneity, we demonstrate that biphasic dynamics can arise through a number of plausible mechanisms. We examine the identifiability of a general model encompassing three such mechanisms: population heterogeneity, hardening off, and the existence of viable-but-not-culturable states. Although the models are not fully identifiable from longitudinal sampling studies of pathogen concentrations, we use a differential algebra approach to determine identifiable parameter combinations. Through case studies using Cryptosporidium and Escherichia coli, we show that failure to consider biphasic pathogen dynamics can lead to substantial under- or overestimation of disease risks and pathogen concentrations, depending on the context. More reliable models for environmental hazards and human health risks are possible with an improved understanding of the conditions in which biphasic die-off is expected. Understanding the mechanisms of pathogen decay will ultimately enhance our control efforts to mitigate exposure to environmental contamination.

  17. Biphasic Electrical Field Stimulation Aids in Tissue Engineering of Multicell-Type Cardiac Organoids

    Science.gov (United States)

    Chiu, Loraine L.Y.; Iyer, Rohin K.; King, John-Paul

    2011-01-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence. PMID:18783322

  18. Phase Behaviors in Bi-phase Simulation of Powder Segregation in Metal Injection Molding

    Institute of Scientific and Technical Information of China (English)

    Liu Baosheng; Fan Xiaoxin; Cheng Zhiqiang

    2006-01-01

    Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs.

  19. Calculation of the valence electron structures of alloying cementite and its biphase interface

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 刘伟东

    2001-01-01

    The valence electron structures of alloying cementite θ-(Fe, M)3C and ε-(Fe, M)3C andthose of the biphase interfaces between them and α-Fe are calculated with Yu's empirical electrontheory of solid and molecules. The calculation results accord with the actual behavior of alloys.

  20. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids.

    Science.gov (United States)

    Chiu, Loraine L Y; Iyer, Rohin K; King, John-Paul; Radisic, Milica

    2011-06-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence.

  1. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Wen-Yu Su

    2013-01-01

    Full Text Available Osteomyelitis therapy is a long-term and inconvenient procedure for a patient. Antibiotic-loaded bone cements are both a complementary and alternative treatment option to intravenous antibiotic therapy for the treatment of osteomyelitis. In the current study, the biphasic calcium phosphate cement (CPC, called α-TCP/HAP (α-tricalcium phosphate/hydroxyapatite biphasic cement, was prepared as an antibiotics carrier for osteomyelitis. The developed biphasic cement with a microstructure of α-TCP surrounding the HAP has a fast setting time which will fulfill the clinical demand. The X-ray diffraction and Fourier transform infrared spectrometry analyses showed the final phase to be HAP, the basic bone mineral, after setting for a period of time. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The addition of gentamicin in α-TCP/HAP would delay the transition of α-TCP but would not change the final-phase HAP. The gentamicin-loaded α-TCP/HAP supplies high doses of the antibiotic during the initial 24 hours when they are soaked in phosphate buffer solution (PBS. Thereafter, a slower drug release is produced, supplying minimum inhibitory concentration until the end of the experiment (30 days. Studies of growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa in culture indicated that gentamicin released after 30 days from α-TCP/HAP biphasic cement retained antibacterial activity.

  2. Biphasic Catalytic(Hydroformylation of 1-Dodecene in Micellar System with Cationic Gemini Surfactants

    Institute of Scientific and Technical Information of China (English)

    Min LI; Bin XU; Hua CHEN; Hong Jie ZHENG; Xue Yuan HUANG; Yao Zhong LI; Xian Jun LI

    2004-01-01

    The promotion effect of cationic gemini surfactants for the hydroformylation of 1-dodecene in the organic/aqueous biphasic catalytic system is reported. The hydroformylation reaction in the presence of gemini surfactant occurred with higher turnover frequency and higher selectivity for linear aldehyde than using conventional monomeric surfactant CTAB.

  3. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity.

    Science.gov (United States)

    Almonte, Antoine G; Qadri, Laura H; Sultan, Faraz A; Watson, Jennifer A; Mount, Daniel J; Rumbaugh, Gavin; Sweatt, J David

    2013-01-01

    Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.

  4. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats.

    Science.gov (United States)

    Yang, Hui-Yun; Liu, Yang; Xie, Jia-Cun; Liu, Nan-Nan; Tian, Xin

    2015-03-15

    This study aims to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) protects pyramidal cells from apoptosis and promotes hippocampal synaptic plasticity in a vascular dementia (VaD) rat model. Following establishment of a VaD rat model using two-vessel occlusion (2VO), learning and memory were evaluated via the Morris Water Maze (MWM), hippocampal CA1 neuron ultrastructure was examined via electron microscopy, and hippocampal synaptic plasticity was assessed by long-term potentiation (LTP). Western blot was used to detect the expression of N-methyl-d-aspartic acid receptor 1 (NMDAR1), Bcl-2, and Bax. Compared with VaD group, rats treated with low-frequency rTMS had reduced-escape latencies, increased swimming time in the target quadrant (PCA3-CA1 synapses was enhanced (P<0.05). Low-frequency rTMS significantly up-regulated NMDAR1 and Bcl-2 expression and down-regulated Bax expression. Low-frequency rTMS improves learning and memory, protects the synapse, and increases synaptic plasticity in VaD model rats. Increased Bcl-2 expression and reduced Bax expression may be a novel protective mechanism of low-frequency rTMS treatment for VaD.

  5. Impaired novelty acquisition and synaptic plasticity in congenital hyperammonemia caused by hepatic glutamine synthetase deficiency

    Science.gov (United States)

    Chepkova, Aisa N.; Sergeeva, Olga A.; Görg, Boris; Haas, Helmut L.; Klöcker, Nikolaj; Häussinger, Dieter

    2017-01-01

    Genetic defects in ammonia metabolism can produce irreversible damage of the developing CNS causing an impairment of cognitive and motor functions. We investigated alterations in behavior, synaptic plasticity and gene expression in the hippocampus and dorsal striatum of transgenic mice with systemic hyperammonemia resulting from conditional knockout of hepatic glutamine synthetase (LGS-ko). These mice showed reduced exploratory activity and delayed habituation to a novel environment. Field potential recordings from LGS-ko brain slices revealed significantly reduced magnitude of electrically-induced long-term potentiation (LTP) in both CA3-CA1 hippocampal and corticostriatal synaptic transmission. Corticostriatal but not hippocampal slices from LGS-ko brains demonstrated also significant alterations in long-lasting effects evoked by pharmacological activation of glutamate receptors. Real-time RT-PCR revealed distinct patterns of dysregulated gene expression in the hippocampus and striatum of LGS-ko mice: LGS-ko hippocampus showed significantly modified expression of mRNAs for mGluR1, GluN2B subunit of NMDAR, and A1 adenosine receptors while altered expression of mRNAs for D1 dopamine receptors, the M1 cholinoreceptor and the acetylcholine-synthetizing enzyme choline-acetyltransferase was observed in LGS-ko striatum. Thus, inborn systemic hyperammonemia resulted in significant deficits in novelty acquisition and disturbed synaptic plasticity in corticostriatal and hippocampal pathways involved in learning and goal-directed behavior. PMID:28067279

  6. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition.

    Science.gov (United States)

    Wu, A; Ying, Z; Gomez-Pinilla, F

    2008-08-26

    Omega-3 fatty acids (i.e. docosahexaenoic acid; DHA), similar to exercise, improve cognitive function, promote neuroplasticity, and protect against neurological lesion. In this study, we investigated a possible synergistic action between DHA dietary supplementation and voluntary exercise on modulating synaptic plasticity and cognition. Rats received DHA dietary supplementation (1.25% DHA) with or without voluntary exercise for 12 days. We found that the DHA-enriched diet significantly increased spatial learning ability, and these effects were enhanced by exercise. The DHA-enriched diet increased levels of pro-brain-derived neurotrophic factor (BDNF) and mature BDNF, whereas the additional application of exercise boosted the levels of both. Furthermore, the levels of the activated forms of CREB and synapsin I were incremented by the DHA-enriched diet with greater elevation by the concurrent application of exercise. While the DHA diet reduced hippocampal oxidized protein levels, a combination of a DHA diet and exercise resulted in a greater reduction rate. The levels of activated forms of hippocampal Akt and CaMKII were increased by the DHA-enriched diet, and with even greater elevation by a combination of diet and exercise. Akt and CaMKII signaling are crucial step by which BDNF exerts its action on synaptic plasticity and learning and memory. These results indicate that the DHA diet enhanced the effects of exercise on cognition and BDNF-related synaptic plasticity, a capacity that may be used to promote mental health and reduce risk of neurological disorders.

  7. The temporal characteristics of Ca2+ entry through L-type and T-type Ca2+ channels shape exocytosis efficiency in chick auditory hair cells during development.

    Science.gov (United States)

    Levic, Snezana; Dulon, Didier

    2012-12-01

    During development, synaptic exocytosis by cochlear hair cells is first initiated by patterned spontaneous Ca(2+) spikes and, at the onset of hearing, by sound-driven graded depolarizing potentials. The molecular reorganization occurring in the hair cell synaptic machinery during this developmental transition still remains elusive. We characterized the changes in biophysical properties of voltage-gated Ca(2+) currents and exocytosis in developing auditory hair cells of a precocial animal, the domestic chick. We found that immature chick hair cells (embryonic days 10-12) use two types of Ca(2+) currents to control exocytosis: low-voltage-activating, rapidly inactivating (mibefradil sensitive) T-type Ca(2+) currents and high-voltage-activating, noninactivating (nifedipine sensitive) L-type currents. Exocytosis evoked by T-type Ca(2+) current displayed a fast release component (RRP) but lacked the slow sustained release component (SRP), suggesting an inefficient recruitment of distant synaptic vesicles by this transient Ca(2+) current. With maturation, the participation of L-type Ca(2+) currents to exocytosis largely increased, inducing a highly Ca(2+) efficient recruitment of an RRP and an SRP component. Notably, L-type-driven exocytosis in immature hair cells displayed higher Ca(2+) efficiency when triggered by prerecorded native action potentials than by voltage steps, whereas similar efficiency for both protocols was found in mature hair cells. This difference likely reflects a tighter coupling between release sites and Ca(2+) channels in mature hair cells. Overall, our results suggest that the temporal characteristics of Ca(2+) entry through T-type and L-type Ca(2+) channels greatly influence synaptic release by hair cells during cochlear development.

  8. Passive electrotonic properties of rat hippocampal CA3 interneurones.

    Science.gov (United States)

    Chitwood, R A; Hubbard, A; Jaffe, D B

    1999-03-15

    1. The linear membrane responses of CA3 interneurones were determined with the use of whole-cell patch recording methods. The mean input resistance (RN) for all cells in this study was 526 +/- 16 MOmega and the slowest membrane time constant (tau0) was 73 +/- 3 ms. 2. The three-dimensional morphology of 63 biocytin-labelled neurones was used to construct compartmental models. Specific membrane resistivity (Rm) and specific membrane capacitance (Cm) were estimated by fitting the linear membrane response. Acceptable fits were obtained for 24 CA3 interneurones. The mean Rm was 61.9 +/- 34.2 Omega cm2 and the mean Cm was 0.9 +/- 0.3 microF cm-2. Intracellular resistance (Ri) could not be resolved in this study. 3. Examination of voltage attenuation revealed a significantly low synaptic efficiency from most dendritic synaptic input locations to the soma. 4. Simulations of excitatory postsynaptic potentials (EPSPs) were analysed at both the site of synaptic input and at the soma. There was little variability in the depolarization at the soma from synaptic inputs placed at different locations along the dendritic tree. The EPSP amplitude at the site of synaptic input was progressively larger with distance from the soma, consistent with a progressive increase in input impedance. 5. The 'iso-efficiency' of spatially different synaptic inputs arose from two opposing factors: an increase in EPSP amplitude at the synapse with distance from the soma was opposed by a nearly equivalent increase in voltage attenuation. These simulations suggest that, in these particular neurones, the amplitude of EPSPs measured at the soma will not be significantly affected by the location of synaptic inputs.

  9. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning.

    Directory of Open Access Journals (Sweden)

    Brian J Wiltgen

    Full Text Available A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca(2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice. Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP that was independent of NMDARs and mediated by GluR2-lacking Ca(2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca(2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.

  10. Ultrastructural abnormalities in CA1 hippocampus caused by deletion of the actin regulator WAVE-1.

    Directory of Open Access Journals (Sweden)

    Diána Hazai

    Full Text Available By conveying signals from the small GTPase family of proteins to the Arp2/3 complex, proteins of the WAVE family facilitate actin remodeling. The WAVE-1 isoform is expressed at high levels in brain, where it plays a role in normal synaptic processing, and is implicated in hippocampus-dependent memory retention. We used electron microscopy to determine whether synaptic structure is modified in the hippocampus of WAVE-1 knockout mice, focusing on the neuropil of CA1 stratum radiatum. Mice lacking WAVE-1 exhibited alterations in the morphology of both axon terminals and dendritic spines; the relationship between the synaptic partners was also modified. The abnormal synaptic morphology we observed suggests that signaling through WAVE-1 plays a critical role in establishing normal synaptic architecture in the rodent hippocampus.

  11. Trans-synaptic spread of tau pathology in vivo.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available Tauopathy in the brain of patients with Alzheimer's disease starts in the entorhinal cortex (EC and spreads anatomically in a defined pattern. To test whether pathology initiating in the EC spreads through the brain along synaptically connected circuits, we have generated a transgenic mouse model that differentially expresses pathological human tau in the EC and we have examined the distribution of tau pathology at different timepoints. In relatively young mice (10-11 months old, human tau was present in some cell bodies, but it was mostly observed in axons within the superficial layers of the medial and lateral EC, and at the terminal zones of the perforant pathway. In old mice (>22 months old, intense human tau immunoreactivity was readily detected not only in neurons in the superficial layers of the EC, but also in the subiculum, a substantial number of hippocampal pyramidal neurons especially in CA1, and in dentate gyrus granule cells. Scattered immunoreactive neurons were also seen in the deeper layers of the EC and in perirhinal and secondary somatosensory cortex. Immunoreactivity with the conformation-specific tau antibody MC1 correlated with the accumulation of argyrophilic material seen in old, but not young mice. In old mice, axonal human tau immunoreactivity, especially at the endzones of the perforant pathway, was greatly reduced. Relocalization of tau from axons to somatodendritic compartments and propagation of tauopathy to regions outside of the EC correlated with mature tangle formation in neurons in the EC as revealed by thioflavin-S staining. Our data demonstrate propagation of pathology from the EC and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons. In general, the mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression.

  12. Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons.

    Science.gov (United States)

    Singec, Ilyas; Knoth, Rolf; Ditter, Margarethe; Hagemeyer, Christoph E; Rosenbrock, Holger; Frotscher, Michael; Volk, Benedikt

    2002-10-14

    In the hippocampus, the synaptic vesicle protein synaptoporin (SPO) has been reported to be exclusively enriched in the granule cell axons, the mossy fibers. In this study, we show that in adult rats and mice SPO immunoreactivity (IR) is also detectable in strata oriens, radiatum, and lacunosum-moleculare of CA1-CA3, as well as perisomatically in the hippocampus proper and fascia dentata. In situ hybridization confirmed that SPO mRNA was present in granule cells and CA3 pyramidal cells but not in CA1 pyramidal cells. Importantly, cells scattered throughout the hippocampal layers resembling the distribution of interneurons were found to synthesize high amounts of SPO mRNA, too. Thus, these findings indicate that SPO expression in the hippocampus was underestimated until now. Moreover, double-labeling immunohistochemistry and confocal microscopy revealed selective colocalization of SPO and glutamate decarboxylase (GAD 65), a marker for gamma-aminobutyric acid (GABA)ergic terminals. To identify SPO expressing interneurons, in situ hybridization was combined with immunocytochemistry against parvalbumin (PV), calbindin (CB), calretinin (CR), cholecystokinin (CCK), and vasoactive intestinal polypeptide (VIP). We found that SPO transcripts were differentially expressed by various interneuron subpopulations in the hippocampus of C57Bl/6 mice (PV 44.2%, CB 46.3%, CR 19.3%, CCK 38.6%, VIP 59.9%). Immunoelectron microscopy for SPO labeled synaptic vesicle profiles in distinct symmetric and asymmetric synapses. In conclusion, our data demonstrate that hippocampal principal cells and interneurons display a variety of synaptic vesicles that are likely to contribute to the functional characteristics of their output synapses.

  13. Changes in membrane properties of CA1 pyramidal neurons after transient forebrain ischemia in vivo.

    Science.gov (United States)

    Gao, T M; Pulsinelli, W A; Xu, Z C

    1999-03-01

    We have previously identified three distinct populations of CA1 pyramidal neurons after reperfusion based on differences in synaptic response, and named these late depolarizing postsynaptic potential neurons (enhanced synaptic transmission), non-late depolarizing postsynaptic potential and small excitatory postsynaptic neurons (depressed synaptic transmission). In the present study, spontaneous activity and membrane properties of CA1 neurons were examined up to 48 h following approximately 14 min ischemic depolarization using intracellular recording and staining techniques in vivo. In comparison with preischemic properties, the spontaneous firing rate and the spontaneous synaptic activity of CA1 neurons decreased significantly during reperfusion; spontaneous synaptic activity ceased completely 36-48 h after reperfusion, except for a low level of activity which persisted in non-late depolarizing postsynaptic potential neurons. Neuronal hyperactivity as indicated by increasing firing rate was never observed in the present study. The membrane input resistance and time constant decreased significantly in late depolarizing postsynaptic potential neurons at 24-48 h reperfusion. In contrast, similar changes were not observed in non-late depolarizing postsynaptic potential neurons. The rheobase, spike threshold and spike frequency adaptation in late depolarizing postsynaptic potential neurons increased progressively following reperfusion. Only a transient increase in rheobase and spike threshold was detected in non-late depolarizing postsynaptic potential neurons and spike frequency adaptation remained unchanged in these neurons. The amplitude of fast afterhyperpolarization increased in all neurons after reperfusion, with the smallest increment in non-late depolarizing postsynaptic potential neurons. Small excitatory postsynaptic potential neurons shared similar changes to those of late depolarizing postsynaptic potential neurons. These results suggest that the enhancement

  14. Development of Ca2+ hotspots between Lymnaea neurons during synaptogenesis.

    Science.gov (United States)

    Feng, Zhong-Ping; Grigoriev, Nikita; Munno, David; Lukowiak, Ken; MacVicar, Brian A; Goldberg, Jeffrey I; Syed, Naweed I

    2002-02-15

    Calcium (Ca2+) channel clustering at specific presynaptic sites is a hallmark of mature synapses. However, the spatial distribution patterns of Ca2+ channels at newly formed synapses have not yet been demonstrated. Similarly, it is unclear whether Ca2+ 'hotspots' often observed at the presynaptic sites are indeed target cell contact specific and represent a specialized mechanism by which Ca2+ channels are targeted to select synaptic sites. Utilizing both soma-soma paired (synapsed) and single neurons from the mollusk Lymnaea, we have tested the hypothesis that differential gradients of voltage-dependent Ca2+ signals develop in presynaptic neuron at its contact point with the postsynaptic neuron; and that these Ca2+ hotspots are target cell contact specific. Fura-2 imaging, or two-photon laser scanning microscopy of Calcium Green, was coupled with electrophysiological techniques to demonstrate that voltage-induced Ca2+ gradients (hotspots) develop in the presynaptic cell at its contact point with the postsynaptic neuron, but not in unpaired single cells. The incidence of Ca2+ hotspots coincided with the appearance of synaptic transmission between the paired cells, and these gradients were target cell contact specific. In contrast, the voltage-induced Ca2+ signal in unpaired neurons was uniformly distributed throughout the somata; a similar pattern of Ca2+ gradient was observed in the presynaptic neuron when it was soma-soma paired with a non-synaptic partner cell. Moreover, voltage clamp recording techniques, in conjunction with a fast, optical differential perfusion system, were used to demonstrate that the total whole-cell Ca2+ (or Ba2+) current density in single and paired cells was not significantly different. However, the amplitude of Ba2+ current was significantly higher in the presynaptic cell at its contact side with the postsynaptic neurons, compared with non-contacted regions. In summary, this study demonstrates that voltage-induced Ca2+ hotspots develop

  15. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells.

    Science.gov (United States)

    Pangrsic, Tina; Lasarow, Livia; Reuter, Kirsten; Takago, Hideki; Schwander, Martin; Riedel, Dietmar; Frank, Thomas; Tarantino, Lisa M; Bailey, Janice S; Strenzke, Nicola; Brose, Nils; Müller, Ulrich; Reisinger, Ellen; Moser, Tobias

    2010-07-01

    Inner hair cell ribbon synapses indefatigably transmit acoustic information. The proteins mediating their fast vesicle replenishment (hundreds of vesicles per s) are unknown. We found that an aspartate to glycine substitution in the C(2)F domain of the synaptic vesicle protein otoferlin impaired hearing by reducing vesicle replenishment in the pachanga mouse model of human deafness DFNB9. In vitro estimates of vesicle docking, the readily releasable vesicle pool (RRP), Ca(2+) signaling and vesicle fusion were normal. Moreover, we observed postsynaptic excitatory currents of variable size and spike generation. However, mutant active zones replenished vesicles at lower rates than wild-type ones and sound-evoked spiking in auditory neurons was sparse and only partially improved during longer interstimulus intervals. We conclude that replenishment does not match the release of vesicles at mutant active zones in vivo and a sufficient standing RRP therefore cannot be maintained. We propose that otoferlin is involved in replenishing synaptic vesicles.

  16. Alteration in synaptic junction proteins following traumatic brain injury.

    Science.gov (United States)

    Merlo, Lucia; Cimino, Francesco; Angileri, Filippo Flavio; La Torre, Domenico; Conti, Alfredo; Cardali, Salvatore Massimiliano; Saija, Antonella; Germanò, Antonino

    2014-08-15

    Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.

  17. Stochastic single-molecule dynamics of synaptic membrane protein domains

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  18. Transitional function of DG to CA3 in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using single cell channel model,the transmission features of CA3-DG network in the hippocampus are investigated.The influence of the stimulation on discharge pattern of pyramidal neurons is analyzed,which shows that it starts with period spiking discharges,followed by period-doubling bifurcation to chaos,and period 3 discharge evolving into chaos,and ultimately a period of bursting discharges.Bv the synaptic model,the CA3.DG network model is constructed,which analyzes the summation of postsynaptic currents in the network,the influence of postsynaptic current on discharge rhythm as well as the mechanism of bursting discharges.The strong capacitv of spatiotemporal encoding in the network indicates the features of CA3 network during the information transmission process in the hippocampus.The modeling result with time delay of the synaptic transmission is in accordance with the experimental phenomena of action potential in the hippocampus.

  19. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism.

    Science.gov (United States)

    Takeuchi, Koichi; Gertner, Michael J; Zhou, Jing; Parada, Luis F; Bennett, Michael V L; Zukin, R Suzanne

    2013-03-19

    The phosphoinositide signaling system is a crucial regulator of neural development, cell survival, and plasticity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates phosphatidylinositol 3-kinase signaling and downstream targets. Nse-Cre Pten conditional knockout mice, in which Pten is ablated in granule cells of the dentate gyrus and pyramidal neurons of the hippocampal CA3, but not CA1, recapitulate many of the symptoms of humans with inactivating PTEN mutations, including progressive hypertrophy of the dentate gyrus and deficits in hippocampus-based social and cognitive behaviors. However, the impact of Pten loss on activity-dependent synaptic plasticity in this clinically relevant mouse model of Pten inactivation remains unclear. Here, we show that two phosphatidylinositol 3-kinase- and protein synthesis-dependent forms of synaptic plasticity, theta burst-induced long-term potentiation and metabotropic glutamate receptor (mGluR)-dependent long-term depression, are dysregulated at medial perforant path-to-dentate gyrus synapses of young Nse-Cre Pten conditional knockout mice before the onset of visible morphological abnormalities. In contrast, long-term potentiation and mGluR-dependent long-term depression are normal at CA3-CA1 pyramidal cell synapses at this age. Our results reveal that deletion of Pten in dentate granule cells dysregulates synaptic plasticity, a defect that may underlie abnormal social and cognitive behaviors observed in humans with Pten inactivating mutations and potentially other autism spectrum disorders.

  20. Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Ford, Kevin J; Davis, Graeme W

    2014-10-29

    The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2-0.5 mM) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mM), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse.

  1. Multiple personalities: synaptic target cells as introverts and extroverts.

    Science.gov (United States)

    Ritzenthaler, S; Chiba, A

    2001-10-01

    The intricate process of wiring a neuronetwork requires a high degree of accuracy in the communication between pre- and post-synaptic cells. While presynaptic cells have been widely recognized for their dynamic role in synaptic matchmaking, post-synaptic cells have historically been overlooked as passive targets. Recent studies in the Drosophila embryonic neuromuscular system provide compelling evidence that post-synaptic cells participate actively in the synaptogenic process. Endocytosis allows them to quickly modify the array of molecular cues they provide on their surfaces and the extension of dynamic filopodia allows post-synaptic cells to engage in direct long-distance communication. By making use of familiar cellular mechanisms such as endocytosis and filopodia formation, post-synaptic cells may be able to communicate more effectively with potential synaptic partners.

  2. Phase dependent sign changes of GABAergic synaptic input explored in-silicio and in-vitro.

    Science.gov (United States)

    Stiefel, Klaus M; Wespatat, Valérie; Gutkin, Boris; Tennigkeit, Frank; Singer, Wolf

    2005-08-01

    Inhibitory interactions play a crucial role in the synchronization of neuronal activity. Here we investigate the effect of GABAergic PSPs on spike timing in cortical neurons that exhibit an oscillatory modulation of their membrane potential. To this end we combined numerical simulations with in-vitro patch-clamp recordings from layer II/III pyramidal cells of the rat visual cortex. Special emphasis was placed on exploring how the reversal potential of the GABAergic synaptic currents (EGABA) and the phase relations of the PSPs relative to the oscillation cycles affect the timing of spikes riding on the depolarizing peaks of the oscillations. The simulations predicted: (1) With EGABA more negative than the oscillation minima PSPs are hyperpolarizing at all phases and thus delay or prevent spikes. (2) With EGABA being more positive than the oscillation maxima PSPs are depolarizing in a phase-independent way and lead to a phase advance of spikes. (3) In the intermediate case where EGABA lies within oscillation maxima and minima PSPs are either hyper- or depolarizing depending on their phase relations to the V(m) oscillations and can therefore either delay or advance spikes. Experiments conducted in this most interesting last configuration with biphasic PSPs agreed with the model predictions. Additional theoretical investigations revealed the effect of these PSP induced shifts in spike timing on synchronization in neuronal circuits. The results suggest that GABAergic mechanisms can assume highly specific timing functions in oscillatory networks.

  3. Neuropsin (KLK8)-dependent and -independent synaptic tagging in the Schaffer-collateral pathway of mouse hippocampus.

    Science.gov (United States)

    Ishikawa, Yasuyuki; Horii, Yoichiro; Tamura, Hideki; Shiosaka, Sadao

    2008-01-23

    Hippocampal early long-term potentiation (LTP) elicited by a weak (one or two) tetanic stimulus normally fades away within 90 min. Late LTP elicited by strong (four) stimuli lasts >180 min and requires new protein synthesis to persist. If a strong tetanus is injected once into a synapse, even a weak tetanus injected into another synapse can evoke persistent LTP. It was hypothesized that a synaptic tag enables capture of newly synthesized synaptic molecules. Here, we found two synaptic capture mechanisms for a weakly stimulated synapse to acquire persistency (i.e., neuropsin dependent and independent). The single tetanus evokes a neuropsin-dependent form that follows downstream signaling into integrin/actin signal and L-type voltage-dependent Ca2+ channel (LVDCC) pathway. Additionally, a neuropsin-independent form of synaptic capture is evoked by a stronger (two) tetanus than the former. Both forms converging on LVDCC might serve different associative memories depending on their input strength. Our study strongly supports the hypothesis of synaptic tagging and demonstrates that neuropsin-dependent late associativity is particularly important in nonstressful associative memory.

  4. Water/Oil Biphasic Hydroformylation of Higher Olefins over a TPPTS-Rh/SiO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Hejun Zhu; Yunjie Ding; Fu Yang; Li Yan; Jianmin Xiong; Hongmei Yin; Liwu Lin

    2004-01-01

    A novel TPPTS-Rh/SiO2 catalyst, prepared by directly modifying a heterogeneous highsurface-area Rh/SiO2 catalyst with water-soluble TPPTS ligands, could decrease the resistance of mass transfer in water/oil biphasic media for the hydroformylation of higher olefins. The catalytic performance for hydroformylation on this biphasic TPPTS-Rh/SiO2 catalyst system was higher than those of the traditional biphasic HRhCO(TPPTS)3 systems, owing to the chemical bonds between the highly dispersed Rh metal particles and the TPPTS ligands. The catalyst system is applicable for hydroformylation of higher olefins such as 1-dodecene.

  5. Neuromodulation of the feedforward dentate gyrus-CA3 microcircuit

    Directory of Open Access Journals (Sweden)

    Luke Yuri Prince

    2016-10-01

    Full Text Available The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.

  6. TNFα in synaptic function: switching gears.

    Science.gov (United States)

    Santello, Mirko; Volterra, Andrea

    2012-10-01

    Pathological brain states are known to induce massive production of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα). At much lower levels, these cytokines are also present in the healthy brain, where it is increasingly being recognized that they exert regulatory influences. Recent studies suggest that TNFα plays important roles in controlling synaptic transmission and plasticity. Here, we discuss the evidence in support of synaptic regulation by TNFα and the underlying cellular mechanisms, including control of AMPA receptor trafficking and glutamate release from astrocytes. These findings suggest that increases in TNFα levels (caused by nervous system infection, injury, or disease) transform the physiological actions of the cytokine into deleterious ones. This functional switch may contribute to cognitive alterations in several brain pathologies.

  7. Filamentary Switching: Synaptic Plasticity through Device Volatility

    CERN Document Server

    La Barbera, Selina; Alibart, Fabien

    2015-01-01

    Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show tha...

  8. Linking neuronal ensembles by associative synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Qi Yuan

    Full Text Available Synchronized activity in ensembles of neurons recruited by excitatory afferents is thought to contribute to the coding information in the brain. However, the mechanisms by which neuronal ensembles are generated and modified are not known. Here we show that in rat hippocampal slices associative synaptic plasticity enables ensembles of neurons to change by incorporating neurons belonging to different ensembles. Associative synaptic plasticity redistributes the composition of different ensembles recruited by distinct inputs such as to specifically increase the similarity between the ensembles. These results show that in the hippocampus, the ensemble of neurons recruited by a given afferent projection is fluid and can be rapidly and persistently modified to specifically include neurons from different ensembles. This linking of ensembles may contribute to the formation of associative memories.

  9. Synaptic devices based on purely electronic memristors

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ruobing [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Li, Jun; Zhuge, Fei, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Fu, Bing; Li, Kang [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-01-04

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  10. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    Science.gov (United States)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  11. GABA application to hippocampal CA3 or CA1 stratum lacunosum-moleculare excites an interneuron network.

    Science.gov (United States)

    Perkins, Katherine L

    2002-03-01

    Whole cell voltage-clamp recording and focal application of the neurotransmitter gamma-aminobutyric acid (GABA) were used to investigate the ability of exogenous GABA applied to different locations within the guinea pig hippocampal slice to trigger a giant GABA-mediated postsynaptic current (GPSC) in pyramidal cells. A GPSC reflects the synchronous release of GABA from a group of interneurons. Recordings were done in the presence of 4-aminopyridine (4-AP) and blockers of ionotropic glutamatergic synaptic transmission. Spontaneous GPSCs occurred rhythmically in pyramidal cells under these conditions. Brief focal pressure application of GABA (500 microM; 30-200 ms) to CA3 stratum lacunosum-moleculare (SLM) or to the border between CA3 s. radiatum (SR) and SLM triggered an "all-or-none" GPSC in CA3 and CA1 pyramidal cells that looked like the spontaneous GPSCs. During the refractory period following a spontaneous GPSC, application of GABA could not trigger a GPSC. Both spontaneous GPSCs and GPSCs triggered by exogenous GABA were blocked by suppressing synaptic transmission with high Mg(2+)/low Ca(2+) bath solution. On the other hand, focal application of GABA to CA3 s. oriens (SO) or to proximal SR did not trigger a GPSC in the CA3 pyramidal cell; instead it produced a graded response. Focal application of GABA to regions other than CA3 was also tested. Focal application of GABA to CA1 SLM always triggered a GPSC in the CA3 pyramidal cell. Focal application of GABA within the outer two-thirds of the dentate molecular layer often elicited a GPSC in the CA3 pyramidal cell. In contrast, focal application of GABA to CA1 SO, to CA1 SR, or to the hilus elicited no current response in the CA3 pyramidal cell. These data indicate that the GPSC recorded in pyramidal cells that was triggered by focal GABA application resulted from the synchronous synaptic release of GABA from activated interneurons rather than from the binding of exogenous GABA to receptors on the pyramidal cell

  12. Endocannabinoids and synaptic function in the CNS.

    Science.gov (United States)

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  13. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    Science.gov (United States)

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  14. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby [Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard Rm. 5.114B, Galveston, TX 77555, USA

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  15. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.

    Directory of Open Access Journals (Sweden)

    Robert Rosenbaum

    Full Text Available Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.

  16. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.

    Directory of Open Access Journals (Sweden)

    Steven J Coultrap

    Full Text Available BACKGROUND: Autophosphorylation of the Ca(2+/calmodulin (CaM-dependent protein kinase II (CaMKII at T286 generates partially Ca(2+/CaM-independent "autonomous" activity, which is thought to be required for long-term potentiation (LTP, a form of synaptic plasticity thought to underlie learning and memory. A requirement for T286 autophosphorylation also for efficient Ca(2+/CaM-stimulated CaMKII activity has been described, but remains controversial. METHODOLOGY/PRINCIPAL FINDINGS: In order to determine the contribution of T286 autophosphorylation to Ca(2+/CaM-stimulated CaMKII activity, the activity of CaMKII wild type and its phosphorylation-incompetent T286A mutant was compared. As the absolute activity can vary between individual kinase preparations, the activity was measured in six different extracts for each kinase (expressed in HEK-293 cells. Consistent with measurements on purified kinase (from a baculovirus/Sf9 cell expression system, CaMKII T286A showed a mildly but significantly reduced rate of Ca(2+/CaM-stimulated phosphorylation for two different peptide substrates (to ~75-84% of wild type. Additional slower CaMKII autophosphorylation at T305/306 inhibits stimulation by Ca(2+/CaM, but occurs only minimally for CaMKII wild type during CaM-stimulated activity assays. Thus, we tested if the T286A mutant may show more extensive inhibitory autophosphorylation, which could explain its reduced stimulated activity. By contrast, inhibitory autophosphorylation was instead found to be even further reduced for the T286A mutant under our assay conditions. On a side note, the phospho-T305 antibody showed some basal background immuno-reactivity also with non-phosphorylated CaMKII, as indicated by T305/306A mutants. CONCLUSIONS/SIGNIFICANCE: These results indicate that Ca(2+/CaM-stimulated CaMKII activity is mildly (~1.2-1.3fold further increased by additional T286 autophosphorylation, but that this autophosphorylation is not required for the major

  17. Preferential increase in the hippocampal synaptic vesicle protein 2A (SV2A) by pentylenetetrazole kindling.

    Science.gov (United States)

    Ohno, Yukihiro; Ishihara, Shizuka; Terada, Ryo; Kikuta, Miki; Sofue, Nobumasa; Kawai, Yoshiko; Serikawa, Tadao; Sasa, Masashi

    2009-12-18

    The present study evaluated the expressional levels of synaptic vesicle protein 2A (SV2A) and other secretary machinery proteins (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, Munc18-1, N-ethylmaleimide-sensitive factor (NSF) and soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP)) in a pentylenetetrazole (PTZ) kindling model. Repeated administration of sub-convulsive PTZ (40 mg/kg, i.p.) progressively increased seizure susceptibility in mice and consistently induced clonic seizures in most animals tested at 15 days after the treatment. Western blot analysis revealed that, among the secretary machinery proteins examined, hippocampal SV2A was selectively elevated by PTZ kindling. PTZ kindling-induced SV2A expression appeared region-specific and the SV2A levels in the cerebral cortex or cerebellum were unaltered. In addition, SV2A expression by PTZ kindling was prominent in the hilar region of the dentate gyrus (DG) where GABAergic interneurons are located, but not in other hippocampal regions (e.g., the stratum lucidum of the CA3 and synaptic layers surrounding CA1 or CA3 pyramidal neurons). These findings suggest that PTZ kindling preferentially elevates SV2A expression in the hippocampus probably as a compensatory mechanism to activate the inhibitory neurotransmission.

  18. Cellular and molecular bases of memory: synaptic and neuronal plasticity.

    Science.gov (United States)

    Wang, J H; Ko, G Y; Kelly, P T

    1997-07-01

    Discoveries made during the past decade have greatly improved our understanding of how the nervous system functions. This review article examines the relation between memory and the cellular mechanisms of neuronal and synaptic plasticity in the central nervous system. Evidence indicating that activity-dependent short- and long-term changes in strength of synaptic transmission are important for memory processes is examined. Focus is placed on one model of synaptic plasticity called long-term potentiation, and its similarities with memory processes are illustrated. Recent studies show that the regulation of synaptic strength is bidirectional (e.g., synaptic potentiation or depression). Mechanisms involving intracellular signaling pathways that regulate synaptic strength are described, and the specific roles of calcium, protein kinases, protein phosphatases, and retrograde messengers are emphasized. Evidence suggests that changes in synaptic ultrastructure, dendritic ultrastructure, and neuronal gene expression may also contribute to mechanisms of synaptic plasticity. Also discussed are recent findings about postsynaptic mechanisms that regulate short-term synaptic facilitation and neuronal burst-pattern activity, as well as evidence about the subcellular location (presynaptic or postsynaptic) of mechanisms involved in long-term synaptic plasticity.

  19. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  20. Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review.

    Science.gov (United States)

    Murakami, Teruo; Yarimitsu, Seido; Nakashima, Kazuhiro; Sakai, Nobuo; Yamaguchi, Tetsuo; Sawae, Yoshinori; Suzuki, Atsushi

    2015-12-01

    Various studies on the application of artificial hydrogel cartilage to cartilage substitutes and artificial joints have been conducted. It is expected in clinical application of artificial hydrogel cartilage that not only soft-elastohydrodynamic lubrication but biphasic, hydration, gel-film and boundary lubrication mechanisms will be effective to sustain extremely low friction and minimal wear in daily activities similar to healthy natural synovial joints with adaptive multimode lubrication. In this review article, the effectiveness of biphasic lubrication and boundary lubrication in hydrogels in thin film condition is focused in relation to the structures and properties of hydrogels. As examples, the tribological behaviors in three kinds of poly(vinyl alcohol) hydrogels with high water content are compared, and the importance of lubrication mechanism in biomimetic artificial hydrogel cartilage is discussed to extend the durability of cartilage substitute.

  1. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts

    Science.gov (United States)

    Mao, Hui; Yu, Hong; Chen, Jing; Liao, Xuepin

    2013-07-01

    In the field of catalysis, it is highly desired to develop novel catalysts that combine the advantages of both homogeneous and heterogeneous catalysts. Here we disclose that the use of plant pholyphenol as amphiphilic large molecule ligand/stabilizer allows for the preparation of noble metal complex and noble metal nanoparticle catalysts. These catalysts are found to be highly selective and active in aqueous-organic biphasic catalysis of cinnamaldehyde and quinoline, and can be reused at least 3 times without significant loss of activity. Moreover, the catalytic activity and reusability of the catalysts can be rationally controlled by simply adjusting the content of polyphenols in the catalysts. Our strategy may be extended to design a wide range of aqueous-organic biphasic catalysis system.

  2. Efficacy and safety of biphasic insulin aspart and biphasic insulin lispro mix in patients with type 2 diabetes: A review of the literature

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2016-01-01

    Full Text Available Type 2 diabetes (T2D represents an escalating burden worldwide, particularly in China and India. Compared with Caucasians, Asian people with diabetes have lower body mass index, increased visceral adiposity, and postprandial glucose (PPG/insulin resistance. Since postprandial hyperglycemia contributes significantly to total glycemic burden and is associated with heightened cardiovascular risk, targeting PPG early in T2D is paramount. Premixed insulin regimens are widely used in Asia due to their convenience and effectiveness. Data from randomized controlled trials and observational studies comparing efficacy and safety of biphasic insulin aspart 30 (BIAsp 30 with biphasic insulin lispro mix (LM 25/50 and versus other insulin therapies or oral antidiabetic drugs (OADs in T2D demonstrated that BIAsp 30 and LM 25/50 were associated with similar or greater improvements in glycemic control versus comparator regimens, such as basal–bolus insulin, in insulin-naÏve, and prior insulin users. Studies directly comparing BIAsp 30 and LM 25 provided conflicting glycemic control results. Safety data generally showed increased hypoglycemia and weight gain with premixed insulins versus basal–bolus insulin or OADs. However, large observational trials documented improvements in glycated hemoglobin, PPG, and hypoglycemia with BIAsp 30 in multi-ethnic patient populations. In summary, this literature review demonstrates that premixed insulin regimens are an appropriate and effective treatment choice in T2D.

  3. A simulation study of the reaction of human heart to biphasic electrical shocks

    Directory of Open Access Journals (Sweden)

    Seemann Gunnar

    2004-06-01

    Full Text Available Abstract Background This article presents a study, which examines the effects of biphasic electrical shocks on human ventricular tissue. The effects of this type of shock are not yet fully understood. Animal experiments showed the superiority of biphasic shocks over monophasic ones in defibrillation. A mathematical computer simulation can increase the knowledge of human heart behavior. Methods The research presented in this article was done with different models representing a three-dimensional wedge of ventricular myocardium. The electrophysiology was described with Priebe-Beuckelmann model. The realistic fiber twist, which is specific to human myocardium was included. Planar electrodes were placed at the ends of the longest side of the virtual cardiac wedge, in a bath medium. They were sources of electrical shocks, which varied in magnitude from 0.1 to 5 V. In a second arrangement ring electrodes were placed directly on myocardium for getting a better view on secondary electrical sources. The electrical reaction of the tissue was generated with a bidomain model. Results The reaction of the tissue to the electrical shock was specific to the initial imposed characteristics. Depolarization appeared in the first 5 ms in different locations. A further study of the cardiac tissue behavior revealed, which features influence the response of the considered muscle. It was shown that the time needed by the tissue to be totally depolarized is much shorter when a biphasic shock is applied. Each simulation ended only after complete repolarization was achieved. This created the possibility of gathering information from all states corresponding to one cycle of the cardiac rhythm. Conclusions The differences between the reaction of the homogeneous tissue and a tissue, which contains cleavage planes, reveals important aspects of superiority of biphasic pulses. ...

  4. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefin...... PEI-PNH as ligands show lower stability and activity in both SAPC and biphasic applications....

  5. 4-Hydroxy-2-nonenal induces endothelial cell injury via PKCdelta and biphasic JNK activation

    OpenAIRE

    Goya, Sho; Hirata, Haruhiko; Hoshino, Shigenori; Inoue, Koji; Kashiwa, Yozo; Kawase, Ichiro; Kijima, Takashi; Kumagai, Toru; Mayumi, Masahiko; Osaki, Tadashi; Suzuki, Mayumi; Tachibana, Isao; Takeda, Yoshito; Takimoto, Takayuki; Yano, Yukihiro

    2008-01-01

    4-Hydroxy-2-nonenal (4-HNE), a major product generated during oxidative stress, exhibits cytotoxic effects; however, the mechanisms of 4-HNE-induced endothelial cell injury are not well defined. To explore this issue, we examined how 4-HNE damages human umbilical vein endothelial cells (HUVECs) and found that 4-HNE induced biphasic activation of c-Jun N-terminal kinase (JNK). Both pre- and post-treatment of HUVECs with SP600125, a specific JNK inhibitor, significantly suppresse...

  6. The Polyacetylenes Falcarinol and Falcarindiol Affect Stress Responses in Myotube Cultures in a Biphasic Manner

    OpenAIRE

    Young, Jette F; Christensen, Lars P.; Theil, Peter K.; Oksbjerg, Niels

    2008-01-01

    The effects of the bioactive polyacetylenes, falcarinol and falcarindiol, present in carrots, celery, celeriac and other umbelliferous vegetables, on the stress responses in primary myotube cultures, were studied. Biphasic responses on cellular stress responses in myotube cultures were investigated by exposing them to various concentrations of falcarinol and falcarindiol for 24 h before testing effects of 100 μM H2O2 on the intracellular formation of reactive oxygen species (ROS), transcripti...

  7. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    Science.gov (United States)

    Horne, Colin D F; Sumner, Christian J; Seeber, Bernhard U

    2016-01-01

    We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  8. Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system

    Institute of Scientific and Technical Information of China (English)

    Boonrat; Pholjaroen; Ning; Li; Zhiqiang; Wang; Aiqin; Wang; Tao; Zhang

    2013-01-01

    Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.

  9. Synchronized oscillations of dimers in biphasic charged fd-virus suspensions

    Science.gov (United States)

    Kang, K.; Piao, S. H.; Choi, H. J.

    2016-08-01

    Micron-sized colloidal spheres that are dispersed in an isotropic-nematic biphasic host suspension of charged rods (fd-virus particles) are shown to spontaneously form dimers, which exhibit a synchronized oscillatory motion. Dimer formation is not observed in the monophase of isotropic and nematic suspensions. The synchronized oscillations of dimers are connected to the inhomogeneous state of the host suspension of charged rods (fd viruses) where nematic domains are in coexistence with isotropic regions. The synchronization of oscillations occurs in bulk states, in the absence of an external field. With a low field strength of an applied electric field, the synchronization is rather reduced, but it recovers again when the field is turned off. In this Rapid Communication, we report this observation as an example of the strange attractor, occurring in the mixture of PS (polystyrene) dimers in an isotropic-nematic coexistence biphasic fd-virus network. Furthermore, we highlight that the synchronization of PS-dimer oscillations is the result of a global bifurcation diagram, driven by a delicate balance between the short-attractive "twisted" interaction of PS dimers and long-ranged electrostatic repulsive interactions of charged fd rods. The interest is then in the local enhancement of "twist-nematic" elasticity in reorientation of the dimer oscillations. An analysis of image-time correlations is provided with the data movies and Fourier transforms of averaged orientations for the synchronized oscillations of dimers in the biphasic I -N coexistence concentration of charged fd-virus suspensions.

  10. Modulation of GABAA receptor-mediated synaptic transmission by Zn2+ at a dentate gyrus circuit

    OpenAIRE

    Grauert, A.

    2013-01-01

    Zinc (ionic form Zn2+) is a common trace element in the forebrain, and is especially enriched in the hippocampus, a brain structure important for learning and memory. A large amount of vesicular Zn2+ which is thought to be released upon presynaptic depolarisation is found at synapses formed by the axons of dentate granule cells (GCs), known as mossy fibres (MFs). Zn2+ inhibits NMDA and GABAA receptors (NMDAR and GABAAR) at mono-synaptic inputs between MFs and CA3 pyramidal neurons but its rol...

  11. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission.

    Directory of Open Access Journals (Sweden)

    Shirin Jalini

    Full Text Available Oxygen-glucose deprivation (OGD leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs. Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging, increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX, also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery.

  12. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  13. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  14. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  15. The impact of synapsins on synaptic plasticity and cognitive behaviors

    Institute of Scientific and Technical Information of China (English)

    Lin ZHANG; Zhong-Xin ZHAO

    2006-01-01

    Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synaptic contacts.They could induce the change of the synaptic plasticity to regulate various adaptation reactions, and change the cognitive behaviors. So we presume that if some cognitive behavior are damaged, synapsins would be changed as well. This gives us a new recognition of better diagnosis and therapy of cognitive disorder desease.

  16. Roles of Synaptic MAGUK Proteins in Analgesia and Anesthesia

    Institute of Scientific and Technical Information of China (English)

    TAO Yuan-xiang

    2004-01-01

    @@ In the central nervous system, synapses, highly specialized sites of contact between neurons, are organized to facilitate the transmission of signals from the pre-synaptic terminal to the postsynaptic membrane and to activate subsequent signal transduction cascades that result in appropriate cellular events. Efficient and precise organization of synaptic proteins such as receptors, ion channels, and signaling molecules at both pre-synaptic and postsynaptic membranes is critical for proper signal transmission.

  17. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    Directory of Open Access Journals (Sweden)

    Paul Smolen

    Full Text Available Protein synthesis-dependent, late long-term potentiation (LTP and depression (LTD at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  18. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    Science.gov (United States)

    Smolen, Paul; Baxter, Douglas A; Byrne, John H

    2012-01-01

    Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  19. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis

    Directory of Open Access Journals (Sweden)

    Jiandong Sun

    2015-07-01

    Full Text Available Gated solely by activity-induced changes in intracellular calcium, small-conductance potassium channels (SKs are critical for a variety of functions in the CNS, from learning and memory to rhythmic activity and sleep. While there is a wealth of information on SK2 gating, kinetics, and Ca2+ sensitivity, little is known regarding the regulation of SK2 subcellular localization. We report here that synaptic SK2 levels are regulated by the E3 ubiquitin ligase UBE3A, whose deficiency results in Angelman syndrome and overexpression in increased risk of autistic spectrum disorder. UBE3A directly ubiquitinates SK2 in the C-terminal domain, which facilitates endocytosis. In UBE3A-deficient mice, increased postsynaptic SK2 levels result in decreased NMDA receptor activation, thereby impairing hippocampal long-term synaptic plasticity. Impairments in both synaptic plasticity and fear conditioning memory in UBE3A-deficient mice are significantly ameliorated by blocking SK2. These results elucidate a mechanism by which UBE3A directly influences cognitive function.

  20. Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity.

    Science.gov (United States)

    Kim, Somi; Kim, TaeHyun; Lee, Hye-Ryeon; Kong, Young-Yun; Kaang, Bong-Kiun

    2015-11-01

    Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway.

  1. Homeostatic regulation of gephyrin scaffolds and synaptic strength at mature hippocampal GABAergic postsynapses.

    Science.gov (United States)

    Vlachos, Andreas; Reddy-Alla, Suneel; Papadopoulos, Theofilos; Deller, Thomas; Betz, Heinrich

    2013-11-01

    Gephyrin is a scaffolding protein important for the postsynaptic clustering of inhibitory neurotransmitter receptors. Here, we investigated the properties of gephyrin scaffolds at γ-aminobutyric acid- (GABA-)ergic synapses in organotypic entorhino-hippocampal cultures prepared from a transgenic mouse line, which expresses green fluorescent protein-tagged gephyrin under the control of the Thy1.2 promoter. Fluorescence recovery after photobleaching revealed a developmental stabilization of postsynaptic gephyrin clusters concomitant with an increase in cluster size and synaptic strength between 1 and 4 weeks in vitro. Prolonged treatment of the slice cultures with diazepam or a GABAA receptor antagonist disclosed a homeostatic regulation of both inhibitory synaptic strength and gephyrin cluster size and stability in 4-weeks-old cultures, whereas at 1 week in vitro, the same drug treatments modulated GABAergic postsynapse and gephyrin cluster properties following a Hebbian mode of synaptic plasticity. Our data are consistent with a model in which the postnatal maturation of the hippocampal network endows CA1 pyramidal neurons with the ability to homeostatically adjust the strength of their inhibitory postsynapses to afferent GABAergic drive by regulating gephyrin scaffold properties.

  2. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 {approx} 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic.

  3. Autophosphorylation of [alpha]CaMKII is Differentially Involved in New Learning and Unlearning Mechanisms of Memory Extinction

    Science.gov (United States)

    Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo

    2008-01-01

    Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…

  4. Forebrain overexpression of CaMKII abolishes cingulate long term depression and reduces mechanical allodynia and thermal hyperalgesia

    Directory of Open Access Journals (Sweden)

    Tsien Joe Z

    2006-06-01

    Full Text Available Abstract Activity-dependent synaptic plasticity is known to be important in learning and memory, persistent pain and drug addiction. Glutamate NMDA receptor activation stimulates several protein kinases, which then trigger biochemical cascades that lead to modifications in synaptic efficacy. Genetic and pharmacological techniques have been used to show a role for Ca2+/calmodulin-dependent kinase II (CaMKII in synaptic plasticity and memory formation. However, it is not known if increasing CaMKII activity in forebrain areas affects behavioral responses to tissue injury. Using genetic and pharmacological techniques, we were able to temporally and spatially restrict the over expression of CaMKII in forebrain areas. Here we show that genetic overexpression of CaMKII in the mouse forebrain selectively inhibits tissue injury-induced behavioral sensitization, including allodynia and hyperalgesia, while behavioral responses to acute noxious stimuli remain intact. CaMKII overexpression also inhibited synaptic depression induced by a prolonged repetitive stimulation in the ACC, suggesting an important role for CaMKII in the regulation of cingulate neurons. Our results suggest that neuronal CaMKII activity in the forebrain plays a role in persistent pain.

  5. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death.

    Science.gov (United States)

    Rameau, Gerald A; Tukey, David S; Garcin-Hosfield, Elsa D; Titcombe, Roseann F; Misra, Charu; Khatri, Latika; Getzoff, Elizabeth D; Ziff, Edward B

    2007-03-28

    Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We show that, in cortical neurons, a low glutamate concentration (30 microM) induces rapid and transient NMDAR-dependent phosphorylation of S1412 by Akt, followed by sustained phosphorylation of S847 by CaMKII (calcium-calmodulin-dependent kinase II). We demonstrate that phosphorylation of S1412 by Akt is necessary for activation of nNOS by the NMDAR. nNOS mutagenesis confirms that these phosphorylations respectively activate and inhibit nNOS and, thus, transiently activate NO production. A constitutively active (S1412D), but not a constitutively repressed (S847D) nNOS mutant elevated surface glutamate receptor 2 levels, demonstrating that these phosphorylations can control AMPA receptor trafficking via NO. Notably, an excitotoxic stimulus (150 microM glutamate) induced S1412, but not S847 phosphorylation, leading to deregulated nNOS activation. S1412D did not kill neurons; however, it enhanced the excitotoxicity of a concomitant glutamate stimulus. We propose a swinging domain model for the regulation of nNOS: S1412 phosphorylation facilitates electron flow within the reductase module of nNOS, increasing nNOS sensitivity to Ca2+-calmodulin. These findings suggest a critical role for a kinetically complex and novel series of regulatory nNOS phosphorylations induced by the NMDA receptor for the in vivo control of nNOS.

  6. Ca2+ does not affect the binding properties of ITSN1 EH domains

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2014-11-01

    Full Text Available ITSN1 is an endocytic scaffold protein implicated in synaptic functioning. Ca2+ is known to be important for endo- cytosis in both pre- and post-synaptic terminals. ITSN1 contains two EH (Eps15 homology domains which possess putative Ca2+-binding EF-hand motifs. Aim. To test the effect of Ca2+ on the EH domain binding properties. Methods. His-tag pulldown, Western blotting. Results. Addition of 1.5 mM Ca2+ does not affect the binding of the ITSN1 EH domains to the C-terminal fragment of the endocytic protein Epsin 1. Conclusions. The data obtained indicate that Ca2+ has no effect on the binding properties of the ITSN1 EH domains.

  7. Experimental Implementation of a Biometric Laser Synaptic Sensor

    Directory of Open Access Journals (Sweden)

    Alexander N. Pisarchik

    2013-12-01

    Full Text Available We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.

  8. Mapping homeostatic synaptic plasticity using cable properties of dendrites.

    Science.gov (United States)

    Queenan, B N; Lee, K J; Tan, H; Huganir, R L; Vicini, S; Pak, D T S

    2016-02-19

    When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. We exploited the cable-filtering properties of dendrites to derive a parameter, the dendritic filtering index (DFI), to map the spatial distribution of synaptic currents. Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes.

  9. Mild hypoxia affects synaptic connectivity in cultured neuronal networks.

    Science.gov (United States)

    Hofmeijer, Jeannette; Mulder, Alex T B; Farinha, Ana C; van Putten, Michel J A M; le Feber, Joost

    2014-04-01

    Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150Torr lowered to 40-50Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6h causes isolated disturbances of synaptic connectivity.

  10. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer’s Disease Model

    Directory of Open Access Journals (Sweden)

    Yang Shen

    2016-11-01

    Full Text Available Hippocampal synaptic plasticity is modulated by neuropeptides, the disruption of which might contribute to cognitive deficits observed in Alzheimer’s disease (AD. Although pro-opiomelanocortin (POMC-derived neuropeptides and melanocortin 4 receptor (MC4R are implicated in hippocampus-dependent synaptic plasticity, how the POMC/MC4R system functions in the hippocampus and its role in synaptic dysfunction in AD are largely unknown. Here, we mapped a functional POMC circuit in the mouse hippocampus, wherein POMC neurons in the cornu ammonis 3 (CA3 activate MC4R in the CA1. Suppression of hippocampal MC4R activity in the APP/PS1 transgenic mouse model of AD exacerbates long-term potentiation impairment, which is alleviated by the replenishment of hippocampal POMC/MC4R activity or activation of hippocampal MC4R-coupled Gs signaling. Importantly, MC4R activation rescues amyloid-β-induced synaptic dysfunction via a Gs/cyclic AMP (cAMP/PKA/cAMP-response element binding protein (CREB-dependent mechanism. Hence, disruption of this hippocampal POMC/MC4R circuit might contribute to synaptic dysfunction observed in AD, revealing a potential therapeutic target for the disease.

  11. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

    Science.gov (United States)

    Waters, Elizabeth M; Thompson, Louisa I; Patel, Parth; Gonzales, Andreina D; Ye, Hector Zhiyu; Filardo, Edward J; Clegg, Deborah J; Gorecka, Jolanta; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2015-02-11

    Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions.

  12. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  13. Changes in synaptic and extrasynaptic N-methyl-D-aspartate receptor-mediated currents at early-stage epileptogenesis in adult mice

    Institute of Scientific and Technical Information of China (English)

    Juegang Ju; Sheng-tian Li

    2011-01-01

    Previous reports have shown that N-methyl-D-aspartate (NMDA) receptors are extensively involved in epilepsy genesis and recurrence.Recent studies have shown that synaptic and extrasynaptic NMDA receptors play different, or even opposing, roles in various signaling pathways, including synaptic plasticity and neuronal death.The present study analyzed changes in synaptic and extrasynaptic NMDA receptor-mediated currents during epilepsy onset.Mouse models of lithium chloride pilocarpine-induced epilepsy were established, and hippocampal slices were prepared at 24 hours after the onset of status epilepticus.Synaptic and extrasynaptic NMDA receptor-mediated excitatory post-synaptic currents (NMDA-EPSCs) were recorded in CA1 pyramidal neurons by whole-cell patch clamp technique.Results demonstrated no significant difference in rise and delay time of synaptic NMDA-EPSCs compared with normal neurons.Peak amplitude, area-to-peak ratio,and rising time of extrasynaptic NMDA-EPSCs remained unchanged, but decay of extrasynaptic NMDA-EPSCs was faster than that of normal neurons.These results suggest that extrasynaptic NMDA receptors play a role in epileptogenesis.

  14. STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes.

    Science.gov (United States)

    Moreno, Claudia; Sampieri, Alicia; Vivas, Oscar; Peña-Segura, Claudia; Vaca, Luis

    2012-12-01

    In astrocytes, thrombin leads to cytoplasmic Ca(2+) elevations modulating a variety of cytoprotective and cytotoxic responses. Astrocytes respond to thrombin stimulation with a biphasic Ca(2+) increase generated by an interplay between ER-Ca(2+) release and store-operated Ca(2+) entry (SOCE). In many cell types, STIM1 and Orai1 have been demonstrated to be central components of SOCE. STIM1 senses the ER-Ca(2+) depletion and binds Orai1 to activate Ca(2+) influx. Here we used immunocytochemistry, overexpression and siRNA assays to investigate the role of STIM1 and Orai1 in the thrombin-induced Ca(2+) response in primary cultures of rat cortical astrocytes. We found that STIM1 and Orai1 are endogenously expressed in cortical astrocytes and distribute accordingly with other mammalian cells. Importantly, native and overexpressed STIM1 reorganized in puncta under thrombin stimulation and this reorganization was reversible. In addition, the overexpression of STIM1 and Orai1 increased by twofold the Ca(2+) influx evoked by thrombin, while knockdown of endogenous STIM1 and Orai1 significantly decreased this Ca(2+) influx. These results indicate that STIM1 and Orai1 underlie an important fraction of the Ca(2+) response that astrocytes exhibit in the presence of thrombin. Thrombin stimulation in astrocytes leads to ER-Ca(2+) release which causes STIM1 reorganization allowing the activation of Orai1 and the subsequent Ca(2+) influx.

  15. Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons.

    Science.gov (United States)

    Yepes, M; Wu, F; Torre, E; Cuellar-Giraldo, D; Jia, D; Cheng, L

    2016-04-05

    The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis.

  16. Striking differences in synaptic facilitation along the dorsoventral axis of the hippocampus.

    Science.gov (United States)

    Papatheodoropoulos, C

    2015-08-20

    Hippocampus displays functional heterogeneity along its long axis which has been interpreted in terms of segregation of inputs. Recent evidence has shown that there are also important differences in the organization of the local neuronal circuitry between the dorsal (DH) and the ventral hippocampus (VH). Synaptic plasticity is a crucial factor for the function of the hippocampal circuit. In this study I compared the synaptic facilitation of the CA1 excitatory postsynaptic potential (EPSP) between dorsal and ventral rat hippocampal slices using field recordings and paired-pulse stimulation delivered at varying inter-pulse intervals (IPIs). The facilitation of the EPSP-slope displayed an exponential decline with increasing stimulation strength or IPI. Furthermore, the facilitation of threshold EPSP-slope was significantly higher in DH than in VH at all IPIs. Most remarkably, the facilitation of the area of EPSP displayed a prominent peak at around 200ms in DH but not VH. This optimal facilitation declined abruptly at a position located two thirds of the way along the dorsoventral axis. N-methyl-d-aspartic acid receptors (NMDARs) contributed to the facilitation of EPSP-area in an IPI-selective manner in DH but not VH. Furthermore, NMDARs participated to the single-pulse-evoked EPSP-area more in VH than in DH. Blockade of GABAB receptors (GABABRs) eliminated the prominent facilitation at around 200ms and abolished the large dorsoventral difference in the facilitation of EPSP-area. Blockade of GABAA receptors (GABAARs) increased the maximum area of EPSP more in VH than in DH and reversed facilitation into GABABR-dependent depression that was more robust in DH than in VH. I conclude that interactions between the synaptic actions of GABABR, GABAAR, and NMDAR contribute to diversifying short-term synaptic plasticity along the dorsoventral axis of the hippocampus. It is hypothesized that this diversification has important implications for the information processing

  17. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.

    Science.gov (United States)

    Tarasenko, A S; Storchak, L G; Himmelreich, N H

    2008-02-01

    Ca(2+)-independent [(3)H]GABA release induced by alpha-latrotoxin was found to consist of two sequential processes: a fast initial release realized via exocytosis and more delayed outflow through the plasma membrane GABA transporters [Linetska, M.V., Storchak, L.G., Tarasenko, A.S., Himmelreich, N.H., 2004. Involvement of membrane GABA transporters in alpha-latrotoxin-stimulated [(3)H]GABA release. Neurochem. Int. 44, 303-312]. To characterize the toxin-stimulated events attributable to the transporter-mediated [(3)H]GABA release from rat brain synaptosomes we studied the effect of alpha-latrotoxin on membrane potentials and generation of the synaptic vesicles proton gradient, using fluorescent dyes: potential-sensitive rhodamine 6G and pH-sensitive acridine orange. We revealed that alpha-latrotoxin induced a progressive dose-dependent depolarization of mitochondrial membrane potential and an irreversible run-down of the synaptic vesicle proton gradient. Both processes were insensitive to the presence of cadmium, a potent blocker of toxin-formed transmembrane pores, indicating that alpha-latrotoxin-induced disturbance of the plasma membrane permeability was not responsible to these effects. A gradual dissipation of the synaptic vesicle proton gradient closely coupled with lowering the vesicular GABA transporter activity results in a leakage of the neurotransmitter from synaptic vesicles to cytoplasm. As a consequence, there is an essential increase in GABA concentration in a soluble cytosolic pool that appears to be critical parameter for altering the mode of the plasma membrane GABA transporter operation from inward to outward. Thus, our data allow clarifying what cell processes underlain a recruitment of the plasma membrane transporter-mediated pathway in alpha-LTX-stimulated secretion.

  18. Effect of developmental lead exposure on synaptic plasticity and N—methyl—D—aspartate receptor subunit in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    RuanDY; SuiL

    2002-01-01

    Chronic lead(Pb) exposure is known to be associated with learning and memory,and cognitive dysfunction in children.Previous studies have demonstrated that Pb exposure may impair neuronal process underlying synaptic plasticity via a direct interaction with N-methyl-D-aspartate (NMDA) receptors(NMDARs).The studies described here were carried out to investigate effect of developmental Pb exposure on long-term potentiation(LTP),long-tern depression(LTD) and NMDAs subunits in rat hippocampus.The results are listed as follows:(1)low-level Pb exposture can impair the induction and maintenance of LTP in vivo and in vitro;(2)the Pb-induced impairment of LTD magnitude was an age-related decline in area CA1 of rat hippocampus;(3)chronic Pb exposure affected two components,voltage-gated calcium channel-dependent LTD and NMDARs-dependent LTD,of LTD induction in area CA1 of rat hippocampus;(4)different effects of developmental Pb exposure on NMDA receptor NR1,NR2A,NR2B,NR2C,NR2D and NR3A subunits in area CA1,CA2,CA3 and CA4 of rat hippocampus were observed;(5)the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors enriched in area CA1,CA3 and dentate gyrus and kainite receptors enriched in area CA1 and dentate gyrus of rat hippocampus were impaired by Pb exposure.

  19. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  20. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  1. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3.

    Science.gov (United States)

    Perez-Alcazar, Marta; Daborg, Jonny; Stokowska, Anna; Wasling, Pontus; Björefeldt, Andreas; Kalm, Marie; Zetterberg, Henrik; Carlström, Karl E; Blomgren, Klas; Ekdahl, Christine T; Hanse, Eric; Pekna, Marcela

    2014-03-01

    Previous work implicated the complement system in adult neurogenesis as well as elimination of synapses in the developing and injured CNS. In the present study, we used mice lacking the third complement component (C3) to elucidate the role the complement system plays in hippocampus-dependent learning and synaptic function. We found that the constitutive absence of C3 is associated with enhanced place and reversal learning in adult mice. Our findings of lower release probability at CA3-CA1 glutamatergic synapses in combination with unaltered overall efficacy of these synapses in C3 deficient mice implicate C3 as a negative regulator of the number of functional glutamatergic synapses in the hippocampus. The C3 deficient mice showed no signs of spontaneous epileptiform activity in the hippocampus. We conclude that C3 plays a role in the regulation of the number and function of glutamatergic synapses in the hippocampus and exerts negative effects on hippocampus-dependent cognitive performance.

  2. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  3. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning

    Science.gov (United States)

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  4. Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning

    Directory of Open Access Journals (Sweden)

    Hardy Hagena

    2016-09-01

    Full Text Available Although the mossy fiber (MF synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24h synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH-CA1 and perforant path (PP-dentate gyrus (DG synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP and long-term depression (LTD. These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about spatial experience effectively occurs and the neuromodulator dopamine plays a key role in motivation-based learning. Prior research on the regulation by dopamine receptors of long-term synaptic plasticity in CA1 and dentate gyrus synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of these receptors in persistent (>24h forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data

  5. Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease.

    Directory of Open Access Journals (Sweden)

    Karolina Kolodziejczyk

    Full Text Available Huntington disease (HD is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the gene (HTT encoding the huntingtin protein (HTT. This mutation leads to multiple cellular and synaptic alterations that are mimicked in many current HD animal models. However, the most commonly used, well-characterized HD models do not accurately reproduce the genetics of human disease. Recently, a new 'humanized' mouse model, termed Hu97/18, has been developed that genetically recapitulates human HD, including two human HTT alleles, no mouse Hdh alleles and heterozygosity of the HD mutation. Previously, behavioral and neuropathological testing in Hu97/18 mice revealed many features of HD, yet no electrophysiological measures were employed to investigate possible synaptic alterations. Here, we describe electrophysiological changes in the striatum and hippocampus of the Hu97/18 mice. At 9 months of age, a stage when cognitive deficits are fully developed and motor dysfunction is also evident, Hu97/18 striatal spiny projection neurons (SPNs exhibited small changes in membrane properties and lower amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs; however, release probability from presynaptic terminals was unaltered. Strikingly, these mice also exhibited a profound deficiency in long-term potentiation (LTP at CA3-to-CA1 synapses. In contrast, at 6 months of age we found only subtle alterations in SPN synaptic transmission, while 3-month old animals did not display any electrophysiologically detectable changes in the striatum and CA1 LTP was intact. Together, these data reveal robust, progressive deficits in synaptic function and plasticity in Hu97/18 mice, consistent with previously reported behavioral abnormalities, and suggest an optimal age (9 months for future electrophysiological assessment in preclinical studies of HD.

  6. EFFECT OF ELECTROACUPUNCTURE ON SYNAPTIC PLASTICITY OF HPPOCAMPAL NEURONS IN CEREBRAL ISCHEMIA RATS

    Institute of Scientific and Technical Information of China (English)

    杨卓欣; 于海波; 王玲; 张家维

    2004-01-01

    Objective:To observe the effect of electroacupuncture (EA) on synaptic structure of hippocampal nerve felts and synaptophysin(SYN)expression in rats with cerebral ischemic injury. Methods: Sixty Wistar rats were randomized into sham-operation group, cerebral ischemia (CI) group and EA group, each of which was further divided into 1week (W) and 5W subgroups. CI injury model was established by occlusion of the bilateral common carotid arteries. "Baihui"(百会 GV 20), "Dazhui" (大椎 GV 14), "Renzhong"(人中 GV 26) and "Guanyuan"(关元 CV 4) were punctured and stimulated electrically. The brain tissue sections containing hippocampus region were stained with immunohistochemical technique and observed under light microscope and transmission electronic microscope. Results: After CI, the ischemic injury as degeneration of the presynapse compositions, decrease of the synaptic numeral density, and low expression of SYN were observed in hippocampal CA1 area. By the 5th week after CI, the neonatal synapses of CI and EA groups appeared, and SYN expression was upregulated. In EA group, the recovery of the numeral density of synapses was especially noticeable, being 93.8% of that of sham-operation group and significantly higher than that in CI group (P<0.01). Compared with sham-operation group, the calibrated optical density (COD) values of SYN increased to 70% in CI group, and 93.3% in EA group, and COD value in EA group was significantly higher than that in CI group (P<0.01). Conclusion: EA can function in promoting synaptic regeneration and enhancing and perfecting the actions of the reconstructed synapses in hippocampal CA1 area in CI rats.

  7. Diazepam-Induced Increases of Synaptic Efficacy in the Hippocampal-Medial Prefrontal Cortex Pathway Are Associated With Its Anxiolytic-like Effect in Rats

    OpenAIRE

    2010-01-01

    The medial prefrontal cortex (mPFC) has recently been shown to be an important brain region for emotional function as well as cognitive ability. In previous experiments, we studied the population spike amplitude (PSA) in the mPFC induced by stimulation of the CA1/subicular region as an index of synaptic efficacy in the hippocampal-mPFC pathway. In the present study, we investigated the relationship between the anxiolytic effect of diazepam and the changes of synaptic efficacy in this pathway....

  8. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.

    Science.gov (United States)

    Curcio, Michele; Salazar, Ivan L; Mele, Miranda; Canzoniero, Lorella M T; Duarte, Carlos B

    2016-08-01

    The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.

  9. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.

    Science.gov (United States)

    Sweatt, J David

    2016-05-01

    Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.

  10. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  11. BMP signaling and microtubule organization regulate synaptic strength.

    Science.gov (United States)

    Ball, R W; Peled, E S; Guerrero, G; Isacoff, E Y

    2015-04-16

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strengths between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system.

  12. Intracellular Ca2+ Stores and Ca2+ Influx Are Both Required for BDNF to Rapidly Increase Quantal Vesicular Transmitter Release

    OpenAIRE

    Amaral, Michelle D.; Lucas Pozzo-Miller

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This...

  13. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro.

    Science.gov (United States)

    Hájos, Norbert; Karlócai, Mária R; Németh, Beáta; Ulbert, István; Monyer, Hannah; Szabó, Gábor; Erdélyi, Ferenc; Freund, Tamás F; Gulyás, Attila I

    2013-07-10

    Hippocampal sharp waves and the associated ripple oscillations (SWRs) are implicated in memory processes. These network events emerge intrinsically in the CA3 network. To understand cellular interactions that generate SWRs, we detected first spiking activity followed by recording of synaptic currents in distinct types of anatomically identified CA3 neurons during SWRs that occurred spontaneously in mouse hippocampal slices. We observed that the vast majority of interneurons fired during SWRs, whereas only a small portion of pyramidal cells was found to spike. There were substantial differences in the firing behavior among interneuron groups; parvalbumin-expressing basket cells were one of the most active GABAergic cells during SWRs, whereas ivy cells were silent. Analysis of the synaptic currents during SWRs uncovered that the dominant synaptic input to the pyramidal cell was inhibitory, whereas spiking interneurons received larger synaptic excitation than inhibition. The discharge of all interneurons was primarily determined by the magnitude and the timing of synaptic excitation. Strikingly, we observed that the temporal structure of synaptic excitation and inhibition during SWRs significantly differed between parvalbumin-containing basket cells, axoaxonic cells, and type 1 cannabinoid receptor (CB1)-expressing basket cells, which might explain their distinct recruitment to these synchronous events. Our data support the hypothesis that the active current sources restricted to the stratum pyramidale during SWRs originate from the synaptic output of parvalbumin-expressing basket cells. Thus, in addition to gamma oscillation, these GABAergic cells play a central role in SWR generation.

  14. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  15. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.

    Science.gov (United States)

    Yang, Taiseung; Spilker, Robert L

    2007-06-01

    A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head

  16. Intervertebral Disc Tissue Engineering with Natural Extracellular Matrix-Derived Biphasic Composite Scaffolds.

    Directory of Open Access Journals (Sweden)

    Baoshan Xu

    Full Text Available Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG for the outer annulus fibrosus (AF phase and pig acellular cartilage ECM (ACECM for the inner nucleus pulposus (NP phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4 ± 13.1 μm and 231.6 ± 57.2 μm, respectively. PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence were distributed in the scaffold, with no dead cells (red fluorescence being found. The cell-scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell--scaffold constructs in vivo.

  17. Biphasic fermentation is an efficient strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis.

    Science.gov (United States)

    Jisha, Veloorvalappil Narayanan; Smitha, Robinson Babysarojam; Priji, Prakasan; Sajith, Sreedharan; Benjamin, Sailas

    2015-02-01

    This study illustrates a biphasic solid-state fermentation (SSF) strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis subsp. kurstaki (Btk) and also purification of δ-endotoxin from the solid-fermented medium. The fermentation strategy had two phases (biphasic); i.e., the first short phase was semisolid state (12 h), and the remaining long phase was strict SSF. To achieve the biphasic SSF, after 12 h (150 rpm, 37 °C) fermentation of the medium [Luria-Bertani (LB) supplemented with 30 % (w/v) raw soybean flour (phase I)], the supernatant in it was completely centrifuged out (1,000 × g, 10 min) aseptically for harvesting the extracellular enzymes as by-product. The resultant wet solid matter without free-flowing liquid but with embedded Btk was incubated 60 h more (phase II) for enhancing δ-endotoxin production at static condition (37 °C). Coupled with this, δ-endotoxin was purified by the modified phase separation method, and its purity was physically confirmed by both staining and microscopic techniques. The maximum δ-endotoxin yield from solid medium (48 h) was 15.8 mg/mL (recovery was 55-59 %) LB-equivalent, while that of LB control (recovery was 95 %) was only 0.43 mg/mL (72 h), i.e., thus, in comparison, 36.74-fold more yield in solid medium obtained by 24 h less gestation period. The purified crystal proteins showed apparent molecular weights (MWs) of 45, 35, and 6 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, this unique study physically demonstrates how Btk δ-endotoxin is purified (95-99 % purity) from solid-fermented matter for the first time, coupled with its overproduction at the expense of only 21.5 % higher production cost.

  18. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  19. A Novel Ionic Liquid/water Biphasic System for the Preparation of Oximes

    Institute of Scientific and Technical Information of China (English)

    Hui Mou LUO; Yi Qun LI; Wen Jie ZHENG

    2005-01-01

    A variety of carbonyl compounds can be converted into oximes efficiently and conveniently in a novel ionic liquid/water bi-phasic system in the presence of sodium bicarbonate at ambient temperature. The ionic liquid 1-butyl-3-methyl imidazolium hexafluorophosphate [bmim]PF6 is immiscible with water or diethyl ether and can be easily recycled for reuse without noticeable droping in activity after separation of the products. The protocol is rapid, the yields are excellent, the method is simple and the ionic liquid can be reused.

  20. Use of Biphasic Continuous Positive Airway Pressure in Premature Infant with Cleft Lip–Cleft Palate

    Directory of Open Access Journals (Sweden)

    Lovya George

    2015-10-01

    Full Text Available Preterm infants (PIs often require respiratory support due to surfactant deficiency. Early weaning from mechanical ventilation to noninvasive respiratory support decreases ventilation-associated irreversible lung damage. This wean is particularly challenging in PIs with cleft lip and cleft palate due to anatomical difficulties encountered in maintaining an adequate seal for positive pressure ventilation. PI with a cleft lip and palate often fail noninvasive respiratory support and require continued intubation and mechanical ventilation. We are presenting the first case report of a PI with cleft lip and palate who was managed by biphasic nasal continuous positive airway pressure.

  1. Generic Model-Based Tailor-Made Design and Analysis of Biphasic Reaction Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata

    contribution of this thesis is the development of a systematic modelling framework for the biphasic reaction system. The developed framework consists of three modules describing phase equilibria, reactions and mass transfer, and material balances of such processes. Correlative and predictive thermodynamic......-elementary reaction rate laws. Extents of reaction are used to calculate the species material balances. The resulting mathematical model contains temperature dependent reaction rate parameters,equilibrium constants, and partition coefficients; where only the reaction rates are to be regressed to a minimum of time...

  2. Alzheimer's disease: synaptic dysfunction and Abeta

    LENUS (Irish Health Repository)

    Shankar, Ganesh M

    2009-11-23

    Abstract Synapse loss is an early and invariant feature of Alzheimer\\'s disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.

  3. Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors.

    Science.gov (United States)

    Khazipov, R; Congar, P; Ben-Ari, Y

    1995-11-01

    1. Whole cell patch-clamp recordings were employed to characterize monosynaptic inhibitory postsynaptic currents (IPSCs) in morphologically and electrophysiologically identified interneurons located in the stratum lacunosum moleculare, or near the border of the stratum radiatum (LM interneurons), in the CA1 region of hippocampal slices taken from 3- to 4-wk-old rats. Monosynaptic IPSCs, evoked in the presence of glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphopentanoate (APV; 50 microM) were biphasic. The gamma-aminobutyric acid-A (GABAA) receptor antagonist, bicuculline (20 microM), blocked the fast IPSC, and the slow IPSC was blocked by the GABAB receptor antagonist CGP35348 (500 microM). 2. Monosynaptic IPSCs were evoked by electrical stimulation in several distant regions including the stratum radiatum, the stratum oriens, the stratum lacunosum-moleculare, and the molecular layer of dentate gyrus, suggesting an extensive network of inhibitory interneurons in the hippocampus. In paired recordings of CA1 interneurons and pyramidal cells, IPSCs were evoked by electrical stimulation of most of these distal regions with the exception of the molecular layer of dentate gyrus, which evoked an IPSC only in LM interneurons. 3. Frequent (> 0.1 Hz) stimulation depressed the evoked IPSCs. With a paired-pulse protocol, the second IPSC was depressed and the maximal depression (40-50%) was observed with an interstimulus interval of 100-200 ms. 4. The GABAB receptor agonist baclofen (1 microM) reduced the amplitude of evoked IPSCs and the paired-pulse depression of the second IPSC. The GABAB receptor antagonist CGP35348 (0.5-1 mM) had no significant effect on the amplitude of isolated IPSCs. However, CGP35348 reduced but did not fully block paired-pulse depression, suggesting that this depression is partly due to the activation of presynaptic GABAB receptors. 5. The paired-pulse depression depended on the level of

  4. 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission.

    Science.gov (United States)

    Costa, L; Trovato, C; Musumeci, S A; Catania, M V; Ciranna, L

    2012-04-01

    We have studied the effects of 5-HT(1A) and 5-HT(7) serotonin receptor activation in hippocampal CA3-CA1 synaptic transmission using patch clamp on mouse brain slices. Application of either 5-HT or 8-OH DPAT, a mixed 5-HT(1A)/5-HT(7) receptor agonist, inhibited AMPA receptor-mediated excitatory post synaptic currents (EPSCs); this effect was mimicked by the 5-HT(1A) receptor agonist 8-OH PIPAT and blocked by the 5-HT(1A) antagonist NAN-190. 8-OH DPAT increased paired-pulse facilitation and reduced the frequency of mEPSCs, indicating a presynaptic reduction of glutamate release probability. In another group of neurons, 8-OH DPAT enhanced EPSC amplitude but did not alter paired-pulse facilitation, suggesting a postsynaptic action; this effect persisted in the presence of NAN-190 and was blocked by the 5-HT(7) receptor antagonist SB-269970. To confirm that EPSC enhancement was mediated by 5-HT(7) receptors, we used the compound LP-44, which is considered a selective 5-HT(7) agonist. However, LP-44 reduced EPSC amplitude in most cells and instead increased EPSC amplitude in a subset of neurons, similarly to 8-OH DPAT. These effects were respectively antagonized by NAN-190 and by SB-269970, indicating that under our experimental condition LP-44 behaved as a mixed agonist. 8-OH DPAT also modulated the current evoked by exogenously applied AMPA, inducing either a reduction or an increase of amplitude in distinct neurons; these effects were respectively blocked by 5-HT(1A) and 5-HT(7) receptor antagonists, indicating that both receptors exert a postsynaptic action. Our results show that 5-HT(1A) receptors inhibit CA3-CA1 synaptic transmission acting both pre- and postsynaptically, whereas 5-HT(7) receptors enhance CA3-CA1 synaptic transmission acting exclusively at a postsynaptic site. We suggest that a selective pharmacological targeting of either subtype may be envisaged in pathological loss of hippocampal-dependent cognitive functions. In this respect, we underline the

  5. Distribution of interneurons in the CA2 region of the rat hippocampus.

    Science.gov (United States)

    Botcher, Nicola A; Falck, Joanne E; Thomson, Alex M; Mercer, Audrey

    2014-01-01

    The CA2 region of the mammalian hippocampus is a unique region with its own distinctive properties, inputs and pathologies. Disruption of inhibitory circuits in this region appears to be linked with the pathology of specific psychiatric disorders, promoting interest in its local circuitry, its role in hippocampal function and its dysfunction in disease. In previous studies, CA2 interneurons, including a novel subclass of CA2 dendrite-preferring interneurons that has not been identified in other CA regions, have been shown to display physiological, synaptic and morphological properties unique to this sub-field and may therefore play a crucial role in the hippocampal circuitry. The distributions of immuno-labeled interneurons in dorsal CA2 were studied and compared with those of interneurons in CA1 and CA3. Like those in CA1 and CA3, the somata of CA2 parvalbumin-immunoperoxidase-labeled interneurons were located primarily in Stratum Pyramidale (SP) and Stratum Oriens (SO), with very few cells in Stratum Radiatum (SR) and none in Stratum Lacunosum Moleculare (SLM). There was, however, a greater proportion of GAD-positive cells were immunopositive for PV in SP in CA2 than in CA1 or CA3. CA2 SP also contained a larger density of somatostatin-, calbindin-, and VIP-immunopositive somata than CA1 and/or CA3. Like those in CA1 and CA3, CCK-immunopositive somata in CA2 were mostly located in SR. Reelin- and NPY- immunolabeled cell bodies were located in all layers of the three CA regions. However, a higher density of Reelin-positive somata was found in SP and SR of CA2 than in CA1 or CA3.

  6. Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system

    Science.gov (United States)

    Merican, Zulkifli; Vu, Bao Khanh; Solovyeva, Vera A.; Rodionov, Valentin O.; Khe, Cheng Seong; Rajalingam, Sokkalingam; Vasant, Pandian

    2016-11-01

    The synthesis and characterization of the mesoporous silica-supported gold (Au@mSiO2) nanoparticles compatibilized with the outer shelled superhydrophobic fluorous (F) "tails" was described. The concept of fluorous biphasic separation was applied in the recycling of the synthesized fluorous material during hydroamination reactions of various alkynes. In the presence of perfluoromethylcyclohexane and heptane as a biphasic liquid system, the F-Au@mSiO2 was found to be a highly active catalyst for hydroamination of various alkynes with anilines, and a near quantitative yield for an imine product and produced a relatively minimal formation of a corresponding hydrolyzed ketone by-product. If perfluoromethylcyclohexane and heptane was used as a biphasic solvent, hydroamination at a lower reaction temperature can also be realized leading to an improved recyclability and conversion.

  7. Fabrication of Biphase BiVO4 Particles with Enhanced Photocatalytic Performance via a Surfactant-Free Hydrothermal Route

    Science.gov (United States)

    Qian, Hongzhi; Lai, Min; Huang, Xiaogu; Wang, Wei; Xu, Chaoqi; Yong, Haibo; Wen, Yan; Zhou, Yingjie

    2016-04-01

    Biphase bismuth vanadate (BiVO4) particles have been synthesized using a surfactant-free hydrothermal strategy. Biphase BiVO4 were formed at pH=3, 5 and 7 with a bandgap between 2.28eV and 2.86eV, which are those of monoclinic and tetragonal phases, respectively. Photocatalytic tests on the degradation of rhodamine B (RhB) under visible-light irradiation showed that biphase BiVO4 with both monoclinic and tetragonal structures synthesized at pH=3 achieved enhanced photocatalytic performance in comparison with pure monoclinic and tetragonal phases, which was attributed to the heterostructures leading to low recombination rate of electron-hole pairs.

  8. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Science.gov (United States)

    Silva, E. F.; Gamino, M.; Andrade, A. M. H. de; Vázquez, M.; Correa, M. A.; Bohn, F.

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  9. Ongoing intrinsic synchronous activity is required for the functional maturation of CA3-CA1 glutamatergic synapses.

    Science.gov (United States)

    Huupponen, Johanna; Molchanova, Svetlana M; Lauri, Sari E; Taira, Tomi

    2013-11-01

    Fine-tuning of synaptic connectivity during development is guided by intrinsic activity of the immature networks characteristically consisting of intermittent bursts of synchronous activity. However, the role of synchronous versus asynchronous activity in synapse maturation in the brain is unclear. Here, we have pharmacologically prevented generation of synchronous activity in the immature rat CA3-CA1 circuitry in a manner that preserves unitary activity. Long-term desynchronization of the network resulted in weakening of AMPA-receptor-mediated glutamatergic transmission in CA1 pyramidal cells. This weakening was dependent on protein phosphatases and mGluR activity, associated with an increase in the proportion of silent synapses and a decrease in the protein levels of GluA4 suggesting postsynaptic mechanisms of expression. The findings demonstrate that synchronous activity in the immature CA3-CA1 circuitry is critical for the induction and maintenance of glutamatergic synapses and underscores the importance of temporal activity patterns in shaping the synaptic circuitry during development.

  10. Mechanism-based pharmacokinetic-pharmacodynamic modeling of concentration-dependent hysteresis and biphasic electroencephalogram effects of alphaxalone in rats.

    Science.gov (United States)

    Visser, S A G; Smulders, C J G M; Reijers, B P R; Van der Graaf, P H; Peletier, L A; Danhof, M

    2002-09-01

    The neuroactive steroid alphaxalone reveals a complex biphasic concentration-effect relationship using the 11.5 to 30 Hz frequency band of the electroencephalogram (EEG) as biomarker. The purpose of the present investigation was to develop a mechanism-based pharmacokinetic-pharmacodynamic model to describe this observation. The proposed model is based on receptor theory and aims to separate the drug-receptor interaction from the transduction of the initial stimulus into the observed biphasic response. Individual concentration-time courses of alphaxalone were obtained in combination with continuous recording of the EEG parameter. Alphaxalone was administered intravenously in various dosages. The pharmacokinetics were described by a two-compartment model, and parameter estimates for clearance, intercompartmental clearance, volume of distribution 1 and 2 were 158 +/- 29 ml. min(-1). kg(-1), 143 +/- 31 ml. min(-1). kg(-1), 122 +/- 20 ml. kg(-1) and 606 +/- 48 ml. kg(-1), respectively. Concentration-effect relationships exhibited a biphasic pattern and delay in onset of effect. The hysteresis was described on the basis of an effect-compartment model with C(max) as covariate. The pharmacodynamic model consisted of a receptor model, featuring a monophasic saturable receptor activation model in combination with a biphasic stimulus-response model. The in vivo affinity (K(PD)) was estimated at 432 +/- 26 ng. ml(-1). Unique parameter estimates were obtained that were independent of the dose and the duration of the infusion. In conclusion, we have shown that this mechanism-based approach, which separates drug- and system-related properties in vivo, was successfully applied for the characterization of the biphasic effect versus time patterns of alphaxalone. The model should be of use in the characterization of other biphasic responses.

  11. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mego, W.A.

    1999-09-07

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  12. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  13. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com [Biomaterials Department, National Research Centre, Dokki, Cairo (Egypt); Mousa, Sahar M. [Chemistry Department, Science and Art College, King Abdulaziz University, Rabigh Campus, P.O. Box 344, 21911 Rabigh (Saudi Arabia); Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo (Egypt); El Bassyouni, Gehan T. [Biomaterials Department, National Research Centre, Dokki, Cairo (Egypt); Medical Physics Department, College of Medicine, Taif University (Saudi Arabia)

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could be obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.

  14. Influence of Biphasic Stimulation on Olfactory Ensheathing Cells for Neuroprosthetic Devices

    Directory of Open Access Journals (Sweden)

    Rachelle Therese Hassarati

    2016-10-01

    Full Text Available The recent success of olfactory ensheathing cell (OEC assisted regeneration of injured spinal cord has seen a rising interest in the use of these cells in tissue-engineered systems. Previously shown to support neural cell growth through glial scar tissue, OECs have the potential to assist neural network formation in living electrode systems to produce superior neuroprosthetic electrode surfaces. The following study sought to understand the influence of biphasic electrical stimulation (ES, inherent to bionic devices, on cell survival and function, with respect to conventional metallic and developmental conductive hydrogel (CH coated electrodes. The CH utilised in this study was a biosynthetic hydrogel consisting of methacrylated poly(vinyl-alcohol (PVA, heparin and gelatin through which poly(3,4-ethylenedioxythiophene (PEDOT was electropolymerised. OECs cultured on Pt and CH surfaces were subjected to biphasic ES. Image-based cytometry yielded little significant difference between the viability and cell cycle of OECs cultured on the stimulated and passive samples. The significantly lower voltages measured across the CH electrodes (147 ± 3 mV compared to the Pt (317 ± 5 mV, had shown to influence a higher percentage of viable cells on CH (91 - 93 % compared to Pt (78 - 81 %. To determine the functionality of these cells following electrical stimulation, OECs co-cultured with PC12 cells were found to support neural cell differentiation (an indirect measure of neurotrophic factor production following ES.

  15. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    Science.gov (United States)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  16. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  17. New resource for the computation of cartilage biphasic material properties with the interpolant response surface method.

    Science.gov (United States)

    Keenan, Kathryn E; Kourtis, Lampros C; Besier, Thor F; Lindsey, Derek P; Gold, Garry E; Delp, Scott L; Beaupre, Gary S

    2009-08-01

    Cartilage material properties are important for understanding joint function and diseases, but can be challenging to obtain. Three biphasic material properties (aggregate modulus, Poisson's ratio and permeability) can be determined using an analytical or finite element model combined with optimisation to find the material properties values that best reproduce an experimental creep curve. The purpose of this study was to develop an easy-to-use resource to determine biphasic cartilage material properties. A Cartilage Interpolant Response Surface was generated from interpolation of finite element simulations of creep indentation tests. Creep indentation tests were performed on five sites across a tibial plateau. A least-squares residual search of the Cartilage Interpolant Response Surface resulted in a best-fit curve for each experimental condition with corresponding material properties. These sites provided a representative range of aggregate moduli (0.48-1.58 MPa), Poisson's ratio (0.00-0.05) and permeability (1.7 x 10(- 15)-5.4 x 10(- 15) m(4)/N s) values found in human cartilage. The resource is freely available from https://simtk.org/home/va-squish.

  18. Primary localized malignant biphasic mesothelioma of the liver in a patient with asbestosis

    Institute of Scientific and Technical Information of China (English)

    Motoko Sasaki; Ichiro Araki; Toshiaki Yasui; Masaru Kinoshita; Keita Itatsu; Takayuki Nojima; Yasuni Nakanuma

    2009-01-01

    We report a case of primary localized malignant biphasic mesothelioma of the liver in a 66-yearold man associated with asbestosis. The tumor was detected as a hepatic nodule, 4 cm in diameter, in the right lobe (S8 segment) on CT scan. Histopathological examination demonstrated an intrahepatic tumor with central necrosis consisting of a papillary epithelioid pattern on the surface of the liver, microcystic (microglandular or adenomatoid) pattern mainly in the subcapsular area and sarcomatoid pattern intermingled with microcystic pattern in the major part of the hepatic nodular tumor. Tumor cells, especially of epithelioid type, showed distinct immunoreactivity for mesothelial markers (WT-1, calretinin, D2-40, CK5/6,mesothelin, thrombomodulin) and no immunoreactivity for epithelial (adenocarcinoma) markers (CEA, CD15,BerEP4, BG8, MOC31). P53 immunoreactivity was detected focally in papillary epithelioid tumor cells and extensively in microcystic and sarcomatoid components, suggesting that the papillary epithelioid mesothelioma arose on the surface of the liver, and tumor cells showing microcystic and sarcomatoid patterns invaded and grew into the liver. To date, this is the first case of primary localized malignant biphasic mesothelioma of the liver, since all three primary hepatic mesotheliomas reported so far were epithelioid type.

  19. Investigation of biphasic tumor oxygen dynamics induced by hyperoxic gas intervention: the dynamic phantom approach

    Science.gov (United States)

    Kim, Jae G.; Liu, Hanli

    2008-01-01

    We have developed dynamic tumor vascular phantoms and utilized them to investigate the biphasic behavior of increases in light absorption, which is directly associated with oxygenated hemoglobin concentration that was observed in vivo from rat breast tumor experiments during carbogen/oxygen inhalation. The experimental setup for the phantom study included a continuous-wave, multichannel, near-infrared spectroscopy (NIRS) system and syringe pumps to drive the simulated blood through the dynamic vascular phantoms. The results from such phantom experiments clearly show that the two time constants observed in tumor oxygenation dynamics in vivo can result from two different perfusion rates or two different blood flow velocities. We provide experimental support for our previous hypothesis: the biphasic tumor hemodynamic feature stems from a well-perfused and poorly perfused region that could be detected with the two time constants of the NIRS signals. With a multichannel approach, noninvasive NIRS measurements may have useful and prognostic values to quantify the therapeutic effects of cancer treatments.

  20. Biphasic recruitment of microchimeric fetal mesenchymal cells in fibrosis following acute kidney injury.

    Science.gov (United States)

    Roy, Edwige; Seppanen, Elke; Ellis, Rebecca; Lee, Eddy S; Khosrotehrani, Kiarash