WorldWideScience

Sample records for bipedal walking mechanism

  1. Two walking gaits for a planar bipedal robot equipped with a four-bar mechanism for the knee joint

    OpenAIRE

    Hamon, Arnaud; Aoustin, Yannick; Caro, Stéphane

    2013-01-01

    International audience The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements, and to improve the bipedal robot performances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. The dynamic model of the planar bipedal robot is calculated. Two kinds of cyclic walking gaits are considered. The first gait is composed of successive single support phases with stan...

  2. Evolution of central pattern generators for the control of a five-link planar bipedal walking mechanism

    CERN Document Server

    Baydin, Atilim Gunes

    2008-01-01

    With the aim of producing a stable human-like bipedal gait, a five-link planar walking mechanism was coupled with a central pattern generator (CPG) network, consisting of units based on Matsuoka's half-center oscillator model. As a minimalistic approach to bipedal walking, this type of walking mechanism contains only four actuators (two in the hip joints and two in the knee joints), and is lacking feet and ankles. Firstly, the mechanism was designed and built as a physical simulation programmed from scratch, providing a platform for hand-tuned tests and the creation of a CPG controller by genetic algorithms (GA). The oscillatory characteristics of the CPG network together with its internal connection structure and the feedback pathways from the environment were subject to GA optimization. The approach proved successful and the results were then transferred to a hardware realization of the five-link walking mechanism, to test how well these perform under real-world dynamics. Results suggest that the biological...

  3. Authropomorphic robots and bipedal walking; Ningengata robot to nisoku hoko

    Energy Technology Data Exchange (ETDEWEB)

    Takanishi, A. [Waseda University, Tokyo (Japan). School of Science and Engineering

    1998-03-05

    This paper takes a general view on studies that have been done to date on mechanism and control of bipedal walking of anthromorphic robots. The paper describes the following matters: a group in Waseda University had a success in making smooth walking automatically with a bipedal robot of air pressure driven type with nine degrees of freedom (1971); a group in Nagoya University has succeeded in controlling dynamic bipedal walking (1981); a group in Waseda University has realized to have a bipedal robot make three-dimensional dynamic walking (1984); a bipedal walking control system was proposed, which is of an upper body compensation type that can assure safety in walking by motions of the upper body even if motions are given to the lower limbs randomly (1986); a success was attained in dynamic walking on a road surface with small irregularities that are unknown to a robot (1994); and development was made on a bipedal Humanoid having 35 degrees of freedom in driving (a robot which can walk holding a cage without dropping things in it, and can dance moving its arms wildly) (1997). 20 refs., 3 figs.

  4. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  5. Exploring Toe Walking in a Bipedal Robot

    Science.gov (United States)

    Smith, James Andrew; Seyfarth, Andre

    The design and development of locomotory subsystems such as legs is a key issue in the broader topic of autonomous mobile systems. Simplification of substructures, sensing, actuation and control can aid to better understand the dynamics of legged locomotion and will make the implementation of legs in engineered systems more effective. This paper examines recent results in the development of toe walking on the JenaWalker II robot. The robot is shown, while supported on a treadmill, to be capable of accelerating from 0 to over 0.6 m/s without adjustment of control parameters such as hip actuator sweep frequency or amplitude. The resulting stable motion is due to the adaptability of the passive structures incorporated into the legs. The roles of the individual muscletendon groups are examined and a potential configuration for future heel-toe trials is suggested.

  6. Neuromechanical Control for Dynamic Bipedal Walking with Reduced Impact Forces

    DEFF Research Database (Denmark)

    Widenka, Johannes; Xiong, Xiaofeng; Matthias Braun, Jan;

    2016-01-01

    Human walking emerges from an intricate interaction of nervous and musculoskeletal systems. Inspired by this principle, we integrate neural control and muscle-like mechanisms to achieve neuromechanical control of the biped robot RunBot. As a result, the neuromechanical controller enables RunBot t......Bot to perform more human-like walking and reduce impact force during walking, compared to original neural control. Moreover, it also generates adaptive joint motions of RunBot; thereby allowing it to deal with different terrains......Human walking emerges from an intricate interaction of nervous and musculoskeletal systems. Inspired by this principle, we integrate neural control and muscle-like mechanisms to achieve neuromechanical control of the biped robot RunBot. As a result, the neuromechanical controller enables Run...

  7. Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early hominins

    Science.gov (United States)

    Thompson, Nathan E.; Demes, Brigitte; O'Neill, Matthew C.; Holowka, Nicholas B.; Larson, Susan G.

    2015-01-01

    Human walking entails coordinated out-of-phase axial rotations of the thorax and pelvis. A long-held assumption is that this ability relies on adaptations for trunk flexibility present in humans, but not in chimpanzees, other great apes, or australopithecines. Here we use three-dimensional kinematic analyses to show that, contrary to current thinking, chimpanzees walking bipedally rotate their lumbar and thoracic regions in a manner similar to humans. This occurs despite differences in the magnitude of trunk motion, and despite morphological differences in truncal ‘rigidity' between species. These results suggest that, like humans and chimpanzees, early hominins walked with upper body rotations that countered pelvic rotation. We demonstrate that even if early hominins walked with pelvic rotations 50% larger than humans, they may have accrued the energetic and mechanical benefits of out-of-phase thoracic rotations. This would have allowed early hominins to reduce work and locomotor cost, improving walking efficiency early in hominin evolution. PMID:26441046

  8. Effects of electrical noise to a knee joint on quiet bipedal stance and treadmill walking.

    Science.gov (United States)

    Kimura, T; Taki, C; Shiozawa, N; Kouzaki, M

    2013-01-01

    The present study assessed whether an unperceivable, noise-like electrical stimulation of a knee joint enhances the stability of quiet bipedal stance and treadmill walking in young subjects. The results showed that the slow postural sway measures in quiet bipedal stance were significantly reduced by the electrical noise (P<0.05). In the treadmill walking, low frequency component (below 1 Hz) of mediolateral acceleration, measured at the third lumbar vertebra, significantly decreased with the electrical noise (P<0.05), while there were no changes in the anteroposterior and vertical directions. These results indicate that the electrical noise to a knee joint can be applied to enhance postural control in quiet bipedal stance and treadmill walking. PMID:24110917

  9. Study of Bipedal Robot Walking Motion in Low Gravity: Investigation and Analysis

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2014-09-01

    Full Text Available Humanoid robots are expected to play a major role in the future of space and planetary exploration. Humanoid robot features could have many advantages, such as interacting with astronauts and the ability to perform human tasks. However, the challenge of developing such a robot is quite high due to many difficulties. One of the main difficulties is the difference in gravity. Most researchers in the field of bipedal locomotion have not paid much attention to the effect of gravity. Gravity is an important parameter in generating a bipedal locomotion trajectory. This research investigates the effect of gravity on bipedal walking motion. It focuses on low gravity, since most of the known planets and moons have lower gravity than earth. Further study is conducted on a full humanoid robot model walking subject to the moon’s gravity, and an approach for dealing with moon gravity is proposed in this paper.

  10. An Improved ZMP-Based CPG Model of Bipedal Robot Walking Searched by SaDE

    OpenAIRE

    Yu, H. F.; Fung, E. H. K.; Jing, X. J.

    2014-01-01

    This paper proposed a method to improve the walking behavior of bipedal robot with adjustable step length. Objectives of this paper are threefold. (1) Genetic Algorithm Optimized Fourier Series Formulation (GAOFSF) is modified to improve its performance. (2) Self-adaptive Differential Evolutionary Algorithm (SaDE) is applied to search feasible walking gait. (3) An efficient method is proposed for adjusting step length based on the modified central pattern generator (CPG) model. The GAOFSF is ...

  11. Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity

    Directory of Open Access Journals (Sweden)

    Nathan Fitzsimmons

    2009-03-01

    Full Text Available The ability to walk may be critically impacted as the result of neurological injury or disease. While recent advances in brain-machine interfaces (BMIs have demonstrated the feasibility of upper-limb neuroprostheses, BMIs have not been evaluated as a means to restore walking. Here, we demonstrate that chronic recordings from ensembles of cortical neurons can be used to predict the kinematics of bipedal walking in rhesus macaques – both offline and in real-time. Linear decoders extracted 3D coordinates of leg joints and leg muscle EMGs from the activity of hundreds of cortical neurons. As more complex patterns of walking were produced by varying the gait speed and direction, larger neuronal populations were needed to accurately extract walking patterns. Extraction was further improved using a switching decoder which designated a submodel for each walking paradigm. We propose that BMIs may one day allow severely paralyzed patients to walk again.

  12. Optimal walking gait with double support, simple support and impact for a bipedal robot equipped of four-bar knees

    OpenAIRE

    Hamon, Arnaud; Aoustin, Yannick

    2012-01-01

    International audience The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements and to improve the bipedal robot performances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. n previous a work, we have proved a bipedal robot with four-bar knees has a less energy consumption than a bipedal robot equipped of revolute knee joints for walking gates composed of ...

  13. Simulation Studies of Bipedal Walking on the Moon and Mars

    Science.gov (United States)

    Yamada, Shin; Ohshima, Hiroshi; Yamaguchi, Tomofumi; Narukawa, Terumasa; Takahashi, Masaki; Hase, Kimitaka; Liu, Meigen; Mukai, Chiaki

    In order to walk upright on the Moon or Mars without falling, a specific walking strategy to account for altered gravitational conditions must be verified. We have therefore been studying changes in the kinematics of walking at different gravitational loads using a body weight suspension system. Our simulation consisted of three gravitational conditions: 1 g (Earth); 1/3 g (Mars); and 1/6 g (the Moon). Surface EMG recordings were taken from the leg muscles of subjects walking on a treadmill. Cadence, stance phase duration, and step length were calculated from the walking velocity and steps. Subsequent experiments revealed that muscle activity and the duration of the double support phase decreased as simulated gravity was reduced. These changes are apparently caused not only by the direct effects of unloading but also by kinematic adaptations to the same. It can be said that humans walk slowly with a shortened stride and elongated stance phase in order to adjust to low gravitational conditions. One major limitation of our study that may have affected walking stability was the fact that the suspension system was fixed to an immovable frame. We have begun further studies using a newer movable body weight suspension system to achieve more realistic simulations.

  14. Novel Control Algorithm for the Foot Placement of a Walking Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Wanli Liu

    2013-04-01

    Full Text Available A novel control algorithm for the foot placement of walking bipedal robots is proposed which can output the optimal step time and step location to obtain a desired walking gait from every feasible robot state. The step time and step location are determined by approximating the robot dynamics with the 3D linear inverted pendulum model and analytically solving the constraint equations. Intensive simulation studies are conducted to check the validity of the theoretical results. The results of this study show that the proposed control algorithm can get the system to a desired gait cycle from every feasible state within a finite number of steps.

  15. Dynamic Stability of Passive Bipedal Walking on Rough Terrain:A Preliminary Simulation Study

    Institute of Scientific and Technical Information of China (English)

    Parsa Nassiri Afshar; Lei Ren

    2012-01-01

    A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness.Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length.This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maximum roughness they can tolerate is small.Orbital stability method was used to quantify the walking stability before the walker started to fall over.It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form.Although the passive walker remained orbitally stable for all the simulation cases,the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations.The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over.The results show that the number of steps before falling decreases exponentially with the increase in surface roughness.When the roughness magnitude approached to 0.73% of the walker's leg length,it fell down to the ground as soon as it entered into the uneven terrain.It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability.This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits,which have narrow basins of attraction.These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness.

  16. Walking trajectory optimization with rotation of the feet for a planar bipedal robot with four-bar knees

    OpenAIRE

    Hamon, Arnaud; Aoustin, Yannick

    2012-01-01

    International audience The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements and to improve the bipedal robot perfor- mances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. The dynamic model of the planar bipedal robot is calculated. We design walking ref- erence trajectories with double support phases, single support s with a flat contact of the foot i...

  17. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?

    Science.gov (United States)

    Preuschoft, Holger

    2004-05-01

    Morphology and biomechanics are linked by causal morphogenesis ('Wolff's law') and the interplay of mutations and selection (Darwin's 'survival of the fittest'). Thus shape-based selective pressures can be determined. In both cases we need to know which biomechanical factors lead to skeletal adaptation, and which ones exert selective pressures on body shape. Each bone must be able to sustain the greatest regularly occurring loads. Smaller loads are unlikely to lead to adaptation of morphology. The highest loads occur primarily in posture and locomotion, simply because of the effect of body weight (or its multiple). In the skull, however, it is biting and chewing that result in the greatest loads. Body shape adapted for an arboreal lifestyle also smooths the way towards bipedality. Hindlimb dominance, length of the limbs in relation to the axial skeleton, grasping hands and feet, mass distribution (especially of the limb segments), thoracic shape, rib curvatures, and the position of the centre of gravity are the adaptations to arboreality that also pre-adapt for bipedality. Five divergent locomotor/morphological types have evolved from this base: arm-swinging in gibbons, forelimb-dominated slow climbing in orangutans, quadrupedalism/climbing in the African apes, an unknown mix of climbing and bipedal walking in australopithecines, and the remarkably endurant bipedal walking of humans. All other apes are also facultative bipeds, but it is the biomechanical characteristics of bipedalism in orangutans, the most arboreal great ape, which is closest to that in humans. If not evolutionary accident, what selective factor can explain why two forms adopted bipedality? Most authors tend to connect bipedal locomotion with some aspect of progressively increasing distance between trees because of climatic changes. More precise factors, in accordance with biomechanical requirements, include stone-throwing, thermoregulation or wading in shallow water. Once bipedality has been

  18. Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    CERN Document Server

    Chevallereau, Christine; Shih, Ching-Long; 10.1109/TRO.2008.2010366

    2010-01-01

    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\\'e map of the hybrid zero dynamics. Three strategies are explo...

  19. The lower limb and mechanics of walking in Australopithecus sediba.

    Science.gov (United States)

    DeSilva, Jeremy M; Holt, Kenneth G; Churchill, Steven E; Carlson, Kristian J; Walker, Christopher S; Zipfel, Bernhard; Berger, Lee R

    2013-04-12

    The discovery of a relatively complete Australopithecus sediba adult female skeleton permits a detailed locomotor analysis in which joint systems can be integrated to form a comprehensive picture of gait kinematics in this late australopith. Here we describe the lower limb anatomy of Au. sediba and hypothesize that this species walked with a fully extended leg and with an inverted foot during the swing phase of bipedal walking. Initial contact of the lateral foot with the ground resulted in a large pronatory torque around the joints of the foot that caused extreme medial weight transfer (hyperpronation) into the toe-off phase of the gait cycle (late pronation). These bipedal mechanics are different from those often reconstructed for other australopiths and suggest that there may have been several forms of bipedalism during the Plio-Pleistocene. PMID:23580534

  20. Synthesis of adaptive impedance control for bipedal robot mechanisms

    Directory of Open Access Journals (Sweden)

    Petrović Milena

    2008-01-01

    Full Text Available The paper describes the impedance algorithm in locomotion of humanoid robot with proposed parameter modulation depending on the gate phase. The analysis shows influence of walking speed and foot elevation on regulator's parameters. Chosen criterion cares for footpath tracking and needed energy for that way of walking. The experiments give recommendation for impedance regulator tuning.

  1. Locomotor energetics and leg length in hominid bipedality.

    Science.gov (United States)

    Kramer, P A; Eck, G G

    2000-05-01

    Because bipedality is the quintessential characteristic of Hominidae, researchers have compared ancient forms of bipedality with modern human gait since the first clear evidence of bipedal australopithecines was unearthed over 70 years ago. Several researchers have suggested that the australopithecine form of bipedality was transitional between the quadrupedality of the African apes and modern human bipedality and, consequently, inefficient. Other researchers have maintained that australopithecine bipedality was identical to that of Homo. But is it reasonable to require that all forms of hominid bipedality must be the same in order to be optimized? Most attempts to evaluate the locomotor effectiveness of the australopithecines have, unfortunately, assumed that the locomotor anatomy of modern humans is the exemplar of consummate bipedality. Modern human anatomy is, however, the product of selective pressures present in the particular milieu in which Homo arose and it is not necessarily the only, or even the most efficient, bipedal solution possible. In this report, we investigate the locomotion of Australopithecus afarensis, as represented by AL 288-1, using standard mechanical analyses. The osteological anatomy of AL 288-1 and movement profiles derived from modern humans are applied to a dynamic model of a biped, which predicts the mechanical power required by AL 288-1 to walk at various velocities. This same procedure is used with the anatomy of a composite modern woman and a comparison made. We find that AL 288-1 expends less energy than the composite woman when locomoting at walking speeds. This energetic advantage comes, however, at a price: the preferred transition speed (from a walk to a run) of AL 288-1 was lower than that of the composite woman. Consequently, the maximum daily range of AL 288-1 may well have been substantially smaller than that of modern people. The locomotor anatomy of A. afarensis may have been optimized for a particular ecological niche

  2. Non-Time Reference Gait Planning and Stability Control for Bipedal Walking

    OpenAIRE

    Ke, Xianxin; Qian, Jinwu; Gong, Zhenbang

    2007-01-01

    A non-time reference gait planning method is proposed. The usual reference variable, time, is substituted by a non-time variable in gait, so the whole gait-planning phase can be divided into two phases, (1) planning the space walking path: Taking the forward locomotion of upper-body as reference variable, considering the constraint of the environment, the walking path of a robot without collision with other objects is designed, thus the relative locomotion of the parts of the robot is obtaine...

  3. Estimate of the lower-limb-specific muscle parameters during bipedal walking for humans, apes and early hominids with the implications for the evolution of body proportion

    Institute of Scientific and Technical Information of China (English)

    Wang Weijie

    2007-01-01

    Modern human has different body proportion from early hominids and great apes. Comparing with others, in general, modern human adults have relatively long lower limb and heavier body weight. Since the lower limbs provide support to the whole body and play an important role in walking, it is proposed that the ratio of the lower limb to the whole body for modern human could be beneficial to bipedal walking. This study tried to estimate the muscle parameters of the lower limb in walking for the subjects with various body proportions. Using a simplified musculoskeletal model, some muscle parameters of the lower limb, e.g. muscle force, stress, work and power, were estimated for modern human adult, child, AL 288-1 (the fossil specimens of Australopithecus afarensis, 3.18 million years old) and apes. The results show that with the body proportion modern human adult spends less muscle work and power in walking than other subjects. The results imply that using the cost of transport (i.e. the muscle work of the lower limb per unit of displacement) as the criteria, the early hominids, if their body proportions were structurally similar to AL 288-1, could evolve towards what modern human adult looks like, in order to save energy during bipedal walking.

  4. Analyzing pace frequencies in bipedal primates and primate "predecessors" reveals mechanisms that regulate foot inversion and thus ensure foot stability at touchdown

    OpenAIRE

    Van Zwieten, Koos Jaap; NARAIN, Faridi; De Munter, Stephanie; Kosten, Lauren; Lamur, Kenneth S.; Schmidt, Klaus; LIPPENS, Peter; ZUBOVA, Irina A.; PISKUN, Oleg E.; VARZIN, Sergey A.

    2015-01-01

    In walking bipedally, various arboreal New World primate species use a “forefoot first” strategy, after which heel contact occurs. A similar walking scenario is seen in arboreal New World marsupials like the opossum, a quadrupedal primate “predecessor”. In opossum walking the swing phase ends with the foot in the inverted position to the next touchdown with the forefoot. We therefore hypothesized that those quadrupedal marsupials which are mainly or exclusively terrestrial like e.g., wombats,...

  5. Foot placement in robotic bipedal locomotion

    NARCIS (Netherlands)

    De Boer, T.

    2012-01-01

    Human walking is remarkably robust, versatile and energy-efficient: humans have the ability to handle large unexpected disturbances, perform a wide variety of gaits and consume little energy. A bipedal walking robot that performs well on all of these aspects has not yet been developed. Some robots a

  6. Why not walk faster?

    OpenAIRE

    Usherwood, James Richard

    2005-01-01

    Bipedal walking following inverted pendulum mechanics is constrained by two requirements: sufficient kinetic energy for the vault over midstance and sufficient gravity to provide the centripetal acceleration required for the arc of the body about the stance foot. While the acceleration condition identifies a maximum walking speed at a Froude number of 1, empirical observation indicates favoured walk–run transition speeds at a Froude number around 0.5 for birds, humans and humans under manipul...

  7. Bipedal Robot Locomotion on a Terrain with Pitfalls

    Directory of Open Access Journals (Sweden)

    Alireza Tabrizizadeh

    2014-12-01

    Full Text Available In this paper a locomotion control system for bipedal robot is proposed to provide desirable walking on a terrain and skipping over a pitfall preventing the robot from falling in it. The proposed strategy is a combination of motion optimization based on particle swarm optimization algorithm and utilization of mode switching at the higher level controller. The model for bipedal robot is a compass gait model but the presented method is general and could be appropriately extended and generalized for other complicated models. Principles of minimalistic designs are also respected and simple central pattern generator and simple mechanical feedback control are used to produce and maintain desirable motion patterns of the robot.

  8. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.

    Science.gov (United States)

    Fernández, Peter J; Holowka, Nicholas B; Demes, Brigitte; Jungers, William L

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  9. The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation

    OpenAIRE

    Gruss, Laura Tobias; Schmitt, Daniel

    2015-01-01

    The fossil record of the human pelvis reveals the selective priorities acting on hominin anatomy at different points in our evolutionary history, during which mechanical requirements for locomotion, childbirth and thermoregulation often conflicted. In our earliest upright ancestors, fundamental alterations of the pelvis compared with non-human primates facilitated bipedal walking. Further changes early in hominin evolution produced a platypelloid birth canal in a pelvis that was wide overall,...

  10. Turning in a Bipedal Robot

    Institute of Scientific and Technical Information of China (English)

    Jau-Ching Lu; Jing-Yi Chen; Pei-Chun Lin

    2013-01-01

    We report the development of turning behavior on a child-size bipedal robot that addresses two common scenarios:turning in place and simultaneous walking and turning.About turning in place,three strategies are investigated and compared,including body-first,leg-first,and body/leg-simultaneous.These three strategies are used for three actions,respectively:when walking follows turning immediately,when space behind the robot is very tight,and when a large turning angle is desired.Concerning simultaneous walking and turning,the linear inverted pendulum is used as the motion model in the single-leg support phase,and the polynomial-based trajectory is used as the motion model in the double-leg support phase and for smooth motion connectivity to motions in a priori and a posteriori single-leg support phases.Compared to the trajectory generation of ordinary walking,that of simultaneous walking and turning introduces only two extra parameters:one for determining new heading direction and the other for smoothing the Center of Mass (COM) trajectory.The trajectory design methodology is validated in both simulation and experimental environments,and successful robot behavior confirms the effectiveness of the strategy.

  11. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics

    OpenAIRE

    Rubenson, Jonas; Lloyd, David G.; Heliams, Denham B.; Besier, Thor F.; Fournier, Paul A.

    2010-01-01

    The purpose of this study was to examine the mechanical adaptations linked to economical locomotion in cursorial bipeds. We addressed this question by comparing mass-matched humans and avian bipeds (ostriches), which exhibit marked differences in limb structure and running economy. We hypothesized that the nearly 50 per cent lower energy cost of running in ostriches is a result of: (i) lower limb-swing mechanical power, (ii) greater stance-phase storage and release of elastic energy, and (iii...

  12. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics.

    Science.gov (United States)

    Rubenson, Jonas; Lloyd, David G; Heliams, Denham B; Besier, Thor F; Fournier, Paul A

    2011-05-01

    The purpose of this study was to examine the mechanical adaptations linked to economical locomotion in cursorial bipeds. We addressed this question by comparing mass-matched humans and avian bipeds (ostriches), which exhibit marked differences in limb structure and running economy. We hypothesized that the nearly 50 per cent lower energy cost of running in ostriches is a result of: (i) lower limb-swing mechanical power, (ii) greater stance-phase storage and release of elastic energy, and (iii) lower total muscle power output. To test these hypotheses, we used three-dimensional joint mechanical measurements and a simple model to estimate the elastic and muscle contributions to joint work and power. Contradictory to our first hypothesis, we found that ostriches and humans generate the same amounts of mechanical power to swing the limbs at a similar self-selected running speed, indicating that limb swing probably does not contribute to the difference in energy cost of running between these species. In contrast, we estimated that ostriches generate 120 per cent more stance-phase mechanical joint power via release of elastic energy compared with humans. This elastic mechanical power occurs nearly exclusively at the tarsometatarso-phalangeal joint, demonstrating a shift of mechanical power generation to distal joints compared with humans. We also estimated that positive muscle fibre power is 35 per cent lower in ostriches compared with humans, and is accounted for primarily by higher capacity for storage and release of elastic energy. Furthermore, our analysis revealed much larger frontal and internal/external rotation joint loads during ostrich running than in humans. Together, these findings support the hypothesis that a primary limb structure specialization linked to economical running in cursorial species is an elevated storage and release of elastic energy in tendon. In the ostrich, energy-saving specializations may also include passive frontal and internal

  13. Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees.

    Science.gov (United States)

    Hatala, Kevin G; Demes, Brigitte; Richmond, Brian G

    2016-08-17

    Bipedalism is a key adaptation that shaped human evolution, yet the timing and nature of its evolution remain unclear. Here we use new experimentally based approaches to investigate the locomotor mechanics preserved by the famous Pliocene hominin footprints from Laetoli, Tanzania. We conducted footprint formation experiments with habitually barefoot humans and with chimpanzees to quantitatively compare their footprints to those preserved at Laetoli. Our results show that the Laetoli footprints are morphologically distinct from those of both chimpanzees and habitually barefoot modern humans. By analysing biomechanical data that were collected during the human experiments we, for the first time, directly link differences between the Laetoli and modern human footprints to specific biomechanical variables. We find that the Laetoli hominin probably used a more flexed limb posture at foot strike than modern humans when walking bipedally. The Laetoli footprints provide a clear snapshot of an early hominin bipedal gait that probably involved a limb posture that was slightly but significantly different from our own, and these data support the hypothesis that important evolutionary changes to hominin bipedalism occurred within the past 3.66 Myr. PMID:27488647

  14. Quantum mechanics by walking 1. Foundations

    International Nuclear Information System (INIS)

    Quantum mechanics by walking introduces to the foundations of non-relativistic quantum mechanics. This book applies to studyings of teaching physics as well as all studyings of physics, who look for an appropriate, easy, fresh, and modern approach to the field. In the present first volume the essential principles of quantum mechanics are worked out. in order to be able to develop their mathematical formulation as fastly and clearly as possible, systematically between wave mechanics and algebraic presentation is changed. Beside themes, which are traditionally in textbooks of quantum mechanics, extensively actual aspects like interaction-free quantum measurement, neutrino oscillations, or quantum cryptography are considered as well as fundamental problems and epistemological questions discussed, as they occur in connection with the measurement process. The list of the postulates of quantum mechanics closes this volume; they form the framework for the extensions and applications, which are discussed in the second volume. The required mathematical aids are introduced step by step. In the appendix the most important mathematical tools are compactly collected, so that supplementing literature can be far reachingly abandoned. Furthermore in the appendix supplementing themes are deepened as for instance the Quantum Zeno effect or delayed-choice experiments.

  15. Bipedal tool use strengthens chimpanzee hand preferences

    OpenAIRE

    Braccini, Stephanie; Lambeth, Susan; Schapiro, Steve; Fitch, W. Tecumseh

    2010-01-01

    The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced tool use in a supported bipedal posture, an unsupported bipedal posture, and a seated posture. Neither bipedal tool use nor these supported conditions have been previously evaluated in apes. The hypo...

  16. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  17. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  18. Bipedal tool use strengthens chimpanzee hand preferences

    DEFF Research Database (Denmark)

    Braccini, Stephanie; Lambeth, Susan; Schapiro, Steve;

    2010-01-01

    stance, without the use of one hand for support, will elicit a right hand preference. Results supported the first, but not the second hypothesis: bipedalism induced the subjects to become more lateralized, but not in any particular direction. Instead, it appears that subtle pre-existing lateral biases......The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced...... tool use in a supported bipedal posture, an unsupported bipedal posture, and a seated posture. Neither bipedal tool use nor these supported conditions have been previously evaluated in apes. The hypotheses tested were 1) bipedal posture will increase the strength of hand preference, and 2) a bipedal...

  19. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.

    Science.gov (United States)

    Ogihara, N; Yamazaki, N

    2001-01-01

    To emulate the actual neuro-control mechanism of human bipedal locomotion, an anatomically and physiologically based neuro-musculo-skeletal model is developed. The human musculo-skeletal system is constructed as seven rigid links in a sagittal plane, with a total of nine principal muscles. The nervous system consists of an alpha motoneuron and proprioceptors such as a muscle spindle and a Golgi tendon organ for each muscle. At the motoneurons, feedback signals from the proprioceptors are integrated with the signal induced by foot-ground contact and input from the rhythm pattern generator; a muscle activation signal is produced accordingly. Weights of connection in the neural network are optimized using a genetic algorithm, thus maximizing walking distance and minimizing energy consumption. The generated walking pattern is in remarkably good agreement with that of actual human walking, indicating that the locomotory pattern could be generated automatically, according to the musculoskeletal structures and the connections of the peripheral nervous system, particularly due to the reciprocal innervation in the muscle spindles. Using the proposed model, the flow of sensory-motor information during locomotion is estimated and a possible neuro-control mechanism is discussed. PMID:11204394

  20. Mechanical Energy Recovery during Walking in Patients with Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Mariangela Dipaola

    Full Text Available The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD. The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years with bilateral symptoms (H&Y ≥II if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs. Ten healthy subjects (mean age 62±3 years walked both at their 'preferred' and 'slow' speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM of hip, knee and ankle joint angles. We also measured kinetic (Wk, potential (Wp, total (WtotCM energy variations and the energy recovery index (ER. Along with PD progression, we found a significant correlation of WtotCM and Wp with knee ROM and in particular with knee extension in terminal stance phase. Wk and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both Wp and WtotCM. Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components.

  1. Mechanical Energy Recovery during Walking in Patients with Parkinson Disease.

    Science.gov (United States)

    Dipaola, Mariangela; Pavan, Esteban E; Cattaneo, Andrea; Frazzitta, Giuseppe; Pezzoli, Gianni; Cavallari, Paolo; Frigo, Carlo A; Isaias, Ioannis U

    2016-01-01

    The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD). The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years) with bilateral symptoms (H&Y ≥II) if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs). Ten healthy subjects (mean age 62±3 years) walked both at their 'preferred' and 'slow' speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM) of hip, knee and ankle joint angles. We also measured kinetic (Wk), potential (Wp), total (WtotCM) energy variations and the energy recovery index (ER). Along with PD progression, we found a significant correlation of WtotCM and Wp with knee ROM and in particular with knee extension in terminal stance phase. Wk and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both Wp and WtotCM. Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components. PMID:27258183

  2. Mechanical Energy Recovery during Walking in Patients with Parkinson Disease

    Science.gov (United States)

    Dipaola, Mariangela; Pavan, Esteban E.; Cattaneo, Andrea; Frazzitta, Giuseppe; Pezzoli, Gianni; Cavallari, Paolo; Frigo, Carlo A.

    2016-01-01

    The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD). The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years) with bilateral symptoms (H&Y ≥II) if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs). Ten healthy subjects (mean age 62±3 years) walked both at their ‘preferred’ and ‘slow’ speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM) of hip, knee and ankle joint angles. We also measured kinetic (Wk), potential (Wp), total (WtotCM) energy variations and the energy recovery index (ER). Along with PD progression, we found a significant correlation of WtotCM and Wp with knee ROM and in particular with knee extension in terminal stance phase. Wk and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both Wp and WtotCM. Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components. PMID:27258183

  3. Human balance, the evolution of bipedalism and dysequilibrium syndrome.

    Science.gov (United States)

    Skoyles, John R

    2006-01-01

    A new model of the uniqueness, nature and evolution of human bipedality is presented in the context of the etiology of the balance disorder of dysequilibrium syndrome. Human bipedality is biologically novel in several remarkable respects. Humans are (a) obligate, habitual and diverse in their bipedalism, (b) hold their body carriage spinally erect in a multisegmental "antigravity pole", (c) use their forelimbs exclusively for nonlocomotion, (d) support their body weight exclusively by vertical balance and normally never use prehensile holds. Further, human bipedalism is combined with (e) upper body actions that quickly shift the body's center of mass (e.g. tennis serves, piggy-back carrying of children), (f) use transient unstable erect positions (dance, kicking and fighting), (g) body height that makes falls injurious, (h) stiff gait walking, and (i) endurance running. Underlying these novelties, I conjecture, is a species specific human vertical balance faculty. This faculty synchronizes any action with a skeletomuscular adjustment that corrects its potential destabilizing impact upon the projection of the body's center of mass over its foot support. The balance faculty depends upon internal models of the erect vertical body's geometrical relationship (and its deviations) to its support base. Due to the situation that humans are obligate erect terrestrial animals, two frameworks - the body- and gravity-defined frameworks - are in constant alignment in the vertical z-axis. This alignment allows human balance to adapt egocentric body cognitions to detect body deviations from the gravitational vertical. This link between human balance and the processing of geometrical orientation, I propose, accounts for the close link between balance and spatial cognition found in the cerebral cortex. I argue that cortical areas processing the spatial and other cognitions needed to enable vertical balance was an important reason for brain size expansion of Homo erectus. A novel

  4. Quantum mechanics by walking 2. Applications and extensions

    International Nuclear Information System (INIS)

    Quantum mechanics by walking introduces to the foundations of non-relativistic quantum mechanics. This book applies to studyings of teaching physics as well all studyings of physics, who look for an appropriate, easy, fresh, and modern approach to the field. After in the first volume the essential principles were worked out, in the present second volume applications and extensions are considered. Beside themes, which are traditionally presented in textbooks of quantum mechanics like symmetries or many-particle systems, extensively actual aspects like entanglement, Bell's inequalities, decoherence, or different facts from the field of quantum information are treated. Furthermore extensively fundamental problems and epistemological questions are discussed as they occur for instance in the framework of the debate of realism. A chapter about interpretations of quantum mechanics closes this volume. Again the required mathematical aids are introduced step by step; in case in the appendix the most important mathematical tools are compactly collected. Furthermore in the appendix supplementing themes are deepened like for instance Lenz's vector, Hardys experiment, and Shor algorithm.

  5. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.

    Science.gov (United States)

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2015-09-01

    Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the

  6. Biped walking robot based on a 2-UPU+2-UU parallel mechanism

    Science.gov (United States)

    Miao, Zhihuai; Yao, Yan'an; Kong, Xianwen

    2014-03-01

    Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walking robot supports the robot alternatively during walking. To improve the load carrying capability, a novel biped walking robot is proposed based on a 2-UPU+2-UU parallel mechanism. The biped walking robot is composed of two identical platforms(feet) and four limbs, including two UPU(universal-prismatic-universal serial chain) limbs and two UU limbs. To enhance its terrain adaptability like articulated vehicles, the two feet of the biped walking robot are designed as two vehicles in detail. The conditions that the geometric parameters of the feet must satisfy are discussed. The degrees-of-freedom of the mechanism is analyzed by using screw theory. Gait analysis, kinematic analysis and stability analysis of the mechanism are carried out to verify the structural design parameters. The simulation results validate the feasibility of walking on rugged terrain. Experiments with a physical prototype show that the novel biped walking robot can walk stably on smooth terrain. Due to its unique feet design and high stiffness, the biped walking robot may adapt to rugged terrain and is suitable for load-carrying.

  7. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies

    Directory of Open Access Journals (Sweden)

    David J Clark

    2015-05-01

    Full Text Available Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, ‘automaticity’ refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: a functional significance of automaticity; b neurophysiology of automaticity; c measurement of automaticity; d mechanistic factors that compromise automaticity; and e strategies for rehabilitation of automaticity.

  8. Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    OpenAIRE

    Radkhah, Katayon

    2014-01-01

    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with...

  9. The mechanics and energetics of human walking and running: a joint level perspective

    OpenAIRE

    Farris, Dominic James; Sawicki, Gregory S

    2011-01-01

    Humans walk and run at a range of speeds. While steady locomotion at a given speed requires no net mechanical work, moving faster does demand both more positive and negative mechanical work per stride. Is this increased demand met by increasing power output at all lower limb joints or just some of them? Does running rely on different joints for power output than walking? How does this contribute to the metabolic cost of locomotion? This study examined the effects of walking and running speed ...

  10. The pendular mechanism does not determine the optimal speed of loaded walking on gradients.

    Science.gov (United States)

    Gomeñuka, Natalia Andrea; Bona, Renata Luisa; da Rosa, Rodrigo Gomes; Peyré-Tartaruga, Leonardo Alexandre

    2016-06-01

    The pendular mechanism does not act as a primary mechanism in uphill walking due to the monotonic behavior of the mechanical energies of the center of mass. Nevertheless, recent evidence shows that there is an important minimization of energy expenditure by the pendular mechanism during walking on uphill gradients. In this study, we analyzed the optimum speed (OPT) of loaded human walking and the pendulum-like determining variables (Recovery R, Instantaneous pendular re-conversion Rint, and Congruity percentage %Cong). Ten young men walked on a treadmill at five different speeds and at three different treadmill incline gradients (0, +7 and +15%), with and without a load carried in their backpacks. We used indirect calorimetry and 3D motion analysis, and all of the data were analyzed by computational algorithms. Rint increased at higher speeds and decreased with increasing gradient. R and %Cong decreased with increasing gradient and increased with speed, independent of load. Thus, energy conversion by the pendular mechanism during walking on a 15% gradient is supported, and although this mechanism can explain the maintenance of OPT at low walking speeds, the pendular mechanism does not fully explain the energy minimization at higher speeds. PMID:27017543

  11. Dynamics of Human Walking

    CERN Document Server

    Kokshenev, V B

    2004-01-01

    The problem of biped locomotion at steady speeds is discussed through the Lagrangian formulation developed for velocity-dependent, body driving forces. Human walking on a level surface is analyzed in terms of the data on the resultant ground-reaction force and the external work. It is shown that the trajectory of the human center of mass is due to a superposition of its rectilinear motion with a given speed V and a backward rotation along a shortened hypocycloid. A stiff-to-compliant crossover between walking gaits is established at mid speeds, which separate slow walking from fast walking, limited by V_{\\max}=3.4 m/s. Key words: locomotion, bipedalism, human, biomechanics, walking.

  12. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.

    Science.gov (United States)

    Zani, Peter A; Gottschall, Jinger S; Kram, Rodger

    2005-04-01

    Animals must perform mechanical work during walking, but most conserve substantial mechanical energy via an inverted-pendulum-like mechanism of energy recovery in which fluctuations of kinetic energy (KE) and gravitational potential energy (GPE) are of similar magnitude and 180 degrees out of phase. The greatest energy recovery typically occurs at intermediate speeds. Tortoises are known for their slow speeds, which we anticipated would lead to small fluctuations in KE. To have an effective exchange of mechanical energy using the inverted-pendulum mechanism, tortoises would need to walk with only small changes in GPE corresponding to vertical center-of-mass (COM) fluctuations of convention, poor inverted-pendulum mechanics during walking do not necessarily correspond to high mechanical work and may not result in a high metabolic cost. PMID:15802673

  13. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin;

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  14. Skipping vs. running as the bipedal gait of choice in hypogravity.

    Science.gov (United States)

    Pavei, Gaspare; Biancardi, Carlo M; Minetti, Alberto E

    2015-07-01

    Hypogravity challenges bipedal locomotion in its common forms. However, as previously theoretically and empirically suggested, humans can rely on "skipping," a less common gait available as a functional analog (perhaps a vestigium) of quadrupedal gallop, to confidently move when gravity is much lower than on Earth. We set up a 17-m-tall cavaedium (skylight shaft) with a bungee rubber body-suspension system and a treadmill to investigate the metabolic cost and the biomechanics of low-gravity (Mars, Moon) locomotion. Although skipping is never more metabolically economical than running, the difference becomes marginal at lunar gravities, with both bouncing gaits approaching values of walking on Earth (cost ≈ 2 J · kg(-1)· m(-1)). Nonmetabolic factors may thus be allowed to dominate the choice of skipping on the Moon. On the basis of center of pressure measurements and body segments kinetics, we can speculate that these factors may include a further reduction of mechanical work to move the limbs when wearing space suits and a more effective motor control during the ground (regoliths)-boot interaction. PMID:25930029

  15. A wrist-walker exhibiting no "Uner Tan Syndrome": a theory for possible mechanisms of human devolution toward the atavistic walking patterns.

    Science.gov (United States)

    Tan, Uner

    2007-01-01

    transition from quadrupedality to bipedality. That is, the activity of the philogenetically youngest supraspinal centers for bipedal walking responsible for suppression of the older supraspinal centers for quadrupedal gait may be interrupted at the atavistic level due to genetic and/or environmental factors. Consequently, it is assumed that these individuals prefer their natural wrist-walking to move around more quickly and efficiently. PMID:17365105

  16. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  17. Robots in human biomechanics—a study on ankle push-off in walking

    International Nuclear Information System (INIS)

    In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing. (paper)

  18. Modelling of Bipedal Robot : Kinematical Numerical Models

    Czech Academy of Sciences Publication Activity Database

    Grepl, Robert

    Brno: VUT Brno, FSI ÚMTMB, 2005 - (Houfek, L.; Šlechtová, M.; Náhlík, L.; Fuis, V.), s. 27-29 ISBN 80-214-2373-0. [International Scientific Conference Applied mechanics 2005 /7./. Hrotovice (CZ), 29.03.2005-01.04.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : kinematics of robot * walking robot Subject RIV: JD - Computer Applications, Robot ics

  19. The metabolic and mechanical costs of step time asymmetry in walking

    OpenAIRE

    Ellis, Richard G.; Howard, Kevin C.; Kram, Rodger

    2013-01-01

    Animals use both pendular and elastic mechanisms to minimize energy expenditure during terrestrial locomotion. Elastic gaits can be either bilaterally symmetric (e.g. run and trot) or asymmetric (e.g. skip, canter and gallop), yet only symmetric pendular gaits (e.g. walk) are observed in nature. Does minimizing metabolic and mechanical power constrain pendular gaits to temporal symmetry? We measured rates of metabolic energy expenditure and calculated mechanical power production while healthy...

  20. A walk in the statistical mechanical formulation of neural networks

    OpenAIRE

    Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2014-01-01

    Neural networks are nowadays both powerful operational tools (e.g., for pattern recognition, data mining, error correction codes) and complex theoretical models on the focus of scientific investigation. As for the research branch, neural networks are handled and studied by psychologists, neurobiologists, engineers, mathematicians and theoretical physicists. In particular, in theoretical physics, the key instrument for the quantitative analysis of neural networks is statistical mechanics. From...

  1. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    Directory of Open Access Journals (Sweden)

    Elvedin Kljuno

    2010-01-01

    Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.

  2. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking.

    Science.gov (United States)

    Foissac, Matthieu; Millet, Guillaume Y; Geyssant, André; Freychat, Philippe; Belli, Alain

    2009-01-19

    The objectives of the experiment were (i) to characterize the mechanical properties of backpacks and (ii) to study the influence of a flexible backpack on the energetics and kinematics of walking. Twelve subjects walked at different speeds on a treadmill with each of two backpacks loaded with 25% bodyweight, with either a rigid or a flexible link between the body attachment and the suspended loads. A single degree of freedom linear model of the link between the pack and the trunk was used to calculate the stiffness and damping coefficient of the two backpacks. The oxygen consumption (VO2) and the vertical acceleration of both the backpack and trunk were measured. The vertical excursion of the pack given by the model was significantly correlated with that actually measured (R=0.87, pbackpack can provide energetic benefits when its oscillations are nearly in phase with those of the trunk. However, any resonance effect can lead to a modified walking pattern and an increased metabolic cost. PMID:19062021

  3. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    OpenAIRE

    2014-01-01

    For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and th...

  4. The mathematical description of equilibrium bipedal locomotion

    OpenAIRE

    Ткач, Михайло Мартинович

    2012-01-01

     This paper analyzes the current state of the construction of anthropomorphic walking machines. The areas of their future implementation. The basis of the publication is to define the criteria for compliance with the unstable equilibrium of walking aids by anthropic simulation. In particular, it provides a formalized solution to strike a balance on the surfaces of the second kind on the basis of observations of the center of mass displacement of the projection apparatus on the specified surfa...

  5. Trajectory Generation and Stability Analysis for Reconfigurable Klann Mechanism Based Walking Robot

    Directory of Open Access Journals (Sweden)

    Jaichandar Kulandaidaasan Sheba

    2016-06-01

    Full Text Available Reconfigurable legged robots based on one degree of freedom are highly desired because they are effective on rough and irregular terrains and they provide mobility in such terrain with simple control schemes. It is necessary that reconfigurable legged robots should maintain stability during rest and motion, with a minimum number of legs while maintaining their full range of walking patterns resulting from different gait configuration. In this paper we present a method to generate input trajectory for reconfigurable quadruped robots based on Klann mechanism to properly synchronize movement. Six useful gait cycles based on this reconfigurable Klann mechanism for quadruped robots has been clearly shown here. The platform stability for these six useful gait cycles are validated through simulated results which clearly shows the capabilities of reconfigurable design.

  6. Modeling and Analysis of Walking Pattern for a Biped Robot

    OpenAIRE

    Gupta, Aditya; Shamra, Abhishek

    2015-01-01

    This paper addresses the design and development of an autonomous biped robot using master and worker combination of controllers. In addition, the bot is wirelessly controllable. The work presented here explains the walking pattern, system control and actuator control techniques for 10 Degree of Freedom (DOF) biped humanoid. Bi-pedal robots have better mobility than conventional wheeled robots, but they tend to topple easily. In order to walk stably in various environments, such as on rough te...

  7. Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor

    OpenAIRE

    Kivell, Tracy L.; Schmitt, Daniel

    2009-01-01

    Despite decades of debate, it remains unclear whether human bipedalism evolved from a terrestrial knuckle-walking ancestor or from a more generalized, arboreal ape ancestor. Proponents of the knuckle-walking hypothesis focused on the wrist and hand to find morphological evidence of this behavior in the human fossil record. These studies, however, have not examined variation or development of purported knuckle-walking features in apes or other primates, data that are critical to resolution of ...

  8. Biased motion and molecular motor properties of bipedal spiders

    Science.gov (United States)

    Samii, Laleh; Linke, Heiner; Zuckermann, Martin J.; Forde, Nancy R.

    2010-02-01

    Molecular spiders are synthetic molecular motors featuring multiple legs that each can interact with a substrate through binding and cleavage. Experimental studies suggest the motion of the spider in a matrix is biased toward uncleaved substrates and that spider properties such as processivity can be altered by changing the binding strength of the legs to substrate [R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006)]. We investigate the origin of biased motion and molecular motor properties of bipedal spiders using Monte Carlo simulations. Our simulations combine a realistic chemical kinetic model, hand-over-hand or inchworm modes of stepping, and the use of a one-dimensional track. We find that stronger binding to substrate, cleavage and spider detachment from the track are contributing mechanisms to population bias. We investigate the contributions of stepping mechanism to speed, randomness parameter, processivity, coupling, and efficiency, and comment on how these molecular motor properties can be altered by changing experimentally tunable kinetic parameters.

  9. Kinesiology-Based Robot Foot Design for Human-Like Walking

    Directory of Open Access Journals (Sweden)

    SangJoo Kwon

    2012-12-01

    Full Text Available Compared with the conventional flat foot, the flexible foot is advantageous in implementing human‐like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human‐like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step.

  10. Quantum mechanics by walking 1. Foundations; Quantenmechanik zu Fuss 1. Grundlagen

    Energy Technology Data Exchange (ETDEWEB)

    Pade, Jochen [Oldenburg Univ. (Germany)

    2012-11-01

    Quantum mechanics by walking introduces to the foundations of non-relativistic quantum mechanics. This book applies to studyings of teaching physics as well as all studyings of physics, who look for an appropriate, easy, fresh, and modern approach to the field. In the present first volume the essential principles of quantum mechanics are worked out. in order to be able to develop their mathematical formulation as fastly and clearly as possible, systematically between wave mechanics and algebraic presentation is changed. Beside themes, which are traditionally in textbooks of quantum mechanics, extensively actual aspects like interaction-free quantum measurement, neutrino oscillations, or quantum cryptography are considered as well as fundamental problems and epistemological questions discussed, as they occur in connection with the measurement process. The list of the postulates of quantum mechanics closes this volume; they form the framework for the extensions and applications, which are discussed in the second volume. The required mathematical aids are introduced step by step. In the appendix the most important mathematical tools are compactly collected, so that supplementing literature can be far reachingly abandoned. Furthermore in the appendix supplementing themes are deepened as for instance the Quantum Zeno effect or delayed-choice experiments.

  11. A Novel Design for Adjustable Stiffness Artificial Tendon for the Ankle Joint of a Bipedal Robot: Modeling & Simulation

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2015-12-01

    Full Text Available Bipedal humanoid robots are expected to play a major role in the future. Performing bipedal locomotion requires high energy due to the high torque that needs to be provided by its legs’ joints. Taking the WABIAN-2R as an example, it uses harmonic gears in its joint to increase the torque. However, using such a mechanism increases the weight of the legs and therefore increases energy consumption. Therefore, the idea of developing a mechanism with adjustable stiffness to be connected to the leg joint is introduced here. The proposed mechanism would have the ability to provide passive and active motion. The mechanism would be attached to the ankle pitch joint as an artificial tendon. Using computer simulations, the dynamical performance of the mechanism is analytically evaluated.

  12. Design and Experimental Implementation of Bipedal robot

    Directory of Open Access Journals (Sweden)

    Sreejith C

    2012-09-01

    Full Text Available Biped robots have better mobility thanconventional wheeled robots, but they tend to tipover easily. To be able to walk stably in variousenvironments, such as on rough terrain, up anddown slopes, or in regions containing obstacles, itis necessary for the robot to adapt to the groundconditions with a foot motion, and maintain itsstability with a torso motion. In this paper, we firstformulate the design and walking pattern for abipedal robot and then a kicking robot has beendeveloped for experimental verification. Finally,the correlation between the design and the walkingpatterns is described through simulation studies,and the effectiveness of the proposed methods isconfirmed by simulation examples andexperimental results.

  13. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy

    Science.gov (United States)

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J.; Malatesta, Davide

    2016-01-01

    Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP. PMID:27148062

  14. Quantum mechanics by walking 2. Applications and extensions; Quantenmechanik zu Fuss 2. Anwendungen und Erweiterungen

    Energy Technology Data Exchange (ETDEWEB)

    Pade, Jochen [Oldenburg Univ. (Germany)

    2012-11-01

    Quantum mechanics by walking introduces to the foundations of non-relativistic quantum mechanics. This book applies to studyings of teaching physics as well all studyings of physics, who look for an appropriate, easy, fresh, and modern approach to the field. After in the first volume the essential principles were worked out, in the present second volume applications and extensions are considered. Beside themes, which are traditionally presented in textbooks of quantum mechanics like symmetries or many-particle systems, extensively actual aspects like entanglement, Bell's inequalities, decoherence, or different facts from the field of quantum information are treated. Furthermore extensively fundamental problems and epistemological questions are discussed as they occur for instance in the framework of the debate of realism. A chapter about interpretations of quantum mechanics closes this volume. Again the required mathematical aids are introduced step by step; in case in the appendix the most important mathematical tools are compactly collected. Furthermore in the appendix supplementing themes are deepened like for instance Lenz's vector, Hardys experiment, and Shor algorithm.

  15. Optimization and Design of Experimental Bipedal Robot

    Czech Academy of Sciences Publication Activity Database

    Zezula, P.; Grepl, Robert

    -, A1 (2005), s. 293-300. ISSN 1210-2717. [Mechatronics, Robotics and Biomechanics 2005. Třešť, 26.09.2005-29.09.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : walking machine * biped robot * computational modelling Subject RIV: JD - Computer Applications, Robotics

  16. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men.

    Science.gov (United States)

    Dominelli, Paolo B; Sheel, A William; Foster, Glen E

    2012-06-01

    Weighted backpacks are used extensively in recreational and occupational settings, yet their effects on lung mechanics during acute exercise is poorly understood. The purpose of this study was to determine the effects of different backpack weights on lung mechanics and breathing patterns during treadmill walking. Subjects (n = 7, age = 28 ± 6 years), completed two 2.5-min exercise stages for each backpack condition [no backpack (NP), an un-weighted backpack (NW) or a backpack weighing 15, 25 or 35 kg]. A maximal expiratory flow volume curve was generated for each backpack condition and an oesophageal balloon catheter was used to estimate pleural pressure. The 15, 25 and 35 kg backpacks caused a 3, 5 and 8% (P backpack compared to NP (32 ± 4.3 vs. 88 ± 9.0 J min(-1), P backpack weight increased. As backpack weight increased, there was a concomitant decline in calculated maximal ventilation, a rise in minute ventilation, and a resultant greater utilization of maximal available ventilation. In conclusion, wearing a weighted backpack during an acute bout of exercise altered operational lung volumes; however, adaptive changes in breathing mechanics may have minimized changes in the required POB such that at an iso-ventilation, wearing a backpack weighing up to 35 kg does not increase the POB requirement. PMID:21947409

  17. Metabolic Cost, Mechanical Work, and Efficiency during Normal Walking in Obese and Normal-Weight Children

    Science.gov (United States)

    Huang, Liang; Chen, Peijie; Zhuang, Jie; Zhang, Yanxin; Walt, Sharon

    2013-01-01

    Purpose: This study aimed to investigate the influence of childhood obesity on energetic cost during normal walking and to determine if obese children choose a walking strategy optimizing their gait pattern. Method: Sixteen obese children with no functional abnormalities were matched by age and gender with 16 normal-weight children. All…

  18. The effect of walking speed on muscle function and mechanical energetics

    OpenAIRE

    Neptune, Richard R.; Sasaki, Kotaro; Kautz, Steven A.

    2007-01-01

    Modulating speed over a large range is important in walking, yet understanding how the neuromotor patterns adapt to the changing energetic demands of different speeds is not well understood. The purpose of this study was to identify functional and energetic adaptations in individual muscles in response to walking at faster steady-state speeds using muscle-actuated forward dynamics simulations. The simulation data were invariant with speed as to whether muscles contributed to trunk support, fo...

  19. Discrete-State-Based Vision Navigation Control Algorithm for One Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2015-01-01

    Full Text Available Navigation with the specific objective can be defined by specifying desired timed trajectory. The concept of desired direction field is proposed to deal with such navigation problem. To lay down a principled discussion of the accuracy and efficiency of navigation algorithms, strictly quantitative definitions of tracking error, actuator effect, and time efficiency are established. In this paper, one vision navigation control method based on desired direction field is proposed. This proposed method uses discrete image sequences to form discrete state space, which is especially suitable for bipedal walking robots with single camera walking on a free-barrier plane surface to track the specific objective without overshoot. The shortest path method (SPM is proposed to design such direction field with the highest time efficiency. However, one improved control method called canonical piecewise-linear function (PLF is proposed. In order to restrain the noise disturbance from the camera sensor, the band width control method is presented to significantly decrease the error influence. The robustness and efficiency of the proposed algorithm are illustrated through a number of computer simulations considering the error from camera sensor. Simulation results show that the robustness and efficiency can be balanced by choosing the proper controlling value of band width.

  20. The gaits of primates: center of mass mechanics in walking, cantering and galloping ring-tailed lemurs, Lemur catta.

    Science.gov (United States)

    O'Neill, Matthew C; Schmitt, Daniel

    2012-05-15

    Most primates, including lemurs, have a broad range of locomotor capabilities, yet much of the time, they walk at slow speeds and amble, canter or gallop at intermediate and fast speeds. Although numerous studies have investigated limb function during primate quadrupedalism, how the center of mass (COM) moves is not well understood. Here, we examined COM energy, work and power during walking, cantering and galloping in ring-tailed lemurs, Lemur catta (N=5), over a broad speed range (0.43-2.91 m s(-1)). COM energy recoveries were substantial during walking (35-71%) but lower during canters and gallops (10-51%). COM work, power and collisional losses increased with speed. The positive COM works were 0.625 J kg(-1) m(-1) for walks and 1.661 J kg(-1) m(-1) for canters and gallops, which are in the middle range of published values for terrestrial animals. Although some discontinuities in COM mechanics were evident between walking and cantering, there was no apparent analog to the trot-gallop transition across the intermediate and fast speed range (dimensionless v>0.75, Fr>0.5). A phenomenological model of a lemur cantering and trotting at the same speed shows that canters ensure continuous contact of the body with the substrate while reducing peak vertical COM forces, COM stiffness and COM collisions. We suggest that cantering, rather than trotting, at intermediate speeds may be tied to the arboreal origins of the Order Primates. These data allow us to better understand the mechanics of primate gaits and shed new light on primate locomotor evolution. PMID:22539740

  1. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  2. A springy pendulum could describe the swing leg kinetics of human walking.

    Science.gov (United States)

    Song, Hyunggwi; Park, Heewon; Park, Sukyung

    2016-06-14

    The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. The swing leg was modeled as a spring-loaded pendulum hinged at the hip joint, which is under forward motion. The model parameters of the loaded mass were adopted from body parameters and anthropometric tables, whereas the free model parameters for the rest length of the spring and its stiffness were estimated to best match the data for the swing leg joint forces. The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics. PMID:27020749

  3. Walking in circles: a modelling approach.

    Science.gov (United States)

    Maus, Horst-Moritz; Seyfarth, Andre

    2014-10-01

    Blindfolded or disoriented people have the tendency to walk in circles rather than on a straight line even if they wanted to. Here, we use a minimalistic walking model to examine this phenomenon. The bipedal spring-loaded inverted pendulum exhibits asymptotically stable gaits with centre of mass (CoM) dynamics and ground reaction forces similar to human walking in the sagittal plane. We extend this model into three dimensions, and show that stable walking patterns persist if the leg is aligned with respect to the body (here: CoM velocity) instead of a world reference frame. Further, we demonstrate that asymmetric leg configurations, which are common in humans, will typically lead to walking in circles. The diameter of these circles depends strongly on parameter configuration, but is in line with empirical data from human walkers. Simulation results suggest that walking radius and especially direction of rotation are highly dependent on leg configuration and walking velocity, which explains inconsistent veering behaviour in repeated trials in human data. Finally, we discuss the relation between findings in the model and implications for human walking. PMID:25056215

  4. Fossils, feet and the evolution of human bipedal locomotion

    Science.gov (United States)

    Harcourt-Smith, W E H; Aiello, L C

    2004-01-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  5. Fossils, feet and the evolution of human bipedal locomotion.

    Science.gov (United States)

    Harcourt-Smith, W E H; Aiello, L C

    2004-05-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  6. [Walking abnormalities in children].

    Science.gov (United States)

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  7. [The anatomical and functional origin of the first bipedalism].

    Science.gov (United States)

    Coppens, Y

    1991-10-01

    This communication is the synthesis of ten years of researchers of comparative anatomy done by the author or under his control on fossil Hominids, three million years old, found by his expeditions in Eastern Ethiopia. It brings, for the first time, the odd picture of a skeleton adapted to arboricolism and bipedalism together. The rachis has already the curves of an erect being but with at least a thoraco-lumbar cyphosis a bit more elongated than in our own rachis; the pelvis is wide and shallow like the pelvis of a biped but with many particular features like the width of the iliac wings, a great biacetabular diameter, the small size of the coxo-femoral joints; the femur is short with a special long neck, a very oblique diaphysis like in Man and an intercondylar fossa, deep and wide like in chimp; the tibia is also short, its spines very tight in such a way that the knee shows a great laxity. The foot is short and flat, with an abducted hallux and long curved toes; the scapular, elbow and wrist joints show, at the opposite of the knee joint, a great solidity, but both characteristics of the hind and fore-limb joints are not in contradiction: they are, as in chimpanzees again, functionally adapted to climbing and moving in the trees where are needed firm grip of the hands as well as mobility of the knee and of the foot. It seems that the early Australopithecine' bipedalism was original, different from ours and quite instable: short steps were necessary to maintain equilibrium as well as a strong rotation of the pelvis around the vertebral axis (50 to 60 degrees on each side). This analysis is then demonstrating a real evolution of bipedalism which was not at all, at once, the bipedalism of Homo sapiens, as it has been claimed. This paper is also showing that bipedalism anatomic organization is taking place from the pelvis to the foot and not the other way round. At last, as we have found, also in Ethiopia, stone-tools more than three million years old in association

  8. Cyclic walking-like trajectory design and tracking in mechanical chain with impacts

    Czech Academy of Sciences Publication Activity Database

    Anderle, Milan; Čelikovský, Sergej

    Santiago de Chile : ACCA, 2014, s. 341-346. ISSN 0719-5567. [Congreso de la Asociación Chilena de Control Automático ACCA 2014 /XXI./. Santiago de Chile (CL), 05.11.2014-07.11.2014] R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Underactuated systems * Generalized Acrobot * Walking trajectory design Subject RIV: BC - Control Systems Theory

  9. Neural Computation Scheme of Compound Control: Tacit Learning for Bipedal Locomotion

    Science.gov (United States)

    Shimoda, Shingo; Kimura, Hidenori

    The growing need for controlling complex behaviors of versatile robots working in unpredictable environment has revealed the fundamental limitation of model-based control strategy that requires precise models of robots and environments before their operations. This difficulty is fundamental and has the same root with the well-known frame problem in artificial intelligence. It has been a central long standing issue in advanced robotics, as well as machine intelligence, to find a prospective clue to attack this fundamental difficulty. The general consensus shared by many leading researchers in the related field is that the body plays an important role in acquiring intelligence that can conquer unknowns. In particular, purposeful behaviors emerge during body-environment interactions with the help of an appropriately organized neural computational scheme that can exploit what the environment can afford. Along this line, we propose a new scheme of neural computation based on compound control which represents a typical feature of biological controls. This scheme is based on classical neuron models with local rules that can create macroscopic purposeful behaviors. This scheme is applied to a bipedal robot and generates the rhythm of walking without any model of robot dynamics and environments.

  10. Walking on Mars

    Science.gov (United States)

    Cavagna, G. A.; Willems, P. A.; Heglund, N. C.

    1998-06-01

    Sometime in the near future humans may walk in the reduced gravity of Mars. Gravity plays an essential role in walking. On Earth, the body uses gravity to `fall forwards' at each step and then the forward speed is used to restore the initial height in a pendulum-like mechanism. When gravity is reduced, as on the Moon or Mars, the mechanism of walking must change. Here we investigate the mechanics of walking on Mars onboard an aircraft undergoing gravity-reducing flight profiles. The optimal walking speed on Mars will be 3.4 km h-1 (down from 5.5 km h-1 on Earth) and the work done per unit distance to move the centre of mass will be half that on Earth.

  11. Steroid-associated hip joint collapse in bipedal emus.

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    Full Text Available In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON induction protocol using combination of pulsed lipopolysaccharide (LPS and methylprednisolone (MPS. Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut % and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of

  12. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.

    Science.gov (United States)

    Wang, Weijie; Crompton, Robin H; Carey, Tanya S; Günther, Michael M; Li, Yu; Savage, Russell; Sellers, Williams I

    2004-12-01

    Size and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000 (Homo ergaster, 1.5-1.8 million year ago) compared to models of adult human males and females, to estimate the required muscle power during bipedal walking, and to compare this with those in modern humans. Skeletal measurements were carried out on a cast of KNM-WT 15000, but for AL 288-1 were taken from the literature. Muscle attachments were applied to the models based on their position relative to the bone in modern humans. Joint motions and moments from experiments on human walking were input into the models to calculate muscle stress and power. The models were tested in erect walking and 'bent-hip bent-knee' gait. Calculated muscle forces were verified against EMG activity phases from experimental data, with reference to reasonable activation/force delays. Calculated muscle powers are reasonably comparable to experimentally derived metabolic values from the literature, given likely values for muscle efficiency. The results show that: 1) if evaluated by the power expenditure per unit of mass (W/kg) in walking, AL 288-1 and KNM-WT 15000 would need similar power to modern humans; however, 2) with distance-specific parameters as the criteria, AL 288-1 would require to expend relatively more muscle power (W/kg.m(-1)) in comparison to modern humans. The results imply that in the evolution of bipedalism, body proportions, for example those of KNM-WT 15000, may have evolved to obtain an effective application of muscle power to bipedal walking over a long distance, or at high speed. PMID:15566947

  13. Walking abnormalities

    Science.gov (United States)

    ... safety reasons, especially on uneven ground. See a physical therapist for exercise therapy and walking retraining. For a ... the right position for standing and walking. A physical therapist can supply these and provide exercise therapy, if ...

  14. Toward Human Like WalkingWalking Mechanism of 3D Passive Dynamic Motion with Lateral Rolling – Advances in Human-Robot Interaction

    OpenAIRE

    Takeguchi, Tomoo; Ohashi, Minako; Kim, Jaeho

    2009-01-01

    Fig.14 shows the comparison of angle of left leg between simulation and experiment according to time in sagittal plane. The vertical axis is for leg angle, and horizontal axis is for time. The solid line is for a result of simulation, and dotted line is for a result of experiment. Both simulation and experiment are continued for 6 seconds. The initial condition for Fig.14 was derived from the simulation analysis. This condition was one of the best for stable walking. Both results have similar...

  15. Electrical noise to a knee joint stabilizes quiet bipedal stance.

    Science.gov (United States)

    Kimura, Tetsuya; Kouzaki, Motoki

    2013-04-01

    Studies have shown that a minute, noise-like electrical stimulation (ES) of a lower limb joint stabilizes one-legged standing (OS), possibly due to the noise-enhanced joint proprioception. To demonstrate the practical utility of this finding, we assessed whether the bipedal stance (BS), relatively stable and generally employed in daily activities, is also stabilized by the same ES method. Twelve volunteers maintained quiet BS with or without an unperceivable, noise-like ES of a knee joint. The results showed that the average amplitude, peak-to-peak amplitude, and standard deviation of the foot center of pressure in the anteroposterior direction were significantly attenuated by the ES (Pnoise-like ES of a knee joint. PMID:23044409

  16. An advantage of bipedal humanoid robot on the empathy generation: A neuroimaging study

    OpenAIRE

    MIURA, NAOKI; Sugiura, Motoaki; Takahashi, Makoto; Moridaira, Tomohisa; Miyamoto, Atsushi; Kuroki, Yoshihiro; Kawashima, Ryuta

    2008-01-01

    To determine the effect of robotic embodiment on human-robot interaction, we used functional magnetic resonance imaging (fMRI) to measure brain activity during the observation of emotionally positive or neutral actions performed by bipedal or wheel-drive humanoid robots. fMRI data from 30 participants were analyzed in the study. The results revealed that bipedal humanoid robot performing emotionally positive actions induced the activation of the left orbitofrontal cortex, which is associated ...

  17. Random walk and balancing

    CERN Document Server

    Borg, F G

    2004-01-01

    Presents a minireview of topics concerned with balancing in quiet (bipedal) standing, and balancing of a stick. In the focus is the apparent stochastic nature of the swaying of the human inverted pendulum.

  18. A three-dimensional human walking model

    Science.gov (United States)

    Yang, Q. S.; Qin, J. W.; Law, S. S.

    2015-11-01

    A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

  19. Early Stage of Walking: Development of Control in Mediolateral and Anteroposterior Directions

    OpenAIRE

    Kubo, Masayoshi; Ulrich, Beverly D.

    2006-01-01

    The authors examined the changes in bipedal gait of toddlers in the anteroposterior (AP) and mediolateral (ML) directions, as a set, at the onset of independent gait and 1 month after onset. Two groups with distinctly different dynamic resources were studied: 8 toddlers with typical development (TD) and 8 toddlers with Down syndrome (DS). Three-dimensional kinematic data were collected, and gait parameters, such as walking speed, stride length, and stride frequency, as well as the ratio of ex...

  20. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    Science.gov (United States)

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. PMID:24365326

  1. Mechanical Design of a Hybrid Leg Exoskeleton to Augment Load-Carrying for Walking

    OpenAIRE

    Yunjie Miao; Feng Gao; Dalei Pan

    2013-01-01

    An innovative lower extremity exoskeleton, SJTU-EX, is demonstrated in Shanghai JiaoTong University, which mainly aims to help soldiers and workers to support a payload in motion. This paper summarizes the mechanical design of SJTU-EX. Each pseudo-anthropomorphic leg of SJTU-EX has four active joints and two passive joints, and the joint ranges are optimized in consideration of both safety factors and the realization of typical motions. Springs are applied in the leg to eliminate the effect o...

  2. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy

    OpenAIRE

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J.; Malatesta, Davide

    2016-01-01

    Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare th...

  3. Gluteus maximus muscle function and the origin of hominid bipedality.

    Science.gov (United States)

    Marzke, M W; Longhill, J M; Rasmussen, S A

    1988-12-01

    Bipedality not only frees the hands for tool use but also enhances tool use by allowing use of the trunk for leverage in applying force and thus imparting greater final velocity to tools. Since the weight and acceleration of the trunk and forelimbs on the hindlimbs must be counteracted by muscles such as m. gluteus maximus that control pelvic and trunk movements, it is suggested that the large size of the cranial portion of the human gluteus maximus muscle and its unique attachment to the dorsal ilium (which is apparent in the Makapan australopithecine ilium) may have contributed to the effectiveness with which trunk movement was exploited in early hominid foraging activities. To test this hypothesis, the cranial portions of both right and left muscles were investigated in six human subjects with electromyography during throwing, clubbing, digging, and lifting. The muscles were found to be significantly recruited when the trunk is used in throwing and clubbing, initiating rotation of the pelvis and braking it as trunk rotation ceases and the forelimb accelerates. They stabilize the pelvis during digging and exhibit marked and prolonged activity when the trunk is maintained in partial flexion during lifting of heavy objects. PMID:3223519

  4. Kinematically stable bipedal locomotion using ionic polymer–metal composite actuators

    International Nuclear Information System (INIS)

    Ionic conducting polymer–metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical–mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force–torque generation of IPMCs for biped locomotion concludes this paper. (paper)

  5. Kinematically stable bipedal locomotion using ionic polymer-metal composite actuators

    Science.gov (United States)

    Hosseinipour, Milad; Elahinia, Mohammad

    2013-08-01

    Ionic conducting polymer-metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical-mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force-torque generation of IPMCs for biped locomotion concludes this paper.

  6. Analysis on the Load Carrying Mechanism Integrated as Heterogeneous Co-operative Manipulator in a Walking Wheelchair

    Science.gov (United States)

    Rajay Vedaraj, I. S.; Jain, Ritika; Rao, B. V. A.

    2014-07-01

    used for climbing stairs with three leg design and anlaysis were also done on the mechanism integrated to the system. Kinematics of the legs are analysed separately and the legs are designed to carry a maximum of 175kgs, which is sustained by the center leg and shared by the dual wing legs equally during the walking phase. In the proposed design, screwjack mechanism is used as the central leg to share the load and thus the analysis on the load sharing capability of the whole system is analysed and concluded in terms of failure modes.

  7. Common muscle synergies for balance and walking

    OpenAIRE

    Chvatal, Stacie A.; Ting, Lena H.

    2013-01-01

    Little is known about the integration of neural mechanisms for balance and locomotion. Muscle synergies have been studied independently in standing balance and walking, but not compared. Here, we hypothesized that reactive balance and walking are mediated by a common set of lower-limb muscle synergies. In humans, we examined muscle activity during multidirectional support-surface perturbations during standing and walking, as well as unperturbed walking at two speeds. We show that most muscle ...

  8. Experimental verification of a computational technique for determining ground reactions in human bipedal stance.

    Science.gov (United States)

    Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2007-01-01

    We have developed a three-dimensional (3D) biomechanical model of human standing that enables us to study the mechanisms of posture and balance simultaneously in various directions in space. Since the two feet are on the ground, the system defines a kinematically closed-chain which has redundancy problems that cannot be resolved using the laws of mechanics alone. We have developed a computational (optimization) technique that avoids the problems with the closed-chain formulation thus giving users of such models the ability to make predictions of joint moments, and potentially, muscle activations using more sophisticated musculoskeletal models. This paper describes the experimental verification of the computational technique that is used to estimate the ground reaction vector acting on an unconstrained foot while the other foot is attached to the ground, thus allowing human bipedal standing to be analyzed as an open-chain system. The computational approach was verified in terms of its ability to predict lower extremity joint moments derived from inverse dynamic simulations performed on data acquired from four able-bodied volunteers standing in various postures on force platforms. Sensitivity analyses performed with model simulations indicated which ground reaction force (GRF) and center of pressure (COP) components were most critical for providing better estimates of the joint moments. Overall, the joint moments predicted by the optimization approach are strongly correlated with the joint moments computed using the experimentally measured GRF and COP (0.78 unity slope (experimental=computational results) for postures of the four subjects examined. These results indicate that this model-based technique can be relied upon to predict reasonable and consistent estimates of the joint moments using the predicted GRF and COP for most standing postures. PMID:16797023

  9. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    Science.gov (United States)

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. PMID:23838060

  10. Kinetics evaluation of using biomimetic IPMC actuators for stable bipedal locomotion

    Science.gov (United States)

    Hosseinipour, M.; Elahinia, M.

    2013-04-01

    Ionic conducting polymer-metal composites (IPMC) are flexible actuators that can act as artificial muscles in many robotic and microelectromechanical systems. The authors have already investigated the possibility of kinematically stable bipedal locomotion using these actuators. Fabrication parameters of actuators including minimum lengths, installation angles, plating thicknesses and maximum required voltages were found in previous studies for a stable bipedal gait with maximum speed of 0.1093 m/s. Extending the FEA solution of the governing partial differential equation of the behavior of IPMCs to 2D, actuator limits were found. Considering these limits, joint path trajectories were generated to achieve a fast and smooth motion on a seven-degree of freedom biped robot. This study utilizes the same biped model, and focuses on the kinetics of the proposed gait in order to complement the evaluation of using IPMCs as biomimetic actuators for bipedal locomotion. The dynamic equations of motion of the previously designed bipedal gait are solved here to find the maximum required joint torques. Blocking force of a flap of IPMC is found by plugging results of the FEA into a model based on beam theories. This force adequately predicts the maximum deliverable torque of a piece of IPMC with certain length. Feasibility of using IPMCs as joint actuators is then evaluated by comparing the required and achievable torques. This study concludes the previous work to cover feasibility, stability and design of a biped robot actuated with IPMC flaps.

  11. The relative cost of bent-hip bent-knee walking is reduced in water.

    Science.gov (United States)

    Kuliukas, Algis V; Milne, Nick; Fournier, Paul

    2009-01-01

    The debate about how early hominids walked may be characterised as two competing hypotheses: They moved with a fully upright (FU) gait, like modern humans, or with a bent-hip, bent-knee (BK) gait, like apes. Both have assumed that this bipedalism was almost exclusively on land, in trees or a combination of the two. Recent findings favoured the FU hypothesis by showing that the BK gait is 50-60% more energetically costly than a FU human gait on land. We confirm these findings but show that in water this cost differential is markedly reduced, especially in deeper water, at slower speeds and with greater knee flexion. These data suggest that the controversy about australopithecine locomotion may be eased if it is assumed that wading was a component of their locomotor repertoire and supports the idea that shallow water might have been an environment favourable to the evolution of early forms of "non-optimal" hominid bipedalism. PMID:19853850

  12. Does bipedality predict the group-level manual laterality in mammals?

    Directory of Open Access Journals (Sweden)

    Andrey Giljov

    Full Text Available BACKGROUND: Factors determining patterns of laterality manifestation in mammals remain unclear. In primates, the upright posture favours the expression of manual laterality across species, but may have little influence within a species. Whether the bipedalism acts the same in non-primate mammals is unknown. Our recent findings in bipedal and quadrupedal marsupials suggested that differences in laterality pattern, as well as emergence of manual specialization in evolution might depend on species-specific body posture. Here, we evaluated the hypothesis that the postural characteristics are the key variable shaping the manual laterality expression across mammalian species. METHODOLOGY/PRINCIPAL FINDINGS: We studied forelimb preferences in a most bipedal marsupial, brush-tailed bettong, Bettongia penicillata in four different types of unimanual behavior. The significant left-forelimb preference at the group level was found in all behaviours studied. In unimanual feeding on non-living food, catching live prey and nest-material collecting, all or most subjects were lateralized, and among lateralized bettongs a significant majority displayed left-forelimb bias. Only in unimanual supporting of the body in the tripedal stance the distribution of lateralized and non-lateralized individuals did not differ from chance. Individual preferences were consistent across all types of behaviour. The direction or the strength of forelimb preferences were not affected by the animals' sex. CONCLUSIONS/SIGNIFICANCE: Our findings support the hypothesis that the expression of manual laterality depends on the species-typical postural habit. The interspecies comparison illustrates that in marsupials the increase of bipedality corresponds with the increase of the degree of group-level forelimb preference in a species. Thus, bipedalism can predict pronounced manual laterality at both intra- and interspecific levels in mammals. We also conclude that quadrupedal position in

  13. Research of Humanoid Robot Biped Walking Model%仿人机器人双足行走模型研究

    Institute of Scientific and Technical Information of China (English)

    肖乐; 张玉生; 殷晨波

    2011-01-01

    针对仿人机器人双足行走的稳定性问题,引入零力矩点理论,根据稳定行走必须满足地面反作用力位于稳定区域内这个条件,推导出仿人机器人在行走过程中单双腿支撑期的稳定区域面积和稳定裕量.建立2种不同形状的仿人机器人双足模型,在足底和地面间创建一系列接触力,并通过机械系统动力学自动分析软件得到行走过程中足底各个点的受力曲线并进行受力分析,得出合理的双足形状.%Aiming at the problem of walking stability in humanoid robot, this paper introduces Zero Moment Point(ZMP) theory, the reaction force of ground must be inside the support polygon to maintain dynamic balance. The area of stable region and stability margin in single support phase and double support phase are deduced. Humanoid robot biped walking model with two different shapes is established, and a series of contact is set between sole and ground. The contact forces ware got through Automatic Dynamic Analysis of Mechanical System(ADAMS) software after analyzing simulation and the forces of the sole during walking, it gets reasonable bipedal shape.

  14. Walking Robot Locomotion System Conception

    Directory of Open Access Journals (Sweden)

    Ignatova D.

    2014-09-01

    Full Text Available This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  15. 六足步行机器人腿部机构运动学分析%Kinematic analysis of leg mechanism of six-legged walking robot

    Institute of Scientific and Technical Information of China (English)

    张金柱; 金振林; 陈广广

    2016-01-01

    In order to increase the automation level of agricultural operations, broaden the application scope of agricultural robot, and improve the ability of adapting to the different working environment and flexible work, a novel three-degree-of-freedom leg mechanism used in the six-legged walking robot is introduced. This leg mechanism comprised a drive mechanism based on 2RUS+RU parallel manipulator and a traveling mechanism based on parallelogram mechanism. The motor of drive mechanism is fixed on body frame. This leg mechanism has not only the advantage of parallel mechanism, but also a good protectiveness. In this paper, kinematic analysis and simulation of leg mechanism of six-legged walking robot is accomplished. Firstly, based on the intrinsic relationbetween the angular velocity and the angular velocity of Euler angles of the dynamic platform, the relationship matrix between linear velocity and angular velocity of driving mechanism is established. Based on that, the entireJacbian matrix in the 3×3 form of the leg mechanism is deduced by using the relationship matrix derivative method, and the explicit Hessian matrix in the 3×3×3 form of the parallel drive mechanism and the leg walking mechanism is obtained, which also adopts the method of derivative matrix. Secondly, with the rationed rotation angle of the revolute joint ranging in [-45°, 45°], a distribution diagram of condition number of the integral Jacobian matrix is drawn. The condition number of integral Jacobian matrix is changed slowly and smaller in the central region of the workspace in this diagram, so that the mechanism flexibility is good in this area and can meet the requirements of the robot movement. Lastly, under the conditions that were step increment of 300 mm and crossing obstacle height of 200 mm, the trajectory planning of the foot end is accomplished and the track function of the foot end is presented based on the method of combined polynomial, which can make the robot stable and free

  16. Two families with quadrupedalism, mental retardation, no speech, and infantile hypotonia (Uner Tan Syndrome Type-II); a novel theory for the evolutionary emergence of human bipedalism.

    Science.gov (United States)

    Tan, Uner

    2014-01-01

    Two consanguineous families with Uner Tan Syndrome (UTS) were analyzed in relation to self-organizing processes in complex systems, and the evolutionary emergence of human bipedalism. The cases had the key symptoms of previously reported cases of UTS, such as quadrupedalism, mental retardation, and dysarthric or no speech, but the new cases also exhibited infantile hypotonia and are designated UTS Type-II. There were 10 siblings in Branch I and 12 siblings in Branch II. Of these, there were seven cases exhibiting habitual quadrupedal locomotion (QL): four deceased and three living. The infantile hypotonia in the surviving cases gradually disappeared over a period of years, so that they could sit by about 10 years, crawl on hands and knees by about 12 years. They began walking on all fours around 14 years, habitually using QL. Neurological examinations showed normal tonus in their arms and legs, no Babinski sign, brisk tendon reflexes especially in the legs, and mild tremor. The patients could not walk in a straight line, but (except in one case) could stand up and maintain upright posture with truncal ataxia. Cerebello-vermial hypoplasia and mild gyral simplification were noted in their MRIs. The results of the genetic analysis were inconclusive: no genetic code could be identified as the triggering factor for the syndrome in these families. Instead, the extremely low socio-economic status of the patients was thought to play a role in the emergence of UTS, possibly by epigenetically changing the brain structure and function, with a consequent selection of ancestral neural networks for QL during locomotor development. It was suggested that UTS may be regarded as one of the unpredictable outcomes of self-organization within a complex system. It was also noted that the prominent feature of this syndrome, the diagonal-sequence habitual QL, generated an interference between ipsilateral hands and feet, as in non-human primates. It was suggested that this may have been

  17. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    Science.gov (United States)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  18. Comparative analysis between radiographic views for knee osteoarthrosis (bipedal AP versus monopedal AP

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires e Albuquerque

    2013-08-01

    Full Text Available OBJECTIVE: A comparative analysis by applying the criteria of the original classification Ahlbäck in the anteroposterior (AP bipedal knee in extension and anteroposterior (AP monopodal knee in symptomatic knee arthrosis. With this analysis we intend to observe the agreement, any advantage or difference between the incidence and degree of joint involvement between the orthopedic surgeons and radiologists with the referring physician. METHODS: From January 2012 to March 2012, was a prospective study of 60 symptomatic arthrosis knees (60 patients, clinically selected group of outpatient knee and radiographic proposals submitted to the search. Of the 60 patients, 39 were female and 21 male, mean age 64 years (ranging from 50 to 84 years. Of the 60 knees studied, 37 corresponded to the right side and 23 on the left side. Statistical analysis was performed by Kappa statistics, which evaluates the interobserver agreement for qualitative data. RESULTS: According to the scale of Ahlbäck, there was a significant agreement (p < 0.0001 intra-observer in the classification of knee osteoarthritis among the five evaluators. There was a significant agreement (p < 0.0001 with inter-observer referring physician in the incidence of AP monopodal and AP bipedal for the four raters. CONCLUSION: The study found no difference between the incidence in the AP monopodal versus AP bipedal in osteoarthritis of the knee.

  19. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    Science.gov (United States)

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. PMID:26427338

  20. Complementarity and quantum walks

    International Nuclear Information System (INIS)

    We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement

  1. Unertan syndrome: a new variant of Unertan syndrome: running on all fours in two upright-walking children.

    Science.gov (United States)

    Tan, Uner; Tan, Meliha

    2009-01-01

    A new variant of Unertan Syndrome (UTS) is described in two Turkish children who exhibit both bipedal and quadrupedal locomotion and have normal cognitive abilities, including speech and intelligence. Quadrupedal locomotion was used by these individuals for rapid motivity when needed. An X-linked autosomal recessive transmission appears to be responsible for the UTS trait, with no intrafamilial marriages. The children did not show any neurological signs and symptoms except for a positive Babinski sign and an inability to perform a tandem walk. The results suggest that quadrupedality may result from using ancestral neural networks when needed. The preference for the quadrupedal gait as a hidden skill may be an example of learned dynamical adaptation to limited motor control, pointing out a phase transition in system dynamical terms. Human quadrupedality may have important consequences regarding human evolution with respect to the transition from quadrupedalism to bipedalism, which is generally recognized as important trait in the hominization process during human evolution. PMID:19466629

  2. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  3. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  4. Research of 6-DOF Serial-Parallel Mechanism Platform for Stability Training of Legged-Walking Robot

    Institute of Scientific and Technical Information of China (English)

    Wei-Guo Wu; Wen-Qian Du

    2014-01-01

    The concept of legged-robot stability training with a training platform is proposed and a serial-parallel mechanism platform with 6 degrees of freedom is designed for this target. The designed platform is composed of 4-DOF parallel mechanism with spherical joints and prismatic pairs, and 2-DOF serial mechanism with prismatic pairs. With this design, the platform has advantages of low platform countertop, big workspace, high carrying capacity and high stiffness. On the basis of DOF analysis and computation of space mechanism, weight supporting auxiliary mechanism and raceways-balls supporting mechanism are designed, so as to improve the stiffness of designed large platform and payload capacity of servo motors. And then the whole structure design work of the platform is done. Meanwhile, this paper derives the analytical solutions of forward kinematics, inverse kinematics and inverse dynamics. The error analysis model of position and orientation is established. And then the simulation is done in ADAMS to ensure the correctness and feasibility of this design.

  5. Feeding strategies as revealed by the section moduli of the humerus bones in bipedal theropod dinosaurs

    Science.gov (United States)

    Lee, Scott; Richards, Zachary

    2015-03-01

    The section modulus of a bone is a measure of its ability to resist bending torques. Carnivorous dinosaurs presumably had strong arm bones to hold struggling prey during hunting. Some theropods are believed to have become herbivorous and such animals would not have needed such strong arms. In this work, the section moduli of the humerus bones of bipedal theropod dinosaurs (from Microvenator celer to Tyrannosaurus rex) are studied to determine the maximum bending loads their arms could withstand. The results show that bending strength is not of uniform importance to these magnificent animals. The predatory theropods had strong arms for use in hunting. In contrast, the herbivorous dinosaurs had weaker arms.

  6. Where to quantum walk

    OpenAIRE

    Kendon, Viv

    2011-01-01

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. However, the main impetus behind this interest is their use in quantum algorithms, which have always employed the quantum walk in the form of a program running on a quantum computer. Recent results showing that quantum walks are "universal for quantum computation" relate entirely to algorithms, and do not imply that a physical quantum walk could provide a...

  7. Walk This Way

    Science.gov (United States)

    Mason, Nick

    2007-01-01

    A generation ago, it was part of growing up for all kids when they biked or walked to school. But in the last 30 years, heavier traffic, wider roads and more dangerous intersections have made it riskier for students walking or pedaling. Today, fewer than 15 percent of kids bike or walk to school compared with more than 50 percent in 1969. In the…

  8. Quantum walk computation

    Energy Technology Data Exchange (ETDEWEB)

    Kendon, Viv [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom)

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  9. Lucy's lower limbs: long enough for Lucy to be fully bipedal?

    Science.gov (United States)

    Wolpoff, M H

    The recent attempt to show that the Hadar australopithecine female 'Lucy' (AL 288-1) had hindlimbs too short to allow a modern pattern of striding bipedal gait has important implications for understanding the origin of bipedalism, if not for the more general problem of hominid origins. Combined with previous claims that Lucy had a forelimb unusually long in proportion and ape-like in morphology, the additional contention of a relatively short hindlimb would suggest a very different pattern of gait from the norm of today because the effectiveness of the pendulum action of the lower limb during stride is a function of the amount of mass in the limb, and because a short hindlimb would necessitate a short stride length. Yet, these contentions seem contradicted by the analyses of Lucy's pelvis (and the innominates of other australopithecines) that indicate a similar pattern of muscle use and imply a lack of significant gait differences. Are Lucy's legs too short to allow an effective stride, or is there a different solution to this contradiction? I propose here that there is. PMID:6408483

  10. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses.

    Science.gov (United States)

    Huffard, Christine L

    2006-10-01

    Speeds and variation in body form during crawling, bipedal walking, swimming and jetting by the shallow-water octopus Abdopus aculeatus were compared to explore possible interactions between defense behaviors and biomechanics of these multi-limbed organisms. General body postures and patterns were more complex and varied during the slow mode of crawling than during fast escape maneuvers such as swimming and jetting. These results may reflect a trade-off between predator deception and speed, or simply a need to reduce drag during jet-propelled locomotion. Octopuses swam faster when dorsoventrally compressed, a form that may generate lift, than when swimming in the head-raised posture. Bipedal locomotion proceeded as fast as swimming and can be considered a form of fast escape (secondary defense) that also incorporates elements of crypsis and polyphenism (primary defenses). Body postures during walking suggested the use of both static and dynamic stability. Absolute speed was not correlated with body mass in any mode. Based on these findings the implications for defense behaviors such as escape from predation, aggression, and 'flatfish mimicry' performed by A. aculeatus and other octopuses are discussed. PMID:16985187

  11. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    OpenAIRE

    Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua; Steven H Collins

    2015-01-01

    Background Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from pus...

  12. Walk modularity and community structure in networks

    CERN Document Server

    Mehrle, David; Harkin, Anthony

    2014-01-01

    Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically expect to find based on random chance. We present a natural generalization of modularity based on the difference between the actual and expected number of walks within clusters, which we call walk-modularity. Walk-modularity can be expressed in matrix form, and community detection can be performed by finding leading eigenvectors of the walk-modularity matrix. We demonstrate community detection on both synthetic and real-world networks and find that walk-modularity maximization returns significantly improved results compared to traditional modularity maximization.

  13. Control of a Step Walking Combined to Arms Swinging for a Three Dimensional Humanoid Prototype

    Directory of Open Access Journals (Sweden)

    Amira Aloulou

    2010-01-01

    Full Text Available Problem statement: Present researches focus to make humanoid robots more and more autonomous so they can assist human in daily works like taking care of children, aged or disabled persons. In such social activities, the contemporary humanoid robots are expected to have human like morphology and gait. Studies on bipedal locomotion for humanoid robots are then part of the hottest topics in the field of robotic researches. Knowing the benefits of arm swinging for human gait, we propose in this study a new prototype of female humanoid robot morphology having the capabilities to swing arms during step walking. Approach: A new humanoid robot prototype had been introduced based on a human morphology corresponding to a woman whose weight is 70 kg and height is 1,73 m and using realistic gait parameters of a women. The female humanoid robot prototype was composed of fifteen links associated to twenty-six degrees of freedom. Winter statistical model had been applied to determine all physical parameters corresponding to each link. Modeling the proposed humanoid robot implies first to establish the kinematic model basically founded on Euler’s transformation matrix and then to set the dynamic model computed using the Newton-Euler method. To show how the arms played an important role in bipedal gait, we had chosen to consider the whole body as two independent robotic systems: the upper body and the lower body. Results: Both three dimensional kinematic and dynamic models of the humanoid robot had been developed. The three dimensional humanoid robot was controlled via a feedback linearization control during the single support, impact and double support phases. The simulation results showed the arm swing during the step of walking. Conclusion: The humanoid robot proposed has a human like morphology and ensures the function of a step walking with arm swinging. The applied control laws have ensured to the robot desired performances during a step walking.

  14. A Passive Dynamic Walking Model Based on Knee-Bend Behaviour: Stability and Adaptability for Walking Down Steep Slopes

    Directory of Open Access Journals (Sweden)

    Kang An

    2013-10-01

    Full Text Available This paper presents a passive dynamic walking model based on knee-bend behaviour, which is inspired by the way human beings walk. The length and mass parameters of human beings are used in the walking model. The knee-bend mechanism of the stance leg is designed in the phase between knee-strike and heel- strike. q* which is the angular difference of the stance leg between the two events, knee-strike and knee-bend, is adjusted in order to find a stable walking motion. The results show that the stable periodic walking motion on a slope of r <0.4 can be found by adjusting q*. Furthermore, with a particular q* in the range of 0.12walk down more steps before falling down on an arbitrary slope. The walking motion is more stable and adaptable than the conventional walking motion, especially for steep slopes.

  15. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    Science.gov (United States)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  16. Treadmill walking is not equivalent to overground walking for the study of walking smoothness and rhythmicity in older adults.

    Science.gov (United States)

    Row Lazzarini, Brandi S; Kataras, Theodore J

    2016-05-01

    Treadmills are appealing for gait studies, but some gait mechanics are disrupted during treadmill walking. The purpose of this study was to examine the effects of speed and treadmill walking on walking smoothness and rhythmicity of 40 men and women between the ages of 70-96 years. Gait smoothness was examined during overground (OG) and treadmill (TM) walking by calculating the harmonic ratio from linear accelerations measured at the level of the lumbar spine. Rhythmicity was quantified as the stride time standard deviation. TM walking was performed at two speeds: a speed matching the natural OG walk speed (TM-OG), and a preferred TM speed (PTM). A dual-task OG condition (OG-DT) was evaluated to determine if TM walking posed a similar cognitive challenge. Statistical analysis included a one-way Analysis of Variance with Bonferroni corrected post hoc comparisons and the Wilcoxon signed rank test for non-normally distributed variables. Average PTM speed was slower than OG. Compared to OG, those who could reach the TM-OG speed (74.3% of sample) exhibited improved ML smoothness and rhythmicity, and the slower PTM caused worsened vertical and AP smoothness, but did not affect rhythmicity. PTM disrupted smoothness and rhythmicity differently than the OG-DT condition, likely due to reduced speed. The use of treadmills for gait smoothness and rhythmicity studies in older adults is problematic; some participants will not achieve OG speed during TM walking, walking at the TM-OG speed artificially improves rhythmicity and ML smoothness, and walking at the slower PTM speed worsens vertical and AP gait smoothness. PMID:27131175

  17. Fear, respiratory tract and effluvia: origin of bipedism Miedo, tracto respiratorio y efluvios: origen del bipedismo

    Directory of Open Access Journals (Sweden)

    William Alvarez Gaviria

    1998-02-01

    Full Text Available A discussion is presented on the different theories that try to explain how bipedestation was acquired along evolution. Another theory is proposed, namely that bipedism was related with fear and the olfactory system that allowed to perceive odors revealing threats to survival. Se hace un recorrido por las diferentes teorías propuestas para explicar cómo, a lo largo de la evolución, se llegó a la bipedestación y se propone que ésta debió estar, más bien, relacionada con el miedo y el órgano de la olfacción que permitía percibir olores reveladores de amenazas a la supervivencia.

  18. The range of a rotor walk

    OpenAIRE

    Florescu, Laura; Levine, Lionel; Peres, Yuval

    2014-01-01

    In a \\emph{rotor walk} the exits from each vertex follow a prescribed periodic sequence. On an infinite Eulerian graph embedded periodically in $\\R^d$, we show that any simple rotor walk, regardless of rotor mechanism or initial rotor configuration, visits at least on the order of $t^{d/(d+1)}$ distinct sites in $t$ steps. We prove a shape theorem for the rotor walk on the comb graph with i.i.d.\\ uniform initial rotors, showing that the range is of order $t^{2/3}$ and the asymptotic shape of ...

  19. Quantum walk public-key cryptographic system

    Science.gov (United States)

    Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.

    2015-12-01

    Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.

  20. Walks on Weighted Networks

    Institute of Scientific and Technical Information of China (English)

    WU An-Cai; XU Xin-Jian; WU Zhi-Xi; WANG Ying-Hai

    2007-01-01

    We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.

  1. More Adults Are Walking

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  2. Dynamic walking with Dribbel

    OpenAIRE

    Dertien, Edwin

    2006-01-01

    This paper describes the design and construction of Dribbel, a passivity-based walking robot. Dribbel has been designed and built at the Control Engineering group of the University of Twente. This paper focuses on the practical side: the design approach, construction, electronics, and software design. After a short introduction of dynamic walking, the design process, starting with simulation, is discussed.

  3. Self-avoiding quantum walks

    OpenAIRE

    Camilleri, Elizabeth; Rohde, Peter P.; Twamley, Jason

    2014-01-01

    Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Classical self-avoiding random walks have found numerous applications, most notably in the modeling of protein folding. We consider the analogous problem in the quantum setting. We complement a quantum walk with a memory register that records where the walker has previously resided. The w...

  4. The Dead Walk

    Directory of Open Access Journals (Sweden)

    Bill Phillips

    2014-01-01

    Full Text Available Monsters have always enjoyed a significant presence in the human imagination, and religion was instrumental in replacing the physical horror they engendered with that of a moral threat. Zombies, however, are amoral – their motivation purely instinctive and arbitrary, yet they are, perhaps, the most loathed of all contemporary monsters. One explanation for this lies in the theory of the uncanny valley, proposed by robotics engineer Masahiro Mori. According to the theory, we r eserve our greatest fears for those things which seem most human, yet are not – such as dead bodies. Such a reaction is most likely a survival mechanism to protect us from danger and disease – a mechanism even more essential when the dead rise up and walk. From their beginnings zombies have reflected western societies’ greatest fears – be they of revolutionary Haitians, women, or communists. In recent years the rise in the popularity of the zombie in films, books and television series reflects our fears for the planet, the economy, and of death itself.

  5. The Dead Walk

    Directory of Open Access Journals (Sweden)

    Bill Phillips

    2014-02-01

    Full Text Available Monsters have always enjoyed a significant presence in the human imagination, and religion was instrumental in replacing the physical horror they engendered with that of a moral threat. Zombies, however, are amoral – their motivation purely instinctive and arbitrary, yet they are, perhaps, the most loathed of all contemporary monsters. One explanation for this lies in the theory of the uncanny valley, proposed by robotics engineer Masahiro Mori. According to the theory, we reserve our greatest fears for those things which seem most human, yet are not – such as dead bodies. Such a reaction is most likely a survival mechanism to protect us from danger and disease – a mechanism even more essential when the dead rise up and walk. From their beginnings zombies have reflected western societies’ greatest fears – be they of revolutionary Haitians, women, or communists. In recent years the rise in the popularity of the zombie in films, books and television series reflects our fears for the planet, the economy, and of death itself

  6. Quantum walks on simplicial complexes

    Science.gov (United States)

    Matsue, Kaname; Ogurisu, Osamu; Segawa, Etsuo

    2016-05-01

    We construct a new type of quantum walks on simplicial complexes as a natural extension of the well-known Szegedy walk on graphs. One can numerically observe that our proposing quantum walks possess linear spreading and localization as in the case of the Grover walk on lattices. Moreover, our numerical simulation suggests that localization of our quantum walks reflects not only topological but also geometric structures. On the other hand, our proposing quantum walk contains an intrinsic problem concerning exhibition of non-trivial behavior, which is not seen in typical quantum walks such as Grover walks on graphs.

  7. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte;

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  8. Levy random walks on multiplex networks

    CERN Document Server

    Guo, Quantong; Zheng, Zhiming; Moreno, Yamir

    2016-01-01

    Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Levy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Levy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a ...

  9. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women

    OpenAIRE

    Zahra Rojhani Shirazi; Fatemeh Nikhalat Jahromi

    2013-01-01

    Background: The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Materials and Methods: Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, p...

  10. Contribution of each leg to the control of unperturbed bipedal stance in lower limb amputees: new insights using entropy.

    Directory of Open Access Journals (Sweden)

    Petra Hlavackova

    Full Text Available The present study was designed to assess the relative contribution of each leg to unperturbed bipedal posture in lower limb amputees. To achieve this goal, eight unilateral traumatic trans-femoral amputees (TFA were asked to stand as still as possible on a plantar pressure data acquisition system with their eyes closed. Four dependent variables were computed to describe the subject's postural behavior: (1 body weight distribution, (2 amplitude, (3 velocity and (4 regularity of centre of foot pressure (CoP trajectories under the amputated (A leg and the non-amputated (NA leg. Results showed a larger body weight distribution applied to the NA leg than to the A leg and a more regular CoP profiles (lower sample entropy values with greater amplitude and velocity under the NA leg than under the A leg. Taken together, these findings suggest that the NA leg and the A leg do not equally contribute to the control of unperturbed bipedal posture in TFA. The observation that TFA do actively control unperturbed bipedal posture with their NA leg could be viewed as an adaptive process to the loss of the lower leg afferents and efferents because of the unilateral lower-limb amputation. From a methodological point of view, these results demonstrate the suitability of computing bilateral CoP trajectories regularity for the assessment of lateralized postural control under pathological conditions.

  11. A WRIST-WALKER EXHIBITING NO "UNER TAN SYDNROME": A THEORY FOR POSSIBLE MECHANISMS OF HUMAN DEVOLUTION TOWARD THE ATAVISTIC WALKING PATTERNS

    OpenAIRE

    TAN, Prof. Dr. Üner

    2007-01-01

    After discovering two families with handicapped children exhibiting the “Uner Tan syndrome,” the author discovered a man exhibiting only wrist-walking with no primitive mental abilities including language. According to his mother, he had an infectious disease with high fever as a three months old baby; as a result, the left leg had been paralyzed after a penicilline injection. This paralysis most probably resulted from a viral disease, possibly poliomyelitis. He...

  12. Random walks on combs

    CERN Document Server

    Durhuus, B; Wheater, J; Durhuus, Bergfinnur; Jonsson, Thordur; Wheater, John

    2006-01-01

    We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.

  13. Correlation between Body Composition and Walking Capacity in Severe Obesity

    OpenAIRE

    Correia de Faria Santarém, G; de Cleva, R; Marco Aurélio Santo; Aline Biaseto Bernhard; Alexandre Vieira Gadducci; Julia Maria D'Andrea Greve; Paulo Roberto Santos Silva

    2015-01-01

    Background Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity. Objective To determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade. Setting University of São Paulo Medical School, Brazil; Public Practice. Methods Functional capacity was ...

  14. Quantum graph walks I: mapping to quantum walks

    OpenAIRE

    Higuchi, Yusuke; Konno, Norio; Sato, Iwao; Segawa, Etsuo

    2012-01-01

    We clarify that coined quantum walk is determined by only the choice of local quantum coins. To do so, we characterize coined quantum walks on graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we introduce a new class of coined quantum walk by a special choice of quantum coins determined by corresponding quantum graph, called quantum graph walk. We show that a stationary state of quantum graph walk describes the eigenfunction of the quantum graph.

  15. Does getting a dog increase recreational walking?

    Directory of Open Access Journals (Sweden)

    Knuiman Matthew W

    2008-03-01

    Full Text Available Abstract Background This study examines changes in socio-demographic, environmental and intrapersonal factors associated with dog acquisition in non-dog owners at baseline to 12-months follow-up and the effect of dog acquisition on minutes per week of recreational walking. Methods RESIDE study participants completed self-administered questionnaires (baseline and 12-months follow-up measuring physical activity, dog ownership, dog walking behavior as well as environmental, intrapersonal and socio-demographic factors. Analysis was restricted to 'Continuing non-owners' (i.e., non-owners at both baseline and follow-up; n = 681 and 'New dog owners' (i.e., non-owners who acquired a dog by follow-up; n = 92. Results Overall, 12% of baseline non-owners had acquired a dog at follow-up. Dog acquisition was associated with working and having children at home. Those who changed from single to couple marital status were also more likely to acquire a dog. The increase in minutes of walking for recreation within the neighborhood from baseline to follow-up was 48 minutes/week for new dog owners compared with 12 minutes/week for continuing non-owners (p p p > 0.05 after further adjustment for change in baseline to follow-up variables. Increase in intention to walk was the main factor contributing to attenuation of the effect of dog acquisition on recreational walking. Conclusion This study used a large representative sample of non-owners to examine the relationship between dog acquisition and recreational walking and provides evidence to suggest that dog acquisition leads to an increase in walking. The most likely mechanism through which dog acquisition facilitates increased physical activity is through behavioral intention via the dog's positive effect on owner's cognitive beliefs about walking, and through the provision of motivation and social support for walking. The results suggest that behavioral intention mediates the relationship between dog acquisition

  16. Quantum Walks for Computer Scientists

    CERN Document Server

    Venegas-Andraca, Salvador

    2008-01-01

    Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir

  17. Unitary equivalence of quantum walks

    International Nuclear Information System (INIS)

    Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator

  18. The Cognitive Mechanisms Guiding Psychological Development

    OpenAIRE

    Osborne, G.

    1995-01-01

    This Thesis presents a model of cognitive development inspired by Piaget's "Genetic Epistemology". It is observed that the epigenetic process described by Piaget posess mechanisms and behaviour that characterise complex adaptive systems. A model of bipedal motion based around the "Bucket Brigade" algorithm of Holland is presened to explore this relationship.

  19. A theory on the evolution of the habitual orthograde human bipedalism--the "Amphibische Generalistentheorie".

    Science.gov (United States)

    Niemitz, Carsten

    2002-03-01

    The theory is formulated that ubiquitous scarcity of energy is one of the main motors of evolution. It is concluded that our primate ancestors never came down from the trees, but rather they have always been (semi-)terrestrial. This habit is probably an old symplesiomorph trait, older than primates themselves. Terrestrial habits in primates correlate to body weight in small systematic groups (e.g., large genera, families) but are, overall, completely independent from individual body mass. An omnivorous, semiterrestrial quadrupedal locomotor generalist seems to be the most probable morpho- and eco-type for our ancestor at the threshold of a hominoid stage of our evolution. The theory presented here suggests that our hominoid ancestor lived in gallery forests and changed strata in order also to inhabit the savannah habitat as well as the shallow water of the rivers or coasts. Foraging in a wading manner was extremely favourable for an effective and, especially, seasonally independent, animal protein supply. Anatomical adaptations to orthogradism and proportions of the extremities are discussed in relation to the necessary and frequent change of habitat strata. Ultimately, human bipedalism is seen here to be derived as a consequence of the centre of body mass, which is, in primates, near the hind extremities. By contrast to other mammals entering the water, wading primates sink back on their hind limbs. Selective forces for habitat use, limb proportions and wading habits are discussed, as well as the phylogenetic origin of human affinity to water and shores in all peoples through all times, from australopithecine times through the Paleolithic until today. PMID:12058577

  20. Biomechanical conditions of walking

    CERN Document Server

    Fan, Y F; Luo, L P; Li, Z Y; Han, S Y; Lv, C S; Zhang, B

    2015-01-01

    The development of rehabilitation training program for lower limb injury does not usually include gait pattern design. This paper introduced a gait pattern design by using equations (conditions of walking). Following the requirements of reducing force to the injured side to avoid further injury, we developed a lower limb gait pattern to shorten the stride length so as to reduce walking speed, to delay the stance phase of the uninjured side and to reduce step length of the uninjured side. This gait pattern was then verified by the practice of a rehabilitation training of an Achilles tendon rupture patient, whose two-year rehabilitation training (with 24 tests) has proven that this pattern worked as intended. This indicates that rehabilitation training program for lower limb injury can rest on biomechanical conditions of walking based on experimental evidence.

  1. The Act of Walking

    DEFF Research Database (Denmark)

    Vestergaard, Maria Quvang Harck; Olesen, Mette; Helmer, Pernille Falborg

    2014-01-01

    ’ of mobility (Jensen 2013:111) such as the urban environment, and the infrastructures. Walking has indeed also a ‘software dimension’ as an embodied performance that trigger the human senses (Jensen 2013) and which is closely related to the habitus and identity of the individual (Halprin 1963). The...... individual perception of ‘walkability’ is based upon a subjective judgement of different physical factors, such as sidewalk width, traffic volumes and building height (Ewing and Handy 2009:67). And iIn order to understand the act of walking it is therefore necessary to create a vocabulary to understand how...... and why the individuals evaluate, interpret and act (Bourdieu 1984), and how this affects their choice to walk. Therefore it could be questioned if whether an assessment of the physical environment is sufficient to identify all the factors that influence the individual perception of ‘walkability’, or...

  2. Approximation of walking robot stability model

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Grepl, Robert; Věchet, S.

    Praha: Ústav termomechaniky AV ČR, 2004 - (Zolotarev, I.; Poživilova, A.), s. 159-160 ISBN 80-85918-88-9. [Engineering mechanics 2004. Svratka (CZ), 10.05.2004-13.05.2004] Institutional research plan: CEZ:AV0Z2076919 Keywords : approximation * walking robot * stability Subject RIV: JD - Computer Applications, Robot ics

  3. LMI based design for the Acrobot walking

    Czech Academy of Sciences Publication Activity Database

    Anderle, Milan; Čelikovský, Sergej; Henrion, D.; Zikmund, Jiří

    Gifu: IFAC, 2009, s. 595-600. [SYROCO'09. Gifu (JP), 09.09.2009-12.09.2009] R&D Projects: GA ČR(CZ) GA102/08/0186; GA MŠk LA09026 Institutional research plan: CEZ:AV0Z10750506 Keywords : Linear matrix inequalities (LMI) * underactuated mechanical systems * walking robot s Subject RIV: BC - Control Systems Theory

  4. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  5. Endless self-avoiding walks

    OpenAIRE

    Clisby, Nathan

    2013-01-01

    We introduce a self-avoiding walk model for which end-effects are completely eliminated. We enumerate the number of these walks for various lattices in dimensions two and three, and use these enumerations to study the properties of this model. We find that endless self-avoiding walks have the same connective constant as self-avoiding walks, and the same Flory exponent $\

  6. Walking and Sensing Mobile Lives

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam

    In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk.......In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk....

  7. Walking - Sensing - Participation

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam; Browning, David

    Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...

  8. Walking along water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    Steep slopes, white peaks and deep valleys make up the Andes. As phenomenologists of landscape have told us, different people have different landscapes. By moving across the terrain, walking along, we might get a sense of how this has been carved out by the movement of wind and water, tectonics...

  9. Walking for data

    DEFF Research Database (Denmark)

    Bødker, Mads; Browning, David; Meinhardt, Nina Dam

    We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking....

  10. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal

    2007-01-01

    I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from the...

  11. Random Walks on Random Graphs

    Science.gov (United States)

    Cooper, Colin; Frieze, Alan

    The aim of this article is to discuss some of the notions and applications of random walks on finite graphs, especially as they apply to random graphs. In this section we give some basic definitions, in Section 2 we review applications of random walks in computer science, and in Section 3 we focus on walks in random graphs.

  12. Prudent Self-Avoiding Walks

    Directory of Open Access Journals (Sweden)

    Anthony J. Guttmann

    2008-09-01

    Full Text Available We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic generating function is almost certainly not differentiably-finite.

  13. Prudent Self-Avoiding Walks

    OpenAIRE

    Guttmann, Anthony J.; Dethridge, John C.

    2008-01-01

    We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic) generating function is almost certainly not differentiably-finite.

  14. On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency

    International Nuclear Information System (INIS)

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running (‘forwards’) or opposite (‘backwards’)? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources. (paper)

  15. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.

    Science.gov (United States)

    Haberland, M; Kim, S

    2015-01-01

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running ('forwards') or opposite ('backwards')? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources. PMID:25643285

  16. Functional Asymmetry in a Five-Link 3D Bipedal Walker

    OpenAIRE

    Gregg, Robert D.; Dhaher, Yasin; Lynch, Kevin M.

    2011-01-01

    This paper uses a symmetrical five-link 3D biped model to computationally investigate the cause, function, and benefit of gait asymmetry. We show that for a range of mass distributions, this model has asymmetric walking patterns between the left and right legs, which is due to a phenomenon known as period-doubling bifurcation. The ground reaction forces of each leg reflect different roles, roughly corresponding to support, propulsion, and motion control as proposed by the hypothesis of functi...

  17. Fractional random walk lattice dynamics

    CERN Document Server

    Michelitsch, Thomas; Riascos, Alejandro Perez; Nowakowski, Andrzeij; Nicolleau, Franck

    2016-01-01

    We analyze time-discrete and continuous `fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in $n=1,2,3,..$ dimensions.The fractional random walk dynamics is governed by a master equation involving {\\it fractional powers of Laplacian matrices $L^{\\frac{\\alpha}{2}}$}where $\\alpha=2$ recovers the normal walk.First we demonstrate thatthe interval $0\\textless{}\\alpha\\leq 2$ is admissible for the fractional random walk. We derive analytical expressions for fractional transition matrix and closely related the average return probabilities. We further obtain thefundamental matrix $Z^{(\\alpha)}$, and the mean relaxation time (Kemeny constant) for the fractional random walk.The representation for the fundamental matrix $Z^{(\\alpha)}$ relates fractional random walks with normal random walks.We show that the fractional transition matrix elements exihibit for large cubic $n$-dimensional lattices a power law decay of an $n$-dimensional infinite spaceRiesz fractional deriva...

  18. Aging Random Walks

    CERN Document Server

    Böttcher, S

    1997-01-01

    Aging refers to the property of two-time correlation functions to decay very slowly on (at least) two time scales. This phenomenon has gained recent attention due to experimental observations of the history dependent relaxation behavior in amorphous materials (``Glasses'') which pose a challenge to theorist. Aging signals the breaking of time-translational invariance and the violation of the fluctuation dissipation theorem during the relaxation process. But while the origin of aging in disordered media is profound, and the discussion is clad in the language of a well-developed theory, systems as simple as a random walk near a wall can exhibit aging. Such a simple walk serves well to illustrate the phenomenon and some of the physics behind it.

  19. Covering walks in graphs

    CERN Document Server

    Fujie, Futaba

    2014-01-01

    Covering Walks  in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and...

  20. Nordic Walking Classes

    CERN Multimedia

    Fitness Club

    2015-01-01

    Four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Spring Course 2015: 05.05/12.05/19.05/26.05 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at: https://espace.cern.ch/club-fitness/Lists/Nordic%20Walking/NewForm.aspx? Hope to see you among us! fitness.club@cern.ch

  1. Bounded Discrete Walks

    OpenAIRE

    Banderier, Cyril; Nicodeme, Pierre

    2010-01-01

    This article tackles the enumeration and asymptotics of directed lattice paths (that are isomorphic to unidimensional paths) of bounded height (walks below one wall, or between two walls, for \\emphany finite set of jumps). Thus, for any lattice paths, we give the generating functions of bridges (``discrete'' Brownian bridges) and reflected bridges (``discrete'' reflected Brownian bridges) of a given height. It is a new success of the ``kernel method'' that the generating functions of such wal...

  2. Comparative Anatomy of the Hind Limb Vessels of the Bearded Capuchins (Sapajus libidinosus with Apes, Baboons, and Cebus capucinus: With Comments on the Vessels' Role in Bipedalism

    Directory of Open Access Journals (Sweden)

    Roqueline A. G. M. F. Aversi-Ferreira

    2013-01-01

    Full Text Available Capuchin monkeys are known to exhibit sporadic bipedalism while performing specific tasks, such as cracking nuts. The bipedal posture and locomotion cause an increase in the metabolic cost and therefore increased blood supply to lower limbs is necessary. Here, we present a detailed anatomical description of the capuchin arteries and veins of the pelvic limb of Sapajus libidinosus in comparison with other primates. The arterial pattern of the bearded capuchin hind limb is more similar to other quadrupedal Cebus species. Similarities were also found to the pattern observed in the quadruped Papio, which is probably due to a comparable pelvis and the presence of the tail. Sapajus' traits show fewer similarities when compared to great apes and modern humans. Moreover, the bearded capuchin showed unique patterns for the femoral and the short saphenous veins. Although this species switches easily from quadrupedal to bipedal postures, our results indicate that the bearded capuchin has no specific or differential features that support extended bipedal posture and locomotion. Thus, the explanation for the behavioral differences found among capuchin genera probably includes other aspects of their physiology.

  3. Walking with springs

    Science.gov (United States)

    Sugar, Thomas G.; Hollander, Kevin W.; Hitt, Joseph K.

    2011-04-01

    Developing bionic ankles poses great challenges due to the large moment, power, and energy that are required at the ankle. Researchers have added springs in series with a motor to reduce the peak power and energy requirements of a robotic ankle. We developed a "robotic tendon" that reduces the peak power by altering the required motor speed. By changing the required speed, the spring acts as a "load variable transmission." If a simple motor/gearbox solution is used, one walking step would require 38.8J and a peak motor power of 257 W. Using an optimized robotic tendon, the energy required is 21.2 J and the peak motor power is reduced to 96.6 W. We show that adding a passive spring in parallel with the robotic tendon reduces peak loads but the power and energy increase. Adding a passive spring in series with the robotic tendon reduces the energy requirements. We have built a prosthetic ankle SPARKy, Spring Ankle with Regenerative Kinetics, that allows a user to walk forwards, backwards, ascend and descend stairs, walk up and down slopes as well as jog.

  4. Running for Exercise Mitigates Age-Related Deterioration of Walking Economy

    Science.gov (United States)

    Ortega, Justus D.; Beck, Owen N.; Roby, Jaclyn M.; Turney, Aria L.; Kram, Rodger

    2014-01-01

    Introduction Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. Purpose To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. Methods 15 older adults (69±3 years) who walk ≥30 min, 3x/week for exercise, “walkers” and 15 older adults (69±5 years) who run ≥30 min, 3x/week, “runners” walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Results Older runners had a 7–10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461) and ∼26% worse walking economy than young adults (p<.0001). Conclusion Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy. PMID:25411850

  5. A formative evaluation of a family-based walking intervention-Furness Families Walk4Life

    Directory of Open Access Journals (Sweden)

    Bull Fiona

    2011-08-01

    Full Text Available Abstract Background The family unit may be an important mechanism for increasing physical activity levels, yet little is known about what types of family-based interventions are effective. This study involved a formative evaluation of a 12 week intervention to encourage walking as a family based activity. The intervention consisted of several key elements including led walks and tailored resources, as well as remote support provided via the telephone. The project aimed to explore factors associated with successful delivery of the programme and to identify areas of improvement for future implementation. Methods A total of nine interviews were undertaken with programme staff who were involved in either the set up or delivery of the intervention. In addition, four interviews and two focus groups were undertaken with participants to explore their experiences of the programme. The analysis involved both deductive and inductive reasoning. Results In total, 114 people participated in the programme, which included 36 adults, 10 adolescents and 68 children (≤ 10 years of age. Adult participants reported several barriers to walking including concerns over their children's behaviour and their ability to maintain 'control' of their children. Walking in a group with other families gave parents confidence to go out walking with their children and provided a valuable opportunity for social interaction for parents and children alike. The most successful walks incorporated specific destinations and an activity to undertake upon reaching the destination. Incorporating other activities along the way also helped to keep the children engaged. Conclusions The results of this study have highlighted the important contribution that formative research can make in informing and refining a programme to increase appropriateness and effectiveness. The study has helped to highlight the key characteristics associated with delivering a successful walking intervention to young

  6. A Fractional Diffusion Equation for an n-Dimensional Correlated Levy Walk

    CERN Document Server

    Taylor-King, J P; Fedotov, S; Van Gorder, R A

    2016-01-01

    Levy walks define a fundamental concept in random walk theory which allows one to model diffusive spreading that is faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Levy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short range auto-correlated Levy walks in the large time limit, and solve it. Our derivation discloses different dynamical mechanisms leading to correlated Levy walk diffusion in terms of quantities that can be measured experimentally.

  7. Interindividual differences in H reflex modulation during normal walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, T;

    2002-01-01

    treadmill walking at 4.5 km/h. Using a two-dimensional analysis joint angles, angular velocities, accelerations, linear velocities and accelerations were calculated, and net joint moments about the ankle, knee and hip joint were computed by inverse dynamics from the video and force plate data. Six subjects...... subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during...

  8. Pseudo-Hermitian continuous-time quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, S; Sorouri, A, E-mail: shsalimi@uok.ac.i, E-mail: a.sorouri@uok.ac.i [Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj (Iran, Islamic Republic of)

    2010-07-09

    In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum-mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.

  9. Extendable self-avoiding walks

    OpenAIRE

    Grimmett, Geoffrey R.; Holroyd, Alexander E; Peres, Yuval

    2013-01-01

    The connective constant mu of a graph is the exponential growth rate of the number of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be forward (respectively, backward) extendable if it may be extended forwards (respectively, backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be extended in both directions simultaneously to a doubly infinite self-avoiding walk. We prove that the connective constants for forward,...

  10. Physical implementation of quantum walks

    CERN Document Server

    Manouchehri, Kia

    2013-01-01

    Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of

  11. Persistence of random walk records

    International Nuclear Information System (INIS)

    We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk ‘superior’ if the record is always above average, and conversely, the walk is said to be ‘inferior’ if the record is always below average. We find that the fraction of superior walks, S, decays algebraically with time, S ∼ t−β, in the limit t → ∞, and that the persistence exponent is nontrivial, β = 0.382 258…. The fraction of inferior walks, I, also decays as a power law, I ∼ t−α, but the persistence exponent is smaller, α = 0.241 608…. Both exponents are roots of transcendental equations involving the parabolic cylinder function. To obtain these theoretical results, we analyze the joint density of superior walks with a given record and position, while for inferior walks it suffices to study the density as a function of position. (paper)

  12. Walking. Sensing. Participation

    DEFF Research Database (Denmark)

    Bødker, Mads

    2014-01-01

    This paper uses three meditations to contemplate walking, sensing and participation as three ways with which we can extend the notion of ‘experiential computing’ proposed by Yoo (2010). By using the form of meditations, loosely associated concepts that are part introspective and part ‘causative’, i...... intended to also inform the design of technologies for the future. By emphasizing the senses and the body and their importance to an extended notion of sensory apprenticeship (Pink, 2009), the paper suggests alternative routes to knowing and representation in IS related fieldwork....

  13. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  14. The quantum walk temperature

    CERN Document Server

    Romanelli, Alejandro

    2011-01-01

    A thermodynamic theory is developed to describe the behavior of the entanglement between the coin and position degrees of freedom of the quantum walk on the line. This theory shows that, in spite of the unitary evolution, a steady state is established after a Markovian transient stage. This study suggests that if a quantum dynamics is developed in a composite Hilbert space (i.e. the tensor product of several sub-spaces) then the behavior of an operator that only belongs to one of the sub-spaces may camouflage the unitary character of the global evolution.

  15. A slow walk back

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    2002-09-01

    The article reports on the activity in the dragline sector which has been greater in the past 18 months than in previous years. One notable event is the recent order by BNI Coal in the USA of a large walking dragline, the Marion 8200 model from Bucyrus, for removal of overburden at the Center Mine in North Dakota. The Marison draglines have an oval rigid structure which provides an effective load and boom support. The article reports uses of other Bucyrus draglines in Canada and Australia. 2 figs.

  16. Simple model of underactuated walking robot

    Czech Academy of Sciences Publication Activity Database

    Anderle, Milan; Čelikovský, Sergej; Dolinský, Kamil

    Kota Kinabalu, Sabah, Malajsie: IEEE, 2015. ISBN 978-1-4799-7862-5. [The 10th Asian Control Conference (ASCC 2015). Sutera Harbour Resort, Kota Kinabalu, Sabah (MY), 31.05.2015-03.06.2015] R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Underactuated walking * Experimental model * Mechanical systems Subject RIV: BC - Control Systems Theory

  17. A Novel Algorithm of Quantum Random Walk in Server Traffic Control and Task Scheduling

    Directory of Open Access Journals (Sweden)

    Dong Yumin

    2014-01-01

    Full Text Available A quantum random walk optimization model and algorithm in network cluster server traffic control and task scheduling is proposed. In order to solve the problem of server load balancing, we research and discuss the distribution theory of energy field in quantum mechanics and apply it to data clustering. We introduce the method of random walk and illuminate what the quantum random walk is. Here, we mainly research the standard model of one-dimensional quantum random walk. For the data clustering problem of high dimensional space, we can decompose one m-dimensional quantum random walk into m one-dimensional quantum random walk. In the end of the paper, we compare the quantum random walk optimization method with GA (genetic algorithm, ACO (ant colony optimization, and SAA (simulated annealing algorithm. In the same time, we prove its validity and rationality by the experiment of analog and simulation.

  18. Endless self-avoiding walks

    Science.gov (United States)

    Clisby, Nathan

    2013-06-01

    We introduce a self-avoiding walk model for which end-effects are completely eliminated. We enumerate the number of these walks for various lattices in dimensions two and three, and use these enumerations to study the properties of this model. We find that endless self-avoiding walks have the same connective constant as self-avoiding walks, and the same Flory exponent ν. However, there is no power law correction to the exponential number growth for this new model, i.e. the critical exponent γ = 1 exactly in any dimension. In addition, the number growth has no analytic corrections to scaling, and we have convincing numerical evidence to support the conjecture that the amplitude for the number growth is a universal quantity. The technique by which end-effects are eliminated may be generalized to other models of polymers such as interacting self-avoiding walks.

  19. Endless self-avoiding walks

    International Nuclear Information System (INIS)

    We introduce a self-avoiding walk model for which end-effects are completely eliminated. We enumerate the number of these walks for various lattices in dimensions two and three, and use these enumerations to study the properties of this model. We find that endless self-avoiding walks have the same connective constant as self-avoiding walks, and the same Flory exponent ν. However, there is no power law correction to the exponential number growth for this new model, i.e. the critical exponent γ = 1 exactly in any dimension. In addition, the number growth has no analytic corrections to scaling, and we have convincing numerical evidence to support the conjecture that the amplitude for the number growth is a universal quantity. The technique by which end-effects are eliminated may be generalized to other models of polymers such as interacting self-avoiding walks. (paper)

  20. Quantum walks and search algorithms

    CERN Document Server

    Portugal, Renato

    2013-01-01

    This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...

  1. Design of a walking robot

    Science.gov (United States)

    Whittaker, William; Dowling, Kevin

    1994-03-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  2. Comparison of heart rate responses. Water walking versus treadmill walking.

    Science.gov (United States)

    Whitley, J D; Schoene, L L

    1987-10-01

    The purpose of this study was to compare heart rate responses to water walking versus treadmill walking to determine whether the responses were of sufficient magnitude to elicit cardiorespiratory training effects. The heart rates of 12 healthy, female college students were measured immediately after walking in waist-deep water and on a treadmill at the same distance, durations, and speeds (2.55, 2.77, 3.02, and 3.31 km/hr). A significant increase in heart rate with increased speeds resulted from water walking (p less than .05); from rest to the fastest speed, it was 135% (96 bpm). For treadmill walking, the increase of 19% (13 bpm) was not significant. The heart rates for the water condition were significantly higher (p less than .05) at each speed. These findings indicate that water walking could serve as an effective exercise mode, for example, for cardiorespiratory fitness for individuals who are unable to perform such weight-bearing activities as jogging, fast walking, cycling, and dancing. PMID:3659133

  3. walk around Irkutsk

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-08-01

    Full Text Available It is noteworthy that this country develops through two types of events: either through a jubilee or through a catastrophe.It seems that Irkutsk Airport will be built only after the next crash. At least the interest to this problem returns regularly after sad events, and this occurs almost half a century (a jubilee, too! – the Council of Ministers decided to relocate the Airport away from the city as long ago as 1962. The Airport does not relate to the topic of this issue, but an attentive reader understands that it is our Carthage, and that the Airport should be relocated. The Romans coped with it faster and more effectively.Back to Irkutsk’s jubilee, we should say that we will do without blare of trumpets. We will just make an unpretentious walk around the city in its summer 350. Each our route covers new (some of them have been completed by the jubilee and old buildings, some of them real monuments. All these buildings are integrated into public spaces of different quality and age.We will also touch on the problems, for old houses, especially the wooden ones often provoke a greedy developer to demolish or to burn them down. Thus a primitive thrift estimates an output of additional square meters. Not to mention how attractive it is to seize public spaces without demolition or without reallocation of the dwellers. Or, rather, the one who is to preserve, to cherish and to improve such houses for the good of the citizens never speaks about this sensitive issue. So we have to do it.Walking is a no-hurry genre, unlike the preparation for the celebration. Walking around the city you like is a pleasant and cognitive process. It will acquaint the architects with the works of their predecessors and colleagues. We hope that such a walk may be interesting for Irkutsk citizens and visitors, too. Isn’t it interesting to learn “at first hand” the intimate details of the restoration of the Trubetskoys’ estate

  4. Walking for art's sake

    CERN Multimedia

    2005-01-01

      The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  5. Walking for art's sake

    CERN Multimedia

    2005-01-01

    The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  6. Multicanonical simulation of the Domb-Joyce model and the Go model: new enumeration methods for self-avoiding walks

    OpenAIRE

    Shirai, Nobu C.; Kikuchi, Macoto

    2012-01-01

    We develop statistical enumeration methods for self-avoiding walks using a powerful sampling technique called the multicanonical Monte Carlo method. Using these methods, we estimate the numbers of the two dimensional N-step self-avoiding walks up to N=256 with statistical errors. The developed methods are based on statistical mechanical models of paths which include self-avoiding walks. The criterion for selecting a suitable model for enumerating self-avoiding walks is whether or not the conf...

  7. Intrinsic Lévy behaviour in organisms - searching for a mechanism. Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds

    Science.gov (United States)

    Sims, David W.

    2015-09-01

    The seminal papers by Viswanathan and colleagues in the late 1990s [1,2] proposed not only that scale-free, superdiffusive Lévy walks can describe the free-ranging movement patterns observed in animals such as the albatross [1], but that the Lévy walk was optimal for searching for sparsely and randomly distributed resource targets [2]. This distinct advantage, now shown to be present over a much broader set of conditions than originally theorised [3], implied that the Lévy walk is a search strategy that should be found very widely in organisms [4]. In the years since there have been several influential empirical studies showing that Lévy walks can indeed be detected in the movement patterns of a very broad range of taxa, from jellyfish, insects, fish, reptiles, seabirds, humans [5-10], and even in the fossilised trails of extinct invertebrates [11]. The broad optimality and apparent deep evolutionary origin of movement (search) patterns that are well approximated by Lévy walks led to the development of the Lévy flight foraging (LFF) hypothesis [12], which states that "since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have led to adaptations for Lévy flight foraging".

  8. The magnitude of the effect of calf muscles fatigue on postural control during bipedal quiet standing with vision depends on the eye-visual target distance.

    OpenAIRE

    Vuillerme, Nicolas; Burdet, Cyril; Isableu, Brice; Demetz, Sylvain

    2006-01-01

    The purpose of the present experiment was to investigate whether, with vision, the magnitude of the effect of calf muscles fatigue on postural control during bipedal quiet standing depends on the eye-visual target distance. Twelve young university students were asked to stand upright as immobile as possible in three visual conditions (No vision, Vision 1m and Vision 4m) executed in two conditions of No fatigue and Fatigue of the calf muscles. Centre of foot pressure displacements were recorde...

  9. WalkMECH: design and control of an energy recycling transfemoral prosthesis

    OpenAIRE

    Ünal, R.

    2014-01-01

    This study presents the design and realization of an energy-efficient trans-femoral prosthesis called WalkMECH. Trans-femoral amputees consume significant amount of extra metabolic energy (more than 65% extra) during walking compared to the ablebodied person. Therefore, we mainly focused on the design possibilities for reducing the metabolic cost of an amputee during walking. Both clinical and bio-mechanical research studies have shown that the lack of energetic relations between the hip, kne...

  10. Walking Behavior in Technicolored GUTs

    OpenAIRE

    Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil)

    2009-01-01

    There exist two ways to obtain walk behavior: assuming a large number of technifermions in the fundamental representation of the technicolor (TC) gauge group, or a small number of technifermions, assuming that these fermions are in higher-dimensional representations of the TC group. We propose a scheme to obtain the walking behavior based on technicolored GUTs (TGUTs), where elementary scalars with the TC degree of freedom may remain in the theory after the GUT symmetry breaking.

  11. Identifying Emotion from Natural Walking

    OpenAIRE

    Cui, Liqing; Li, Shun; Zhang, Wan; Zhang, Zhan; Zhu, Tingshao

    2015-01-01

    Emotion identification from gait aims to automatically determine persons affective state, it has attracted a great deal of interests and offered immense potential value in action tendency, health care, psychological detection and human-computer(robot) interaction.In this paper, we propose a new method of identifying emotion from natural walking, and analyze the relevance between the traits of walking and affective states. After obtaining the pure acceleration data of wrist and ankle, we set a...

  12. 基于TRIZ理论的爬楼轮椅行走机构创新分析与设计%Innovative Design of Walking Mechanism of Stair-climbing Wheelchiar based on the Theory of TRIZ

    Institute of Scientific and Technical Information of China (English)

    张林; 黄亚宇

    2014-01-01

    TRIZ 理论是一种解决发明问题的理论,是一种发现问题并解决问题的方法论,其实质是利用长期积累的经验和知识,解决和改善现有产品中所存在的矛盾冲突与不足,并最终实现创新的一个过程。本文利用TRIZ理论对爬楼轮椅的行走机构进行了创新建模分析,并通过39个工程参数、40条发明创造原理和76个标准解等工具对其进行求解,从而得到创新原理。最后,对所得到的创新原理进行分析,挖掘出哪些原理可以加以利用,并根据其给予的提示找出具体的解决方案[1]。%TRIZ theory is a theory of invention problem solving,which is a methodology of find problems and solve the problems,the essence is to use a long-term accumulation of experience and knowledge to solve and improve the contradiction which is existing inside of products,and ultimately achieve a process of innovation.In this paper,TRIZ theory WAs used to innovative modeling and analysis for the walking mechanism of the stairs-climbing wheelchair and based on 3 9 engineering parameters,40 invention principles and 76 standard solutions to solve the problem,the principles of innovation was gotton, and according to the principles of innovation tips,got our specific solution to the problem.

  13. Human walking dynamics: modeling, identification and control

    Directory of Open Access Journals (Sweden)

    Schiehlen W.

    2014-01-01

    Full Text Available Human gait simulation is a complex dynamical problem that requires, in addition to the mechanical model, the observance of muscle activations, neural excitations, and energetic and aesthetic considerations. After an short review on the historical development two- and three-dimensional models using multibody system dynamics are presented. The identification of the muscle actuation during human walking is based on data in literature comparing the resultant torques to each other. The control design uses inverse dynamics approaches and an optimization framework minimizing the metabolical energy consumption and improving the aesthetics. Numerical simulation results are shown for planar as well as spatial models.

  14. Self-Avoiding Walks (SAWs), Entanglement and Biomolecules

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    2006-01-01

    The Self-Avoiding Walk (SAW) on a lattice are often used to study properties of polymers in good solvents such as entanglement, knotting (ring polymers), and statistical mechanical properties of polymers. Recently it has been used to explain the increased probability of phage DNA being knotted when...

  15. Prediction of stable walking for a toy that cannot stand

    CERN Document Server

    Coleman, M J; Mombaur, K; Ruina, A; Coleman, Michael J.; Garcia, Mariano; Mombaur, Katja; Ruina, Andy

    2001-01-01

    Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658 (1998)] showed that a gravity-powered toy with no control and which has no statically stable near-standing configurations can walk stably. We show here that a simple rigid-body statically-unstable mathematical model based loosely on the physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-body mechanism behaviors as well as further implicating passive-dynamics as a possible contributor to stability of animal motions.

  16. Minnesota Walk-In Access Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Minnesota Walk-In Access site (WIA) GIS data represents areas of private land that have been made open to the public for the purpose of walk-in (foot travel)...

  17. Dissipative quantum computing with open quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Sinayskiy, Ilya; Petruccione, Francesco [National Institute for Theoretical Physics and Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban (South Africa)

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  18. Stability and Control of Constrained Three-Dimensional Robotic Systems with Application to Bipedal Postural Movements

    Science.gov (United States)

    Kallel, Hichem

    Three classes of postural adjustments are investigated with the view of a better understanding of the control mechanisms involved in human movement. The control mechanisms and responses of human or computer models to deliberately induced disturbances in postural adjustments are the focus of this dissertation. The classes of postural adjustments are automatic adjustments, (i.e. adjustments not involving voluntary deliberate movement), adjustments involving imposition of constraints for the purpose of maintaining support forces, and adjustments involving violation and imposition of constraints for the purpose of maintaining balance, (i.e. taking one or more steps). For each class, based on the physiological attributes of the control mechanisms in human movements, control strategies are developed to synthesize the desired postural response. The control strategies involve position and velocity feedback control, on line relegation control, and pre-stored trajectory control. Stability analysis for constrained and unconstrained maneuvers is carried out based on Lyapunov stability theorems. The analysis is based on multi-segment biped robots. Depending on the class of postural adjustments, different biped models are developed. An eight-segment three dimensional biped model is formulated for the study of automatic adjustments and adjustments for balance. For the study of adjustments for support, a four segment lateral biped model is considered. Muscle synergies in automatic adjustments are analyzed based on a three link six muscle system. The muscle synergies considered involve minimal muscle number and muscle co-activation. The role of active and passive feedback in these automatic adjustments is investigated based on the specified stiffness and damping of the segments. The effectiveness of the control strategies and the role of muscle synergies in automatic adjustments are demonstrated by a number of digital computer simulations.

  19. Going round the bend: Persistent personal biases in walked angles.

    Science.gov (United States)

    Jetzschke, Simon; Ernst, Marc O; Moscatelli, Alessandro; Boeddeker, Norbert

    2016-03-23

    For navigation through our environment, we can rely on information from various modalities, such as vision and audition. This information enables us for example to estimate our position relative to the starting position, or to integrate velocity and acceleration signals from the vestibular organ and proprioception to estimate the displacement due to self-motion. To better understand the mechanisms that underlie human navigation we analysed the performance of participants in an angle-walking task in the absence of visual and auditory signals. To this end, we guided them along paths of different lengths and asked them to turn by an angle of ±90°. We found significant biases in turn angles, i.e. systematic deviations from the correct angle and that these were characteristic for individual participants. Varying path length, however, had little effect on turn accuracy and precision. To check whether this idiosyncrasy was persistent over time and present in another type of walking task, we performed a second experiment several weeks later. Here, the same participants were guided to walk angles with varying amplitude. We then asked them to judge whether they had walked an angle larger or smaller than 90° in a two-alternative forced-choice paradigm. The personal bias was highly correlated between the two experiments even though they were conducted weeks apart. The presence of a persistent bias in walked angles in the absence of external directional cues indicates a possible error component for navigation, which is surprisingly time stable and idiosyncratic. PMID:26854843

  20. Efficient quantum walk on a quantum processor

    OpenAIRE

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Jonathan C. F. Matthews

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. ...

  1. Closed walks for community detection

    Science.gov (United States)

    Yang, Yang; Sun, Peng Gang; Hu, Xia; Li, Zhou Jun

    2014-03-01

    In this paper, we propose a novel measure that integrates both the concept of closed walks and clustering coefficients to replace the edge betweenness in the well-known divisive hierarchical clustering algorithm, the Girvan and Newman method (GN). The edges with the lowest value are removed iteratively until the network is degenerated into isolated nodes. The experimental results on computer generated networks and real-world networks showed that our method makes a better tradeoff of accuracy and runtime. Based on the analysis of the results, we observe that the nontrivial closed walks of order three and four can be considered as the basic elements in constructing community structures. Meanwhile, we discover that those nontrivial closed walks outperform trivial closed walks in the task of analyzing the structure of networks. The double peak structure problem is mentioned in the last part of the article. We find that our proposed method is a novel way to solve the double peak structure problem. Our work can provide us with a new perspective for understanding community structure in complex networks.

  2. Quantum walk on spin network

    CERN Document Server

    Amaral, M M; Irwin, Klee

    2016-01-01

    We apply a discrete quantum walk from a quantum particle on a discrete quantum spacetime from loop quantum gravity and show that the related Entanglement Entropy can drive a entropic force. We apply this concepts to propose a model of a walker position topologically encoded on a spin network.

  3. Walking around to grasp interaction

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2013-01-01

    -alongs the research-ers acted as facilitators and partners in the engagement with the sound installa-tions. The study provided good insight into advantages and challenges with the walk-along method, for instance the importance of shared, embodied sensing of space for the understanding of the experience. The common...

  4. Successful Statewide Walking Program Websites

    Science.gov (United States)

    Teran, Bianca Maria; Hongu, Nobuko

    2012-01-01

    Statewide Extension walking programs are making an effort to increase physical activity levels in America. An investigation of all 20 of these programs revealed that 14 use websites as marketing and educational tools, which could prove useful as the popularity of Internet communities continues to grow. Website usability information and an analysis…

  5. A Walk to the Well.

    Science.gov (United States)

    Weir, Phil

    1994-01-01

    During a walk, an outdoor education teacher reflects on the status of outdoor education in Ottawa (Canada) and importance of maintaining a close relationship with nature. He looks for signs of an old log home site, observes a hawk's flight, discovers remains of a plastic bag in an owl pellet, and realizes that everyone is working on survival. (LP)

  6. A walk on sunset boulevard

    CERN Document Server

    Adams, Luise; Weinzierl, Stefan

    2016-01-01

    A walk on sunset boulevard can teach us about transcendental functions associated to Feynman diagrams. On this guided tour we will see multiple polylogarithms, differential equations and elliptic curves. A highlight of the tour will be the generalisation of the polylogarithms to the elliptic setting and the all-order solution for the sunset integral in the equal mass case.

  7. Numerical studies of planar closed random walks

    International Nuclear Information System (INIS)

    Lattice numerical simulations for planar closed random walks and their winding sectors are presented. The frontiers of the random walks and of their winding sectors have a Hausdorff dimension dH = 4/3. However, when properly defined by taking into account the inner 0-winding sectors, the frontiers of the random walks have a Hausdorff dimension dH≈1.77

  8. A Community-wide Media Campaign to Promote Walking in a Missouri Town

    Directory of Open Access Journals (Sweden)

    Ricardo J. Wray, PhD

    2005-09-01

    Full Text Available Introduction Engaging in moderate physical activity for 30 minutes five or more times per week substantially reduces the risk of coronary heart disease, stroke, colon cancer, diabetes, high blood pressure, and obesity, and walking is an easy and accessible way to achieve this goal. A theory-based mass media campaign promoted walking and local community-sponsored wellness initiatives through four types of media (billboard, newspaper, radio, and poster advertisements in St Joseph, Mo, over 5 months during the summer of 2003. Methods The Walk Missouri campaign was conducted in four phases: 1 formative research, 2 program design and pretesting, 3 implementation, and 4 impact assessment. Using a postcampaign-only, cross-sectional design, a telephone survey (N = 297 was conducted in St Joseph to assess campaign impact. Study outcomes were pro-walking beliefs and behaviors. Results One in three survey respondents reported seeing or hearing campaign messages on one or more types of media. Reported exposure to the campaign was significantly associated with two of four pro-walking belief scales (social and pleasure benefits and with one of three community-sponsored activities (participation in a community-sponsored walk controlling for demographic, health status, and environmental factors. Exposure was also significantly associated with one of three general walking behaviors (number of days per week walking when controlling for age and health status but not when beliefs were introduced into the model, consistent with an a priori theoretical mechanism: the mediating effect of pro-walking beliefs on the exposure–walking association. Conclusion These results suggest that a media campaign can enhance the success of community-based efforts to promote pro-walking beliefs and behaviors.

  9. Fractional diffusion equation for an n -dimensional correlated Lévy walk

    Science.gov (United States)

    Taylor-King, Jake P.; Klages, Rainer; Fedotov, Sergei; Van Gorder, Robert A.

    2016-07-01

    Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n -dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.

  10. Therapeutic effects of maximal strength training on walking efficiency in patients with schizophrenia – a pilot study

    OpenAIRE

    Heggelund Jørn; Morken Gunnar; Helgerud Jan; Nilsberg Geir E; Hoff Jan

    2012-01-01

    Abstract Background Patients with schizophrenia frequently have disabling gait deficits. The net mechanical efficiency of walking (ϵnet) is an accurate measure often used to evaluate walking performance. Patients with gait deficits have a reduced ϵnet with excessive energy expenditure during sub-maximal walking. Maximal strength training (MST) improves ϵnet in healthy individuals and is associated with reduced risk of mortality. The aim of this study was to investigate whether MST improves ϵn...

  11. Anthropomorphic Design of the Human-Like Walking Robot

    Institute of Scientific and Technical Information of China (English)

    Ming-Hsun Chiang; Fan-Ren Chang

    2013-01-01

    In this paper,we present a new concept of the mechanical design of a humanoid robot.The goal is to build a humanoid robot utilizing a new structure which is more suitable for human-like walking with the characteristics of the knee stretch,heel-contact,and toe-off.Inspired by human skeleton,we made an anthropomorphic pelvis for the humanoid robot.In comparison with conventional humanoid robots,with such the anthropomorphic pelvis,our robot is capable of adjusting the center of gravity of the upper body by the motion of pelvic tilt,thus reducing the required torque at the ankle joint and the velocity variations in human-like walking.With more precise analysis of the foot mechanism,the fixed-length inverted pendulum can be used to describe the dynamics of biped walking,thus preventing redundant works and power consumption in length variable inverted pendulum system.As the result of the new structure we propose,a humanoid robot is able to walk with human-like gait.

  12. Quantum walk on a cylinder

    CERN Document Server

    Bru, Luis A; Di Molfetta, Giuseppe; Pérez, Armando; Roldán, Eugenio; Silva, Fernando

    2016-01-01

    We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasi-momentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high energy physical theories that include extra dimensions.

  13. City Walks and Tactile Experience

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2011-01-01

    Full Text Available This paper is an attempt to develop categories of the pedestrian’s tactile and kinaesthetic experience of the city. The beginning emphasizes the haptic qualities of surfaces and textures, which can be “palpated” visually or experienced by walking. Also the lived city is three-dimensional; its corporeal depth is discussed here in relation to the invisible sewers, protuberant profiles, and the formal diversity of roofscapes. A central role is ascribed in the present analysis to the formal similarities between the representation of the city by walking through it and the representation of the tactile form of objects. Additional aspects of the “tactile” experience of the city in a broad sense concern the feeling of their rhythms and the exposure to weather conditions. Finally, several aspects of contingency converge in the visible age of architectural works, which record traces of individual and collective histories.

  14. Does walking in nature restore directed attention?

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available Aims: Mental fatigue is commonly understood and experienced as mental exhaustion, irritability and foggy thinking. Research indicates mental fatigue is indicative of depleted directed attention resources. Thus, restoration of directed attention is thought to alleviate mental fatigue. This research sought to determine if walking in nature compared to walking on a treadmill provided enhanced performance on tasks of directed attention. Method: Twenty-two participants completed a 30-min walk on a treadmill and a walk in the local Botanic Garden on separate days. Two directed attention tasks (Rapid Visual Information Processing (RVIP and Necker Cube reversal task were conducted both before and after each walk as well as a Perceived Arousal Scale and a Positive and Negative Affect Schedule. Results: Total hits and sensitivity to a target on a RVIP task improved significantly in both locations F(1, 20 = 11.892, p = .003, F(1, 20 = 12.364, p = .002 respectively. However, there was no significant difference between the nature walk and the treadmill walk. Significant order effects were found for sensitivity to targets pre/post walks, F(1, 19 = 10.309, p = .005 and F(1, 19 = 8.578, p = .009 respectively. Necker cube baseline scores indicated a significant reduction in reversals after 30 minutes of walking in both locations. Arousal was higher overall in the nature walk compared to the treadmill walk, F(1, 20 = 11.626, p = .003. Conclusions: No evidence was obtained to suggest that walking in nature leads to improved directed attention compared to walking on a treadmill. Results indicate that improvements were due to significant learning affects. The significantly higher overall score on the arousal scale in the natural environment suggests that participants were more alert in this environment.

  15. Use of formative research and social network theory to develop a group walking intervention: Sumter County on the Move!

    Science.gov (United States)

    Forthofer, Melinda; Burroughs-Girardi, Ericka; Stoisor-Olsson, Liliana; Wilcox, Sara; Sharpe, Patricia A; Pekuri, Linda M

    2016-10-01

    Although social support is a frequently cited enabler of physical activity, few studies have examined how to harness social support in interventions. This paper describes community-based formative research to design a walking program for mobilizing naturally occurring social networks to support increases in walking behavior. Focus group methods were used to engage community members in discussions about desired walking program features. The research was conducted with underserved communities in Sumter County, South Carolina. The majority of focus group participants were women (76%) and African American (92%). Several important themes emerged from the focus group results regarding attitudes toward walking, facilitators of and barriers to walking, ideal walking program characteristics, and strategies for encouraging community members to walk. Most noteably, the role of existing social networks as a supportive influence on physical activity was a recurring theme in our formative research and a gap in the existing evidence base. The resulting walking program focused on strategies for mobilizing, supporting and reinforcing existing social networks as mechanisms for increasing walking. Our approach to linking theory, empirical evidence and community-based formative research for the development of a walking intervention offers an example for practitioners developing intervention strategies for a wide range of behaviors. PMID:27268867

  16. Dynamic Locomotion of a Biomorphic Quadruped ‘Tekken’ Robot Using Various Gaits: Walk, Trot, Free-Gait and Bound

    OpenAIRE

    Fukuoka, Y; Kimura, H.

    2009-01-01

    Numerous quadruped walking and running robots have been developed to date. Each robot walks by means of a crawl, walk, trot or pace gait, or runs by means of a bound and/or gallop gait. However, it is very difficult to design a single robot that can both walk and run because of problems related to mechanisms and control. In response to this, we adapted a biological control method for legged locomotion in order to develop a dog-like quadruped robot we have named ‘Tekken’. Tekken has a control ...

  17. Inference of random walk models to describe leukocyte migration

    Science.gov (United States)

    Jones, Phoebe J. M.; Sim, Aaron; Taylor, Harriet B.; Bugeon, Laurence; Dallman, Magaret J.; Pereira, Bernard; Stumpf, Michael P. H.; Liepe, Juliane

    2015-12-01

    While the majority of cells in an organism are static and remain relatively immobile in their tissue, migrating cells occur commonly during developmental processes and are crucial for a functioning immune response. The mode of migration has been described in terms of various types of random walks. To understand the details of the migratory behaviour we rely on mathematical models and their calibration to experimental data. Here we propose an approximate Bayesian inference scheme to calibrate a class of random walk models characterized by a specific, parametric particle re-orientation mechanism to observed trajectory data. We elaborate the concept of transition matrices (TMs) to detect random walk patterns and determine a statistic to quantify these TM to make them applicable for inference schemes. We apply the developed pipeline to in vivo trajectory data of macrophages and neutrophils, extracted from zebrafish that had undergone tail transection. We find that macrophage and neutrophils exhibit very distinct biased persistent random walk patterns, where the strengths of the persistence and bias are spatio-temporally regulated. Furthermore, the movement of macrophages is far less persistent than that of neutrophils in response to wounding.

  18. Factors Influencing Whether Children Walk to School

    OpenAIRE

    Su, Jason G.; Jerrett, Michael; McCONNELL, ROB; Berhane, Kiros; Dunton, Genevieve; Shankardass, Ketan; reynolds, Kim; Chang, Roger; Wolch, Jennifer

    2013-01-01

    Few studies have evaluated multiple levels of influence simultaneously on whether children walk to school. A large cohort of 4,338 subjects from ten communities was used to identify the determinants of walking through (1) a one-level logistic regression model for individual-level variables and (2) a two-level mixed regression model for individual and school-level variables. Walking rates were positively associated with home-to-school proximity, greater age, and living in neighborhoods charact...

  19. Fluctuations of Quantum Random Walks on Circles

    OpenAIRE

    Inui, Norio; Konishi, Yoshinao; Konno, Norio; Soshi, Takahiro

    2003-01-01

    Temporal fluctuations in the Hadamard walk on circles are studied. A temporal standard deviation of probability that a quantum random walker is positive at a given site is introduced to manifest striking differences between quantum and classical random walks. An analytical expression of the temporal standard deviation on a circle with odd sites is shown and its asymptotic behavior is considered for large system size. In contrast with classical random walks, the temporal fluctuation of quantum...

  20. Positive messaging promotes walking in older adults

    OpenAIRE

    Notthoff, Nanna; Carstensen, Laura L.

    2014-01-01

    Walking is among the most cost-effective and accessible means of exercise. Mounting evidence suggests that walking may help to maintain physical and cognitive independence in old age by preventing a variety of health problems. However, older Americans fall far short of meeting the daily recommendations for walking. In two studies, we examined whether considering older adults’ preferential attention to positive information may effectively enhance interventions aimed at promot...

  1. Numerical studies of planar closed random walks

    OpenAIRE

    Desbois, Jean; Ouvry, Stephane

    2008-01-01

    Lattice numerical simulations for planar closed random walks and their winding sectors are presented. The frontiers of the random walks and of their winding sectors have a Hausdorff dimension $d_H=4/3$. However, when properly defined by taking into account the inner 0-winding sectors, the frontiers of the random walks have a Hausdorff dimension $d_H\\approx 1.77$.

  2. Sensitivity Study of Stochastic Walking Load Models

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2010-01-01

    serviceability limit state is assessed using a walking load model in which the walking parameters are modelled deterministically. However, the walking parameters are stochastic (for instance the weight of the pedestrian is not likely to be the same for every footbridge crossing), and a natural way forward is to...... employ a stochastic load model accounting for mean values and standard deviations for the walking load parameters, and to use this as a basis for estimation of structural response. This, however, requires decisions to be made in terms of statistical istributions and their parameters, and the paper...

  3. Walking in Place Through Virtual Worlds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    Immersive virtual reality (IVR) is seemingly on the verge of entering the homes of consumers. Enabling users to walk through virtual worlds in a limited physical space presents a challenge. With an outset in a taxonomy of virtual travel techniques, we argue that Walking-in-Place (WIP) techniques...... constitute a promising approach to virtual walking in relation to consumer IVR. Subsequently we review existing approaches to WIP locomotion and highlight the need for a more explicit focus on the perceived naturalness of WIP techniques; i.e., the degree to which WIP locomotion feels like real walking...

  4. Quantum Walks with Encrypted Data

    Science.gov (United States)

    Rohde, Peter P.; Fitzsimons, Joseph F.; Gilchrist, Alexei

    2012-10-01

    In the setting of networked computation, data security can be a significant concern. Here we consider the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the information obtained by the client about the server’s operation and the information obtained by the server about the client’s data are significantly limited. We present a protocol for achieving such functionality in two closely related models of restricted quantum computation—the boson sampling and quantum walk models. Because of the limited technological requirements of the boson scattering model, small scale implementations of this technique are feasible with present-day technology.

  5. Random Walks Estimate Land Value

    CERN Document Server

    Blanchard, Ph

    2010-01-01

    Expected urban population doubling calls for a compelling theory of the city. Random walks and diffusions defined on spatial city graphs spot hidden areas of geographical isolation in the urban landscape going downhill. First--passage time to a place correlates with assessed value of land in that. The method accounting the average number of random turns at junctions on the way to reach any particular place in the city from various starting points could be used to identify isolated neighborhoods in big cities with a complex web of roads, walkways and public transport systems.

  6. Topology of Minimal Walking Technicolor

    International Nuclear Information System (INIS)

    We perform a lattice study of the topological susceptibility and instanton size distribution of the SU(2) gauge theory with two adjoint Dirac fermions (also known as Minimal Walking Technicolor), which is known to be in the conformal window. In the theory deformed with a small mass term, by drawing a comparison with the pure gauge theory, we find that topological observables are decoupled from the fermion dynamics. This provides further evidence for the infrared conformality of the theory. A study of the instanton size distribution shows that this quantity can be used to detect the onset of finite size effects. (orig.)

  7. Orbiting pairs of walking droplets

    Science.gov (United States)

    Siefert, Emmanuel; Bush, John W. M.; Oza, Anand

    2015-11-01

    Droplets may self-propel on the surface of a vibrating fluid bath, pushed forward by their own Faraday pilot-wave field. We present the results of a combined experimental and theoretical investigation of the interaction of pairs of such droplets. Particular attention is given to characterizing the system's dependence on the vibrational forcing of the bath and the impact parameter of the walking droplets. Observed criteria for the capture and stability of orbital pairs are rationalized by accompanying theoretical developments. Thanks to the NSF.

  8. Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration

    Science.gov (United States)

    Ioana Sburlea, Andreea; Montesano, Luis; Minguez, Javier

    2015-06-01

    Objective. Brain-computer interfaces (BCI) as a rehabilitation tool have been used to restore functions in patients with motor impairments by actively involving the central nervous system and triggering prosthetic devices according to the detected pre-movement state. However, since EEG signals are highly variable between subjects and recording sessions, typically a BCI is calibrated at the beginning of each session. This process is inconvenient especially for patients suffering locomotor disabilities in maintaining a bipedal position for a longer time. This paper presents a continuous EEG decoder of a pre-movement state in self-initiated walking and the usage of this decoder from session to session without recalibrating. Approach. Ten healthy subjects performed a self-initiated walking task during three sessions, with an intersession interval of one week. The implementation of our continuous decoder is based on the combination of movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features with sparse classification models. Main results. During intrasession our technique detects the pre-movement state with 70% accuracy. Moreover this decoder can be applied from session to session without recalibration, with a decrease in performance of about 4% on a one- or two-week intersession interval. Significance. Our detection model operates in a continuous manner, which makes it a straightforward asset for rehabilitation scenarios. By using both temporal and spectral information we attained higher detection rates than the ones obtained with the MRCP and ERD detection models, both during the intrasession and intersession conditions.

  9. Biomechanics of spontaneous overground walk-to-run transition

    OpenAIRE

    Segers, Veerle; Smet, de, M.D.; Caekenberghe, van, I.; Aerts, Peter; Clercq, de, Willem

    2013-01-01

    Abstract: The purpose of the present study was to describe the biomechanics of spontaneous walk-to-run transitions (WRTs) in humans. After minimal instructions, 17 physically active subjects performed WRTs on an instrumented runway, enabling measurement of speed, acceleration, spatiotemporal variables, ground reaction forces and 3D kinematics. The present study describes (1) the mechanical energy fluctuations of the body centre-of-mass (BCOM) as a reflection of the whole-body dynamics and (2)...

  10. Advanced LMI based analysis and design for Acrobot walking

    Czech Academy of Sciences Publication Activity Database

    Anderle, Milan; Čelikovský, Sergej; Henrion, D.; Zikmund, Jiří

    2010-01-01

    Roč. 83, č. 8 (2010), s. 1641-1652. ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/08/0186; GA MŠk LA09026 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear matrix inequalities * underactuated mechanical systems * walking robots Subject RIV: BC - Control Systems Theory Impact factor: 0.848, year: 2010 http://library.utia.cas.cz/separaty/2010/TR/anderle-0345550.pdf

  11. Partial exact linearization design for the Acrobat walking

    Czech Academy of Sciences Publication Activity Database

    Čelikovský, Sergej; Zikmund, Jiří; Moog, C.

    Seattle: IEEE Transactions on Automatic Control Editors, 2008, s. 874-879. ISBN 978-1-4244-2079-7. [2008 ACC. Seattle (US), 11.06.2008-13.06.2008] R&D Projects: GA ČR(CZ) GA102/08/0186 Grant ostatní: GA MŠk(CZ) LA298 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mechanical Systems * exact feedback linearization * underactuated system * walking robot s Subject RIV: BC - Control Systems Theory

  12. WALK-ASSISTING BALANCE SYSTEM OF THE EXOSKELETON ROBOT FOR DISABLED PEOPLE

    Institute of Scientific and Technical Information of China (English)

    Yin Yuehong; Zhou Chunlin; Song Jiaren; Chen Shiyi; Han Tianpu; Zhou Chen

    2004-01-01

    A novel methodology for a walk-assisting balance system of the exoskeleton robot for disabled people is presented.The experiment on the walk-assisting balance system is implemented using a mini-type ropewalker robot.The mechanism of the ropewalker robot is designed,its dynamic model is built,and its control system based on PWM is developed.The emulations in Matlab and the results of experiments prove that this methodology is effective.

  13. Effect of reduced gravity on the preferred walk-run transition speed

    Science.gov (United States)

    Kram, R.; Domingo, A.; Ferris, D. P.

    1997-01-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  14. Lower limb joint kinetics in walking: the role of industry recommended footwear.

    Science.gov (United States)

    Keenan, Geoffrey S; Franz, Jason R; Dicharry, Jay; Della Croce, Ugo; Kerrigan, D Casey

    2011-03-01

    The effects of current athletic footwear on lower extremity biomechanics are unknown. The aim of this study was to examine the changes, if any, that occur in peak lower extremity net joint moments while walking in industry recommended athletic footwear. Sixty-eight healthy young adults underwent kinetic evaluation of lower extremity extrinsic joint moments while walking barefoot and while walking in current standard athletic footwear matched to the foot mechanics of each subject while controlling for speed. A secondary analysis was performed comparing peak knee joint extrinsic moments during barefoot walking to those while walking in three different standard footwear types: stability, motion control, and cushion. 3-D motion capture data were collected in synchrony with ground reaction force data collected from an instrumented treadmill. The shod condition was associated with a 9.7% increase in the first peak knee varus moment, and increases in the hip flexion and extension moments. These increases may be largely related to a 6.5% increase in stride length with shoes associated with increases in the ground reaction forces in all three axes. The changes from barefoot walking observed in the peak knee joint moments were similar when subjects walked in all three footwear types. It is unclear to what extent these increased joint moments may be clinically relevant, or potentially adverse. Nonetheless, these differences should be considered in the recommendation as well as the design of footwear in the future. PMID:21251835

  15. Cellular telephone use during free-living walking significantly reduces average walking speed

    OpenAIRE

    Jacob E. Barkley; Lepp, Andrew

    2016-01-01

    Background Cellular telephone (cell phone) use decreases walking speed in controlled laboratory experiments and there is an inverse relationship between free-living walking speed and heart failure risk. The purpose of this study was to examine the impact of cell phone use on walking speed in a free-living environment. Methods Subjects (n = 1142) were randomly observed walking on a 50 m University campus walkway. The time it took each subject to walk 50 m was recorded and subjects were coded i...

  16. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik Bruun; Svendsen, Morten B; Nørreslet, Andreas;

    2012-01-01

    The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher...

  17. Transition matrix from a random walk

    CERN Document Server

    Schulman, Lawrence S

    2016-01-01

    Given a random walk a method is presented to produce a matrix of transition probabilities that is consistent with that random walk. The method is tested by using a transition matrix to produce a path and then using that path to create the estimate. The two matrices are then compared.

  18. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds of...

  19. Non-Markovian decoherent quantum walks

    Institute of Scientific and Technical Information of China (English)

    Xue Peng; Zhang Yong-Sheng

    2013-01-01

    Quantum walks act in obviously different ways from their classical counterparts,but decoherence will lessen and close this gap between them.To understand this process,it is necessary to investigate the evolution of quantum walks under different decoherence situations.In this article,we study a non-Markovian decoherent quantum walk on a line.In a short time regime,the behavior of the walk deviates from both ideal quantum walks and classical random walks.The position variance as a measure of the quantum walk collapses and revives for a short time,and tends to have a linear relation with time.That is,the walker's behavior shows a diffusive spread over a long time limit,which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin.We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations,and observe both collapse and revival in the short time regime,and the tendency to be zero in the long time limit.Therefore,quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits,while in the short time regime they oscillate between ballistic and diffusive spreading behavior,and the quantum correlation collapses and revives due to the memory effect.

  20. Exact enumeration of self-avoiding walks

    OpenAIRE

    Schram, Raoul D.; Barkema, Gerard T.; Bisseling, Rob H.

    2011-01-01

    A prototypical problem on which techniques for exact enumeration are tested and compared is the enumeration of self-avoiding walks. Here, we show an advance in the methodology of enumeration, making the process thousands or millions of times faster. This allowed us to enumerate self-avoiding walks on the simple cubic lattice up to a length of 36 steps.

  1. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Svendsen, Morten Bo Søndergaard; Nørreslet, Andreas;

    2012-01-01

    The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...... joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher...

  2. Efficient quantum walk on a quantum processor.

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  3. One dimensional quantum walk with unitary noise

    CERN Document Server

    Shapira, D; Bracken, A J; Hackett, M; Shapira, Daniel; Biham, Ofer; Hackett, Michelle

    2003-01-01

    The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution Pt(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t) ~ t, unlike the classical random walk for which sigma(t) ~ sqrt{t}. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be T ~ alpha^(-2) where alpha is the standard deviation of the noise.

  4. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    Voluntary limb modifications must be integrated with basic walking patterns during visually guided walking. Here we tested whether voluntary gait modifications can become more automatic with practice. We challenged walking control by presenting visual stepping targets that instructed subjects to...... modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...... walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence of...

  5. Efficient quantum walk on a quantum processor

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  6. Quantum walking in curved spacetime

    Science.gov (United States)

    Arrighi, Pablo; Facchini, Stefano; Forets, Marcelo

    2016-08-01

    A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs admit a continuum limit, leading to familiar PDEs (e.g., the Dirac equation). In this paper, we study the continuum limit of a wide class of QWs and show that it leads to an entire class of PDEs, encompassing the Hamiltonian form of the massive Dirac equation in (1+1) curved spacetime. Therefore, a certain QW, which we make explicit, provides us with a unitary discrete toy model of a test particle in curved spacetime, in spite of the fixed background lattice. Mathematically, we have introduced two novel ingredients for taking the continuum limit of a QW, but which apply to any quantum cellular automata: encoding and grouping.

  7. Deterministic Walks in Random Media

    International Nuclear Information System (INIS)

    Deterministic walks over a random set of N points in one and two dimensions (d=1,2 ) are considered. Points ('cities') are randomly scattered in Rd following a uniform distribution. A walker ('tourist'), at each time step, goes to the nearest neighbor city that has not been visited in the past τ steps. Each initial city leads to a different trajectory composed of a transient part and a final p -cycle attractor. Transient times (for d=1,2 ) follow an exponential law with a τ -dependent decay time but the density of p cycles can be approximately described by D(p)∝p-α (τ) . For τmuchgt1 and τ/Nmuchlt1 , the exponent is independent of τ . Some analytical results are given for the d=1 case

  8. Blindman-Walking Optimization Method

    Directory of Open Access Journals (Sweden)

    Chunming Li

    2010-12-01

    Full Text Available Optimization methods are all implemented with the hypothesis of unknowing the mathematic express of objective objection. Using the human analogy innovative method, the one-dimension blind-walking optimal method is proposed in this paper. The theory and the algorithm of this method includes halving, doubling, reversing probing step and verifying the applicability condition. Double-step is available to make current point moving to the extremum point. Half-step is available to accelerate convergence. In order to improve the optimization, the applicability condition decides whether update current point or not. The operation process, algorithmic flow chart and characteristic analysis of the method were given. Two optimization problems with unimodal or multimodal objective function were solved by the proposed method respectively. The simulation result shows that the proposed method is better than the ordinary method. The proposed method has the merit of rapid convergence, little calculation capacity, wide applicable range, etc. Taking the method as innovative kernel, the random research method, feasible direction method and complex shape method were improved. Taking the innovative content of this paper as innovative kernel, a monograph was published. The other innovations of the monograph are listed, such as applied algorithm of Karush-Kuhn-Tucker (KKT qualifications on judging the restriction extremum point, the design step of computing software, the complementarity and derivation of Powell criterion, the method of keeping the complex shape not to deduce dimension and the analysis of gradual optimization characteristic, the reinforced wall of inner point punish function method, the analysis of problem with constrained monstrosity extremum point, the improvement of Newton method and the validation of optimization idea of blind walking repeatedly, the explanation of later-day optimization method, the conformity of seeking algorithm needing the

  9. The Extreme Walking Behavior in a 331-TC Model

    CERN Document Server

    Doff, A

    2015-01-01

    It is quite possible that the Technicolor problems are related to the poorly known self-energy expression, or the way chiral symmetry breaking (CSB) is realized in non-abelian gauge theories. Actually, the only known laboratory to test the CSB mechanism is QCD. The TC dynamics may be quite different from the QCD , this fact has led to the walking TC proposal making the new strong interaction almost conformal and changing appreciably its dynamical behavior. There are different ways to obtain of extreme walking (or quasi-conformal) technicolor theories, in this paper we propose an scheme to obtain this behavior based on an extension of the electroweak sector of the standard model, in the context of so called 331-TC model.

  10. The extreme walking behavior in a 331-TC model

    Energy Technology Data Exchange (ETDEWEB)

    Doff, A. [Universidade Tecnologica Federal do Parana-UTFPR-DAFIS, Ponta Grossa, PR (Brazil)

    2016-01-15

    It is quite possible that the technicolor problems are related to the poorly known self-energy expression, or the way chiral symmetry breaking (CSB) is realized in non-abelian gauge theories. Actually, the only known laboratory to test the CSB mechanism is QCD. The TC dynamics may be quite different from the QCD, this fact has led to the walking TC proposal making the new strong interaction almost conformal and changing appreciably its dynamical behavior. There are different ways to obtain extreme walking (or quasi-conformal) technicolor theories, in this paper we propose a scheme to obtain this behavior based on an extension of the electroweak sector of the standard model, in the context of so-called 331-TC model. (orig.)

  11. A generalized model via random walks for information filtering

    Science.gov (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  12. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia

    Directory of Open Access Journals (Sweden)

    Curtis S. To, PhD

    2014-03-01

    Full Text Available The objectives of this study were to test whether a hybrid neuroprosthesis (HNP with an exoskeletal variable-­constraint hip mechanism (VCHM combined with a functional neuromuscular stimulation (FNS controller can maintain upright posture with less upper-limb support and improve gait speed as compared with walking with either an isocentric reciprocating gait orthosis (IRGO or FNS only. The results show that walking with the HNP significantly reduced forward lean in FNS-only walking and the maximum upper-limb forces by 42% and 19% as compared with the IRGO and FNS-only gait, respectively. Walking speed increased significantly with VCHM as compared with 1:1 reciprocal coupling and by 15% when using the sensor-based FNS controller as compared with HNP with fixed baseline stimulation without the controller active.

  13. A review on the coordinative structure of human walking and the application of principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Xinguang Wang; Nicholas O'Dwyer; Mark Halaki

    2013-01-01

    Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury.

  14. The Walking Renaissance: A Longitudinal Analysis of Walking Travel in the Greater Los Angeles Area, USA

    Directory of Open Access Journals (Sweden)

    Kenneth Joh

    2015-07-01

    Full Text Available Promoting walking travel is considered important for reducing automobile use and improving public health. Recent U.S. transportation policy has incentivized investments in alternative, more sustainable transportation modes such as walking, bicycling and transit in auto-oriented cities such as Los Angeles. Although many past studies have analyzed changes in walking travel across the U.S., there is little clarity on the drivers of change. We address this gap by conducting a longitudinal analysis of walking travel in the greater Los Angeles area from 2001 to 2009. We use travel diary and household data from regional and national surveys to analyze changes in walking trip shares and rates across our study area. Results show that walking has significantly increased across most of Los Angeles, and that increases in walking trips generally correspond with increases in population, employment, and transit service densities. Estimates from fixed-effects regression analysis generally suggest a positive association between population density and walking, and that higher increases in transit stop density are correlated with increased walking trips to and from transit stops. These findings illustrate how regional planning efforts to pursue a coordinated land use-transit planning strategy can help promote walking in auto-oriented or vehicle adopting cities.

  15. Nordic walking and chronic low back pain

    DEFF Research Database (Denmark)

    Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis;

    2006-01-01

    Low Back Pain is a major public health problem all over the western world. Active approaches including exercise in the treatment of low back pain results in better outcomes for patients, but it is not known exactly which types of back exercises are most beneficial or whether general physical...... activity provide similar benefits. Nordic Walking is a popular and fast growing type of exercise in Northern Europe. Initial studies have demonstrated that persons performing Nordic Walking are able to exercise longer and harder compared to normal walking thereby increasing their cardiovascular metabolism...

  16. Elements of random walk and diffusion processes

    CERN Document Server

    Ibe, Oliver C

    2013-01-01

    Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic

  17. Scaling of random walk betweenness in networks

    CERN Document Server

    Narayan, O

    2016-01-01

    The betweenness centrality of graphs using random walk paths instead of geodesics is studied. A scaling collapse with no adjustable parameters is obtained as the graph size $N$ is varied; the scaling curve depends on the graph model. A normalized random betweenness, that counts each walk passing through a node only once, is also defined. It is argued to be more useful and seen to have simpler scaling behavior. In particular, the probability for a random walk on a preferential attachment graph to pass through the root node is found to tend to unity as $N\\rightarrow\\infty.$

  18. End patterns of self-avoiding walks

    International Nuclear Information System (INIS)

    Consider a fixed end pattern (a short self-avoiding walk) that can occur as the first few steps of an arbitrarily long self-avoiding walk on Z/sup d/. It is a difficult open problem to show that as N → ∞, the fraction of N-step self-avoiding walks beginning with this pattern converges. It is shown that as N → ∞, this fraction is bounded away from zero, and that the ratio of the fractions for N and N + 2 converges to one. Similar results are obtained when patterns are specified at both ends, and also when the endpoints are fixed

  19. Families of prudent self-avoiding walks

    OpenAIRE

    Bousquet-Mélou, Mireille

    2010-01-01

    A self-avoiding walk (SAW) on the square lattice is prudent if it never takes a step towards a vertex it has already visited. Prudent walks differ from most classes of SAW that have been counted so far in that they can wind around their starting point. Their enumeration was first addressed by Préa in 1997. He defined 4 classes of prudent walks, of increasing generality, and wrote a system of recurrence relations for each of them . However, these relations involve more and more parameters as t...

  20. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

    Science.gov (United States)

    Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe

    2016-06-01

    A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

  1. How do environmental factors influence walking in groups? A walk-along study.

    Science.gov (United States)

    Kassavou, Aikaterini; French, David P; Chamberlain, Kerry

    2015-10-01

    Insufficient attention has been given to the influence of context on health-related behaviour change. This article reports on walk-along interviews conducted with 10 leaders of walking groups while leading their groups to investigate the influence of contextual factors on walking behaviours in groups. Data analysis used ideas from thematic analysis and grounded theory, approaching the data inductively. We identified that characteristics of place influenced the type of walking that people do in groups and the processes used by walkers to make sense of their behaviours in the places they walk. This research provides insight into how place influences walking in groups. It also suggests recommendations for co-ordinators and policymakers that could be used to facilitate behaviour change, when designing interventions targeting public health within the community. PMID:24296734

  2. Quantum Ultra-Walks: Walks on a Line with Spatial Disorder

    Science.gov (United States)

    Boettcher, Stefan; Falkner, Stefan

    We discuss the model of a heterogeneous discrete-time walk on a line with spatial disorder in the form of a set of ultrametric barriers. Simulations show that such an quantum ultra-walk spreads with a walk exponent dw that ranges from ballistic (dw = 1) to complete confinement (dw = ∞) for increasing separation 1 internal degrees of freedom. For the random walk, this amounts to a 2nd -order Markov process with a stochastic coin, better know as an (anti-)persistent walk. The exact analysis, based on the real-space renormalization group (RG), reproduces the results of the well-known model of ``ultradiffusion,'' dw = 1 -log2 ɛ for 0 < ɛ <= 1 / 2 . However, while the evaluation of the RG fixed-points proceeds virtually identical, for the corresponding quantum walk with a unitary coin it fails to reproduce the numerical results. A new way to analyze the RG is indicated. Supported by NSF-DMR 1207431.

  3. Walking capabilities of Gregor controlled through Walknet

    Science.gov (United States)

    Arena, Paolo; Patané, Luca; Schilling, Malte; Schmitz, Josef

    2007-05-01

    Locomotion control of legged robots is nowadays a field in continuous evolution. In this work a bio-inspired control architecture based on the stick insect is applied to control the hexapod robot Gregor. The control scheme is an extension of Walknet, a decentralized network inspired by the stick insect, that on the basis of local reflexes generates the control signals needed to coordinate locomotion in hexapod robots. Walknet has been adapted to the specific mechanical structure of Gregor that is characterized by specialized legs and a sprawled posture. In particular an innovative hind leg geometry, inspired by the cockroach, has been considered to improve climbing capabilities. The performances of the new control architecture have been evaluated in dynamic simulation environments. The robot has been endowed with distance and contact sensors for obstacle detection. A heading control is used to avoid large obstacles, and an avoidance reflex, as can be found in stick insects, has been introduced to further improve climbing capabilities of the structure. The reported results, obtained in different environmental configurations, stress the adaptive capabilities of the Walknet approach: Even in unpredictable and cluttered environments the walking behaviour of the simulated robot and the robot prototype, controlled through a FPGA based board, remained stable.

  4. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking.

    Science.gov (United States)

    Takahashi, Kota Z; Gross, Michael T; van Werkhoven, Herman; Piazza, Stephen J; Sawicki, Gregory S

    2016-01-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors' mechanical advantage. PMID:27417976

  5. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin;

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a...... here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated...

  6. Effect on blood pressure of daily lemon ingestion and walking.

    Science.gov (United States)

    Kato, Yoji; Domoto, Tokio; Hiramitsu, Masanori; Katagiri, Takao; Sato, Kimiko; Miyake, Yukiko; Aoi, Satomi; Ishihara, Katsuhide; Ikeda, Hiromi; Umei, Namiko; Takigawa, Atsusi; Harada, Toshihide

    2014-01-01

    Background. Recent studies suggest that the daily intake of lemon (Citrus limon) has a good effect on health, but this has not been confirmed in humans. In our previous studies, it was observed that people who are conscious of their health performed more lemon intake and exercise. An analysis that took this into account was required. Methodology. For 101 middle-aged women in an island area in Hiroshima, Japan, a record of lemon ingestion efforts and the number of steps walked was carried out for five months. The change rates (Δ%) of the physical measurements, blood test, blood pressure, and pulse wave measured value during the observation period were calculated, and correlations with lemon intake and the number of steps walked were considered. As a result, it was suggested that daily lemon intake and walking are effective for high blood pressure because both showed significant negative correlation to systolic blood pressure Δ%. Conclusions. As a result of multiple linear regression analysis, it was possible that lemon ingestion is involved more greatly with the blood citric acid concentration Δ% and the number of steps with blood pressure Δ%, and it was surmised that the number of steps and lemon ingestion are related to blood pressure improvement by different action mechanisms. PMID:24818015

  7. Effect on Blood Pressure of Daily Lemon Ingestion and Walking

    Directory of Open Access Journals (Sweden)

    Yoji Kato

    2014-01-01

    Full Text Available Background. Recent studies suggest that the daily intake of lemon (Citrus limon has a good effect on health, but this has not been confirmed in humans. In our previous studies, it was observed that people who are conscious of their health performed more lemon intake and exercise. An analysis that took this into account was required. Methodology. For 101 middle-aged women in an island area in Hiroshima, Japan, a record of lemon ingestion efforts and the number of steps walked was carried out for five months. The change rates (Δ% of the physical measurements, blood test, blood pressure, and pulse wave measured value during the observation period were calculated, and correlations with lemon intake and the number of steps walked were considered. As a result, it was suggested that daily lemon intake and walking are effective for high blood pressure because both showed significant negative correlation to systolic blood pressure Δ%. Conclusions. As a result of multiple linear regression analysis, it was possible that lemon ingestion is involved more greatly with the blood citric acid concentration Δ% and the number of steps with blood pressure Δ%, and it was surmised that the number of steps and lemon ingestion are related to blood pressure improvement by different action mechanisms.

  8. Walking and Eating Behavior of Toddlers at 12 Months Old

    Science.gov (United States)

    Koda, Naoko; Akimoto, Yuko; Hirose, Toshiya; Hinobayashi, Toshihiko; Minami, Tetsuhiro

    2004-01-01

    Locomotive and eating behavior of 52 toddlers was observed at 12 months old in a nursery school and investigated in relation to the acquisition of independent walking. The toddlers who acquired walking ate more by themselves using the hands than the toddlers who did not start walking. This suggested that acquisition of walking was associated with…

  9. Quantum random walks with decoherent coins

    International Nuclear Information System (INIS)

    The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the presence of decoherence in the quantum ''coin'' which drives the walk. We find exact analytical expressions for the time dependence of the first two moments of position, and show that in the long-time limit the variance grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation, and see how the form of the position distribution changes from the unitary to the usual classical result as we increase the strength of the decoherence

  10. Real time visualization of quantum walk

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo [Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tenpaku-cho, Toyohashi, 441-8580 Aichi (Japan)

    2014-02-20

    Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under a given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.

  11. Non symmetric random walk on infinite graph

    OpenAIRE

    Marcin J. Zygmunt

    2011-01-01

    We investigate properties of a non symmetric Markov's chain on an infinite graph. We show the connection with matrix valued random walk polynomials which satisfy the orthogonality formula with respect to non a symmetric matrix valued measure.

  12. Energy Expenditure During Walking with Hand Weights.

    Science.gov (United States)

    Makalous, Susan L.; And Others

    1988-01-01

    A study of 11 obese adults who exercised with hand weights concludes that using the weights increases the energy demands of walking but only slightly. Research and results are presented and analyzed. (JL)

  13. Weakly directed self-avoiding walks

    CERN Document Server

    Bacher, Axel

    2010-01-01

    We define a new family of self-avoiding walks (SAW) on the square lattice, called weakly directed walks. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed walks grows linearly. Finally, we study a diagonal variant of this model.

  14. Growing partially directed self-avoiding walks

    OpenAIRE

    Privman, V.

    1985-01-01

    A partially directed self-avoiding walk model with the 'kinetic growth' weighting is solved exactly, on the square lattice and for two restricted, strip geometries. Some finite-size effects are examined.

  15. Non symmetric random walk on infinite graph

    Directory of Open Access Journals (Sweden)

    Marcin J. Zygmunt

    2011-01-01

    Full Text Available We investigate properties of a non symmetric Markov's chain on an infinite graph. We show the connection with matrix valued random walk polynomials which satisfy the orthogonality formula with respect to non a symmetric matrix valued measure.

  16. Simple expressions for the long walk distance

    CERN Document Server

    Chebotarev, Pavel; Balaji, R

    2011-01-01

    The walk distances in graphs are defined as the result of appropriate transformations of the $\\sum_{k=0}^\\infty(tA)^k$ proximity measures, where $A$ is the weighted adjacency matrix of a connected weighted graph and $t$ is a sufficiently small positive parameter. The walk distances are graph-geodetic, moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter $t$ approaches its limiting values. In this paper, simple expressions for the long walk distance are obtained. They involve the generalized inverse, minors, and inverses of submatrices of the symmetric irreducible singular M-matrix ${\\cal L}=\\rho I-A,$ where $\\rho$ is the Perron root of $A.$

  17. Walking (Gait), Balance, and Coordination Problems

    Science.gov (United States)

    ... and include: poor balance and slowed walking reduced proprioception (the sensation of where your body parts are ... MS Connection Visit MSConnection.org symptoms of ms proprioception" the 6th sense of ms..please learn!! general ...

  18. Database of Standardized Questionnaires About Walking & Bicycling

    Science.gov (United States)

    This database contains questionnaire items and a list of validation studies for standardized items related to walking and biking. The items come from multiple national and international physical activity questionnaires.

  19. Intra-limb coordination while walking is affected by cognitive load and walking speed.

    Science.gov (United States)

    Ghanavati, Tabassom; Salavati, Mahyar; Karimi, Noureddin; Negahban, Hossein; Ebrahimi Takamjani, Ismail; Mehravar, Mohammad; Hessam, Masumeh

    2014-07-18

    Knowledge about intra-limb coordination (ILC) during challenging walking conditions provides insight into the adaptability of central nervous system (CNS) for controlling human gait. We assessed the effects of cognitive load and speed on the pattern and variability of the ILC in young people during walking. Thirty healthy young people (19 female and 11 male) participated in this study. They were asked to perform 9 walking trials on a treadmill, including walking at three paces (preferred, slower and faster) either without a cognitive task (single-task walking) or while subtracting 1׳s or 3׳s from a random three-digit number (simple and complex dual-task walking, respectively). Deviation phase (DP) and mean absolute relative phase (MARP) values-indicators of variability and phase dynamic of ILC, respectively-were calculated using the data collected by a motion capture system. We used a two-way repeated measure analysis of variance for statistical analysis. The results showed that cognitive load had a significant main effect on DP of right shank-foot and thigh-shank, left shank-foot and pelvis-thigh (peffect of walking speed was significant on DP of all segments in each side and MARP of both thigh-shank and pelvis-thigh segments (pcognitive load and walking speed was only significant for MARP values of left shank-foot and right pelvis-thigh (pcognitive load and speed could significantly affect the ILC and variability and phase dynamic during walking. PMID:24861632

  20. Walking as a social practice: dispersed walking and the organisation of everyday practices.

    Science.gov (United States)

    Harries, Tim; Rettie, Ruth

    2016-07-01

    This paper uses social practice theory to study the interweaving of walking into everyday practices and considers how greater awareness of everyday walking can influence its position within the organisation and scheduling of everyday life. Walking is of policy interest because of its perceived benefits for health. This paper asserts that increased awareness of everyday walking allows users to become more active without having to reschedule existing activities. Using Schatzki's distinction between dispersed and integrative practices, it argues that increasing awareness of dispersed walking can enlist walking into the teleoaffective organisation of some social practices and prompt the performance of new 'health practices' within everyday domains of life such as shopping and employment. While this analysis offers useful insights for the design of behaviour change strategies, it also points to some unintended consequences of using digital feedback to increase walking awareness. In directing the gaze of participants at one particular element of their daily practices, the paper suggests, digital walking feedback provides a 'partial' view of practices: by highlighting the exercise value of walking at the expense of other values it can prompt feedback recipients to pass moral judgements on themselves based on this partial view. A Virtual Abstract of this paper can be found at: https://youtu.be/WV7DUnKD5Mw. PMID:26853086

  1. Correlation between Body Composition and Walking Capacity in Severe Obesity.

    Directory of Open Access Journals (Sweden)

    G Correia de Faria Santarém

    Full Text Available Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT has been used to assess functional capacity in severe obesity.To determine the association of BMI, total and segmental body composition with distance walked (6MWD during the six-minute walk test (6MWT according to gender and obesity grade.University of São Paulo Medical School, Brazil; Public Practice.Functional capacity was assessed by 6MWD and body composition (% by bioelectrical impedance analysis in 90 patients.The mean 6MWD was 514.9 ± 50.3 m for both genders. The male group (M: 545.2 ± 46.9 m showed a 6MWD higher (p = 0.002 than the female group (F: 505.6 ± 47.9 m. The morbid obese group (MO: 524.7 ± 44.0 m also showed a 6MWD higher (p = 0.014 than the super obese group (SO: 494.2 ± 57.0 m. There was a positive relationship between 6MWD and fat free mass (FFM, FFM of upper limps (FFM_UL, trunk (FFM_TR and lower limbs (FFM_LL. Female group presented a positive relationship between 6MWD and FFM, FFM_UL and FFM_LL and male group presented a positive relationship between 6MWD and FFM_TR. In morbid obese group there was a positive relationship between 6MWD with FFM, FFM_UL, FFM_TR and FFM_LL. The super obese group presented a positive relationship between 6MWD with FFM, FFM_TR and FFM_LL.Total and segmental FFM is associated with a better walking capacity than BMI.

  2. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpinski gasket

    OpenAIRE

    Hattori, Kumiko; Ogo, Noriaki; Otsuka, Takafumi

    2015-01-01

    We show that the `erasing-larger-loops-first' (ELLF) method, which was first introduced for erasing loops from the simple random walk on the Sierpinski gasket, does work also for non-Markov random walks, in particular, self-repelling walks to construct a new family of self-avoiding walks on the Sierpinski gasket. The one-parameter family constructed in this method continuously connects the loop-erased random walk and a self-avoiding walk which has the same asymptotic behavior as the `standard...

  3. Walking Out of the Family Towards Rights

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    WALKING in any city or ruralarea in China today, one will seewomen with confidence andpride, with their own work and lives.There is not much difference between theurban and rural women in dress. Theirfaces portray contentment and happiness.These are significant changes which havebeen brought about by women walking outof the family over the past near 50 years,and getting involved in society, alteringtheir dependence on men and making thempeople of dignity. The government knew clearly that to

  4. Tempered stable laws as random walk limits

    OpenAIRE

    Chakrabarty, Arijit; Meerschaert, Mark M.

    2010-01-01

    Stable laws can be tempered by modifying the L\\'evy measure to cool the probability of large jumps. Tempered stable laws retain their signature power law behavior at infinity, and infinite divisibility. This paper develops random walk models that converge to a tempered stable law under a triangular array scheme. Since tempered stable laws and processes are useful in statistical physics, these random walk models can provide a basic physical model for the underlying physical phenomena.

  5. Balancing of the anthropomorphous robot walking

    Science.gov (United States)

    Devaev, V. M.; Nikitina, D. V.; Fadeev, A. Y.

    2016-06-01

    Anthropomorphic robots are designed a human environment operates: buildings and structures, cabs and etc. The movement of these robots is carried out by walking which provides high throughput to overcome natural and manmade obstacles. The article presents some algorithm results for dynamic walking on the anthropomorphic robot AR601 example. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

  6. Propagation in quantum walks and relativistic diffusions

    OpenAIRE

    Debbasch, Fabrice; Di Molfetta, Giuseppe; Espaze, David; Foulonneau, Vincent

    2013-01-01

    Propagation in quantum walks is revisited by showing that very general 1D discrete-time quantum walks with time- and space-dependent coefficients can be described, at the continuous limit, by Dirac fermions coupled to electromagnetic fields. Short-time propagation is also established for relativistic diffusions by presenting new numerical simulations of the Relativistic Ornstein-Uhlenbeck Process. A geometrical generalization of Fick's law is also obtained for this process. The results sugges...

  7. An Efficient Implementation for WalkSAT

    OpenAIRE

    Liu, Sixue

    2015-01-01

    Stochastic local search (SLS) algorithms have exhibited great effectiveness in finding models of random instances of the Boolean satisfiability problem (SAT). As one of the most widely known and used SLS algorithm, WalkSAT plays a key role in the evolutions of SLS for SAT, and also hold state-of-the-art performance on random instances. This work proposes a novel implementation for WalkSAT which decreases the redundant calculations leading to a dramatically speeding up, thus dominates the late...

  8. A Walk in the Semantic Park

    DEFF Research Database (Denmark)

    Danvy, Olivier; Johannsen, Jacob; Zerny, Ian

    To celebrate the 20th anniversary of PEPM, we are inviting you to a walk in the semantic park and to inter-derive reduction-based and reduction-free negational normalization functions.......To celebrate the 20th anniversary of PEPM, we are inviting you to a walk in the semantic park and to inter-derive reduction-based and reduction-free negational normalization functions....

  9. More Adults Are Walking PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This 60 second PSA is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  10. Equal Superposition Transformations and Quantum Random Walks

    OpenAIRE

    Parashar, Preeti

    2007-01-01

    The largest ensemble of qubits which satisfy the general transformation of equal superposition is obtained by different methods, namely, linearity, no-superluminal signalling and non-increase of entanglement under LOCC. We also consider the associated quantum random walk and show that all unitary balanced coins give the same asymmetric spatial probability distribution. It is further illustrated that unbalanced coins, upon appropriate superposition, lead to new unbiased walks which have no cla...

  11. The Snail Takes a Walk with Me

    Institute of Scientific and Technical Information of China (English)

    王宜鸣; 乐伟国

    2008-01-01

    @@ 一、故事内容 I'm a snake. Today God gives me a job-I should take a walk with the snail. The snail moves too slowly. I have to scare him. He looks at me, full of shame. I am very angry. I pull him, and even kick.The snail cries, so he stops walking. I feel quite helpless.

  12. Compensatory load redistribution in walking and trotting dogs with hind limb lameness.

    Science.gov (United States)

    Fischer, S; Anders, A; Nolte, I; Schilling, N

    2013-09-01

    This study evaluated adaptations in vertical force and temporal gait parameters to hind limb lameness in walking and trotting dogs. Eight clinically normal adult Beagles were allowed to ambulate on an instrumented treadmill at their preferred speed while the ground reaction forces were recorded for all limbs before and after a moderate, reversible, hind limb lameness was induced. At both gaits, vertical force was decreased in the ipsilateral and increased in the contralateral hind limb. While peak force increased in the ipsilateral forelimb, no changes were observed for mean force and impulse when the dogs walked or trotted. In the contralateral forelimb, the peak force was unchanged, but the mean force significantly increased during walking and trotting; vertical impulse increased only during walking. Relative stance duration increased in the ipsilateral hind limb when the dogs trotted. In the contralateral fore and hind limbs, relative stance duration increased during walking and trotting, but decreased in the ipsilateral forelimb during walking. Analysis of load redistribution and temporal gait changes during hind limb lameness showed that compensatory mechanisms were similar regardless of gait. The centre of mass consistently shifted to the contralateral body side and cranio-caudally to the side opposite the affected limb. These biomechanical changes indicate substantial short- and long-term effects of hind limb lameness on the musculoskeletal system. PMID:23683534

  13. Developmental Continuity? Crawling, Cruising, and Walking

    Science.gov (United States)

    Adolph, Karen E.; Berger, Sarah E.; Leo, Andrew J.

    2010-01-01

    This research examined developmental continuity between “cruising” (moving sideways holding onto furniture for support) and walking. Because cruising and walking involve locomotion in an upright posture, researchers have assumed that cruising is functionally related to walking. Study 1 showed that most infants crawl and cruise concurrently prior to walking, amassing several weeks of experience with both skills. Study 2 showed that cruising infants perceive affordances for locomotion over an adjustable gap in a handrail used for manual support, but despite weeks of cruising experience, cruisers are largely oblivious to the dangers of gaps in the floor beneath their feet. Study 3 replicated the floor-gap findings for infants taking their first independent walking steps, and showed that new walkers also misperceive affordances for locomoting between gaps in a handrail. The findings suggest that weeks of cruising do not teach infants a basic fact about walking: the necessity of a floor to support their body. Moreover, this research demonstrated that developmental milestones that are temporally contiguous and structurally similar might have important functional discontinuities. PMID:21399716

  14. Self-avoiding walks crossing a square

    International Nuclear Information System (INIS)

    We study a restricted class of self-avoiding walks (SAWs) which start at the origin (0, 0), end at (L, L), and are entirely contained in the square [0, L] x [0, L] on the square lattice Z2. The number of distinct walks is known to grow as λL2+o(L2). We estimate λ = 1.744 550 ± 0.000 005 as well as obtaining strict upper and lower bounds, 1.628 1/3). We also consider the model in which a weight or fugacity x is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For x 1/μ it grows as L2. Here μ is the growth constant of unconstrained SAWs in Z2. For x = 1/μ we provide numerical evidence, but no proof, that the average walk length grows as L4/3. Another problem we study is that of SAWs, as described above, that pass through the central vertex of the square. We estimate the proportion of such walks as a fraction of the total, and find it to be just below 80% of the total number of SAWs. We also consider Hamiltonian walks under the same restriction. They are known to grow as τL2+o(L2) on the same L x L lattice. We give precise estimates for τ as well as upper and lower bounds, and prove that τ < λ

  15. Goals and Social Comparisons Promote Walking Behavior.

    Science.gov (United States)

    Chapman, Gretchen B; Colby, Helen; Convery, Kimberly; Coups, Elliot J

    2016-05-01

    The effectiveness of a pedometer intervention was affected by manipulating the goals given to participants and by providing social comparison feedback about how participants' performance compared with others. In study 1 (n= 148), university staff members received a low, medium, or high walking goal (10%, 50%, or 100% increase over baseline walking). Participants walked 1358 more steps per day (95% confidence interval [CI], 729, 1985), when receiving a high goal than when receiving a medium goal, but a medium goal did not increase walking relative to a low goal (554 more steps; 95% CI, -71,1179). In study 2 (n= 64), participants received individual feedback only or individual plus social comparison feedback. Participants walked 1120 more steps per day (95% CI, 538, 1703) when receiving social comparison feedback than when receiving only individual feedback. Goals and the performance of others act as reference points and influence the effect that pedometer feedback has on walking behavior, illustrating the applicability of the principles of behavioral economics and social psychology to the design of health behavior interventions. PMID:26139447

  16. Quantum walks with tuneable self-avoidance in one dimension

    OpenAIRE

    Elizabeth Camilleri; Rohde, Peter P.; Jason Twamley

    2014-01-01

    Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the a...

  17. The future of walking in Europe: a Delphi project to identify export opinion on Future walking scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, R.; Lumsdon, L.; Bickerstaff, K. [CAST - The Centre for Alternative and Sustainable Transport, Staffordshire University, Stoke on Trent (United Kingdom)

    2001-07-01

    There is increasing recognition of the importance of walking to the sustainability of cities, set against a continuing decline in everyday walking. This paper reports on a research project, which predicts trends in walking in Europe by 2010 by seeking opinion of experts who are knowledgeable about non-motorised transport. There is a consensus that there will be more walking for leisure and health, but less everyday walking. This will happen despite walking being seen as more important and there being more facilities, infrastructure, information and funding for walking. (author)

  18. Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?

    Science.gov (United States)

    Geva, Ronny; Orr, Edna

    2016-01-01

    Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human's ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants' cognitive and socio-communicative outputs prospectively from 6-18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0.001). These preliminary data suggest that representational capacities, symbolic object use, language and social developments, form an integrated adaptable composite, which possibly enables proactive

  19. Quantum walks with tuneable self-avoidance in one dimension

    Science.gov (United States)

    Camilleri, Elizabeth; Rohde, Peter P.; Twamley, Jason

    2014-04-01

    Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the analogous problem in the quantum setting - a quantum walk in one dimension with tunable levels of self-avoidance. We complement a quantum walk with a memory register that records where the walker has previously resided. The walker is then able to avoid returning back to previously visited sites or apply more general memory conditioned operations to control the walk. We characterise this walk by examining the variance of the walker's distribution against time, the standard metric for quantifying how quantum or classical a walk is. We parameterise the strength of the memory recording and the strength of the memory back-action on the walker, and investigate their effect on the dynamics of the walk. We find that by manipulating these parameters, which dictate the degree of self-avoidance, the walk can be made to reproduce ideal quantum or classical random walk statistics, or a plethora of more elaborate diffusive phenomena. In some parameter regimes we observe a close correspondence between classical self-avoiding random walks and the quantum self-avoiding walk.

  20. Exercise intensity of robot-assisted walking versus overground walking in nonambulatory stroke patients

    Directory of Open Access Journals (Sweden)

    Michiel P. M. van Nunen, MSc

    2013-01-01

    Full Text Available It has been suggested that aerobic training should be considered in stroke rehabilitation programs to counteract detrimental health effects and decrease cardiovascular risk caused by inactivity. Robot-assisted treadmill exercise (using a Lokomat device has the potential to increase the duration of walking therapy relative to conventional overground therapy. We investigated whether exercise intensity during Lokomat therapy is adequate to elicit a training effect and how assistance during walking in the Lokomat affects this exercise intensity. Ten patients with stroke (age 54 +/– 9 yr walked in both the Lokomat and in a hallway. Furthermore, 10 nondisabled subjects (age 43 +/– 14 yr walked in the Lokomat at various settings and on a treadmill at various speeds. During walking, oxygen consumption and heart rate were monitored. Results showed that for patients with stroke, exercise intensity did not reach recommended levels (30% heart rate reserve for aerobic training during Lokomat walking. Furthermore, exercise intensity during walking in the Lokomat (9.3 +/– 1.6 mL/min/kg was lower than during overground walking (10.4 +/– 1.3 mL/min/kg. Also, different settings of the Lokomat only had small effects on exercise intensity in nondisabled subjects.

  1. Walking on fractals: diffusion and self-avoiding walks on percolation clusters

    International Nuclear Information System (INIS)

    We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs

  2. Walking on fractals: diffusion and self-avoiding walks on percolation clusters

    OpenAIRE

    Blavatska, Viktoria; Janke, Wolfhard

    2008-01-01

    We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d=2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs.

  3. Walking on fractals: diffusion and self-avoiding walks on percolation clusters

    Energy Technology Data Exchange (ETDEWEB)

    Blavatska, V; Janke, W [Institut fuer Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universitaet Leipzig, Postfach 100 920, D-04009 Leipzig (Germany)], E-mail: Viktoria.Blavatska@itp.uni-leipzig.de, E-mail: viktoria@icmp.lviv.ua, E-mail: Wolfhard.Janke@itp.uni-leipzig.de

    2009-01-09

    We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs.

  4. The associated random walk and martingales in random walks with stationary increments

    CERN Document Server

    Grey, D R

    2010-01-01

    We extend the notion of the associated random walk and the Wald martingale in random walks where the increments are independent and identically distributed to the more general case of stationary ergodic increments. Examples are given where the increments are Markovian or Gaussian, and an application in queueing is considered.

  5. The Extreme Walking Behavior in a 331-TC Model

    OpenAIRE

    Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil)

    2015-01-01

    It is quite possible that the Technicolor problems are related to the poorly known self-energy expression, or the way chiral symmetry breaking (CSB) is realized in non-abelian gauge theories. Actually, the only known laboratory to test the CSB mechanism is QCD. The TC dynamics may be quite different from the QCD , this fact has led to the walking TC proposal making the new strong interaction almost conformal and changing appreciably its dynamical behavior. There are different ways to obtain o...

  6. Activating and relaxing music entrains the speed of beat synchronized walking.

    Directory of Open Access Journals (Sweden)

    Marc Leman

    Full Text Available Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  7. Activating and relaxing music entrains the speed of beat synchronized walking.

    Science.gov (United States)

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  8. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.

    Science.gov (United States)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-04-01

    Walking-In-Place (WIP) techniques make it possible to facilitate relatively natural locomotion within immersive virtual environments that are larger than the physical interaction space. However, in order to facilitate natural walking experiences one needs to know how to map steps in place to virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely, no leg movement, walking on a treadmill, and two forms of gestural input for WIP locomotion. The results suggest that WIP locomotion is accompanied by a perceptual distortion of the speed of optic flow. The second study was performed using a 4×2 factorial design and compared four different display field-of-views (FOVs) and two types of movement, walking on a treadmill and WIP locomotion. The results revealed significant main effects of both movement type and field of view, but no significant interaction between the two variables. Particularly, they suggest that the size of the display FOV is inversely proportional to the degree of underestimation of the virtual speeds for both treadmill-mediated virtual walking and WIP locomotion. Combined, the results constitute a first attempt at establishing a set of guidelines specifying what virtual walking speeds WIP gestures should produce in order to facilitate a natural walking experience. PMID:24650984

  9. 基于多目标遗传算法的仿人机器人中枢神经运动控制器的设计%GA BASED SELF-ORGANIZED STABLE HUMANOID ROBOT WALKING PATTERN GENERATORS DESIGN

    Institute of Scientific and Technical Information of China (English)

    姜山; 程君实; 陈佳品; 包志军; 马培荪

    2001-01-01

    针对多自由度仿人机器人的运动控制,从神经生理学和机器人学的角度研究了基于中枢模式生成器(CPGs)的仿人运动控制策略.提出了一种将多目标遗传算法应用于(CPGs)参数优化的方法.首先构造用于仿人机器人运动控制的(CPGs)的结构,其参数通过遗传算法按相应的评价函数得到优化.%This paper describes the design of CPGs for stable humanoid bipedal locomotion, using an evolutionary approach. In this research, each joint of the humanoid is driven by a neuron that consists of two coupled neural oscillators. Corresponding joint's neurons are connected by strength weight, to achieve more natural and robust walking pattern, an evolutionary-based multi-objective optimization algorithm is used to solve the weight optimization problem. The fitness functions are formulated based on ZMP and global attitude of the robot. In the algorthms, real value coding and tournament selection are applied, the crossover and mutation operators are chosen as heuristic crossover and boundary mutation respectively. Following evolving, the robot is able to walk in the given environment and a simulation shows the results.

  10. Exercise Training and Cognitive Rehabilitation: A Symbiotic Approach for Rehabilitating Walking and Cognitive Functions in Multiple Sclerosis?

    Science.gov (United States)

    Motl, Robert W; Sandroff, Brian M; DeLuca, John

    2016-07-01

    The current review develops a rationale and framework for examining the independent and combined effects of exercise training and cognitive rehabilitation on walking and cognitive functions in persons with multiple sclerosis (MS). To do so, we first review evidence for improvements in walking and cognitive outcomes with exercise training and cognitive rehabilitation in MS. We then review evidence regarding cognitive-motor coupling and possible cross-modality transfer effects of exercise training and cognitive rehabilitation. We lastly present a macro-level framework for considering mechanisms that might explain improvements in walking and cognitive dysfunction with exercise and cognitive rehabilitation individually and combined in MS. We conclude that researchers should consider examining the effects of exercise training and cognitive rehabilitation on walking, cognition, and cognitive-motor interactions in MS and the possible physiological and central mechanisms for improving these functions. PMID:27261483

  11. Functional management of ankle sprains: what volume and intensity of walking is undertaken in the first week postinjury:what volume and intensity of walking is undertaken in the first week postinjury

    OpenAIRE

    Tully, Mark; Bleakley, C M; O'Connor, S.R.; McDonough, S.M.

    2012-01-01

    BACKGROUND: Acute ankle sprains are usually managed functionally, with advice to undertake progressive weight-bearing and walking. Mechanical loading is an important modular of tissue repair; therefore, the clinical effectiveness of walking after ankle sprain may be dose dependent. The intensity, magnitude and duration of load associated with current functional treatments for ankle sprain are unclear.AIM: To describe physical activity (PA) in the first week after ankle sprain and to compare r...

  12. The discrete-time quaternionic quantum walk on a graph

    Science.gov (United States)

    Konno, Norio; Mitsuhashi, Hideo; Sato, Iwao

    2016-02-01

    Recently, the quaternionic quantum walk was formulated by the first author as a generalization of discrete-time quantum walks. We deal with the right eigenvalue problem of quaternionic matrices in order to study spectra of the transition matrix of a quaternionic quantum walk. The way to obtain all the right eigenvalues of a quaternionic matrix is given. From the unitary condition on the transition matrix of a quaternionic quantum walk, we deduce some remarkable properties of it. Our main results determine all the right eigenvalues of the quaternionic quantum walk by using those of the corresponding weighted matrix. In addition, we give some examples of quaternionic quantum walks and their right eigenvalues.

  13. Tendon Based Full Size Biped Humanoid Robot Walking Platform Design

    Science.gov (United States)

    Kuo, Chung-Hsien; Chiou, Kuo-Wei

    Actuators and gear trains of most biped humanoid robots are divergently allocated on the links of two legs. Disadvantages of such a mechanical design are complicated wiring of power cord and sensing/ control signal bundles and imprecise kinetics models of mixed link-and-actuator structures. Based on these drawbacks, this paper proposes a tendon-driven mechanism to develop a lower body structure of a full-size biped humanoid robot. The actuators are compacted as an actuator module, and they are placed at a distal site. A 12 degree-of-freedom mechanical structure is proposed with 100 cm in height and 45 kg in weight. The gait planning module is simulated and evaluated using the Matlab software. At the same time, an ARM7 based controller is developed to automatically generate walking patterns as well as to control the motors. Finally, a tendon-driven biped humanoid robot prototype is realized for practical waling control in the future.

  14. The variability problem of normal human walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine

    2012-01-01

    Previous investigations have suggested considerable inter-individual variability in the time course pattern of net joint moments during normal human walking, although the limited sample sizes precluded statistical analyses. The purpose of the present study was to obtain joint moment patterns from a...... group of normal subjects and to test whether or not the expected differences would prove to be statistically significant. Fifteen healthy male subjects were recorded on video while they walked across two force platforms. Ten kinematic and kinetic parameters were selected and input to a statistical...... cluster analysis to determine whether or not the 15 subjects could be divided into different 'families' (clusters) of walking strategy. The net joint moments showed a variability corroborating earlier reports. The cluster analysis showed that the 15 subjects could be grouped into two clusters of 5 and 10...

  15. Humanoid robot Lola: design and walking control.

    Science.gov (United States)

    Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    2009-01-01

    In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories. PMID:19665558

  16. Getting mobile with a walking-help

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Raudaskoski, Pirkko Liisa

    in Symbolic Interaction 33: 443-457. Latour, B. (2005).Reassembeling the social. An Introduction to Actor-Network-Theory. Oxford University Press. Ryave, A. L. and J. N. Schenkein. (1974). Not es on the Art of Walking. In Turner, R. (ed.) Ethnomethodology. Selected Readings. Middlesex: Penguin, 265......Ethnomethodology has been one of the few fields were mundane experiences and social ordering such as walking have been a focus of interest (e.g. Ryave and Schenkein 1974). In the present paper we want to discuss how this mundane practice sometimes needs to be achieved through the help of technology...... are understood as a Latourian socio-material networks or assemblages that perform an action, rather than depicting the walking help as an object of human actions (Latour 2005). From that constellation a publicly observable ‘mobile with’ (Goffman 1971) can sometimes emerge (when the support is mostly linguistic...

  17. Fast Scramblers, Democratic Walks and Information Fields

    CERN Document Server

    Magan, Javier M

    2015-01-01

    We study a family of weighted random walks on complete graphs. These `democratic walks' turn out to be explicitly solvable, and we find the hierarchy window for which the characteristic time scale saturates the so-called fast scrambling conjecture. We show that these democratic walks describe well the properties of information spreading in systems in which every degree of freedom interacts with every other degree of freedom, such as Matrix or infinite range models. The argument is based on the analysis of suitably defined `Information fields' ($\\mathcal{I}$), which are shown to evolve stochastically towards stationarity due to unitarity of the microscopic model. The model implies that in democratic systems, stabilization of one subsystem is equivalent to global scrambling. We use these results to study scrambling of infalling perturbations in black hole backgrounds, and argue that the near horizon running coupling constants are connected to entanglement evolution of single particle perturbations in democratic...

  18. Liberating Lévy walk research from the shackles of optimal foraging

    Science.gov (United States)

    Reynolds, Andy

    2015-09-01

    There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and

  19. Comprehend DeepWalk as Matrix Factorization

    OpenAIRE

    Yang, Cheng; Liu, Zhiyuan

    2015-01-01

    Word2vec, as an efficient tool for learning vector representation of words has shown its effectiveness in many natural language processing tasks. Mikolov et al. issued Skip-Gram and Negative Sampling model for developing this toolbox. Perozzi et al. introduced the Skip-Gram model into the study of social network for the first time, and designed an algorithm named DeepWalk for learning node embedding on a graph. We prove that the DeepWalk algorithm is actually factoring a matrix M where each e...

  20. Lectures on Self-Avoiding Walks

    OpenAIRE

    Bauerschmidt, Roland; Duminil-Copin, Hugo; Goodman, Jesse; Slade, Gordon

    2012-01-01

    These lecture notes provide a rapid introduction to a number of rigorous results on self-avoiding walks, with emphasis on the critical behaviour. Following an introductory overview of the central problems, an account is given of the Hammersley--Welsh bound on the number of self-avoiding walks and its consequences for the growth rates of bridges and self-avoiding polygons. A detailed proof that the connective constant on the hexagonal lattice equals $\\sqrt{2+\\sqrt{2}}$ is then provided. The la...

  1. Self-Avoiding Walks with Writhe

    OpenAIRE

    Moroz, J. David; Kamien, Randall D.

    1997-01-01

    We map self-avoiding random walks with a chemical potential for writhe to the three-dimensional complex O(N) Chern-Simons theory as N -> 0. We argue that at the Wilson-Fisher fixed point which characterizes normal self-avoiding walks (with radius of gyration exponent nu = 0.588) a small chemical potential for writhe is irrelevant and the Chern-Simons field does not modify the monomer- monomer correlation function. For a large chemical potential the polymer collapses.

  2. Self-avoiding walks with writhe

    International Nuclear Information System (INIS)

    We map self-avoiding random walks with a chemical potential for writhe to the three-dimensional complex O(N) Chern-Simons theory as N→0. We argue that at the Wilson-Fisher fixed point which characterizes normal self-avoiding walks (with radius of gyration exponent ν∼0.588) a small chemical potential for writhe is irrelevant and the Chern-Simons field does not modify the monomer-monomer correlation function. For a large chemical potential the polymer collapses. (orig.)

  3. Topics in random walks in random environment

    International Nuclear Information System (INIS)

    Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)

  4. Environmental factors influencing older adults’ walking for transportation: a study using walk-along interviews

    Directory of Open Access Journals (Sweden)

    Van Cauwenberg Jelle

    2012-07-01

    Full Text Available Abstract Background Current knowledge on the relationship between the physical environment and walking for transportation among older adults (≥ 65 years is limited. Qualitative research can provide valuable information and inform further research. However, qualitative studies are scarce and fail to include neighborhood outings necessary to study participants’ experiences and perceptions while interacting with and interpreting the local social and physical environment. The current study sought to uncover the perceived environmental influences on Flemish older adults’ walking for transportation. To get detailed and context-sensitive environmental information, it used walk-along interviews. Methods Purposeful convenience sampling was used to recruit 57 older adults residing in urban or semi-urban areas. Walk-along interviews to and from a destination (e.g. a shop located within a 15 minutes’ walk from the participants’ home were conducted. Content analysis was performed using NVivo 9 software (QSR International. An inductive approach was used to derive categories and subcategories from the data. Results Data were categorized in the following categories and subcategories: access to facilities (shops & services, public transit, connectivity, walking facilities (sidewalk quality, crossings, legibility, benches, traffic safety (busy traffic, behavior of other road users, familiarity, safety from crime (physical factors, other persons, social contacts, aesthetics (buildings, natural elements, noise & smell, openness, decay and weather. Conclusions The findings indicate that to promote walking for transportation a neighborhood should provide good access to shops and services, well-maintained walking facilities, aesthetically appealing places, streets with little traffic and places for social interaction. In addition, the neighborhood environment should evoke feelings of familiarity and safety from crime. Future quantitative studies should

  5. Particle resuspension due to human walking

    International Nuclear Information System (INIS)

    In nuclear facilities, during normal operations in controlled areas, workers could be exposed to radioactive aerosols (1 μm ≤ dp ≤ 10 μm). One of the airborne contamination sources is particles that are initially seeded on the floor and could be removed by workers while they are walking. During the outage of EDF nuclear facilities, there is a resuspension of some radionuclides in aerosol form (1 μm ≤ dp ≤ 10 μm). Since the number of co-activity will increase in reactors buildings of EDF, it becomes important to understand particle resuspension due to the activity of the operators to reduce their radiation exposure. The purpose of this Ph.D thesis is to quantify the resuspension of particles due to the progress of operators on a contaminated soil. Thus, the approach is to combine an aerodynamic resuspension model with numerical calculations of flow under a shoe, and then to characterize experimentally some input parameters of the model (particle diameter, adhesion forces, shoes motion). The resuspension model Rock'n'Roll proposed by Reeks and Hall (2001) was chosen because it describes physically the resuspension mechanism and because it is based on the moment of forces applied to a particle. This model requires two input parameters such as friction velocity and adhesion forces distribution applied on each particle. Regarding the first argument, numerical simulations were carried on using the ANSYS CFX software applied to a safety shoe in motion (digitized by 3D CAO); the mapping of friction velocity shows values of about 1 m.s-1 for an angular average velocity of 200 degrees.s-1. As regards the second parameter, AFM (Atomic Force Microscopy) measurements were carried out with alumina and cobalt oxide particles in contact with epoxy surfaces representative of those encountered in EDF power plants. AFM provides the distribution of adhesion forces and reveals a much lower value than what can be calculated theoretically using JKR model (Johnson et

  6. Virtual constraints for the underactuated walking design: comparison of two approaches

    Czech Academy of Sciences Publication Activity Database

    Anderle, Milan; Čelikovský, Sergej; Ibarra, H.

    Istanbul : IEEE, 2013. ISBN 978-1-4673-5767-8. [The 9th Asian Control Conference 2013 (ASCC). Istanbul (TR), 23.06.2013-26.06.2013] R&D Projects: GA ČR(CZ) GAP103/12/1794; GA MŠk(CZ) LG12015 Institutional support: RVO:67985556 Keywords : walking robots * control * mechanical systems Subject RIV: BC - Control Systems Theory

  7. Path planning for four-legged walking robot using rapidly exploring random trees

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, S.

    Praha: Ústav termomechaniky AV ČR, 2005 - (Fuis, V.; Krejčí, P.; Návrat, T.), s. 179-180 ISBN 80-85918-93-5. [Engineering Mechanics 2005. Svratka (CZ), 09.05.2005-12.05.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : path planning * walking robot Subject RIV: JD - Computer Applications, Robot ics

  8. Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?

    Science.gov (United States)

    Orr, Edna

    2016-01-01

    Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human’s ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants’ cognitive and socio-communicative outputs prospectively from 6–18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p < .005), along with increases, counter to the general reduction trend, in skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p < .01), and speech bids before walking; r = .729, p < .01)]. Integration of these proactive changes using a computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0.001). These

  9. Environmental perceptions and objective walking trail audits inform a community-based participatory research walking intervention

    Directory of Open Access Journals (Sweden)

    Zoellner Jamie

    2012-01-01

    Full Text Available Abstract Background Given the documented physical activity disparities that exist among low-income minority communities and the increased focused on socio-ecological approaches to address physical inactivity, efforts aimed at understanding the built environment to support physical activity are needed. This community-based participatory research (CBPR project investigates walking trails perceptions in a high minority southern community and objectively examines walking trails. The primary aim is to explore if perceived and objective audit variables predict meeting recommendations for walking and physical activity, MET/minutes/week of physical activity, and frequency of trail use. Methods A proportional sampling plan was used to survey community residents in this cross-sectional study. Previously validated instruments were pilot tested and appropriately adapted and included the short version of the validated International Physical Activity Questionnaire, trail use, and perceptions of walking trails. Walking trails were assessed using the valid and reliable Path Environmental Audit Tool which assesses four content areas including: design features, amenities, maintenance, and pedestrian safety from traffic. Analyses included Chi-square, one-way ANOVA's, multiple linear regression, and multiple logistic models. Results Numerous (n = 21 high quality walking trails were available. Across trails, there were very few indicators of incivilities and safety features rated relatively high. Among the 372 respondents, trail use significantly predicted meeting recommendations for walking and physical activity, and MET/minutes/week. While controlling for other variables, significant predictors of trail use included proximity to trails, as well as perceptions of walking trail safety, trail amenities, and neighborhood pedestrian safety. Furthermore, while controlling for education, gender, and income; for every one time per week increase in using walking trails

  10. Are Coiled-Coils of Dimeric Kinesins Unwound during Their Walking on Microtubule?

    OpenAIRE

    Duan, Zhao-Wen; Xie, Ping; Li, Wei; Wang, Peng-Ye

    2012-01-01

    Dimeric kinesin motor proteins such as homodimeric kinesin-1, homodimeric Ncd and heterodimeric Kar3/Vik1are composed of two head domains which are connected together by a rod-shaped, coiled-coil stalk. Despite the extensive and intensive studies on structures, kinetics, dynamics and walking mechanism of the dimers, whether their coiled-coils are unwound or not during their walking on the microtubule is still an unclear issue. Here, we try to clarify this issue by using molecular dynamics sim...

  11. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking

    DEFF Research Database (Denmark)

    Iglesias, Caroline; Nielsen, Jens Bo; Marchand-Pauvert, Véronique

    2008-01-01

    Automatic adjustments of muscle activity throughout the body are required for the maintenance of balance during human walking. One mechanism that is likely to contribute to this control is the heteronymous spinal excitation between human ankle dorsiflexors and knee extensors (CPQ-reflex). Here, we...... changes in the background EMG activity and modifications in peripheral input, and likely reflected central modulation of transmission in the involved reflex pathways as well. It is suggested that the purpose of the reflex is to ensure knee stability at moderate-to-high walking speeds....

  12. Loop-Erased Walks Intersect Infinitely Often in Four Dimensions

    OpenAIRE

    Lawler, Gregory

    1998-01-01

    In this short note we show that the paths two independent loop-erased random walks in four dimensions intersect infinitely often. We actually prove the stronger result that the cut-points of the two walks intersect infinitely often.

  13. Reference Trajectory Generation for 3-Dimensional Walking of a Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Humanoid walking planning is a complicated task because of the high number of degrees of freedom (DOFs) and the variable mechanical structure during walking. In this paper, a planning method for 3-dimensional (3-D) walking movements was developed based on a model of a typical humanoid robot with 12 DOFs on the lower body. The planning process includes trajectory generation for the hip, ankle, and knee joints in the Cartesian space. The balance of the robot was ensured by adjusting the hip motion. The angles for each DOF were obtained from 3-D kinematics calculation. The calculation gave reference trajectories of all the DOFs on the humanoid robot which were used to control the real robot. The simulation results show that the method is effective.

  14. Mobility-Related Fatigue, Walking Speed, and Muscle Strength in Older People

    DEFF Research Database (Denmark)

    Mänty, Minna; Mendes de Leon, Carlos F.; Rantanen, Taina;

    2012-01-01

    among men (b = −.04, p < .001) but not among women (b = −.005, p = .64). Among men, muscle strength accounted up to 15% for the association between baseline fatigue and change in maximum walking speed. Conclusions. Mobility-related fatigue is associated with slower walking speed in older adults. The......Background. Fatigue is an important early marker of functional decline among older people, but the mechanisms underlying this association are not fully understood. The purpose of the present study was to examine the association between mobility-related fatigue and walking speed and to test the...... degree to which muscle strength accounts for this association. Methods. The study is based on baseline (n = 523) and 5-year follow-up data (n = 292) from a cohort of 75-year-old persons. Standardized assessments include self-report measures of mobility-related fatigue (score range 0–6) and medical...

  15. The complexity of human walking: a knee osteoarthritis study.

    Directory of Open Access Journals (Sweden)

    Margarita Kotti

    Full Text Available This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1-3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis

  16. Cardiovascular Responses Associated with Daily Walking in Subacute Stroke

    OpenAIRE

    Prajapati, Sanjay K.; Avril Mansfield; Gage, William H; Dina Brooks; McIlroy, William E.

    2013-01-01

    Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1) walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%–60% heart rate reserve) or (2) heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve). Eight individuals with suba...

  17. Tempo and walking speed with music in the urban context

    OpenAIRE

    Marek eFranek; Leon eVan Noorden; Lukas eRezny

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al. 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a respons...

  18. Tempo and walking speed with music in the urban

    OpenAIRE

    Franěk, Marek; Noorden, Leon van, LPAS; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a respon...

  19. Self-Attractive Random Walks: The Case of Critical Drifts

    Science.gov (United States)

    Ioffe, Dmitry; Velenik, Yvan

    2012-07-01

    Self-attractive random walks (polymers) undergo a phase transition in terms of the applied drift (force): If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension d ≥ 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.

  20. Self-Attractive Random Walks: The Case of Critical Drifts

    CERN Document Server

    Ioffe, Dmitry

    2011-01-01

    Self-attractive random walks undergo a phase transition in terms of the applied drift: If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension at least 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.

  1. DeepWalk: Online Learning of Social Representations

    OpenAIRE

    Perozzi, Bryan; Al-Rfou, Rami; Skiena, Steven

    2014-01-01

    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating wa...

  2. Instruction sets for walks and the quantile path transformation

    OpenAIRE

    Forman, Noah Mills

    2013-01-01

    This thesis examines two objects: the stacked-instructions representation of a walk on a general state space, and the novel quantile path transformation for real-valued walks.Instead of representing a walk by a chronological sequence of states visited, we may represent the walk by a collection of lists of instructions located at each state. On successive visits to a state, the walker reads and follows successive instructions from the list. However, there are some collections of finite lists f...

  3. Movement Behavior of High-Heeled Walking

    DEFF Research Database (Denmark)

    Alkjær, Tine; Raffalt, Peter Christian; Petersen, Nicolas Caesar;

    2012-01-01

    behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis...

  4. Assessment of a Solar System Walk

    Science.gov (United States)

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  5. The Quantum Walk of F. Riesz

    CERN Document Server

    Grunbaum, F A

    2011-01-01

    We exhibit a way to associate a quantum walk (QW) on the non-negative integers to any probability measure on the unit circle. This forces us to consider one step transitions that are not traditionally allowed. We illustrate this in the case of a very interesting measure, originally proposed by F. Riesz for a different purpose.

  6. Myths about the Country Walk Case

    Science.gov (United States)

    Cheit, Ross E.; Mervis, David

    2007-01-01

    The Country Walk case in Dade County, Florida was long considered a model for how to prosecute a multi-victim child sexual abuse case involving young children. In the past 10 years, however, a contrary view has emerged that the case was tainted by improper interviewing and was likely a false conviction. This is the first scholarly effort to assess…

  7. Localization of M-Particle Quantum Walks

    OpenAIRE

    Ampadu, Clement

    2011-01-01

    We study the motion of M particles performing a quantum walk on the line. Under various conditions on the initial coin states for quantum walkers controlled by the Hadamard operator, we give theoretical criterion to observe the quantum walkers at an initial location with high probability.

  8. Bilocal Dynamics for Self-Avoiding Walks

    CERN Document Server

    Caracciolo, Sergio; Ferraro, G; Papinutto, Mauro; Pelissetto, A; Caracciolo, Sergio; Causo, Maria Serena; Ferraro, Giovanni; Papinutto, Mauro; Pelissetto, Andrea

    2000-01-01

    We introduce several bilocal algorithms for lattice self-avoiding walks that provide reasonable models for the physical kinetics of polymers in the absence of hydrodynamic effects. We discuss their ergodicity in different confined geometries, for instance in strips and in slabs. A short discussion of the dynamical properties in the absence of interactions is given.

  9. Self-avoiding random walk in superspace

    International Nuclear Information System (INIS)

    The model is presented, where all the critical exponents are calculated exactly. It corresponds to a self-avoiding random walk in superspace of dimension D≤4. For the correlation length the validity of Flory's conjecture (ν=3/(D+2)) is confirmed. (orig.)

  10. Kinetic growth walks on complex networks

    International Nuclear Information System (INIS)

    Kinetically grown self-avoiding walks on various types of generalized random networks have been studied. Networks with short- and long-tailed degree distributions P(k) were considered (k, degree or connectivity), including scale-free networks with P(k) ∼ k-γ. The long-range behaviour of self-avoiding walks on random networks is found to be determined by finite-size effects. The mean self-intersection length of non-reversal random walks, (l), scales as a power of the system size N: (l) ∼ Nβ, with an exponent β = 0.5 for short-tailed degree distributions and β α, with an exponent α which depends on the lowest degree in the network. Results of approximate probabilistic calculations are supported by those derived from simulations of various kinds of networks. The efficiency of kinetic growth walks to explore networks is largely reduced by inhomogeneity in the degree distribution, as happens for scale-free networks

  11. Bilocal Dynamics for Self-Avoiding Walks

    OpenAIRE

    Caracciolo, Sergio; Causo, Maria Serena; Ferraro, Giovanni; Papinutto, Mauro; Pelissetto, Andrea

    1999-01-01

    We introduce several bilocal algorithms for lattice self-avoiding walks that provide reasonable models for the physical kinetics of polymers in the absence of hydrodynamic effects. We discuss their ergodicity in different confined geometries, for instance in strips and in slabs. A short discussion of the dynamical properties in the absence of interactions is given.

  12. Random walk centrality for temporal networks

    CERN Document Server

    Rocha, Luis Enrique Correa

    2014-01-01

    Nodes can be ranked according to their relative importance within the network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, as for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks which we call TempoRank. While in a static network, the stationary density of the random walk is proportional to the degree or the strength of a node, we find that in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network. The stationary density also depends on the sojourn probability q which regulates the tendency of the walker to stay in the node. We apply our method to human interaction networks and show that although it is important for a node ...

  13. Saccadic Body Turns in walking Drosophila

    Directory of Open Access Journals (Sweden)

    Bart R.H. Geurten

    2014-10-01

    Full Text Available Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these ‘body saccades’ are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies separate rotational from translational movements by quickly turning their bodies by 15 degrees within a tenth of a second. Although walking flies moved their heads by up to 20 degrees about their bodies, their heads moved with the bodies during saccadic turns. This saccadic strategy contrasts with the head saccades reported for e.g. blowflies and honeybees, presumably reflecting optical constraints: modelling revealed that head saccades as described for these latter insects would hardly affect the retinal input in Drosophila because of the lower acuity of its compound eye. The absence of head saccades in Drosophila was associated with the absence of haltere oscillations, which seem to guide head movements in other flies. In addition to adding new twists to Drosophila walking behavior, our analysis shows that Drosophila does not turn its head relative to its body when turning during walking.

  14. Grover search with lackadaisical quantum walks

    International Nuclear Information System (INIS)

    The lazy random walk, where the walker has some probability of staying put, is a useful tool in classical algorithms. We propose a quantum analogue, the lackadaisical quantum walk, where each vertex is given l self-loops, and we investigate its effects on Grover’s algorithm when formulated as search for a marked vertex on the complete graph of N vertices. For the discrete-time quantum walk using the phase flip coin, adding a self-loop to each vertex boosts the success probability from 1/2 to 1. Additional self-loops, however, decrease the success probability. Using instead the Shenvi, Kempe, and Whaley (2003) coin, adding self-loops simply slows down the search. These coins also differ in that the first is faster than classical when l scales less than N, while the second requires that l scale less than N 2. Finally, continuous-time quantum walks differ from both of these discrete-time examples—the self-loops make no difference at all. These behaviors generalize to multiple marked vertices. (paper)

  15. The Physics of a Walking Robot

    Science.gov (United States)

    Guemez, J.; Fiolhais, M.

    2013-01-01

    The physics of walking is explored, using a toy as a concrete example and a "toy model" applied to it. Besides using Newton's second law, the problem is also discussed from the thermodynamical perspective. Once the steady state (constant velocity) is achieved, we show that the internal energy of the toy is dissipated as heat in the…

  16. The physics of a walking robot

    CERN Document Server

    Güémez, Julio

    2014-01-01

    The physics of walking is explored, using a toy as a concrete example and a 'toy' model applied to it. Besides the Newton's second law, the problem is also discussed from the thermodynamical perspective. Once the steady state (constant velocity) is achieved, we show that the internal energy of the toy is dissipated as heat in the surroundings.

  17. Go Naked: Diapers Affect Infant Walking

    Science.gov (United States)

    Cole, Whitney G.; Lingeman, Jesse M.; Adolph, Karen E.

    2012-01-01

    In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants' poor balance and wide stance. We show that…

  18. Mesonic spectroscopy of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2010-01-01

    We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD...

  19. Healthy Living Initiative: Running/Walking Club

    Science.gov (United States)

    Stylianou, Michalis; Kulinna, Pamela Hodges; Kloeppel, Tiffany

    2014-01-01

    This study was grounded in the public health literature and the call for schools to serve as physical activity intervention sites. Its purpose was twofold: (a) to examine the daily distance covered by students in a before-school running/walking club throughout 1 school year and (b) to gain insights on the teachers perspectives of the club.…

  20. Random walk term weighting for information retrieval

    DEFF Research Database (Denmark)

    Blanco, R.; Lioma, Christina

    2007-01-01

    We present a way of estimating term weights for Information Retrieval (IR), using term co-occurrence as a measure of dependency between terms.We use the random walk graph-based ranking algorithm on a graph that encodes terms and co-occurrence dependencies in text, from which we derive term weight...

  1. Underactuated Walking Control via the Kinetic Symmetry

    Czech Academy of Sciences Publication Activity Database

    Čelikovský, Sergej

    Yakutsk : North-Eastern Federal University named after H.K. Ammosov, Sobolev Institute of Mathematics SB RAS, Lavrentiev Institute of Hydrodinamics SB RAS Novosibirsk State University, 2014. s. 6-7. [International Conference on Mathematical Modeling /7./. 30.06.2014-04.07.2014, Yakutsk] Institutional support: RVO:67985556 Keywords : Kinetic symmetry * virtual constraint * underactuated walking Subject RIV: BC - Control Systems Theory

  2. Sunspot random walk and 22-year variation

    Science.gov (United States)

    Love, Jeffrey J.; Rigler, E. Joshua

    2012-01-01

    We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.

  3. Adaptive Nonlinear Tracking for Robotic Walking

    Czech Academy of Sciences Publication Activity Database

    Dolinský, Kamil; Čelikovský, Sergej

    2012-01-01

    Roč. 1, č. 1 (2012), s. 28-35. ISSN 2223-7038 Institutional research plan: CEZ:AV0Z10750506 Keywords : Adaptive control * Kalman filter * walking robot s Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=9e51935aa5bc

  4. Searching via walking: How to find a marked clique of a complete graph using quantum walks

    Science.gov (United States)

    Hillery, Mark; Reitzner, Daniel; Bužek, Vladimír

    2010-06-01

    We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency of classical and quantum searches—the number of oracle calls.

  5. Searching via walking: How to find a marked clique of a complete graph using quantum walks

    International Nuclear Information System (INIS)

    We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency of classical and quantum searches--the number of oracle calls.

  6. A growth walk model for estimating the canonical partition function of interacting self-avoiding walk.

    Science.gov (United States)

    Narasimhan, S L; Krishna, P S R; Ponmurugan, M; Murthy, K P N

    2008-01-01

    We have explained in detail why the canonical partition function of interacting self-avoiding walk (ISAW) is exactly equivalent to the configurational average of the weights associated with growth walks, such as the interacting growth walk (IGW), if the average is taken over the entire genealogical tree of the walk. In this context, we have shown that it is not always possible to factor the density of states out of the canonical partition function if the local growth rule is temperature dependent. We have presented Monte Carlo results for IGWs on a diamond lattice in order to demonstrate that the actual set of IGW configurations available for study is temperature dependent even though the weighted averages lead to the expected thermodynamic behavior of ISAW. PMID:18190183

  7. Establishing the Range of Perceptually Natural Visual Walking Speeds for Virtual Walking-In-Place Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging...... from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely, no...... leg movement, walking on a treadmill, and two forms of gestural input for WIP locomotion. The results suggest that WIP locomotion is accompanied by a perceptual distortion of the speed of optic flow. The second study was performed using a 4×2 factorial design and compared four different display field...

  8. Accumulating Brisk Walking for Fitness, Cardiovascular Risk, and Psychological Health.

    Science.gov (United States)

    Murphy, Marie; Nevill, Alan; Neville, Charlotte; Biddle, Stuart; Hardman, Adrianne

    2002-01-01

    Compared the effects of different patterns of regular brisk walking on fitness, cardiovascular disease risk factors, and psychological well-being in previously sedentary adults. Data on adults who completed either short-bout or long-bout walking programs found that three short bouts of brisk walking accumulated throughout the day were as effective…

  9. Flat Energy histogram version for Interacting Growth Walk

    OpenAIRE

    Ponmurugan, M.; Sridhar, V.; Narasimhan, S. L.; Murthy, K. P. N.

    2007-01-01

    Interacting Growth Walks is a recently proposed stochastic model for studying the coil-globule transition of linear polymers. We propose a flat energy histogram version for Interacting Growth Walk. We demonstrate the algorithm on two dimensional square and triangular lattices by calculating the density of energy states of Interacting Self Avoiding Walks.

  10. The persistence length of two dimensional self avoiding random walks

    OpenAIRE

    Eisenberg, E.; Baram, A.

    2002-01-01

    The decay of directional correlations in self-avoiding random walks on the square lattice is investigated. Analysis of exact enumerations and Monte Carlo data suggest that the correlation between the directions of the first step and the j-th step of the walk decays faster than 1/j, indicating that the persistence length of the walk is finite.

  11. A natural walking monitor for pulmonary patients using mobile phones.

    Science.gov (United States)

    Juen, Joshua; Cheng, Qian; Schatz, Bruce

    2015-07-01

    Mobile devices have the potential to continuously monitor health by collecting movement data including walking speed during natural walking. Natural walking is walking without artificial speed constraints present in both treadmill and nurse-assisted walking. Fitness trackers have become popular which record steps taken and distance, typically using a fixed stride length. While useful for everyday purposes, medical monitoring requires precise accuracy and testing on real patients with a scientifically valid measure. Walking speed is closely linked to morbidity in patients and widely used for medical assessment via measured walking. The 6-min walk test (6MWT) is a standard assessment for chronic obstructive pulmonary disease and congestive heart failure. Current generation smartphone hardware contains similar sensor chips as in medical devices and popular fitness devices. We developed a middleware software, MoveSense, which runs on standalone smartphones while providing comparable readings to medical accelerometers. We evaluate six machine learning methods to obtain gait speed during natural walking training models to predict natural walking speed and distance during a 6MWT with 28 pulmonary patients and ten subjects without pulmonary condition. We also compare our model's accuracy to popular fitness devices. Our universally trained support vector machine models produce 6MWT distance with 3.23% error during a controlled 6MWT and 11.2% during natural free walking. Furthermore, our model attains 7.9% error when tested on five subjects for distance estimation compared to the 50-400% error seen in fitness devices during natural walking. PMID:25935052

  12. The Walking Classroom: Active Learning Is Just Steps Away!

    Science.gov (United States)

    Becker, Kelly Mancini

    2016-01-01

    Walking is a viable and valuable form of exercise for young children that has both physical and mental health benefits. There is much evidence showing that school-age children are not getting the recommended 60 minutes of daily exercise. A school-wide walking program can be a great way to encourage walking in and out of school, can be aligned with…

  13. The Not-so-Random Drunkard's Walk

    Science.gov (United States)

    Ehrhardt, George

    2013-01-01

    This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…

  14. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves.

    Science.gov (United States)

    Funato, Tetsuro; Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-05-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  15. Estimates of random walk exit probabilities and application to loop-erased random walk

    OpenAIRE

    Kozdron, Michael J.; Lawler, Gregory F.

    2005-01-01

    We prove an estimate for the probability that a simple random walk in a simply connected subset A of Z^2 starting on the boundary exits A at another specified boundary point. The estimates are uniform over all domains of a given inradius. We apply these estimates to prove a conjecture of S. Fomin in 2001 concerning a relationship between crossing probabilities of loop-erased random walk and Brownian motion.

  16. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  17. Taking Your Mind for a Walk: A Qualitative Investigation of Walking and Thinking among Nine Norwegian Academics

    Science.gov (United States)

    Keinänen, Mia

    2016-01-01

    Walking has long been associated with thinking. Anecdotal evidence from philosophers, writers, researchers, artists, business leaders and so forth testify to the powers of walking-for-thinking. This study explores walking-for-thinking among nine academics in Norway, four university professors, two research and development professionals, two…

  18. Study of Wearable Knee Assistive Instruments for Walk Rehabilitation

    Science.gov (United States)

    Zhu, Yong; Nakamura, Masahiro; Ito, Noritaka; Fujimoto, Hiroshi; Horikuchi, Kenichi; Wakabayashi, Shojiro; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka

    A wearable Knee Assistive Instrument for the walk rehabilitation was newly developed. Especially, this system aimed at supporting the rehabilitation for the post-TKA (Total Knee Arthroplasty) which is a popular surgery for aging people. This system consisted of an assisting mechanism for the knee joint, a hip joint support system and a foot pressure sensor system. The driving system of this robot consisted of a CPU board which generated the walking pattern, a Li-ion battery, DC motors with motor drivers, contact sensors to detect the state of foot and potentiometers to detect the hip joint angle. The control method was proposed to reproduce complex motion of knee joint as much as possible, and to increase hip or knee flexion angle. Especially, this method used the timing that heel left from the floor. This method included that the lower limb was raised to prevent a subject's fall. Also, the prototype of knee assisting system was tested. It was confirmed that the assisting system is useful.

  19. Random walk search in unstructured P2P

    Institute of Scientific and Technical Information of China (English)

    Jia Zhaoqing; You Jinyuan; Rao Ruonan; Li Minglu

    2006-01-01

    Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high in the power-law network, and the information on the high degree nodes can be easily found through random walk. Random walk spread and random walk search method (RWSS) is proposed based on the analysis result. Simulation results show that RWSS achieves high success rates at low cost and is robust to high degree node failure.

  20. The Rh-1 Full-Size Humanoid Robot: Design, Walking Pattern Generation and Control

    OpenAIRE

    M. Arbulú; D. Kaynov; Cabas, L.; Balaguer, C.

    2009-01-01

    This paper is an overview of the humanoid robot Rh-1, the second phase of the Rh project, which was launched by the Robotics Lab at the Carlos III University of Madrid in 2002. The robot mechanical design includes the specifications development in order to construct a platform, which is capable of stable biped walking. At first, the robots’ weights were calculated in order to obtain the inverse dynamics and to select the actuators. After that, mechanical specifications were introduced in orde...

  1. Distracted walking: Examining the extent to pedestrian safety problems

    Directory of Open Access Journals (Sweden)

    Judith Mwakalonge

    2015-10-01

    Full Text Available Pedestrians, much like drivers, have always been engaged in multi-tasking like using hand-held devices, listening to music, snacking, or reading while walking. The effects are similar to those experienced by distracted drivers. However, distracted walking has not received similar policies and effective interventions as distracted driving to improve pedestrian safety. This study reviewed the state-of-practice on policies, campaigns, available data, identified research needs, and opportunities pertaining to distracted walking. A comprehensive review of literature revealed that some of the agencies/organizations disseminate useful information about certain distracting activities that pedestrians should avoid while walking to improve their safety. Various walking safety rules/tips have been given, such as not wearing headphones or talking on a cell phone while crossing a street, keeping the volume down, hanging up the phone while walking, being aware of traffic, and avoiding distractions like walking with texting. The majority of the past observational-based and experimental-based studies reviewed in this study on distracted walking is in agreement that there is a positive correlation between distraction and unsafe walking behavior. However, limitations of the existing crash data suggest that distracted walking may not be a severe threat to the public health. Current pedestrian crash data provide insufficient information for researchers to examine the extent to which distracted walking causes and/or contributes to actual pedestrian safety problems.

  2. Pseudo memory effects, majorization and entropy in quantum random walks

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Anthony J [Centre for Mathematical Physics and Department of Mathematics, University of Queensland, Brisbane 4072 (Australia); Ellinas, Demosthenes [Division of Mathematics, Technical University of Crete, GR-73100 Chania Crete (Greece); Tsohantjis, Ioannis [Division of Physics, Technical University of Crete, GR-73100 Chania Crete (Greece)

    2004-02-25

    A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk. (letter to the editor)

  3. Generalized atmospheric sampling of self-avoiding walks

    International Nuclear Information System (INIS)

    In this paper, we introduce a new Monte Carlo method for sampling lattice self-avoiding walks. The method, which we call 'GAS' (generalized atmospheric sampling), samples walks along weighted sequences by implementing elementary moves generated by the positive, negative and neutral atmospheric statistics of the walks. A realized sequence is weighted such that the average weight of states of length n is proportional to the number of self-avoiding walks from the origin cn. In addition, the method also self-tunes to sample from uniform distributions over walks of lengths in an interval [0, nmax]. We show how to implement GAS using both generalized and endpoint atmospheres of walks and analyse our data to obtain estimates of the growth constant and entropic exponent of self-avoiding walks in the square and cubic lattices.

  4. Generalized atmospheric sampling of self-avoiding walks

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, E J Janse [Department of Mathematics and Statistics, York University Toronto, Ontario M3J 1P3 (Canada); Rechnitzer, A [Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2 (Canada)], E-mail: rensburg@yorku.ca, E-mail: andrewr@math.ubc.ca

    2009-08-21

    In this paper, we introduce a new Monte Carlo method for sampling lattice self-avoiding walks. The method, which we call 'GAS' (generalized atmospheric sampling), samples walks along weighted sequences by implementing elementary moves generated by the positive, negative and neutral atmospheric statistics of the walks. A realized sequence is weighted such that the average weight of states of length n is proportional to the number of self-avoiding walks from the origin c{sub n}. In addition, the method also self-tunes to sample from uniform distributions over walks of lengths in an interval [0, n{sub max}]. We show how to implement GAS using both generalized and endpoint atmospheres of walks and analyse our data to obtain estimates of the growth constant and entropic exponent of self-avoiding walks in the square and cubic lattices.

  5. Pseudo Memory Effects, Majorization and Entropy in Quantum Random Walks

    CERN Document Server

    Bracken, A J; Tsohantjis, I; Bracken, Anthony J.; Ellinas, Demosthenes; Tsohantjis, Ioannis

    2004-01-01

    A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.

  6. Development of a Wearable Assist Robot for Walk Rehabilitation After Knee Arthroplasty Surgery

    Science.gov (United States)

    Terada, H.; Zhu, Y.; Horiguchi, K.; Nakamura, M.; Takahashi, R.

    In Japan, it is popular that the disease knee joints will be replaced to artificial joints by surgery. And we have to assist so many patients for walk rehabilitation. So, the wearable assist robot has been developed. This robot includes the knee motion assist mechanism and the hip joint support mechanism. Especially, the knee motion assist mechanism consists of a non-circular gear and grooved cams. This mechanism rotates and slides simultaneously, which has two degree-of-freedom. Also, the hip joint support mechanism consists of a hip brace and a ball-joint. This mechanism can avoid motion constraints which are the internal or external rotation and the adduction or abduction. Then, the control algorithm, which considers an assisting timing for the walk rehabilitation, has been proposed. A sensing system of a walk state for this control system uses a heel contacts sensor and knee and hip joint rotation angle sensors. Also, the prototype robot has been tested. And it is confirmed that the assisting system is useful.

  7. Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation.

    Science.gov (United States)

    Giest, Tracy N; Chang, Young-Hui

    2016-06-14

    Propulsive force production (indicative of intrinsic force-length-velocity characteristics of the plantar flexor muscles) has been shown to be a major determinant of the human walk-to-run transition. The purpose of this work was to determine the gait transition speed of persons with unilateral transtibial amputation donning a passive-elastic prosthesis and assess whether a mechanical limit of their intact side plantar flexor muscles is a major determinant of their walk-to-run transition. We determined each individual׳s gait transition speed (GTS) via an incremental protocol and assessed kinetics and kinematics during walking at speeds 50%, 60%, 70%, 80%, 90%, 100%, 120%, and 130% of that gait transition speed (100%:GTS). Unilateral transtibial amputees transitioned between gaits at significantly slower absolute speeds than matched able-bodied controls (1.73±0.13 and 2.09±0.05m/s respectively, p120%: 0.23±0.05BW, p<0.05). In contrast, amputee subjects' intact side generated significantly higher peak anterior-posterior propulsive forces while walking at speeds above their preferred gait transition speed (100%: 0.28±0.04<110%: 0.30±0.04BW, p<0.05). Changes in propulsive force production were found to be a function of changes in absolute speed, rather than relative to the walk-to-run transition speed. Therefore, the walk-to-run transition in unilateral transtibial amputees is not likely dictated by propulsive force production or the force-length-velocity characteristics of the intact side plantar flexor muscles. PMID:27087677

  8. Random Walks on Stochastic Temporal Networks

    CERN Document Server

    Hoffmann, Till; Lambiotte, Renaud

    2013-01-01

    In the study of dynamical processes on networks, there has been intense focus on network structure -- i.e., the arrangement of edges and their associated weights -- but the effects of the temporal patterns of edges remains poorly understood. In this chapter, we develop a mathematical framework for random walks on temporal networks using an approach that provides a compromise between abstract but unrealistic models and data-driven but non-mathematical approaches. To do this, we introduce a stochastic model for temporal networks in which we summarize the temporal and structural organization of a system using a matrix of waiting-time distributions. We show that random walks on stochastic temporal networks can be described exactly by an integro-differential master equation and derive an analytical expression for its asymptotic steady state. We also discuss how our work might be useful to help build centrality measures for temporal networks.

  9. Random walk centrality in interconnected multilayer networks

    Science.gov (United States)

    Solé-Ribalta, Albert; De Domenico, Manlio; Gómez, Sergio; Arenas, Alex

    2016-06-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influent nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  10. The Evolution Of Odetics Walking Machine Technology

    Science.gov (United States)

    Bartholet, Stephen J.

    1987-02-01

    The development of the Odetics walking machine technology is presented from the original concept aimed at feasibility demonstration through advanced designs with specific mission applications. The high power efficiency and high strength-to-weight ratio features of the original leg designs are presented along with the hierarchical control concepts. The evolutionary development of improved gait control for faster, smoother walking, and the demands imposed by uneven terrain and stair climbing are discussed. Sensor integration for motion control and vision for teleoperation are covered, as is operator control station design. Specific walker design concepts to accomplish nuclear power plant maintenance and a Mars Rover mission are presented. The nuclear power plant design integrates a six-degree of freedom manipulator arm onto an improved design walker with a fiber-optic link to the operator control station. The Mars Rover mission concept is aimed at maximum packaging density, light weight and high mobility on steep and soft terrain while minimizing power consumption.

  11. Random walk centrality in interconnected multilayer networks

    CERN Document Server

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2015-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influential nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  12. Walking beam pumping unit system efficiency measurements

    International Nuclear Information System (INIS)

    The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes

  13. Revising the senior walking environmental assessment tool

    Science.gov (United States)

    Michael, Yvonne L.; Keast, Erin M.; Chaudhury, Habib; Day, Kristen; Mahmood, Atiya; Sarte, Ann F.I.

    2016-01-01

    Background The Senior Walking Environmental Assessment Tool (SWEAT), an instrument for measuring built environmental features associated with physical activity of older adults, was revised to create an easier-to-use tool for use by practitioners and community members. Methods Inter-rater and intra-rater reliability of the modified instrument (SWEAT-R) was assessed in Portland, Oregon in 2007. Five trained observers audited street segments in 12 neighborhoods, resulting in 361 pairs of audits, including 63 repeated audits. Results Overall, 88% and 75% of items assessed had good or excellent inter-rater and intra-rater reliability, respectively. The revised instrument required less time to complete than the original instrument, while obtaining more information. Conclusion SWEAT-R provides easy to gather, reliable data for use in community-based audits of built environment in relation to walking among older adults. PMID:19136025

  14. Environment-dependent continuous time random walk

    Institute of Scientific and Technical Information of China (English)

    Lin Fang; Bao Jing-Dong

    2011-01-01

    A generalized continuous time random walk model which is dependent on environmental damping is proposed in which the two key parameters of the usual random walk theory:the jumping distance and the waiting time, are replaced by two new ones:the pulse velocity and the flight time. The anomalous diffusion of a free particle which is characterized by the asymptotical mean square displacement ~tα is realized numerically and analysed theoretically, where the value of the power index a is in a region of 0<α<2. Particularly, the damping leads to a sub-diffusion when the impact velocities are drawn from a Gaussian density function and the super-diffusive effect is related to statistical extremes, which are called rare-though-dominant events.

  15. Random Walk on the Prime Numbers

    International Nuclear Information System (INIS)

    The one-dimensional random walk (RW), where steps up and down are performed according to the occurrence of special primes is defined. Some quantities characterizing RW are investigated. The mean fluctuation function F(l) displays perfect power law dependence F(l) ∼ l1/2 indicating that the defined RW is not correlated. The number of returns of this special RW to the origin is investigated. It turns out, that this single, very special, realization of RW is typical one in the sense, that the usual characteristics used to measure RW, take the values close to the ones averaged over all random walks. The fractal structure on the subset of primes is also found. (author)

  16. Random Walk Picture of Basketball Scoring

    CERN Document Server

    Gabel, Alan

    2011-01-01

    We present evidence, based on play-by-play data from all 6087 games from the 2006/07--2009/10 seasons of the National Basketball Association (NBA), that basketball scoring is well described by a weakly-biased continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between different scoring intervals. Using this random-walk picture that is augmented by features idiosyncratic to basketball, we account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead. By further including the heterogeneity of team strengths, we build a computational model that accounts for essentially all statistical features of game scoring data and season win/loss records of each team.

  17. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  18. Quantum walks on Erdos-Renyi networks

    OpenAIRE

    Xu, X. -P.; Liu, F

    2008-01-01

    We study the coherent exciton transport of continuous-time quantum walks (CTQWs) on Erdos-Renyi networks. The Erdos-Renyi network of N nodes is constructed by connecting every pair of nodes with probability $p$. We numerically calculate the ensemble averaged transition probability of quantum transport between two nodes of the networks. For finite networks, we find that the limiting transition probability is reached very quickly. For infinite networks whose spectral density follows the semicir...

  19. Generalized Quantum Random Walk in Momentum Space

    CERN Document Server

    Romanelli, A; Siri, R; Abal, G; Donangelo, R

    2004-01-01

    We introduce a discrete-time quantum walk on a one-dimensional momentum space including both discrete jumps and continuous drift. Its time evolution has two diferent stages. Initially a Markovian diffusion develops during a characteristic time interval, after which dynamical localization sets in, as in the well known Quantum Kicked Rotor system. For some exceptional values of the model's parameter the system exhibits resonant behavior and the system model behaves as the standard discrete time quantum walker on the line.

  20. Polymers as Self-Avoiding Walks

    OpenAIRE

    Freed, Karl F.

    1981-01-01

    A brief overview is presented of the relation of the properties of real polymers to the problem of self-avoiding random walks. The self-consistent field method is discussed wherein the non-Markovian continuous self-avoiding polymer is replaced by a self-consistent Markovian approximation. An outline is presented of the method of solution of the resultant nonlinear integrodifferential equations. A description is also presented of the scaling theories which provide a means for deducing some exp...

  1. Dynamic random walks theory and applications

    CERN Document Server

    Guillotin-Plantard, Nadine

    2006-01-01

    The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance

  2. Media Arts Walking Research Group Interactive poster

    OpenAIRE

    Robinson, Andrew

    2015-01-01

    A poster representing the work of the seven members of the Media Arts Walking Research Group who attended the "Where To?" conference at Falmouth University on April 16th 2015. The poster includes QR codes that take the viewer to each individual member's work (web sites, videos, images). The poster was presented and displayed in the conference breakout space for the duration of the event (the address provided below links to my contribution)

  3. All Stars CATch : Walk of life

    OpenAIRE

    Houwerzijl, Martijn

    2006-01-01

    All Stars CATch; Walk of life is een beschrijving van het All Stars CATch traject dat door Stedelijk Jongerenwerk Amsterdam (SJA) is uitgevoerd in opdracht van Click F1 en is geschreven met toestemming van Dienst Maatschappelijke Ontwikkeling Amsterdam. De beschrijving van de CATchmethode (H1) is gebaseerd op fragmenten uit: “Hart voor jongeren”, een publicatie over de unieke CATchmethode en hoe deze in de praktijk werkt. De beschrijving van het specifieke All Stars traject, de rol van SJA en...

  4. Monitoring Butterfly Abundance: Beyond Pollard Walks

    OpenAIRE

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly...

  5. A Short Walk along the Gravimeters Path

    Directory of Open Access Journals (Sweden)

    Iginio Marson

    2012-01-01

    Full Text Available The history of gravity measurements begun in 1604 with Galileo Galilei experiments on the acceleration due to the gravity force of the earth, g, along inclined planes. In his memory, the most used unit to measure g is the gal (10−2 m/s2. The paper takes the interested reader through a walk along some of the most important achievements in gravity measurements and gives some perspectives for future developments in terrestrial gravity.

  6. A Random Walk Picture of Basketball

    Science.gov (United States)

    Gabel, Alan; Redner, Sidney

    2012-02-01

    We analyze NBA basketball play-by-play data and found that scoring is well described by a weakly-biased, anti-persistent, continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between events. We account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead.

  7. Random Walks and Sustained Competitive Advantage

    OpenAIRE

    Jerker Denrell

    2004-01-01

    Strategy is concerned with sustained interfirm profitability differences. Observations of such sustained differences are often attributed to unobserved systematic a priori differences in firm characteristics. This paper shows that sustained interfirm profitability differences may be very likely even if there are no a priori differences among firms. As a result of the phenomenon of long leads in random walks, even a random resource accumulation process is likely to produce persistent resource ...

  8. WalkThrough Example Procedures for MAMA

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Christy E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gaschen, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bloch, Jeffrey Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    This documentation is a growing set of walk through examples of analyses using the MAMA V2.0 software. It does not cover all the features or possibilities with the MAMA software, but will address using many of the basic analysis tools to quantify particle size and shape in an image. This document will continue to evolve as additional procedures and examples are added. The starting assumption is that the MAMA software has been successfully installed.

  9. Deterministic Random Walks on Regular Trees

    CERN Document Server

    Cooper, Joshua; Friedrich, Tobias; Spencer, Joel; 10.1002/rsa.20314

    2010-01-01

    Jim Propp's rotor router model is a deterministic analogue of a random walk on a graph. Instead of distributing chips randomly, each vertex serves its neighbors in a fixed order. Cooper and Spencer (Comb. Probab. Comput. (2006)) show a remarkable similarity of both models. If an (almost) arbitrary population of chips is placed on the vertices of a grid $\\Z^d$ and does a simultaneous walk in the Propp model, then at all times and on each vertex, the number of chips on this vertex deviates from the expected number the random walk would have gotten there by at most a constant. This constant is independent of the starting configuration and the order in which each vertex serves its neighbors. This result raises the question if all graphs do have this property. With quite some effort, we are now able to answer this question negatively. For the graph being an infinite $k$-ary tree ($k \\ge 3$), we show that for any deviation $D$ there is an initial configuration of chips such that after running the Propp model for a ...

  10. Computational Models to Synthesize Human Walking

    Institute of Scientific and Technical Information of China (English)

    Lei Ren; David Howard; Laurence Kenney

    2006-01-01

    The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper,the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.

  11. Quantum walks and discrete gauge theories

    Science.gov (United States)

    Arnault, Pablo; Debbasch, Fabrice

    2016-05-01

    A particular example is produced to prove that quantum walks can be used to simulate full-fledged discrete gauge theories. A family of two-dimensional walks is introduced and its continuous limit is shown to coincide with the dynamics of a Dirac fermion coupled to arbitrary electromagnetic fields. The electromagnetic interpretation is extended beyond the continuous limit by proving that these discrete-time quantum walks (DTQWs) exhibit an exact discrete local U(1) gauge invariance and possess a discrete gauge-invariant conserved current. A discrete gauge-invariant electromagnetic field is also constructed and that field is coupled to the conserved current by a discrete generalization of Maxwell equations. The dynamics of the DTQWs under crossed electric and magnetic fields is finally explored outside the continuous limit by numerical simulations. Bloch oscillations and the so-called E ×B drift are recovered in the weak-field limit. Localization is observed for some values of the gauge fields.

  12. Multicanonical simulation of the Domb-Joyce model and the Gō model: new enumeration methods for self-avoiding walks

    Science.gov (United States)

    Shirai, Nobu C.; Kikuchi, Macoto

    2013-08-01

    We develop statistical enumeration methods for self-avoiding walks using a powerful sampling technique called the multicanonical Monte Carlo method. Using these methods, we estimate the numbers of the two dimensional N-step self-avoiding walks up to N = 256 with statistical errors. The developed methods are based on statistical mechanical models of paths which include self-avoiding walks. The criterion for selecting a suitable model for enumerating self-avoiding walks is whether or not the configuration space of the model includes a set for which the number of the elements can be exactly counted. We call this set a scale fixing set. We selected the following two models which satisfy the criterion: the Gō model for lattice proteins and the Domb-Joyce model for generalized random walks. There is a contrast between these two models in the structures of the configuration space. The configuration space of the Gō model is defined as the universal set of self-avoiding walks, and the set of the ground state conformation provides a scale fixing set. On the other hand, the configuration space of the Domb-Joyce model is defined as the universal set of random walks which can be used as a scale fixing set, and the set of the ground state conformation is the same as the universal set of self-avoiding walks. From the perspective of enumeration performance, we conclude that the Domb-Joyce model is the better of the two. The reason for the performance difference is partly explained by the existence of the first-order phase transition of the Gō model.

  13. Multicanonical simulation of the Domb-Joyce model and the Gō model: new enumeration methods for self-avoiding walks

    International Nuclear Information System (INIS)

    We develop statistical enumeration methods for self-avoiding walks using a powerful sampling technique called the multicanonical Monte Carlo method. Using these methods, we estimate the numbers of the two dimensional N-step self-avoiding walks up to N = 256 with statistical errors. The developed methods are based on statistical mechanical models of paths which include self-avoiding walks. The criterion for selecting a suitable model for enumerating self-avoiding walks is whether or not the configuration space of the model includes a set for which the number of the elements can be exactly counted. We call this set a scale fixing set. We selected the following two models which satisfy the criterion: the Gō model for lattice proteins and the Domb-Joyce model for generalized random walks. There is a contrast between these two models in the structures of the configuration space. The configuration space of the Gō model is defined as the universal set of self-avoiding walks, and the set of the ground state conformation provides a scale fixing set. On the other hand, the configuration space of the Domb-Joyce model is defined as the universal set of random walks which can be used as a scale fixing set, and the set of the ground state conformation is the same as the universal set of self-avoiding walks. From the perspective of enumeration performance, we conclude that the Domb-Joyce model is the better of the two. The reason for the performance difference is partly explained by the existence of the first-order phase transition of the Gō model

  14. Scattering theory of walking droplets in the presence of obstacles

    CERN Document Server

    Dubertrand, Rémy; Schlagheck, Peter; Vandewalle, Nicolas; Bastin, Thierry; Martin, John

    2016-01-01

    We aim to describe a droplet bouncing on a vibrating bath. Due to Faraday instability a surface wave is created at each bounce and serves as a pilot wave of the droplet. This leads to so called walking droplets or walkers. Since the seminal experiment by {\\it Couder et al} [Phys. Rev. Lett. {\\bf 97}, 154101 (2006)] there have been many attempts to accurately reproduce the experimental results. Here we present a simple and highly versatile model inspired from quantum mechanics. We propose to describe the trajectories of a walker using a Green function approach. The Green function is related to Helmholtz equation with Neumann boundary conditions on the obstacle(s) and outgoing conditions at infinity. For a single slit geometry our model is exactly solvable and reproduces some general features observed experimentally. It stands for a promising candidate to account for the presence of any boundaries in the walkers'dynamics.

  15. Optimal walking speed following changes in limb geometry.

    Science.gov (United States)

    Leurs, Françoise; Ivanenko, Yuri P; Bengoetxea, Ana; Cebolla, Ana-Maria; Dan, Bernard; Lacquaniti, Francesco; Cheron, Guy A

    2011-07-01

    The principle of dynamic similarity states that the optimal walking speeds of geometrically similar animals are independent of size when speed is normalized to the dimensionless Froude number (Fr). Furthermore, various studies have shown similar dimensionless optimal speed (Fr ∼0.25) for animals with quite different limb geometries. Here, we wondered whether the optimal walking speed of humans depends solely on total limb length or whether limb segment proportions play an essential role. If optimal walking speed solely depends on the limb length then, when subjects walk on stilts, they should consume less metabolic energy at a faster optimal speed than when they walk without stilts. To test this prediction, we compared kinematics, electromyographic activity and oxygen consumption in adults walking on a treadmill at different speeds with and without articulated stilts that artificially elongated the shank segment by 40 cm. Walking on stilts involved a non-linear reorganization of kinematic and electromyography patterns. In particular, we found a significant increase in the alternating activity of proximal flexors-extensors during the swing phase, despite significantly shorter normalized stride lengths. The minimal metabolic cost per unit distance walked with stilts occurred at roughly the same absolute speed, corresponding to a lower Fr number (Fr ∼0.17) than in normal walking (Fr ∼0.25). These findings are consistent with an important role of limb geometry optimization and kinematic coordination strategies in minimizing the energy expenditure of human walking. PMID:21653821

  16. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  17. Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study

    Science.gov (United States)

    Duncan, Dustin T.; Méline, Julie; Kestens, Yan; Day, Kristen; Elbel, Brian; Trasande, Leonardo; Chaix, Basile

    2016-01-01

    Background: Few studies have used GPS data to analyze the relationship between Walk Score, transportation choice and walking. Additionally, the influence of Walk Score is understudied using trips rather than individuals as statistical units. The purpose of this study is to examine associations at the trip level between Walk Score, transportation mode choice, and walking among Paris adults who were tracked with GPS receivers and accelerometers in the RECORD GPS Study. Methods: In the RECORD GPS Study, 227 participants were tracked during seven days with GPS receivers and accelerometers. Participants were also surveyed with a GPS-based web mapping application on their activities and transportation modes for all trips (6969 trips). Walk Score, which calculates neighborhood walkability, was assessed for each origin and destination of every trip. Multilevel logistic and linear regression analyses were conducted to estimate associations between Walk Score and walking in the trip or accelerometry-assessed number of steps for each trip, after adjustment for individual/neighborhood characteristics. Results: The mean overall Walk Scores for trip origins were 87.1 (SD = 14.4) and for trip destinations 87.1 (SD = 14.5). In adjusted trip-level associations between Walk Score and walking only in the trip, we found that a walkable neighborhood in the trip origin and trip destination was associated with increased odds of walking in the trip assessed in the survey. The odds of only walking in the trip were 3.48 (95% CI: 2.73 to 4.44) times higher when the Walk Score for the trip origin was “Walker’s Paradise” compared to less walkable neighborhoods (Very/Car-Dependent or Somewhat Walkable), with an identical independent effect of trip destination Walk Score on walking. The number of steps per 10 min (as assessed with accelerometry) was cumulatively higher for trips both originating and ending in walkable neighborhoods (i.e., “Very Walkable”). Conclusions: Walkable

  18. Constrained walks and self-avoiding walks: implications for protein structure determination

    International Nuclear Information System (INIS)

    We prove that n-step walks and self-avoiding walks on the 2D honeycomb, 2D square, 3D diamond and 3D cubic lattices can be uniquely characterized (canonized) with no more than n Euclidian distances. We also demonstrate that these canonical distances can be obtained with O(n) physical measurements. Finally, while the protein-folding problem on lattices is known to be strongly NP-hard, we prove that lattice protein structures of size n matching O(n) canonical distance measurements can be determined in linear time. (author)

  19. Does parkland influence walking? The relationship between area of parkland and walking trips in Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    King Tania L

    2012-09-01

    Full Text Available Abstract Background Using two different measures of park area, at three buffer distances, we sought to investigate the ways in which park area and proximity to parks, are related to the frequency of walking (for all purposes in Australian adults. Little previous research has been conducted in this area, and results of existing research have been mixed. Methods Residents of 50 urban areas in metropolitan Melbourne, Australia completed a physical activity survey (n = 2305. Respondents reported how often they walked for ≥10 minutes in the previous month. Walking frequency was dichotomised to ‘less than weekly’ (less than 1/week and ‘at least weekly’ (1/week or more. Using Geographic Information Systems, Euclidean buffers were created around each respondent’s home at three distances: 400metres (m, 800 m and 1200 m. Total area of parkland in each person’s buffer was calculated for the three buffers. Additionally, total area of ‘larger parks’, (park space ≥ park with Australian Rules Football oval (17,862 m2, was calculated for each set of buffers. Area of park was categorised into tertiles for area of all parks, and area of larger parks (the lowest tertile was used as the reference category. Multilevel logistic regression, with individuals nested within areas, was used to estimate the effect of area of parkland on walking frequency. Results No statistically significant associations were found between walking frequency and park area (total and large parks within 400 m of respondent’s homes. For total park area within 800 m, the odds of walking at least weekly were lower for those in the mid (OR 0.65, 95% CI 0.46-0.91 and highest (OR 0.65, 95% CI 0.44-0.95 tertile of park area compared to those living in areas with the least amount of park area. Similar results were observed for total park area in the 1200 m buffers. When only larger parks were investigated, again more frequent walking was less likely when respondents had

  20. Optimal speeds for walking and running, and walking on a moving walkway

    Science.gov (United States)

    Srinivasan, Manoj

    2009-06-01

    Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day—but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways—such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater—but the speed relative to the walkway smaller—than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the

  1. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Directory of Open Access Journals (Sweden)

    Eduard Grinke

    2015-10-01

    Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.

  2. Walking Intensity Estimation with a Portable Pedobarography System.

    Science.gov (United States)

    Hellstrom, Per Anders Rickard; Åkerberg, Anna; Ekström, Martin; Folke, Mia

    2016-01-01

    The aim of this pilot study was to investigate the possibility to find a correlation between the output from a portable pedobarography system and the walking intensity expressed as walking speed. The system uses shoe insoles with force sensing resistors and wireless transmission of the data via Bluetooth. The force-time integral, at the toe-off phase of the step, for the force sensors in the forward part of the right foot was used to measure impulse data for 10 subjects performing walks in three different walking speeds. This data was then corrected by multiplication with the step frequency. This pilot study indicates that the portable pedobarography system output shows a linear relationship with the walking intensity expressed as walking speed on an individual level. PMID:27225549

  3. Scaling of the atmosphere of self-avoiding walks

    Energy Technology Data Exchange (ETDEWEB)

    Owczarek, A L [Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)], E-mail: a.owczarek@ms.unimelb.edu.au, E-mail: t.prellberg@qmul.ac.uk

    2008-09-19

    The number of free sites next to the end of a self-avoiding walk is known as the atmosphere of the walk. The average atmosphere can be related to the number of configurations. Here we study the distribution of atmospheres as a function of length and how the number of walks of fixed atmosphere scale. Certain bounds on these numbers can be proved. We use Monte Carlo estimates to verify our conjectures in two dimensions. Of particular interest are walks that have zero atmosphere, which are known as trapped. We demonstrate that these walks scale in the same way as the full set of self-avoiding walks, barring an overall constant factor.

  4. Scaling of the atmosphere of self-avoiding walks

    International Nuclear Information System (INIS)

    The number of free sites next to the end of a self-avoiding walk is known as the atmosphere of the walk. The average atmosphere can be related to the number of configurations. Here we study the distribution of atmospheres as a function of length and how the number of walks of fixed atmosphere scale. Certain bounds on these numbers can be proved. We use Monte Carlo estimates to verify our conjectures in two dimensions. Of particular interest are walks that have zero atmosphere, which are known as trapped. We demonstrate that these walks scale in the same way as the full set of self-avoiding walks, barring an overall constant factor

  5. Adaptive walks on correlated fitness landscapes with heterogeneous connectivities

    International Nuclear Information System (INIS)

    We propose a model for studying the statistical properties of adaptive walks on correlated fitness landscapes which are established in genotype spaces of complex structure. The fitness distribution on the genotype space follows either the bivariate Gaussian distribution or the bivariate exponential distribution. In both cases the degree of correlation of the fitness landscape can be tuned by using a single parameter. To perform the adaptive walks two distinct rules are applied: the random adaptation walk (RAW) and the gradient adaptation walk (GAW). While for the RAW the mean walk length, L-bar, is a monotonic increasing function of the connectivity of the genotype space, for the GAW L-bar is a one-humped function. The RAW produces longer adaptive walks compared to the GAW, though its performance is slightly poorer and thereby the local maxima reached by the GAW algorithm are usually closer to the global optimum of the fitness landscape

  6. Extended Evolutionary Fast Learn-to-Walk Approach for Four-Legged Robots

    Institute of Scientific and Technical Information of China (English)

    Muh.Anshar; Mary-Anne Williams

    2007-01-01

    Robot locomotion is an active research area. In this paper we focus on the locomotion of quadruped robots. An effective walking gait of quadruped robots is mainly concerned with two key aspects, namely speed and stability. The large search space of potential parameter settings for leg joints means that hand tuning is not feasible in general. As a result walking parameters are typically determined using machine learning techniques. A major shortcoming of using machine learning techniques is the significant wear and tear of robots since many parameter combinations need to be evaluated before an optimal solution is found.This paper proposes a direct walking gait learning approach, which is specifically designed to reduce wear and tear of robot motors, joints and other hardware. In essence we provide an effective learning mechanism that leads to a solution in a faster convergence time than previous algorithms. The results demonstrate that the new learning algorithm obtains a faster convergence to the best solutions in a short run. This approach is significant in obtaining faster walking gaits which will be useful for a wide range of applications where speed and stability are important. Future work will extend our methods so that the faster convergence algorithm can be applied to a two legged humanoid and lead to less wear and tear whilst still developing a fast and stable gait.

  7. Design and Control of a Powered Hip Exoskeleton for Walking Assistance

    Directory of Open Access Journals (Sweden)

    Qingcong Wu

    2015-03-01

    Full Text Available The wearable powered exoskeleton is a human-robot cooperation system that integrates the strength of a robot with human intelligence. This paper presents the research results into a powered hip exoskeleton (PH-EXOS designed to provide locomotive assistance to individuals with walking impediments. The Bowden cable actuated exoskeleton has an anthropomorphic structure with six degrees of freedom (DOF in order to match the human hip anatomy and enable natural interaction with the user. The mechanical structure, the actuation system, and the interaction kinematics of PH EXOS are optimized to achieve preferable manoeuvrability and harmony. For the control of the exoskeleton, a real-time control system is established in xPC target environment based on Matlab/RTW. A Cascaded PID controller is developed to perform the trajectories tracking tasks in passive control mode. Besides, based on the pressure information on the thigh, a fuzzy adaptive controller is developed to perform walking assistance tasks in active control mode. Preliminary treadmill walking experiments on a healthy subject were conducted to verify the effectiveness of the proposed device and control approaches in reducing walking effort.

  8. Effects of Initial Stance of Quadruped Trotting on Walking Stability

    OpenAIRE

    Peisun Ma; Dongqing He

    2005-01-01

    It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of q...

  9. Walk dimension for light in complex disordered media

    OpenAIRE

    Savo, Romolo; Burresi, Matteo; Svensson, Tomas; Vynck, Kevin; Wiersma, Diederik S.

    2013-01-01

    Transport in complex systems is characterized by a fractal dimension -- the walk dimension -- that indicates the diffusive or anomalous nature of the underlying random walk process. Here we report on the experimental retrieval of this key quantity, using light waves propagating in disordered media. The approach is based on measurements of the time-resolved transmission, in particular on how the lifetime scales with sample size. We show that this allows one to retrieve the walk dimension and a...

  10. Changes in walking and running in patients with hip dysplasia

    OpenAIRE

    Jacobsen, Julie S; Nielsen, Dennis B; Sørensen, Henrik; Søballe, Kjeld; Mechlenburg, Inger

    2013-01-01

    Background and purpose Earlier studies have suggested that the hip extension angle and the hip flexor moment in walking are affected by hip dysplasia, but to our knowledge there have been no reports on running or evaluations of self-reported health. We evaluated differences in walking, running, and self-reported health between young adults with symptomatic hip dysplasia and healthy controls. Patients and methods Walking and running in 32 patients with hip dysplasia, mean 34 (18–53) years old,...

  11. Direction-Dependent Control of Balance During Walking and Standing

    OpenAIRE

    O'Connor, Shawn M.; Kuo, Arthur D.

    2009-01-01

    Human walking has previously been described as “controlled falling.” Some computational models, however, suggest that gait may also have self-stabilizing aspects requiring little CNS control. The fore–aft component of walking may even be passively stable from step to step, whereas lateral motion may be unstable and require motor control for balance, as through active foot placement. If this is the case, walking humans might rely less on integrative sensory feedback, such as vision, for antero...

  12. Behavior Change Techniques Used to Promote Walking and Cycling

    OpenAIRE

    Bird, Emma L.; Baker, Graham; Mutrie, Nanette; Ogilvie, David; Sahlqvist, Shannon; Powell, Jane

    2013-01-01

    Objective: Evidence on the effectiveness of walking and cycling interventions is mixed. This may be partly attributable to differences in intervention content, such as the cognitive and behavioral techniques (BCTs) used. Adopting a taxonomy of BCTs, this systematic review addressed two questions: (a) What are the behavior change techniques used in walking and cycling interventions targeted at adults? (b) What characterizes interventions that appear to be associated with changes in walking and...

  13. Method of calculating densities for isotropic L\\'evy Walks

    OpenAIRE

    Magdziarz, Marcin; Zorawik, Tomasz

    2016-01-01

    We provide explicit formulas for asymptotic densities of $d$-dimensional isotropic L\\'evy walks, when $d>1$. The densities of multidimensional undershooting and overshooting L\\'evy walks are presented as well. Interestingly, when the number of dimensions is odd the densities of all these L\\'evy walks are given by elementary functions. When $d$ is even, we can express the densities as fractional derivatives of hypergeometric functions, which makes an efficient numerical evaluation possible.

  14. Visions for a walking and cycling focussed urban transport system

    OpenAIRE

    Tight, M; Timms, P; Banister, D.; Bowmaker, J; Copas, J; Day, A.; Drinkwater, D; Givoni, M; Gühnemann, A; Lawler, M; Macmillen, J; Miles, A; Moore, N; Newton, R; Ngoduy, D

    2011-01-01

    Walking and cycling can make a considerable contribution to sustainable transport goals, building healthier and more sustainable communities and contributing to traffic and pollution reduction. There have been many national and local initiatives to promote walking and cycling, but without a long term vision and consistent strategy it is difficult to see how a significant change may be achieved. This paper presents three alternative visions for the role of walking and cycling in urban areas fo...

  15. Self-avoiding walks subject to a force

    Science.gov (United States)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2016-03-01

    We prove some theorems about self-avoiding walks attached to an impenetrable surface (i.e. positive walks) and subject to a force. Specifically we show the force dependence of the free energy is identical when the force is applied at the last vertex or at the top (confining) plane. We discuss the relevance of this result to numerical results and to a recent result about convergence rates when the walk is being pushed towards the surface.

  16. Directed self-avoiding walks on a randomly dilute lattice

    OpenAIRE

    Nadal, J.P.; Vannimenus, J.

    1985-01-01

    We consider a model of Directed Self-Avoiding Walks (DSAW) on a dilute lattice, using various approaches (Cayley Tree, weak-disorder expansion, Monte-Carlo generation of walks up to 2 000 steps). This simple model appears to contain the essential features of the controversial problem of self-avoiding walks in a random medium. It is shown in particular that with any amount of disorder the mean value for the number of DSAW is different from its most probable value.

  17. Self-avoiding walks subject to a force

    OpenAIRE

    van Rensburg, EJ Janse; Whittington, SG

    2015-01-01

    We prove some theorems about self-avoiding walks attached to an impenetrable surface (i.e. positive walks) and subject to a force. Specifically we show the force dependence of the free energy is identical when the force is applied at the last vertex or at the top (confining) plane. We discuss the relevance of this result to numerical results and to a recent result about convergence rates when the walk is being pushed towards the surface.

  18. Tempo and walking speed with music in the urban context.

    Science.gov (United States)

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  19. Tempo and walking speed with music in the urban context

    Directory of Open Access Journals (Sweden)

    Marek eFranek

    2014-12-01

    Full Text Available The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al. 1999 on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement

  20. Using built environment characteristics to predict walking for exercise

    OpenAIRE

    Siscovick David S; Larson Eric B; Hurvitz Philip M; Pearson Amber L; Moudon Anne V; Lovasi Gina S; Berke Ethan M; Lumley Thomas; Psaty Bruce M

    2008-01-01

    Abstract Background Environments conducive to walking may help people avoid sedentary lifestyles and associated diseases. Recent studies developed walkability models combining several built environment characteristics to optimally predict walking. Developing and testing such models with the same data could lead to overestimating one's ability to predict walking in an independent sample of the population. More accurate estimates of model fit can be obtained by splitting a single study populati...

  1. Does Residential Density Increase Walking and Other Physical Activity?

    OpenAIRE

    Ann Forsyth; J. Michael Oakes; Schmitz, Kathryn H.; Mary Hearst

    2007-01-01

    Many agree that increasing physical activity will improve public health. This paper reports on empirical findings on the relationship between the density of the residential environment, walking and total physical activity. Using multiple objective and self-reported measures for 715 participants in the US, and improved techniques for sampling and analysis, it finds that density is associated with the purpose of walking (travel, leisure) but not the amount of overall walking or overall physical...

  2. Self-avoiding walks subject to a force

    International Nuclear Information System (INIS)

    We prove some theorems about self-avoiding walks attached to an impenetrable surface (i.e. positive walks) and subject to a force. Specifically we show the force dependence of the free energy is identical when the force is applied at the last vertex or at the top (confining) plane. We discuss the relevance of this result to numerical results and to a recent result about convergence rates when the walk is being pushed towards the surface. (letter)

  3. Quantum random walk in periodic potential on a line

    OpenAIRE

    Li, Min; Zhang, Yong-Sheng; Guo, Guang-Can

    2012-01-01

    We investigated the discrete-time quantum random walks on a line in periodic potential. The probability distribution with periodic potential is more complex compared to the normal quantum walks, and the standard deviation $\\sigma$ has interesting behaviors for different period $q$ and parameter $\\theta$. We studied the behavior of standard deviation with variation in walk steps, period, and $\\theta$. The standard deviation increases approximately linearly with $\\theta$ and decreases with $1/q...

  4. Tempo and walking speed with music in the urban context

    Science.gov (United States)

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  5. Random walks on the BMW monoid: an algebraic approach

    OpenAIRE

    Wolff, Sarah

    2016-01-01

    We consider Metropolis-based systematic scan algorithms for generating Birman-Murakami-Wenzl (BMW) monoid basis elements of the BMW algebra. As the BMW monoid consists of tangle diagrams, these scanning strategies can be rephrased as random walks on links and tangles. We translate these walks into left multiplication operators in the corresponding BMW algebra. Taking this algebraic perspective enables the use of tools from representation theory to analyze the walks; in particular, we develop ...

  6. Escape rates for rotor walk in Z^d

    OpenAIRE

    Florescu, Laura; Ganguly, Shirshendu; Levine, Lionel; Peres, Yuval

    2013-01-01

    Rotor walk is a deterministic analogue of random walk. We study its recurrence and transience properties on Z^d for the initial configuration of all rotors aligned. If n particles in turn perform rotor walks starting from the origin, we show that the number that escape (i.e., never return to the origin) is of order n in dimensions d>=3, and of order n/log(n) in dimension 2.

  7. Better Walking Performance in Older Children With Cerebral Palsy

    OpenAIRE

    Rodby-Bousquet, Elisabet; Hägglund, Gunnar

    2011-01-01

    Background Children with cerebral palsy (CP) often walk with a slower speed and a higher energy cost. Their walking performance and choice of mobility method may vary in different environments. Independent mobility is important for activity and participation. Questions/purposes We described walking performance at different distances and environments in relation to gross motor function, CP subtype, and age. Patients and Methods We performed a cross-sectional study including all 562 children 3 ...

  8. Head movement during walking in the cat.

    Science.gov (United States)

    Zubair, Humza N; Beloozerova, Irina N; Sun, Hai; Marlinski, Vladimir

    2016-09-22

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20-90°. Nose-up rotation followed head upward translation by another 40-90° delay. The peak-to-peak amplitude of vertical translation was ∼1.5cm and amplitude of pitch rotation was ∼3°. Amplitudes of lateral translation and roll rotation were ∼1cm and 1.5-3°, respectively. Overall, cats' heads were neutral in roll and 10-30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5-1m/s, maximal upward and downward linear velocities were ∼0.05 and ∼0.1m/s, respectively, and maximal lateral velocity was ∼0.05m/s. Maximal velocities of head pitch rotation were 20-50°/s. During walking in light, cats stood 0.3-0.5cm taller and held their head 0.5-2cm higher than in darkness. Forward acceleration was 25-100% higher and peak-to-peak amplitude of head pitch oscillations was ∼20°/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role. PMID:27339731

  9. Effects of Initial Stance of Quadruped Trotting on Walking Stability

    Directory of Open Access Journals (Sweden)

    Peisun Ma

    2008-11-01

    Full Text Available It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of quadruped in trotting gait with maximal walking stability. Simulation results are presented.

  10. Random walk immunization strategy on scale-free networks

    Institute of Scientific and Technical Information of China (English)

    Weidong PEI; Zengqiang CHEN; Zhuzhi YUAN

    2009-01-01

    A novel immunization strategy called the random walk immunization strategy on scale-free networks is proposed. Different from other known immunization strategies, this strategy works as follows: a node is randomly chosen from the network. Starting from this node, randomly walk to one of its neighbor node; if the present node is not immunized, then immunize it and continue the random walk; otherwise go back to the previous node and randomly walk again. This process is repeated until a certain fraction of nodes is immunized. By theoretical analysis and numerical simulations, we found that this strategy is very effective in comparison with the other known immunization strategies.

  11. Walking control of small size humanoid robot: HAJIME ROBOT 18

    Science.gov (United States)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  12. Random recursive trees and the elephant random walk

    Science.gov (United States)

    Kürsten, Rüdiger

    2016-03-01

    One class of random walks with infinite memory, so-called elephant random walks, are simple models describing anomalous diffusion. We present a surprising connection between these models and bond percolation on random recursive trees. We use a coupling between the two models to translate results from elephant random walks to the percolation process. We calculate, besides other quantities, exact expressions for the first and the second moment of the root cluster size and of the number of nodes in child clusters of the first generation. We further introduce another model, the skew elephant random walk, and calculate the first and second moment of this process.

  13. The use of relative coupling intervals in horses during walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Pfau, Thilo

    Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...... either RLCI or RDCI. RLCI and RDCI can thus be applied as speed-independent stride-to-stride variability parameters in horses during walk over-ground. This might prove useful for detection of gait deficits caused by spinal cord injury....

  14. Self-avoiding walks on scale-free networks

    OpenAIRE

    Herrero, Carlos P.

    2004-01-01

    Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAWs) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAWs on scale-free networks, characterized by a degree distribution $P(k) \\sim k^{-\\gamma}$. In the limit of...

  15. Quantum Walks on the Line with Phase Parameters

    CERN Document Server

    Villagra, Marcos; Yamashita, Shigeru; Nakashima, Yasuhiko

    2011-01-01

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step towards this objective, the following question is being addressed: {\\it Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps?} This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the ph...

  16. Unique characteristics of motor adaptation during walking in young children

    OpenAIRE

    Musselman, Kristin E.; Susan K Patrick; Vasudevan, Erin V. L.; Bastian, Amy J.; Yang, Jaynie F.

    2011-01-01

    Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8–36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8–10 min, followed again by tied-belt walking (postsplit). Initial asymmet...

  17. Dog Walking and Physical Activity in the United States

    Directory of Open Access Journals (Sweden)

    Sandra A. Ham, MS

    2006-03-01

    Full Text Available Introduction Dog walking is a purposeful physical activity that may have health benefits for humans and canines. A descriptive epidemiology of the contribution of dog walking to physically active lifestyles among dog walkers in the United States has not been previously reported. Methods Data on youth and adults who reported walking for pet care trips (N = 1282 on the National Household Travel Survey 2001 were analyzed for number of trips, proportion walking a dog for at least 10 minutes on one trip, and accumulation of 30 minutes or more in 1 day of walks lasting at least 10 minutes. Results In 1 day, 58.9% of dog walkers took two or more walks, 80.2% took at least one walk of 10 minutes or more, and 42.3% accumulated 30 minutes or more from walks lasting at least 10 minutes each. There were no significant differences by sex, family income, or categories of urbanization. Conclusion Walking a dog may contribute to a physically active lifestyle and should be promoted as a strategy that fits within the framework set forth by the Task Force on Community Preventive Services for Physical Activity.

  18. Qubit state transfer via discrete-time quantum walks

    International Nuclear Information System (INIS)

    We propose a scheme for perfect transfer of an unknown qubit state via the discrete-time quantum walk on a line or a circle. For this purpose, we introduce an additional coin operator which is applied at the end of the walk. This operator does not depend on the state to be transferred. We show that perfect state transfer over an arbitrary distance can be achieved only if the walk is driven by an identity or a flip coin operator. Other biased coin operators and the Hadamard coin allow perfect state transfer over finite distances only. Furthermore, we show that quantum walks ending with a perfect state transfer are periodic. (paper)

  19. Orthotic Heel Wedges Do Not Alter Hindfoot Kinematics and Achilles Tendon Force During Level and Inclined Walking in Healthy Individuals.

    Science.gov (United States)

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2016-04-01

    Conservative treatments such as in-shoe orthotic heel wedges to treat musculoskeletal injuries are not new. However, weak evidence supporting their use in the management of Achilles tendonitis suggests the mechanism by which these heel wedges works remains poorly understood. It was the aim of this study to test the underlying hypothesis that heel wedges can reduce Achilles tendon load. A musculoskeletal modeling approach was used to quantify changes in lower limb mechanics when walking due to the introduction of 12-mm orthotic heel wedges. Nineteen healthy volunteers walked on an inclinable walkway while optical motion, force plate, and plantar pressure data were recorded. Walking with heel wedges increased ankle dorsiflexion moments and reduced plantar flexion moments; this resulted in increased peak ankle dorsiflexor muscle forces during early stance and reduced tibialis posterior and toe flexor muscle forces during late stance. Heel wedges did not reduce overall Achilles tendon force during any walking condition, but did redistribute load from the medial to lateral triceps surae during inclined walking. These results add to the body of clinical evidence confirming that heel wedges do not reduce Achilles tendon load and our findings provide an explanation as to why this may be the case. PMID:26502456

  20. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    Science.gov (United States)

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. PMID:26830440

  1. Adaptive and Energy Efficient Walking in a Hexapod Robot under Neuromechanical Control and Sensorimotor Learning

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2016-01-01

    force feedback and for online tuning the VAAMs' stiffness parameters. The control and learning mechanisms enable the hexapod robot advanced mobility sensor driven-walking device (AMOS) to achieve variable compliant walking that accommodates different gaits and surfaces. As a consequence, AMOS can......) to generate the proper leg stiffness (i.e., compliance); and 3) to determine joint angles that give rise to particular positions at the endpoints of the legs. To tackle this problem for a robotic application, here we present a neuromechanical controller coupled with sensorimotor learning. The...... controller consists of a modular neural network for coordinating 18 joints and several virtual agonist-antagonist muscle mechanisms (VAAMs) for variable compliant joint motions. In addition, sensorimotor learning, including forward models and dual-rate learning processes, is introduced for predicting foot...

  2. A Note on Walking Versus Waiting

    OpenAIRE

    Morton, Anthony B.

    2008-01-01

    This mathematical recreation extends the analysis of a recent paper, asking when a traveller at a bus stop and not knowing the time of the next bus is best advised to wait or to start walking toward the destination. A detailed analysis and solution is provided for a very general class of probability distributions of bus arrival time, and the solution characterised in terms of a function analogous to the hazard rate in reliability theory. The note also considers the question of intermediate st...

  3. On Polya-Friedman random walks

    Energy Technology Data Exchange (ETDEWEB)

    Huillet, Thierry [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089 et Universite de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95032, Cergy-Pontoise (France)], E-mail: Thierry.Huillet@u-cergy.fr

    2008-12-19

    The Polya process is an urn scheme arising in the context of contagion spreading. It exhibits unstable persistence effects. The Friedman urn process is dual to the Polya one with antipersistent stabilizing effects. It appears in a safety campaign problem. A Polya-Friedman urn process is investigated with a tuning persistence parameter extrapolating the latter two extreme processes. The study includes the diffusion approximations of both the Polya-Friedman proportion process and the population gap random walk. The structure of the former is a generalized Wright-Fisher diffusion appearing in population genetics. The correlation structure of the latter presents an anomalous character at a critical value of the persistence parameter.

  4. On Polya-Friedman random walks

    International Nuclear Information System (INIS)

    The Polya process is an urn scheme arising in the context of contagion spreading. It exhibits unstable persistence effects. The Friedman urn process is dual to the Polya one with antipersistent stabilizing effects. It appears in a safety campaign problem. A Polya-Friedman urn process is investigated with a tuning persistence parameter extrapolating the latter two extreme processes. The study includes the diffusion approximations of both the Polya-Friedman proportion process and the population gap random walk. The structure of the former is a generalized Wright-Fisher diffusion appearing in population genetics. The correlation structure of the latter presents an anomalous character at a critical value of the persistence parameter

  5. Cut Times for Simple Random Walk

    OpenAIRE

    Lawler, Gregory

    1996-01-01

    Let $S(n)$ be a simple random walk taking values in $Z^d$. A time $n$ is called a cut time if \\[ S[0,n] \\cap S[n+1,\\infty) = \\emptyset . \\] We show that in three dimensions the number of cut times less than $n$ grows like $n^{1 - \\zeta}$ where $\\zeta = \\zeta_d$ is the intersection exponent. As part of the proof we show that in two or three dimensions \\[ P(S[0,n] \\cap S[n+1,2n] = \\emptyset ) \\sim n^{-\\zeta}, \\] where $\\sim$ denotes that each side is bounded by a constant times the other side.

  6. Walking while talking: Investigation of alternate forms✩

    OpenAIRE

    Brandler, Tamar C; Oh-Park, Mooyeon; Wang, Cuiling; Holtzer, Roee; Verghese, Joe

    2011-01-01

    The aim of this study was to develop alternate forms of the walking while talking (WWT) dual task, and to determine whether beginning the WWT in mid-alphabet vs. at the beginning of the alphabet, affects task outcomes. Alternate test forms help reduce practice effects leading to more precise estimates of change over time. We conducted a cross-sectional study in 145 community-residing older adults (mean age, 79.2 ± 6.8 y) without dementia or depression. Subjects performed four WWT trials with ...

  7. The generic Gröbner walk

    DEFF Research Database (Denmark)

    Jensen, Anders Nedergaard; Lauritzen, Niels; Fukuda, Komei;

    2005-01-01

    The Gröbner walk is an algorithm for conversion between Gröbner bases for different term orders. It is based on the polyhedral geometry of the Gröbner fan and involves tracking a line between cones representing the initial and target term order. An important parameter is explicit numerical...... perturbation of this line. This usually involves both time and space demanding arithmetic of integers much larger than the input numbers. In this paper we show how the explicit line may be replaced by a formal line using Robbiano's characterization of group orders on . This gives rise to the generic Gröbner...

  8. Walking wisely: Sapiential influence in Psalm 26

    Directory of Open Access Journals (Sweden)

    Annette Potgieter

    2013-01-01

    Full Text Available Psalm 26 is interpreted by the majority of scholars as a cultic psalm. This has limited research on Psalm 26. There are clear traces of sapiential influence in Psalm 26 concerning its intricately well-thought concentric structure as well as various wisdom connections. This study will however focus on the structure as well as on the core wisdom theme of walking the way of Yahweh. This opens up interpretation possibilities for Psalm 26 and it also indicates that Psalm 26 is a literary creation belonging to the Persian Period.

  9. Random walk with an exponentially varying step

    Science.gov (United States)

    de La Torre, A. C.; Maltz, A.; Mártin, H. O.; Catuogno, P.; García-Mata, I.

    2000-12-01

    A random walk with exponentially varying step, modeling damped or amplified diffusion, is studied. Each step is equal to the previous one multiplied by a step factor s (01/s relating different processes. For s2, the process is retrodictive (i.e., every final position can be reached by a unique path) and the set of all possible final points after infinite steps is fractal. For step factors in the interval [1/2,2], some cases result in smooth density distributions, other cases present overlapping self-similarity and there are values of the step factor for which the distribution is singular without a density function.

  10. Sound design and perception in walking interactions

    DEFF Research Database (Denmark)

    Visell, Yon; Fontana, Federico; Giordano, Bruno; Nordahl, Rolf; Serafin, Stefania; Bresin, Roberto

    2009-01-01

    This paper reviews the state of the art in the display and perception of walking generated sounds and tactile vibrations, and their current and potential future uses in interactive systems. As non-visual information sources that are closely linked to human activities in diverse environments, such...... signals are capable of communicating about the spaces we traverse and activities we encounter in familiar and intuitive ways. However, in order for them to be effectively employed in human–computer interfaces, significant knowledge is required in areas including the perception of acoustic signatures of...

  11. Infrared dynamics of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino;

    2010-01-01

    We study the gauge sector of Minimal Walking Technicolor, which is an SU(2) gauge theory with nf=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices Nt x Ns^3, with Ns ranging from 8 to 16 and Nt=2Ns, at fixed \\beta=2.25, and varying the...... is given by an SU(2) pure Yang-Mills theory with a typical energy scale for the spectrum sliding to zero with the fermion mass. The typical mesonic mass scale is proportional to, and much larger than this gluonic scale. Our findings are compatible with a scenario in which the massless theory is...

  12. Adaptations to changing speed, load, and gradient in human walking: cost of transport, optimal speed, and pendulum.

    Science.gov (United States)

    Gomeñuka, N A; Bona, R L; da Rosa, R G; Peyré-Tartaruga, L A

    2014-06-01

    It has been observed that the optimal speed (OPT) of human walking is independent of load on level surfaces because of the unaltered trajectory of the center of mass and consequent conservation of the pendular mechanism. However, the role of the inverted pendulum mechanism that combines speed, load, and gradient during walking remains unknown. In the present study, 10 subjects walked on a treadmill, with and without loading (25% of the body mass), at different speeds and slopes (0%, +7%, and +15%). The three-dimensional motion and VO2 were simultaneously registered. The mechanical external and internal work and the cost of transport (C) changed with the speed and gradient, but the load only affected C. OPT decreased with increasing gradient, and the pendular mechanics (R) was modified mainly as a result of changes in speed and gradient. OPT and R were independent of the load in these gradients. Remarkably, R increased with increasing speed and decreased (to 30%) with an increasing gradient; moreover, R was independent of load. Therefore, the energy-saving strategy by the pendular mechanism persists, although at a diminished level, in loaded walking on gradients and partially explains the OPT in this condition. PMID:24102934

  13. Gait Pattern Alterations during Walking, Texting and Walking and Texting during Cognitively Distractive Tasks while Negotiating Common Pedestrian Obstacles.

    Directory of Open Access Journals (Sweden)

    Sammy Licence

    Full Text Available Mobile phone texting is a common daily occurrence with a paucity of research examining corresponding gait characteristics. To date, most studies have participants walk in a straight line vs. overcoming barriers and obstacles that occur during regular walking. The aim of our study is to examine the effect of mobile phone texting during periods of cognitive distraction while walking and negotiating barriers synonymous with pedestrian traffic.Thirty participants (18-50 y completed three randomized, counter-balanced walking tasks over a course during: (1 normal walking (control, (2 texting and walking, and (3 texting and walking whilst being cognitively distraction via a standard mathematical test performed while negotiating the obstacle course. We analyzed gait characteristics during course negotiation using a 3-dimensional motion analysis system and a general linear model and Dunnet-Hsu post-hoc procedure the normal walking condition to assess gait characteristic differences. Primary outcomes included the overall time to complete the course time and barrier contact. Secondary outcomes included obstacle clearance height, step frequency, step time, double support phase and lateral deviation.Participants took significantly longer (mean ± SD to complete the course while texting (24.96 ± 4.20 sec and during cognitive distraction COG (24.09 ± 3.36 sec vs. normal walking (19.32 ± 2.28 sec; all, P<0.001. No significant differences were noted for barrier contacts (P = 0.28. Step frequency, step time, double support phase and lateral deviation all increased in duration during the texting and cognitive distraction trial. Texting and being cognitively distracted also increased obstacle clearance versus the walking condition (all, P<0.02.Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern. Future research should also examine a similar

  14. A generalized 3D inverted pendulum model to represent human normal walking

    OpenAIRE

    Sakka, Sophie; Hayot, Chris; Lacouture, Patrick

    2010-01-01

    This paper compares different inverted pendulum models to represent the stance phase of human normal walking. We have developed a model which takes into account the mechanism of the foot during the single support phase, by defining a pivot point under the ground level. Similarly to other models, the pivot point as well as the rod length remain constant during the complete single support phase. Lowering the position of the pivot point allows reducing the vertical amplitude of the center of mas...

  15. Gait-specific energetics contributes to economical walking and running in emus and ostriches

    OpenAIRE

    Watson, Rebecca R.; Rubenson, Jonas; Coder, Lisa; Hoyt, Donald F.; Propert, Matthew W. G.; Marsh, Richard L.

    2010-01-01

    A widely held assumption is that metabolic rate (Ėmet) during legged locomotion is linked to the mechanics of different gaits and this linkage helps explain the preferred speeds of animals in nature. However, despite several prominent exceptions, Ėmet of walking and running vertebrates has been nearly uniformly characterized as increasing linearly with speed across all gaits. This description of locomotor energetics does not predict energetically optimal speeds for minimal cost of transport (...

  16. Biomechanics of spontaneous overground walk-to-run transition.

    Science.gov (United States)

    Segers, Veerle; De Smet, Kristof; Van Caekenberghe, Ine; Aerts, Peter; De Clercq, Dirk

    2013-08-15

    The purpose of the present study was to describe the biomechanics of spontaneous walk-to-run transitions (WRTs) in humans. After minimal instructions, 17 physically active subjects performed WRTs on an instrumented runway, enabling measurement of speed, acceleration, spatiotemporal variables, ground reaction forces and 3D kinematics. The present study describes (1) the mechanical energy fluctuations of the body centre-of-mass (BCOM) as a reflection of the whole-body dynamics and (2) the joint kinematics and kinetics. Consistent with previous research, the spatiotemporal variables showed a sudden switch from walking to running in one transition step. During this step there was a sudden increase in forward speed, the so-called speed jump (0.42 m s(-1)). At total body level, this was reflected in a sudden increase in energy of the BCOM (0.83±0.14 J kg(-1)) and an abrupt change from an out-of-phase to an in-phase organization of the kinetic and potential energy fluctuations. During the transition step a larger net propulsive impulse compared with the preceding and following steps was observed due to a decrease in the braking impulse. This suggests that the altered landing configuration (prepared during the last 40% of the preceding swing) places the body in an optimal configuration to minimize this braking impulse. We hypothesize this configuration also evokes a reflex allowing a more powerful push off, which generates enough power to complete the transition and launch the first flight phase. This powerful push-off was also reflected in the vertical ground reaction force, which suddenly changed to a running pattern. PMID:23619411

  17. Models of Walking Technicolor on the Lattice

    CERN Document Server

    Sinclair, D K

    2014-01-01

    We study QCD with 2 colour-sextet quarks as a walking-Technicolor candidate. As such it provides a description of the Higgs sector of the standard model, in which the Higgs field is replaced by the Goldstone `pions' of this QCD-like theory, and the Higgs itself is the $\\sigma$. Such a theory will need to be extended if it is to also give masses to the quarks and leptons. What we are attempting to determine is whether it is indeed QCD-like and hence walking, or if it has an infrared fixed point making it a conformal field theory. We do this by simulating its lattice version at finite temperature and observing the running of the bare (lattice) coupling at the chiral transition, as the lattice spacing is varied, and comparing this running with that predicted by 2-loop perturbation theory. Our results on lattices with temporal extents ($N_t$) up to 12 indicate that the coupling runs, but not as fast as asymptotic freedom predicts. We discuss our program for studying the zero-temperature phenomenology of this theo...

  18. Scaling of Hamiltonian walks on fractal lattices.

    Science.gov (United States)

    Elezović-Hadzić, Suncica; Marcetić, Dusanka; Maletić, Slobodan

    2007-07-01

    We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket, and their generalizations: Given-Mandelbrot (GM), modified Sierpinski gasket (MSG), and n -simplex fractal families. For GM, MSG and n -simplex lattices with odd values of n , the number of open HWs Z(N), for the lattice with N>1 sites, varies as omega(N)}N(gamma). We explicitly calculate the exponent gamma for several members of GM and MSG families, as well as for n-simplices with n=3, 5, and 7. For n-simplex fractals with even n we find different scaling form: Z(N) approximately omega(N)mu(N1/d(f), where d(f) is the fractal dimension of the lattice, which also differs from the formula expected for homogeneous lattices. We discuss possible implications of our results on studies of real compact polymers. PMID:17677410

  19. Coupled continuous time random walks in finance

    CERN Document Server

    Meerschaert, M M; Meerschaert, Mark M.; Scalas, Enrico

    2006-01-01

    Continuous time random walks (CTRWs) are used in physics to model anomalous diffusion, by incorporating a random waiting time between particle jumps. In finance, the particle jumps are log-returns and the waiting times measure delay between transactions. These two random variables (log-return and waiting time) are typically not independent. For these coupled CTRW models, we can now compute the limiting stochastic process (just like Brownian motion is the limit of a simple random walk), even in the case of heavy tailed (power-law) price jumps and/or waiting times. The probability density functions for this limit process solve fractional partial differential equations. In some cases, these equations can be explicitly solved to yield descriptions of long-term price changes, based on a high-resolution model of individual trades that includes the statistical dependence between waiting times and the subsequent log-returns. In the heavy tailed case, this involves operator stable space-time random vectors that genera...

  20. WHEN PROSE DANCES AND DANCE WALKS

    Directory of Open Access Journals (Sweden)

    Ana Marques Gastão

    2011-04-01

    Full Text Available To Paul Valéry, prose follows the less action path, as in marching in a straight line, and poetry, as in dancing – in as much as it is a «system of acts» – it not only intends to go nowhere but it remains in its own realisation, creating its own purpose. Why then does his prose contain this commanded impulse, led by desire, and his poetry does not, since they are so often one and the same? In this essay, looking at works by Rainer Marie Rilke, Fernando Pessoa, António Vieira and Yvette K. Centeno, I develop the idea that, very often, to establish a distinction between genres can be impractical and useless, if one considers concepts such as march/walk and dance from a choreographic perspective. Even if it be a possible question and since it has nevertheless been the object of study by scholars of all times, why is it undertaken? Why can’t prose be danced to, and poetry marched to? Can the walking essence unconsciously dance?