WorldWideScience

Sample records for biped locomotion robot

  1. A survey report for the turning of biped locomotion robot

    International Nuclear Information System (INIS)

    Kato, Ichiro; Takanishi, Atsuo; Kume, Etsuo.

    1992-12-01

    A mechanical design study of biped locomotion robots is going on at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the turning of biped locomotion robot: the WL-10R designed and developed at Waseda University. This report includes the control method of turning, machine model and control system. (author)

  2. Control method for biped locomotion robots based on ZMP information

    International Nuclear Information System (INIS)

    Kume, Etsuo

    1994-01-01

    The Human Acts Simulation Program (HASP) started as a ten year program of Computing and Information Systems Center (CISC) at Japan Atomic Energy Research Institute (JAERI) in 1987. A mechanical design study of biped locomotion robots for patrol and inspection in nuclear facilities is being performed as an item of the research scope. One of the goals of our research is to design a biped locomotion robot for practical use in nuclear facilities. So far, we have been studying for several dynamic walking patterns. In conventional control methods for biped locomotion robots, the program control is used based on preset walking patterns, so it dose not have the robustness such as a dynamic change of walking pattern. Therefore, a real-time control method based on dynamic information of the robot states is necessary for the high performance of walking. In this study a new control method based on Zero Moment Point (ZMP) information is proposed as one of real-time control methods. The proposed method is discussed and validated based on the numerical simulation. (author)

  3. Numerical simulation of human biped locomotion

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Fujisaki, Masahide

    1988-04-01

    This report describes the numerical simulation of the motion of human-like robot which is one of the research theme of human acts simulation program (HASP) begun at the Computing Center of JAERI in 1987. The purpose of the theme is to model the human motion using robotics kinematic/kinetic equations and to get the joint angles as the solution. As the first trial, we treat the biped locomotion (walking) which is the most fundamental human motion. We implemented a computer program on FACOM M-780 computer, where the program is originated from the book of M. Vukobratovic in Yugoslavia, and made a graphic program to draw a walking shot sequence. Mainly described here are the mathematical model of the biped locomotion, implementation method of the computer program, input data for basic walking pattern, computed results and its validation, and graphic representation of human walking image. Literature survey on robotics equation and biped locomotion is also included. (author)

  4. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  5. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    International Nuclear Information System (INIS)

    Shieh, M-Y; Chang, K-H; Lia, Y-S

    2008-01-01

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface

  6. A survey report for the biped locomotion model under external force

    International Nuclear Information System (INIS)

    Kato, Ichiro; Takanishi, Atsuo; Kume, Etsuo.

    1993-10-01

    A mechanical design study of biped locomotion robots is being performed at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. We have developed the simulation software which has capability of obtaining several types of stable motions for straight walking in terms of design tools. In addition, we are studying more complex walking patterns such as turning. However, in order to realize the robustness of walking, it is also necessary for the robot to have a capability of walking under external force as a disturbance which is caused by touching an object and so on. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the biped locomotion model under external force: the WL-12RIII/IV designed and developed at Waseda University. This report includes the machine model, control system, control method and results of walking experiments. (author)

  7. Navigation Strategy by Contact Sensing Interaction for a Biped Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2008-11-01

    Full Text Available This report presents a basic contact interaction-based navigation strategy for a biped humanoid robot to support current visual-based navigation. The robot's arms were equipped with force sensors to detect physical contact with objects. We proposed a motion algorithm consisting of searching tasks, self-localization tasks, correction of locomotion direction tasks and obstacle avoidance tasks. Priority was given to right-side direction to navigate the robot locomotion. Analysis of trajectory generation, biped gait pattern, and biped walking characteristics was performed to define an efficient navigation strategy in a biped walking humanoid robot. The proposed algorithm is evaluated in an experiment with a 21-dofs humanoid robot operating in a room with walls and obstacles. The experimental results reveal good robot performance when recognizing objects by touching, grasping, and continuously generating suitable trajectories to correct direction and avoid collisions.

  8. Dynamic control of biped locomotion robot using optimal regulator

    International Nuclear Information System (INIS)

    Sano, Akihito; Furusho, Junji

    1988-01-01

    For moving in indoor space, it is generally recognized that biped locomotion is suitable. This paper proposes a hierarchical control strategy for the lower level where the position control or the force control at each joint is implemented. In the upper level control, the robot motion is divided into a sagittal plane and a lateral plane. We applied the optimal control algorithm to the motion control in the lateral plane in order to improve the robustness of the control system. The effects of these control schemes are shown by the experiments using the new walking robot BLR-G 1 and the parallel calculation system. BLR-G 1 has 9 degrees of freedom and equips the foot-pressure-sensors and a rate gyroscope. Complete dynamic walking is realized, in which the cycle for each step is about 1.0 second. (author)

  9. Design of a biped robot actuated by pneumatic artificial muscles.

    Science.gov (United States)

    Liu, Yixiang; Zang, Xizhe; Liu, Xinyu; Wang, Lin

    2015-01-01

    High compliant legs are essential for the efficient versatile locomotion and shock absorbency of humans. This study proposes a biped robot actuated by pneumatic artificial muscles to mimic human locomotion. On the basis of the musculoskeletal architecture of human lower limbs, each leg of the biped robot is modeled as a system of three segments, namely, hip joint, knee joint, and ankle joint, and eleven muscles, including both monoarticular and biarticular muscles. Each rotational joint is driven by a pair of antagonistic muscles, enabling joint compliance to be tuned by operating the pressure inside the muscles. Biarticular muscles play an important role in transferring power between joints. Walking simulations verify that biarticular muscles contribute to joint compliance and can absorb impact energy when the robot makes an impact upon ground contact.

  10. The Effect of Foot Structure on Locomotion of a Small Biped Robot

    Directory of Open Access Journals (Sweden)

    Nguyen Tinh

    2017-01-01

    Full Text Available This paper is a presentation of a work that consists of considering a novel foot structure for biped robot inspired by human foot. The specific objective is to develop a foot mechanism with human-like toes for a small biped robot. The chosen architecture to present the biped includes ten degrees of freedom (DoF on ten articulations between eleven links. Our study considers the effect of varying foot structure on a walking process of the robot in simulation by ADAMS (MSC software, USA through gait generation method. In toe mechanism, aiming to reduce the energy consumption, the passive joint was selected as the toe joint. The center of gravity (CoG point trajectories of the robot with varying toe is compared with each other in normal motion on flat terrain to determine the most consistent toe mechanism. The result shows that the selected foot structure enables the robot to walk stably and naturally.

  11. An Address Event Representation-Based Processing System for a Biped Robot

    Directory of Open Access Journals (Sweden)

    Uziel Jaramillo-Avila

    2016-02-01

    Full Text Available In recent years, several important advances have been made in the fields of both biologically inspired sensorial processing and locomotion systems, such as Address Event Representation-based cameras (or Dynamic Vision Sensors and in human-like robot locomotion, e.g., the walking of a biped robot. However, making these fields merge properly is not an easy task. In this regard, Neuromorphic Engineering is a fast-growing research field, the main goal of which is the biologically inspired design of hybrid hardware systems in order to mimic neural architectures and to process information in the manner of the brain. However, few robotic applications exist to illustrate them. The main goal of this work is to demonstrate, by creating a closed-loop system using only bio-inspired techniques, how such applications can work properly. We present an algorithm using Spiking Neural Networks (SNN for a biped robot equipped with a Dynamic Vision Sensor, which is designed to follow a line drawn on the floor. This is a commonly used method for demonstrating control techniques. Most of them are fairly simple to implement without very sophisticated components; however, it can still serve as a good test in more elaborate circumstances. In addition, the locomotion system proposed is able to coordinately control the six DOFs of a biped robot in switching between basic forms of movement. The latter has been implemented as a FPGA-based neuromorphic system. Numerical tests and hardware validation are presented.

  12. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    Science.gov (United States)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  13. Dynamic legged locomotion in robots and animals

    Science.gov (United States)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  14. Modelling of dynamically stable AR-601M robot locomotion in Simulink

    Directory of Open Access Journals (Sweden)

    Khusainov Ramil

    2016-01-01

    Full Text Available Humanoid robots will gradually play an important role in our daily lives. Currently, research on anthropomorphic robots and biped locomotion is one of the most important problems in the field of mobile robotics, and the development of reliable control algorithms for them is a challenging task. In this research two algorithms for stable walking of Russian anthropomorphic robot AR-601M with 41 Degrees of Freedom (DoF are investigated. To achieve a human-like dynamically stable locomotion 6 DoF in each robot leg are controlled with Virtual Height Inverted Pendulum and Preview control methods.

  15. Transition Analysis and Its Application to Global Path Determination for a Biped Climbing Robot

    Directory of Open Access Journals (Sweden)

    Haifei Zhu

    2018-01-01

    Full Text Available Biped climbing robots are considered good assistants and (or substitutes for human workers carrying out high-rise truss-associated routine tasks. Flexible locomotion on three-dimensional complex trusses is a fundamental skill for these robots. In particular, the capability to transit from one structural member to another is paramount for switching objects to be climbed upon. In this paper, we study member-to-member transition and its utility in global path searching for biped climbing robots. To compute operational regions for transition, hierarchical inspection of safety, reachability, and accessibility of grips is taken into account. A novel global path rapid determination approach is subsequently proposed based on the transition analysis. This scheme is efficient for finding feasible routes with respect to the overall structural environment, which also benefits the subsequent grip and motion planning. Simulations are conducted with Climbot, our self-developed biped climbing robot, to verify the efficiency of the presented method. Results show that our proposed method is able to accurately determine the operational region for transition within tens of milliseconds and can obtain global paths within seconds in general.

  16. Reinforcement learning for a biped robot based on a CPG-actor-critic method.

    Science.gov (United States)

    Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin

    2007-08-01

    Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.

  17. Design, Modeling and Control of a Biped Line-Walking Robot

    Directory of Open Access Journals (Sweden)

    Ludan Wang

    2010-12-01

    Full Text Available The subject of this paper is the design and analysis of a biped line walking robot for inspection of power transmission lines. With a novel mechanism the centroid of the robot can be concentrated on the axis of hip joint to minimize the drive torque of the hip joint. The mechanical structure of the robot is discussed, as well as forward kinematics. Dynamic model is established in this paper to analyze the inverse kinematics for motion planning. The line-walking cycle of the line-walking robot is composed of a single-support phase and a double-support phase. Locomotion of the line-walking robot is discussed in details and the obstacle-navigation process is planed according to the structure of power transmission line. To fulfill the demands of line-walking, a control system and trajectories generation method are designed for the prototype of the line-walking robot. The feasibility of this concept is then confirmed by performing experiments with a simulated line environment.

  18. Design and control of a pneumatic musculoskeletal biped robot.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Liu, Xinyu; Zhao, Jie

    2016-04-29

    Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks. This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking. According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments. Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy. The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

  19. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  20. A measured-ZMP(Zero-Moment-Point)-referenced control of biped locomotion robots

    International Nuclear Information System (INIS)

    Kume, Etsuo; Akimoto, Masayuki

    1994-01-01

    For the control of biped locomotion, the model-referenced-control or programmed control method is widely used. In this method, the instantaneous torque of actuator equipped at each joint is controlled so as to equalize measured angle to input joint angle based on the prescribed motion. The drawback is that this method can not deal with the dynamic change of walking such as that due to unknown external force. To resolve such the drawback, we propose a new control method as follows: given a prescribed motion as a set of gait, namely gait of starting walk, cyclic walk, and stopping walk including a standard trajectory of the Zero-Moment-Point (ZMP), the trunk motion to compensate the legs' motion is generated in real time using the current ZMP measured by sensing device. The proposed method will be validated through some numerical simulations. (author)

  1. Fuzzy logic controller for stabilization of biped robot gait

    Directory of Open Access Journals (Sweden)

    Ryadchikov I.V.

    2018-01-01

    Full Text Available The article centers round the problem of stabilization of biped robot gait through smoothing out the jumps of first and second order derivatives of a biped robot control vector using the fuzzy logic approach. The structure of a composite Takagi-Sugeno fuzzy logic controller developed by the authors is presented. The simulation study of a robot gait with climbing an obstacle is carried out and the results provided in the article showed that the developed controller performed significantly better than the analytical formula model in terms of smoothing out the derivatives of the control vector.

  2. Constrained Quadratic Programming and Neurodynamics-Based Solver for Energy Optimization of Biped Walking Robots

    Directory of Open Access Journals (Sweden)

    Liyang Wang

    2017-01-01

    Full Text Available The application of biped robots is always trapped by their high energy consumption. This paper makes a contribution by optimizing the joint torques to decrease the energy consumption without changing the biped gaits. In this work, a constrained quadratic programming (QP problem for energy optimization is formulated. A neurodynamics-based solver is presented to solve the QP problem. Differing from the existing literatures, the proposed neurodynamics-based energy optimization (NEO strategy minimizes the energy consumption and guarantees the following three important constraints simultaneously: (i the force-moment equilibrium equation of biped robots, (ii frictions applied by each leg on the ground to hold the biped robot without slippage and tipping over, and (iii physical limits of the motors. Simulations demonstrate that the proposed strategy is effective for energy-efficient biped walking.

  3. Locomotion training of legged robots using hybrid machine learning techniques

    Science.gov (United States)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  4. A new biarticular actuator design facilitates control of leg function in BioBiped3.

    Science.gov (United States)

    Sharbafi, Maziar Ahmad; Rode, Christian; Kurowski, Stefan; Scholz, Dorian; Möckel, Rico; Radkhah, Katayon; Zhao, Guoping; Rashty, Aida Mohammadinejad; Stryk, Oskar von; Seyfarth, Andre

    2016-07-01

    Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.

  5. Dynamics Analysis of Fluid-Structure Interaction for a Biologically-Inspired Biped Robot Running on Water

    Directory of Open Access Journals (Sweden)

    Linsen Xu

    2013-10-01

    Full Text Available A kinematics analysis of a biologically-inspired biped robot is carried out, and the trajectory of the robot foot is understood. For calculating the pressure distribution across a robot foot before touching the surface of water, the compression flow of air and the depression motion of the water surface are considered. The pressure model after touching the water surface has been built according to the theory of rigid body planar motion. The multi-material ALE algorithm is applied to emulate the course of the foot slapping water. The simulation results indicate that the model of the bionic robot can satisfy the water-running function. The real prototype of the robot is manufactured to test its function of running on water. When the biped robot is running on water, the average force generated by the propulsion mechanism is about 1.3N. The experimental results show that the propulsion system can satisfy the requirement of biped robot running on water.

  6. Alternative Motion Control for Educational Biped BRAT Robots

    Directory of Open Access Journals (Sweden)

    Levente Barabas

    2015-12-01

    Full Text Available In this paper an alternative control solution will be proposed for an educational biped BRAT robot by replacing its SSC-32 servomotor controller with an Arduino R3 development board. Also we will be approaching the problem of adapting the existing electronic circuit to the new requirements and proposing a new application by adding an ultrasonic distance sensor in order to increase the versatility of the robot and make it capable to interact with its environment.

  7. A Computational Mechatronics Approach for the Analysis, Synthesis and Design of a Simple Active Biped Robot: Theory and Experiments

    Directory of Open Access Journals (Sweden)

    L.-I. Lugo-Villeda

    2006-01-01

    Full Text Available Biped walking is a quite complex process that has been mastered only by human beings. Transferring this skill to a robot requires implementing advanced techniques in every aspect. To this end, a computational mechatronics platform was integrated to run the scheme for the analysis, synthesis and design to achieve planar biped walking. The result is an advanced computational tool that integrates advanced modeling and control as well as path planning techniques along with hardware-in-the-loop for perhaps the simplest biped robot. An experimental underactuated three-degree-of-freedom (two active and one passive active biped robot yields encouraging results; that is, achieving biped walking with this simple device requires adding a telescopic support leg. Considering a more complete dynamic model to take into account frictional and contact forces.

  8. Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2014-01-01

    Full Text Available This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot’s feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

  9. Modeling, Control and Simulation of Three-Dimensional Robotic Systems with Applications to Biped Locomotion.

    Science.gov (United States)

    Zheng, Yuan-Fang

    A three-dimensional, five link biped system is established. Newton-Euler state space formulation is employed to derive the equations of the system. The constraint forces involved in the equations can be eliminated by projection onto a smaller state space system for deriving advanced control laws. A model-referenced adaptive control scheme is developed to control the system. Digital computer simulations of point to point movement are carried out to show that the model-referenced adaptive control increases the dynamic range and speeds up the response of the system in comparison with linear and nonlinear feedback control. Further, the implementation of the controller is simpler. Impact effects of biped contact with the environment are modeled and studied. The instant velocity change at the moment of impact is derived as a function of the biped state and contact speed. The effects of impact on the state, as well as constraints are studied in biped landing on heels and toes simultaneously or on toes first. Rate and nonlinear position feedback are employed for stability of the biped after the impact. The complex structure of the foot is properly modeled. A spring and dashpot pair is suggested to represent the action of plantar fascia during the impact. This action prevents the arch of the foot from collapsing. A mathematical model of the skeletal muscle is discussed. A direct relationship between the stimulus rate and the active state is established. A piecewise linear relation between the length of the contractile element and the isometric force is considered. Hill's characteristic equation is maintained for determining the actual output force during different shortening velocities. A physical threshold model is proposed for recruitment which encompasses the size principle, its manifestations and exceptions to the size principle. Finally the role of spindle feedback in stability of the model is demonstrated by study of a pair of muscles.

  10. APPROACHES FOR STABILIZING OF BIPED ROBOTS IN A STANDING POSITION ON MOVABLE SUPPORT

    Directory of Open Access Journals (Sweden)

    D. N. Bazylev

    2015-05-01

    Full Text Available Subject of research. The problem of stabilization for biped walking robots on the surface is considered. The angle and angular velocity of the movable surface varies randomly in a limited range. Methods. Two approaches of stabilization of biped robots are proposed. The first approach requires the construction of kinematic and dynamic models of the robot. Dynamic equations were obtained using the Euler-Lagrange method. The control algorithm is based on the method of inverse dynamics, in which the original nonlinear dynamic model is linearized by a feedback. The second stabilization algorithm uses only the kinematic model of the robot. A hybrid controller is developed for this approach. In the case of low angular velocities of the movable support the robot stabilization is performed by PD controller on the basis of the angle error of deflection of the servo shaft. In the case of relatively high angular velocities of the support the controller also uses the gyroscope readings mounted in the robot torso. Maintenance of the robot’s gravity center over the center of bearing area for providing a stable position was chosen as a goal of control in both approaches. Main results. Efficiency and effectiveness of the proposed approaches for stabilization of biped robots on the moving surface are demonstrated by the numerical simulation. Both methods provide stability of the balancing robots on changing the angle of inclination and angular velocity of the moving surface in the ranges (50; 50 and (40 / sec; 40 / sec , respectively. Comparative analysis of these approaches under identical requirements for quality indicators of transients is also provided: transient time 0.2 sec п t  and overshoot   0%. The conditions under which each of the control methods will be more effective in practice are identified.

  11. Design and Experimental Development of a Pneumatic Stiffness Adjustable Foot System for Biped Robots Adaptable to Bumps on the Ground

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2017-09-01

    Full Text Available Walking on rough terrains still remains a challenge that needs to be addressed for biped robots because the unevenness on the ground can easily disrupt the walking stability. This paper proposes a novel foot system with passively adjustable stiffness for biped robots which is adaptable to small-sized bumps on the ground. The robotic foot is developed by attaching eight pneumatic variable stiffness units to the sole separately and symmetrically. Each variable stiffness unit mainly consists of a pneumatic bladder and a mechanical reversing valve. When walking on rough ground, the pneumatic bladders in contact with bumps are compressed, and the corresponding reversing valves are triggered to expel out the air, enabling the pneumatic bladders to adapt to the bumps with low stiffness; while the other pneumatic bladders remain rigid and maintain stable contact with the ground, providing support to the biped robot. The performances of the proposed foot system, including the variable stiffness mechanism, the adaptability on the bumps of different heights, and the application on a biped robot prototype are demonstrated by various experiments.

  12. Fundamentals of soft robot locomotion.

    Science.gov (United States)

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  13. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  14. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  15. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    Science.gov (United States)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  16. Numerical simulation for design of biped locomotion robots

    International Nuclear Information System (INIS)

    Kume, Etsuo; Takanishi, Atsuo

    1993-01-01

    A mechanical design study of anthropomorphic walking robots for patrol and inspection in nuclear facilities is being performed at Computing and Information Systems Center (CISC) of JAERI. We mainly focus on developing a software system to find a stable walking pattern, given robot models described by links, joints and so on. One of the features of our software is that some of the body elements, such as actuators and sensors, can be modeled as material particles as well as rigid bodies. The other is that our software has the cabability of obtaining unknown part of robot motions under given part of robot motions, satisfying a stable constraint. In this paper, we present the numerical models and the simulated results. (orig.)

  17. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  18. Origami-based earthworm-like locomotion robots.

    Science.gov (United States)

    Fang, Hongbin; Zhang, Yetong; Wang, K W

    2017-10-16

    Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

  19. Locomotion Gait Planning of Climber Snake-Like Robot

    Directory of Open Access Journals (Sweden)

    Mohammad Nezaminia

    2013-04-01

    Full Text Available In this article a novel breed of snake-like climber robots has been introduced. Structure and operation of the first generation of snake-like climber robot "Marak I" has been discussed. The gait planning for two dimensional locomotion of a novel snake-like climber robot "Marak I" is presented. The types of locomotion investigated were rectilinear and wheeling gaits. The gaits of locomotion were experimented and their suitability for various applications has been mentioned. Some encountered practical problems plus solutions were addressed. Finally we found out that: the vertical motion was producing more fault than horizontal locomotion, and notably the fastest gait of locomotion was the wheeling gait

  20. Artificial locomotion control

    DEFF Research Database (Denmark)

    Azevedo, Christine; Poignet, Philippe; Espiau, Bernard

    2004-01-01

    of postural and walking control; use of evolutive optimization objectives; on-line event handling and environment adaptation and anticipation. This leads to the synthesis of an original control scheme based on non-linear model predictive control: Trajectory Free NMPC. The movement is specified implicitly......This paper concerns the simultaneous synthesis and control of walking gaits for biped robots. The goal is to propose an adaptable and reactive control law for two-legged machines. The problem is addressed with human locomotion as a reference. The starting point of our work is an analysis of human...... walking from descriptive (biomechanics) as well as explicative (neuroscience and physiology) points of view, the objective being to stress the relevant elements for the approach of robot control. The adopted principles are then: no joint trajectory tracking; explicit distinction and integration...

  1. Development of a Novel Locomotion Algorithm for Snake Robot

    International Nuclear Information System (INIS)

    Khan, Raisuddin; Billah, Md Masum; Watanabe, Mitsuru; Shafie, A A

    2013-01-01

    A novel algorithm for snake robot locomotion is developed and analyzed in this paper. Serpentine is one of the renowned locomotion for snake robot in disaster recovery mission to overcome narrow space navigation. Several locomotion for snake navigation, such as concertina or rectilinear may be suitable for narrow spaces, but is highly inefficient if the same type of locomotion is used even in open spaces resulting friction reduction which make difficulties for snake movement. A novel locomotion algorithm has been proposed based on the modification of the multi-link snake robot, the modifications include alterations to the snake segments as well elements that mimic scales on the underside of the snake body. Snake robot can be able to navigate in the narrow space using this developed locomotion algorithm. The developed algorithm surmount the others locomotion limitation in narrow space navigation

  2. Kinematically stable bipedal locomotion using ionic polymer–metal composite actuators

    International Nuclear Information System (INIS)

    Hosseinipour, Milad; Elahinia, Mohammad

    2013-01-01

    Ionic conducting polymer–metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical–mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force–torque generation of IPMCs for biped locomotion concludes this paper. (paper)

  3. Small-scale soft-bodied robot with multimodal locomotion

    Science.gov (United States)

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  4. Architectures of soft robotic locomotion enabled by simple mechanical principles.

    Science.gov (United States)

    Zhu, Liangliang; Cao, Yunteng; Liu, Yilun; Yang, Zhe; Chen, Xi

    2017-06-28

    In nature, a variety of limbless locomotion patterns flourish, from the small or basic life forms (Escherichia coli, amoebae, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past few decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and going beyond the existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by the simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc. Some are able to reach high speed, high efficiency, and overcome obstacles. All these locomotion strategies and functions can be integrated into a simple beam model. The proposed simple and robust models are adaptive for severe and complex environments. These elegant designs for diverse robotic locomotion patterns are expected to underpin future deployments of soft robots and to inspire a series of advanced designs.

  5. Pareto design of state feedback tracking control of a biped robot via multiobjective PSO in comparison with sigma method and genetic algorithms: modified NSGAII and MATLAB's toolbox.

    Science.gov (United States)

    Mahmoodabadi, M J; Taherkhorsandi, M; Bagheri, A

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot.

  6. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  7. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  8. Development of a three-dimensional dynamic biped walking via the oscillation of telescopic knee joint and its gait analysis

    Directory of Open Access Journals (Sweden)

    T. Kinugasa

    2015-12-01

    Full Text Available The purpose of this study is to extend the three-dimensional (3-D passive dynamic biped walker to a 3-D dynamic biped walker, i.e., a walker that can walk on a horizontal surface based on a passive dynamic walking. A new prototype of 3-D biped walker called RW04, which has telescopic knee joints, was developed and its ability for walking was validated through some experiments. A sinusoidal oscillation, which is regarded as a central pattern generator with no sensory feedback, was provided to the knee joints to achieve the biped walking. The results showed that the biped gait of RW04 was possible only via a sinusoidal oscillation of the knee joint. Moreover, the 3-D dynamic walking gait via frequency response and zero moment point (ZMP trajectory was also analyzed. The biped locomotion had a resonance, i.e., the frequency matched the natural frequency of the locomotion in the gain property. An “8” shaped ZMP trajectory was observed, which was found to be similar to that of the human gait. However, the simple sinusoidal oscillation had limitations such as stride reduction or discontinuation by phase difference. Therefore, in future work, more adaptable control strategy such as a sensory feedback using ZMP should be provided.

  9. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  10. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation

    Directory of Open Access Journals (Sweden)

    A. Espinal

    2016-01-01

    Full Text Available A bioinspired locomotion system for a quadruped robot is presented. Locomotion is achieved by a spiking neural network (SNN that acts as a Central Pattern Generator (CPG producing different locomotion patterns represented by their raster plots. To generate these patterns, the SNN is configured with specific parameters (synaptic weights and topologies, which were estimated by a metaheuristic method based on Christiansen Grammar Evolution (CGE. The system has been implemented and validated on two robot platforms; firstly, we tested our system on a quadruped robot and, secondly, on a hexapod one. In this last one, we simulated the case where two legs of the hexapod were amputated and its locomotion mechanism has been changed. For the quadruped robot, the control is performed by the spiking neural network implemented on an Arduino board with 35% of resource usage. In the hexapod robot, we used Spartan 6 FPGA board with only 3% of resource usage. Numerical results show the effectiveness of the proposed system in both cases.

  11. Locomotion of inchworm-inspired robot made of smart soft composite (SSC)

    International Nuclear Information System (INIS)

    Wang, Wei; Lee, Jang-Yeob; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon; Chu, Won-Shik

    2014-01-01

    A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion. Each foot of the robot has three segments with different friction coefficients to implement the anchor and sliding movement. Then, utilizing actuation patterns between the body and feet based on the looping gait, the robot achieves a biomimetic inchworm gait. Experiments were conducted to evaluate the robot’s locomotive performance for both linear locomotion and turning movement. Results show that the proposed robot’s stride length was nearly one third of its body length, with a maximum linear speed of 3.6 mm s −1 , a linear locomotion efficiency of 96.4%, a maximum turning capability of 4.3 degrees per stride, and a turning locomotion efficiency of 39.7%. (paper)

  12. New Joint Design to Create a More Natural and Efficient Biped

    Directory of Open Access Journals (Sweden)

    Giuseppina Gini

    2009-01-01

    Full Text Available This paper presents a human-oriented approach to design the mechanical architecture and the joint controller for a biped robot. Starting from the analysis of the human lower limbs, we figured out which features of the human legs are fundamental for a correct walking motion, and can be adopted in the mechanical design of a humanoid robot. We focus here on the knee, designed as a compliant human-like knee instead of a classical pin-joint, and on the foot, characterised by the mobility and lightness of the human foot. We implemented an elastic actuator, with a simple position control paradigm that sets the joint stiffness in real time, and developed the basic controller. Results in simulation are discussed. In our approach the robot gains in adaptability and energetic efficiency, which are the most challenging issues for a biped robot.

  13. Paper-based Pneumatic Locomotive Robot with Sticky Actuator

    Directory of Open Access Journals (Sweden)

    Du Xiaohan

    2016-01-01

    Full Text Available Demands for small-scale and low-cost robots have witnessed a great increase in recent years [1–5]. This paper introduces the design and fabrication of a novel, simple, low-cost and designer-friendly locomotive robot. The materials and tools to build the robot originate from everyday life. The robot is pneumatically powered and manually controlled by simply pumping and vacuuming the syringe repeatedly, which realizes reliable locomotion by folding and opening of the planes. In order to realize this complicated motion, a “3D Sticky Actuator” is developed. The motion and force analysis of actuator are then modelled by the numerical method to develop the relations between design parameters. This suggests a systematic and user interactive way of manufacturing various shapes of the actuator, depending on user-defined road condition (e.g. obstacles and slopes and other constraints. One key advantage of the paper-based robot is suggested by its high feasibility.

  14. Foot Placement Indicator for Balance of Planar Bipeds with Point Feet

    Directory of Open Access Journals (Sweden)

    Pieter van Zutven

    2013-05-01

    Full Text Available Abstract If humanoid robots are to be used in society, they should be able to maintain their balance. Knowing where to step is crucially important. In this paper we contribute an algorithm that can compute the foot step location such that bipedal balance is maintained for planar bipeds with point feet and an arbitrary number of non-massless links on a horizontal and flat ground. The algorithm is called the foot placement indicator (FPI and it extends the foot placement estimator (FPE. The FPE uses an inverted pendulum model to capture the dynamics of a humanoid robot, whereas the FPI deals with multi-body models with distributed masses. This paper analyses equilibrium sets and the stability of planar bipeds with point feet. The algorithm uses conservation of energy throughout the step, taking into account the instantaneous impact dynamics at foot strike. A simulation case study on a five-link planar biped shows the effectiveness of the FPI.

  15. Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot

    Directory of Open Access Journals (Sweden)

    Huiming Xing

    2018-01-01

    Full Text Available We describe the novel, multiply gaited, vectored water-jet, hybrid locomotion-capable, amphibious spherical robot III (termed ASR-III featuring a wheel-legged, water-jet composite driving system incorporating a lifting and supporting wheel mechanism (LSWM and mechanical legs with a water-jet thruster. The LSWM allows the ASR-III to support the body and slide flexibly on smooth (flat terrain. The composite driving system facilitates two on-land locomotion modes (sliding and walking and underwater locomotion mode with vectored thrusters, improving adaptability to the amphibious environment. Sliding locomotion improves the stability and maneuverability of ASR-III on smooth flat terrain, whereas walking locomotion allows ASR-III to conquer rough terrain. We used both forward and reverse kinematic models to evaluate the walking and sliding gait efficiency. The robot can also realize underwater locomotion with four vectored water-jet thrusters, and is capable of forward motion, heading angle control and depth control. We evaluated LSWM efficiency and the sliding velocities associated with varying extensions of the LSWM. To explore gait stability and mobility, we performed on-land experiments on smooth flat terrain to define the optimal stride length and frequency. We also evaluated the efficacy of waypoint tracking when the sliding gait was employed, using a closed-loop proportional-integral-derivative (PID control mechanism. Moreover, experiments of forward locomotion, heading angle control and depth control were conducted to verify the underwater performance of ASR-III. Comparison of the previous robot and ASR-III demonstrated the ASR-III had better amphibious motion performance.

  16. HoverBots: Precise Locomotion Using Robots That Are Designed for Manufacturability

    Directory of Open Access Journals (Sweden)

    Markus P. Nemitz

    2017-11-01

    Full Text Available Scaling up robot swarms to collectives of hundreds or even thousands without sacrificing sensing, processing, and locomotion capabilities is a challenging problem. Low-cost robots are potentially scalable, but the majority of existing systems have limited capabilities, and these limitations substantially constrain the type of experiments that could be performed by robotics researchers. As an alternative to increasing the quantity of robots by reducing their functionality, we have developed a new technology that delivers increased functionality at low-cost. In this study, we present a comprehensive literature review on the most commonly used locomotion strategies of swarm robotic systems. We introduce a new type of low-friction locomotion—active low-friction locomotion—and we show its first implementation in the HoverBot system. The HoverBot system consists of an air levitation and magnet table, and a HoverBot agent. HoverBot agents are levitating circuit boards that we have equipped with an array of planar coils and a Hall-effect sensor. The HoverBot agent uses its coils to pull itself toward magnetic anchors that are embedded into a levitation table. These robots use active low-friction locomotion; consist of only surface-mount components; circumvent actuator calibration; are capable of odometry by using a single Hall-effect sensor; and perform precise movement. We conducted three hours of experimental evaluation of the HoverBot system in which we observed the system performing more than 10,000 steps. We also demonstrate formation movement, random collision, and straight collisions with two robots. This study demonstrates that active low-friction locomotion is an alternative to wheeled and slip-stick locomotion in the field of swarm robotics.

  17. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in un- known terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et. la [3...

  18. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, J. C.; Stoy, K.

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in unknown terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et al. [1...

  19. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  20. Quasi-dynamic walk of a quadruped locomotion robot using optimal tracking control

    International Nuclear Information System (INIS)

    Uchida, Hiroaki; Nonami, Kenzo; Chiba, Yasunori; Koyama, Kakutaro.

    1994-01-01

    Recently, many research works of quadruped locomotion robots, which are considered to be operable on irregular terrain, have been carried out. In the case of realizing ideal motion control of the quadruped locomotion robot, it is assumed that hierarchical cooperative control consisting of decentralized control and centralized control is desirable. In the case that the locomotion robot moves at high speed, it is impossible to follow the desired trajectory because using only the feedback control method includes time delay. It is known that feedforward control input is valid for such motion control. In this paper, decentralized control is realized to apply optimal tracking control using feedforward control input to the quadruped locomotion robot, as the first step. As a result, it is determined that the angle variation of the foot and the stride applying optimal tracking control input are large compared with using only feedback control. It is verified that feedforward control input is useful to control the trajectory of the tip of the foot in high speed locomotion. (author)

  1. A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.

    Science.gov (United States)

    Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong

    2018-04-01

    A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.

  2. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  3. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  4. A study of the passive gait of a compass-like biped robot: Symmetry and chaos

    International Nuclear Information System (INIS)

    Goswami, A.; Espiau, B.; Thuilot, B.

    1998-01-01

    The focus of this work is a systematic study of the passive gait of a compass-like planar, biped robot on inclined slopes. The robot is kinematically equivalent to a double pendulum, possessing two kneeless legs with point masses and a third point mass at the hip joint. Three parameters, namely, the ground-slope angle and the normalized mass and length of the robot describe its gait. The authors show that in response to a continuous change in any one of its parameters, the symmetric and steady stable gait of the unpowered robot gradually evolves through a regime of bifurcations characterized by progressively complicated asymmetric gaits, eventually arriving at an apparently chaotic gait where not two steps are identical. The robot can maintain this gait indefinitely. A necessary (but not sufficient) condition for the stability of such gaits is the contraction of the phase-fluid volume. For this frictionless robot, the volume contraction, which the authors compute, is caused by the dissipative effects of the ground-impact model. In the chaotic regime, the fractal dimension of the robot's strange attractor (2.07) compared to its state-space dimension (4) also reveals strong contraction. The authors present a novel graphical technique based on the first return map that compactly captures the entire evolution of the gait, from symmetry to chaos. Additional passive dissipative elements in the robot joint results in a significant improvement in the stability and the versatility of the gait, and provide a rich repertoire for simple controls laws

  5. Episodic reinforcement learning control approach for biped walking

    Directory of Open Access Journals (Sweden)

    Katić Duško

    2012-01-01

    Full Text Available This paper presents a hybrid dynamic control approach to the realization of humanoid biped robotic walk, focusing on the policy gradient episodic reinforcement learning with fuzzy evaluative feedback. The proposed structure of controller involves two feedback loops: a conventional computed torque controller and an episodic reinforcement learning controller. The reinforcement learning part includes fuzzy information about Zero-Moment- Point errors. Simulation tests using a medium-size 36-DOF humanoid robot MEXONE were performed to demonstrate the effectiveness of our method.

  6. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  7. Effects of upper body parameters on biped walking efficiency studied by dynamic optimization

    Directory of Open Access Journals (Sweden)

    Kang An

    2016-12-01

    Full Text Available Walking efficiency is one of the considerations for designing biped robots. This article uses the dynamic optimization method to study the effects of upper body parameters, including upper body length and mass, on walking efficiency. Two minimal actuations, hip joint torque and push-off impulse, are used in the walking model, and minimal constraints are set in a free search using the dynamic optimization. Results show that there is an optimal solution of upper body length for the efficient walking within a range of walking speed and step length. For short step length, walking with a lighter upper body mass is found to be more efficient and vice versa. It is also found that for higher speed locomotion, the increase of the upper body length and mass can make the walking gait optimal rather than other kind of gaits. In addition, the typical strategy of an optimal walking gait is that just actuating the swing leg at the beginning of the step.

  8. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  9. BiLBIQ A Biologically Inspired Robot with Walking and Rolling Locomotion

    CERN Document Server

    King, Ralf Simon

    2013-01-01

    The book ‘BiLBIQ: A biologically inspired Robot with walking and rolling locomotion’ deals with implementing a locomotion behavior observed in the biological archetype Cebrennus villosus to a robot prototype whose structural design needs to be developed.   The biological sample is investigated as far as possible and compared to other evolutional solutions within the framework of nature’s inventions. Current achievements in robotics are examined and evaluated for their relation and relevance to the robot prototype in question. An overview of what is state of the art in actuation ensures the choice of the hardware available and most suitable for this project. Through a constant consideration of the achievement of two fundamentally different ways of locomotion with one and the same structure, a robot design is developed and constructed taking hardware constraints into account. The development of a special leg structure that needs to resemble and replace body elements of the biological archetype is a speci...

  10. Muscle emulation with DC motor and neural networks for biped robots.

    Science.gov (United States)

    Serhan, Hayssam; Nasr, Chaiban G; Henaff, Patrick

    2010-08-01

    This paper shows how to use a DC motor and its PID controller, to behave analogously to a muscle. A model of the muscle that has been learned by a NNARX (Neural Network Auto Regressive eXogenous) structure is used. The PID parameters are tuned by an MLP Network with a special indirect online learning algorithm. The calculation of the learning algorithm is performed based on a mathematical equation of the DC motor or with a Neural Network identification of the motor. For each of the two algorithms, the output of the muscle model is used as a reference for the DC motor control loop. The results show that we succeeded in forcing the physical system to behave in the same way as the muscle model with acceptable margin of error. An implementation in the knees of a simulated biped robot is realized. Simulation compares articular trajectories with and without the muscle emulator and shows that with muscle emulator, articular trajectories become closer to the human being ones and that total power consumption is reduced.

  11. Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities †

    Directory of Open Access Journals (Sweden)

    Filippo Sanfilippo

    2017-03-01

    Full Text Available In nature, snakes can gracefully traverse a wide range of different and complex environments. Snake robots that can mimic this behaviour could be fitted with sensors and transport tools to hazardous or confined areas that other robots and humans are unable to access. In order to carry out such tasks, snake robots must have a high degree of awareness of their surroundings (i.e., perception-driven locomotion and be capable of efficient obstacle exploitation (i.e., obstacle-aided locomotion to gain propulsion. These aspects are pivotal in order to realise the large variety of possible snake robot applications in real-life operations such as fire-fighting, industrial inspection, search-and-rescue, and more. In this paper, we survey and discuss the state of the art, challenges, and possibilities of perception-driven obstacle-aided locomotion for snake robots. To this end, different levels of autonomy are identified for snake robots and categorised into environmental complexity, mission complexity, and external system independence. From this perspective, we present a step-wise approach on how to increment snake robot abilities within guidance, navigation, and control in order to target the different levels of autonomy. Pertinent to snake robots, we focus on current strategies for snake robot locomotion in the presence of obstacles. Moreover, we put obstacle-aided locomotion into the context of perception and mapping. Finally, we present an overview of relevant key technologies and methods within environment perception, mapping, and representation that constitute important aspects of perception-driven obstacle-aided locomotion.

  12. The Rh-1 Full-Size Humanoid Robot: Design, Walking Pattern Generation and Control

    Directory of Open Access Journals (Sweden)

    M. Arbulú

    2009-01-01

    motion patterns in order to adjust it to the continuously changing environment. Experimental results concerning biped locomotion of the Rh-1 humanoid robot are presented and discussed.

  13. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Onal, Cagdas D; Rus, Daniela

    2013-01-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s −1 . (paper)

  14. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    Science.gov (United States)

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  15. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)

    2011-09-15

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  16. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    International Nuclear Information System (INIS)

    Asnafi, Alireza; Mahzoon, Mojtaba

    2011-01-01

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  17. Nonlinear control methods for planar carangiform robot fish locomotion

    OpenAIRE

    Morgansen, Kristi A.; Duindam, Vincent; Mason, Richard J.; Burdick, Joel W.; Murray, Richard M.

    2001-01-01

    Considers the design of motion control algorithms for robot fish. We present modeling, control design, and experimental trajectory tracking results for an experimental planar robotic fish system that is propelled using carangiform-like locomotion. Our model for the fish's propulsion is based on quasi-steady fluid flow. Using this model, we propose gaits for forward and turning trajectories and analyze system response under such control strategies. Our models and predictions are verified by ex...

  18. Foot placement indicator for balance of planar bipeds with point feet

    NARCIS (Netherlands)

    Zutven, van P.W.M.; Nijmeijer, H.

    2013-01-01

    When humanoid robots are going to be used in society, they should be capable to maintain the balance. Knowing where to step appears to be crucially important to remain balanced. In this paper we contribute an algorithm for planar bipeds with point feet and an arbitrary number of non-massless links

  19. Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model

    Science.gov (United States)

    Yu, Guochen; Zhang, Jiapeng; Bo, Wu

    2018-01-01

    In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.

  20. Electric-Pneumatic Actuator: A New Muscle for Locomotion

    Directory of Open Access Journals (Sweden)

    Maziar Ahmad Sharbafi

    2017-10-01

    Full Text Available A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA as an enhanced variable impedance actuator (VIA. EPA is consisted of a pneumatic artificial muscle (PAM and an electric motor (EM. In contrast to other VIAs, the pneumatic artificial muscle (PAM within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot show improved efficiency of the actuator at different frequencies.

  1. Analysis of double support phase of biped robot and multi-objective ...

    Indian Academy of Sciences (India)

    ing objectives, namely power consumption and dynamic balance margin have been ... in detail to arrive at a complete knowledge of the biped walking systems on .... measured in the anti-clockwise sense with respect to the vertical axis.

  2. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    Science.gov (United States)

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  3. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  4. CPG-based Locomotion Controller Design for a Boxfish-like Robot

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-06-01

    Full Text Available This paper focuses on a Central Pattern Generator (CPG-based locomotion controller design for a boxfish-like robot. The bio-inspired controller is aimed at flexible switching in multiple 3D swimming patterns and exact attitude control of yaw and roll such that the robot will swim more like a real boxfish. The CPG network comprises two layers, the lower layer is the network of coupled linear oscillators and the upper is the transition layer where the lower-dimensional locomotion stimuli are transformed into the higher-dimensional control parameters serving for all the oscillators. Based on such a two-layer framework, flexible switching between multiple three-dimensional swimming patterns, such as swimming forwards/backwards, turning left/right, swimming upwards/downwards and rolling clockwise/counter-clockwise, can be simply realized by inputting different stimuli. Moreover, the stability of the CPG network is strictly proved to guarantee the intrinsic stability of the swimming patterns. As to exact attitude control, based on this open-loop CPG network and the sensory feedback from the Inertial Measurement Unit (IMU, a closed-loop CPG controller is advanced for yaw and roll control of the robotic fish for the first time. This CPG-based online attitude control for a robotic fish will greatly facilitate high-level practical underwater applications. A series of relevant experiments with the robotic fish are conducted systematically to validate the effectiveness and stability of the open-loop and closed-loop CPG controllers.

  5. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.

    Science.gov (United States)

    Calisti, M; Corucci, F; Arienti, A; Laschi, C

    2015-07-30

    This paper studies underwater legged locomotion (ULL) by means of a robotic octopus-inspired prototype and its associated model. Two different types of propulsive actions are embedded into the robot model: reaction forces due to leg contact with the ground and hydrodynamic forces such as the drag arising from the sculling motion of the legs. Dynamic parameters of the model are estimated by means of evolutionary techniques and subsequently the model is exploited to highlight some distinctive features of ULL. Specifically, the separation between the center of buoyancy (CoB)/center of mass and density affect the stability and speed of the robot, whereas the sculling movements contribute to propelling the robot even when its legs are detached from the ground. The relevance of these effects is demonstrated through robotic experiments and model simulations; moreover, by slightly changing the position of the CoB in the presence of the same feed-forward activation, a number of different behaviors (i.e. forward and backward locomotion at different speeds) are achieved.

  6. System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas

    2015-01-01

    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  7. Animal and robot experiments to discover principles behind the evolution of a minimal locomotor apparatus for robust legged locomotion

    Science.gov (United States)

    McInroe, Benjamin; Astley, Henry; Kawano, Sandy; Blob, Richard; Goldman, Daniel I.

    2015-03-01

    In the evolutionary transition from an aquatic to a terrestrial environment, early walkers adapted to the challenges of locomotion on complex, flowable substrates (e.g. sand and mud). Our previous biological and robotic studies have demonstrated that locomotion on such substrates is sensitive to both limb morphology and kinematics. Although reconstructions of early vertebrate skeletal morphologies exist, the kinematic strategies required for successful locomotion by these organisms have not yet been explored. To gain insight into how early walkers contended with complex substrates, we developed a robotic model with appendage morphology inspired by a model analog organism, the mudskipper. We tested mudskippers and the robot on different substrates, including rigid ground and dry granular media, varying incline angle. The mudskippers moved effectively on all level substrates using a fin-driven gait. But as incline angle increased, the animals used their tails in concert with their fins to generate propulsion. Adding an actuated tail to the robot improved robustness, making possible locomotion on otherwise inaccessible inclines. With these discoveries, we are elucidating a minimal template that may have allowed the early walkers to adapt to locomotion on land. This work was supported by NSF PoLS.

  8. Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.

    Science.gov (United States)

    Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan

    2018-05-27

    Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    Science.gov (United States)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  10. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-09-02

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  11. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons

    Directory of Open Access Journals (Sweden)

    Yi Long

    2016-09-01

    Full Text Available Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM optimized by particle swarm optimization (PSO to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz, a three-layer wavelet packet analysis (WPA is used for feature extraction, after which, the kernel principal component analysis (kPCA is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  12. Development and Testing of a Mobile Robot with Hybrid Legged-Wheeled Locomotion

    Directory of Open Access Journals (Sweden)

    Petre Barbu

    2017-06-01

    Full Text Available In this paper the authors present the development and testing process of a mobile robot with hybrid legged-wheeled locomotion, that can be used for exploring dangerous environments. The robot has a high adaptability to rough terrain by being able to modify its ride height, to overpass step or ditch type obstacles and most of all, being able to operate while overturned or to revert itself into the normal operating position.

  13. Research on one Bio-inspired Jumping Locomotion Robot for Search and Rescue

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2014-10-01

    Full Text Available Jumping locomotion is much more effective than other locomotion means in order to tackle the unstructured and complex environment in research and rescue. Here, a bio-inspired jumping robot with a closed-chain mechanism is proposed to achieve the power amplification during taking-off. Through actuating one variable transmission mechanism to change the transmission ratio, the jumping robot reveals biological characteristics in the phase of posture adjustment when adjusting the height and distance of one jump. The kinematics and dynamics of the simplified jumping mechanism model in one jumping cycle sequence are analysed. A compliant contact model considering nonlinear damping is investigated for jumping performance under different terrain characteristics. The numerical simulation algorithm with regard to solving the dynamical equation is described and simulation results are discussed. Finally, one primary prototype and experiment are described. The experimental results show the distance of jumping in the horizontal direction increases with the increasing gear ratio, while the height of jumping decreases in reverse. The jumping robot can enhance the capability to adapt to unknown cluttered environments, such as those encountered in research and rescue, using this strategy.

  14. A Novel Biped Pattern Generator Based on Extended ZMP and Extended Cart-Table Model

    Directory of Open Access Journals (Sweden)

    Guangbin Sun

    2015-07-01

    Full Text Available This paper focuses on planning patterns for biped walking on complex terrains. Two problems are solved: ZMP (zero moment point cannot be used on uneven terrain, and the conventional cart-table model does not allow vertical CM (centre of mass motion. For the ZMP definition problem, we propose the extended ZMP (EZMP concept as an extension of ZMP to uneven terrains. It can be used to judge dynamic balance on universal terrains. We achieve a deeper insight into the connection and difference between ZMP and EZMP by adding different constraints. For the model problem, we extend the cart-table model by using a dynamic constraint instead of constant height constraint, which results in a mathematically symmetric set of three equations. In this way, the vertical motion is enabled and the resultant equations are still linear. Based on the extended ZMP concept and extended cart-table model, a biped pattern generator using triple preview controllers is constructed and implemented simultaneously to three dimensions. Using the proposed pattern generator, the Atlas robot is simulated. The simulation results show the robot can walk stably on rather complex terrains by accurately tracking extended ZMP.

  15. Optimization and Design of Experimental Bipedal Robot

    Czech Academy of Sciences Publication Activity Database

    Zezula, P.; Grepl, Robert

    -, A1 (2005), s. 293-300 ISSN 1210-2717. [Mechatronics, Robotics and Biomechanics 2005. Třešť, 26.09.2005-29.09.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : walking machine * biped robot * computational modelling Subject RIV: JD - Computer Applications, Robotics

  16. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.

    Science.gov (United States)

    Cianchetti, M; Calisti, M; Margheri, L; Kuba, M; Laschi, C

    2015-05-13

    The octopus is an interesting model for the development of soft robotics, due to its high deformability, dexterity and rich behavioural repertoire. To investigate the principles of octopus dexterity, we designed an eight-arm soft robot and evaluated its performance with focused experiments. The OCTOPUS robot presented here is a completely soft robot, which integrates eight arms extending in radial direction and a central body which contains the main processing units. The front arms are mainly used for elongation and grasping, while the others are mainly used for locomotion. The robotic octopus works in water and its buoyancy is close to neutral. The experimental results show that the octopus-inspired robot can walk in water using the same strategy as the animal model, with good performance over different surfaces, including walking through physical constraints. It can grasp objects of different sizes and shapes, thanks to its soft arm materials and conical shape.

  17. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution.

    Science.gov (United States)

    Espinal, Andres; Rostro-Gonzalez, Horacio; Carpio, Martin; Guerra-Hernandez, Erick I; Ornelas-Rodriguez, Manuel; Sotelo-Figueroa, Marco

    2016-01-01

    This paper presents a method to design Spiking Central Pattern Generators (SCPGs) to achieve locomotion at different frequencies on legged robots. It is validated through embedding its designs into a Field-Programmable Gate Array (FPGA) and implemented on a real hexapod robot. The SCPGs are automatically designed by means of a Christiansen Grammar Evolution (CGE)-based methodology. The CGE performs a solution for the configuration (synaptic weights and connections) for each neuron in the SCPG. This is carried out through the indirect representation of candidate solutions that evolve to replicate a specific spike train according to a locomotion pattern (gait) by measuring the similarity between the spike trains and the SPIKE distance to lead the search to a correct configuration. By using this evolutionary approach, several SCPG design specifications can be explicitly added into the SPIKE distance-based fitness function, such as looking for Spiking Neural Networks (SNNs) with minimal connectivity or a Central Pattern Generator (CPG) able to generate different locomotion gaits only by changing the initial input stimuli. The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and a real time validation on a 12 Degrees Of Freedom (DOFs) hexapod robot is presented.

  18. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot

    International Nuclear Information System (INIS)

    Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun

    2014-01-01

    We report on the development of a robot’s dynamic locomotion based on a template which fits the robot’s natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order ‘template’ in a more complex ‘anchor’, the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion. (paper)

  19. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

    International Nuclear Information System (INIS)

    Daltorio, Kathryn A; Horchler, Andrew D; Quinn, Roger D; Boxerbaum, Alexander S; Shaw, Kendrick M; Chiel, Hillel J

    2013-01-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress. (paper)

  20. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.

    Science.gov (United States)

    Daltorio, Kathryn A; Boxerbaum, Alexander S; Horchler, Andrew D; Shaw, Kendrick M; Chiel, Hillel J; Quinn, Roger D

    2013-09-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress

  1. Bioinspired template-based control of legged locomotion

    OpenAIRE

    Ahmad Sharbafi, Maziar

    2018-01-01

    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple mo...

  2. Locomotion through Morphosis

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian

    , this is still not the case. One of the reasons for this is that science does still not fully understand the principles of dynamic locomotion which is a requirement for them to move around in our environment with stairs, obstacles etc. In this thesis the focus will be on the creation of the modular robotic...... it have been build. This will hopefully help to identify which parameters that are affecting the locomotive abilities of a legged robot the most. Experiments shows that the system in its current state is able for form legged robots of various kinds, and perform walking gaits where phenomenon’s also seen...

  3. Sensor-based control of a nine-link biped

    International Nuclear Information System (INIS)

    Furusho, J.; Sano, A.

    1990-01-01

    The authors aimed to realize smooth 3D biped walking in a robot through control based on information obtained from various sensors. They employed a method to control walking by dividing it into motions in the sagittal plane and in the lateral plane. They treated motion in the lateral plane as a regulator problem with two equilibrium states. They also used relatively low gain feedback coefficients obtained from the optimal regulator theory. For motion in the sagittal plane, they put the body speed close to the smooth speed function given in advance by controlling the ankle torque. The effectiveness of the proposed control method was examined by computer simulation and proved by experiments with out BLR-G2 walking robot. The BLR-G2 is equipped with foot pressure and ankle torque sensors to provide information about the condition of contact with the floor. The sole and ankle driving actuators undergo force/torque feedback control based on the sensor information. These contributed toward realizing smooth walking with the sole firmly gripping the floor

  4. Learning and Chaining of Motor Primitives for Goal-directed Locomotion of a Snake-Like Robot with Screw-Drive Units

    DEFF Research Database (Denmark)

    Chatterjee, Sromona; Nachstedt, Timo; Tamosiunaite, Minija

    2015-01-01

    -directed locomotion for the robot. The behavioural primitives of the robot are generated using a reinforcement learning approach called "Policy Improvement with Path Integrals" (PI2). PI2 is numerically simple and has the ability to deal with high-dimensional systems. Here, PI2 is used to learn the robot’s motor...... controls by finding proper locomotion control parameters, like joint angles and screw-drive unit velocities, in a coordinated manner for different goals. Thus, it is able to generate a large repertoire of motor primitives, which are selectively stored to form a primitive library. The learning process...

  5. Multi-modal locomotion: from animal to application

    International Nuclear Information System (INIS)

    Lock, R J; Burgess, S C; Vaidyanathan, R

    2014-01-01

    The majority of robotic vehicles that can be found today are bound to operations within a single media (i.e. land, air or water). This is very rarely the case when considering locomotive capabilities in natural systems. Utility for small robots often reflects the exact same problem domain as small animals, hence providing numerous avenues for biological inspiration. This paper begins to investigate the various modes of locomotion adopted by different genus groups in multiple media as an initial attempt to determine the compromise in ability adopted by the animals when achieving multi-modal locomotion. A review of current biologically inspired multi-modal robots is also presented. The primary aim of this research is to lay the foundation for a generation of vehicles capable of multi-modal locomotion, allowing ambulatory abilities in more than one media, surpassing current capabilities. By identifying and understanding when natural systems use specific locomotion mechanisms, when they opt for disparate mechanisms for each mode of locomotion rather than using a synergized singular mechanism, and how this affects their capability in each medium, similar combinations can be used as inspiration for future multi-modal biologically inspired robotic platforms. (topical review)

  6. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.

    Science.gov (United States)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    2012-07-01

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.

  7. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  8. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems

    Science.gov (United States)

    Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L.; Choset, Howie; Umbanhowar, Paul B.; Goldman, Daniel I.

    2016-11-01

    Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems—a ‘locomotion robophysics’—which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others’ research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant

  9. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  10. Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths

    Science.gov (United States)

    Vanderborght, B.; Verrelst, B.; Van Ham, R.; Van Damme, M.; Versluys, R.; Lefeber, D.

    2008-07-01

    Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built

  11. Reinforcement Learning Approach to Generate Goal-directed Locomotion of a Snake-Like Robot with Screw-Drive Units

    DEFF Research Database (Denmark)

    Chatterjee, Sromona; Nachstedt, Timo; Tamosiunaite, Minija

    2014-01-01

    Abstract—In this paper we apply a policy improvement algorithm called Policy Improvement using Path Integrals (PI2) to generate goal-directed locomotion of a complex snake-like robot with screw-drive units. PI2 is numerically simple and has an ability to deal with high dimensional systems. Here...

  12. CPG-Based Locomotion Control of a Robotic Fish : Using Linear Oscillators and Reducing Control Parameters via PSO

    NARCIS (Netherlands)

    Wang, Chen; Xie, G.; Wang, L.; Cao, M.

    The aim of the present study is to investigate the locomotion control of a robotic fish. To achieve this goal, we design a control architecture based on a novel central pattern generator (CPG) and implement it as a system of coupled linear oscillators. This design differs significantly from the

  13. Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly

    Science.gov (United States)

    Klein, C. A.; Patterson, M. R.

    1982-01-01

    Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.

  14. Introduction to humanoid robotics

    CERN Document Server

    Kajita, Shuuji; Harada, Kensuke; Yokoi, Kazuhito

    2014-01-01

    This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the reader´s understanding.

  15. A locomotive inspection robot for turbine building interior inspection in nuclear power plants

    International Nuclear Information System (INIS)

    Obama, M.; Ozaki, F.; Asano, K.

    1985-01-01

    A locomotive inspection robot, named Turbine Building Inspection System (TBIS), has been developed for turbine building interior inspections in nuclear power plants. This robot is made up of a vehicle, a telescopic support, turning head and a multijoint arm which has dual TV cameras and a diagnostic rod on its tip. The multijoint arm has 17 degrees of freedom and its length is 243 cm. Minimum and maximum heights for the multijoint arm shoulder are 1.5 meter and 4 meters respectively. The total degree of freedom in the combination of the multijoint arm, turning head and telescopic support is 19 and the area, it is capable of inspecting, is equal to the cylindrical dome whose height and diameter are 6.4 meters and 4.8 meters respectively. The design philosophy, hardware structure and operation method of the TBIS are described. 2 refs.; 10 figs

  16. Development of quadruped walking locomotion gait generator using a hybrid method

    International Nuclear Information System (INIS)

    Jasni, F; Shafie, A A

    2013-01-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance

  17. MotionTherapy@Home - First results of a clinical study with a novel robotic device for automated locomotion therapy at home.

    Science.gov (United States)

    Rupp, Rüdiger; Plewa, Harry; Schuld, Christian; Gerner, Hans Jürgen; Hofer, Eberhard P; Knestel, Markus

    2011-02-01

    In incomplete spinal cord injured subjects, task-oriented training regimes are applied for enhancement of neuroplasticity to improve gait capacity. However, a sufficient training intensity can only be achieved during the inpatient phase, which is getting shorter and shorter due to economic restrictions. In the clinical environment, complex and expensive robotic devices have been introduced to maintain the duration and the intensity of the training, but up to now only a few exist for continuation of automated locomotion training at home. For continuation of the automated locomotion training at home prototypes of the compact, pneumatically driven orthosis MoreGait have been realized, which generate the key afferent stimuli for activation of the spinal gait pattern generator. Artificial pneumatic muscles with excellent weight-to-force ratio and safety characteristics have been integrated as joint actuators. Additionally, a Stimulative Shoe for generation of the appropriate foot loading pattern has been developed without the need for verticalization of the user. The first results of the pilot study in eight chronic incomplete spinal cord injured subjects indicate that the home-based therapy is safe and feasible. The therapy related improvements of the walking capacity are in the range of locomotion robots used in clinical settings.

  18. Locomotion of Mexican jumping beans

    International Nuclear Information System (INIS)

    West, Daniel M; K Lal, Ishan; Leamy, Michael J; Hu, David L

    2012-01-01

    The Mexican jumping bean, Laspeyresia saltitans, consists of a hollow seed housing a moth larva. Heating by the sun induces movements by the larva which appear as rolls, jumps and flips by the bean. In this combined experimental, numerical and robotic study, we investigate this unique means of rolling locomotion. Time-lapse videography is used to record bean trajectories across a series of terrain types, including one-dimensional channels and planar surfaces of varying inclination. We find that the shell encumbers the larva's locomotion, decreasing its speed on flat surfaces by threefold. We also observe that the two-dimensional search algorithm of the bean resembles the run-and-tumble search of bacteria. We test this search algorithm using both an agent-based simulation and a wheeled Scribbler robot. The algorithm succeeds in propelling the robot away from regions of high temperature and may have application in biomimetic micro-scale navigation systems. (paper)

  19. Design and analysis of an optimal hopper for use in resonance-based locomotion

    NARCIS (Netherlands)

    Wanders, Ivor; Folkertsma, Gerrit Adriaan; Stramigioli, Stefano

    Quadrupedal running is an efficient form of locomotion found in nature, which serves as an inspiration for robotics. We believe that a resonance-based approach is the path towards energy-efficient legged locomotion and running robots. The first step in working towards this goal is creating an

  20. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    Science.gov (United States)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  1. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-01-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes. (technical note)

  2. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    Science.gov (United States)

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  3. Reinforcement learning: Solving two case studies

    Science.gov (United States)

    Duarte, Ana Filipa; Silva, Pedro; dos Santos, Cristina Peixoto

    2012-09-01

    Reinforcement Learning algorithms offer interesting features for the control of autonomous systems, such as the ability to learn from direct interaction with the environment, and the use of a simple reward signalas opposed to the input-outputs pairsused in classic supervised learning. The reward signal indicates the success of failure of the actions executed by the agent in the environment. In this work, are described RL algorithmsapplied to two case studies: the Crawler robot and the widely known inverted pendulum. We explore RL capabilities to autonomously learn a basic locomotion pattern in the Crawler, andapproach the balancing problem of biped locomotion using the inverted pendulum.

  4. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device

    International Nuclear Information System (INIS)

    Wen, Li; Lauder, George

    2013-01-01

    Recent advances in understanding fish locomotion with robotic devices have included the use of flapping foil robots that swim at a constant swimming speed. However, the speed of even steadily swimming live fishes is not constant because the fish center of mass oscillates axially throughout a tail beat cycle. In this paper, we couple a linear motor that produces controlled oscillations in the axial direction to a robotic flapping foil apparatus to model both axial and side to side oscillatory motions used by freely-swimming fishes. This experimental arrangement allows us to compensate for the substantial inertia of the carriage and motors that drive the oscillating foils. We identify a ‘critically-oscillated’ amplitude of axial motion at which the cyclic oscillations in axial locomotor force are greatly reduced throughout the flapping cycle. We studied the midline kinematics, power consumption and wake flow patterns of non-rigid foils with different lengths and flexural stiffnesses at a variety of axial oscillation amplitudes. We found that ‘critically-oscillated’ peak-to-peak axial amplitudes on the order of 1.0 mm and at the correct phase are sufficient to mimic center of mass motion, and that such amplitudes are similar to center of mass oscillations recorded for freely-swimming live fishes. Flow visualization revealed differences in wake flows of flexible foils between the ‘non-oscillated’ and ‘critically-oscillated’ states. Inertia-compensating methods provide a novel experimental approach for studying aquatic animal swimming, and allow instrumented robotic swimmers to display center of mass oscillations similar to those exhibited by freely-swimming fishes. (paper)

  5. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.

    Science.gov (United States)

    Bishop, P J; Clemente, C J; Weems, R E; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G

    2017-07-01

    How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods ( p < 0.001), as well as the five tallest bird species studied ( p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history. © 2017 The Author(s).

  6. Crucial advantages of tail use in the evolution of vertebrate terrestrial locomotion

    Science.gov (United States)

    Astley, Henry; McInroe, Benjamin; Kawano, Sandy; Blob, Rick; Goldman, Daniel

    In the invasion of terrestrial environment, the first tetrapods faced the challenge of locomotion on flowable substrates (e.g. sand and mud), sometimes oriented at inclines. Although the morphology of many early tetrapods is known, robotic studies have revealed that effective locomotion on these substrates also depends strongly upon kinematics; slight differences in movements of the same appendage can lead to success or failure. Using a model organism (the mudskipper) and a robotic physical model, we demonstrate how muscular tails provided critical locomotor advantages on granular substrates that the first invaders of land likely encountered. Mudskippers use their tails for additional propulsion with increasing frequency as the slope of the granular material increases, and the decline in locomotor performance with slope is shallower when the tail is used. Experiments with a robotic model of the mudskipper showed that, while the tail did not always provide a benefit to locomotion, use of the tail made the robot's performance more robust, achieving effective locomotion on a wider range of slopes, limb postures and foot placements. These results suggest that, rather than simply being an inert appendage, the tails of early tetrapods were vital to their first forays into terrestrial habitats.

  7. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.

    Science.gov (United States)

    Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar

    2013-09-01

    Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion

    OpenAIRE

    Chevallereau , Christine; Boyer , Frédéric; Porez , Mathieu; Mauny , Johan; Aoustin , Yannick

    2017-01-01

    International audience; — To a large extent, robotics locomotion can be viewed as cyclic motions, named gaits. Due to the high complexity of the locomotion dynamics, to find the control laws that ensure an expected gait and its stability with respect to external perturbations, is a challenging issue for feedback control. To address this issue, a promising way is to take inspiration from animals that intensively exploit the interactions of the passive degrees of freedom of their body with thei...

  9. Simple Data-Driven Control for Simulated Bipeds

    NARCIS (Netherlands)

    Geijtenbeek, T.; Pronost, N.G.; van der Stappen, A.F.

    2012-01-01

    We present a framework for controlling physics-based bipeds in a simulated environment, based on a variety of reference motions. Unlike existing methods for control based on reference motions, our framework does not require preprocessing of the reference motion, nor does it rely on inverse dynamics

  10. Multiple Decoupled CPGs with Local Sensory Feedback for Adaptive Locomotion Behaviors of Bio-inspired Walking Robots

    DEFF Research Database (Denmark)

    Shaker Barikhan, Subhi; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    , and their interactions during body and leg movements through the environment. Based on this concept, we present here an artificial bio-inspired walking system. Its intralimb coordination is formed by multiple decoupled CPGs while its interlimb coordination is attained by the interactions between body dynamics...... and the environment through local sensory feedback of each leg. Simulation results show that this bio-inspired approach generates self-organizing emergent locomotion allowing the robot to adaptively form regular patterns, to stably walk while pushing an object with its front legs or performing multiple stepping...

  11. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  12. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape......., significantly simplifying the task of programming self-reconfigurable robots. Our language fully supports programming the ATRON self-reconfigurable robot, and has been used to implement several controllers running both on the physical modules and in simulation.......A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular...

  13. Design of biped hip simulator using SolidWorks

    Science.gov (United States)

    Zainudin, M. R.; Yahya, A.; Fazli, M. I. M.; Syahrom, A.; Harun, F. K. C.; Nazarudin, M. S.

    2017-10-01

    The increasing number of people who underwent both hip implant surgery based on World Health Organization (WHO) has received massive attention from researchers lately to develop various types of hip simulators in order to test the hip implant. Various number of hip simulator have been developed with different functions and capabilities. This paper presents the design development of biped hip simulator using SolidWorks software by taking into consideration some improvement and modifications. The finite element method is used to test the design whether it is safe to be used or not. The biped hip simulator has been successfully designed and ready to be fabricated as the endurance testing shown a positive results. The von Mises stress induced in the material is an alloy steel which is 2,975,862.3 N/m2 lower than the yield strength. Thus, the design is safe to be used as it obey the safety criterion.

  14. Locomotor Sub-functions for Control of Assistive Wearable Robots

    OpenAIRE

    Sharbafi, Maziar A.; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated:...

  15. Decomposition and Cross-Product-Based Method for Computing the Dynamic Equation of Robots

    Directory of Open Access Journals (Sweden)

    Ching-Long Shih

    2012-08-01

    Full Text Available This paper aims to demonstrate a clear relationship between Lagrange equations and Newton-Euler equations regarding computational methods for robot dynamics, from which we derive a systematic method for using either symbolic or on-line numerical computations. Based on the decomposition approach and cross-product operation, a computing method for robot dynamics can be easily developed. The advantages of this computing framework are that: it can be used for both symbolic and on-line numeric computation purposes, and it can also be applied to biped systems, as well as some simple closed-chain robot systems.

  16. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is difficult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any configuration. To optimize the robot’s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  17. Foot placement in robotic bipedal locomotion

    NARCIS (Netherlands)

    De Boer, T.

    2012-01-01

    Human walking is remarkably robust, versatile and energy-efficient: humans have the ability to handle large unexpected disturbances, perform a wide variety of gaits and consume little energy. A bipedal walking robot that performs well on all of these aspects has not yet been developed. Some robots

  18. Snake Robots Modelling, Mechatronics, and Control

    CERN Document Server

    Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2013-01-01

    Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...

  19. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  20. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.

    Science.gov (United States)

    Kano, Takeshi; Yoshizawa, Ryo; Ishiguro, Akio

    2017-08-04

    Snakes change their locomotion patterns in response to the environment. This ability is a motivation for developing snake-like robots with highly adaptive functionality. In this study, a decentralised control scheme of snake-like robots that exhibited autonomous gait transition (i.e. the transition between concertina locomotion in narrow aisles and scaffold-based locomotion on unstructured terrains) was developed. Additionally, the control scheme was validated via simulations. A key insight revealed is that these locomotion patterns were not preprogrammed but emerged by exploiting Tegotae, a concept that describes the extent to which a perceived reaction matches a generated action. Unlike local reflexive mechanisms proposed previously, the Tegotae-based feedback mechanism enabled the robot to 'selectively' exploit environments beneficial for propulsion, and generated reasonable locomotion patterns. It is expected that the results of this study can form the basis to design robots that can work under unpredictable and unstructured environments.

  1. A Spherical Aerial Terrestrial Robot

    Science.gov (United States)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  2. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flipper-driven terrestrial locomotion of a sea turtle-inspired robot

    International Nuclear Information System (INIS)

    Mazouchova, Nicole; Umbanhowar, Paul B; Goldman, Daniel I

    2013-01-01

    To discover principles of flipper-based terrestrial locomotion we study the mechanics of a hatchling sea turtle-inspired robot, FlipperBot (FBot), during quasi-static movement on granular media. FBot implements a symmetric gait using two servo-motor-driven front limbs with flat-plate flippers and either freely rotating or fixed wrist joints. For a range of gaits, FBot moves with a constant step length. However, for gaits with sufficiently shallow flipper penetration or sufficiently large stroke, per step displacement decreases with each successive step resulting in failure (zero forward displacement) within a few steps. For the fixed wrist, failure occurs when FBot interacts with ground disturbed during previous steps, and measurements reveal that flipper generated forces decrease as per step displacement decreases. The biologically inspired free wrist is less prone to failure, but slip-induced failure can still occur if FBot pitches forward and drives its leading edge into the substrate. In the constant step length regime, kinematic and force-based models accurately predict FBot's motion for free and fixed wrist configurations, respectively. When combined with independent force measurements, models and experiments provide insight into how disturbed ground leads to locomotory failure and help explain differences in hatchling sea turtle performance. (paper)

  4. Interdisciplinary Construction and Implementation of a Human sized Humanoid Robot by master students

    DEFF Research Database (Denmark)

    Helbo, Jan; Svendsen, Mads Sølver

    2009-01-01

    With limited funding it seemed a very good idea to encourage master students to design and construct their own human size biped robot.  Because this task is huge and very interdisciplinary different expertises were covered by students from different departments who in turn took over results from...... former students. In the last three years three student groups from respectively Department of Mechanical Engineering and Electronic Systems have been working on the project.  The robot AAU-BOT1 is designed, manufactured, assembled, instrumented and the time for walking should be possible in the near...

  5. Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability

    Science.gov (United States)

    Cowan, Noah; Sefati, Shahin; Neveln, Izaak; Roth, Eatai; Mitchell, Terence; Snyder, James; Maciver, Malcolm; Fortune, Eric

    A surprising feature of animal locomotion is that organisms typically produce substantial forces in directions other than what is necessary to move the animal through its environment, such as perpendicular to, or counter to, the direction of travel. The effect of these forces has been difficult to observe because they are often mutually opposing and therefore cancel out. Using a combination of robotic physical modeling, computational modeling, and biological experiments, we discovered that these forces serve an important role: to simplify and enhance the control of locomotion. Specifically, we examined a well-suited model system, the glass knifefish Eigenmannia virescens, which produces mutually opposing forces during a hovering behavior. By systematically varying the locomotor parameters of our biomimetic robot, and measuring the resulting forces and kinematics, we demonstrated that the production and differential control of mutually opposing forces is a strategy that generates passive stabilization while simultaneously enhancing maneuverability. Mutually opposing forces during locomotion are widespread across animal taxa, and these results indicate that such forces can eliminate the tradeoff between stability and maneuverability, thereby simplifying robotic and neural control.

  6. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion.

    Science.gov (United States)

    Chevallereau, Christine; Boyer, Frédéric; Porez, Mathieu; Mauny, Johan; Aoustin, Yannick

    2017-06-20

    To a large extent, robotics locomotion can be viewed as cyclic motions, named gaits. Due to the high complexity of the locomotion dynamics, to find the control laws that ensure an expected gait and its stability with respect to external perturbations, is a challenging issue for feedback control. To address this issue, a promising way is to take inspiration from animals that intensively exploit the interactions of the passive degrees of freedom of their body with their physical surroundings, to outsource the high-level exteroceptive feedback control to low-level proprioceptive ones. In this case, passive interactions can ensure most of the expected control goals. In this article, we propose a methodological framework to study the role of morphology in the design of locomotion gaits and their stability. This framework ranges from modelling to control aspects, and is illustrated through three examples from bio-inspired locomotion: a three-dimensional micro air vehicle in hovering flight, a pendular planar climber and a bipedal planar walker. In these three cases, we will see how simple considerations based on the morphology of the body can ensure the existence of passive stable gaits without requiring any high-level control.

  7. Regularity in an environment produces an internal torque pattern for biped balance control.

    Science.gov (United States)

    Ito, Satoshi; Kawasaki, Haruhisa

    2005-04-01

    In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.

  8. Dynamic Locomotion With Four and Six-Legged Robots

    National Research Council Canada - National Science Library

    Buehler, M; Saranli, U; Papadopoulos, D; Koditschek, D

    2000-01-01

    .... The Scout II quadruped runs on flat ground in a bounding gait, and was motivated by an effort to understand the minimal mechanical design and control complexity for dynamically stable locomotion...

  9. Designing Emotionally Expressive Robots

    DEFF Research Database (Denmark)

    Tsiourti, Christiana; Weiss, Astrid; Wac, Katarzyna

    2017-01-01

    Socially assistive agents, be it virtual avatars or robots, need to engage in social interactions with humans and express their internal emotional states, goals, and desires. In this work, we conducted a comparative study to investigate how humans perceive emotional cues expressed by humanoid...... robots through five communication modalities (face, head, body, voice, locomotion) and examined whether the degree of a robot's human-like embodiment affects this perception. In an online survey, we asked people to identify emotions communicated by Pepper -a highly human-like robot and Hobbit – a robot...... for robots....

  10. Decoding bipedal locomotion from the rat sensorimotor cortex

    NARCIS (Netherlands)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-01-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower

  11. Modification and Actuator Minimization of the Hip Leg Joint in a Bipedal Robot: A Proposed Design

    Directory of Open Access Journals (Sweden)

    Nirmalya Tripathi

    2014-12-01

    Full Text Available In recent times, there have been numeric applications of Biped Robots. In this paper, a proposed upper leg hip design of a biped was developed taking cost reduction and optimization as factors for consideration. The proposed system introduces a novel method which consists of a vibration reduction (VR DC stepper motor, microcontroller, microprocessor and gearing arrangement. The program in the microprocessor is so designed that it gives a fixed number of cycles/steps to the VR DC stepper motor in clockwise and thereafter in anti-clockwise direction. This turning movement can then be transmitted to the gearing system which precisely moves one upper leg when the VR DC stepper motor moves in clockwise direction, while the other upper leg remains static, and vice-versa. It has been observed that this new proposed system may reduce the cost overhead, weight and the energy consumption incurred by working on a single VR DC stepper motor while conventionally two stepper motors are used to give the motion of the two upper legs in a biped.

  12. Locomotor Sub-functions for Control of Assistive Wearable Robots

    Directory of Open Access Journals (Sweden)

    Maziar A. Sharbafi

    2017-09-01

    Full Text Available A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  13. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    Science.gov (United States)

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  14. Locomotion in ornithischian dinosaurs: an assessment using three-dimensional computational modelling.

    Science.gov (United States)

    Maidment, Susannah C R; Bates, Karl T; Falkingham, Peter L; VanBuren, Collin; Arbour, Victoria; Barrett, Paul M

    2014-08-01

    Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the

  15. Soft segmented inchworm robot with dielectric elastomer muscles

    Science.gov (United States)

    Conn, Andrew T.; Hinitt, Andrew D.; Wang, Pengchuan

    2014-03-01

    Robotic devices typically utilize rigid components in order to produce precise and robust operation. Rigidity becomes a significant impediment, however, when navigating confined or constricted environments e.g. search-and-rescue, industrial pipe inspection. In such cases adaptively conformable soft structures become optimal. Dielectric elastomers (DEs) are well suited for developing such soft robots since they are inherently compliant and can produce large musclelike actuation strains. In this paper, a soft segmented inchworm robot is presented that utilizes pneumatically-coupled DE membranes to produce inchworm-like locomotion. The robot is constructed from repeated body segments, each with a simple control architecture, so that the total length can be readily adapted by adding or removing segments. Each segment consists of a soft inflatable shell (internal pressure in range of 1.0-15.9 mBar) and a pair of antagonistic DE membranes (VHB 4905). Experimental testing of a single body segment is presented and the relationship between drive voltage, pneumatic pressure and active displacement is characterized. This demonstrates that pneumatic coupling of DE membranes induces complex non-linear electro-mechanical behaviour as drive voltage and pneumatic pressure are altered. Locomotion of a two-segment inchworm robot prototype with a passive length of 80 mm is presented. Artificial setae are included on the body shell to generate anisotropic friction for locomotion. A maximum locomotion speed of 4.1 mm/s was recorded at a drive frequency of 1.5 Hz, which compares favourably to biological counterparts. Future development of the soft inchworm robot are discussed including reflexive low-level control of individual segments.

  16. Controlling Tensegrity Robots through Evolution using Friction based Actuation

    Science.gov (United States)

    Kothapalli, Tejasvi; Agogino, Adrian K.

    2017-01-01

    Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.

  17. Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi

    2016-12-01

    Full Text Available In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions.

  18. Houdini: Site and locomotion analysis-driven design of an in-tank mobile cleanup robot

    International Nuclear Information System (INIS)

    Schempf, H.

    1995-10-01

    This paper describes design and locomotion analysis efforts to develop a new reconfigurable and collapsible working machine, dubbed Houdini, to remotely clean up hazardous-waste and petroleum storage tanks. The tethered robot system is designed to allow remote entry through man-way openings as small as 0.61 m in diameter, after which it expands its locomotors and opens up its collapsible backhoe/manipulator and plow to subsequently perform waste or material handling operations. The design is optimized to meet stringent site and safety requirements, and represents a viable alternative to (1) the long-reach manipulation systems proposed for hazardous storage tank cleanup, and (2) confined-entry manual cleanup approaches. The system development has been funded to provide waste mobilization and removal solutions for the hazardous waste storage tanks in the Department of Energy (DoE) Fernald and Oak Ridge complexes. Other potential applications areas are the cleanup of heavy-crude petroleum storage tanks. The author has developed a fully operational prototype which is currently undergoing testing

  19. Relationship between foramen magnum position and locomotion in extant and extinct hominoids.

    Science.gov (United States)

    Neaux, Dimitri; Bienvenu, Thibaut; Guy, Franck; Daver, Guillaume; Sansalone, Gabriele; Ledogar, Justin A; Rae, Todd C; Wroe, Stephen; Brunet, Michel

    2017-12-01

    From the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Novel Reconfigurable Robot for Urban Search and Rescue

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2006-12-01

    Full Text Available This paper presents a novel mobile robot for urban search and rescue based on reconfiguration. The system consists of three identical modules; actually each module is an entire robotic system that can perform distributed activities. To achieve highly adaptive locomotion capabilities, the robot's serial and parallel mechanisms form an active joint, enabling it to change its shape in three dimensions. A docking mechanism enables adjacent modules to connect or disconnect flexibly and automatically. This mechanical structure and the control system are introduced in detail, followed by a description of the locomotion capabilities. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  1. A Novel Reconfigurable Robot for Urban Search and Rescue

    Directory of Open Access Journals (Sweden)

    Zhicheng Deng

    2008-11-01

    Full Text Available This paper presents a novel mobile robot for urban search and rescue based on reconfiguration. The system consists of three identical modules; actually each module is an entire robotic system that can perform distributed activities. To achieve highly adaptive locomotion capabilities, the robot's serial and parallel mechanisms form an active joint, enabling it to change its shape in three dimensions. A docking mechanism enables adjacent modules to connect or disconnect flexibly and automatically. This mechanical structure and the control system are introduced in detail, followed by a description of the locomotion capabilities. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  2. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural...... learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal...... (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully...

  3. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  4. Landing Control of Foot with Springs for Walking Robots on Rough Terrain

    Directory of Open Access Journals (Sweden)

    Moyuru Yamada

    2009-09-01

    Full Text Available Landing control is one of the important issues for biped walking robot, because robots are expected to walk on not only known flat surfaces but also unknown and uneven terrain for working at various fields. This paper presents a new controller design for a robotic foot to land on unknown terrain. The robotic foot considered in this study equips springs to reduce the impact force at the foot landing. There are two objectives in the landing control; achieving the desired ground reaction force and positioning the foot on unknown terrain. To achieve these two objectives simultaneously by adjusting the foot position, we propose a PI force controller with a desired foot position, which guarantees the robust stability of control system with respect to terrain variance, and exact positioning of the foot to unknown terrain. Simulation results using the Open Dynamics Engine demonstrate the effectiveness of the proposed controller.

  5. R and D on robots for nuclear power plants in 'advanced robot technology' project

    International Nuclear Information System (INIS)

    Ando, Hiroaki

    1987-01-01

    The project aims at developing a safe man-robot system of high mobility and workability, highly adaptable to the working environment, and readily and reliably remote-controlled. The plan is to develop 'multi-purpose robots' that can do monitoring, inspection and light work quickly and correctly in areas where access of humans is difficult (e.g. hot spots and the inner space of the primary containment vessel), and 'robots used exclusively for valves, pumps, and other equipment, multi-functional to be used only for specific purposes'. This can be expected to be completed on the basis of results in research and development for the multi-purpose robots. R and D on the total system means manufacturing an optimum system with sufficient functions and performance required for the robot by combining existing technologies most adequately on the basis of the results of research and development on the project. After conceptual drawing and conceptual design, the system will be manufactured and demonstration tests will be completed by fiscal 1987 or 1988. This report describes the total image of the robots concerning the shape, locomotion, manipulation, perception, communication, control management, reliability and environmental durability, and then outlines the research and development activities regarding locomotion, manipulator, tectile sensor, actuator, single-eye three-dimensional measurement, visual data processing, optical spacial transmission, failure repair controller, functional reduction, robot health care and radiation resistance. (Nogami, K.)

  6. Smooth transition for CPG-based body shape control of a snake-like robot

    International Nuclear Information System (INIS)

    Nor, Norzalilah Mohamad; Ma, Shugen

    2014-01-01

    This paper presents a locomotion control based on central pattern generator (CPG) of a snake-like robot. The main point addressed in this paper is a method that produces a smooth transition of the body shape of a snake-like robot. Body shape transition is important for snake-like robot locomotion to adapt to different space widths and also for obstacle avoidance. By manipulating the phase difference of the CPG outputs instantly, it will results in a sharp point or discontinuity which lead to an unstable movement of the snake-like robot. To tackle the problem, we propose a way of controlling the body shape: by incorporating activation function in the phase oscillator CPG model. The simplicity of the method promises an easy implementation and simple control. Simulation results and torque analysis confirm the effectiveness of the proposed control method and thus, can be used as a locomotion control in various potential applications of a snake-like robot. (paper)

  7. Evaluación experimental del caminado en tiempo real de un robot bípedo de 5 g.d.l. con marcha basada en movimientos cicloidales

    Directory of Open Access Journals (Sweden)

    Víctor De-León-Gómez

    2015-10-01

    Full Text Available Resumen: En este artículo se presentan los resultados de las pruebas de caminado realizadas con el robot bípedo de 5 grados de libertad (g.d.l. desarrollado en el Instituto Tecnológico de la Laguna (ITLag. El patrón de marcha que se aplica en este robot se basa en leyes de movimiento de tipo cicloidal, las cuales le permiten avanzar mediante pasos sin impactos. Los experimentos realizados mostraron un adecuado comportamiento mecánico del robot y un desempeño eficaz de la ley de control aplicada para mantener el ZMP (acrónimo de Zero Moment Point dentro del polígono de soporte de los pies del robot durante la marcha. Los parámetros especificados para el patrón de marcha aseguraron un caminado estable del robot, sin saturar los pares demandados a los actuadores. Abstract: The results of experimental tests of walking of the 5 degrees of freedom (dof biped robot developed at the Instituto Tecnológico de la Laguna (ITLag are presented in this paper. The gait pattern that is applied in this robot is based on cycloidal motion-type laws, which allow to advance by steps without impacts. Experiments showed an adequate mechanical behavior of the robot and effective performance of the control law applied to keep the ZMP (Zero Moment Point inside of the support polygon of the robot's feet during walking. The specified parameters for gait pattern ensured a stable walking of the robot, without saturating the torque applied by the actuators. Palabras clave: Robots bípedos, patrones de marcha, ZMP, movimiento cicloidal, seguimiento de trayectorias., Keywords: Biped robots, gait patterns, ZMP, cycloidal motion, path tracking.

  8. Modeling locomotion of a soft-bodied arthropod using inverse dynamics

    International Nuclear Information System (INIS)

    Saunders, Frank; Trimmer, Barry A; Rife, Jason

    2011-01-01

    Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.

  9. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  10. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.

    Science.gov (United States)

    Spitz, Jonathan; Evstrachin, Alexandrina; Zacksenhouse, Miriam

    2015-08-20

    In recent years there has been a growing interest in the field of dynamic walking and bio-inspired robots. However, while walking and running on a flat surface have been studied extensively, walking dynamically over terrains with varying slope remains a challenge. Previously we developed an open loop controller based on a central pattern generator (CPG). The controller applied predefined torque patterns to a compass-gait biped, and achieved stable gaits over a limited range of slopes. In this work, this range is greatly extended by applying a once per cycle feedback to the CPG controller. The terrain's slope is measured and used to modify both the CPG frequency and the torque amplitude once per step. A multi-objective optimization algorithm was used to tune the controller parameters for a simulated CB model. The resulting controller successfully traverses terrains with slopes ranging from +7° to -8°, comparable to most slopes found in human constructed environments. Gait stability was verified by computing the linearized Poincaré Map both numerically and analytically.

  11. Novelty Search for Soft Robotic Space Exploration

    NARCIS (Netherlands)

    Methenitis, G.; Hennes, D.; Izzo, D.; Visser, A.

    2015-01-01

    The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and

  12. Novelty search for soft robotic space exploration

    NARCIS (Netherlands)

    G. Methenitis (Georgios); D. Hennes; D. Izzo; A. Visser

    2015-01-01

    textabstractThe use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular

  13. Development of Multiple Capsule Robots in Pipe

    Directory of Open Access Journals (Sweden)

    Shuxiang Guo

    2018-05-01

    Full Text Available Swallowable capsule robots which travel in body cavities to implement drug delivery, minimally invasive surgery, and diagnosis have provided great potential for medical applications. However, the space constraints of the internal environment and the size limitations of the robots are great challenges to practical application. To address the fundamental challenges of narrow body cavities, a different-frequency driven approach for multiple capsule robots with screw structure manipulated by external electromagnetic field is proposed in this paper. The multiple capsule robots are composed of driven permanent magnets, joint permanent magnets, and a screw body. The screw body generates a propulsive force in a fluidic environment. Moreover, robots can form new constructions via mutual docking and release. To provide manipulation guidelines for active locomotion, a dynamic model of axial propulsion and circumferential torque is established. The multiple start and step-out frequencies for multiple robots are defined theoretically. Moreover, the different-frequency driven approach based on geometrical parameters of screw structure and the overlap angles of magnetic polarities is proposed to drive multiple robots in an identical electromagnetic field. Finally, two capsule robots were prototyped and experiments in a narrow pipe were conducted to verify the different motions such as docking, release, and cooperative locomotion. The experimental results demonstrated the validity of the driven approach for multiple capsule robots in narrow body cavities.

  14. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  15. Inducing self-selected human engagement in robotic locomotion training.

    Science.gov (United States)

    Collins, Steven H; Jackson, Rachel W

    2013-06-01

    Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better

  16. Stingray-inspired robot with simply actuated intermediate motion

    Science.gov (United States)

    Neely, Lincoln; Gaiennie, Jack; Noble, Nick; Erickson, Jonathan C.

    2016-04-01

    Batoids, or rays, utilize unique forms of locomotion that may offer more efficient techniques of motorized propulsion in various marine environments. We present a novel biomimetic engineering design and assembly of a stingray-inspired robot swimmer. The robots locomotion mimics the Dasyatis americana, or southern stingray, whose distinction among rays is its intermediate motion, characterized by sweeping strokes that propagate between 1/2-1 wavelength of the fin profile in the posterior direction. Though oscillatory ( wavelengths) ray-based robots have been created, this project demonstrates new engineering possibilities in what is, to the best of our knowledge, the first intermediately propelled batoid-based robot. The robots fins were made of silicone rubber, cast in a 3-D printed mold, with wingspan of 42 cm (1/2 - 1/5 scale for males and females, respectively, scale of model organism). Two anteriorly placed servomotors per fin were used, all controlled by one wirelessly enabled Arduino microcontroller. Each servomotor oscillated a flexible rod with cylindrical joint, whose frequency, speed, and front-back phase delay were user-programmed over wireless connection. During free-swimming tests, the fin profile developed about 0.8 wavelength, qualifying for successful mimicry of its biological inspiration. The robot satisfactorily maintained straight-line motion, reaching average peak velocity of 9.4+/-1.0 cm/s (0.27-0.03 body lengths/second) at its optimum flapping frequency of 1.4 Hz. This is in the same order of magnitude of speed normalized to body length achieved by others in two recent batoid-based projects. In summary, our robot performed intermediate stingray locomotion with relatively fewer components, which reveals robust potential for innovation of the simple intermediate batoid-based robot swimmer.

  17. Coupled chaotic oscillators and their relation to a central pattern ...

    Indian Academy of Sciences (India)

    Abstract. Animal locomotion employs different periodic patterns known as animal gaits. In 1993, Collins and Stewart recognized that gaits possessed certain symmetries and characterized the gaits of quadrupeds and bipeds using permutation symmetry groups, which impose constraints on the locomotion center called the ...

  18. Applications of Chaotic Dynamics in Robotics

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.

  19. Fish robotics and hydrodynamics

    Science.gov (United States)

    Lauder, George

    2010-11-01

    Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.

  20. Towards a general neural controller for quadrupedal locomotion.

    Science.gov (United States)

    Maufroy, Christophe; Kimura, Hiroshi; Takase, Kunikatsu

    2008-05-01

    Our study aims at the design and implementation of a general controller for quadruped locomotion, allowing the robot to use the whole range of quadrupedal gaits (i.e. from low speed walking to fast running). A general legged locomotion controller must integrate both posture control and rhythmic motion control and have the ability to shift continuously from one control method to the other according to locomotion speed. We are developing such a general quadrupedal locomotion controller by using a neural model involving a CPG (Central Pattern Generator) utilizing ground reaction force sensory feedback. We used a biologically faithful musculoskeletal model with a spine and hind legs, and computationally simulated stable stepping motion at various speeds using the neuro-mechanical system combining the neural controller and the musculoskeletal model. We compared the changes of the most important locomotion characteristics (stepping period, duty ratio and support length) according to speed in our simulations with the data on real cat walking. We found similar tendencies for all of them. In particular, the swing period was approximately constant while the stance period decreased with speed, resulting in a decreasing stepping period and duty ratio. Moreover, the support length increased with speed due to the posterior extreme position that shifted progressively caudally, while the anterior extreme position was approximately constant. This indicates that we succeeded in reproducing to some extent the motion of a cat from the kinematical point of view, even though we used a 2D bipedal model. We expect that such computational models will become essential tools for legged locomotion neuroscience in the future.

  1. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  2. Hydrolysis of methyl benzoate from Piper arboreum by Naupactus bipes beetle

    International Nuclear Information System (INIS)

    Ramos, Clecio S.; Kato, Massuo J.

    2009-01-01

    A new natural product was isolated from Piper arboreum (Piperaceae) leaves, the methyl 3-geranyl-4-hydroxybenzoate (1). The metabolism of P. arboreum leaves by Naupactus bipes beetle (Germar, 1824 - Coleoptera: Curculionidae) led to the hydrolysis of 1 to 3-geranyl-4-hydroxybenzoic acid (2). The structures of both compounds were determined based on spectroscopic analysis ( 1 H and 13 C NMR, MS, and IR). (author)

  3. Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System

    International Nuclear Information System (INIS)

    Li, Girl; Choi, Hyun Chul; Cha, Kyoung Rae; Jeong, Se Mi; Park, Jong Oh; Park, Suk Ho

    2011-01-01

    In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in three dimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified

  4. Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System

    Energy Technology Data Exchange (ETDEWEB)

    Li, Girl; Choi, Hyun Chul; Cha, Kyoung Rae; Jeong, Se Mi; Park, Jong Oh; Park, Suk Ho [Chonnam National University, Gwangju (Korea, Republic of)

    2011-12-15

    In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in three dimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified.

  5. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real-time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten-Maru. Additionally, we have developed a user-friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  6. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten‐Maru. Additionally, we have developed a user‐ friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  7. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.

    Science.gov (United States)

    Hamlin, Marvin; Traughber, Terence; Reinkensmeyer, David J; de Leon, Ray D

    2015-05-15

    Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. Published by Elsevier B.V.

  8. A Modular Approach for a Family of Ground Mobile Robots

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaglia

    2013-07-01

    Full Text Available This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new one.

  9. An octopus-bioinspired solution to movement and manipulation for soft robots

    Energy Technology Data Exchange (ETDEWEB)

    Calisti, M; Giorelli, M; Laschi, C; Dario, P [BioRobotics Institute, Scuola Superiore Sant' Anna, Pisa (Italy); Levy, G; Hochner, B [Hebrew University of Jerusalem, Jerusalem (Israel); Mazzolai, B, E-mail: marcello.calisti@sssup.it, E-mail: michele.giorelli@sssup.it, E-mail: guy.levy@mail.huji.ac.il, E-mail: barbara.mazzolai@iit.it, E-mail: Binyamin.Hochner@huji.ac.il, E-mail: cecilia.laschi@sssup.it, E-mail: paolo.dario@sssup.it [Centre for Micro-BioRobotics-SSSA, Istituto Italiano di Tecnologia, Pontedera (Italy)

    2011-09-15

    Soft robotics is a challenging and promising branch of robotics. It can drive significant improvements across various fields of traditional robotics, and contribute solutions to basic problems such as locomotion and manipulation in unstructured environments. A challenging task for soft robotics is to build and control soft robots able to exert effective forces. In recent years, biology has inspired several solutions to such complex problems. This study aims at investigating the smart solution that the Octopus vulgaris adopts to perform a crawling movement, with the same limbs used for grasping and manipulation. An ad hoc robot was designed and built taking as a reference a biological hypothesis on crawling. A silicone arm with cables embedded to replicate the functionality of the arm muscles of the octopus was built. This novel arm is capable of pushing-based locomotion and object grasping, mimicking the movements that octopuses adopt when crawling. The results support the biological observations and clearly show a suitable way to build a more complex soft robot that, with minimum control, can perform diverse tasks.

  10. An octopus-bioinspired solution to movement and manipulation for soft robots

    International Nuclear Information System (INIS)

    Calisti, M; Giorelli, M; Laschi, C; Dario, P; Levy, G; Hochner, B; Mazzolai, B

    2011-01-01

    Soft robotics is a challenging and promising branch of robotics. It can drive significant improvements across various fields of traditional robotics, and contribute solutions to basic problems such as locomotion and manipulation in unstructured environments. A challenging task for soft robotics is to build and control soft robots able to exert effective forces. In recent years, biology has inspired several solutions to such complex problems. This study aims at investigating the smart solution that the Octopus vulgaris adopts to perform a crawling movement, with the same limbs used for grasping and manipulation. An ad hoc robot was designed and built taking as a reference a biological hypothesis on crawling. A silicone arm with cables embedded to replicate the functionality of the arm muscles of the octopus was built. This novel arm is capable of pushing-based locomotion and object grasping, mimicking the movements that octopuses adopt when crawling. The results support the biological observations and clearly show a suitable way to build a more complex soft robot that, with minimum control, can perform diverse tasks.

  11. An octopus-bioinspired solution to movement and manipulation for soft robots.

    Science.gov (United States)

    Calisti, M; Giorelli, M; Levy, G; Mazzolai, B; Hochner, B; Laschi, C; Dario, P

    2011-09-01

    Soft robotics is a challenging and promising branch of robotics. It can drive significant improvements across various fields of traditional robotics, and contribute solutions to basic problems such as locomotion and manipulation in unstructured environments. A challenging task for soft robotics is to build and control soft robots able to exert effective forces. In recent years, biology has inspired several solutions to such complex problems. This study aims at investigating the smart solution that the Octopus vulgaris adopts to perform a crawling movement, with the same limbs used for grasping and manipulation. An ad hoc robot was designed and built taking as a reference a biological hypothesis on crawling. A silicone arm with cables embedded to replicate the functionality of the arm muscles of the octopus was built. This novel arm is capable of pushing-based locomotion and object grasping, mimicking the movements that octopuses adopt when crawling. The results support the biological observations and clearly show a suitable way to build a more complex soft robot that, with minimum control, can perform diverse tasks.

  12. Three-dimensional construction and omni-directional rolling analysis of a novel frame-like lattice modular robot

    Science.gov (United States)

    Ding, Wan; Wu, Jianxu; Yao, Yan'an

    2015-07-01

    Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the

  13. Collective Motion of Robotic Fish Synchronized with Antiphases

    NARCIS (Netherlands)

    Wang, Chen; Cao, Ming; Xie, Guangming

    2011-01-01

    The study of design principles for individual robotic fish can be traced back to at least the early 1990’s. More recently, different central pattern generator (CPG) models have been utilized to control the locomotions of robotic fish and some results have been reported to use proper sensing and

  14. Gait control by foot placement for humanoid robots

    NARCIS (Netherlands)

    Botden, F.J.B.M.; Nijmeijer, H.; Zutven, van P.W.M.

    2013-01-01

    Humanoid robots are used as a research tool to understand bipedal locomotion. When pushed, a humanoid robot must be able to avoid falling and return to a balanced configuration. This is called push recovery and can be achieved using proper foot placement. Depending on the freedom of movement, one or

  15. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elangovan

    2017-10-01

    Full Text Available As robots begin to perform jobs autonomously, with minimal or no human intervention, a new challenge arises: robots also need to autonomously detect errors and recover from faults. In this paper, we present a Support Vector Machine (SVM-based fault diagnosis system for a bio-inspired reconfigurable robot named Scorpio. The diagnosis system needs to detect and classify faults while Scorpio uses its crawling and rolling locomotion modes. Specifically, we classify between faulty and non-faulty conditions by analyzing onboard Inertial Measurement Unit (IMU sensor data. The data capture nine different locomotion gaits, which include rolling and crawling modes, at three different speeds. Statistical methods are applied to extract features and to reduce the dimensionality of original IMU sensor data features. These statistical features were given as inputs for training and testing. Additionally, the c-Support Vector Classification (c-SVC and nu-SVC models of SVM, and their fault classification accuracies, were compared. The results show that the proposed SVM approach can be used to autonomously diagnose locomotion gait faults while the reconfigurable robot is in operation.

  16. Terrain Perception in a Shape Shifting Rolling-Crawling Robot

    Directory of Open Access Journals (Sweden)

    Fuchida Masataka

    2016-09-01

    Full Text Available Terrain perception greatly enhances the performance of robots, providing them with essential information on the nature of terrain being traversed. Several living beings in nature offer interesting inspirations which adopt different gait patterns according to nature of terrain. In this paper, we present a novel terrain perception system for our bioinspired robot, Scorpio, to classify the terrain based on visual features and autonomously choose appropriate locomotion mode. Our Scorpio robot is capable of crawling and rolling locomotion modes, mimicking Cebrenus Rechenburgi, a member of the huntsman spider family. Our terrain perception system uses Speeded Up Robust Feature (SURF description method along with color information. Feature extraction is followed by Bag of Word method (BoW and Support Vector Machine (SVM for terrain classification. Experiments were conducted with our Scorpio robot to establish the efficacy and validity of the proposed approach. In our experiments, we achieved a recognition accuracy of over 90% across four terrain types namely grass, gravel, wooden deck, and concrete.

  17. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Yeom, Sung-Weon; Oh, Il-Kwon

    2009-01-01

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  18. A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats.

    Science.gov (United States)

    Song, Yun Seong; Hogan, Neville

    2015-07-01

    This paper introduces a newly developed apparatus, Iron Rat, for locomotion research in rodents. Its main purpose is to allow maximal freedom of voluntary overground movement of the animal while providing forceful interaction to the hindlimbs. Advantages and challenges of the proposed exoskeletal apparatus over other existing designs are discussed. Design and implementation challenges are presented and discussed, emphasizing their implications for free, voluntary movement of the animal. A live-animal experiment was conducted to assess the design. Unconstrained natural movement of the animal was compared with its movement with the exoskeletal module attached. The compact design and back-drivable implementation of this apparatus will allow novel experimental manipulations that may include forceful yet compliant dynamic interaction with the animal's overground locomotion.

  19. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  20. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  1. Design Concepts of Emergency Response Robot Platform K-R2D2

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sun Young; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs.

  2. Design Concepts of Emergency Response Robot Platform K-R2D2

    International Nuclear Information System (INIS)

    Noh, Sun Young; Jeong, Kyungmin

    2016-01-01

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs

  3. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study.

    Directory of Open Access Journals (Sweden)

    Rüdiger Rupp

    Full Text Available The compact Motorized orthosis for home rehabilitation of Gait (MoreGait was developed for continuation of locomotion training at home. MoreGait generates afferent stimuli of walking with the user in a semi-supine position and provides feedback about deviations from the reference walking pattern.Prospective, pre-post intervention, proof-of-concept study to test the feasibility of an unsupervised home-based application of five MoreGait prototypes in subjects with incomplete spinal cord injury (iSCI.Twenty-five (5 tetraplegia, 20 paraplegia participants with chronic (mean time since injury: 5.8 ± 5.4 (standard deviation, SD years sensorimotor iSCI (7 ASIA Impairment Scale (AIS C, 18 AIS D; Walking Index for Spinal Cord Injury (WISCI II: Interquartile range 9 to 16 completed the training (45 minutes / day, at least 4 days / week, 8 weeks. Baseline status was documented 4 and 2 weeks before and at training onset. Training effects were assessed after 4 and 8 weeks of therapy.After therapy, 9 of 25 study participants improved with respect to the dependency on walking aids assessed by the WISCI II. For all individuals, the short-distance walking velocity measured by the 10-Meter Walk Test showed significant improvements compared to baseline (100% for both self-selected (Mean 139.4% ± 35.5% (SD and maximum (Mean 143.1% ± 40.6% (SD speed conditions as well as the endurance estimated with the six-minute walk test (Mean 166.6% ± 72.1% (SD. One device-related adverse event (pressure sore on the big toe occurred in over 800 training sessions.Home-based robotic locomotion training with MoreGait is feasible and safe. The magnitude of functional improvements achieved by MoreGait in individuals with iSCI is well within the range of complex locomotion robots used in hospitals. Thus, unsupervised MoreGait training potentially represents an option to prolong effective training aiming at recovery of locomotor function beyond in-patient rehabilitation

  4. On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot

    International Nuclear Information System (INIS)

    Sato, Takahide; Kano, Takeshi; Ishiguro, Akio

    2011-01-01

    A systematic method for an autonomous decentralized control system is still lacking, despite its appealing concept. In order to alleviate this, we focused on the amoeboid locomotion of the true slime mold, and extracted a design scheme for the decentralized control mechanism that leads to adaptive behavior for the entire system, based on the so-called discrepancy function. In this paper, we intensively investigate the universality of this design scheme by applying it to a different type of locomotion based on a 'synthetic approach'. As a first step, we implement this design scheme to the control of a real physical two-dimensional serpentine robot that exhibits slithering locomotion. The experimental results show that the robot exhibits adaptive behavior and responds to the environmental changes; it is also robust against malfunctions of the body segments due to the local sensory feedback control that is based on the discrepancy function. We expect the results to shed new light on the methodology of autonomous decentralized control systems.

  5. Intelligent, self-contained robotic hand

    Science.gov (United States)

    Krutik, Vitaliy; Doo, Burt; Townsend, William T.; Hauptman, Traveler; Crowell, Adam; Zenowich, Brian; Lawson, John

    2007-01-30

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  6. Exotendons for assistance of human locomotion

    Directory of Open Access Journals (Sweden)

    van den Bogert Antonie J

    2003-10-01

    Full Text Available Abstract Background Powered robotic exoskeletons for assistance of human locomotion are currently under development for military and medical applications. The energy requirements for such devices are excessive, and this has become a major obstacle for practical applications. Legged locomotion in many animals, however, is very energy efficient. We propose that poly-articular elastic mechanisms are a major contributor to the economy of locomotion in such specialized animals. Consequently, it should be possible to design unpowered assistive devices that make effective use of similar mechanisms. Methods A passive assistive technology is presented, based on long elastic cords attached to an exoskeleton and guided by pulleys placed at the joints. A general optimization procedure is described for finding the best geometrical arrangement of such "exotendons" for assisting a specific movement. Optimality is defined either as minimal residual joint moment or as minimal residual joint power. Four specific exotendon systems with increasing complexity are considered. Representative human gait data were used to optimize each of these four systems to achieve maximal assistance for normal walking. Results The most complex exotendon system, with twelve pulleys per limb, was able to reduce the joint moments required for normal walking by 71% and joint power by 74%. A simpler system, with only three pulleys per limb, could reduce joint moments by 46% and joint power by 47%. Conclusion It is concluded that unpowered passive elastic devices can substantially reduce the muscle forces and the metabolic energy needed for walking, without requiring a change in movement. When optimally designed, such devices may allow independent locomotion in patients with large deficits in muscle function.

  7. Integrated Robotic Systems for Humanitarian Demining

    OpenAIRE

    Colon, E.; Cubber, G. De; Ping, H.; Habumuremyi, J-C; Sahli, H.; Baudoin, Y.

    2007-01-01

    This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typica...

  8. Development of a Self-Stabilizing Robotic Chassis for Industry

    Directory of Open Access Journals (Sweden)

    Ryadchikov Igor

    2017-01-01

    Full Text Available Presented the description of the bipedal robotic chassis with the unique kinematic scheme which has the possibility to locomote in complicated multi-level environment. AnyWalker is equipped with the system of compensation of external impacts with motor-wheels which can self-stabilize the robotic system in 3 dimensions. Presented chassis suggests to have open software and hardware architecture in order to become the universal walking platform for service and industry robots.

  9. Fully decentralized control of a soft-bodied robot inspired by true slime mold.

    Science.gov (United States)

    Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio

    2010-03-01

    Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system.

  10. Proprioceptive Actuation Design for Dynamic Legged locomotion

    Science.gov (United States)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  11. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates

    International Nuclear Information System (INIS)

    Wang, Zhouyi; Dai, Zhendong; Ji, Aihong; Xing, Qiang; Ren, Lei; Dai, Liming

    2015-01-01

    The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists’ attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment. (paper)

  12. Development of a Dung Beetle Robot and Investigation of Its Dung-Rolling Behavior

    Directory of Open Access Journals (Sweden)

    Jen-Wei Wang

    2018-04-01

    Full Text Available In this study, a bio-inspired dung beetle robot was developed that emulated the dung rolling motion of the dung beetle. Dung beetles, which can roll objects up to 1000 times their own body weight, are one of the strongest insect species in the world. While the locomotion of many insects, such as cockroaches, inchworms, and butterflies, has been studied widely, the locomotion of dung beetles has rarely been given attention. Here, we report on the development of a dung beetle robot made specifically to investigate dung-rolling behavior and to determine and understand the underlying mechanism. Two versions of the robot were built, and the leg trajectories were carefully designed based on kinematic analysis. Cylinder and ball rolling experiments were conducted, and the results showed that the dung beetle robot could successfully and reliably roll objects. This further suggests that the dung beetle robot, with its current morphology, is capable of reliably rolling dung without the need for complex control strategies.

  13. Integrated Robotic systems for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    E. Colon

    2007-06-01

    Full Text Available This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typical data acquisition results obtained during trial campaigns with robots and data acquisition systems are reported. Lessons learned during the project and future work conclude this paper.

  14. Motor modules in robot-aided walking

    Directory of Open Access Journals (Sweden)

    Gizzi Leonardo

    2012-10-01

    Full Text Available Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies. In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h and levels of body weight support (0 to 30%. Results The muscular activity of volunteers could be described by low dimensionality (4 modules, as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.

  15. Justification of the technical requirements of a fully functional modular robot

    Directory of Open Access Journals (Sweden)

    Shlyakhov Nikita

    2017-01-01

    Full Text Available Modular robots are characterized by limited built-in resources necessary for communication, connection and movement of modules, when performing reconfiguration tasks at rigidly interconnected elements. In developing the technological fundamentals of designing modular robots with pairwise connection mechanisms, we analysed modern hardware and model algorithms typical of a fully functional robot, which provide independent locomotion, communication, navigation, decentralized power and control. A survey of actuators, batteries, sensors, communication means, suitable for modular robotics is presented.

  16. Stair Climbing in a Quadruped Robot

    OpenAIRE

    Shen-Chiang Chen; Chih-Chung Ko; Cheng-Hsin Li; Pei-Chun Lin

    2012-01-01

    This paper reports the algorithm of trajectory planning and the strategy of four-leg coordination for quasi-static stair climbing in a quadruped robot. This development is based on the geometrical interactions between robot legs and the stair, starting from single-leg analysis, followed by two-leg collaboration, and then four-leg coordination. In addition, a brief study on the robot’s locomotion stability is also included. Finally, simulation and experimental testing were executed to evaluate...

  17. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    Science.gov (United States)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  18. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    OpenAIRE

    Raj, Anil K.; Neuhaus, Peter D.; Moucheboeuf, Adrien M.; Noorden, Jerryll H.; Lecoutre, David V.

    2011-01-01

    While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC) has developed the Mina, a prototype sensorimotor robotic ort...

  19. Process for anodizing a robotic device

    Science.gov (United States)

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  20. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  1. Optimization-based motion generation for multiped robots in contact scenarios

    OpenAIRE

    Herzog, Alexander

    2017-01-01

    The introduction of legged robots into society has the potential to impact many aspects of our lives. The versatile morphology of robots with arms and legs, or multipeds, allows them to operate in a broad spectrum of environments. For example, legged robots could assist at construction sites or locomote in rocky terrain under persistent interaction with the environment through contact. These behaviors require algorithms that translate high level operator commands into movement and contact int...

  2. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  3. Soft mobile robots driven by foldable dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong, E-mail: jxzhouxx@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-28

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  4. Bioinspired legged-robot based on large deformation of flexible skeleton

    International Nuclear Information System (INIS)

    Mayyas, Mohammad

    2014-01-01

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot’s leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot. (paper)

  5. Bioinspired legged-robot based on large deformation of flexible skeleton.

    Science.gov (United States)

    Mayyas, Mohammad

    2014-11-11

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.

  6. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  7. Chaotic exploration and learning of locomotion behaviors.

    Science.gov (United States)

    Shim, Yoonsik; Husbands, Phil

    2012-08-01

    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage.

  8. LocoKit - A Construction Kit for Exploration of Morphology of Legged Robots

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper

    2011-01-01

    Producing steady stable and energy efficient locomotion in legged robots with the ability to walk in unknown terrain is a big challenge in robotics. In addressing this challenge, it is often desirable to experiment with different morphologies and see how they influence on the way the robot walks....... legged robots. This is accomplished by giving the creator the possibility to easily do morphological changes to the robot even after it have been build, to see how it effects the robot’s ability to walk in unknown terrain....

  9. Spatio-temporal features for tracking and quadruped/biped discrimination

    Science.gov (United States)

    Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.

    2012-05-01

    Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.

  10. CLARAty: Challenges and Steps Toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Richard Madison

    2008-11-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  11. CLARAty: Challenges and Steps toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Issa A.D. Nesnas

    2006-03-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  12. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  13. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  14. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  15. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    P J Bishop

    Full Text Available How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF, the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.

  16. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.

    Science.gov (United States)

    Bishop, P J; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Hancock, J A; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G; Clemente, C J

    2018-01-01

    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.

  17. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs

    Science.gov (United States)

    Graham, D. F.; Lamas, L. P.; Hutchinson, J. R.; Rubenson, J.; Hancock, J. A.; Wilson, R. S.; Hocknull, S. A.; Barrett, R. S.; Lloyd, D. G.; Clemente, C. J.

    2018-01-01

    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation. PMID:29466362

  18. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2018-01-01

    Full Text Available The natural quadrupeds, such as geckos and lizards, often twist their trunks when moving. Conventional quadruped robots cannot perform the same motion due to equipping with a trunk which is a rigid body or at most consists of two blocks connected by passive joints. This paper proposes a metamorphic quadruped robot with a reconfigurable trunk which can implement active trunk motions, called MetaRobot I. The robot can imitate the natural quadrupeds to execute motion of trunk twisting. Benefiting from the twisting trunk, the stride length of this quadruped is increased comparing to that of conventional quadruped robots.In this paper a continuous static gait benefited from the twisting trunk performing the increased stride length is introduced. After that, the increased stride length relative to the trunk twisting will be analysed mathematically. Other points impacting the implementation of the increased stride length in the gait are investigated such as the upper limit of the stride length and the kinematic margin. The increased stride length in the gait will lead the increase of locomotion speed comparing with conventional quadruped robots, giving the extent that natural quadrupeds twisting their trunks when moving. The simulation and an experiment on the prototype are then carried out to illustrate the benefits on the stride length and locomotion speed brought by the twisting trunk to the quadruped robot.

  19. Millipede-inspired locomotion through novel U-shaped piezoelectric motors

    International Nuclear Information System (INIS)

    Avirovik, Dragan; Butenhoff, Bryan; Priya, Shashank

    2014-01-01

    We report a novel piezoelectric motor that operates at a resonance frequency of 144 Hz, much lower than that of conventional ultrasonic motors, and meets the displacement and gait requirements for designing the locomotion mechanism of a millipede-inspired robot (millibot). The motor structure consists of two piezoelectric bimorphs arranged in a U-shaped configuration. Using the first bending mode for both the piezoelectric bimorphs an elliptical motion was obtained at the tip which led to the successful implementation of millipede inspired locomotion. At an input voltage of 70.7 V rms , the piezoelectric motor operating at resonance frequency was able to generate torque of 0.03 mN m, mechanical power of 0.84 mW and maximum velocity of 62 rad s −1 . Detailed discussion is provided about the principle of operation of the millibot. (technical note)

  20. Using Computational and Mechanical Models to Study Animal Locomotion

    Science.gov (United States)

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  1. Relation between observed locomotion traits and locomotion score in dairy cows

    NARCIS (Netherlands)

    Schlageter Tello, A.A.; Bokkers, E.A.M.; Groot Koerkamp, P.W.G.; Hertem, van T.; Viazzi, S.; Lokhorst, Kees

    2015-01-01

    Lameness is still an important problem in modern dairy farming. Human observation of locomotion, by looking at different traits in one go, is used in practice to assess locomotion. The objectives of this article were to determine which individual locomotion traits are most related to locomotion

  2. Synthesis of digital locomotive receiver of automatic locomotive signaling

    Directory of Open Access Journals (Sweden)

    K. V. Goncharov

    2013-02-01

    Full Text Available Purpose. Automatic locomotive signaling of continuous type with a numeric coding (ALSN has several disadvantages: a small number of signal indications, low noise stability, high inertia and low functional flexibility. Search for new and more advanced methods of signal processing for automatic locomotive signaling, synthesis of the noise proof digital locomotive receiver are essential. Methodology. The proposed algorithm of detection and identification locomotive signaling codes is based on the definition of mutual correlations of received oscillation and reference signals. For selecting threshold levels of decision element the following criterion has been formulated: the locomotive receiver should maximum set the correct solution for a given probability of dangerous errors. Findings. It has been found that the random nature of the ALSN signal amplitude does not affect the detection algorithm. However, the distribution law and numeric characteristics of signal amplitude affect the probability of errors, and should be considered when selecting a threshold levels According to obtained algorithm of detection and identification ALSN signals the digital locomotive receiver has been synthesized. It contains band pass filter, peak limiter, normalizing amplifier with automatic gain control circuit, analog to digital converter and digital signal processor. Originality. The ALSN system is improved by the way of the transfer of technical means to modern microelectronic element base, more perfect methods of detection and identification codes of locomotive signaling are applied. Practical value. Use of digital technology in the construction of the locomotive receiver ALSN will expand its functionality, will increase the noise immunity and operation stability of the locomotive signal system in conditions of various destabilizing factors.

  3. INVESTIGATING PECTORAL SHAPES AND LOCOMOTIVE STRATEGIES FOR CONCEPTUAL DESIGNING BIO-INSPIRED ROBOTIC FISH

    Directory of Open Access Journals (Sweden)

    A. I. MAINONG

    2017-01-01

    Full Text Available This paper describes the performance analysis of a conceptual bio-inspired robotic fish design, which is based on the morphology similar to the boxfish (Ostracion melagris. The robotic fish prototype is driven by three micro servos; two on the pectoral fins, and one on the caudal fin. Two electronic rapid prototyping boards were employed; one for the movement of robotic fish, and one for the force sensors measurements. The robotic fish were built using fused deposition modeling (FDM, more popularly known as the 3D printing method. Several designs of pectoral fins (rectangular, triangular and quarter-ellipse with unchanging the value of aspect ratio (AR employed to measure the performance of the prototype robotic fish in terms of hydrodynamics, thrust and maneuvering characteristics. The analysis of the unmanned robotic system performance is made experimentally and the results show that the proposed bioinspired robotic prototype opens up the possibility of design optimization research for future work.

  4. A crawling robot driven by multi-stable origami

    Science.gov (United States)

    Pagano, Alexander; Yan, Tongxi; Chien, Brian; Wissa, A.; Tawfick, S.

    2017-09-01

    Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.

  5. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  6. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Sohn, Surg Won; Yoon, Tae Seob; Lee, Yong Bum; Kim, Woong Ki

    1988-02-01

    A mutiprocessor system that is essential to A.I. (Artificial Intelligence) robot control was developed. A.I. robot control needs very complex real time control. The multiprocessor system interconnecting many SBC's (Single Board Computer) is much faster and accurater than using only one SBC. Various multiprocessor systems and their applications were compared and discussed. The multiprocessor architecture system is specially designed to be used in nuclear environments. The main functions are job distribution, multitasking, and intelligent remote control by SDLC protocol using optical fiber. The system can be applied to position control for locomotion and manipulation, data fusion system, and image processing. (Author)

  7. Progress toward EAP actuators for biomimetic social robots

    Science.gov (United States)

    Hanson, D.

    2013-04-01

    Social robotics and artificial intelligence have progressed steadily in recent years, appearing in a variety of useful applications and products as well as breakthrough research. However, limitations in conventional motors continue to limit the possibilities of bio-inspired robotics. Such motors are needed for locomotion, grasping and manipulation, and social expressions and gestures. EAP actuators, being more like biological muscle in key regards, could revolutionize the hardware for such robots, if made robust, powerful, and manufacturable at reasonable prices. The author presents a survey of the progress and opportunities for EAP actuators in these fields, and discusses the latest work of his team in developing and manufacturing social robots that could benefit from EAP actuators.

  8. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.

    Science.gov (United States)

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2014-01-01

    In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  9. A Novel Approach to Locomotion Learning: Actor-Critic Architecture using Central Pattern Generators and Dynamic Motor Primitives

    Directory of Open Access Journals (Sweden)

    Cai eLi

    2014-10-01

    Full Text Available In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modelling objective is split into two: baseline motion modelling and dynamics adaptation. Baseline motion modelling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a ``reshaping function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the the baseline motion and dynamic motor primitives (DMPs, a model with universal ``reshaping functions. In this article, we use this architecture with the actor-critic algorithms for finding a good ``reshaping function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: 1 learning to crawl on a humanoid and, 2 learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  10. Locomotion

    DEFF Research Database (Denmark)

    Kiehn, Ole; Dougherty, Kimberly

    2016-01-01

    Locomotion is a complex motor behavior needed by animals and humans to move through the environment. All forms of locomotion, including swimming, flying, walking, running, and hopping, are repetitive motor activities that require the activation of the limb and body muscles in an organized rhythm ...

  11. GoQBot: a caterpillar-inspired soft-bodied rolling robot

    International Nuclear Information System (INIS)

    Lin, Huai-Ti; Trimmer, Barry; Leisk, Gary G

    2011-01-01

    Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s -1 , making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.

  12. GoQBot: a caterpillar-inspired soft-bodied rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huai-Ti; Trimmer, Barry [Department of Biology, Tufts University, 163 Packard Avenue, Medford, MA 02155 (United States); Leisk, Gary G, E-mail: huaiti.lin@gmail.com, E-mail: gary.leisk@tufts.edu, E-mail: barry.trimmer@tufts.edu [Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155 (United States)

    2011-06-15

    Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s{sup -1}, making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.

  13. A survey of snake-inspired robot designs

    International Nuclear Information System (INIS)

    Hopkins, James K; Spranklin, Brent W; Gupta, Satyandra K

    2009-01-01

    Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this review is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This review will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The review also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice. (topical review)

  14. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  15. 3D printing of soft robotic systems

    Science.gov (United States)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  16. Locomotive Assignment Problem with Heterogeneous Vehicle Fleet and Hiring External Locomotives

    Directory of Open Access Journals (Sweden)

    Dušan Teichmann

    2015-01-01

    Full Text Available This paper focuses on solving the problem of how to assign locomotives to assembled trains optimally. To solve the problem, linear programming is applied. The situation we model in the paper occurs in the conditions of a transport operator that provides rail transport in the Czech Republic. In the paper, an extended locomotive assignment problem is modeled; the transport operator can use different classes of the locomotives to serve individual connections, some connections must be served by a predefined locomotive class, and the locomotives can be allocated to several depots at the beginning. The proposed model also takes into consideration the fact that some connections can be served by the locomotives of external transport companies or operators. The presented model is applied to a real example in order to test its functionality.

  17. 3D dynamic modeling of spherical wheeled self-balancing mobile robot

    OpenAIRE

    İnal, Ali Nail

    2012-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references. In recent years, dynamically stable platforms that move on spherical wheels, also known as BallBots, gained popularity in the robotics literature as an alternative locomotion method to statically stable wheeled mobile robots. In contrast to wheeled ...

  18. SMARBot: a modular miniature mobile robot platform

    Science.gov (United States)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  19. Model-Based Design and Evaluation of a Brachiating Monkey Robot with an Active Waist

    Directory of Open Access Journals (Sweden)

    Alex Kai-Yuan Lo

    2017-09-01

    Full Text Available We report on the model-based development of a monkey robot that is capable of performing continuous brachiation locomotion on swingable rod, as the intermediate step toward studying brachiation on the soft rope or on horizontal ropes with both ends fixed. The work is different from other previous works where the model or the robot swings on fixed bars. The model, which is composed of two rigid links, was inspired by the dynamic motion of primates. The model further served as the design guideline for a robot that has five degree of freedoms: two on each arm for rod changing and one on the waist to initiate a swing motion. The model was quantitatively formulated, and its dynamic behavior was analyzed in simulation. Further, a two-stage controller was developed within the simulation environment, where the first stage used the natural dynamics of a two-link pendulum-like model, and the second stage used the angular velocity feedback to regulate the waist motion. Finally, the robot was empirically built and evaluated. The experimental results confirm that the robot can perform model-like swing behavior and continuous brachiation locomotion on rods.

  20. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  1. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  2. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  3. Evolution and Morphogenesis of Simulated Modular Robots: A Comparison Between a Direct and Generative Encoding

    DEFF Research Database (Denmark)

    Veenstra, Frank; Faina, Andres; Risi, Sebastian

    2017-01-01

    Modular robots oer an important benet in evolutionary robotics, which is to quickly evaluate evolved morphologies and control systems in reality. However, articial evolution of simulated modular robotics is a dicult and time consuming task requiring signicant computational power. While articial...... evolution in virtual creatures has made use of powerful generative encodings, here we investigate how a generative encoding and direct encoding compare for the evolution of locomotion in modular robots when the number of robotic modules changes. Simulating less modules would decrease the size of the genome...

  4. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    Science.gov (United States)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  5. The quadruped robot adaptive control in trotting gait walking on slopes

    Science.gov (United States)

    Zhang, Shulong; Ma, Hongxu; Yang, Yu; Wang, Jian

    2017-10-01

    The quadruped robot can be decomposed into a planar seven-link closed kinematic chain in the direction of supporting line and a linear inverted pendulum in normal direction of supporting line. The ground slope can be estimated by using the body attitude information and supporting legs length. The slope degree is used in feedback, to achieve the point of quadruped robot adaptive control walking on slopes. The simulation results verify that the quadruped robot can achieves steady locomotion on the slope with the control strategy proposed in this passage.

  6. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  7. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation

    International Nuclear Information System (INIS)

    Cen, L; Erturk, A

    2013-01-01

    This paper investigates fish-like aquatic robotics using flexible bimorphs made of macro-fiber composite (MFC) piezoelectric laminates for carangiform locomotion. In addition to noiseless and efficient actuation over a range of frequencies, geometric scalability, and simple design, bimorph propulsors made of MFCs offer a balance between the actuation force and velocity response for performance enhancement in bio-inspired swimming. The experimental component of the presented work focuses on the characterization of an elastically constrained MFC bimorph propulsor for thrust generation in quiescent water as well as the development of a robotic fish prototype combining a microcontroller and a printed-circuit-board amplifier to generate high actuation voltage for untethered locomotion. From the theoretical standpoint, a distributed-parameter electroelastic model including the hydrodynamic effects and actuator dynamics is coupled with the elongated-body theory for predicting the mean thrust in quiescent water. In-air and underwater experiments are performed to verify the incorporation of hydrodynamic effects in the linear actuation regime. For electroelastically nonlinear actuation levels, experimentally obtained underwater vibration response is coupled with the elongated-body theory to predict the thrust output. The measured mean thrust levels in quiescent water (on the order of ∼10 mN) compare favorably with thrust levels of biological fish. An untethered robotic fish prototype that employs a single bimorph fin (caudal fin) for straight swimming and turning motions is developed and tested in free locomotion. A swimming speed of 0.3 body-length/second (7.5 cm s −1 swimming speed for 24.3 cm body length) is achieved at 5 Hz for a non-optimized main body-propulsor bimorph combination under a moderate actuation voltage level. (paper)

  8. A MODULAR DESIGN OF A WALL-CLIMBING ROBOT AND ITS MECHATRONICS CONTROLLER

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The modular design of a wall-climbing robot, implementing two articulated legs per module (biped robotic modules, is presented in this paper. Modular design improves a wall-climbing robot’s manoeuvrability and flexibility during surface changes or while walking on uneven surfaces. The design of the articulated legs uses four motors to control the posture of the vacuum cups, achieving the best possible contact with the surface. Each leg can contain more than five sensors for effective feedback control, and additional sensors such as gyros, CCD sensors, etc, can be fitted on a module, depending on the robot’s application. As the number of modules used in the design of the robot is increased, the number of actuators and sensors increases exponentially. A distributed mechatronics controller of such systems is presented.

    AFRIKAANSE OPSOMMING: Modulêre ontwerp van 'n muurklim-robot met twee geskarnierde bene per module (twee-benige robotmodules word in hierdie artikel weergegee. Modulêre ontwerp verbeter die muurklim-robot se beweeglikheid en aanpasbaarheid tydens veranderings in die loopvlak of terwyl dit loop op ongelyke oppervlaktes. Ontwerp van geskarnierde bene implementeer vier motors wat die oriëntasie van vakuumsuigdoppe beheer om die bes moontlike kontak met die loopvlak te handhaaf. Elke been kan meer as vyf sensors hê vir doeltreffende terugvoerbeheer, en bykomende sensors soos giroskope, CCD sensors, ens. kan by 'n module gevoeg word soos die toepassing van die robot dit mag vereis. Soos die aantal modules wat in die ontwerp van die robot gebruik word, toeneem, neem die aantal aktiveerders en sensors eksponensiëel toe. 'n Verdeelde megatroniese beheerder van sulke stelsels word aangebied.

  9. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated......Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...

  10. Analysis of Underactuated Dynamic Locomotion Systems Using Perturbation Expansion: The Twistcar Toy Example

    Science.gov (United States)

    Chakon, Ofir; Or, Yizhar

    2017-08-01

    Underactuated robotic locomotion systems are commonly represented by nonholonomic constraints where in mixed systems, these constraints are also combined with momentum evolution equations. Such systems have been analyzed in the literature by exploiting symmetries and utilizing advanced geometric methods. These works typically assume that the shape variables are directly controlled, and obtain the system's solutions only via numerical integration. In this work, we demonstrate utilization of the perturbation expansion method for analyzing a model example of mixed locomotion system—the twistcar toy vehicle, which is a variant of the well-studied roller-racer model. The system is investigated by assuming small-amplitude oscillatory inputs of either steering angle (kinematic) or steering torque (mechanical), and explicit expansions for the system's solutions under both types of actuation are obtained. These expressions enable analyzing the dependence of the system's dynamic behavior on the vehicle's structural parameters and actuation type. In particular, we study the reversal in direction of motion under steering angle oscillations about the unfolded configuration, as well as influence of the choice of actuation type on convergence properties of the motion. Some of the findings are demonstrated qualitatively by reporting preliminary motion experiments with a modular robotic prototype of the vehicle.

  11. Body shape helps legged robots climb and turn in complex 3-D terrains

    Science.gov (United States)

    Han, Yuanfeng; Wang, Zheliang; Li, Chen

    Analogous to streamlined shapes that reduce drag in fluids, insects' ellipsoid-like rounded body shapes were recently discovered to be ``terradynamically streamlined'' and enhance locomotion in cluttered terrain by facilitating body rolling. Here, we hypothesize that there exist more terradynamic shapes that facilitate other modes of locomotion like climbing and turning in complex 3-D terrains by facilitating body pitching and yawing. To test our hypothesis, we modified the body shape of a legged robot by adding an elliptical and a rectangular shell and tested how it negotiated with circular and square vertical pillars. With a rectangular shell the robot always pitched against square pillars in an attempt to climb, whereas with an elliptical shell it always yawed and turned away from circular pillars given a small initial lateral displacement. Square / circular pillars facilitated pitching / yawing, respectively. To begin to reveal the contact physics, we developed a locomotion energy landscape model. Our model revealed that potential energy barriers to transition from pitching to yawing are high for angular locomotor and obstacle shapes (rectangular / square) but vanish for rounded shapes (elliptical / circular). Our study supports the plausibility of locomotion energy landscapes for understanding the rich locomotor transitions in complex 3-D terrains.

  12. Bending continuous structures with SMAs: a novel robotic fish design

    OpenAIRE

    Rossi, Claudio; Colorado Montaño, Julián; Coral Cuellar, William; Barrientos Cruz, Antonio

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature o...

  13. Dexterous robotic manipulation of alert adult Drosophila for high-content experimentation.

    Science.gov (United States)

    Savall, Joan; Ho, Eric Tatt Wei; Huang, Cheng; Maxey, Jessica R; Schnitzer, Mark J

    2015-07-01

    We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking; translations and rotations; characterizations of fly phenotypes and behaviors; microdissection; or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies' complex attributes and behavioral patterns.

  14. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.

    Science.gov (United States)

    Raj, Aditi; Thakur, Atul

    2016-04-13

    Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.

  15. Controlling Tensegrity Robots Through Evolution

    Science.gov (United States)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  16. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot.

    Science.gov (United States)

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-04-22

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  17. Automatic control of a robotic vehicle

    Science.gov (United States)

    Mcreynolds, S. R.

    1976-01-01

    Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.

  18. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.

    Science.gov (United States)

    Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li

    2016-02-08

    Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.

  19. Supporting robotics technology requirements through research in intelligent machines

    Energy Technology Data Exchange (ETDEWEB)

    Mann, R.C.

    1995-02-01

    {open_quotes}Safer, better, cheaper{close_quotes} are recurring themes in many robot development efforts. Significant improvements are being accomplished with existing technology, but basic research sets the foundations for future improvements and breakthrough discoveries. Advanced robots represent systems that integrate the three basic functions of sensing, reasoning, and acting (locomotion and manipulation) into one functional unit. Depending on the application requirements, some of these functions are implemented at a more or less advanced level than others. For example, some navigation tasks can be accomplished with purely reactive control and do not require sophisticated reasoning and planning methodologies. Robotics work at the Oak Ridge National Laboratory (ORNL) spans the spectrum from basic research to application-specific development and rapid prototyping of systems. This presentation summarizes recent highlights of the robotics research activities at ORNL.

  20. Balanced gait generations of a two-legged robot on sloping surface

    Indian Academy of Sciences (India)

    legged robot moving up and down through the sloping surface is presented. The gait of the lower links during locomotion is obtained after assuming suitable trajectories for the swing leg and hip joint. The trunk motion is initially generated based on ...

  1. Minimally Actuated Walking: Identifying Core Challenges to Economical Legged Locomotion Reveals Novel Solutions

    Directory of Open Access Journals (Sweden)

    Ryan T Schroeder

    2018-05-01

    Full Text Available Terrestrial organisms adept at locomotion employ strut-like legs for economical and robust movement across the substrate. Although it is relatively easy to observe and analyze details of the solutions these organic systems have arrived at, it is not as easy to identify the problems these movement strategies have solved. As such, it is useful to investigate fundamental challenges that effective legged locomotion overcomes in order to understand why the mechanisms employed by biological systems provide viable solutions to these challenges. Such insight can inform the design and development of legged robots that may eventually match or exceed animal performance. In the context of human walking, we apply control optimization as a design strategy for simple bipedal walking machines with minimal actuation. This approach is used to discuss key facilitators of energetically efficient locomotion in simple bipedal walkers. Furthermore, we extrapolate the approach to a novel application—a theoretical exoskeleton attached to the trunk of a human walker—to demonstrate how coordinated efforts between bipedal actuation and a machine oscillator can potentially alleviate a meaningful portion of energetic exertion associated with leg function during human walking.

  2. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  3. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  4. Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.

    Science.gov (United States)

    Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A

    2017-12-01

    Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.

  5. Embodiment of Legged Robots Emerged in Evolutionary Design: Pseudo Passive Dynamic Walkers

    OpenAIRE

    Matsushita, Kojiro; Yokoi, Hiroshi

    2008-01-01

    An objective of this paper is to illustrate a physical representation of the embodiment on legged locomotion. Embodiment is here defined as physical features that reduce control complexity and energy consumption of legged robots. In this method, the embodiment of

  6. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  7. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    Science.gov (United States)

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  8. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  9. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  10. Synthesis of adaptive impedance control for bipedal robot mechanisms

    OpenAIRE

    Petrović Milena; Rodić Aleksandar

    2008-01-01

    The paper describes the impedance algorithm in locomotion of humanoid robot with proposed parameter modulation depending on the gate phase. The analysis shows influence of walking speed and foot elevation on regulator's parameters. Chosen criterion cares for footpath tracking and needed energy for that way of walking. The experiments give recommendation for impedance regulator tuning.

  11. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  12. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot

    Directory of Open Access Journals (Sweden)

    Xun Chai

    2015-04-01

    Full Text Available Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  13. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  14. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  15. Quadruped locomotion system of prototype advanced robot for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Sugiyama, Sakae

    1991-01-01

    The development of the robots for the works in nuclear power stations has been promoted. The demonstration machine developed comprises subsystems so that the design, manufacture, operation, maintenance and so on of the robots are simplified and made convenient, that is, the command for all actions, visual information processing subsystem, manipulation subsystem and movement subsystem. In this report, the elementary technology of movement and the movement subsystem are described. Quadruped walking, intelligent type motion control, and the target specification, movement subsystem and test of the demonstration machine are explained. (K.I.)

  16. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    Science.gov (United States)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  17. Running over unknown rough terrain with a one-legged planar robot

    International Nuclear Information System (INIS)

    Andrews, Ben; Miller, Bruce; Clark, Jonathan E; Schmitt, John

    2011-01-01

    The ability to traverse unknown, rough terrain is an advantage that legged locomoters have over their wheeled counterparts. However, due to the complexity of multi-legged systems, research in legged robotics has not yet been able to reproduce the agility found in the animal kingdom. In an effort to reduce the complexity of the problem, researchers have developed single-legged models to gain insight into the fundamental dynamics of legged running. Inspired by studies of animal locomotion, researchers have proposed numerous control strategies to achieve stable, one-legged running over unknown, rough terrain. One such control strategy incorporates energy variations into the system during the stance phase by changing the force-free leg length as a sinusoidal function of time. In this research, a one-legged planar robot capable of implementing this and other state-of-the-art control strategies was designed and built. Both simulated and experimental results were used to determine and compare the stability of the proposed controllers as the robot was subjected to unknown drop and raised step perturbations equal to 25% of the nominal leg length. This study illustrates the relative advantages of utilizing a minimal-sensing, active energy removal control scheme to stabilize running over rough terrain.

  18. Applying patent information to tracking a specific technology

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Liu

    2007-10-01

    Full Text Available Patents in general contain much novel technological information. This paper demonstrates that the usage of patent analysis can facilitate a unique scheme for tracking technology development. In this paper, the walking technique of the Japanese biped robot is tracked as an example. The searching method of the FI (file index and F-term classification system developed by JPO (Japan Patent Office was employed in this study, where all the related patent data were searched from the IPDL (Intellectual Property Digital Library. This study investigated an important technique applied to the humanoid biped robot that imitates the walking behavior of the human beings on two legs. By analyzing the patent information obtained, the relative research capabilities, technical strengths, and patent citation conditions among patent competitors were compared. Furthermore, a formulated technical matrix of patent map is established in this paper to indicate that the ZMP (Zero Moment Point control means is the main technology to achieve stabilized walking control of the humanoid biped robot. This study also incorporates relevant academic journal findings and industrial information. Results presented herein demonstrate that patents can function not only as a map for tracking a technology trajectory, but also as a guide to the main development of a new technology in years to come.

  19. A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot

    International Nuclear Information System (INIS)

    Sato, Takahide; Kano, Takeshi; Ishiguro, Akio

    2012-01-01

    Autonomous decentralized control has attracted considerable attention because it enables us to understand the adaptive and versatile locomotion of animals and facilitates the construction of truly intelligent artificial agents. Thus far, we have developed a snake-like robot (HAUBOT I) that is driven by a decentralized control scheme based on a discrepancy function, which incorporates phasic control. In this paper, we investigate a decentralized control scheme in which phasic and tonic control are well coordinated, as an extension of our previous study. To verify the validity of the proposed control scheme, we apply it to a snake-like robot (HAUBOT II) that can adjust both the phase relationship between its body segments and the stiffness at each joint. The results indicate that the proposed control scheme enables the robot to exhibit remarkable real-time adaptability over various frictional and inclined terrains. These findings can potentially enable us to gain a deeper insight into the autonomous decentralized control mechanism underlying the adaptive and resilient locomotion of animals.

  20. Problems in software development for nuclear robotics

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni

    1986-01-01

    Major technical problems in developing softwares for intelligent robots for future nuclear applications are explained briefly. In order that a robot can perform various kinds of complex works, it must be equipped with a high level of artificial intelligence which includes sensing functions such as visiual, auditory, tactile, proximity sensing, cognitive functions such as recognition of objects and understanding of working environment, decision-making functions such as work planning and control functions such as manipulator and locomotion controls. A large amount of various kinds of signals and informations must be processed with a high speed for an integrated control of these functions. It will be desirable that the computer program for controlling a robot which must run in a real-time will have a functionally hierarchical and distributed structure from the view point of software development. Parallel processing will be required from the view point of computation time. (author)

  1. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Science.gov (United States)

    2010-07-01

    ... the nonconformity of any such locomotives or locomotive engines which have been, if required by the... affected by the remedy and a general statement of the measures to be taken to correct the nonconformity. (5) A description of the adverse effects, if any, that an uncorrected nonconformity would have on the...

  2. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  3. Development of a soft untethered robot using artificial muscle actuators

    Science.gov (United States)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  4. Vision based persistent localization of a humanoid robot for locomotion tasks

    Directory of Open Access Journals (Sweden)

    Martínez Pablo A.

    2016-09-01

    Full Text Available Typical monocular localization schemes involve a search for matches between reprojected 3D world points and 2D image features in order to estimate the absolute scale transformation between the camera and the world. Successfully calculating such transformation implies the existence of a good number of 3D points uniformly distributed as reprojected pixels around the image plane. This paper presents a method to control the march of a humanoid robot towards directions that are favorable for visual based localization. To this end, orthogonal diagonalization is performed on the covariance matrices of both sets of 3D world points and their 2D image reprojections. Experiments with the NAO humanoid platform show that our method provides persistence of localization, as the robot tends to walk towards directions that are desirable for successful localization. Additional tests demonstrate how the proposed approach can be incorporated into a control scheme that considers reaching a target position.

  5. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Directory of Open Access Journals (Sweden)

    Eduard eGrinke

    2015-10-01

    Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.

  6. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of a...

  7. 49 CFR 238.223 - Locomotive fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  8. System Design of a Cheetah Robot Toward Ultra-high Speed

    Directory of Open Access Journals (Sweden)

    Mantian Li

    2014-05-01

    Full Text Available High-speed legged locomotion pushes the limits of the most challenging problems of design and development of the mechanism, also the control and the perception method. The cheetah is an existence proof of concept of what we imitate for high-speed running, and provides us lots of inspiration on design. In this paper, a new model of a cheetah-like robot is developed using anatomical analysis and design. Inspired by a biological neural mechanism, we propose a novel control method for controlling the muscles' flexion and extension, and simulations demonstrate good biological properties and leg's trajectory. Next, a cheetah robot prototype is designed and assembled with pneumatic muscles, a musculoskeletal structure, an antagonistic muscle arrangement and a J-type cushioning foot. Finally, experiments of the robot legs swing and kick ground tests demonstrate its natural manner and validate the design of the robot. In the future, we will test the bounding behaviour of a real legged system.

  9. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  10. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  11. Adaptive Strategy for Online Gait Learning Evaluated on the Polymorphic Robotic LocoKit

    DEFF Research Database (Denmark)

    Christensen, David Johan; Larsen, Jørgen Christian; Stoy, Kasper

    2012-01-01

    This paper presents experiments with a morphologyindependent, life-long strategy for online learning of locomotion gaits, performed on a quadruped robot constructed from the LocoKit modular robot. The learning strategy applies a stochastic optimization algorithm to optimize eight open parameters...... of a central pattern generator based gait implementation. We observe that the strategy converges in roughly ten minutes to gaits of similar or higher velocity than a manually designed gait and that the strategy readapts in the event of failed actuators. In future work we plan to study co-learning...

  12. Human-Robot Teaming in a Multi-Agent Space Assembly Task

    Science.gov (United States)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of humans with the survivability and physical capabilities of robots is proposed and illustrated by example. Such teams are useful for large-scale, complex missions requiring dispersed manipulation, locomotion and sensing capabilities. To study collaboration modalities within a multi-agent EVA team, a 1-g test is conducted with humans and robots working together in various supporting roles.

  13. Distributed behavior-based control architecture for a wall climbing robot

    International Nuclear Information System (INIS)

    Nadir Ould Khessal; Shamsudin H.M. Amin . nadir.ok@ieee.org

    1999-01-01

    In the past two decades, Behavior-based AI (Artificial Intelligence) has emerged as a new approach in designing mobile robot control architecture. It stresses on the issues of reactivity, concurrency and real-time control. In this paper we propose a new approach in designing robust intelligent controllers for mobile robot platforms. The Behaviour-based paradigm implemented in a multiprocessing firmware architecture will further enhance parallelism present in the subsumption paradigm itself and increased real-timeness. The paper summarises research done to design a four-legged wall climbing robot. The emphasis will be on the control architecture of the robot based on the Behavior -based paradigm. The robot control architecture is made up of two layers, the locomotion layer and the gait controller layer. The two layers are implemented on a Vesta 68332 processor board running the Behaviour-based kernel, The software is developed using the L programming language, introduced by IS Robotics. The Behaviour-based paradigm is outlined and contrasted with the classical Knowledge-based approach. A description of the distributed architecture is presented followed by a presentation of the Behaviour-based agents for the two layers. (author)

  14. 49 CFR 229.121 - Locomotive cab noise.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive cab noise. 229.121 Section 229.121... § 229.121 Locomotive cab noise. (a) Performance standards for locomotives. (1) When tested for static noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that...

  15. The noise factor in railway locomotives.

    Science.gov (United States)

    Rotter, T

    1982-09-01

    This article concerns the problem of acoustic work conditions on railway locomotives. The objective results of sonometric surveys in locomotive cabins are compared with subject data received from locomotive crews obtained by means of a specific questionnaire 'The Subjective Estimation of Noise'. The analysis touched 9 type of locomotives; steam, diesel and electric engines. We asked drivers of different age groups and with varying lengths of professional service for their opinions The aim of the investigation was to determine the following points: 1. to analyse the drivers' subjective estimation of the noise in the locomotive cabins; 2. to define length of time for which the driver remains under the influence of the noise after finishing work; 3. to investigate the question of perception and understanding of sounds and vocal signals used in the locomotive. These problems are a small part of the general plan to improve work conditions on the Polish National Railways.

  16. Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2014-11-01

    While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).

  17. Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion.

    Science.gov (United States)

    Carrano, M T; Biewener, A A

    1999-06-01

    Extant birds represent the only diverse living bipeds, and can be informative for investigations into the life-history parameters of their extinct dinosaurian relatives. However, morphological changes that occurred during early avian evolution, including the unique adoption of a nearly horizontal femoral orientation associated with a shift in center of mass (CM), suggest that caution is warranted in the use of birds as analogs for nonavian dinosaur locomotion. In this study, we fitted a group of white leghorn chickens (Gallus gallus) with a weight suspended posterior to the hip in order to examine the effects on loading and morphology. This caused a CM shift that necessitated a change in femoral posture (by 35 degrees towards the horizontal, P posture towards the horizontal, since this change increases the degree to which the bone axis and the GRF vector produce mediolateral long-axis rotation of the bone. These results support the hypothesis that a postural change during early avian evolution could underlie the allometric differences seen between bird and nonavian dinosaur femora by requiring more robust femoral dimensions in birds due to an increase in torsion.

  18. [Job stress in locomotive attendants in a locomotive depot and related influencing factors].

    Science.gov (United States)

    Kang, L; Jia, X C; Lu, F; Zhou, W H; Chen, R

    2017-10-20

    Objective: To investigate the current status of job stress in locomotive attendants in a locomotive depot and related influencing factors. Methods: From 2012 to 2013, cluster sampling was used to select 1500 locomotive attendants in a locomotive depot in Zhengzhou Railway Bureau as respondents.The contents of the investigation included general data and occupational information.A job satisfaction questionnaire was used to investigate the degree of satisfaction, a depression scale was used to investigate the frequency of symptoms, and a daily stress scale was used to investigate the frequency of fatigue and stress. Results: There was a significant difference in depression score between locomotive attendants with different ages, working years, degrees of education, working situations of spouse, total monthly family incomes, numbers of times of attendanceat night, monthly numbers of times of attendance,ormonthly attendance times( P job satisfaction score between locomotive attendants with different ages,working years, degrees of education, working situations of spouse, total monthly family incomes, numbers of times of attendance at night, monthly attendance times,or ways to work( P job satisfaction( β =1.546)and monthly number of times of attendance,working years,attendance time at night,and degree of education were negatively correlated with job satisfaction( β =-0.185,-0.097,-0.020,and -1.106); monthly number of times of attendance andcommute time were positively correlated with depression( β =0.243 and 0.029); attendance time at night,working situation of spouse,commute time,monthly number of times of attendance,degree of education,and working years were positively correlated with daily stress( β =0.006,0.473,0.010,0.043,0.585, and 0.028). Conclusion: Number of times of attendance, attendance time,working years,and spouse are influencing factors for job stress in locomotive attendants. Improvement in work process and care for their personal life help to reduce

  19. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  20. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    Science.gov (United States)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  1. Innovative Robot Archetypes for In-Space Construction and Maintenance

    Science.gov (United States)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  2. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.

    Science.gov (United States)

    Chapman, Edward M; Jenkins, Tyler E; Bryant, Matthew

    2017-07-10

    This paper presents a fully coupled electro-hydraulic model of a bio-inspired climbing robot actuated by fluidic artificial muscles (FAMs). This analysis expands upon previous FAM literature by considering not only the force and contraction characteristics of the actuator, but the complete hydraulic and electromechanical circuits as well as the dynamics of the climbing robot. This analysis allows modeling of the time-varying applied pressure, electrical current, and actuator contraction for accurate prediction of the robot motion, energy consumption, and mechanical work output. The developed model is first validated against mechanical and electrical data collected from a proof-of-concept prototype robot. The model is then employed to study the system-level sensitivities of the robot locomotion efficiency and average climbing speed to several design and operating parameters. The results of this analysis demonstrate that considering only the transduction efficiency of the FAM actuators is insufficient to maximize the efficiency of the complete robot, and that a holistic approach can lead to significant improvements in performance. © 2017 IOP Publishing Ltd.

  3. Spontaneous Symmetry-Breaking in a Network Model for Quadruped Locomotion

    Science.gov (United States)

    Stewart, Ian

    2017-12-01

    Spontaneous symmetry-breaking proves a mechanism for pattern generation in legged locomotion of animals. The basic timing patterns of animal gaits are produced by a network of spinal neurons known as a Central Pattern Generator (CPG). Animal gaits are primarily characterized by phase differences between leg movements in a periodic gait cycle. Many different gaits occur, often having spatial or spatiotemporal symmetries. A natural way to explain gait patterns is to assume that the CPG is symmetric, and to classify the possible symmetry-breaking periodic motions. Pinto and Golubitsky have discussed a four-node model CPG network for biped gaits with ℤ2 × ℤ2 symmetry, classifying the possible periodic states that can arise. A more specific rate model with this structure has been analyzed in detail by Stewart. Here we extend these methods to quadruped gaits, using an eight-node network with ℤ4 × ℤ2 symmetry proposed by Golubitsky and coworkers. We formulate a rate model and calculate how the first steady or Hopf bifurcation depends on its parameters, which represent four connection strengths. The calculations involve a distinction between “real” gaits with one or two phase shifts (pronk, bound, pace, trot) and “complex” gaits with four phase shifts (forward and reverse walk, forward and reverse buck). The former correspond to real eigenvalues of the connection matrix, the latter to complex conjugate pairs. The partition of parameter space according to the first bifurcation, ignoring complex gaits, is described explicitly. The complex gaits introduce further complications, not yet fully understood. All eight gaits can occur as the first bifurcation from a fully synchronous equilibrium, for suitable parameters, and numerical simulations indicate that they can be asymptotically stable.

  4. Neuromechanical Control for Hexapedal Robot Walking on Challenging Surfaces and Surface Classification

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    The neuromechanical control principles of animal locomotion provide good insights for the development of bio-inspired legged robots for walking on challenging surfaces. Based on such principles, we developed a neuromechanical controller consisting of a modular neural network (MNN) and of virtual...... agonist–antagonist muscle mechanisms (VAAMs). The controller allows for variable compliant leg motions of a hexapod robot, thereby leading to energy-efficient walking on different surfaces. Without any passive mechanisms or torque and position feedback at each joint, the variable compliant leg motions...... are achieved by only changing the stiffness parameters of the VAAMs. In addition, six surfaces can be also classified by observing the motor signals generated by the controller. The performance of the controller is tested on a physical hexapod robot. Experimental results show that it can effectively walk...

  5. Locomotive monitoring system using wireless sensor networks

    CSIR Research Space (South Africa)

    Croucamp, PL

    2014-07-01

    Full Text Available Theft of cables used for powering a locomotive not only stops the train from functioning but also paralyzes the signalling and monitoring system. This means that information on certain locomotive's cannot be passed onto other locomotives which may...

  6. Multisensory guidance of goal-oriented behaviour of legged robots

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate; Tuxworth, Gervase

    2017-01-01

    Biological systems often combine cues from two different sensory modalities to execute goal-oriented sensorimotor tasks, which otherwise cannot be accurately executed with either sensory stream in isolation. When auditory cues alone are not sufficient to accurately localise an audio-visual target...... is tasked with localising an audio-visual target by turning towards it. The architecture extracts sound direction information with a model of the peripheral auditory system of lizards to modulate locomotion control parameters driving the turning behaviour. The visual information adaptively changes...... the strength of the acoustomotor coupling to adjust turning speed of the robot. Our experiments demonstrate improved orientation towards the audio-visual target emitting a tone of frequency 2.2kHz located at an angular offset of 45 degrees from the robot....

  7. Modeling and Simulation of Wave Gait of a Hexapod Walking Robot: A CAD/CAE Approach

    Directory of Open Access Journals (Sweden)

    Abhijit Mahapatra

    2013-03-01

    Full Text Available In the present paper, an attempt has been made to carry out dynamic analysis of a hexapod robot using the concept of multibody dynamics. A CAD (Computer Aided Design model of a realistic hexapod robot has been made for dynamic simulation of its locomotion using ADAMS (Automatic Dynamic Analysis of Mechanical Systems multibody dynamics solver. The kinematic model of each leg of three degrees of freedom has been designed using CATIA (Computer Aided Three Dimensional Interactive Application and SimDesigner package in order to develop an overall kinematic model of the robot, when it follows a straight path. Joint Torque variation as well as the variation of the aggregate center of mass of the robot was analyzed for the wave tetrapod gait. The simulation results provide the basis for developing the control algorithm as well as an intelligent decision making for the robot while in motion.

  8. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  9. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    Science.gov (United States)

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  10. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.

    Science.gov (United States)

    Krasny, Darren P; Orin, David E

    2004-08-01

    Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.

  11. Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics

    Science.gov (United States)

    Zimmerman, S.; Abdelkefi, A.

    2017-08-01

    Marine robots are a developing topic for military, scientific, and environmental missions. However, most existing marine robots are either limited to flight or limited to swimming. Therefore, the combination of both provides endless possibilities for tasks, such as espionage, pollution and marine wildlife surveillance, and border protection. Applying bioinspiration and biomimetics not only camouflages the robot, but also increases the efficiency of already perfected designs. Because bioinspiration and aerial-aquatic locomotion are the main attraction for this article, this review gathers the characteristics of aerial-aquatic animals useful for such designs. These animals are diving birds and flying fish, specifically plunge-diving birds, surface-diving birds, both plunge- and surface-diving birds, two-winger flying fish, and four-winger flying fish. The overview of the current marine bioinspired and non-bioinspired robots that are both aerial and aquatic are also presented, followed by the limitations and recommendations of the bioinspired robots. It is shown by a comparison between the bioinspired robot and its corresponding animal that the existing robotic systems are not truly bioinspired. The main traits these systems are missing are replicating the exact weight, size, muscle movement, and skin texture of the biological animal. In order to have efficient robots, bioinspiration needs to be perfected. Doing so requires not only the basic design to be replicated, but every detail of the system to be imitated.

  12. Posture Control—Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses

    Directory of Open Access Journals (Sweden)

    Thomas Mergner

    2018-05-01

    Full Text Available Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1 four basic physical disturbances (support surface (SS tilt and translation, field and contact forces may affect the balancing in any given degree of freedom (DoF. Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2 Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3 Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking

  13. Task decomposition for multilimbed robots to work in the reachable-but-unorientable space

    Science.gov (United States)

    Su, Chao; Zheng, Yuan F.

    1990-01-01

    Multilimbed industrial robots that have at least one arm and two or more legs are suggested for enlarging robot workspace in industrial automation. To plan the motion of a multilimbed robot, the arm-leg motion-coordination problem is raised and task decomposition is proposed to solve the problem; that is, a given task described by the destination position and orientation of the end-effector is decomposed into subtasks for arm manipulation and for leg locomotion, respectively. The former is defined as the end-effector position and orientation with respect to the legged main body, and the latter as the main-body position and orientation in the world coordinates. Three approaches are proposed for the task decomposition. The approaches are further evaluated in terms of energy consumption, from which an optimal approach can be selected.

  14. Adaptation to Elastic Loads and BMI Robot Controls During Rat Locomotion examined with Point-Process GLMs.

    Directory of Open Access Journals (Sweden)

    Weiguo eSong

    2015-04-01

    Full Text Available Currently little is known about how a mechanically coupled BMI system’s actions are integrated into ongoing body dynamics. We tested a locomotor task augmented with a BMI system driving a robot mechanically interacting with a rat under three conditions: control locomotion (BL, ‘simple elastic load’ (E and ‘BMI with elastic load’ (BMI/E. The effect of the BMI was to allow compensation of the elastic load as a function of the neural drive. Neurons recorded here were close to one another in cortex, all within a 200 micron diameter horizontal distance of one another. The interactions of these close assemblies of neurons may differ from those among neurons at longer distances in BMI tasks and thus are important to explore. A point process generalized linear model (GLM, was used to examine connectivity at two different binning timescales (1ms vs. 10ms. We used GLM models to fit non-Poisson neural dynamics solely using other neurons’ prior neural activity as covariates. Models at different timescales were compared based on Kolmogorov-Smirnov (KS goodness-of-fit and parsimony. About 15% of cells with non-Poisson firing were well fitted with the neuron-to-neuron models alone. More such cells were fitted at the 1ms binning than 10ms. Positive connection parameters (‘excitation’ ~70% exceeded negative parameters (‘inhibition’ ~30%. Significant connectivity changes in the GLM determined networks of well-fitted neurons occurred between the conditions. However, a common core of connections comprising at least ~15% of connections persisted between any two of the three conditions. Significantly almost twice as many connections were in common between the two load conditions (~27%, compared to between either load condition and the baseline. This local point process GLM identified neural correlation structure and the changes seen across task conditions in the rats in this neural subset may be intrinsic to cortex or due to feedback and input

  15. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.

    Science.gov (United States)

    d'Elia, Nicolò; Vanetti, Federica; Cempini, Marco; Pasquini, Guido; Parri, Andrea; Rabuffetti, Marco; Ferrarin, Maurizio; Molino Lova, Raffaele; Vitiello, Nicola

    2017-04-14

    In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., ergonomics assessment of wearable robots.

  16. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    International Nuclear Information System (INIS)

    Sadegjian, Rasou; Masouleh, Mehdi Tale

    2016-01-01

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time

  17. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-11-15

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.

  18. Swimming Performance of Toy Robotic Fish

    Science.gov (United States)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  19. Locomotive Schedule Optimization for Da-qin Heavy Haul Railway

    Directory of Open Access Journals (Sweden)

    Ruiye Su

    2015-01-01

    Full Text Available The main difference between locomotive schedule of heavy haul railways and that of regular rail transportation is the number of locomotives utilized for one train. One heavy-loaded train usually has more than one locomotive, but a regular train only has one. This paper develops an optimization model for the multilocomotive scheduling problem (MLSP through analyzing the current locomotive schedule of Da-qin Railway. The objective function of our paper is to minimize the total number of utilized locomotives. The MLSP is nondeterministic polynomial (NP hard. Therefore, we convert the multilocomotive traction problem into a single-locomotive traction problem. Then, the single-locomotive traction problem (SLTP can be converted into an assignment problem. The Hungarian algorithm is applied to solve the model and obtain the optimal locomotive schedule. We use the variance of detention time of locomotives at stations to evaluate the stability of locomotive schedule. In order to evaluate the effectiveness of the proposed optimization model, case studies for 20 kt and 30 kt heavy-loaded combined trains on Da-qin Railway are both conducted. Compared to the current schedules, the optimal schedules from the proposed models can save 62 and 47 locomotives for 20 kt and 30 kt heavy-loaded combined trains, respectively. Therefore, the effectiveness of the proposed model and its solution algorithm are both valid.

  20. Stereo vision with distance and gradient recognition

    Science.gov (United States)

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  1. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    Directory of Open Access Journals (Sweden)

    Mu Qiao

    Full Text Available The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  2. The Need for Speed in Rodent Locomotion Analyses

    Science.gov (United States)

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2016-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845

  3. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...

  4. Steam Locomotives: a forgotten era

    African Journals Online (AJOL)

    The boiler was not armoured as the idea was that it was bullet proof. The locomotives were arranged into groups of five and for each group there was an engine as standby. As far as can be ascertained, locomotive No 537 was never armoured, but did work draw trains and freight trains during the Anglo-Boer War too.

  5. Hierarchical Kinematic Modelling and Optimal Design of a Novel Hexapod Robot with Integrated Limb Mechanism

    Directory of Open Access Journals (Sweden)

    Guiyang Xin

    2015-09-01

    Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.

  6. Agricultural robot designed for seeding mechanism

    Science.gov (United States)

    Sunitha, K. A., Dr.; Suraj, G. S. G. S.; Sowrya, CH P. N.; Atchyut Sriram, G.; Shreyas, D.; Srinivas, T.

    2017-05-01

    In the field of agriculture, plantation begins with ploughing the land and sowing seeds. The old traditional method plough attached to an OX and tractors needs human involvement to carry the process. The driving force behind this work is to reduce the human interference in the field of agriculture and to make it cost effective. In this work, apart of the land is taken into consideration and the robot introduced localizes the path and can navigate itself without human action. For ploughing, this robot is provided with tentacles attached with saw blades. The sowing mechanism initiates with long toothed gears actuated with motors. The complete body is divided into two parts the tail part acts as a container for seeds. The successor holds on all the electronics used for automating and actuation. The locomotion is provided with wheels covered under conveyor belts. Gears at the back of the robot rotate in equal speed with respect to each other with the saw blades. For each rotation every tooth on gear will take seeds and will drop them on field. Camera at the front end tracks the path for every fixed distance and at the minimum distance it takes the path pre-programmed.

  7. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  8. The effect of waist twisting on walking speed of an amphibious salamander like robot

    Science.gov (United States)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  9. STRIDE II: A Water Strider-inspired Miniature Robot with Circular Footpads

    Directory of Open Access Journals (Sweden)

    Onur Ozcan

    2014-06-01

    Full Text Available Water strider insects have attracted the attention of many researchers due to their power-efficient and agile water surface locomotion. This study proposes a new water strider insect-inspired robot, called STRIDE II, which uses new circular footpads for high lift, stability and payload capability, and a new elliptical leg rotation mechanism for more efficient water surface propulsion. Using the advantage of scaling effects on surface tension versus buoyancy, similar to water strider insects, this robot uses the repulsive surface tension force on its footpads as the dominant lift principle instead of creating buoyancy by using very skinny (1 mm diameter circular footpads coated with a superhydrophobic material. The robot and the insect propel quickly and power efficiently on the water surface by the sculling motion of their two side-legs, which never break the water surface completely. This paper proposes models for the lift, drag and propulsion forces and the energy efficiency of the proposed legged robot, and experiments are conducted to verify these models. After optimizing the robot design using the lift models, a maximum lift capacity of 55 grams is achieved using 12 footpads with a 4.2 cm outer diameter, while the robot itself weighs 21.75 grams. For this robot, a propulsion efficiency of 22.3% was measured. The maximum forward and turning speeds of the robot were measured as 71.5 mm/sec and 0.21 rad/sec, respectively. These water strider robots could be used in water surface monitoring, cleaning and analysis in lakes, dams, rivers and the sea.

  10. Locomotive Crash Energy Management Coupling Tests

    Science.gov (United States)

    2018-04-18

    This paper describes the results of the CEM equipped locomotive coupling tests. In this set of tests, a moving CEM locomotive was coupled to a standing cab car. The primary objective was to demonstrate the robustness of the PBC design and determine t...

  11. Kinesiology-Based Robot Foot Design for Human-Like Walking

    Directory of Open Access Journals (Sweden)

    SangJoo Kwon

    2012-12-01

    Full Text Available Compared with the conventional flat foot, the flexible foot is advantageous in implementing human-like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human-like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step.

  12. System Design of a Cheetah Robot Toward Ultra-high Speed

    OpenAIRE

    Mantian Li; Xin Wang; Wei Guo; Pengfei Wang; Lining Sun

    2014-01-01

    High-speed legged locomotion pushes the limits of the most challenging problems of design and development of the mechanism, also the control and the perception method. The cheetah is an existence proof of concept of what we imitate for high-speed running, and provides us lots of inspiration on design. In this paper, a new model of a cheetah-like robot is developed using anatomical analysis and design. Inspired by a biological neural mechanism, we propose a novel control method for controlling...

  13. Tracked robot controllers for climbing obstacles autonomously

    Science.gov (United States)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  14. 76 FR 2199 - Locomotive Safety Standards

    Science.gov (United States)

    2011-01-12

    ..., alcohol and drug testing, locomotive engineer certification, and workplace safety. In 1980, FRA issued the...) Association of State Rail Safety Managers (ASRSM) Brotherhood of Locomotive Engineers and Trainmen (BLET... desirable to minimize the health and safety effects of temperature extremes. Depending upon the workplace...

  15. Functional evaluation of the endotics system, a new disposable self-propelled robotic colonoscope: in vitro tests and clinical trial.

    Science.gov (United States)

    Cosentino, Felice; Tumino, Emanuele; Passoni, Giovanni Rubis; Morandi, Elisabetta; Capria, Alfonso

    2009-08-01

    Currently, the best method for CRC screening is colonoscopy, which ideally (where possible) is performed under partial or deep sedation. This study aims to evaluate the efficacy of the Endotics System, a new robotic device composed of a workstation and a disposable probe, in performing accurate and well-tolerated colonoscopies. This new system could also be considered a precursor of other innovating vectors for atraumatic locomotion through natural orifices such as the bowel. The flexible probe adapts its shape to the complex contours of the colon, thereby exerting low strenuous forces during its movement. These novel characteristics allow for a painless and safe colonoscopy, thus eliminating all major associated risks such as infection, cardiopulmonary complications and colon perforation. An experimental study was devised to investigate stress pattern differences between traditional and robotic colonoscopy, in which 40 enrolled patients underwent both robotic and standard colonoscopy within the same day. The stress pattern related to robotic colonoscopy was 90% lower than that of standard colonoscopy. Additionally, the robotic colonoscopy demonstrated a higher diagnostic accuracy, since, due to the lower insufflation rate, it was able to visualize small polyps and angiodysplasias not seen during the standard colonoscopy. All patients rated the robotic colonoscopy as virtually painless compared to the standard colonoscopy, ranking pain and discomfort as 0.9 and 1.1 respectively, on a scale of O to 10, versus 6.9 and 6.8 respectively for the standard device. The new Endotics System demonstrates efficacy in the diagnosis of colonic pathologies using a procedure nearly completely devoid of pain. Therefore, this system can also be looked upon as the first step toward developing and implementing colonoscopy with atraumatic locomotion through the bowel while maintaining a high level of diagnostic accuracy;

  16. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive leading...

  17. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis

    2013-08-01

    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  18. 77 FR 21311 - Locomotive Safety Standards

    Science.gov (United States)

    2012-04-09

    ... preparedness, alcohol and drug testing, locomotive engineer certification, and workplace safety. In 1980, FRA... Association (ATDA) Amtrak AAR Association of Railway Museums (ARM) Association of State Rail Safety Managers... Administration 49 CFR Parts 229 and 238 Locomotive Safety Standards; Final Rule #0;#0;Federal Register / Vol. 77...

  19. Dynamic Modeling and Nonlinear Position Control of a Quadruped Robot with Theo Jansen Linkage Mechanisms and a Single Actuator

    Directory of Open Access Journals (Sweden)

    Shunsuke Nansai

    2015-01-01

    Full Text Available The Theo Jansen mechanism is gaining widespread popularity among the legged robotics community due to its scalable design, energy efficiency, low payload-to-machine-load ratio, bioinspired locomotion, and deterministic foot trajectory. In this paper, we perform for the first time the dynamic modeling and analysis on a four-legged robot driven by a single actuator and composed of Theo Jansen mechanisms. The projection method is applied to derive the equations of motion of this complex mechanical system and a position control strategy based on energy is proposed. Numerical simulations validate the efficacy of the designed controller, thus setting a theoretical basis for further investigations on Theo Jansen based quadruped robots.

  20. Blunt impact tests of retired passenger locomotive fuel tanks

    Science.gov (United States)

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  1. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    Directory of Open Access Journals (Sweden)

    Anil K. Raj

    2011-01-01

    Full Text Available While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC has developed the Mina, a prototype sensorimotor robotic orthosis for mobility assistance that provides mobility capability for paraplegic and paraparetic users. This paper describes the initial concept, design goals, and methods of this wearable overground robotic mobility device, which uses compliant actuation to power the hip and knee joints. Paralyzed users can balance and walk using the device over level terrain with the assistance of forearm crutches employing a quadrupedal gait. We have initiated sensory substitution feedback mechanisms to augment user sensory perception of his or her lower extremities. Using this sensory feedback, we hypothesize that users will ambulate with a more natural, upright gait and will be able to directly control the gait parameters and respond to perturbations. This may allow bipedal (with minimal support gait in future prototypes.

  2. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    Science.gov (United States)

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-07

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  3. Molecular robots with sensors and intelligence.

    Science.gov (United States)

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA

  4. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders

    NARCIS (Netherlands)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and

  5. Walk-Startup of a Two-Legged Walking Mechanism

    Science.gov (United States)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  6. The mechanics of slithering locomotion.

    Science.gov (United States)

    Hu, David L; Nirody, Jasmine; Scott, Terri; Shelley, Michael J

    2009-06-23

    In this experimental and theoretical study, we investigate the slithering of snakes on flat surfaces. Previous studies of slithering have rested on the assumption that snakes slither by pushing laterally against rocks and branches. In this study, we develop a theoretical model for slithering locomotion by observing snake motion kinematics and experimentally measuring the friction coefficients of snakeskin. Our predictions of body speed show good agreement with observations, demonstrating that snake propulsion on flat ground, and possibly in general, relies critically on the frictional anisotropy of their scales. We have also highlighted the importance of weight distribution in lateral undulation, previously difficult to visualize and hence assumed uniform. The ability to redistribute weight, clearly of importance when appendages are airborne in limbed locomotion, has a much broader generality, as shown by its role in improving limbless locomotion.

  7. EVALUATION OF DYNAMIC INDICATORS OF SIX-AXLE LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2015-04-01

    Full Text Available Purpose. The paper is devoted to dynamic characteristics evaluation of the locomotive with prospective design and determination the feasibility of its use on the Ukrainian railways. Methodology. The methods of mathematical and computer modeling of the dynamics of railway vehicles, as well as methods for the numerical integration of systems of ordinary nonlinear differential equations were used to solve the problem. Findings. The calculated diagram of a locomotive on three-axle bogies was built to solve the problem, and it is a system of rigid bodies connected by various elements of rheology. The mathematical model of the locomotive movement, allowing studying its spatial vibrations at driving on straight and curved sections of the track with random irregularities in plan and profile was developed with use of this calculated diagram. At compiling the mathematical model took into account both geometric (nonlinearity profile of the wheel roll surface and physical nonlinearity of the system (the work forces of dry friction, nonlinearity characteristics of interaction forces between wheels and rails. The multivariate calculations, which allowed assessing the dynamic qualities of the locomotive at its movement along straight and curved sections of the track, were realized with the use of computer modeling. The smoothness movement indicators of the locomotive in horizontal and vertical planes, frame strength, coefficients of vertical dynamics in the first and second stages of the suspension, the load factor of resistance against the derailment of the wheel from the rail were determined at the period of research. In addition, a comparison of the obtained results with similar characteristics is widely used on the Ukrainian railways in six-axle locomotive TE 116. The influence of speed and technical state of the track on the locomotive traffic safety was determined.Originality. A mathematical model of the spatial movement of a six-axle locomotive with

  8. Mechatronic Design of a New Humanoid Robot with Hybrid Parallel Actuation

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2012-10-01

    Full Text Available Humanoid robotics is unquestionably a challenging and long-term field of research. Of the numerous and most urgent challenges to tackle, autonomous and efficient locomotion may possibly be the most underdeveloped at present in the research community. Therefore, to pursue studies in relation to autonomy with efficient locomotion, the authors have been developing a new teen-sized humanoid platform with hybrid characteristics. The hybrid nature is clear in the mixed actuation based on common electrical motors and passive actuators attached in parallel to the motors. This paper presents the mechatronic design of the humanoid platform, focusing mainly on the mechanical structure, the design and simulation of the hybrid joints, and the different subsystems implemented. Trying to keep the appropriate human proportions and main degrees of freedom, the developed platform utilizes a distributed control architecture and a rich set of sensing capabilities, both ripe for future development and research.

  9. Railroad and locomotive technology roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry

  10. Motion Intention Analysis-Based Coordinated Control for Amputee-Prosthesis Interaction

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2010-01-01

    Full Text Available To study amputee-prosthesis (AP interaction, a novel reconfigurable biped robot was designed and fabricated. In homogeneous configuration, two identical artificial legs (ALs were used to simulate the symmetrical lower limbs of a healthy person. Linear inverted pendulum model combining with ZMP stability criterion was used to generate the gait trajectories of ALs. To acquire interjoint coordination for healthy gait, rate gyroscopes were mounted on CoGs of thigh and shank of both legs. By employing principal component analysis, the measured angular velocities were processed and the motion synergy was obtained in the final. Then, one of two ALs was replaced by a bionic leg (BL, and the biped robot was changed into heterogeneous configuration to simulate the AP coupling system. To realize symmetrical stable walking, master/slave coordinated control strategy is proposed. According to information acquired by gyroscopes, BL recognized the motion intention of AL and reconstructed its kinematic variables based on interjoint coordination. By employing iterative learning control, gait tracking of BL to AL was archived. Real environment robot walking experiments validated the correctness and effectiveness of the proposed scheme.

  11. Robots Móviles con Orugas Historia, Modelado, Localización y Control

    Directory of Open Access Journals (Sweden)

    Ramón González

    2015-01-01

    locomotion system. In this case, tracks constitute a well-known approach and since the beginning of the 20th century this locomotion system has demonstrated remarkable results in manned vehicles. This article motivates and shows through physical experiments the goodness of tracked mobile robots in off-road conditions. Firstly, a historical perspective of tracked vehicles and tracked robots is addressed. Then, the main modelling aspects are introduced, in particular, the slip phenomenon. After that, several localization techniques are discussed with especial mention to visual odometry. The motion control aspect is also of primal importance. In this regard, several slip-compensation control strategies are analysed. Finally, the authors background obtained in this field is expounded. Palabras clave: Deslizamiento, Odometria Visual, Control Adaptativo, Control Predictivo, Keywords: Slip, Visual Odometry, Adaptive Control, Predictive Control.

  12. Wake topology of under-actuated rajiform batoid robots

    Science.gov (United States)

    Valdivia Y Alvarado, Pablo; Weymouth, Gabriel; Thekoodan, Dilip; Patrikalakis, Nicholas

    2011-11-01

    Under-actuated continuous soft robots are designed to have modes of vibration that match desired body motions using minimal actuation. The desired modes of vibration are enabled by flexible continuous bodies with heterogenous material distributions. Errors or intentional approximations in the manufactured material distributions alter the achieved body motions and influence the resulting locomotion performance. An under-actuated continuous soft robot designed to mimic rajiform batoids such as stingrays is used to investigate the influence that fin kinematics variations have on wake topology, and the trade-offs that simplifying the body material structure has on achievable swimming performance. Pectoral fin kinematics in rajiform batoids are defined by traveling waves along the fin cord with particular amplitude envelopes along both the fin cord and span. Digital particle image velocimetry (DPIV) analysis of a prototype's wake structure and immersed-boundary numerical simulations are used to clarify the role of traveling wave wavelength, fin flapping frequency, and amplitude envelope characteristics on the resulting wake topology and swimming performance.

  13. The Human Central Pattern Generator for Locomotion.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula S; Dzeladini, Florin; Guertin, Pierre A; Ijspeert, Auke

    2017-03-01

    The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.

  14. A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Schultz, Ulrik Pagh; Stoy, Kasper

    2013-01-01

    In this paper, we present a distributed reinforcement learning strategy for morphology-independent lifelong gait learning for modular robots. All modules run identical controllers that locally and independently optimize their action selection based on the robot’s velocity as a global, shared reward...

  15. Le Shuttle, the locomotive from Eurotunnel

    OpenAIRE

    Gabriel MOISA

    2002-01-01

    This paper present some performances of locomotive ‘Le Shuttle’, so-called locomotive from ‘Eurotunnel’, techniques characteristics of traction motors 6 FHA 7079 and converters witch use it, the principal electric scheme and its function principle and no at last rind the principle scheme of command-control equipment MICAS-S2 with detailed description of its operation mode.

  16. Swimming near the substrate: a simple robotic model of stingray locomotion

    International Nuclear Information System (INIS)

    Blevins, Erin; Lauder, George V

    2013-01-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate. (paper)

  17. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not more...

  18. DESIGN IMPROVEMENT OF THE LOCOMOTIVE RUNNING GEARS

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2013-09-01

    Full Text Available Purpose. To determine the dynamic qualities of the mainline freight locomotives characterizing the safe motion in tangent and curved track sections at all operational speeds, one needs a whole set of studies, which includes a selection of the design scheme, development of the corresponding mathematical model of the locomotive spatial fluctuations, construction of the computer calculation program, conducting of the theoretical and then experimental studies of the new designs. In this case, one should compare the results with existing designs. One of the necessary conditions for the qualitative improvement of the traction rolling stock is to define the parameters of its running gears. Among the issues related to this problem, an important place is occupied by the task of determining the locomotive dynamic properties on the stage of projection, taking into account the selected technical solutions in the running gear design. Methodology. The mathematical modeling studies are carried out by the numerical integration method of the dynamic loading for the mainline locomotive using the software package «Dynamics of Rail Vehicles » («DYNRAIL». Findings. As a result of research for the improvement of locomotive running gear design it can be seen that the creation of the modern locomotive requires from engineers and scientists the realization of scientific and technical solutions. The solutions enhancing design speed with simultaneous improvement of the traction, braking and dynamic qualities to provide a simple and reliable design, especially the running gear, reducing the costs for maintenance and repair, low initial cost and operating costs for the whole service life, high traction force when starting, which is as close as possible to the ultimate force of adhesion, the ability to work in multiple traction mode and sufficient design speed. Practical Value. The generalization of theoretical, scientific and methodological, experimental studies aimed

  19. Boldness and intermittent locomotion in the bluegill sunfish, Lepomis macrochirus

    OpenAIRE

    Alexander D.M. Wilson; Jean-Guy J. Godin

    2009-01-01

    Intermittent locomotion, characterized by moves interspersed with pauses, is a common pattern of locomotion in animals, but its ecological and evolutionary significance relative to continuous locomotion remains poorly understood. Although many studies have examined individual differences in both intermittent locomotion and boldness separately, to our knowledge, no study to date has investigated the relationship between these 2 traits. Characterizing and understanding this relationship is impo...

  20. Le Shuttle, the locomotive from Eurotunnel

    Directory of Open Access Journals (Sweden)

    Gabriel MOISA

    2002-12-01

    Full Text Available This paper present some performances of locomotive ‘Le Shuttle’, so-called locomotive from ‘Eurotunnel’, techniques characteristics of traction motors 6 FHA 7079 and converters witch use it, the principal electric scheme and its function principle and no at last rind the principle scheme of command-control equipment MICAS-S2 with detailed description of its operation mode.

  1. Bio-Inspired Optimal Control Framework to Generate Walking Motions for the Humanoid Robot iCub Using Whole Body Models

    Directory of Open Access Journals (Sweden)

    Yue Hu

    2018-02-01

    Full Text Available Bipedal locomotion remains one of the major open challenges of humanoid robotics. The common approaches are based on simple reduced model dynamics to generate walking trajectories, often neglecting the whole-body dynamics of the robots. As motions in nature are often considered as optimal with respect to certain criteria, in this work, we present an optimal control-based approach that allows us to generate optimized walking motions using a precise whole-body dynamic model of the robot, in contrast with the common approaches. The optimal control problem is formulated to minimize a set of desired objective functions with respect to physical constraints of the robot and contact constraints of the walking phases; the problem is then solved with a direct multiple shooting method. We apply the formulation with combinations of different objective criteria to the model of a reduced version of the iCub humanoid robot of 15 internal DOF. The obtained trajectories are executed on the real robot, and we carry out a discussion on the differences between the outcomes of this approach with the classic approaches.

  2. The Need for Speed in Rodent Locomotion Analyses

    OpenAIRE

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2014-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript,...

  3. The motor system plays the violin: a musical metaphor inferred from the oscillatory activity of the α-motoneuron pools during locomotion.

    Science.gov (United States)

    Chiovetto, Enrico

    2011-04-01

    Despite substantial advances in the field, particularly resulting from physiological studies in animals, the neural mechanisms underlying the generation of many motor behaviors in humans remain unclear. A recent study (Cappellini G et al. J Neurophysiol 104: 3064-3073, 2010) sheds more light on this topic. Like the string of a violin, the α-motoneuron pools in the spinal cord during locomotion show continuous and oscillatory patterns of activation. In this report, the implications and relevance of this finding are discussed in a general framework that includes neurophysiology, optimal control theory, and robotics.

  4. Lizard locomotion in heterogeneous granular media

    Science.gov (United States)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  5. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It may help the engineers to carry out type synthesis of the mechanisms. Volume 40 Issue 2 April 2015 pp 549-575 Mechanical Sciences. Analysis of double support phase of biped robot and multi-objective optimization using genetic algorithm and particle swarm optimization algorithm · Rega Rajendra Dilip Kumar Pratihar.

  6. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-05-01

    Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  7. The investigation of the locomotive boiler material

    International Nuclear Information System (INIS)

    Tucholski, Z.; Wasiak, J.; Bilous, W.; Hajewska, E.

    2006-01-01

    In the paper, the history of narrow-gauge railway system is described. The other information about the steam locomotive construction, as well as the technical regulations of its construction and exploitation are also done. The results of the studies of the locomotive boiler material are presented. (authors)

  8. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive and tender. (a) Maintenance and testing. The draw gear between the steam locomotive and tender...

  9. Analysis of fuel cell hybrid locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects LLC, 621, 17th Street, Suite 2131, Denver, CO 80293 (United States); Peters, John; Smith, Brian E. [Transportation Technology Center Inc., 55500 DOT Road, Pueblo, CO 81007 (United States); Velev, Omourtag A. [AeroVironment Inc., 232 West Maple Avenue, Monrovia, CA 91016 (United States)

    2006-07-03

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109t, 1.2MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that

  10. 49 CFR 230.106 - Steam locomotive frame.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and...

  11. Distribution of spinal neuronal networks controlling forward and backward locomotion.

    Science.gov (United States)

    Merkulyeva, Natalia; Veshchitskii, Aleksandr; Gorsky, Oleg; Pavlova, Natalia; Zelenin, Pavel V; Gerasimenko, Yury; Deliagina, Tatiana G; Musienko, Pavel

    2018-04-20

    Higher vertebrates, including humans, are capable not only of forward (FW) locomotion but also of walking in other directions relative to the body axis [backward (BW), sideways, etc.]. While the neural mechanisms responsible for controlling FW locomotion have been studied in considerable detail, the mechanisms controlling steps in other directions are mostly unknown. The aim of the present study was to investigate the distribution of spinal neuronal networks controlling FW and BW locomotion. First, we applied electrical epidural stimulation (ES) to different segments of the spinal cord from L2 to S2 to reveal zones triggering FW and BW locomotion in decerebrate cats of either sex. Second, to determine the location of spinal neurons activated during FW and BW locomotion, we used c-fos immunostaining. We found that the neuronal networks responsible for FW locomotion were distributed broadly in the lumbosacral spinal cord and could be activated by ES of any segment from L3 to S2. By contrast, networks generating BW locomotion were activated by ES of a limited zone from the caudal part of L5 to the caudal part of L7. In the intermediate part of the gray matter within this zone, a significantly higher number of c- fos -positive interneurons was revealed in BW-stepping cats compared with FW-stepping cats. We suggest that this region of the spinal cord contains the network that determines the BW direction of locomotion. Significance Statement Sequential and single steps in various directions relative to the body axis [forward (FW), backward (BW), sideways, etc.] are used during locomotion and to correct for perturbations, respectively. The mechanisms controlling step direction are unknown. In the present study, for the first time we compared the distributions of spinal neuronal networks controlling FW and BW locomotion. Using a marker to visualize active neurons, we demonstrated that in the intermediate part of the gray matter within L6 and L7 spinal segments

  12. Expression of emotion in the kinematics of locomotion.

    Science.gov (United States)

    Barliya, Avi; Omlor, Lars; Giese, Martin A; Berthoz, Alain; Flash, Tamar

    2013-03-01

    Here, we examine how different emotions-happiness, fear, sadness and anger-affect the kinematics of locomotion. We focus on a compact representation of locomotion properties using the intersegmental law of coordination (Borghese et al. in J Physiol 494(3):863-879, 1996), which states that, during the gait cycle of human locomotion, the elevation angles of the thigh, shank and foot do not evolve independently of each other but form a planar pattern of co-variation. This phenomenon is highly robust and has been extensively studied. The orientation of the plane has been correlated with changes in the speed of locomotion and with reduction in energy expenditure as speed increases. An analytical model explaining the conditions underlying the emergence of this plane and predicting its orientation reveals that it suffices to examine the amplitudes of the elevation angles of the different segments along with the phase shifts between them (Barliya et al. in Exp Brain Res 193:371-385, 2009). We thus investigated the influence of different emotions on the parameters directly determining the orientation of the intersegmental plane and on the angular rotation profiles of the leg segments, examining both the effect of changes in walking speed and effects independent of speed. Subjects were professional actors and naïve subjects with no training in acting. As expected, emotions were found to strongly affect the kinematics of locomotion, particularly walking speed. The intersegmental coordination patterns revealed that emotional expression caused additional modifications to the locomotion patterns that could not be explained solely by a change in speed. For all emotions except sadness, the amplitude of thigh elevation angles changed from those in neutral locomotion. The intersegmental plane was also differently oriented, especially during anger. We suggest that, while speed is the dominant variable allowing discrimination between different emotional gaits, emotion can be

  13. Development of human locomotion.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-10-01

    Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Full-scale locomotive dynamic crash testing and correlations : locomotive consist colliding with steel coil truck at grade crossing (test 3).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...

  15. Dynamic control for a quadruped locomotion robot in consideration of the leg-support-exchange phenomenon

    International Nuclear Information System (INIS)

    Sano, Akihito; Furusho, Junji; Okajima, Yosuke

    1988-01-01

    This paper proposes a new control method for quardruped walking robots in which the leg-support-exchange is lithely implemented. First, the authors formulate the leg-support-exchange phenomenon in 'Trot' using Lagrange's collision equation. Then the continuous walking can be numerically analyzed. Secondly, we propose a new control algorithm for leg-support-exchange. The conventional high gain local feedback causes many problems such as slip and excessive high torque in the leg-support-exchange phase of dynamic walking since it is impossible in this phase to prepare the proper reference values beforehand. In this algorithm, the control law is changed to 'free mode' or 'constant current mode' in order to adjust to the environment. The effectiveness of the proposed control strategy is confirmed by computer simulation and experiments using the walking robot 'COLT-1.' (author)

  16. Multiple Chaotic Central Pattern Generators with Learning for Legged Locomotion and Malfunction Compensation

    DEFF Research Database (Denmark)

    Ren, Guanjiao; Chen, Weihai; Dasgupta, Sakyasingha

    2015-01-01

    on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs...... in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body...... chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based...

  17. How animals move: comparative lessons on animal locomotion.

    Science.gov (United States)

    Schaeffer, Paul J; Lindstedt, Stan L

    2013-01-01

    Comparative physiology often provides unique insights in animal structure and function. It is specifically through this lens that we discuss the fundamental properties of skeletal muscle and animal locomotion, incorporating variation in body size and evolved difference among species. For example, muscle frequencies in vivo are highly constrained by body size, which apparently tunes muscle use to maximize recovery of elastic recoil potential energy. Secondary to this constraint, there is an expected linking of skeletal muscle structural and functional properties. Muscle is relatively simple structurally, but by changing proportions of the few muscle components, a diverse range of functional outputs is possible. Thus, there is a consistent and predictable relation between muscle function and myocyte composition that illuminates animal locomotion. When animals move, the mechanical properties of muscle diverge from the static textbook force-velocity relations described by A. V. Hill, as recovery of elastic potential energy together with force and power enhancement with activation during stretch combine to modulate performance. These relations are best understood through the tool of work loops. Also, when animals move, locomotion is often conveniently categorized energetically. Burst locomotion is typified by high-power outputs and short durations while sustained, cyclic, locomotion engages a smaller fraction of the muscle tissue, yielding lower force and power. However, closer examination reveals that rather than a dichotomy, energetics of locomotion is a continuum. There is a remarkably predictable relationship between duration of activity and peak sustainable performance.

  18. Emotion through locomotion: gender impact.

    Directory of Open Access Journals (Sweden)

    Samuel Krüger

    Full Text Available Body language reading is of significance for daily life social cognition and successful social interaction, and constitutes a core component of social competence. Yet it is unclear whether our ability for body language reading is gender specific. In the present work, female and male observers had to visually recognize emotions through point-light human locomotion performed by female and male actors with different emotional expressions. For subtle emotional expressions only, males surpass females in recognition accuracy and readiness to respond to happy walking portrayed by female actors, whereas females exhibit a tendency to be better in recognition of hostile angry locomotion expressed by male actors. In contrast to widespread beliefs about female superiority in social cognition, the findings suggest that gender effects in recognition of emotions from human locomotion are modulated by emotional content of actions and opposite actor gender. In a nutshell, the study makes a further step in elucidation of gender impact on body language reading and on neurodevelopmental and psychiatric deficits in visual social cognition.

  19. The aspect of vector control using the asynchronous traction motor in locomotives

    Directory of Open Access Journals (Sweden)

    L. Liudvinavičius

    2009-12-01

    Full Text Available The article examines curves controlling asynchronous traction motors increasingly used in locomotive electric drives the main task of which is to create a tractive effort-speed curve of an ideal locomotive Fk = f(v, including a hyperbolic area the curve of which will create conditions showing that energy created by the diesel engine of diesel locomotives (electric locomotives and in case of electric trains, electricity taken from the contact network over the entire range of locomotive speed is turned into efficient work. Mechanical power on wheel sets is constant Pk = Fkv = const, the power of the diesel engine is fully used over the entire range of locomotive speed. Tractive effort-speed curve Fk(v shows the dependency of locomotive traction power Fk on movement speed v. The article presents theoretical and practical aspects relevant to creating the structure of locomotive electric drive and selecting optimal control that is especially relevant to creating the structure of locomotive electric drive using ATM (asynchronous traction motor that gains special popularity in traction rolling stock replacing DC traction motors having low reliability. The frequency modes of asynchronous motor speed regulation are examined. To control ATM, the authors suggest the method of vector control presenting the structural schemes of a locomotive with ATM and control algorithm.

  20. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying steam locomotives. 230... General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a) General limitations on movement. A steam locomotive with one or more non-complying conditions may be moved only as a...

  1. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    Science.gov (United States)

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  2. Anthropomorphic Robot Design and User Interaction Associated with Motion

    Science.gov (United States)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over

  3. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  4. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  5. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-10-01

    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author).

  6. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min

    1995-01-01

    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author)

  7. Development and Evaluation of Compact Robot Imitating a Hermit Crab for Inspecting the Outer Surface of Pipes

    Directory of Open Access Journals (Sweden)

    Naoto Imajo

    2015-01-01

    Full Text Available Terrestrial hermit crabs which are a type of hermit crabs live on land, whereas typical hermit crabs inhabit the sea. They have an ability of climbing a tree vertically. Their claws allow them to hang on the tree. In this study, an outer-pipe inspection robot was developed. Its locomotion mechanism was developed in imitation of the terrestrial hermit crab’s claws. It is equipped with two rimless wheels. Each of the spokes is tipped with a neodymium magnet, which allows the robot to remain attached to even a vertical steel pipe. Moreover, the robot has a mechanism for adjusting the camber angle of the right and left wheels, allowing it to tightly grip pipes with different diameters. Experiments were conducted to check the performance of the robot using steel pipes with different diameters, placed horizontally, vertically, or obliquely. The robot attempted to move a certain distance along a pipe, and its success rate was measured. It was found that the robot could successfully travel along pipes with vertical orientations, although it sometimes fell from oblique or horizontal pipes. The most likely reason for this is identified and discussed. Certain results were obtained in laboratory. Further experiments in actual environment are required.

  8. Modular control of limb movements during human locomotion

    NARCIS (Netherlands)

    Ivanenko, Yuri P; Cappellini, Germana; Dominici, Nadia; Poppele, Richard E; Lacquaniti, Francesco

    2007-01-01

    The idea that the CNS may control complex interactions by modular decomposition has received considerable attention. We explored this idea for human locomotion by examining limb kinematics. The coordination of limb segments during human locomotion has been shown to follow a planar law for walking at

  9. Octopus-inspired multi-arm robotic swimming.

    Science.gov (United States)

    Sfakiotakis, M; Kazakidi, A; Tsakiris, D P

    2015-05-13

    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems.

  10. Muscle Coordination and Locomotion in Humans.

    Science.gov (United States)

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  12. 49 CFR 232.105 - General requirements for locomotives.

    Science.gov (United States)

    2010-10-01

    ... locomotives. (a) The air brake equipment on a locomotive shall be in safe and suitable condition for service... set pressure at any service application with the brakes control valve in the freight position. If such... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER...

  13. Locomotion of Paramecium in patterned environments

    Science.gov (United States)

    Park, Eun-Jik; Eddins, Aja; Kim, Junil; Yang, Sung; Jana, Saikat; Jung, Sunghwan

    2011-10-01

    Ciliary organisms like Paramecium Multimicronucleatum locomote by synchronized beating of cilia that produce metachronal waves over their body. In their natural environments they navigate through a variety of environments especially surfaces with different topology. We study the effects of wavy surfaces patterned on the PDMS channels on the locomotive abilities of Paramecium by characterizing different quantities like velocity amplitude and wavelength of the trajectories traced. We compare this result with the swimming characteristics in straight channels and draw conclusions about the effects of various patterned surfaces.

  14. A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.

    Science.gov (United States)

    Rezazadeh, Siavash; Gregg, Robert D

    2016-10-01

    Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.

  15. Operating a locomotive on liquid methane fuel

    International Nuclear Information System (INIS)

    Stolz, J.L.

    1992-01-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life

  16. Locomotion-learning behavior relationship in Caenorhabditis elegans following γ-ray irradiation

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya; Hamada, Nobuyuki; Suzuki, Michiyo; Kobayashi, Yasuhiko; Ikeda, Daisuke D.; Yanase, Sumino; Ishii, Naoaki

    2008-01-01

    Learning impairment following ionizing radiation (IR) exposure is an important potential risk in manned space missions. We previously reported the modulatory effects of IR on salt chemotaxis learning in Caenorhabditis elegans. However, little is known about the effects of IR on the functional relationship in the nervous system. In the present study, we investigated the effects of γ-ray exposure on the relationship between locomotion and salt chemotaxis learning behavior. We found that effects of pre-learning irradiation on locomotion were significantly correlated with the salt chemotaxis learning performance, whereas locomotion was not directly related to chemotaxis to NaCl. On the other hand, locomotion was positively correlated with salt chemotaxis of animals which were irradiated during learning, and the correlation disappeared with increasing doses. These results suggest an indirect relationship between locomotion and salt chemotaxis learning in C. elegans, and that IR inhibits the innate relationship between locomotion and chemotaxis, which is related to salt chemotaxis learning conditioning of C. elegans. (author)

  17. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    Science.gov (United States)

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  18. Advanced aftertreatment systems for locomotive applications; Moderne Abgasnachbehandlungssysteme fuer Lokomotiven

    Energy Technology Data Exchange (ETDEWEB)

    Park, Paul [Caterpillar Inc., Peoria, IL (United States); Bruestle, Claus [Emitec Inc., Rochester Hill, MI (United States)

    2013-07-15

    Tier 4 legislation for locomotives, starting in 2015, will require significant reductions in particulate matter and nitrogen oxide tail pipe emissions. To reduce nitrogen oxide emissions of line-haul locomotives at least to the level of Tier 4, Caterpillar has developed an aftertreatment system. Here, for the first time an SCR system was used for diesel locomotive engines with an urea dosing system. (orig.)

  19. Electromechanical Characterization and Locomotion Control of IPMC BioMicroRobot

    Directory of Open Access Journals (Sweden)

    Martin J.-D. Otis

    2013-01-01

    Full Text Available This paper presents the electromechanical characterization of Nafion-Pt microlegs for the development of an insect-like hexapod BioMicroRobot (BMR. BMR microlegs are built using quasi-cylindrical Nafion-Pt ionomeric polymer-metal composite (IPMC, which has 2.5 degrees of freedom. The specific manufacturing process using a laser excimer for one leg in three-dimensional configurations is discussed. Dynamic behavior and microleg characteristics have been measured in deionized water using a laser vibrometer. The use of the laser vibrometer shows the linear characteristics between the duty cycle of square wave input and displacement rate of the actuator at multiple frequencies. This linearity is used to design a servo-system in order to reproduce insect tripod walking. As well, BMR current consumption is an important parameter evaluated for each leg. Current passing throughout the IPMC membrane can result in water electrolysis. Four methods are explained for avoiding electrolysis. The hardware test bench for measurements is presented. The purpose of this design is to control a BMR for biomedical goals such as implantation into a human body. Experimental results for the proposed propulsion system are conclusive for this type of bioinspired BMR.

  20. Robots in human biomechanics--a study on ankle push-off in walking.

    Science.gov (United States)

    Renjewski, Daniel; Seyfarth, André

    2012-09-01

    In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing.

  1. Robots in human biomechanics—a study on ankle push-off in walking

    International Nuclear Information System (INIS)

    Renjewski, Daniel; Seyfarth, André

    2012-01-01

    In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing. (paper)

  2. Multi-Functional Sensing for Swarm Robots Using Time Sequence Classification: HoverBot, an Example

    Directory of Open Access Journals (Sweden)

    Markus P. Nemitz

    2018-05-01

    Full Text Available Scaling up robot swarms to collectives of hundreds or even thousands without sacrificing sensing, processing, and locomotion capabilities is a challenging problem. Low-cost robots are potentially scalable, but the majority of existing systems have limited capabilities, and these limitations substantially constrain the type of experiments that could be performed by robotics researchers. Instead of adding functionality by adding more components and therefore increasing the cost, we demonstrate how low-cost hardware can be used beyond its standard functionality. We systematically review 15 swarm robotic systems and analyse their sensing capabilities by applying a general sensor model from the sensing and measurement community. This work is based on the HoverBot system. A HoverBot is a levitating circuit board that manoeuvres by pulling itself towards magnetic anchors that are embedded into the robot arena. We show that HoverBot’s magnetic field readouts from its Hall-effect sensor can be associated to successful movement, robot rotation and collision measurands. We build a time series classifier based on these magnetic field readouts. We modify and apply signal processing techniques to enable the online classification of the time-variant magnetic field measurements on HoverBot’s low-cost microcontroller. We enabled HoverBot with successful movement, rotation, and collision sensing capabilities by utilising its single Hall-effect sensor. We discuss how our classification method could be applied to other sensors to increase a robot’s functionality while retaining its cost.

  3. 49 CFR 1242.25 - Locomotive servicing facilities (account XX-19-27).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Locomotive servicing facilities (account XX-19-27... Structures § 1242.25 Locomotive servicing facilities (account XX-19-27). Separate common expenses according to distribution of common expenses in the following accounts: Locomotive Fuel (XX-51-67 and XX-52-67...

  4. Dynamical analysis and development of a biologically inspired SMA caterpillar robot.

    Science.gov (United States)

    Daily-Diamond, Christopher A; Novelia, Alyssa; O'Reilly, Oliver M

    2017-09-26

    With the goal of robustly designing and fabricating a soft robot based on a caterpillar featuring shape memory alloy (SMA) actuators, analytical and numerical models for a soft robot were created based on the forward crawling motion of the Manduca sexta caterpillar. The analytical model features a rod theory and the mechanics of undulation were analyzed using a motion pattern based on the 'Witch of Agnesi' curve. Complementing these models, experiments on a SMA actuator sample were performed in order to determine its flexural rigidity and curvature as a function of the actuation voltage. A series of these actuators can be modeled as a system of rigid bodies connected by torsional springs. As these bodies are actuated according to the motion pattern based on the individual caterpillar segments, ground contact forces are calculated and analyzed to determine the requirements of successful forward locomotion. The energetics of the analytical and numerical models are then compared and discussed.

  5. Locomotion and basicranial anatomy in primates and marsupials.

    Science.gov (United States)

    Villamil, Catalina I

    2017-10-01

    There is ongoing debate in paleoanthropology about whether and how the anatomy of the cranium, and especially the cranial base, is evolving in response to locomotor and postural changes. However, the majority of studies focus on two-dimensional data, which fails to capture the complexity of cranial anatomy. This study tests whether three-dimensional cranial base anatomy is linked to locomotion or to other factors in primates (n = 473) and marsupials (n = 231). Results indicate that although there is a small effect of locomotion on cranial base anatomy in primates, this is not the case in marsupials. Instead, facial anatomy likely drives variation in cranial base anatomy in both primates and marsupials, with additional roles for body size and brain size. Although some changes to foramen magnum position and orientation are phylogenetically useful among the hominoids, they do not necessarily reflect locomotion or positional behavior. The interplay between locomotion, posture, and facial anatomy in primates requires further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis and Modelling of the Structural Components of the Elbow Joint

    OpenAIRE

    Romero Rey, Gregorio; Martínez Muneta, María Luisa; Gómez, M.; Mera Sánchez De Pedro, José Manuel

    2013-01-01

    A recent application of computer simulation is its use for the human body, which resembles a mechanism that is complemented by torques in the joints that are caused by the action of muscles and tendons. Among others, the application can be used to provide training in surgical procedures or to learn how the body works. Some of the other applications are to make a biped walk upright, to build robots that are designed on the human body or to make prostheses or robot arms to perform specific task...

  7. Axial dynamics during locomotion in vertebrates: lesson from the salamander

    OpenAIRE

    GOSSARD, JEAN-PIERRE; DUBUC, RÉJEAN; KOLTA, ARLETTE; Cabelguen, Jean-Marie; Ijspeert, Auke; Lamarque, Stéphanie; Ryczko, Dimitri

    2010-01-01

    Much of what we know about the flexibility of the locomotor networks in vertebrates is derived from studies examining the adaptation of limb movements during stepping in various conditions. However, the body movements play important roles during locomotion: they produce the thrust during undulatory locomotion and they help to increase the stride length during legged locomotion. In this chapter, we review our current knowledge about the flexibility in the neuronal circuits controlling the body...

  8. LSTM-Based Temperature Prediction for Hot-Axles of Locomotives

    Directory of Open Access Journals (Sweden)

    Luo Can

    2017-01-01

    Full Text Available The reliability of locomotives plays a central role for the smooth operation of railway systems. Hot-axle failures are one of the most commonly found problems leading to locomotive accidents. Since the operating status of the locomotive axle bearings can be distinctly reflected by the axle temperatures, online temperature monitoring has become an essential way to detect hot-axle failures. In this work, we explore the feasibility of predict the hot-axle failures by identifying the temperature from predicted nominal values. We propose a data-driven approach based on the Long Short-Term Memory (LSTM network to predict the sensor temperature for axle bearings. The effectiveness of the prediction model was validated with operation data collected from commercial locomotives. With a prediction accuracy is within a few percent, the proposed techniques can be used as a dynamic reference for hot-axle monitoring.

  9. Two-fluid model for locomotion under self-confinement

    Science.gov (United States)

    Reigh, Shang Yik; Lauga, Eric

    2017-09-01

    The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solution in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterize the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independent of the assumption chosen to characterize the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modeling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above ≈25 μ m for Helicobacter pylori.

  10. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.

    Science.gov (United States)

    Mapara, Sanyat S; Patravale, Vandana B

    2017-09-10

    The advancements in electronics and the progress in nanotechnology have resulted in path breaking development that will transform the way diagnosis and treatment are carried out currently. This development is Medical Capsule Robots, which has emerged from the science fiction idea of robots travelling inside the body to diagnose and cure disorders. The first marketed capsule robot was a capsule endoscope developed to capture images of the gastrointestinal tract. Today, varieties of capsule endoscopes are available in the market. They are slightly larger than regular oral capsules, made up of a biocompatible case and have electronic circuitry and mechanisms to capture and transmit images. In addition, robots with diagnostic features such as in vivo body temperature detection and pH monitoring have also been launched in the market. However, a multi-functional unit that will diagnose and cure diseases inside the body has not yet been realized. A remote controlled capsule that will undertake drug delivery and surgical treatment has not been successfully launched in the market. High cost, inadequate power supply, lack of control over drug release, limited space for drug storage on the capsule, inadequate safety and no mechanisms for active locomotion and anchoring have prevented their entry in the market. The capsule robots can revolutionize the current way of diagnosis and treatment. This paper discusses in detail the applications of medical capsule robots in diagnostics, drug delivery and surgical treatment. In diagnostics, detailed analysis has been presented on wireless capsule endoscopes, issues associated with the marketed versions and their corresponding solutions in literature. Moreover, an assessment has been made of the existing state of remote controlled capsules for targeted drug delivery and surgical treatment and their future impact is predicted. Besides the need for multi-functional capsule robots and the areas for further research have also been

  11. Magnetic air capsule robotic system: proof of concept of a novel approach for painless colonoscopy.

    Science.gov (United States)

    Valdastri, P; Ciuti, G; Verbeni, A; Menciassi, A; Dario, P; Arezzo, A; Morino, M

    2012-05-01

    Despite being considered the most effective method for colorectal cancer diagnosis, colonoscopy take-up as a mass-screening procedure is limited mainly due to invasiveness, patient discomfort, fear of pain, and the need for sedation. In an effort to mitigate some of the disadvantages associated with colonoscopy, this work provides a preliminary assessment of a novel endoscopic device consisting in a softly tethered capsule for painless colonoscopy under robotic magnetic steering. The proposed platform consists of the endoscopic device, a robotic unit, and a control box. In contrast to the traditional insertion method (i.e., pushing from behind), a "front-wheel" propulsion approach is proposed. A compliant tether connecting the device to an external box is used to provide insufflation, passing a flexible operative tool, enabling lens cleaning, and operating the vision module. To assess the diagnostic and treatment ability of the platform, 12 users were asked to find and remove artificially implanted beads as polyp surrogates in an ex vivo model. In vivo testing consisted of a qualitative study of the platform in pigs, focusing on active locomotion, diagnostic and therapeutic capabilities, safety, and usability. The mean percentage of beads identified by each user during ex vivo trials was 85 ± 11%. All the identified beads were removed successfully using the polypectomy loop. The mean completion time for accomplishing the entire procedure was 678 ± 179 s. No immediate mucosal damage, acute complications such as perforation, or delayed adverse consequences were observed following application of the proposed method in vivo. Use of the proposed platform in ex vivo and preliminary animal studies indicates that it is safe and operates effectively in a manner similar to a standard colonoscope. These studies served to demonstrate the platform's added advantages of reduced size, front-wheel drive strategy, and robotic control over locomotion and orientation.

  12. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Science.gov (United States)

    2010-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with glazing...

  13. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Science.gov (United States)

    2010-10-01

    ... 31, 2015, a train controlled by a locomotive with an onboard PTC apparatus that has failed en route... III railroad, including a tourist or excursion railroad, and controlled by a locomotive not equipped...

  14. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.

    Science.gov (United States)

    Behbahani, Sanaz Bazaz; Tan, Xiaobo

    2016-05-04

    In this paper a novel flexible joint is proposed for robotic fish pectoral fins, which enables a swimming behavior emulating the fin motions of many aquatic animals. In particular, the pectoral fin operates primarily in the rowing mode, while undergoing passive feathering during the recovery stroke to reduce hydrodynamic drag on the fin. The latter enables effective locomotion even with symmetric base actuation during power and recovery strokes. A dynamic model is developed to facilitate the understanding and design of the joint, where blade element theory is used to calculate the hydrodynamic forces on the pectoral fins, and the joint is modeled as a paired torsion spring and damper. Experimental results on a robotic fish prototype are presented to illustrate the effectiveness of the joint mechanism, validate the proposed model, and indicate the utility of the proposed model for the optimal design of joint depth and stiffness in achieving the trade-off between swimming speed and mechanical efficiency.

  15. Locomotive emissions measurements for various blends of biodiesel fuel.

    Science.gov (United States)

    2014-12-01

    The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. The : emission tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1 Plus GE Dash9-44CW, using t...

  16. [The concept and definition of locomotive syndrome in a super-aged society].

    Science.gov (United States)

    Nakamura, Kozo; Yoshimura, Noriko; Akune, Toru; Ogata, Toru; Tanaka, Sakae

    2014-10-01

    The population of elderly individuals who need nursing care is rapidly increasing in Japan. Locomotive syndrome involves a decrease in mobility due to locomotive organ dysfunction, and increases risk for dependency on nursing care service. Because gait speed and chair stand time are correlated with such risks, patients with locomotive syndrome are assessed using brief methods such as the two-step test, which involves dividing the maximum stride length by the height of the patient, and the stand-up test, which involves standing on one or both legs at different heights. One leg standing and squatting are recommended as beneficial locomotive home exercises. Locomotive syndrome has been recognized widely in Japan, and included in the National Health Promotion Movement (2013-2022).

  17. Passive appendages aid locomotion through symmetry breaking

    Science.gov (United States)

    Bagheri, Shervin; Lacis, Ugis; Mazzino, Andrea; Kellay, Hamid; Brosse, Nicolas; Lundell, Fredrik; Ingremeau, Francois

    2014-11-01

    Plants and animals use plumes, barbs, tails, feathers, hairs, fins, and other types of appendages to aid locomotion. Despite their enormous variation, passive appendages may contribute to locomotion by exploiting the same physical mechanism. We present a new mechanism that applies to body appendages surrounded by a separated flow, which often develops behind moving bodies larger than a few millimeters. We use theory, experiments, and numerical simulations to show that bodies with protrusions turn and drift by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in flowing fluid is unstable and how it stabilizes either to the left or right of the incoming fluid flow direction. The discovery suggests a new mechanism of locomotion that may be relevant for certain organisms; for example, how plumed seeds may drift without wind and how motile animals may passively reorient themselves.

  18. 49 CFR 229.9 - Movement of non-complying locomotives.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying locomotives. 229.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.9 Movement of non... restrictions necessary for safely conducting the movement; (2)(i) The engineer in charge of the movement of the...

  19. A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion.

    Science.gov (United States)

    Juvin, Laurent; Grätsch, Swantje; Trillaud-Doppia, Emilie; Gariépy, Jean-François; Büschges, Ansgar; Dubuc, Réjean

    2016-06-14

    Locomotion requires the proper sequencing of neural activity to start, maintain, and stop it. Recently, brainstem neurons were shown to specifically stop locomotion in mammals. However, the cellular properties of these neurons and their activity during locomotion are still unknown. Here, we took advantage of the lamprey model to characterize the activity of a cell population that we now show to be involved in stopping locomotion. We find that these neurons display a burst of spikes that coincides with the end of swimming activity. Their pharmacological activation ends ongoing swimming, whereas the inactivation of these neurons dramatically impairs the rapid termination of swimming. These neurons are henceforth referred to as stop cells, because they play a crucial role in the termination of locomotion. Our findings contribute to the fundamental understanding of motor control and provide important details about the cellular mechanisms involved in locomotor termination. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  1. Inferring Characteristics of Sensorimotor Behavior by Quantifying Dynamics of Animal Locomotion

    Science.gov (United States)

    Leung, KaWai

    Locomotion is one of the most well-studied topics in animal behavioral studies. Many fundamental and clinical research make use of the locomotion of an animal model to explore various aspects in sensorimotor behavior. In the past, most of these studies focused on population average of a specific trait due to limitation of data collection and processing power. With recent advance in computer vision and statistical modeling techniques, it is now possible to track and analyze large amounts of behavioral data. In this thesis, I present two projects that aim to infer the characteristics of sensorimotor behavior by quantifying the dynamics of locomotion of nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster, shedding light on statistical dependence between sensing and behavior. In the first project, I investigate the possibility of inferring noxious sensory information from the behavior of Caenorhabditis elegans. I develop a statistical model to infer the heat stimulus level perceived by individual animals from their stereotyped escape responses after stimulation by an IR laser. The model allows quantification of analgesic-like effects of chemical agents or genetic mutations in the worm. At the same time, the method is able to differentiate perturbations of locomotion behavior that are beyond affecting the sensory system. With this model I propose experimental designs that allows statistically significant identification of analgesic-like effects. In the second project, I investigate the relationship of energy budget and stability of locomotion in determining the walking speed distribution of Drosophila melanogaster during aging. The locomotion stability at different age groups is estimated from video recordings using Floquet theory. I calculate the power consumption of different locomotion speed using a biomechanics model. In conclusion, the power consumption, not stability, predicts the locomotion speed distribution at different ages.

  2. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Francesco Lacquaniti

    2017-11-01

    Full Text Available We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.

  3. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yury P; Sylos-Labini, Francesca; La Scaleia, Valentina; La Scaleia, Barbara; Willems, Patrick A; Zago, Myrka

    2017-01-01

    We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.

  4. SELECTION OF RATIONAL PARAMETERS OF THE NOMINAL MODE OF ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    H. K. Hetman

    2017-02-01

    Full Text Available Purpose.The railways of Ukraine have been operated the locomotives, which are both morally and physically obsolete. Therefore, to ensure the competitiveness of rail transport it is necessary to update the locomotive fleet, and first of all the fleet of electric locomotives, because electrified railways provide the greater part of passenger and freight traffic. In this connection it is of special importance to determine the optimum parameters of the nominal mode of electric rolling stock. The purpose of the work is to examine the features of solution of these problems with respect to electric locomotives. Methodology. Assuming that the limit values of traction force are determined by the conditions of wheel-rail grip, then the power of the nominal mode can be represented as the product of rated speed, estimated friction coefficient, train weight and the coefficients that represent the ratio of the estimated (starting value of traction force to value of traction force the nominal mode and the ratio of the mass of the locomotive to the train weight. Since the mass of the train is not a constant value, there is always a surplus power of the locomotive fleet required for the mastering of a predetermined volume of transportations. Reduced overcapacity of the locomotive fleet can be achieved by introduction of the locomotives of different power, designed for driving trains of different weight that will result in increased completeness of the power use but also in difficulty in selecting of locomotives for trains in operation. The paper shows the method of calculating the optimum values of power, speed and traction force of the nominal mode. It presents the mathematical model of the relationship of traction rate, excessive capacity and power of the traction unit. Findings.It is proved that the power of the traction unit, the total fleet power requirement and the excess of power in absolute units are proportional to the speed of the nominal mode. To

  5. Lifestyle factors are significantly associated with the locomotive syndrome: a cross-sectional study.

    Science.gov (United States)

    Akahane, Manabu; Yoshihara, Shingo; Maeyashiki, Akie; Tanaka, Yasuhito; Imamura, Tomoaki

    2017-10-18

    The Japanese Orthopedic Association first proposed the concept of "locomotive syndrome" in 2007. It refers to circumstances in which elderly people need nursing care services or are at high risk of requiring such services within a short time. Recently, the public health burden of providing nursing care for elderly individuals has increased. Therefore, locomotive syndrome, and the means of preventing it, are a major public health focus in Japan. The purpose of this study was to investigate the relationships of lifestyle factors, such as smoking, alcohol consumption, sleep duration, and dental health, with locomotive syndrome. We conducted a cross-sectional study using an internet panel survey. The participants comprised 747 individuals aged 30-90 years. Factors related to demographics (age, sex), general health (number of teeth, presence of periodontal disease), and lifestyle (smoking, alcohol consumption, sleep duration) were assessed. We also used the 25-question Geriatric Locomotive Function Scale to determine whether each participant had locomotive syndrome. Multivariate analysis was conducted using logistic regression to investigate the independent relationships between locomotive syndrome and lifestyle factors after adjusting for sex and age. A greater proportion of women (17.7%) than men (11.2%) had locomotive syndrome (p syndrome compared with those aged syndrome, whereas sleep duration was not. The frequency of alcohol consumption, except for daily drinking, was also associated with locomotive syndrome. Our study indicates that lifestyle factors, such as smoking and number of existing teeth, may partly affect the prevalence of locomotive syndrome. Hence, lifestyle modifications, such as improving oral hygiene and promoting cessation of smoking, are important means to reduce the risk of locomotive syndrome and should be promoted by public health staff.

  6. ANALYSIS OF THE OPERATIONAL CHARACTERISTICS OF DIESEL-ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2014-12-01

    Full Text Available Purpose. To compare the operational characteristics of freight diesel-electric locomotives ER20CF and 2М62м, which are operated with Lithuanian Railways. Important problems on traction calculations are considered in this article. In this article the critical tasks of traction calculations are solved. It is the main computational tool in the rational functioning, planning and development of railways: determination of the estimated weight of the rolling stock, the diagrams construction of specific resultant forces of a train, the permitted speed definition of the train on the slopes, curves of train traffic construction on the section. Methodology. Using the rules and methods of traction calculations the analysis of the basic operational characteristics of the modernized freight diesel-electric locomotive 2М62m and freight passenger dual locomotive 2ER20CF was held. The maximum weight of the train set, the track structure on a high-speed ascent through the use of kinetic energy (with traction and without traction, technical speed, acceleration force and the value of the smallest radius curve are selected as controlled parameters. During the calculations it was considered that the trains were formed of a fully loaded four-axle gondola cars, model 112-119 (feature-606 with axle load of 23.5 t; the motion was carried out on the continuous welded rail track; the front of the train set is a dual locomotive 2ER20CF or two locomotive 2М62м. Longitudinal profile of the road on the route Vilnus–KlF was analyzed for the choice of theoretical rise. Inspection concerning the possibility of overcoming the high-speed rise was performed with an analytical method, based on the use of the kinetic energy accumulated by the overcoming of «light» elements of the profile. Findings. In the calculations, the maximum weight of the train set taking into account theoretical rise was analyzed. The inspection of the theoretical weight of the train set on a reliable

  7. Reservoir-based Online Adaptive Forward Models with Neural Control for Complex Locomotion in a Hexapod Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Dasgupta, Sakyasingha; Goldschmidt, Dennis

    2014-01-01

    Walking animals show fascinating locomotor abilities and complex behaviors. Biological study has revealed that such complex behaviors is a result of a combination of biomechanics and neural mechanisms. While biomechanics allows for flexibility and a variety of movements, neural mechanisms generate...... locomotion, make predictions, and provide adaptation. Inspired by this finding, we present here an artificial bio-inspired walking system which combines biomechanics (in terms of its body and leg structures) and neural mechanisms. The neural mechanisms consist of 1) central pattern generator-based control...... for generating basic rhythmic patterns and coordinated movements, 2) reservoir-based adaptive forward models with efference copies for sensory prediction as well as state estimation, and 3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental...

  8. Fall detection in walking robots by multi-way principal component analysis

    NARCIS (Netherlands)

    Karssen, J.G.; Wisse, M.

    2008-01-01

    Large disturbances can cause a biped to fall. If an upcoming fall can be detected, damage can be minimized or the fall can be prevented. We introduce the multi-way principal component analysis (MPCA) method for the detection of upcoming falls. We study the detection capability of the MPCA method in

  9. The G6. A heavy-duty, six-wheeled shunting locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Tim [Vossloh Locomotives GmbH, Kiel (Germany). Development and Standardisation Group

    2010-05-15

    Nowadays, railway operating companies need robust, reliable and versatile locomotives. Vossloh has shown one way that future developments are likely to go with its 'G6' six-wheeled shunting locomotive, which features a central driver's cab. (orig.)

  10. Animal Locomotion in Different Mediums

    Indian Academy of Sciences (India)

    IAS Admin

    examine only self-powered animal locomotion. ... At different phases of their life cycle both animals and plants are highly mobile but their ... wind driven transport (Figure C). ..... fins which serve the function of rudimentary limbs, particularly.

  11. Modeling posture-dependent leg actuation in sagittal plane locomotion

    International Nuclear Information System (INIS)

    Schmitt, J; Clark, J

    2009-01-01

    The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

  12. THE DYNAMICS AND TRACTION ENERGY METRICS LOCOMOTIVE VL40

    Directory of Open Access Journals (Sweden)

    S. V. Pylypenko

    2008-03-01

    Full Text Available In the article the results of dynamic running and traction-energy tests of the electric locomotive VL40U are presented. In accordance with the test results a conclusion about the suitability of electric locomotive of such a type for operation with trains containing up to 15 passenger coaches inclusive is made.

  13. FY1995 research on humanoid; 1995 nendo humanoid kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The future robot must be a sensor-complex with high intelligence and flexible mechanical body. The purpose of the project is to improve the basic technologies by making a prototype of the human-like robot to work with human using various communication channels such as voice, facial expressions, and motion of the head, eyes, arms and legs. The following basic technologies are successfully developed and two humanoid robots were built as the total systems. They can perform some physical works communicating with human. Moreover these robots were connected to ISDN network for the experiments of tele-robotics. 1. a environment and human face understanding using vision and audition. 2. a speech conversation under the ordinary room environment. 3. a human machine communication using gesticulations. 4. a flexible human-like robot head, arms and hands. 5. a biped walking using the dynamic balance control. (NEDO)

  14. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Science.gov (United States)

    Georgi, Justin A; Sipla, Justin S; Forster, Catherine A

    2013-01-01

    Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  15. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Directory of Open Access Journals (Sweden)

    Justin A Georgi

    Full Text Available Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  16. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    Science.gov (United States)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  17. 49 CFR 231.15 - Steam locomotives used in road service.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotives used in road service. 231.15 Section 231.15 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.15 Steam locomotives used...

  18. Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins

    Science.gov (United States)

    Lauder, George V.; Madden, Peter G. A.

    2007-11-01

    The fins of fishes are remarkable propulsive devices that appear at the origin of fishes about 500 million years ago and have been a key feature of fish evolutionary diversification. Most fish species possess both median (midline) dorsal, anal, and caudal fins as well as paired pectoral and pelvic fins. Fish fins are supported by jointed skeletal elements, fin rays, that in turn support a thin collagenous membrane. Muscles at the base of the fin attach to and actuate each fin ray, and fish fins thus generate their own hydrodynamic wake during locomotion, in addition to fluid motion induced by undulation of the body. In bony fishes, the jointed fin rays can be actively deformed and the fin surface can thus actively resist hydrodynamic loading. Fish fins are highly flexible, exhibit considerable deformation during locomotion, and can interact hydrodynamically during both propulsion and maneuvering. For example, the dorsal and anal fins shed a vortex wake that greatly modifies the flow environment experienced by the tail fin. New experimental kinematic and hydrodynamic data are presented for pectoral fin function in bluegill sunfish. The highly flexible sunfish pectoral fin moves in a complex manner with two leading edges, a spanwise wave of bending, and substantial changes in area through the fin beat cycle. Data from scanning particle image velocimetry (PIV) and time-resolved stereo PIV show that the pectoral fin generates thrust throughout the fin beat cycle, and that there is no time of net drag. Continuous thrust production is due to fin flexibility which enables some part of the fin to generate thrust at all times and to smooth out oscillations that might arise at the transition from outstroke to instroke during the movement cycle. Computational fluid dynamic analyses of sunfish pectoral fin function corroborate this conclusion. Future research on fish fin function will benefit considerably from close integration with studies of robotic model fins.

  19. Design and development of a walking robotic vehicle

    International Nuclear Information System (INIS)

    Shkolnik, N.

    1990-01-01

    Quest Systems, Inc., sponsored by DARPA, is developing a low-cost, high-efficiency walking robotic vehicle (WRV). This vehicle will be targeted for a variety of applications in waste management, hazardous materials transport and handling, nuclear plant operations, maintenance and decontamination, security, mining, and other areas in industrial and military sectors. The purpose of the development is twofold. The first goal is to demonstrate that, in spite of common beliefs, legged locomotion can be as efficient as wheeled (at low velocities), which could make a walking vehicle a prime candidate for an autonomously operated platform. The second goal is to show that this type of vehicle can be built rather inexpensively (below $100,000), which would allow it to compete on a cost/functionality basis with wheeled and tracked ones

  20. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    Science.gov (United States)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  1. Análisis del deslizamiento en el punto de apoyo de un robot bípedo de 5-gdl

    Directory of Open Access Journals (Sweden)

    J.A. Vazquez

    2013-04-01

    Full Text Available Resumen: En los análisis de los diversos problemas que la locomoción bípeda representa, es común la consideración de hipótesis específicas para evaluar el desempeño de un robot en un ambiente de trabajo particular. Una de estas hipótesis consiste en omitir un eventual deslizamiento, que puede existir entre los puntos o superficies de contacto de un robot bípedo con el suelo. Aunque en situaciones prácticas esta dinámica puede ser despreciable, la velocidad relativa generada por un posible deslizamiento depende tanto de las características de fricción en el punto de contacto, como de la misma dinámica del sistema. Este trabajo se enfoca en el análisis de la dinámica de deslizamiento de un robot bípedo en su punto de apoyo durante la ejecución de su ciclo de marcha. Se considera un robot sólo con articulaciones de rodilla y cadera en cada pata, por lo que, dada la ausencia de articulación de tobillo, el contacto con la superficie es considerado puntual. Se desarrollan algunas expresiones analíticas para determinar las condiciones del fenómeno de deslizamiento al considerar un grado de libertad adicional de tipo traslacional en el extremo de la pata de apoyo. Abstract: Most of the works which deal with biped robots, consider certain assumptions to evaluate their strategies in order to get a specific objective. One of these assumptions considers a non slip condition, which implies that the contact point with the walking surface does not move along the walking axis. Although, in realistic terms, this movement could be negligible, it depends on the friction characteristics between the points of contact. This work is focused on the slip dynamic analysis of the support contact point and leads to analytical expressions to determine conditions of the slip phenomenon. This is done by considering an additional degree of freedom at the end of the supporting leg in the walking cycle. Palabras clave: Robótica, Fricción viscosa, Modelo

  2. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  3. Modeling limbless locomotion using ADAMS software

    Data.gov (United States)

    National Aeronautics and Space Administration — Until now, the methods used by probes or humans for locomotion on planetary surfaces have typically been restricted to variations of wheeled motion. As human...

  4. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology

    Directory of Open Access Journals (Sweden)

    Costas Boletsis

    2017-09-01

    Full Text Available The latest technical and interaction advancements that took place in the Virtual Reality (VR field have marked a new era, not only for VR, but also for VR locomotion. Although the latest advancements in VR locomotion have raised the interest of both researchers and users in analyzing and experiencing current VR locomotion techniques, the field of research on VR locomotion, in its new era, is still uncharted. In this work, VR locomotion is explored through a systematic literature review investigating empirical studies of VR locomotion techniques from 2014–2017. The review analyzes the VR locomotion techniques that have been studied, their interaction-related characteristics and the research topics that were addressed in these studies. Thirty-six articles were identified as relevant to the literature review, and the analysis of the articles resulted in 73 instances of 11 VR locomotion techniques, such as real-walking, walking-in-place, point and teleport, joystick-based locomotion, and more. Results showed that since the VR revival, the focus of VR locomotion research has been on VR technology and various technological aspects, overshadowing the investigation of user experience. From an interaction perspective, the majority of the utilized and studied VR locomotion techniques were found to be based on physical interaction, exploiting physical motion cues for navigation in VR environments. A significant contribution of the literature review lies in the proposed typology for VR locomotion, introducing four distinct VR locomotion types: motion-based, room scale-based, controller-based and teleportation-based locomotion.

  5. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  6. DEFINITION OF LOCOMOTIVE TRACTION FORCE WITH REGARD TO UNEVEN LOADING OF WHEEL-MOTOR BLOCK

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2013-11-01

    Full Text Available Purpose. The article describes the most common methods for determining the locomotive traction force. Solving the tasks of traction calculations involves determination of the forces influencing the train at every point of the way. When choosing a rational trajectory of the train motion and the development of operational regulations of train driving it is necessary to determine the actual value of the locomotive traction force. Considering various factors, power value of traction electric motor of locomotive may have significant differences. Advancement of the operational definition system of the locomotive traction force during the calculations by electrical parameters of traction electric motor with regard to uneven load of wheel-motor block is the purpose of the article. Methodology. The method of determining the traction force of locomotives and diesel locomotives with electric transmission, which is based on primary data acquisition of traction electric engines of direct current behavior, was proposed. Sensors and their integration into the electrical circuitry of the locomotive in order to get the data in digital form and for operational calculation of the each traction motor mode and the definition of locomotive traction force are presented. Findings. The experimental investigation of the system of locomotive traction force determination with the electric traction motor ED-105 was offered. A comparison of electrical and mechanical power of the electric motor was conducted. Originality. The system of locomotives power operational definition, which takes into account the variable electro-mechanical factors of wheel and motor blocks and increases the accuracy of the calculations, was proposed. Practical value. The system is a part of an onboard complex in definition of energy-efficient regimes for trains movement and provides the definition of accelerating and decelerating forces.

  7. Analysis of Foot Slippage Effects on an Actuated Spring-Mass Model of Dynamic Legged Locomotion

    Directory of Open Access Journals (Sweden)

    Yizhar Or

    2016-04-01

    Full Text Available The classical model of spring-loaded inverted pendulum (SLIP and its extensions have been widely accepted as a simple description of dynamic legged locomotion at various scales in humans, legged robots and animals. Similar to the majority of models in the literature, the SLIP model assumes ideal sticking contact of the foot. However, there are practical scenarios of low ground friction that causes foot slippage, which can have a significant influence on dynamic behaviour. In this work, an extension of the SLIP model with two masses and torque actuation is considered, which accounts for possible slippage under Coulomb's friction law. The hybrid dynamics of this model is formulated and numerical simulations under representative parameter values reveal several types of stable periodic solutions with stick-slip transitions. Remarkably, it is found that slippage due to low friction can sometimes increase average speed and improve energetic efficiency by significantly reducing the mechanical cost of transport.

  8. Perception of Gait Patterns that Deviate from Normal and Symmetric Biped Locomotion

    Directory of Open Access Journals (Sweden)

    Ismet eHandzic

    2015-02-01

    Full Text Available This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial pathology.

  9. Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System

    Directory of Open Access Journals (Sweden)

    Manuel F. Silva

    2012-01-01

    Full Text Available This paper presents a climbing robot with wheeled locomotion and adhesion through permanent magnets, developed with the intention of being used in the inspection of different types of man-made ferromagnetic structures, such as towers for wind turbines, fuel storage tanks, and ship hulls. In this paper are presented the main considerations thought for its project, as well as several constructive aspects, among which are detailed its mechanical and electrical construction, the implemented control architecture, and the human-machine interface developed for the manual and automatic control of the vehicle while in operation. Although it can be manually controlled, the vehicle is designed to have a semiautonomous behavior, allowing a remote inspection process controlled by a technician, this way reducing the risks associated with the human inspection of tall structures and ATEX places. The distinguishing characteristic of this robot is its dynamic adjustment system of the permanent magnets in order to assure the machine adhesion to the surfaces, even when crossing slightly irregular and curved surfaces with a large radius.

  10. On the rules for aquatic locomotion

    Science.gov (United States)

    Saadat, M.; Fish, F. E.; Domel, A. G.; Di Santo, V.; Lauder, G. V.; Haj-Hariri, H.

    2017-08-01

    We present unifying rules governing the efficient locomotion of swimming fish and marine mammals. Using scaling and dimensional analysis, supported by new experimental data, we show that efficient locomotion occurs when the values of the Strouhal (St) number St (=f A /U ) and A*(=A /L ) , two nondimensional numbers that relate forward speed U , tail-beat amplitude A , tail-beat frequency f , and the length of the swimmer L are bound to the tight ranges of 0.2-0.4 and 0.1-0.3, respectively. The tight range of 0.2-0.4 for the St number has previously been associated with optimal thrust generation. We show that the St number alone is insufficient to achieve optimal aquatic locomotion, and an additional condition on A* is needed. More importantly, we show that when swimming at minimal power consumption, the Strouhal number of a cruising swimmer is predetermined solely by the shape and drag characteristics of the swimmer. We show that diverse species of fish and cetaceans cruise indeed with the St number and A* predicted by our theory. Our findings provide a physical explanation as to why fast aquatic swimmers cruise with a relatively constant tail-beat amplitude of approximately 20% of the body length, and their swimming speed is nearly proportional to their tail-beat frequency.

  11. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  12. Bending continuous structures with SMAs: a novel robotic fish design

    International Nuclear Information System (INIS)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  13. Bending continuous structures with SMAs: a novel robotic fish design.

    Science.gov (United States)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  14. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  15. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Science.gov (United States)

    2010-10-01

    ... cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.29 Operation standards (moving locomotives and rail cars). The operation standards for the noise emission levels of moving locomotives, rail cars, or consists of...

  16. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  17. PROSPECTS OF THE PRIVATE LOCOMOTIVES USAGE FOR GOODS TRAFFIC IN THE DIRECTION OF SEA PORTS

    Directory of Open Access Journals (Sweden)

    D. M. Kozachenko

    2017-12-01

    Full Text Available Purpose. At the present time, Ukraine's mainline railway transport is entirely in state ownership. Ukraine has undertaken to implement the European Union Directives providing of non-discriminatory access to the railway infrastructure of independent carriers. A considerable quantity of options significantly affects the working conditions of carriers that do not depend on Ukrzaliznytsia. One of the tasks that arises when performing transportation by independent carriers is the organization of private locomotives operation and their servicing by engine crews. The purpose of the article is to evaluate the technical characteristic of the private locomotives usage in order to perform goods traffic in the direction of sea ports. Methodology. The researches were carried out on the basis of methods for organizing the operational work of railways and methods of traction calculations. Findings. The paper highlights the problem of goods traffic organization to seaports by independent carriers. It determines the requirements for equipment for diesel locomotives and electric locomotives depending on the distance of transportation. Permissible distances that can be served by engine crews in performing the requirements for the duration of their continuous operation were also determined. Schemes of infrastructure objects location for the locomotives and engine crews operation have been developed. It was established that diesel locomotives of independent carriers will be able to serve transportation between loading and unloading stations up to 822 km, and electric locomotives up to 1000 km with the construction of the main part of the locomotive infrastructure at the port station. The performed calculations show the potential coverage of rail transportation to sea ports by independent carriers with the use of its own locomotive infrastructure. To define more exactly the haul length of train servicing by locomotives and locomotives by engine crews, it is necessary

  18. INFLUENCE OF ROLLING STOCK VIBROACOUSTICAL PARAMETERS ON THE CHOICE OF RATIONAL VALUES OF LOCOMOTIVE RUNNING GEAR

    Directory of Open Access Journals (Sweden)

    Yu. V. Zelenko

    2016-06-01

    Full Text Available Purpose.The success of the traffic on the railways of Ukraine depends on the number and the operational fleet of electric locomotives. Today, the locomotive depot exploit physically and morally outdated locomotives that have low reliability. Modernization of electric locomotives is not economically justified. The aim of this study is to improve the safety of the traction rolling stock by the frequency analysis of dynamical systems, which allows conducting the calculation of the natural (of resonant frequencies of the design and related forms of vibrations.Methodology.The study was conducted by methods of analytical mechanics and mathematical modeling of operating loads of freight locomotive when driving at different speeds on the straight and curved track sections. The theoretical value of the work is the technique of choice of constructive schemes and rational parameters of perspective electric locomotive taking into account the electric inertia ratios and stiffness coefficients of Lagrange second-order equations.Findings. The problems of theoretical research and the development of a mathematical model of the spatial electric vibrations are solved. The theoretical studies of the effect of inertia ratios and stiffness coefficients on the dynamic values and the parameter values of electric locomotive undercarriages are presented.Originality.The set of developed regulations and obtained results is a practical solution to selecting rational parameters of bogies of the freight mainline locomotive for railways of Ukraine. A concept of choice of constructive scheme and rational parameters of perspective locomotive is formulated. It is developed the method of calculation of spatial electric locomotive oscillations to determine its dynamic performance. The software complex for processing the data of experimental studies of dynamic parameters of electric locomotive and comparing the results of the theoretical calculations with the data of full

  19. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    Science.gov (United States)

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  20. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  1. The Determination of the Asynchronous Traction Motor Characteristics of Locomotive

    Directory of Open Access Journals (Sweden)

    Pavel Grigorievich Kolpakhchyan

    2017-01-01

    Full Text Available The article deals with the problem of the locomotive asynchronous traction motor control with the AC diesel-electric transmission. The limitations of the torque of the traction motor when powered by the inverter are determined. The recommendations to improve the use of asynchronous traction motor of locomotives with the AC diesel-electric transmission are given.

  2. Lower Limb Voluntary Movement Improvement Following a Robot-Assisted Locomotor Training in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mirbagheri Mehdi

    2011-12-01

    Full Text Available Individuals with spinal cord injury (SCI suffer from severe impairments in voluntary movements. Literature reports a reduction in major kinematic and kinetic parameters of lower limbs’ joints. A body weight support treadmill training with robotic assistance has been widely used to improve lower-extremity function and locomotion in persons with SCI. Our objective was to explore the effects of 4-weeks robot-assisted locomotor training on voluntary movement of the ankle musculature in patients with incomplete SCI. In particular, we aimed to characterize the therapeutic effects of Lokomat training on kinematic measures (range of motion, velocity, smoothness during a dorsiflexion movement. We hypothesized that training would improve these measures. Preliminary results show an improvement of kinematic parameters during ankle dorsiflexion voluntary movement after a 4-weeks training in the major part of our participants. Complementary investigations are in progress to confirm these results and understand underlying mechanisms associated with the recovery.

  3. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

    OpenAIRE

    Gjorgjieva, Julijana; Biron, David; Haspel, Gal

    2014-01-01

    Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thru...

  4. Damages and resource of locomotive wheels used under the north operating conditions

    Directory of Open Access Journals (Sweden)

    A. V. Grigorev

    2014-01-01

    Full Text Available In operating railway equipment, in particular the elements, such as a wheel and a rail there is damage accumulation of any kind, causing a premature equipment failure. Thus, an analysis of the mechanisms and modeling of damage accumulation and fracture both on the surface and in the bulk material remain a challenge.Data on the defective wheel sets to be subjected to facing has been collected and analyzed to assess the locomotive wheel sets damage of the locomotive fleet company of AK «Yakutia Railways», city of Aldan, The Republic of Sakha (Yakutia. For this purpose, three main locomotives have been examined.The object of research carried out in this paper, is a locomotive wheels tire, which is subjected to cyclic impact (dynamic loads during operation. In this regard, the need arises to determine both the strength of material in response to such shock loads and the quantitative calculation of damage accumulated therein.The accumulated fatigue damage has been attributed to one radial cross section of the wheel coming into contact with the rail once per revolution of the wheel. Consequently, in one revolution a wheel is under one loading cycle. As stated, the average mileage of locomotives to have the unacceptable damages formed on the tread surface is 12 thousand km.Test results establish that along with the high-cycle loading the shock-contact action on rail joints significantly affects the accumulation of damage in the locomotive wheels tire. The number of cycles to failure due to the formation of unacceptable damage in the locomotive wheels tire is N = 2,4×106 and 6×105 cycles, respectively, for fatigue and shock-contact loading.In general, we can say that the problem of higher intensity to form the surface damage is directly related to the operation of the locomotive wheel tire under abnormally low climatic temperatures. With decreasing ambient temperature, this element material rapidly looses its plastic properties, thereby accelerating

  5. Investigations into dynamics of a draft of mine cars with two locomotives during electric braking

    Energy Technology Data Exchange (ETDEWEB)

    Sikora-Iliew, R; Szklarski, L; Thuc, Thai Duy

    1983-03-01

    The computerized simulation of electric braking of a draft of GRANBY-5 mine cars and two locomotives (Ld2 locomotives with LDO30 electric series motors) is discussed. The following stages of simulation are analyzed: constructing a mathematical model of the draft of mine cars during electric (dynamic) braking, equations which describe dynamic states of locomotives, mine cars and electric motors during dynamic braking, equations for stability assessment of the draft during dynamic braking. The analog model for simulation of dynamic braking of the draft is given. Simulation results are shown in 10 diagrams. The WAT-1000 hybrid computer is used. Simulation shows that dynamic braking causes occurrence of maximum forces in the couplers between a locomotive and a mine car. When two locomotives are used the maximum force in couplers is lower than in a draft with one locomotive. Braking distance does not depend on position of locomotives in a draft of mine cars. Doubling draft speed causes braking distance to increase by 4 times. Optimum stability conditions of a draft of mine cars are guaranteed when one locomotive is placed at the draft head and a second is separated from the first one by one third of the draft length. 6 references

  6. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  7. Physiological aspects of legged terrestrial locomotion the motor and the machine

    CERN Document Server

    Cavagna, Giovanni

    2017-01-01

    This book offers a succinct but comprehensive description of the mechanics of muscle contraction and legged terrestrial locomotion. It describes on the one hand how the fundamental properties of muscle tissue affect the mechanics of locomotion, and on the other, how the mechanics of locomotion modify the mechanism of muscle operation under different conditions. Further, the book reports on the design and results of experiments conducted with two goals. The first was to describe the physiological function of muscle tissue (which may be considered as the “motor”) contracting at a constant length, during shortening, during lengthening, and under a condition that occurs most frequently in the back-and-forth movement of the limbs during locomotion, namely the stretch-shortening cycle of the active muscle. The second objective was to analyze the interaction between the motor and the “machine” (the skeletal lever system) during walking and running in different scenarios with respect to speed, step frequency,...

  8. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion.

    Science.gov (United States)

    Lee, A Moses; Hoy, Jennifer L; Bonci, Antonello; Wilbrecht, Linda; Stryker, Michael P; Niell, Cristopher M

    2014-07-16

    Sensory processing is dependent upon behavioral state. In mice, locomotion is accompanied by changes in cortical state and enhanced visual responses. Although recent studies have begun to elucidate intrinsic cortical mechanisms underlying this effect, the neural circuits that initially couple locomotion to cortical processing are unknown. The mesencephalic locomotor region (MLR) has been shown to be capable of initiating running and is associated with the ascending reticular activating system. Here, we find that optogenetic stimulation of the MLR in awake, head-fixed mice can induce both locomotion and increases in the gain of cortical responses. MLR stimulation below the threshold for overt movement similarly changed cortical processing, revealing that MLR's effects on cortex are dissociable from locomotion. Likewise, stimulation of MLR projections to the basal forebrain also enhanced cortical responses, suggesting a pathway linking the MLR to cortex. These studies demonstrate that the MLR regulates cortical state in parallel with locomotion. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Motorneurons dedicated to either forward or backward locomotion in the nematode C. elegans

    OpenAIRE

    Haspel, Gal; O'Donovan, Michael J.; Hart, Anne C.

    2010-01-01

    Multifunctional motorneurons and muscles, which are active during forward and backward locomotion and driven by common central pattern generators, are ubiquitous in animal models. However, studies in the nematode Caenorhabditis elegans suggest that some locomotor motorneurons are necessary only for forward locomotion (dorsal B-motorneurons, DB) while others (dorsal A-motorneurons, DA) are necessary only for backward locomotion. We tested this hypothesis directly by recording the activity of t...

  10. Fluid Mechanics of Aquatic Locomotion at Large Reynolds Numbers

    OpenAIRE

    Govardhan, RN; Arakeri, JH

    2011-01-01

    Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body...

  11. 49 CFR 1242.22 - Shop buildings-locomotives (account XX-19-24).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Shop buildings-locomotives (account XX-19-24... Structures § 1242.22 Shop buildings—locomotives (account XX-19-24). Separate common expenses according to distribution of common expenses in the following accounts: Machinery Repair (XX-26-40) Locomotive—Repair and...

  12. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    Science.gov (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  13. Profile and genetic parameters of dairy cattle locomotion score and lameness across lactation.

    Science.gov (United States)

    Kougioumtzis, A; Valergakis, G E; Oikonomou, G; Arsenos, G; Banos, G

    2014-01-01

    This study investigated the profile of locomotion score and lameness before the first calving and throughout the first (n=237) and second (n=66) lactation of 303 Holstein cows raised on a commercial farm. Weekly heritability estimates of locomotion score and lameness, and their genetic and phenotypic correlations with milk yield, body condition score, BW and reproduction traits were derived. Daughter future locomotion score and lameness predictions from their sires��� breeding values for conformation traits were also calculated. First-lactation cows were monitored weekly from 6 weeks before calving to the end of lactation. Second-lactation cows were monitored weekly throughout lactation. Cows were locomotion scored on a scale from one (sound) to five (severely lame); a score greater than or equal to two defined presence of lameness. Cows��� weekly body condition score and BW was also recorded. These records were matched to corresponding milk yield records, where the latter were 7-day averages on the week of inspection. The total number of repeated records amounted to 12 221. Data were also matched to the farm���s reproduction database, from which five traits were derived. Statistical analyses were based on uni- and bivariate random regression models. The profile analysis showed that locomotion and lameness problems in first lactation were fewer before and immediately after calving, and increased as lactation progressed. The profile of the two traits remained relatively constant across the second lactation. Highest heritability estimates were observed in the weeks before first calving (0.66 for locomotion score and 0.54 for lameness). Statistically significant genetic correlations were found for first lactation weekly locomotion score and lameness with body condition score, ranging from ���0.31 to ���0.65 and from ���0.44 to ���0.76, respectively, suggesting that cows genetically pre-disposed for high body condition score

  14. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  15. Dynamically Stable Legged Locomotion

    Science.gov (United States)

    1989-09-01

    length during overground locomotion: task-specific modulation of the locomotor synergy. Journal of Experimental Psychology, 15(3). Raibert, M. I. 1986...energy conversions that intermediates between combus- tion of a fluid fuel such as gasoline , and the controlled delivery of force and power to the...question of this study: Can the extremely high energy density and rapid response of combustible fluid fuels such as gasoline be harnessed to produce

  16. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  17. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study.

    Science.gov (United States)

    Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  18. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels

    Science.gov (United States)

    Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong

    2018-06-01

    Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

  19. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  20. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...