WorldWideScience

Sample records for bipartite two-level system

  1. Quantum open system theory: bipartite aspects.

    Science.gov (United States)

    Yu, T; Eberly, J H

    2006-10-06

    We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.

  2. Entanglement transfer between bipartite systems

    International Nuclear Information System (INIS)

    Bougouffa, Smail; Ficek, Zbigniew

    2012-01-01

    The problem of a controlled transfer of an entanglement initially encoded into two two-level atoms that are successively sent through two single-mode cavities is investigated. The atoms and the cavity modes form a four-qubit system and we demonstrate the conditions under which the initial entanglement encoded into the atoms can be completely transferred to other pairs of qubits. We find that in the case of non-zero detuning between the atomic transition frequencies and the cavity mode frequencies, no complete transfer of the initial entanglement is possible to any of the other pairs of qubits. In the case of exact resonance and equal coupling strengths of the atoms to the cavity modes, an initial maximally entangled state of the atoms can be completely transferred to the cavity modes. Complete transfer of the entanglement is restricted to the cavity modes, with transfer to the other pairs being limited to 50%. We find that complete transfer of an initial entanglement to other pairs of qubits may take place if the initial state is not the maximally entangled state and the atoms couple to the cavity modes with unequal strengths. Depending on the ratio between the coupling strengths, optimal entanglement can be created between the atoms and one of the cavity modes.

  3. Quantum trajectory approach to the geometric phase: open bipartite systems

    International Nuclear Information System (INIS)

    Yi, X X; Liu, D P; Wang, W

    2005-01-01

    Through the quantum trajectory approach, we calculate the geometric phase acquired by a bipartite system subjected to decoherence. The subsystems that compose the bipartite system interact with each other and then are entangled in the evolution. The geometric phase due to the quantum jump for both the bipartite system and its subsystems is calculated and analysed. As an example, we present two coupled spin-1/2 particles to detail the calculations

  4. Darboux transformation for two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.; Baldiotti, M.; Gitman, D.; Shamshutdinova, V. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2005-06-01

    We develop the Darboux procedure for the case of the two-level system. In particular, it is demonstrated that one can construct the Darboux intertwining operator that does not violate the specific structure of the equations of the two-level system, transforming only one real potential into another real potential. We apply the obtained Darboux transformation to known exact solutions of the two-level system. Thus, we find three classes of new solutions for the two-level system and the corresponding new potentials that allow such solutions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  5. Partial Transposition on Bipartite System

    International Nuclear Information System (INIS)

    Xi-Jun, Ren; Yong-Jian, Han; Yu-Chun, Wu; Guang-Can, Guo

    2008-01-01

    Many properties of partial transposition are unclear as yet. Here we carefully consider the number of the negative eigenvalues of ρ T (ρ's partial transposition) when ρ is a two-partite state. There is strong evidence to show that the number of negative eigenvalues of ρ T is N(N − 1)/2 at most when ρ is a state in Hilbert space C N C N . For the special case, the 2 × 2 system, we use this result to give a partial proof of the conjecture |ρ T | T ≥ 0. We find that this conjecture is strongly connected with the entanglement of the state corresponding to the negative eigenvalue of ρ T or the negative entropy of ρ

  6. Two classes of bipartite networks: nested biological and social systems.

    Science.gov (United States)

    Burgos, Enrique; Ceva, Horacio; Hernández, Laura; Perazzo, R P J; Devoto, Mariano; Medan, Diego

    2008-10-01

    Bipartite graphs have received some attention in the study of social networks and of biological mutualistic systems. A generalization of a previous model is presented, that evolves the topology of the graph in order to optimally account for a given contact preference rule between the two guilds of the network. As a result, social and biological graphs are classified as belonging to two clearly different classes. Projected graphs, linking the agents of only one guild, are obtained from the original bipartite graph. The corresponding evolution of its statistical properties is also studied. An example of a biological mutualistic network is analyzed in detail, and it is found that the model provides a very good fitting of all the main statistical features. The model also provides a proper qualitative description of the same features observed in social webs, suggesting the possible reasons underlying the difference in the organization of these two kinds of bipartite networks.

  7. Controlling bi-partite entanglement in multi-qubit systems

    International Nuclear Information System (INIS)

    Plesch, Martin; Novotny, Jaroslav; Dzurakova, Zuzana; Buzek, VladimIr

    2004-01-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N 2 ) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits

  8. Controlling bi-partite entanglement in multi-qubit systems

    Science.gov (United States)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  9. Partial transposition on bi-partite system

    OpenAIRE

    Han, Y. -J.; Ren, X. J.; Wu, Y. C.; Guo, G. -C.

    2006-01-01

    Many of the properties of the partial transposition are not clear so far. Here the number of the negative eigenvalues of K(T)(the partial transposition of K) is considered carefully when K is a two-partite state. There are strong evidences to show that the number of negative eigenvalues of K(T) is N(N-1)/2 at most when K is a state in Hilbert space N*N. For the special case, 2*2 system(two qubits), we use this result to give a partial proof of the conjecture sqrt(K(T))(T)>=0. We find that thi...

  10. Mutually Unbiased Maximally Entangled Bases for the Bipartite System Cd⊗ C^{dk}

    Science.gov (United States)

    Nan, Hua; Tao, Yuan-Hong; Wang, Tian-Jiao; Zhang, Jun

    2016-10-01

    The construction of maximally entangled bases for the bipartite system Cd⊗ Cd is discussed firstly, and some mutually unbiased bases with maximally entangled bases are given, where 2≤ d≤5. Moreover, we study a systematic way of constructing mutually unbiased maximally entangled bases for the bipartite system Cd⊗ C^{dk}.

  11. Experimental Hamiltonian identification for controlled two-level systems

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Kolli, A.; Oi, D.K.L.

    2004-01-01

    We present a strategy to empirically determine the internal and control Hamiltonians for an unknown two-level system (black box) subject to various (piecewise constant) control fields when direct readout by measurement is limited to a single, fixed observable

  12. Quantum correlations for bipartite continuous-variable systems

    Science.gov (United States)

    Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang

    2018-04-01

    Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.

  13. Entanglement dynamics of a pure bipartite system in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-10-28

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  14. Entanglement dynamics of a pure bipartite system in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M

    2008-01-01

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  15. Stationary states of two-level open quantum systems

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej; Puchala, Zbigniew

    2011-01-01

    A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.

  16. The geometric phase in two-level atomic systems

    International Nuclear Information System (INIS)

    Tian Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Randall Babbitt, Wm.

    2004-01-01

    We report the observation of the geometric phase in a closed two-level atomic system using stimulated photon echoes. The two-level system studied consists of the two-electronic energy levels ( 3 H 4 and 3 H 6 ) of Tm 3+ doped in YAG crystal. When a two-level atom at an arbitrary superposition state is excited by a pair of specially designed laser pulses, the excited state component gains a relative phase with respect to the ground state component. We identified the phase shift to be of pure geometric nature. The dynamic phase associated to the driving Hamiltonian is unchanged. The experiment results of the phase change agree with the theory to the extent of the measurement limit

  17. Mixing phases of unstable two-level systems

    International Nuclear Information System (INIS)

    Sokolov, V.V.; Brentano, P. von.

    1993-01-01

    An unstable two-level system decaying into an arbitrary number of channels is considered. It is shown that the mixing phases of the two overlapping resonances can be expressed in the terms of their partial widths and one additional universal mixing parameter. Some applications to a doublet of 2 + resonances in 8 Be and to the ρ-ω systems are considered. 18 refs

  18. Inseparability inequalities for higher order moments for bipartite systems

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    There are several examples of bipartite entangled states of continuous variables for which the existing criteria for entanglement using the inequalities involving the second-order moments are insufficient. We derive new inequalities involving higher order correlation, for testing entanglement in non-Gaussian states. In this context, we study an example of a non-Gaussian state, which is a bipartite entangled state of the form Ψ(x a , x b ) ∝ (αx a + βx b ) e -(x a 2 +x b 2 )/2 . Our results open up an avenue to search for new inequalities to test entanglement in non-Gaussian states

  19. Two-level systems driven by large-amplitude fields

    Science.gov (United States)

    Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.

    2009-03-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.

  20. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  1. Two-level systems driven by large-amplitude fields

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-01-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems

  2. Atomistic study of two-level systems in amorphous silica

    Science.gov (United States)

    Damart, T.; Rodney, D.

    2018-01-01

    Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.

  3. Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays

    Science.gov (United States)

    Guo, Xing; Lu, Jianquan; Alsaedi, Ahmed; Alsaadi, Fuad E.

    2018-04-01

    This paper studies the consensus problems over signed digraphs with arbitrary finite communication delays. For the considered system, the information flow is directed and only locally delayed information can be used for each node. We derive that bipartite consensus of this system can be realized when the associated signed digraph is strongly connected. Furthermore, for structurally balanced networks, this paper studies the pinning partite consensus for the considered system. we design a pinning scheme to pin any one agent in the signed network, and obtain that the network achieves pinning bipartite consensus with any initial conditions. Finally, two examples are provided to demonstrate the effectiveness of our main results.

  4. Two-level tunneling systems in amorphous alumina

    Science.gov (United States)

    Lebedeva, Irina V.; Paz, Alejandro P.; Tokatly, Ilya V.; Rubio, Angel

    2014-03-01

    The decades of research on thermal properties of amorphous solids at temperatures below 1 K suggest that their anomalous behaviour can be related to quantum mechanical tunneling of atoms between two nearly equivalent states that can be described as a two-level system (TLS). This theory is also supported by recent studies on microwave spectroscopy of superconducting qubits. However, the microscopic nature of the TLS remains unknown. To identify structural motifs for TLSs in amorphous alumina we have performed extensive classical molecular dynamics simulations. Several bistable motifs with only one or two atoms jumping by considerable distance ~ 0.5 Å were found at T=25 K. Accounting for the surrounding environment relaxation was shown to be important up to distances ~ 7 Å. The energy asymmetry and barrier for the detected motifs lied in the ranges 0.5 - 2 meV and 4 - 15 meV, respectively, while their density was about 1 motif per 10 000 atoms. Tuning of motif asymmetry by strain was demonstrated with the coupling coefficient below 1 eV. The tunnel splitting for the symmetrized motifs was estimated on the order of 0.1 meV. The discovered motifs are in good agreement with the available experimental data. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  5. Franson Interference Generated by a Two-Level System

    Science.gov (United States)

    Peiris, M.; Konthasinghe, K.; Muller, A.

    2017-01-01

    We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).

  6. The minimal entanglement of bipartite decompositions as a witness of strong entanglement in a quantum system

    OpenAIRE

    Zenchuk, A. I.

    2010-01-01

    We {characterize the multipartite entanglement in a quantum system by the quantity} which vanishes if only the quantum system may be decomposed into two weakly entangled subsystems, unlike measures of multipartite entanglement introduced before. We refer to this {quantity} as the minimal entanglement of bipartite decompositions (MEBD). Big MEBD means that the system may not be decomposed into two weakly entangled subsystems. MEBD allows one to define, for instance, whether the given quantum s...

  7. Latent geometry of bipartite networks

    Science.gov (United States)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  8. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between two-level atoms and a single-mode cavity field. A tri-atom W state can be generated by adjusting the interaction times between ...

  9. Bipartite Networks

    NARCIS (Netherlands)

    Agneessens, F.; Moser, C.; Barnett, G.A.

    2011-01-01

    Bipartite networks refer to a specific kind of network in which the nodes (or actors) can be partitioned into two subsets based on the fact that no links exist between actors within each subset, but only between the two subsets. Due to the partition of actors in two sets and the absence of relations

  10. Data Acquisition Based on Stable Matching of Bipartite Graph in Cooperative Vehicle-Infrastructure Systems.

    Science.gov (United States)

    Tang, Xiaolan; Hong, Donghui; Chen, Wenlong

    2017-06-08

    Existing studies on data acquisition in vehicular networks often take the mobile vehicular nodes as data carriers. However, their autonomous movements, limited resources and security risks impact the quality of services. In this article, we propose a data acquisition model using stable matching of bipartite graph in cooperative vehicle-infrastructure systems, namely, DAS. Contents are distributed to roadside units, while vehicular nodes support supplementary storage. The original distribution problem is formulated as a stable matching problem of bipartite graph, where the data and the storage cells compose two sides of vertices. Regarding the factors relevant with the access ratio and delay, the preference rankings for contents and roadside units are calculated, respectively. With a multi-replica preprocessing algorithm to handle the potential one-to-many mapping, the matching problem is addressed in polynomial time. In addition, vehicular nodes carry and forward assistant contents to deliver the failed packets because of bandwidth competition. Furthermore, an incentive strategy is put forward to boost the vehicle cooperation and to achieve a fair bandwidth allocation at roadside units. Experiments show that DAS achieves a high access ratio and a small storage cost with an acceptable delay.

  11. Additional Quantum Properties of Entangled Bipartite Qubit Systems Coupled to Photon Baths

    International Nuclear Information System (INIS)

    Quintana, C

    2016-01-01

    The time evolution of an entangled bi-partite qubit interacting with two independent photon baths in isolated cavities is not unitary. It is shown that the bi-partite qubit oscillates between pure and mixed states, and that the initial entanglement is lost and recovered in time by time as a consequence of its interaction with the baths. (paper)

  12. Excitation transfer in two two-level systems coupled to an oscillator

    International Nuclear Information System (INIS)

    Hagelstein, P L; Chaudhary, I U

    2008-01-01

    We consider a generalization of the spin-boson model in which two different two-level systems are coupled to an oscillator, under conditions where the oscillator energy is much less than the two-level system energies, and where the oscillator is highly excited. We find that the two-level system transition energy is shifted, producing a Bloch-Siegert shift in each two-level system similar to what would be obtained if the other were absent. At resonances associated with energy exchange between a two-level system and the oscillator, the level splitting is about the same as would be obtained in the spin-boson model at a Bloch-Siegert resonance. However, there occur resonances associated with the transfer of excitation between one two-level system and the other, an effect not present in the spin-boson model. We use a unitary transformation leading to a rotated system in which terms responsible for the shift and splittings can be identified. The level splittings at the anticrossings associated with both energy exchange and excitation transfer resonances are accounted for with simple two-state models and degenerate perturbation theory using operators that appear in the rotated Hamiltonian

  13. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  14. Resonant retuning of Rabi oscillations in a two-level system

    International Nuclear Information System (INIS)

    Leonov, A.V.; Feranchuk, I.D.

    2009-01-01

    The evolution of a two-level system in a single-mode quantum field is considered beyond the rotating wave approximation. The existence of quasi-degenerate energy levels is shown to influence the essential characteristics of temporal and amplitude Rabi oscillations of the system in a resonant manner. (authors)

  15. Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.

    Directory of Open Access Journals (Sweden)

    Sagar Indurkhya

    Full Text Available ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1 a small number of reactions tend to occur a disproportionately large percentage of the time, and (2 a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models.

  16. Reaction Factoring and Bipartite Update Graphs Accelerate the Gillespie Algorithm for Large-Scale Biochemical Systems

    Science.gov (United States)

    Indurkhya, Sagar; Beal, Jacob

    2010-01-01

    ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models. PMID:20066048

  17. Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.

    Science.gov (United States)

    Indurkhya, Sagar; Beal, Jacob

    2010-01-06

    ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models.

  18. Excitation of graphene plasmons as an analogy with the two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Lv, Bo, E-mail: lb19840313@126.com [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Li, Rujiang [College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Ruyu; Chen, Wan; Meng, Fanyi [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China)

    2016-02-15

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  19. Excitation of graphene plasmons as an analogy with the two-level system

    International Nuclear Information System (INIS)

    Fu, Jiahui; Lv, Bo; Li, Rujiang; Ma, Ruyu; Chen, Wan; Meng, Fanyi

    2016-01-01

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  20. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  1. Crossing rule for a PT-symmetric two-level time-periodic system

    International Nuclear Information System (INIS)

    Moiseyev, Nimrod

    2011-01-01

    For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.

  2. Non-zero temperature two-mode squeezing for time-dependent two-level systems

    International Nuclear Information System (INIS)

    Aliaga, J.; Gruver, J.L.; Proto, A.N.; Cerdeira, H.A.

    1994-01-01

    A Maximum Entropy Principle density matrix method, valid for systems with temperature different from zero, is presented making it possible two-mode squeezed states in two-level systems with relevant operators and Hamiltonian connected with O(3,2). A method which allows one to relate the appearance of squeezing to the relevant operators, included in order to define the density matrix of the system is given. (author). 14 refs, 1 fig

  3. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  4. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states

  5. The simulation of the non-Markovian behaviour of a two-level system

    Science.gov (United States)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  6. Minimum time control of a pair of two-level quantum systems with opposite drifts

    International Nuclear Information System (INIS)

    Romano, Raffaele; D’Alessandro, Domenico

    2016-01-01

    In this paper we solve two equivalent time optimal control problems. On one hand, we design the control field to implement in minimum time the SWAP (or equivalent) operator on a two-level system, assuming that it interacts with an additional, uncontrollable, two-level system. On the other hand, we synthesize the SWAP operator simultaneously, in minimum time, on a pair of two-level systems subject to opposite drifts. We assume that it is possible to perform three independent control actions, and that the total control strength is bounded. These controls either affect the dynamics of the target system, under the first perspective, or, simultaneously, the dynamics of both systems, in the second view. We obtain our results by using techniques of geometric control theory on Lie groups. In particular, we apply the Pontryagin maximum principle, and provide a complete characterization of singular and nonsingular extremals. Our analysis shows that the problem can be formulated as the motion of a material point in a central force, a well known system in classical mechanics. Although we focus on obtaining the SWAP operator, many of the ideas and techniques developed in this work apply to the time optimal implementation of an arbitrary unitary operator. (paper)

  7. Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2015-11-30

    We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.

  8. Experiences of building a medical data acquisition system based on two-level modeling.

    Science.gov (United States)

    Li, Bei; Li, Jianbin; Lan, Xiaoyun; An, Ying; Gao, Wuqiang; Jiang, Yuqiao

    2018-04-01

    Compared to traditional software development strategies, the two-level modeling approach is more flexible and applicable to build an information system in the medical domain. However, the standards of two-level modeling such as openEHR appear complex to medical professionals. This study aims to investigate, implement, and improve the two-level modeling approach, and discusses the experience of building a unified data acquisition system for four affiliated university hospitals based on this approach. After the investigation, we simplified the approach of archetype modeling and developed a medical data acquisition system where medical experts can define the metadata for their own specialties by using a visual easy-to-use tool. The medical data acquisition system for multiple centers, clinical specialties, and diseases has been developed, and integrates the functions of metadata modeling, form design, and data acquisition. To date, 93,353 data items and 6,017 categories for 285 specific diseases have been created by medical experts, and over 25,000 patients' information has been collected. OpenEHR is an advanced two-level modeling method for medical data, but its idea to separate domain knowledge and technical concern is not easy to realize. Moreover, it is difficult to reach an agreement on archetype definition. Therefore, we adopted simpler metadata modeling, and employed What-You-See-Is-What-You-Get (WYSIWYG) tools to further improve the usability of the system. Compared with the archetype definition, our approach lowers the difficulty. Nevertheless, to build such a system, every participant should have some knowledge in both medicine and information technology domains, as these interdisciplinary talents are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit

    International Nuclear Information System (INIS)

    Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Han, Siyuan

    2015-01-01

    We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits

  10. Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

    Science.gov (United States)

    Wang, Guo-You; Guo, You-Neng; Zeng, Ke

    2015-11-01

    We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).

  11. Feedback controlled dephasing and population relaxation in a two-level system

    International Nuclear Information System (INIS)

    Wang Jin

    2009-01-01

    This Letter presents the maximum achievable stability and purity that can be obtained in a two-level system with both dephasing and population relaxation processes by using homodyne-mediated feedback control. An analytic formula giving the optimal amplitudes of the driving and feedback for the steady-state is also presented. Experimental examples are used to show the importance of controlling the dephasing process.

  12. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  13. Understanding of phase modulation in two-level systems through inverse scattering

    International Nuclear Information System (INIS)

    Hasenfeld, A.; Hammes, S.L.; Warren, W.S.

    1988-01-01

    Analytical and numerical calculations describe the effects of shaped radiation pulses on two-level systems in terms of quantum-mechanical scattering. Previous results obtained in the reduced case of amplitude modulation are extended to the general case of simultaneous amplitude and phase modulation. We show that an infinite family of phase- and amplitude-modulated pulses all generate rectangular inversion profiles. Experimental measurements also verify the theoretical analysis

  14. Aspects of two-level systems under external time-dependent fields

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Wreszinski, W.F. [Tomsk State University and Tomsk Institute of High Current Electronics (Russian Federation); Barata, J.C.A.; Gitman D.M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)]. E-mails: jbarata@fma.if.usp.br; gitman@fma.if.usp.br

    2001-12-14

    The dynamics of two-level systems in time-dependent backgrounds is under consideration. We present some new exact solutions in special backgrounds decaying in time. On the other hand, following ideas of Feynman et al, we discuss in detail the possibility of reducing the quantum dynamics to a classical Hamiltonian system. This, in particular, opens the possibility of directly applying powerful methods of classical mechanics (e.g. KAM methods) to study the quantum system. Following such an approach, we draw conclusions of relevance for 'quantum chaos' when the external background is periodic or quasi-periodic in time. (author)

  15. Renormalization of correlations in a quasiperiodically forced two-level system: quadratic irrationals

    International Nuclear Information System (INIS)

    Mestel, B D; Osbaldestin, A H

    2004-01-01

    Generalizing from the case of golden mean frequency to a wider class of quadratic irrationals, we extend our renormalization analysis of the self-similarity of correlation functions in a quasiperiodically forced two-level system. We give a description of all piecewise-constant periodic orbits of an additive functional recurrence generalizing that present in the golden mean case. We establish a criterion for periodic orbits to be globally bounded, and also calculate the asymptotic height of the main peaks in the correlation function

  16. Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

    Science.gov (United States)

    Skinner, Thomas E.

    2018-01-01

    The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which

  17. On Two-Level State-Dependent Routing Polling Systems with Mixed Service

    Directory of Open Access Journals (Sweden)

    Guan Zheng

    2015-01-01

    Full Text Available Based on priority differentiation and efficiency of the system, we consider an N+1 queues’ single-server two-level polling system which consists of one key queue and N normal queues. The novel contribution of the present paper is that we consider that the server just polls active queues with customers waiting in the queue. Furthermore, key queue is served with exhaustive service and normal queues are served with 1-limited service in a parallel scheduling. For this model, we derive an expression for the probability generating function of the joint queue length distribution at polling epochs. Based on these results, we derive the explicit closed-form expressions for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical and the new system is efficient both at key queue and normal queues.

  18. Detuning-induced stimulated Raman adiabatic passage in dense two-level systems

    Science.gov (United States)

    Deng, Li; Lin, Gongwei; Niu, Yueping; Gong, Shangqing

    2018-05-01

    We investigate the coherence generation in dense two-level systems under detuning-induced stimulated Raman adiabatic passage (D-STIRAP). In the dense two-level system, the near dipole-dipole (NDD) interaction should be taken into consideration. With the increase in the strength of the NDD interaction, it is found that a switchlike transition of the generated coherence from maximum value to zero appears. Meanwhile, the adiabatic condition of the D-STIRAP is destroyed in the presence of the NDD interaction. In order to avoid the sudden decrease in the generated coherence and maintain the maximum value, we can use stronger detuning pulse or pump pulse, between which increasing the intensity of the detuning pulse is of more efficiency. Except for taking advantage of such maximum coherence in the high density case into areas like enhancing the four-wave mixing process, we also point out that the phenomenon of the coherence transition can be applied as an optical switch.

  19. Amplification without inversion, fast light and optical bistability in a duplicated two-level system

    International Nuclear Information System (INIS)

    Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad

    2014-01-01

    The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system

  20. Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG

    Science.gov (United States)

    Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya

    2017-10-01

    Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.

  1. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    Science.gov (United States)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  2. Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity

    Science.gov (United States)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2018-03-01

    We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.

  3. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  4. Effect of attachment strategies on bipartite networks

    DEFF Research Database (Denmark)

    Ganguly, N.; Saha, S.; Maiti, A.

    2013-01-01

    Bipartite systems show remarkable variations in their topological asymptotic properties, e. g., in their degree distribution. Such variations depend on the underlying growth dynamics. A scenario of particular importance is when the two partitions of the bipartite structure do not grow at an equal...

  5. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  6. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  7. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  8. Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Pal, Karoly F.; Vertesi, Tamas

    2010-01-01

    The I 3322 inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In the case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems; however, there is no such evidence for the I 3322 inequality. In this paper a family of measurement operators and states is given which enables us to attain the maximum quantum value in an infinite-dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite-dimensional quantum systems is not enough to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role in obtaining our results for the I 3322 inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.

  9. Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments

    International Nuclear Information System (INIS)

    Zhang Xiu-Xing; Li Fu-Li

    2011-01-01

    The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments. (general)

  10. A Two-Level Task Scheduler on Multiple DSP System for OpenCL

    Directory of Open Access Journals (Sweden)

    Li Tian

    2014-04-01

    Full Text Available This paper addresses the problem that multiple DSP system does not support OpenCL programming. With the compiler, runtime, and the kernel scheduler proposed, an OpenCL application becomes portable not only between multiple CPU and GPU, but also between embedded multiple DSP systems. Firstly, the LLVM compiler was imported for source-to-source translation in which the translated source was supported by CCS. Secondly, two-level schedulers were proposed to support efficient OpenCL kernel execution. The DSP/BIOS is used to schedule system level tasks such as interrupts and drivers; however, the synchronization mechanism resulted in heavy overhead during task switching. So we designed an efficient second level scheduler especially for OpenCL kernel work-item scheduling. The context switch process utilizes the 8 functional units and cross path links which was superior to DSP/BIOS in the aspect of task switching. Finally, dynamic loading and software managed CACHE were redesigned for OpenCL running on multiple DSP system. We evaluated the performance using some common OpenCL kernels from NVIDIA, AMD, NAS, and Parboil benchmarks. Experimental results show that the DSP OpenCL can efficiently exploit the computing resource of multiple cores.

  11. Modeling the dynamics of multipartite quantum systems created departing from two-level systems using general local and non-local interactions

    Science.gov (United States)

    Delgado, Francisco

    2017-12-01

    Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.

  12. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  13. Dynamical properties of a two-level system with arbitrary nonlinearities

    Indian Academy of Sciences (India)

    nication, information processing and quantum computing, such as in the investigation of quantum teleportation ... They con- sidered a two-level atom interacting with an undamped cavity initially in a coherent state. ... Because concurrence pro-.

  14. Acoustic interactions between inversion symmetric and asymmetric two-level systems

    International Nuclear Information System (INIS)

    Churkin, A; Schechter, M; Barash, D

    2014-01-01

    Amorphous solids, as well as many disordered lattices, display remarkable universality in their low temperature acoustic properties. This universality is attributed to the attenuation of phonons by tunneling two-level systems (TLSs), facilitated by the interaction of the TLSs with the phonon field. TLS-phonon interaction also mediates effective TLS–TLS interactions, which dictates the existence of a glassy phase and its low energy properties. Here we consider KBr:CN, the archetypal disordered lattice showing universality. We calculate numerically, using conjugate gradients method, the effective TLS–TLS interactions for inversion symmetric (CN flips) and asymmetric (CN rotations) TLSs, in the absence and presence of disorder, in two and three dimensions. The observed dependence of the magnitude and spatial power law of the interaction on TLS symmetry, and its change with disorder, characterizes TLS–TLS interactions in disordered lattices in both extreme and moderate dilutions. Our results are in good agreement with the two-TLS model, recently introduced to explain long-standing questions regarding the quantitative universality of phonon attenuation and the energy scale of ≈1–3 K below which universality is observed. (paper)

  15. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  16. Crises-induced intermittencies in a coherently driven system of two-level atoms

    International Nuclear Information System (INIS)

    Pando L, C.L.; Perez, G.; Cerdeira, H.A.

    1993-04-01

    We study the coherent dynamics of a thin layer of two-level atoms driven by an external coherent field and a phase conjugated mirror (PCM). Since the variables of the system are defined on the Bloch sphere, the third dimension is provided by the temporal modulation of the Rabi frequencies, which are induced by a PCM which reflects an electric field with a carrier frequency different from the incident one. We show that as the PCM gain coefficient is changed period doubling leading to chaos occurs. We find crises of attractor merging and attractor widening types related to homoclinic and heteroclinic tangencies respectively. For the attractor merging crises we find the critical exponent for the characteristic time of intermittency versus the control parameter which is given by the gain coefficient of the PCM. We show that during the crises of attractor widening type, another crisis due to attractor destruction occurs as the control parameter is changed. The latter is due to the collision of the old attractor with its basin boundary when a new attractor is created. This new attractor is stable only in a very small interval in the neighborhood of this second crisis. (author). 31 refs, 15 figs

  17. Two levels decision system for efficient planning and implementation of bioenergy production

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Martins, Ricardo; Wang, Kefeng; Seki, Hiroya; Naka, Yuji

    2007-01-01

    When planning bioenergy production from biomass, planners should take into account each and every stakeholder along the biomass supply chains, e.g. biomass resources suppliers, transportation, conversion and electricity suppliers. Also, the planners have to consider social concerns, environmental and economical impacts related with establishing the biomass systems and the specific difficulties of each country. To overcome these problems in a sustainable manner, a robust decision support system is required. For that purpose, a two levels general Bioenergy Decision System (gBEDS) for bioenergy production planning and implementation was developed. The core part of the gBEDS is the information base, which includes the basic bioenergy information and the detailed decision information. Basic bioenergy information include, for instance, the geographical information system (GIS) database, the biomass materials' database, the biomass logistic database and the biomass conversion database. The detailed decision information considers the parameters' values database with their default values and the variables database, values obtained by simulation and optimization. It also includes a scenario database, which is used for demonstration to new users and also for case based reasoning by planners and executers. Based on the information base, the following modules are included to support decision making: the simulation module with graph interface based on the unit process (UP) definition and the genetic algorithms (GAs) methods for optimal decisions and the Matlab module for applying data mining methods (fuzzy C-means clustering and decision trees) to the biomass collection points, to define the location of storage and bioenergy conversion plants based on the simulation and optimization model developed of the whole life cycle of bioenergy generation. Furthermore, Matlab is used to set up a calculation model with crucial biomass planning parameters (e.g. costs, CO 2 emissions), over

  18. Effect of two-qutrit entanglement on quantum speed limit time of a bipartite V-type open system

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, N., E-mail: n.behzadi@tabrizu.ac.ir [Research Institute for Fundamental Sciences, University of Tabriz (Iran, Islamic Republic of); Ahansaz, B.; Ektesabi, A.; Faizi, E. [Physics Department, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2017-03-15

    In the present paper, quantum speed limit (QSL) time of a bipartite V-type three-level atomic system under the effect of two-qutrit entanglement is investigated. Each party interacts with own independent reservoir. By considering two local unitarily equivalent Werner states and the Horodecki PPT state, as initial states, the QSL time is evaluated for each of them in the respective entangled regions. It is counterintuitively observed that the effect of entanglement on the QSL time driven from each of the initial Werner states are completely different when the degree of non-Markovianity is considerable. In addition, it is interesting that the effect of entanglement of the non-equivalent Horodecki state on the calculated QSL time displays an intermediate behavior relative to the cases obtained for the Werner states.

  19. Analysis of Two-Level Support Systems with Time-Dependent Overflow - A Banking Application

    DEFF Research Database (Denmark)

    Barth, Wolfgang; Manitz, Michael; Stolletz, Raik

    2010-01-01

    In this paper, we analyze the performance of call centers of financial service providers with two levels of support and a time-dependent overflow mechanism. Waiting calls from the front-office queue flow over to the back office if a waiting-time limit is reached and at least one back-office agent...

  20. Bipartite Bell Inequality and Maximal Violation

    International Nuclear Information System (INIS)

    Li Ming; Fei Shaoming; Li-Jost Xian-Qing

    2011-01-01

    We present new bell inequalities for arbitrary dimensional bipartite quantum systems. The maximal violation of the inequalities is computed. The Bell inequality is capable of detecting quantum entanglement of both pure and mixed quantum states more effectively. (general)

  1. Open quantum systems and the two-level atom interacting with a single mode of the electromagnetic field

    International Nuclear Information System (INIS)

    Sandulescu, A.; Stefanescu, E.

    1987-07-01

    On the basis of Lindblad theory of open quantum systems we obtain new optical equations for the system of two-level atom interacting with a single mode of the electromagnetic field. The conventional Block equations in a generalized form with field phases are obtained in the hypothesis that all the terms are slowly varying in the rotating frame.(authors)

  2. Quantum driving protocols for a two-level system: From generalized Landau-Zener sweeps to transitionless control

    DEFF Research Database (Denmark)

    Malossi, Nicola; Bason, Mark George; Viteau, Matthieu

    2013-01-01

    We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the ...

  3. Organization of the two-level memory in the image processing system on scanning measuring projectors

    International Nuclear Information System (INIS)

    Sychev, A.Yu.

    1977-01-01

    Discussed are the problems of improving the efficiency of the system for processing pictures taken in bubble chambers with the use of scanning measuring projectors. The system comprises 20 to 30 pro ectors linked with the ICL-1903A computer provided with a mainframe memory, 64 kilobytes in size. Because of the insufficient size of a mainframe memory, a part of the programs and data is located in a second-level memory, i.e. in an external memory. The analytical model described herein is used to analyze the effect of the memory organization on the characteristics of the system. It is shown that organization of pure procedures and introduction of the centralized control of the tWo-leVel memory result in substantial improvement of the efficiency of the picture processing system

  4. Optimization of Two-Level Disassembly/Remanufacturing/Assembly System with an Integrated Maintenance Strategy

    Directory of Open Access Journals (Sweden)

    Zouhour Guiras

    2018-04-01

    Full Text Available With an increase of environmental pressure on economic activities, reverse flow is increasingly important. It seeks to save resources, eliminate waste, and improve productivity. This paper investigates the optimization of the disassembly, remanufacturing and assembly system, taking into account assembly-disassembly system degradation. An analytical model is developed to consider disassembly, remanufacturing of used/end-of-life product and assembly of the finished product. The finished product is composed of remanufactured and new components. A maintenance policy is sequentially integrated to reduce the system unavailability. The aim of this study is to help decision-makers, under certain conditions, choose the most cost-effective process for them to satisfy the customer as well as to adapt to the potential risk that can perturb the disassembly-assembly system. A heuristic is developed to determine the optimal ordered date of the used end-of-life product as well as the optimum release dates of new external components. The results reveal that considering some remanufacturing and purchase components costs, the proposed model is more economical in comparison with a model without remanufactured parts. Numerical results are provided to illustrate the impact of the variation of the ordering cost and quality of the used end-of-life product on the system profitability. Finally, the risk due to system repair periods is discussed, which has an impact on managerial decision-making.

  5. Information systems performance evaluation, introducing a two-level technique: Case study call centers

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2015-03-01

    The objective of this paper was to introduce a new technique that can support decision makers in the call centers industry to evaluate, and analyze the performance of call centers. The technique presented is derived from the research done on measuring the success or failure of information systems. Two models are mainly adopted namely: the Delone and Mclean model first introduced in 1992 and the Design Reality Gap model introduced by Heeks in 2002. Two indices are defined to calculate the performance of the call center; the success index and the Gap Index. An evaluation tool has been developed to allow call centers managers to evaluate the performance of their call centers in a systematic analytical approach; the tool was applied on 4 call centers from different areas, simple applications such as food ordering, marketing, and sales, technical support systems, to more real time services such as the example of emergency control systems. Results showed the importance of using information systems models to evaluate complex systems as call centers. The models used allow identifying the dimensions for the call centers that are facing challenges, together with an identification of the individual indicators in these dimensions that are causing the poor performance of the call center.

  6. On irreversible evolutions of two-level systems approaching coherent and squeezed states

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1988-01-01

    The concepts of completely positive quantum dynamical semigroups and SU(2)-related generalized coherence and squeezing are used to investigate conditions for Markovian evolutions leading to coherent, intelligent, minimum-uncertainty and squeezed asymptotic stationary states in a 2-level system. (author). 10 refs

  7. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  8. Adiabatic passage for a lossy two-level quantum system by a complex time method

    International Nuclear Information System (INIS)

    Dridi, G; Guérin, S

    2012-01-01

    Using a complex time method with the formalism of Stokes lines, we establish a generalization of the Davis–Dykhne–Pechukas formula which gives in the adiabatic limit the transition probability of a lossy two-state system driven by an external frequency-chirped pulse-shaped field. The conditions that allow this generalization are derived. We illustrate the result with the dissipative Allen–Eberly and Rosen–Zener models. (paper)

  9. Minimax approach problem with incomplete information for the two-level hierarchical discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F. [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia and Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2014-11-18

    We consider a discrete-time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector linear or convex discrete-time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solution.

  10. Geometric phase for a two-level system in photonic band gab crystal

    Science.gov (United States)

    Berrada, K.

    2018-05-01

    In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the same condition. Finally, we explore the relationship between the variation of the GP and population in terms of the physical parameters.

  11. Modelling thermionic emission by using a two-level mechanical system

    International Nuclear Information System (INIS)

    Battaglia, O.R.

    2008-01-01

    The Boltzmann factor is at the basis of a great amount of thermodynamic and statistical physics, both classical and quantum. It describes the behaviour of natural systems that exchange energy with the environment. However, why does the expression have that specific form? The Feynman Lectures on Physics justifies it heuristically by referencing to the exponential atmosphere example. Thermodynamics textbooks usually give a more or less complete explanation that mainly involves a mathematical analysis, where it is hard to see the logic flow. Moreover, the necessary mathematics is not at the level of high school or college students' preparation. Here we present an experiment and a simulation at deriving the Boltzmann factor expression and illustrating the fundamental concepts and principles of statistical mechanics. Experiments and simulations are used in order to visualise the mechanism involved; the experiments use easily available laboratory equipment, and simulations are developed in Net Logo, a software environment that, besides having a really friendly interface, allows the user to easily interact with the algorithm, as well as to modify it.

  12. Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields

    Energy Technology Data Exchange (ETDEWEB)

    Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)

    2016-04-21

    We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.

  13. Bipartite binomial heaps

    DEFF Research Database (Denmark)

    Elmasry, Amr; Jensen, Claus; Katajainen, Jyrki

    2017-01-01

    the (total) number of elements stored in the data structure(s) prior to the operation. As the resulting data structure consists of two components that are different variants of binomial heaps, we call it a bipartite binomial heap. Compared to its counterpart, a multipartite binomial heap, the new structure...

  14. MRI findings in bipartite patella

    International Nuclear Information System (INIS)

    Kavanagh, Eoin C.; Zoga, Adam; Omar, Imran; Ford, Stephanie; Eustace, Stephen; Schweitzer, Mark

    2007-01-01

    Bipartite patella is a known cause of anterior knee pain. Our purpose was to detail the magnetic resonance imaging (MRI) features of bipartite patella in a retrospective cohort of patients imaged at our institution. MRI exams from 53 patients with findings of bipartite patella were evaluated to assess for the presence of bone marrow edema within the bipartite fragment and for the presence of abnormal signal across the synchondrosis or pseudarthrosis. Any other significant knee pathology seen at MRI was also recorded. We also reviewed 400 consecutive knee MRI studies to determine the MRI prevalence of bipartite patella. Of the 53 patients with bipartite patella 40 (75%) were male; 35 (66%) had edema within the bipartite fragment. Of the 18 with no edema an alternative explanation for knee pain was found in 13 (72%). Edema within the bipartite fragment was the sole finding in 26 of 53 (49%) patients. Bipartite patella was seen in 3 (0.7%) of 400 patients. In patients with bipartite patella at knee MRI, bone marrow edema within the bipartite fragment was the sole finding on knee MRI in almost half of the patients in our series. (orig.)

  15. Three methods to distill multipartite entanglement over bipartite noisy channels

    International Nuclear Information System (INIS)

    Lee, Soojoon; Park, Jungjoon

    2008-01-01

    We first assume that there are only bipartite noisy qubit channels in a given multipartite system, and present three methods to distill the general Greenberger-Horne-Zeilinger state. By investigating the methods, we show that multipartite entanglement distillation by bipartite entanglement distillation has higher yield than ones in the previous multipartite entanglement distillations

  16. Entropy as a measure of the noise extent in a two-level quantum feedback controlled system

    Institute of Scientific and Technical Information of China (English)

    Wang Tao-Bo; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.

  17. Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system

    DEFF Research Database (Denmark)

    Manoloiu, A.; Pereria, H.A.; Teodorescu, Remus

    2015-01-01

    This paper analyzes differences between αβ and dq reference frames regarding the control of two-level VSC-HVDC current loop and dc-link voltage outer loop. In the first part, voltage feedforward effect is considered with PI and PR controllers. In the second part, the feedforward effect is removed...... and the PR gains are tuned to keep the dynamic performance. Also, the power feedforward is removed and the outer loop PI controller is tuned in order to maintain the system dynamic performance. The paper is completed with simulation results, which highlight the advantages of using PR controller....

  18. Experimental study of magnetocaloric effect in the two-level quantum system KTm(MoO4)2

    Science.gov (United States)

    Tarasenko, R.; Tkáč, V.; Orendáčová, A.; Orendáč, M.; Valenta, J.; Sechovský, V.; Feher, A.

    2018-05-01

    KTm(MoO4)2 belongs to the family of binary alkaline rare-earth molybdates. This compound can be considered to be an almost ideal quantum two-level system at low temperatures. Magnetocaloric properties of KTm(MoO4)2 single crystals were investigated using specific heat and magnetization measurement in the magnetic field applied along the easy axis. Large conventional magnetocaloric effect (-ΔSM ≈ 10.3 J/(kg K)) was observed in the magnetic field of 5 T in a relatively wide temperature interval. The isothermal magnetic entropy change of about 8 J/(kgK) has been achieved already for the magnetic field of 2 T. Temperature dependence of the isothermal entropy change under different magnetic fields is in good agreement with theoretical predictions for a quantum two-level system with Δ ≈ 2.82 cm-1. Investigation of magnetocaloric properties of KTm(MoO4)2 suggests that the studied system can be considered as a good material for magnetic cooling at low temperatures.

  19. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    International Nuclear Information System (INIS)

    Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A

    2007-01-01

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions

  20. Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology

    Directory of Open Access Journals (Sweden)

    Etang Josiane

    2007-07-01

    Full Text Available Abstract Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general.

  1. Quantum correlations between each two-level system in a pair of atoms and general coherent fields

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy

  2. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    Science.gov (United States)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  3. Dynamics of a Landau–Zener transitions in a two-level system driven by a dissipative environment

    Energy Technology Data Exchange (ETDEWEB)

    Ateuafack, M.E., E-mail: esouamath@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Diffo, J.T., E-mail: diffojaures@yahoo.com [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Department of Physics, Higher Teachers' Training College, The University of Maroua, PO Box 55 Maroua (Cameroon); Fai, L.C., E-mail: corneliusfai@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon)

    2016-02-15

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  4. A Two-Level Sensorless MPPT Strategy Using SRF-PLL on a PMSG Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Amina Echchaachouai

    2017-01-01

    Full Text Available In this paper, a two-level sensorless Maximum Power Point Tracking (MPPT strategy is presented for a variable speed Wind Energy Conversion System (WECS. The proposed system is composed of a wind turbine, a direct-drive Permanent Magnet Synchronous Generator (PMSG and a three phase controlled rectifier connected to a DC load. The realised generator output power maximization analysis justifies the use of the Field Oriented Control (FOC giving the six Pulse Width Modulation (PWM signals to the active rectifier. The generator rotor speed and position required by the FOC and the sensorless MPPT are estimated using a Synchronous Reference Frame Phase Locked Loop (SRF-PLL. The MPPT strategy used consists of two levels, the first level is a power regulation loop and the second level is an extremum seeking bloc generating the coefficient gathering the turbine characteristics. Experimental results validated on a hardware test setup using a DSP digital board (dSPACE 1104 are presented. Figures illustrating the estimated speed and angle confirm that the SRF-PLL is able to give an estimated speed and angle which closely follow the real ones. Also, the power at the DC load and the power at the generator output indicate that the MPPT gives optimum extracted power. Finally, other results show the effectiveness of the adopted approach in real time applications.

  5. Transverse magnetic field effect on the giant Goos–Hänchen shifts based on a degenerate two-level system

    Science.gov (United States)

    Nasehi, R.

    2018-06-01

    We study the effect of the Goos–Hänchen (GH) shifts through a cavity with degenerate two-level systems in the line of . For this purpose, we focus on the transverse magnetic field (TMF) in a Floquet frame to obtain the giant GH shifts. Physically, the collisional effects of TMF lead to increasing the population trapping in the ground state. However, we demonstrate that the population trapping generates the large negative or positive GH shifts and simultaneously switches from superluminal to subluminal (or vice versa). Also, we investigate the other optical properties such as the longitudinal magnetic field (LMF), which plays an important role in the control of the GH shifts and leads to the generation of new subsystems. In the next step, we evaluate the GH shifts beyond the multi-photon resonance condition by the control of TMF. Moreover, we compute the appearance of negative and positive GH shifts by setting the width of the incident Gaussian beams in the presence of a multi-photon resonance condition. Our results show that superluminal or subluminal light propagation can be simultaneously controlled by adjusting the rates of the TMF and LMF. The significant effects of these factors on the degenerate two-level systems provide different applications such as slow light, optical switches and quantum information storage.

  6. Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell's non-locality

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2018-04-01

    In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell's non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell's non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell's inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.

  7. Quantum phase transition in a coupled two-level system embedded in anisotropic three-dimensional photonic crystals.

    Science.gov (United States)

    Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X

    2016-01-01

    The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.

  8. Quantum driving of a two level system: quantum speed limit and superadiabatic protocols – an experimental investigation

    International Nuclear Information System (INIS)

    Malossi, N; Arimondo, E; Ciampini, D; Mannella, R; Bason, M G; Viteau, M; Morsch, O

    2013-01-01

    A fundamental requirement in quantum information processing and in many other areas of science is the capability of precisely controlling a quantum system by preparing a quantum state with the highest fidelity and/or in the fastest possible way. Here we present an experimental investigation of a two level system, characterized by a time-dependent Landau-Zener Hamiltonian, aiming to test general and optimal high-fidelity control protocols. The experiment is based on a Bose-Einstein condensate (BEC) loaded into an optical lattice, then accelerated, which provides a high degree of control over the experimental parameters. We implement generalized Landau-Zener sweeps, comparing them with the well-known linear Landau-Zener sweep. We drive the system from an initial state to a final state with fidelity close to unity in the shortest possible time (quantum brachistochrone), thus reaching the ultimate speed limit imposed by quantum mechanics. On the opposite extreme of the quantum control spectrum, the aim is not to minimize the total transition time but to maximize the adiabaticity during the time-evolution, the system being constrained to the adiabatic ground state at any time. We implement such transitionless superadiabatic protocols by an appropriate transformation of the Hamiltonian parameters. This transformation is general and independent of the physical system.

  9. Statistical Analysis of the Figure of Merit of a Two-Level Thermoelectric System: A Random Matrix Approach

    KAUST Repository

    Abbout, Adel

    2016-08-05

    Using the tools of random matrix theory we develop a statistical analysis of the transport properties of thermoelectric low-dimensional systems made of two electron reservoirs set at different temperatures and chemical potentials, and connected through a low-density-of-states two-level quantum dot that acts as a conducting chaotic cavity. Our exact treatment of the chaotic behavior in such devices lies on the scattering matrix formalism and yields analytical expressions for the joint probability distribution functions of the Seebeck coefficient and the transmission profile, as well as the marginal distributions, at arbitrary Fermi energy. The scattering matrices belong to circular ensembles which we sample to numerically compute the transmission function, the Seebeck coefficient, and their relationship. The exact transport coefficients probability distributions are found to be highly non-Gaussian for small numbers of conduction modes, and the analytical and numerical results are in excellent agreement. The system performance is also studied, and we find that the optimum performance is obtained for half-transparent quantum dots; further, this optimum may be enhanced for systems with few conduction modes.

  10. Statistical Analysis of the Figure of Merit of a Two-Level Thermoelectric System: A Random Matrix Approach

    KAUST Repository

    Abbout, Adel; Ouerdane, Henni; Goupil, Christophe

    2016-01-01

    Using the tools of random matrix theory we develop a statistical analysis of the transport properties of thermoelectric low-dimensional systems made of two electron reservoirs set at different temperatures and chemical potentials, and connected through a low-density-of-states two-level quantum dot that acts as a conducting chaotic cavity. Our exact treatment of the chaotic behavior in such devices lies on the scattering matrix formalism and yields analytical expressions for the joint probability distribution functions of the Seebeck coefficient and the transmission profile, as well as the marginal distributions, at arbitrary Fermi energy. The scattering matrices belong to circular ensembles which we sample to numerically compute the transmission function, the Seebeck coefficient, and their relationship. The exact transport coefficients probability distributions are found to be highly non-Gaussian for small numbers of conduction modes, and the analytical and numerical results are in excellent agreement. The system performance is also studied, and we find that the optimum performance is obtained for half-transparent quantum dots; further, this optimum may be enhanced for systems with few conduction modes.

  11. Groupies in random bipartite graphs

    OpenAIRE

    Yilun Shang

    2010-01-01

    A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.

  12. Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom.

    Science.gov (United States)

    Sohail, Amjad; Zhang, Yang; Zhang, Jun; Yu, Chang-Shui

    2016-06-28

    We analytically study the optomechanically induced transparency (OMIT) in the N-cavity system with the Nth cavity driven by pump, probing laser fields and the 1st cavity coupled to mechanical oscillator. We also consider that one atom could be trapped in the ith cavity. Instead of only illustrating the OMIT in such a system, we are interested in how the number of OMIT windows is influenced by the cavities and the atom and what roles the atom could play in different cavities. In the resolved sideband regime, we find that, the number of cavities precisely determines the maximal number of OMIT windows. It is interesting that, when the two-level atom is trapped in the even-labeled cavity, the central absorptive peak (odd N) or dip (even N) is split and forms an extra OMIT window, but if the atom is trapped in the odd-labeled cavity, the central absorptive peak (odd N) or dip (even N) is only broadened and thus changes the width of the OMIT windows rather than induces an extra window.

  13. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  14. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong

    2011-01-01

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  15. Dissipative two-level system under strong ac driving: A combination of Floquet and Van Vleck perturbation theory

    International Nuclear Information System (INIS)

    Hausinger, Johannes; Grifoni, Milena

    2010-01-01

    We study the dissipative dynamics of a two-level system (TLS) exposed to strong ac driving. By combining Floquet theory with Van Vleck perturbation theory in the TLS tunneling matrix element, we diagonalize the time-dependent Hamiltonian and provide corrections to the renormalized Rabi frequency of the TLS, which are valid for both a biased and unbiased TLS and go beyond the known high-frequency and rotating-wave results. In order to mimic environmental influences on the TLS, we couple the system weakly to a thermal bath and solve analytically the corresponding Floquet-Bloch-Redfield master equation. We give a closed expression for the relaxation and dephasing rates of the TLS and discuss their behavior under variation of the driving amplitude. Further, we examine the robustness of coherent destruction of tunneling (CDT) and driving-induced tunneling oscillations (DITO). We show that also for a moderate driving frequency an almost complete suppression of tunneling can be achieved for short times and demonstrate the sensitiveness of DITO to a change of the external parameters.

  16. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    Science.gov (United States)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of

  17. On the deviation from the sech2 superradiant emission law in a two-level atomic system

    International Nuclear Information System (INIS)

    Goncalves, A.E.

    1990-01-01

    The atomic superradiant emission is treated in the single particle mean field approximation. A single particle Hamiltonian, which represents a dressed two-level atom in a radiation field, can be obtained and it is verified that it describes the transient regime of the emission process. While the line shape emission for a bare atom follows the sech 2 law, for the dressed atom the line shape deviates appreciably from this law and it is verified that the deviation depends crucially on the ratio of the dynamic frequency shift to the transition frequency. This kind of deviation is observed in experimental results. (Author) [pt

  18. Building versatile bipartite probes for quantum metrology

    Science.gov (United States)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  19. Building versatile bipartite probes for quantum metrology

    International Nuclear Information System (INIS)

    Farace, Alessandro; Pasquale, Antonella De; Giovannetti, Vittorio; Adesso, Gerardo

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited. (paper)

  20. Effects of phase memory in spectroscopy of test field of two level system at small frequencies of collisions

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Shalagin, A.M.

    2006-01-01

    One studied theoretically spectrum of absorption (intensification) of a weak sounding field by two-level atoms moving in a strong resonance laser field and colliding with buffer gas atoms. The analysis was performed for the case of small frequencies of collisions in contrast to the Doppler width of absorption line (gas low pressure) with regard to the arbitrary variation of a radiation induced dipole moment phase at elastic collisions of gas particles. The effects of phase memory are found to result in very strong quantitative and qualitative transformation of a test field spectrum even in case of infrequent collisions when the well-known Dike mechanism of manifestation of phase memory effects (elimination of the Doppler widening due to limitation of spatial motion of particles by collisions) does not work. Strong influence of phase memory effects on spectral resonances at gas low pressure results from the fact that phase retaining collisions change dependence on velocity of the partial index of refraction n(v) (index of refraction for particles moving with v velocity) [ru

  1. Quantum physics. The bottom-up approach. From the simple two-level system to irreducible representations

    International Nuclear Information System (INIS)

    Dubbers, Dirk; Stoeckmann, Hans-Juergen

    2013-01-01

    Helps in a compact form to reach good understanding of quantum physics. Shows important analogies between problems across different disciplines. Concise and accurate, written in a readable and lively style. Concentrates on the simplest quantum system which still displays the basic features of quantum theory. Chapters end with a general outlook on multi-level systems. Results are applied to a multitude of topics in modern science, from particle physics and quantum optics to time standards and magnetic resonance imaging. This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This ''quadrature of the circle'' is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time.

  2. Quantum physics the bottom-up approach : from the simple two-level system to irreducible representations

    CERN Document Server

    Dubbers, Dirk

    2013-01-01

    This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This “quadrature of the circle” is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time.

  3. Fractal and multifractal analyses of bipartite networks

    Science.gov (United States)

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  4. Problem of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks

    International Nuclear Information System (INIS)

    Shorikov, A. F.

    2015-01-01

    This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving

  5. Problem of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2015-11-30

    This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving.

  6. No-go theorem for one-way quantum computing on naturally occurring two-level systems

    International Nuclear Information System (INIS)

    Chen Jianxin; Chen Xie; Duan Runyao; Ji Zhengfeng; Zeng Bei

    2011-01-01

    The ground states of some many-body quantum systems can serve as resource states for the one-way quantum computing model, achieving the full power of quantum computation. Such resource states are found, for example, in spin-(5/2) and spin-(3/2) systems. It is, of course, desirable to have a natural resource state in a spin-(1/2), that is, qubit system. Here, we give a negative answer to this question for frustration-free systems with two-body interactions. In fact, it is shown to be impossible for any genuinely entangled qubit state to be a nondegenerate ground state of any two-body frustration-free Hamiltonian. What is more, we also prove that every spin-(1/2) frustration-free Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit states. In other words, there cannot be any interesting entanglement features in the ground state of such a qubit Hamiltonian.

  7. Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load

    Science.gov (United States)

    Jana, Suman; Biswas, Pabitra Kumar; Das, Upama

    2018-04-01

    The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.

  8. Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system

    Science.gov (United States)

    Liu, Zeng-Xing; Xiong, Hao; Wu, Ying

    2018-01-01

    It is quite important to enhance and control the optomechanically induced high-order sideband generation to achieve low-power optical comb and high-sensitivity sensing with an integrable structure. Here we present and analyze a proposal for enhancement and manipulation of optical nonlinearity and high-order sideband generation in a hybrid atom-cavity optomechanical system that is coherently driven by a bichromatic input field consisting of a control field and a probe field and that works beyond the perturbative regime. Our numerical analysis with experimentally achievable parameters confirms that robust high-order sideband generation and typical spectral structures with nonperturbative features can be created even under weak driven fields. The dependence of the high-order sideband generation on the atomic parameters are also discussed in detail, including the decay rate of the atoms and the coupling parameter between the atoms and the cavity field. We show that the cutoff order as well as the amplitude of the higher-order sidebands can be well tuned by the atomic coupling strength and the atomic decay rate. The proposed mechanism of enhancing optical nonlinearity is quite general and can be adopted to optomechanical systems with different types of cavity.

  9. Bridging the Gap Between the Social and the Technical: The Enrolment of Socio-Technical Information Architects to Cope with the Two-Level Model of EPR Systems.

    Science.gov (United States)

    Pedersen, Rune

    2017-01-01

    This is a project proposal derived from an urge to re-define the governance of ICT in healthcare towards regional and national standardization of the patient pathways. The focus is on a two-levelled approach for governing EPR systems where the clinicians' model structured variables and patient pathways. The overall goal is a patient centric EPR portfolio. This paper define and enlighten the need for establishing the socio- technical architect role necessary to obtain the capabilities of a modern structured EPR system. Clinicians are not capable to moderate between the technical and the clinical.

  10. Searching for Communities in Bipartite Networks

    OpenAIRE

    Barber, Michael J.; Faria, Margarida; Streit, Ludwig; Strogan, Oleg

    2008-01-01

    Bipartite networks are a useful tool for representing and investigating interaction networks. We consider methods for identifying communities in bipartite networks. Intuitive notions of network community groups are made explicit using Newman's modularity measure. A specialized version of the modularity, adapted to be appropriate for bipartite networks, is presented; a corresponding algorithm is described for identifying community groups through maximizing this measure. The algorithm is applie...

  11. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms

    Science.gov (United States)

    Wang, Jing; Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui

    2018-06-01

    We investigate the stationary entanglement properties in a hybrid system consisting of an optical cavity, a mechanical resonator, a charged object, and an atomic ensemble. Numerical results show that this hybrid system exhibits three kinds of controllable bipartite entanglements in an experimentally accessible parameter regime with the help of the charged object. More importantly, it is viable to enhance on demand each bipartite entanglement at the expense of reducing others by modulating the Coulomb coupling strength. Last but not least, these bipartite entanglements seem more robust against on the environmental temperature for the positive Coulomb interaction.

  12. Bone-scintigraphy in painful bipartite patella

    International Nuclear Information System (INIS)

    Iossifidis, A.; Brueton, R.N.; Nunan, T.O.

    1995-01-01

    Although, the use of technetium scintigraphy in the assessment of anterior knee pain has been described, no reference has been made to the scintigraphic appearances of painful bipartite patella. We report the scintigraphic-appearances of painful bipartite patella in 25-year-old man a 2 1/2 years history of unexplained patellar pain. Painful bipartite patella is a rare cause of chronic post-traumatic patellar pain. Bone scintigraphy, by demonstrating increased uptake by the painful accessory bipartite fragment, appears to be an imaging method of choice in the diagnosis of this condition. (orig./MG)

  13. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  14. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    Science.gov (United States)

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  15. New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada

    2011-01-01

    We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.

  16. Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie; Illuminati, Fabrizio

    2007-01-01

    Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N≥4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantum correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states

  17. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    Science.gov (United States)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  18. Detecting quantum critical points using bipartite fluctuations.

    Science.gov (United States)

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.

  19. 3-biplacement of bipartite graphs

    Directory of Open Access Journals (Sweden)

    Lech Adamus

    2008-01-01

    Full Text Available Let \\(G=(L,R;E\\ be a bipartite graph with color classes \\(L\\ and \\(R\\ and edge set \\(E\\. A set of two bijections \\(\\{\\varphi_1 , \\varphi_2\\}\\, \\(\\varphi_1 , \\varphi_2 :L \\cup R \\to L \\cup R\\, is said to be a \\(3\\-biplacement of \\(G\\ if \\(\\varphi_1(L= \\varphi_2(L = L\\ and \\(E \\cap \\varphi_1^*(E=\\emptyset\\, \\(E \\cap \\varphi_2^*(E=\\emptyset\\, \\(\\varphi_1^*(E \\cap \\varphi_2^*(E=\\emptyset\\, where \\(\\varphi_1^*\\, \\(\\varphi_2^*\\ are the maps defined on \\(E\\, induced by \\(\\varphi_1\\, \\(\\varphi_2\\, respectively. We prove that if \\(|L| = p\\, \\(|R| = q\\, \\(3 \\leq p \\leq q\\, then every graph \\(G=(L,R;E\\ of size at most \\(p\\ has a \\(3\\-biplacement.

  20. Separable decompositions of bipartite mixed states

    Science.gov (United States)

    Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.

  1. Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks

    International Nuclear Information System (INIS)

    Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo

    2015-01-01

    Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug–target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively

  2. Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks

    Science.gov (United States)

    Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo

    2015-11-01

    Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively

  3. Data transfer using complete bipartite graph

    Science.gov (United States)

    Chandrasekaran, V. M.; Praba, B.; Manimaran, A.; Kailash, G.

    2017-11-01

    Information exchange extent is an estimation of the amount of information sent between two focuses on a framework in a given time period. It is an extremely significant perception in present world. There are many ways of message passing in the present situations. Some of them are through encryption, decryption, by using complete bipartite graph. In this paper, we recommend a method for communication using messages through encryption of a complete bipartite graph.

  4. Comment on "Protecting bipartite entanglement by quantum interferences"

    Science.gov (United States)

    Nair, Anjali N.; Arun, R.

    2018-03-01

    In an interesting article [Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341], Das and Agarwal have discussed the preservation of bipartite entanglement in three-level atoms employing the coherences induced by spontaneous emission. The authors considered various initially entangled qubits prepared from two V -type three-level atoms and showed that more than 50 % of the initial (bipartite) entanglement can be preserved in steady state due to vacuum-induced coherence. In this Comment, we point out that their analytical formulas for the entanglement measure contain errors affecting all the numerical results of that article. We substantiate our claim by giving correct analytical results for the time evolution of the two-atom system.

  5. Anderson localization in bipartite lattices

    International Nuclear Information System (INIS)

    Fabrizio, Michele; Castellani, Claudio

    2000-01-01

    We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely, the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder

  6. Anderson localization in bipartite lattices

    International Nuclear Information System (INIS)

    Fabrizio, M.; Castellani, C.

    2000-04-01

    We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder. (author)

  7. Disentangling bipartite and core-periphery structure in financial networks

    International Nuclear Information System (INIS)

    Barucca, Paolo; Lillo, Fabrizio

    2016-01-01

    A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles—SBM and dcSBM—allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.

  8. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    Science.gov (United States)

    Mehr, Ali Farhang; Tumer, Irem; Barszcz, Eric

    2005-01-01

    Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).

  9. Competition for popularity in bipartite networks

    Science.gov (United States)

    Beguerisse Díaz, Mariano; Porter, Mason A.; Onnela, Jukka-Pekka

    2010-12-01

    We present a dynamical model for rewiring and attachment in bipartite networks. Edges are placed between nodes that belong to catalogs that can either be fixed in size or growing in size. The model is motivated by an empirical study of data from the video rental service Netflix, which invites its users to give ratings to the videos available in its catalog. We find that the distribution of the number of ratings given by users and that of the number of ratings received by videos both follow a power law with an exponential cutoff. We also examine the activity patterns of Netflix users and find bursts of intense video-rating activity followed by long periods of inactivity. We derive ordinary differential equations to model the acquisition of edges by the nodes over time and obtain the corresponding time-dependent degree distributions. We then compare our results with the Netflix data and find good agreement. We conclude with a discussion of how catalog models can be used to study systems in which agents are forced to choose, rate, or prioritize their interactions from a large set of options.

  10. Eigenvalues and expansion of bipartite graphs

    DEFF Research Database (Denmark)

    Høholdt, Tom; Janwa, Heeralal

    2012-01-01

    We prove lower bounds on the largest and second largest eigenvalue of the adjacency matrix of bipartite graphs and give necessary and sufficient conditions for equality. We give several examples of classes that are optimal with respect to the bouns. We prove that BIBD-graphs are characterized by ...

  11. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the ...

  12. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    2016-09-21

    Sep 21, 2016 ... particles on different types of correlations present in bipartite quantum states are investigated. In particular, the ... the focus of research for the last few years. Many re- ..... figures, the qualitative behaviour of all the three types ...

  13. Dynamic Matchings in Convex Bipartite Graphs

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Georgiadis, Loukas; Hansen, Kristoffer Arnsfelt

    2007-01-01

    We consider the problem of maintaining a maximum matching in a convex bipartite graph G = (V,E) under a set of update operations which includes insertions and deletions of vertices and edges. It is not hard to show that it is impossible to maintain an explicit representation of a maximum matching...

  14. Discord as a quantum resource for bi-partite communication

    International Nuclear Information System (INIS)

    Chrzanowski, Helen M.; Assad, Syed M.; Symul, Thomas; Lam, Ping Koy; Gu, Mile; Modi, Kavan; Vedral, Vlatko; Ralph, Timothy C.

    2014-01-01

    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this ‘quantum advantage’

  15. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    Science.gov (United States)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  16. Perioperative management of facial bipartition surgery

    Directory of Open Access Journals (Sweden)

    Caruselli M

    2015-11-01

    Full Text Available Marco Caruselli,1 Michael Tsapis,1,2 Fabrice Ughetto,1 Gregoire Pech-Gourg,3 Dario Galante,4 Olivier Paut1 1Anesthesia and Intensive Care Unit, La Timone Children’s Hospital, 2Pediatric Transport Team, SAMU 13, La Timone Hospital, 3Pediatric Neurosurgery Unit, La Timone Children’s Hospital, Marseille, France; 4Anesthesia and Intensive Care Unit, University Hospital Ospedali Riuniti of Foggia, Foggia, Italy Abstract: Severe craniofacial malformations, such as Crouzon, Apert, Saethre-Chotzen, and Pfeiffer syndromes, are very rare conditions (one in 50,000/100,000 live births that often require corrective surgery. Facial bipartition is the more radical corrective surgery. It is a high-risk intervention and needs complex perioperative management and a multidisciplinary approach. Keywords: craniofacial surgery, facial bipartition surgery, craniofacial malformations, pediatric anesthesia

  17. A two-level voltage source inverter with differentially sinusoidal pulse width modulation used in the interconnection system of a wind turbine generator

    Directory of Open Access Journals (Sweden)

    Alexandros C. Charalampidis

    2014-10-01

    Full Text Available This study analyses an interconnection system based on differentially sinusoidal pulse width modulation, used for the interconnection to the grid of a variable speed wind turbine. The modulation technique used provides specific advantages in comparison with the commonly used sinusoidal pulse width modulation (SPWM technique, such as lower DC bus voltage requirements, smaller switching losses for the same switching frequency as well as less higher harmonic content in the voltage waveforms produced. The respective control system is also described in detail. Thus this study provides a guide enabling the design of any interconnection system based on this modulation technique.

  18. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  19. Development of an integrated model for energy systems planning and carbon dioxide mitigation under uncertainty - Tradeoffs between two-level decision makers.

    Science.gov (United States)

    Jin, S W; Li, Y P; Xu, L P

    2018-07-01

    A bi-level fuzzy programming (BFLP) method was developed for energy systems planning (ESP) and carbon dioxide (CO 2 ) mitigation under uncertainty. BFLP could handle fuzzy information and leader-follower problem in decision-making processes. It could also address the tradeoffs among different decision makers in two decision-making levels through prioritizing the most important goal. Then, a BFLP-ESP model was formulated for planning energy system of Beijing, in which the upper-level objective is to minimize CO 2 emission and the lower-level objective is to minimize the system cost. Results provided a range of decision alternatives that corresponded to a tradeoff between system optimality and reliability under uncertainty. Compared to the single-level model with a target to minimize system cost, the amounts of pollutant/CO 2 emissions from BFLP-ESP were reduced since the study system would prefer more clean energies (i.e. natural gas, LPG and electricity) to replace coal fuel. Decision alternatives from BFLP were more beneficial for supporting Beijing to adjust its energy mix and enact its emission-abatement policy. Results also revealed that the low-carbon policy for power plants (e.g., shutting down all coal-fired power plants) could lead to a potentially increment of imported energy for Beijing, which would increase the risk of energy shortage. The findings could help decision makers analyze the interactions between different stakeholders in ESP and provide useful information for policy design under uncertainty. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Bipartite fidelity and Loschmidt echo of the bosonic conformal interface

    Science.gov (United States)

    Zhou, Tianci; Lin, Mao

    2017-12-01

    We study the quantum quench problem for a class of bosonic conformal interfaces by computing the Loschmidt echo and the bipartite fidelity. The quench can be viewed as a sudden change of boundary conditions parametrized by θ when connecting two one-dimensional critical systems. They are classified by S (θ ) matrices associated with the current scattering processes on the interface. The resulting Loschmidt echo of the quench has long time algebraic decay t-α, whose exponent also appears in the finite size bipartite fidelity as L-α/2. We perform analytic and numerical calculations of the exponent α , and find that it has a quadratic dependence on the change of θ if the prior and post-quench boundary conditions are of the same type of S , while remaining 1/4 otherwise. Possible physical realizations of these interfaces include, for instance, connecting different quantum wires (Luttinger liquids), quench of the topological phase edge states, etc., and the exponent can be detected in an x-ray edge singularity-type experiment.

  1. Uncovering collective listening habits and music genres in bipartite networks

    Science.gov (United States)

    Lambiotte, R.; Ausloos, M.

    2005-12-01

    In this paper, we analyze web-downloaded data on people sharing their music library, that we use as their individual musical signatures. The system is represented by a bipartite network, nodes being the music groups and the listeners. Music groups’ audience size behaves like a power law, but the individual music library size is an exponential with deviations at small values. In order to extract structures from the network, we focus on correlation matrices, that we filter by removing the least correlated links. This percolation idea-based method reveals the emergence of social communities and music genres, that are visualized by a branching representation. Evidence of collective listening habits that do not fit the neat usual genres defined by the music industry indicates an alternative way of classifying listeners and music groups. The structure of the network is also studied by a more refined method, based upon a random walk exploration of its properties. Finally, a personal identification-community imitation model for growing bipartite networks is outlined, following Potts ingredients. Simulation results do reproduce quite well the empirical data.

  2. Upper bounds on entangling rates of bipartite Hamiltonians

    International Nuclear Information System (INIS)

    Bravyi, Sergey

    2007-01-01

    We discuss upper bounds on the rate at which unitary evolution governed by a nonlocal Hamiltonian can generate entanglement in a bipartite system. Given a bipartite Hamiltonian H coupling two finite dimensional particles A and B, the entangling rate is shown to be upper bounded by c log(d) parallel H parallel, where d is the smallest dimension of the interacting particles parallel H parallel is the operator norm of H, and c is a constant close to 1. Under certain restrictions on the initial state we prove an analogous upper bound for the ancilla-assisted entangling rate with a constant c that does not depend upon dimensions of local ancillas. The restriction is that the initial state has at most two distinct Schmidt coefficients (each coefficient may have arbitrarily large multiplicity). Our proof is based on analysis of a mixing rate - a functional measuring how fast entropy can be produced if one mixes a time-independent state with a state evolving unitarily

  3. The Two-Level Theory of verb meaning: An approach to integrating the semantics of action with the mirror neuron system.

    Science.gov (United States)

    Kemmerer, David; Gonzalez-Castillo, Javier

    2010-01-01

    Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the "root". The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the "event structure template". We explore the following hypotheses about how, with specific reference to the motor features of action verbs, these two distinct levels of semantic representation might correspond to two distinct levels of the mirror neuron system. Hypothesis 1: Root-level motor features of verb meaning are partially subserved by somatotopically mapped mirror neurons in the left primary motor and/or premotor cortices. Hypothesis 2: Template-level motor features of verb meaning are partially subserved by representationally more schematic mirror neurons in Brodmann area 44 of the left inferior frontal gyrus. Evidence has been accumulating in support of the general neuroanatomical claims made by these two hypotheses-namely, that each level of verb meaning is associated with the designated cortical areas. However, as yet no studies have satisfied all the criteria necessary to support the more specific neurobiological claims made by the two hypotheses-namely, that each level of verb meaning is associated with mirror neurons in the pertinent brain regions. This would require demonstrating that within those regions the same neuronal populations are engaged during (a) the linguistic processing of particular motor features of verb meaning, (b) the execution of actions with the corresponding motor features, and (c) the observation of actions with the corresponding motor features. 2008 Elsevier Inc. All rights reserved.

  4. A novel community detection method in bipartite networks

    Science.gov (United States)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  5. E6 and the bipartite entanglement of three qutrits

    International Nuclear Information System (INIS)

    Duff, M. J.; Ferrara, S.

    2007-01-01

    Recent investigations have established an analogy between the entropy of four-dimensional supersymmetric black holes in string theory and entanglement in quantum information theory. Examples include: (1) N=2 STU black holes and the tripartite entanglement of three qubits (2-state systems), where the common symmetry is [SL(2)] 3 and (2) N=8 black holes and the tripartite entanglement of seven qubits where the common symmetry is E 7 superset of [SL(2)] 7 . Here we present another example: N=8 black holes (or black strings) in five dimensions and the bipartite entanglement of three qutrits (3-state systems), where the common symmetry is E 6 superset of [SL(3)] 3 . Both the black hole (or black string) entropy and the entanglement measure are provided by the Cartan cubic E 6 invariant. Similar analogies exist for magic N=2 supergravity black holes in both four and five dimensions

  6. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zeren [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); School of Physics, Peking University, Beijing 100871 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  7. Effects of the bipartite structure of a network on performance of recommenders

    Science.gov (United States)

    Wang, Qing-Xian; Li, Jian; Luo, Xin; Xu, Jian-Jun; Shang, Ming-Sheng

    2018-02-01

    Recommender systems aim to predict people's preferences for online items by analyzing their historical behaviors. A recommender can be modeled as a high-dimensional and sparse bipartite network, where the key issue is to understand the relation between the network structure and a recommender's performance. To address this issue, we choose three network characteristics, clustering coefficient, network density and user-item ratio, as the analyzing targets. For the cluster coefficient, we adopt the Degree-preserving rewiring algorithm to obtain a series of bipartite network with varying cluster coefficient, while the degree of user and item keep unchanged. Furthermore, five state-of-the-art recommenders are applied on two real datasets. The performances of recommenders are measured by both numerical and physical metrics. These results show that a recommender's performance is positively related to the clustering coefficient of a bipartite network. Meanwhile, higher density of a bipartite network can provide more accurate but less diverse or novel recommendations. Furthermore, the user-item ratio is positively correlated with the accuracy metrics but negatively correlated with the diverse and novel metrics.

  8. A simple model of bipartite cooperation for ecological and organizational networks.

    Science.gov (United States)

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2009-01-22

    In theoretical ecology, simple stochastic models that satisfy two basic conditions about the distribution of niche values and feeding ranges have proved successful in reproducing the overall structural properties of real food webs, using species richness and connectance as the only input parameters. Recently, more detailed models have incorporated higher levels of constraint in order to reproduce the actual links observed in real food webs. Here, building on previous stochastic models of consumer-resource interactions between species, we propose a highly parsimonious model that can reproduce the overall bipartite structure of cooperative partner-partner interactions, as exemplified by plant-animal mutualistic networks. Our stochastic model of bipartite cooperation uses simple specialization and interaction rules, and only requires three empirical input parameters. We test the bipartite cooperation model on ten large pollination data sets that have been compiled in the literature, and find that it successfully replicates the degree distribution, nestedness and modularity of the empirical networks. These properties are regarded as key to understanding cooperation in mutualistic networks. We also apply our model to an extensive data set of two classes of company engaged in joint production in the garment industry. Using the same metrics, we find that the network of manufacturer-contractor interactions exhibits similar structural patterns to plant-animal pollination networks. This surprising correspondence between ecological and organizational networks suggests that the simple rules of cooperation that generate bipartite networks may be generic, and could prove relevant in many different domains, ranging from biological systems to human society.

  9. Connectivity and Nestedness in Bipartite Networks from Community Ecology

    International Nuclear Information System (INIS)

    Corso, Gilberto; De Araujo, A I Levartoski; De Almeida, Adriana M

    2011-01-01

    Bipartite networks and the nestedness concept appear in two different contexts in theoretical ecology: community ecology and islands biogeography. From a mathematical perspective nestedness is a pattern in a bipartite network. There are several nestedness indices in the market, we used the index ν. The index ν is found using the relation ν = 1 - τ where τ is the temperature of the adjacency matrix of the bipartite network. By its turn τ is defined with help of the Manhattan distance of the occupied elements of the adjacency matrix of the bipartite network. We prove that the nestedness index ν is a function of the connectivities of the bipartite network. In addition we find a concise way to find ν which avoid cumbersome algorithm manupulation of the adjacency matrix.

  10. Connectivity and Nestedness in Bipartite Networks from Community Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Araujo, A I Levartoski [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara Av. Treze de Maio, 2081 - Benfica CEP 60040-531 - Fortaleza, CE (Brazil); De Almeida, Adriana M, E-mail: corso@cb.ufrn.br [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    Bipartite networks and the nestedness concept appear in two different contexts in theoretical ecology: community ecology and islands biogeography. From a mathematical perspective nestedness is a pattern in a bipartite network. There are several nestedness indices in the market, we used the index {nu}. The index {nu} is found using the relation {nu} = 1 - {tau} where {tau} is the temperature of the adjacency matrix of the bipartite network. By its turn {tau} is defined with help of the Manhattan distance of the occupied elements of the adjacency matrix of the bipartite network. We prove that the nestedness index {nu} is a function of the connectivities of the bipartite network. In addition we find a concise way to find {nu} which avoid cumbersome algorithm manupulation of the adjacency matrix.

  11. Clustering coefficient and community structure of bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Jinliang; Li, Xiaojia; Li, Menghui; Di, Zengru; Fan, Ying

    2008-12-01

    Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.

  12. Bipartite entanglement in continuous variable cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2010-11-15

    A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.

  13. Community detection for networks with unipartite and bipartite structure

    Science.gov (United States)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  14. All pure bipartite entangled states can be self-tested

    Science.gov (United States)

    Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio

    2017-05-01

    Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.

  15. Evolution of the field quantum entropy and entanglement in a system of multimode light field interacting resonantly with a two-level atom through N_j-degenerate N~Σ-photon process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by de-generating the multi-photon process is studied by utilizing the Von Neumann re-duced entropy theory,and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field inter-acting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number,the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is,the weaker the entanglement between the quan-tum field and the atom will be,and when the field is strong enough,the two sub-systems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle,namely,the quantum field and the two-level atom are always in the entangled state,and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic dis-tribution angle is,the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.

  16. Bipartite quantum states and random complex networks

    International Nuclear Information System (INIS)

    Garnerone, Silvano; Zanardi, Paolo; Giorda, Paolo

    2012-01-01

    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy S-bar while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling S-bar ∼c log n +g e where both the prefactor c and the sub-leading O(1) term g e are characteristic of the different classes of complex networks. In particular, g e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties. (paper)

  17. Asymptotic adaptive bipartite entanglement-distillation protocol

    International Nuclear Information System (INIS)

    Hostens, Erik; Dehaene, Jeroen; De Moor, Bart

    2006-01-01

    We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states

  18. Catalytic transformations for bipartite pure states

    International Nuclear Information System (INIS)

    Turgut, S

    2007-01-01

    Entanglement catalysis is a phenomenon that usually enhances the conversion probability in the transformation of entangled states by the temporary involvement of another entangled state (so-called catalyst), where after the process is completed the catalyst is returned to the same state. For some pairs of bipartite pure entangled states, catalysis enables a transformation with unit probability of success, in which case the respective Schmidt coefficients of the states are said to satisfy the trumping relation, a mathematical relation which is an extension of the majorization relation. This paper provides all necessary and sufficient conditions for the trumping and two other associated relations. Using these conditions, the least upper bound of conversion probabilities using catalysis is also obtained. Moreover, best conversion ratios achievable with catalysis are found for transformations involving many copies of states

  19. Forbidden regimes in the distribution of bipartite quantum correlations due to multiparty entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dhar, Himadri Shekhar [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, A-1040 Vienna (Austria); Prabhu, R. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Department of Physics, Indian Institute of Technology Patna, Patna 800013 (India); Sen, Aditi [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Sen, Ujjwal, E-mail: ujjwal@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-05-25

    Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipartite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system. - Highlights: • Monogamy is an intrinsic property of several quantum characteristics including entanglement. • It is possible to quantify monogamy by using the so-called monogamy scores. • Genuine multisite entanglement can be used to bound monogamy scores. • Distribution of bipartite entanglement in a system is, therefore, restricted by its multisite entanglement content.

  20. Phase-controlled localization and directed transport in an optical bipartite lattice.

    Science.gov (United States)

    Hai, Kuo; Luo, Yunrong; Lu, Gengbiao; Hai, Wenhua

    2014-02-24

    We investigate coherent control of a single atom interacting with an optical bipartite lattice via a combined high-frequency modulation. Our analytical results show that the quantum tunneling and dynamical localization can depend on phase difference between the modulation components, which leads to a different route for the coherent destruction of tunneling and a convenient phase-control method for stabilizing the system to implement the directed transport of atom. The similar directed transport and the phase-controlled quantum transition are revealed for the corresponding many-particle system. The results can be referable for experimentally manipulating quantum transport and transition of cold atoms in the tilted and shaken optical bipartite lattice or of analogical optical two-mode quantum beam splitter, and also can be extended to other optical and solid-state systems.

  1. Asymmetric intimacy and algorithm for detecting communities in bipartite networks

    Science.gov (United States)

    Wang, Xingyuan; Qin, Xiaomeng

    2016-11-01

    In this paper, an algorithm to choose a good partition in bipartite networks has been proposed. Bipartite networks have more theoretical significance and broader prospect of application. In view of distinctive structure of bipartite networks, in our method, two parameters are defined to show the relationships between the same type nodes and heterogeneous nodes respectively. Moreover, our algorithm employs a new method of finding and expanding the core communities in bipartite networks. Two kinds of nodes are handled separately and merged, and then the sub-communities are obtained. After that, objective communities will be found according to the merging rule. The proposed algorithm has been simulated in real-world networks and artificial networks, and the result verifies the accuracy and reliability of the parameters on intimacy for our algorithm. Eventually, comparisons with similar algorithms depict that the proposed algorithm has better performance.

  2. A general evolving model for growing bipartite networks

    International Nuclear Information System (INIS)

    Tian, Lixin; He, Yinghuan; Liu, Haijun; Du, Ruijin

    2012-01-01

    In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results. -- Highlights: ► We proposed a general evolving bipartite network model which was based on priority connection, reconnection and breaking edges. ► We prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. ► The joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. ► The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks.

  3. Effect of Bipartite Hallucal Sesamoid on Hallux Valgus Surgery.

    Science.gov (United States)

    Park, Young Hwan; Jeong, Chan Dong; Choi, Gi Won; Kim, Hak Jun

    2017-06-01

    Bipartite hallucal sesamoids are often found in patients with hallux valgus. However, it is unknown whether bipartite hallucal sesamoids affect the results of hallux valgus surgery or not. The purpose of the present study was to evaluate the outcomes of chevron osteotomy for hallux valgus with and without bipartite hallucal sesamoid. A total of 152 patients (168 feet) treated with distal or proximal chevron osteotomy for hallux valgus constituted the study cohort. The 168 feet were divided into 2 groups: bipartite hallucal sesamoid (31 feet) and without bipartite hallucal sesamoid (137 feet). Hallux valgus angle (HVA), intermetatarsal angle (IMA), distal metatarsal articular angle (DMAA), tibial sesamoid position, and first metatarsal length were measured for radiographic outcomes and the American Orthopaedic Foot & Ankle Society (AOFAS) hallux metatarsophalangeal-interphalangeal (MTP-IP) score was measured for clinical outcomes. All radiographic measurements and the AOFAS score showed significant ( P .05) were found between the 2 groups in terms of HVA, IMA, DMAA, tibial sesamoid position, metatarsal shortening, and AOFAS score on final follow-up. This study suggests that bipartite hallucal sesamoids do not affect the results of hallux valgus surgery. Level III, retrospective comparative study.

  4. Two-Level Semantics and Code Generation

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    1988-01-01

    A two-level denotational metalanguage that is suitable for defining the semantics of Pascal-like languages is presented. The two levels allow for an explicit distinction between computations taking place at compile-time and computations taking place at run-time. While this distinction is perhaps...... not absolutely necessary for describing the input-output semantics of programming languages, it is necessary when issues such as data flow analysis and code generation are considered. For an example stack-machine, the authors show how to generate code for the run-time computations and still perform the compile...

  5. SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking

    Science.gov (United States)

    Shams, Bita; Haratizadeh, Saman

    2016-09-01

    Collaborative ranking is an emerging field of recommender systems that utilizes users' preference data rather than rating values. Unfortunately, neighbor-based collaborative ranking has gained little attention despite its more flexibility and justifiability. This paper proposes a novel framework, called SibRank that seeks to improve the state of the art neighbor-based collaborative ranking methods. SibRank represents users' preferences as a signed bipartite network, and finds similar users, through a novel personalized ranking algorithm in signed networks.

  6. iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection

    OpenAIRE

    Hu, Jinlong; Liang, Junjie; Dong, Shoubin

    2017-01-01

    Online mobile advertising plays a vital financial role in supporting free mobile apps, but detecting malicious apps publishers who generate fraudulent actions on the advertisements hosted on their apps is difficult, since fraudulent traffic often mimics behaviors of legitimate users and evolves rapidly. In this paper, we propose a novel bipartite graph-based propagation approach, iBGP, for mobile apps advertising fraud detection in large advertising system. We exploit the characteristics of m...

  7. Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    Science.gov (United States)

    van Dam, Wim; Howard, Mark

    2011-07-01

    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiołkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.

  8. Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    International Nuclear Information System (INIS)

    Dam, Wim van; Howard, Mark

    2011-01-01

    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.

  9. Bipartite Community Structure of eQTLs.

    Science.gov (United States)

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  10. Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks

    Science.gov (United States)

    Squartini, Tiziano; Almog, Assaf; Caldarelli, Guido; van Lelyveld, Iman; Garlaschelli, Diego; Cimini, Giulio

    2017-09-01

    Reconstructing patterns of interconnections from partial information is one of the most important issues in the statistical physics of complex networks. A paramount example is provided by financial networks. In fact, the spreading and amplification of financial distress in capital markets are strongly affected by the interconnections among financial institutions. Yet, while the aggregate balance sheets of institutions are publicly disclosed, information on single positions is mostly confidential and, as such, unavailable. Standard approaches to reconstruct the network of financial interconnection produce unrealistically dense topologies, leading to a biased estimation of systemic risk. Moreover, reconstruction techniques are generally designed for monopartite networks of bilateral exposures between financial institutions, thus failing in reproducing bipartite networks of security holdings (e.g., investment portfolios). Here we propose a reconstruction method based on constrained entropy maximization, tailored for bipartite financial networks. Such a procedure enhances the traditional capital-asset pricing model (CAPM) and allows us to reproduce the correct topology of the network. We test this enhanced CAPM (ECAPM) method on a dataset, collected by the European Central Bank, of detailed security holdings of European institutional sectors over a period of six years (2009-2015). Our approach outperforms the traditional CAPM and the recently proposed maximum-entropy CAPM both in reproducing the network topology and in estimating systemic risk due to fire sales spillovers. In general, ECAPM can be applied to the whole class of weighted bipartite networks described by the fitness model.

  11. Inferring monopartite projections of bipartite networks: an entropy-based approach

    Science.gov (United States)

    Saracco, Fabio; Straka, Mika J.; Di Clemente, Riccardo; Gabrielli, Andrea; Caldarelli, Guido; Squartini, Tiziano

    2017-05-01

    Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users’ ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.

  12. Information Filtering via Clustering Coefficients of User-Object Bipartite Networks

    Science.gov (United States)

    Guo, Qiang; Leng, Rui; Shi, Kerui; Liu, Jian-Guo

    The clustering coefficient of user-object bipartite networks is presented to evaluate the overlap percentage of neighbors rating lists, which could be used to measure interest correlations among neighbor sets. The collaborative filtering (CF) information filtering algorithm evaluates a given user's interests in terms of his/her friends' opinions, which has become one of the most successful technologies for recommender systems. In this paper, different from the object clustering coefficient, users' clustering coefficients of user-object bipartite networks are introduced to improve the user similarity measurement. Numerical results for MovieLens and Netflix data sets show that users' clustering effects could enhance the algorithm performance. For MovieLens data set, the algorithmic accuracy, measured by the average ranking score, can be improved by 12.0% and the diversity could be improved by 18.2% and reach 0.649 when the recommendation list equals to 50. For Netflix data set, the accuracy could be improved by 14.5% at the optimal case and the popularity could be reduced by 13.4% comparing with the standard CF algorithm. Finally, we investigate the sparsity effect on the performance. This work indicates the user clustering coefficients is an effective factor to measure the user similarity, meanwhile statistical properties of user-object bipartite networks should be investigated to estimate users' tastes.

  13. Two-level convolution formula for nuclear structure function

    Science.gov (United States)

    Ma, Boqiang

    1990-05-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.

  14. Two-level convolution formula for nuclear structure function

    International Nuclear Information System (INIS)

    Ma Boqiang

    1990-01-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions

  15. Identifying online user reputation of user-object bipartite networks

    Science.gov (United States)

    Liu, Xiao-Lu; Liu, Jian-Guo; Yang, Kai; Guo, Qiang; Han, Jing-Ti

    2017-02-01

    Identifying online user reputation based on the rating information of the user-object bipartite networks is important for understanding online user collective behaviors. Based on the Bayesian analysis, we present a parameter-free algorithm for ranking online user reputation, where the user reputation is calculated based on the probability that their ratings are consistent with the main part of all user opinions. The experimental results show that the AUC values of the presented algorithm could reach 0.8929 and 0.8483 for the MovieLens and Netflix data sets, respectively, which is better than the results generated by the CR and IARR methods. Furthermore, the experimental results for different user groups indicate that the presented algorithm outperforms the iterative ranking methods in both ranking accuracy and computation complexity. Moreover, the results for the synthetic networks show that the computation complexity of the presented algorithm is a linear function of the network size, which suggests that the presented algorithm is very effective and efficient for the large scale dynamic online systems.

  16. The Random Walk Model Based on Bipartite Network

    Directory of Open Access Journals (Sweden)

    Zhang Man-Dun

    2016-01-01

    Full Text Available With the continuing development of the electronic commerce and growth of network information, there is a growing possibility for citizens to be confused by the information. Though the traditional technology of information retrieval have the ability to relieve the overload of information in some extent, it can not offer a targeted personality service based on user’s interests and activities. In this context, the recommendation algorithm arose. In this paper, on the basis of conventional recommendation, we studied the scheme of random walk based on bipartite network and the application of it. We put forward a similarity measurement based on implicit feedback. In this method, a uneven character vector is imported(the weight of item in the system. We put forward a improved random walk pattern which make use of partial or incomplete neighbor information to create recommendation information. In the end, there is an experiment in the real data set, the recommendation accuracy and practicality are improved. We promise the reality of the result of the experiment

  17. A Partial Order on Bipartite Graphs with n Vertices

    Directory of Open Access Journals (Sweden)

    Emil Daniel Schwab

    2009-01-01

    Full Text Available The paper examines a partial order on bipartite graphs (X1, X2, E with n vertices, X1∪X2={1,2,…,n}. The basis of such bipartite graph is X1 = {1,2,…,k}, 0≤k≤n. If U = (X1, X2, E(U and V = (Y1,Y2, E(V then U≤V iff |X1| ≤ |Y1| and {(i,jE(U: j>|Y1|} = ={(i,jE(V:i≤|X1|}. This partial order is a natural partial order of subobjects of an object in a triangular category with bipartite graphs as morphisms.

  18. Localization in random bipartite graphs: Numerical and empirical study

    Science.gov (United States)

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  19. Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition

    Directory of Open Access Journals (Sweden)

    Marek T. Malinowski

    2016-01-01

    Full Text Available We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.

  20. Forbidden regimes in the distribution of bipartite quantum correlations due to multiparty entanglement

    Science.gov (United States)

    Kumar, Asutosh; Dhar, Himadri Shekhar; Prabhu, R.; Sen(De), Aditi; Sen, Ujjwal

    2017-05-01

    Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipartite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system.

  1. Schur complements of matrices with acyclic bipartite graphs

    DEFF Research Database (Denmark)

    Britz, Thomas Johann; Olesky, D.D.; van den Driessche, P.

    2005-01-01

    Bipartite graphs are used to describe the generalized Schur complements of real matrices having nos quare submatrix with two or more nonzero diagonals. For any matrix A with this property, including any nearly reducible matrix, the sign pattern of each generalized Schur complement is shown to be ...

  2. Controlled teleportation of a 3-dimensional bipartite quantum state

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state

  3. A bipartite fitness model for online music streaming services

    Science.gov (United States)

    Pongnumkul, Suchit; Motohashi, Kazuyuki

    2018-01-01

    This paper proposes an evolution model and an analysis of the behavior of music consumers on online music streaming services. While previous studies have observed power-law degree distributions of usage in online music streaming services, the underlying behavior of users has not been well understood. Users and songs can be described using a bipartite network where an edge exists between a user node and a song node when the user has listened that song. The growth mechanism of bipartite networks has been used to understand the evolution of online bipartite networks Zhang et al. (2013). Existing bipartite models are based on a preferential attachment mechanism László Barabási and Albert (1999) in which the probability that a user listens to a song is proportional to its current popularity. This mechanism does not allow for two types of real world phenomena. First, a newly released song with high quality sometimes quickly gains popularity. Second, the popularity of songs normally decreases as time goes by. Therefore, this paper proposes a new model that is more suitable for online music services by adding fitness and aging functions to the song nodes of the bipartite network proposed by Zhang et al. (2013). Theoretical analyses are performed for the degree distribution of songs. Empirical data from an online streaming service, Last.fm, are used to confirm the degree distribution of the object nodes. Simulation results show improvements from a previous model. Finally, to illustrate the application of the proposed model, a simplified royalty cost model for online music services is used to demonstrate how the changes in the proposed parameters can affect the costs for online music streaming providers. Managerial implications are also discussed.

  4. Memory Effects in the Two-Level Model for Glasses

    Science.gov (United States)

    Aquino, Gerardo; Allahverdyan, Armen; Nieuwenhuizen, Theo M.

    2008-07-01

    We study an ensemble of two-level systems interacting with a thermal bath. This is a well-known model for glasses. The origin of memory effects in this model is a quasistationary but nonequilibrium state of a single two-level system, which is realized due to a finite-rate cooling and slow thermally activated relaxation. We show that single-particle memory effects, such as negativity of the specific heat under reheating, vanish for a sufficiently disordered ensemble. In contrast, a disordered ensemble displays a collective memory effect [similar to the Kovacs effect], where nonequilibrium features of the ensemble are monitored via a macroscopic observable. An experimental realization of the effect can be used to further assess the consistency of the model.

  5. Emergent bipartiteness in a society of knights and knaves

    International Nuclear Information System (INIS)

    Del Genio, C I; Gross, T

    2011-01-01

    We propose a simple model of a social network based on the so-called knights-and-knaves puzzles. The model describes the formation of networks between two classes of agents where links are formed by agents introducing their neighbors to others of their own class. We show that if the proportion of knights and knaves is within a certain range, the network self-organizes to a perfectly bipartite state. However, if the excess of one of the two classes is greater than a threshold value, bipartiteness is not observed. We offer a detailed theoretical analysis of the behavior of the model, investigate its behavior in the thermodynamic limit and argue that it provides a simple example of a topology-driven model whose behavior is strongly reminiscent of first-order phase transitions far from equilibrium. (paper)

  6. Bipartite separability and nonlocal quantum operations on graphs

    Science.gov (United States)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  7. Quantumness of bipartite states in terms of conditional entropies

    International Nuclear Information System (INIS)

    Li, Nan; Luo, Shunlong; Zhang, Zhengmin

    2007-01-01

    Quantum discord, as defined by Olliver and Zurek (2002 Phys. Rev. Lett. 88 017901) as the difference of two natural quantum extensions of the classical mutual information, plays an interesting role in characterizing quantumness of correlations. Inspired by this idea, we will study quantumness of bipartite states arising from different quantum analogs of the classical conditional entropy. Our approach is intrinsic, in contrast to the Olliver-Zurek method that involves extrinsic local measurements. For this purpose, we introduce two alternative variants of quantum conditional entropies via conditional density operators, which in turn are intuitive quantum extensions of equivalent classical expressions for the conditional probability. The significance of these quantum conditional entropies in characterizing quantumness of bipartite states is illustrated through several examples

  8. A mathematical model for generating bipartite graphs and its application to protein networks

    Science.gov (United States)

    Nacher, J. C.; Ochiai, T.; Hayashida, M.; Akutsu, T.

    2009-12-01

    Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.

  9. A mathematical model for generating bipartite graphs and its application to protein networks

    Energy Technology Data Exchange (ETDEWEB)

    Nacher, J C [Department of Complex Systems, Future University-Hakodate (Japan); Ochiai, T [Faculty of Engineering, Toyama Prefectural University (Japan); Hayashida, M; Akutsu, T [Bioinformatics Center, Institute for Chemical Research, Kyoto University (Japan)

    2009-12-04

    Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.

  10. A mathematical model for generating bipartite graphs and its application to protein networks

    International Nuclear Information System (INIS)

    Nacher, J C; Ochiai, T; Hayashida, M; Akutsu, T

    2009-01-01

    Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.

  11. Complexity of Products of Some Complete and Complete Bipartite Graphs

    Directory of Open Access Journals (Sweden)

    S. N. Daoud

    2013-01-01

    Full Text Available The number of spanning trees in graphs (networks is an important invariant; it is also an important measure of reliability of a network. In this paper, we derive simple formulas of the complexity, number of spanning trees, of products of some complete and complete bipartite graphs such as cartesian product, normal product, composition product, tensor product, and symmetric product, using linear algebra and matrix analysis techniques.

  12. One-sided interval edge-colorings of bipartite graphs

    DEFF Research Database (Denmark)

    Casselgren, Carl Johan; Toft, Bjarne

    2016-01-01

    Let G be a bipartite graph with parts X and Y . An X-interval coloring of G is a proper edge coloring of G by integers such that the colors on the edges incident to any vertex in X form an interval. Denote by χ′int(G,X) the minimum k such that G has an X-interval coloring with k colors. In this p...

  13. Introduction into bi-partite networks in python

    OpenAIRE

    Kasberger, Stefan

    2016-01-01

    This essay and the related computation delivers a comprehensive introduction into the concept of bipartite networks, a class of networks whose nodes are divided into two sets and only the connection between two nodes in different sets is allowed (Easley and Kleinberg, 2010). The analysis and visualization is done in the programming language Python and offers easy to understand first steps in both fields, network analyses and python programming. As data a collaboration network of github users ...

  14. Correlation/Communication complexity of generating bipartite states

    OpenAIRE

    Jain, Rahul; Shi, Yaoyun; Wei, Zhaohui; Zhang, Shengyu

    2012-01-01

    We study the correlation complexity (or equivalently, the communication complexity) of generating a bipartite quantum state $\\rho$. When $\\rho$ is a pure state, we completely characterize the complexity for approximately generating $\\rho$ by a corresponding approximate rank, closing a gap left in Ambainis, Schulman, Ta-Shma, Vazirani and Wigderson (SIAM Journal on Computing, 32(6):1570-1585, 2003). When $\\rho$ is a classical distribution $P(x,y)$, we tightly characterize the complexity of gen...

  15. Tripartite to Bipartite Entanglement Transformations and Polynomial Identity Testing

    OpenAIRE

    Chitambar, Eric; Duan, Runyao; Shi, Yaoyun

    2009-01-01

    We consider the problem of deciding if a given three-party entangled pure state can be converted, with a non-zero success probability, into a given two-party pure state through local quantum operations and classical communication. We show that this question is equivalent to the well-known computational problem of deciding if a multivariate polynomial is identically zero. Efficient randomized algorithms developed to study the latter can thus be applied to the question of tripartite to bipartit...

  16. Grand canonical validation of the bipartite international trade network

    Science.gov (United States)

    Straka, Mika J.; Caldarelli, Guido; Saracco, Fabio

    2017-08-01

    Devising strategies for economic development in a globally competitive landscape requires a solid and unbiased understanding of countries' technological advancements and similarities among export products. Both can be addressed through the bipartite representation of the International Trade Network. In this paper, we apply the recently proposed grand canonical projection algorithm to uncover country and product communities. Contrary to past endeavors, our methodology, based on information theory, creates monopartite projections in an unbiased and analytically tractable way. Single links between countries or products represent statistically significant signals, which are not accounted for by null models such as the bipartite configuration model. We find stable country communities reflecting the socioeconomic distinction in developed, newly industrialized, and developing countries. Furthermore, we observe product clusters based on the aforementioned country groups. Our analysis reveals the existence of a complicated structure in the bipartite International Trade Network: apart from the diversification of export baskets from the most basic to the most exclusive products, we observe a statistically significant signal of an export specialization mechanism towards more sophisticated products.

  17. Grand canonical validation of the bipartite international trade network.

    Science.gov (United States)

    Straka, Mika J; Caldarelli, Guido; Saracco, Fabio

    2017-08-01

    Devising strategies for economic development in a globally competitive landscape requires a solid and unbiased understanding of countries' technological advancements and similarities among export products. Both can be addressed through the bipartite representation of the International Trade Network. In this paper, we apply the recently proposed grand canonical projection algorithm to uncover country and product communities. Contrary to past endeavors, our methodology, based on information theory, creates monopartite projections in an unbiased and analytically tractable way. Single links between countries or products represent statistically significant signals, which are not accounted for by null models such as the bipartite configuration model. We find stable country communities reflecting the socioeconomic distinction in developed, newly industrialized, and developing countries. Furthermore, we observe product clusters based on the aforementioned country groups. Our analysis reveals the existence of a complicated structure in the bipartite International Trade Network: apart from the diversification of export baskets from the most basic to the most exclusive products, we observe a statistically significant signal of an export specialization mechanism towards more sophisticated products.

  18. Bipartite Diametrical Graphs of Diameter 4 and Extreme Orders

    Directory of Open Access Journals (Sweden)

    Salah Al-Addasi

    2008-01-01

    in which this upper bound is attained, this graph can be viewed as a generalization of the Rhombic Dodecahedron. Then we show that for any ≥2, the graph (2,2 is the unique (up to isomorphism bipartite diametrical graph of diameter 4 and partite sets of cardinalities 2 and 2, and hence in particular, for =3, the graph (6,8 which is just the Rhombic Dodecahedron is the unique (up to isomorphism bipartite diametrical graph of such a diameter and cardinalities of partite sets. Thus we complete a characterization of -graphs of diameter 4 and cardinality of the smaller partite set not exceeding 6. We prove that the neighborhoods of vertices of the larger partite set of (2,2 form a matroid whose basis graph is the hypercube . We prove that any -graph of diameter 4 is bipartite self complementary, thus in particular (2,2. Finally, we study some additional properties of (2,2 concerning the order of its automorphism group, girth, domination number, and when being Eulerian.

  19. Induced bipartite entanglement from three qubit states and quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck [Kyungnam University, Masan (Korea, Republic of)

    2010-06-15

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  20. Induced bipartite entanglement from three qubit states and quantum teleportation

    International Nuclear Information System (INIS)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck

    2010-01-01

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  1. Bipartite field theories: from D-brane probes to scattering amplitudes

    Science.gov (United States)

    Franco, Sebastián

    2012-11-01

    We introduce and initiate the investigation of a general class of 4d, {N}=1 quiver gauge theories whose Lagrangian is defined by a bipartite graph on a Riemann surface, with or without boundaries. We refer to such class of theories as Bipartite Field Theories (BFTs). BFTs underlie a wide spectrum of interesting physical systems, including: D3-branes probing toric Calabi-Yau 3-folds, their mirror configurations of D6-branes, cluster integrable systems in (0 + 1) dimensions and leading singularities in scattering amplitudes for {N}=4 SYM. While our discussion is fully general, we focus on models that are relevant for scattering amplitudes. We investigate the BFT perspective on graph modifications, the emergence of Calabi-Yau manifolds (which arise as the master and moduli spaces of BFTs), the translation between square moves in the graph and Seiberg duality and the identification of dual theories by means of the underlying Calabi-Yaus, the phenomenon of loop reduction and the interpretation of the boundary operator for cells in the positive Grassmannian as higgsing in the BFT. We develop a technique based on generalized Kasteleyn matrices that permits an efficient determination of the Calabi-Yau geometries associated to arbitrary graphs. Our techniques allow us to go beyond the planar limit by both increasing the number of boundaries of the graphs and the genus of the underlying Riemann surface. Our investigation suggests a central role for Calabi-Yau manifolds in the context of leading singularities, whose full scope is yet to be uncovered.

  2. iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection

    Directory of Open Access Journals (Sweden)

    Jinlong Hu

    2017-01-01

    Full Text Available Online mobile advertising plays a vital financial role in supporting free mobile apps, but detecting malicious apps publishers who generate fraudulent actions on the advertisements hosted on their apps is difficult, since fraudulent traffic often mimics behaviors of legitimate users and evolves rapidly. In this paper, we propose a novel bipartite graph-based propagation approach, iBGP, for mobile apps advertising fraud detection in large advertising system. We exploit the characteristics of mobile advertising user’s behavior and identify two persistent patterns: power law distribution and pertinence and propose an automatic initial score learning algorithm to formulate both concepts to learn the initial scores of non-seed nodes. We propose a weighted graph propagation algorithm to propagate the scores of all nodes in the user-app bipartite graphs until convergence. To extend our approach for large-scale settings, we decompose the objective function of the initial score learning model into separate one-dimensional problems and parallelize the whole approach on an Apache Spark cluster. iBGP was applied on a large synthetic dataset and a large real-world mobile advertising dataset; experiment results demonstrate that iBGP significantly outperforms other popular graph-based propagation methods.

  3. Bipartite discrimination of independently prepared quantum states as a counterexample to a parallel repetition conjecture

    Science.gov (United States)

    Akibue, Seiseki; Kato, Go

    2018-04-01

    For distinguishing quantum states sampled from a fixed ensemble, the gap in bipartite and single-party distinguishability can be interpreted as a nonlocality of the ensemble. In this paper, we consider bipartite state discrimination in a composite system consisting of N subsystems, where each subsystem is shared between two parties and the state of each subsystem is randomly sampled from a particular ensemble comprising the Bell states. We show that the success probability of perfectly identifying the state converges to 1 as N →∞ if the entropy of the probability distribution associated with the ensemble is less than 1, even if the success probability is less than 1 for any finite N . In other words, the nonlocality of the N -fold ensemble asymptotically disappears if the probability distribution associated with each ensemble is concentrated. Furthermore, we show that the disappearance of the nonlocality can be regarded as a remarkable counterexample of a fundamental open question in theoretical computer science, called a parallel repetition conjecture of interactive games with two classically communicating players. Measurements for the discrimination task include a projective measurement of one party represented by stabilizer states, which enable the other party to perfectly distinguish states that are sampled with high probability.

  4. Two-level modelling of real estate taxtation

    DEFF Research Database (Denmark)

    Gall, Jaroslav; Stubkjær, Erik

    2006-01-01

    Real estate taxes recurrently attract attention, because they are a source of potentially increased revenue for local and national government. Most experts agree that it is necessary to switch from using normative values for taxation to a market-value-based taxation of real property with computer......-assisted mass valuation, witch benefit from use of value maps. In Czech Republic, efforts have been made to adopt current tax policy goals, but improvements are still needed. The paper aims at supporting the current improvement process towards a market based system. It presents models, which describe aspects...... of the present Czech property tax system. A proposal for the future system focuses on the value map component. The described change depends on political involvement. This political activity is modelled as well. The hypothesis is that the two-level modelling effort enhances the change process by providing...

  5. Statistical Mechanics of a Simplified Bipartite Matching Problem: An Analytical Treatment

    Science.gov (United States)

    Dell'Erba, Matías Germán

    2012-03-01

    We perform an analytical study of a simplified bipartite matching problem in which there exists a constant matching energy, and both heterosexual and homosexual pairings are allowed. We obtain the partition function in a closed analytical form and we calculate the corresponding thermodynamic functions of this model. We conclude that the model is favored at high temperatures, for which the probabilities of heterosexual and homosexual pairs tend to become equal. In the limits of low and high temperatures, the system is extensive, however this property is lost in the general case. There exists a relation between the matching energies for which the system becomes more stable under external (thermal) perturbations. As the difference of energies between the two possible matches increases the system becomes more ordered, while the maximum of entropy is achieved when these energies are equal. In this limit, there is a first order phase transition between two phases with constant entropy.

  6. Multipartite-to-bipartite entanglement transformations and polynomial identity testing

    International Nuclear Information System (INIS)

    Chitambar, Eric; Duan Runyao; Shi Yaoyun

    2010-01-01

    We consider the problem of deciding if some multiparty entangled pure state can be converted, with a nonzero success probability, into a given bipartite pure state shared between two specified parties through local quantum operations and classical communication. We show that this question is equivalent to the well-known computational problem of deciding if a multivariate polynomial is identically zero. Efficient randomized algorithms developed to study the latter can thus be applied to our question. As a result, a given transformation is possible if and only if it is generically attainable by a simple randomized protocol.

  7. Quantum control on entangled bipartite qubits

    International Nuclear Information System (INIS)

    Delgado, Francisco

    2010-01-01

    Ising interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e.g., for quantum computation or quantum cryptography). The presence of parasite magnetic fields destroys or alters the expected behavior for which it was intended. In addition, these pairs are generated with some dispersion in their original configuration, so their discrimination is necessary for applications. Nevertheless, discrimination should be made after Ising distortion. Quantum control helps in both problems; making some projective measurements upon the pair to decide the original state to replace it, or just trying to reconstruct it using some procedures which do not alter their quantum nature. Results about the performance of these procedures are reported. First, we will work with pure systems studying restrictions and advantages. Then, we will extend these operations for mixed states generated with uncertainty in the time of distortion, correcting them by assuming the control prescriptions for the most probable one.

  8. Traumatic separation of a type I patella bipartite in a sportsman

    DEFF Research Database (Denmark)

    Ottesen, Casper Smedegaard; Barfod, Kristoffer Weisskirchner; Holck, Kim

    2014-01-01

    fibrocartilage was found on both parts of the patella. Asymptomatic patella bi-partite was found on X-ray imaging of the patient's left knee, and he was diagnosed to have traumatic separation of a type I patella bipartite. The diagnosis was confirmed by surgical and radiological findings....

  9. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Zhang, Guo-Feng, E-mail: gf1978zhang@buaa.edu.cn [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Software Development Environment, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 (China)

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  10. Quantum teleportation via noisy bipartite and tripartite accelerating quantum states: beyond the single mode approximation

    Science.gov (United States)

    Zounia, M.; Shamirzaie, M.; Ashouri, A.

    2017-09-01

    In this paper quantum teleportation of an unknown quantum state via noisy maximally bipartite (Bell) and maximally tripartite (Greenberger-Horne-Zeilinger (GHZ)) entangled states are investigated. We suppose that one of the observers who would receive the sent state accelerates uniformly with respect to the sender. The interactions of the quantum system with its environment during the teleportation process impose noises. These (unital and nonunital) noises are: phase damping, phase flip, amplitude damping and bit flip. In expressing the modes of the Dirac field used as qubits, in the accelerating frame, the so-called single mode approximation is not imposed. We calculate the fidelities of teleportation, and discuss their behaviors using suitable plots. The effects of noise, acceleration and going beyond the single mode approximation are discussed. Although the Bell states bring higher fidelities than GHZ states, the global behaviors of the two quantum systems with respect to some noise types, and therefore their fidelities, are different.

  11. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  12. Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers

    Science.gov (United States)

    Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille

    This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.

  13. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-01-01

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  14. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Bougouffa, Smail [Department of Physics, Faculty of Science, Taibah University, PO Box 30002, Madinah (Saudi Arabia)

    2010-02-14

    We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.

  15. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail; Bougouffa, Smail

    2010-01-01

    We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.

  16. Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks

    Science.gov (United States)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2018-05-01

    Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.

  17. Bipartite Networks of Universities and Companies: Recruiting New Graduates in Japan

    Science.gov (United States)

    Takahashi, Katsuhide; Kobayashi, Yuh; Kondo, Yohei; Takayasu, Hideki; Takayasu, Misako

    We investigated the bipartite Universities-Companies Network in Japan in terms of companies' recruitment of new graduates. In Japan, graduates of universities are typically hired by companies upon their graduation. To examine socially accepted ideas about this recruiting system, we combined different types of data on education, recruitment and corporate finance. The hypothesis that graduates from prestigious universities have the advantage of entering excellent companies was verified by examining the determinants of ratio of graduates entering top-ranked companies. Through hierarchical clustering, we obtained classification trees and observed the stability of their structure, as well as interesting changes corresponding to the business climate. We also calculated weighted HITS hub and authority values for each university and company and identified the links between the results of this analysis and those above. Finally, analysis of all the data indicated that excellent companies recruiting many graduates from prestigious universities do not necessarily show superb performance in profit-making and growth.

  18. Rendezvous effects in the diffusion process on bipartite metapopulation networks.

    Science.gov (United States)

    Cao, Lang; Li, Xun; Wang, Bing; Aihara, Kazuyuki

    2011-10-01

    Epidemic outbreaks have been shown to be closely related to the rendezvous-induced transmission of infection, which is caused by casual contact with infected individuals in public gatherings. To investigate rendezvous effects in the spread of infectious diseases, we propose an epidemic model on metapopulation networks bipartite-divided into two sets of location and rendezvous nodes. At a given transition rate γ(kk')(p), each individual transfers from location k to rendezvous p (where rendezvous-induced disease incidence occurs) and thereafter moves to location k'. We find that the eigenstructure of a transition-rate-dependent matrix determines the epidemic threshold condition. Both analytical and numerical results show that rendezvous-induced transmission accelerates the progress of infectious diseases, implying the significance of outbreak control measures including prevention of public gatherings or decentralization of a large-scale rendezvous into downsized ones.

  19. No-signaling, perfect bipartite dichotomic correlations and local randomness

    International Nuclear Information System (INIS)

    Seevinck, M. P.

    2011-01-01

    The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation values of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newly derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.

  20. Partial recovery of entanglement in bipartite-entanglement transformations

    International Nuclear Information System (INIS)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani; Vatan, Farrokh

    2002-01-01

    Any deterministic bipartite-entanglement transformation involving finite copies of pure states and carried out using local operations and classical communication (LOCC) results in a net loss of entanglement. We show that for almost all such transformations, partial recovery of lost entanglement is achievable by using 2x2 auxiliary entangled states, no matter how large the dimensions of the parent states are. For the rest of the special cases of deterministic LOCC transformations, we show that the dimension of the auxiliary entangled state depends on the presence of equalities in the majorization relations of the parent states. We show that genuine recovery is still possible using auxiliary states in dimensions less than that of the parent states for all patterns of majorization relations except only one special case

  1. Epidemic spread in bipartite network by considering risk awareness

    Science.gov (United States)

    Han, She; Sun, Mei; Ampimah, Benjamin Chris; Han, Dun

    2018-02-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. Exploring the interplay between human awareness and epidemic spreading is a topic that has been receiving increasing attention. Considering the fact, some well-known diseases only spread between different species we propose a theoretical analysis of the Susceptible-Infected-Susceptible (SIS) epidemic spread from the perspective of bipartite network and risk aversion. Using mean field theory, the epidemic threshold is calculated theoretically. Simulation results are consistent with the proposed analytic model. The results show that, the final infection density is negative linear with the value of individuals' risk awareness. Therefore, the epidemic spread could be effectively suppressed by improving individuals' risk awareness.

  2. Effect of bipartition on spectral properties of nanorings

    International Nuclear Information System (INIS)

    Gutiérrez, W.; García, L.F.; Mikhailov, I.D.

    2013-01-01

    The effects of a special topological transformation on the energy levels, far-infrared spectra and magnetization of one electron inside a semiconductor nanoring under magnetic fields are studied. We have called this transformation as bipartition, and it is defined by a change in ring topological structure, when its shape is changed successively from a single oval-shaped loop up to quasi-two disconnected loops. Our results show that in the course of such transformation the low-lying energies dependencies with multiple crossovers between them, typical for the free electron rotation along an almost circular loop, are converted into a set of non-crossing double plaits related to a sub-barrier electron tunneling along a strongly non-circular loop in a quasi-local state. Also, we find that during the restructuring of the oval-shaped nanostructures the selection rules for the dipole transitions are changed allowing the appearance of additional peaks in the FIR spectrum

  3. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  4. Asystasia mosaic Madagascar virus: a novel bipartite begomovirus infecting the weed Asystasia gangetica in Madagascar.

    Science.gov (United States)

    De Bruyn, Alexandre; Harimalala, Mireille; Hoareau, Murielle; Ranomenjanahary, Sahondramalala; Reynaud, Bernard; Lefeuvre, Pierre; Lett, Jean-Michel

    2015-06-01

    Here, we describe for the first time the complete genome sequence of a new bipartite begomovirus in Madagascar isolated from the weed Asystasia gangetica (Acanthaceae), for which we propose the tentative name asystasia mosaic Madagascar virus (AMMGV). DNA-A and -B nucleotide sequences of AMMGV were only distantly related to known begomovirus sequence and shared highest nucleotide sequence identity of 72.9 % (DNA-A) and 66.9 % (DNA-B) with a recently described bipartite begomovirus infecting Asystasia sp. in West Africa. Phylogenetic analysis demonstrated that this novel virus from Madagascar belongs to a new lineage of Old World bipartite begomoviruses.

  5. Bayesian latent feature modeling for modeling bipartite networks with overlapping groups

    DEFF Research Database (Denmark)

    Jørgensen, Philip H.; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2016-01-01

    Bi-partite networks are commonly modelled using latent class or latent feature models. Whereas the existing latent class models admit marginalization of parameters specifying the strength of interaction between groups, existing latent feature models do not admit analytical marginalization...... by the notion of community structure such that the edge density within groups is higher than between groups. Our model further assumes that entities can have different propensities of generating links in one of the modes. The proposed framework is contrasted on both synthetic and real bi-partite networks...... feature representations in bipartite networks provides a new framework for accounting for structure in bi-partite networks using binary latent feature representations providing interpretable representations that well characterize structure as quantified by link prediction....

  6. A Family of Bipartite |Cardinality Matching Problems Solvable in O(n\\^2) Time

    DEFF Research Database (Denmark)

    Clausen, Jens; Krarup, J.

    1995-01-01

    For a given, unweighted bipartite graph G with 2n non isolated vertices, we consider the so called bipartite cardinality matching problem (BCMP) for which the time complexity of the fastest exact algorithm available is O(n/sup 5/2/ ). We devise a greedy algorithm which either finds a perfect...... matching in O(n/sup 2/ ) time or identifies cycle of length 4 in the complement G of G...

  7. Two level undercut-profile substrate for filamentary YBa2Cu3O7 coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Solovyov, M.; Gömöry, Fedor

    2015-01-01

    A novel substrate design is presented for scalable industrial production of filamentary coated conductors (CCs). The new substrate, called ‘two level undercut-profile substrate (2LUPS)’, has two levels of plateaus connected by walls with an undercut profile. The undercuts are made to produce...... a shading effect during subsequent deposition of layers, thereby creating gaps in the superconducting layer deposited on the curved walls between the two levels. It is demonstrated that such 2LUPS-based CCs can be produced in a large-scale production system using standard deposition processes...

  8. Quantum correlations in a bipartite multiqubit spin ring system

    International Nuclear Information System (INIS)

    Doronin, S I; Fel’dman, E B; Kuznetsova, E I

    2015-01-01

    We consider a spin ring with an arbitrary number of spins on the ring and one spin in its center in a strong external magnetic field. The spins on the ring are connected by the secular dipole–dipole interactions and interact with the central spin through the Heisenberg zz-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for an arbitrary number of the spins in the high-temperature approximation. We demonstrate the evolution of quantum correlations at different numbers of the spins. The contributions of longitudinal and transversal spin interactions to the quantum discord are discussed. (paper)

  9. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    Science.gov (United States)

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  10. Conditional mutual information of bipartite unitaries and scrambling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dawei; Hayden, Patrick; Walter, Michael [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-12-28

    One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Rényi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.

  11. Two-level method with coarse space size independent convergence

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, P.; Brezina, M. [Univ. of Colorado, Denver, CO (United States); Tezaur, R.; Krizkova, J. [UWB, Plzen (Czech Republic)

    1996-12-31

    The basic disadvantage of the standard two-level method is the strong dependence of its convergence rate on the size of the coarse-level problem. In order to obtain the optimal convergence result, one is limited to using a coarse space which is only a few times smaller than the size of the fine-level one. Consequently, the asymptotic cost of the resulting method is the same as in the case of using a coarse-level solver for the original problem. Today`s two-level domain decomposition methods typically offer an improvement by yielding a rate of convergence which depends on the ratio of fine and coarse level only polylogarithmically. However, these methods require the use of local subdomain solvers for which straightforward application of iterative methods is problematic, while the usual application of direct solvers is expensive. We suggest a method diminishing significantly these difficulties.

  12. Dynamics of bloggers’ communities: Bipartite networks from empirical data and agent-based modeling

    Science.gov (United States)

    Mitrović, Marija; Tadić, Bosiljka

    2012-11-01

    We present an analysis of the empirical data and the agent-based modeling of the emotional behavior of users on the Web portals where the user interaction is mediated by posted comments, like Blogs and Diggs. We consider the dataset of discussion-driven popular Diggs, in which all comments are screened by machine-learning emotion detection in the text, to determine positive and negative valence (attractiveness and aversiveness) of each comment. By mapping the data onto a suitable bipartite network, we perform an analysis of the network topology and the related time-series of the emotional comments. The agent-based model is then introduced to simulate the dynamics and to capture the emergence of the emotional behaviors and communities. The agents are linked to posts on a bipartite network, whose structure evolves through their actions on the posts. The emotional states (arousal and valence) of each agent fluctuate in time, subject to the current contents of the posts to which the agent is exposed. By an agent’s action on a post its current emotions are transferred to the post. The model rules and the key parameters are inferred from the considered empirical data to ensure their realistic values and mutual consistency. The model assumes that the emotional arousal over posts drives the agent’s action. The simulations are preformed for the case of constant flux of agents and the results are analyzed in full analogy with the empirical data. The main conclusions are that the emotion-driven dynamics leads to long-range temporal correlations and emergent networks with community structure, that are comparable with the ones in the empirical system of popular posts. In view of pure emotion-driven agents actions, this type of comparisons provide a quantitative measure for the role of emotions in the dynamics on real blogs. Furthermore, the model reveals the underlying mechanisms which relate the post popularity with the emotion dynamics and the prevalence of negative

  13. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Nicholas W. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); Conrads, Kelly A.; Stroop, Kevin D. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); Hamilton, Chad A. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, MD, Bethesda, 20889 (United States); Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda 20814, MD (United States); Darcy, Kathleen M. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Maxwell, George L. [Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA 22042 (United States); Risinger, John I. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); and others

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartite nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.

  14. Effect of the social influence on topological properties of user-object bipartite networks

    Science.gov (United States)

    Liu, Jian-Guo; Hu, Zhaolong; Guo, Qiang

    2013-11-01

    Social influence plays an important role in analyzing online users' collective behaviors [Salganik et al., Science 311, 854 (2006)]. However, the effect of the social influence from the viewpoint of theoretical model is missing. In this paper, by taking into account the social influence and users' preferences, we develop a theoretical model to analyze the topological properties of user-object bipartite networks, including the degree distribution, average nearest neighbor degree and the bipartite clustering coefficient, as well as topological properties of the original user-object networks and their unipartite projections. According to the users' preferences and the global ranking effect, we analyze the theoretical results for two benchmark data sets, Amazon and Bookcrossing, which are approximately consistent with the empirical results. This work suggests that this model is feasible to analyze topological properties of bipartite networks in terms of the social influence and the users' preferences.

  15. Complete genome sequence of a new bipartite begomovirus infecting fluted pumpkin (Telfairia occidentalis) plants in Cameroon.

    Science.gov (United States)

    Leke, Walter N; Khatabi, Behnam; Fondong, Vincent N; Brown, Judith K

    2016-08-01

    The complete genome sequence was determined and characterized for a previously unreported bipartite begomovirus from fluted pumpkin (Telfairia occidentalis, family Cucurbitaceae) plants displaying mosaic symptoms in Cameroon. The DNA-A and DNA-B components were ~2.7 kb and ~2.6 kb in size, and the arrangement of viral coding regions on the genomic components was like those characteristic of other known bipartite begomoviruses originating in the Old World. While the DNA-A component was more closely related to that of chayote yellow mosaic virus (ChaYMV), at 78 %, the DNA-B component was more closely related to that of soybean chlorotic blotch virus (SbCBV), at 64 %. This newly discovered bipartite Old World virus is herein named telfairia mosaic virus (TelMV).

  16. Modal intersection types, two-level languages, and staged synthesis

    DEFF Research Database (Denmark)

    Henglein, Fritz; Rehof, Jakob

    2016-01-01

    -linguistic framework for staged program synthesis, where metaprograms are automatically synthesized which, when executed, generate code in a target language. We survey the basic theory of staged synthesis and illustrate by example how a two-level language theory specialized from λ∩ ⎕ can be used to understand......A typed λ-calculus, λ∩ ⎕, is introduced, combining intersection types and modal types. We develop the metatheory of λ∩ ⎕, with particular emphasis on the theory of subtyping and distributivity of the modal and intersection type operators. We describe how a stratification of λ∩ ⎕ leads to a multi...... the process of staged synthesis....

  17. Performance of a Two-Level Call Admission Control Scheme for DS-CDMA Wireless Networks

    Directory of Open Access Journals (Sweden)

    Fapojuwo Abraham O

    2007-01-01

    Full Text Available We propose a two-level call admission control (CAC scheme for direct sequence code division multiple access (DS-CDMA wireless networks supporting multimedia traffic and evaluate its performance. The first-level admission control assigns higher priority to real-time calls (also referred to as class 0 calls in gaining access to the system resources. The second level admits nonreal-time calls (or class 1 calls based on the resources remaining after meeting the resource needs for real-time calls. However, to ensure some minimum level of performance for nonreal-time calls, the scheme reserves some resources for such calls. The proposed two-level CAC scheme utilizes the delay-tolerant characteristic of non-real-time calls by incorporating a queue to temporarily store those that cannot be assigned resources at the time of initial access. We analyze and evaluate the call blocking, outage probability, throughput, and average queuing delay performance of the proposed two-level CAC scheme using Markov chain theory. The analytic results are validated by simulation results. The numerical results show that the proposed two-level CAC scheme provides better performance than the single-level CAC scheme. Based on these results, it is concluded that the proposed two-level CAC scheme serves as a good solution for supporting multimedia applications in DS-CDMA wireless communication systems.

  18. Performance of a Two-Level Call Admission Control Scheme for DS-CDMA Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abraham O. Fapojuwo

    2007-11-01

    Full Text Available We propose a two-level call admission control (CAC scheme for direct sequence code division multiple access (DS-CDMA wireless networks supporting multimedia traffic and evaluate its performance. The first-level admission control assigns higher priority to real-time calls (also referred to as class 0 calls in gaining access to the system resources. The second level admits nonreal-time calls (or class 1 calls based on the resources remaining after meeting the resource needs for real-time calls. However, to ensure some minimum level of performance for nonreal-time calls, the scheme reserves some resources for such calls. The proposed two-level CAC scheme utilizes the delay-tolerant characteristic of non-real-time calls by incorporating a queue to temporarily store those that cannot be assigned resources at the time of initial access. We analyze and evaluate the call blocking, outage probability, throughput, and average queuing delay performance of the proposed two-level CAC scheme using Markov chain theory. The analytic results are validated by simulation results. The numerical results show that the proposed two-level CAC scheme provides better performance than the single-level CAC scheme. Based on these results, it is concluded that the proposed two-level CAC scheme serves as a good solution for supporting multimedia applications in DS-CDMA wireless communication systems.

  19. From Ecology to Finance (and Back?): A Review on Entropy-Based Null Models for the Analysis of Bipartite Networks

    Science.gov (United States)

    Straka, Mika J.; Caldarelli, Guido; Squartini, Tiziano; Saracco, Fabio

    2018-04-01

    Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007-2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo's hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.

  20. Two-level schemes for the advection equation

    Science.gov (United States)

    Vabishchevich, Petr N.

    2018-06-01

    The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.

  1. Detecting phase boundaries of quantum spin-1/2 XXZ ladder via bipartite and multipartite entanglement transitions

    Science.gov (United States)

    Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal

    2017-12-01

    Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.

  2. Ordering non-bipartite unicyclic graphs with pendant vertices by the least Q-eigenvalue

    Directory of Open Access Journals (Sweden)

    Shu-Guang Guo

    2016-05-01

    Full Text Available Abstract A unicyclic graph is a connected graph whose number of edges is equal to the number of vertices. Fan et al. (Discrete Math. 313:903-909, 2013 and Liu et al. (Electron. J. Linear Algebra 26:333-344, 2013 determined, independently, the unique unicyclic graph whose least Q-eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with k pendant vertices. In this paper, we extend their results and determine the first three non-bipartite unicyclic graphs of order n with k pendant vertices ordering by least Q-eigenvalue.

  3. BATAS ATAS BILANGAN RAMSEY UNTUK GRAF BINTANG DAN GRAF BIPARTIT LENGKAP

    OpenAIRE

    Rosyida, Isnaini

    2008-01-01

    Misal G dan H dua buah graf sebarang, bilangan Ramsey R(G,H) adalah bilangan asli terkecil n sehingga untuk setiap graf F dengan n titik akan memuat G atau komplemen dari F memuat H. Makalah ini akan membahas batas atas dari bilangan Ramsey untuk graf bintang Sn dan graf bipartit lengkap Kp,q. Khususnya, kita akan menunjukkan batas atas dari R(Sn, K2,q) serta batas atas dari R(Sn, Kp,q) untuk n ≥ 5, 3 ≤ p ≤ n-1 dan q ≤ 2.Kata Kunci : Bilangan Ramsey, Graf Bintang dan Bipartit

  4. Congenital bipartite atlas with hypodactyly in a dog: clinical, radiographic and CT findings.

    Science.gov (United States)

    Wrzosek, M; Płonek, M; Zeira, O; Bieżyński, J; Kinda, W; Guziński, M

    2014-07-01

    A three-year-old Border collie was diagnosed with a bipartite atlas and bilateral forelimb hypodactyly. The dog showed signs of acute, non-progressive neck pain, general stiffness and right thoracic limb non-weight-bearing lameness. Computed tomography imaging revealed a bipartite atlas with abaxial vertical bone proliferation, which was the cause of the clinical signs. In addition, bilateral hypodactyly of the second and fifth digits was incidentally found. This report suggests that hypodactyly may be associated with atlas malformations. © 2014 British Small Animal Veterinary Association.

  5. Random model of two-level atoms interacting with electromagnetic field

    International Nuclear Information System (INIS)

    Kireev, A.N.; Meleshko, A.N.

    1983-12-01

    A phase transition has been studied in a random system of two-level atoms interacting with an electromagnetic field. It is shown that superradiation can arise when there is short-range order in a spin-subsystem. The existence of long-range order is irrelevant for this phase transition

  6. The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states

    Directory of Open Access Journals (Sweden)

    A Rabeie and

    2015-01-01

    Full Text Available In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation

  7. On bipartite pure-state entanglement structure in terms of disentanglement

    Science.gov (United States)

    Herbut, Fedor

    2006-12-01

    Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.

  8. Bipartite Networks of Wikipediaʼs Articles and Authors: a Meso-level Approach

    DEFF Research Database (Denmark)

    Jesus, Rut; Hansen-Schwartz, Martin; Jørgensen, Sune Lehmann

    2009-01-01

    This exploratory study investigates the bipartite network of articles linked by common editors in Wikipedia, 'The Free Encyclopedia that Anyone Can Edit'. We use the articles in the categories (to depth three) of Physics and Philosophy and extract and focus on significant editors (at least 7 or 10...

  9. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    Science.gov (United States)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  10. Nonclassicality and entanglement criteria for bipartite optical fields characterized by quadratic detectors

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Arkhipov, I.I.; Michálek, Václav; Haderka, Ondřej

    2017-01-01

    Roč. 96, č. 4 (2017), s. 1-15, č. článku 043845. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : parametric down-conversion * photon statistic * bipartite optical fields * quadratic detectors Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016

  11. Pixel detector readout electronics with two-level discriminator scheme

    International Nuclear Information System (INIS)

    Pengg, F.

    1998-01-01

    In preparation for a silicon pixel detector with more than 3,000 readout channels per chip for operation at the future large hadron collider (LHC) at CERN the analog front end of the readout electronics has been designed and measured on several test-arrays with 16 by 4 cells. They are implemented in the HP 0.8 microm process but compatible with the design rules of the radiation hard Honeywell 0.8 microm bulk process. Each cell contains bump bonding pad, preamplifier, discriminator and control logic for masking and testing within a layout area of only 50 microm by 140 microm. A new two-level discriminator scheme has been implemented to cope with the problems of time-walk and interpixel cross-coupling. The measured gain of the preamplifier is 900 mV for a minimum ionizing particle (MIP, about 24,000 e - for a 300 microm thick Si-detector) with a return to baseline within 750 ns for a 1 MIP input signal. The full readout chain (without detector) shows an equivalent noise charge to 60e - r.m.s. The time-walk, a function of the separation between the two threshold levels, is measured to be 22 ns at a separation of 1,500 e - , which is adequate for the 40 MHz beam-crossing frequency at the LHC. The interpixel cross-coupling, measured with a 40fF coupling capacitance, is less than 3%. A single cell consumes 35 microW at 3.5 V supply voltage

  12. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Directory of Open Access Journals (Sweden)

    Arthur Brady

    Full Text Available As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all. We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  13. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Science.gov (United States)

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  14. Chimera states in bipartite networks of FitzHugh-Nagumo oscillators

    Science.gov (United States)

    Wu, Zhi-Min; Cheng, Hong-Yan; Feng, Yuee; Li, Hai-Hong; Dai, Qiong-Lin; Yang, Jun-Zhong

    2018-04-01

    Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh-Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength-coupling radius plane, which show strong multistability of chimera states, are explored.

  15. Co-clustering Analysis of Weblogs Using Bipartite Spectral Projection Approach

    DEFF Research Database (Denmark)

    Xu, Guandong; Zong, Yu; Dolog, Peter

    2010-01-01

    Web clustering is an approach for aggregating Web objects into various groups according to underlying relationships among them. Finding co-clusters of Web objects is an interesting topic in the context of Web usage mining, which is able to capture the underlying user navigational interest...... and content preference simultaneously. In this paper we will present an algorithm using bipartite spectral clustering to co-cluster Web users and pages. The usage data of users visiting Web sites is modeled as a bipartite graph and the spectral clustering is then applied to the graph representation of usage...... data. The proposed approach is evaluated by experiments performed on real datasets, and the impact of using various clustering algorithms is also investigated. Experimental results have demonstrated the employed method can effectively reveal the subset aggregates of Web users and pages which...

  16. Bipartite hallucal sesamoid bones: relationship with hallux valgus and metatarsal index

    Energy Technology Data Exchange (ETDEWEB)

    Munuera, Pedro V.; Dominguez, Gabriel [University of Seville, Department of Podiatrics, Seville (Spain); Centro Docente de Fisioterapia y Podologia, Departamento de Podologia, Seville (Spain); Reina, Maria; Trujillo, Piedad [Centro Docente de Fisioterapia y Podologia, Departamento de Podologia, Seville (Spain)

    2007-11-15

    The objective was to relate the incidence of the partition of the hallucal sesamoid bones to the size of the first metatarsal and the hallux valgus deformity. In a sample of 474 radiographs, the frequency of appearance of bipartite sesamoids was studied. The length and relative protrusion of the first metatarsal, and the hallux abductus angle, were measured and compared between the feet with and without sesamoid partition. The results showed that 14.6% of the feet studied had at least one partite sesamoid, that the sesamoid most frequently divided was the medial, and that unilateral partition was the most common. No difference was found in the incidence of partite sesamoids between men and women, or between left and right feet. Protrusion and length of the first metatarsal are greater in feet with partite sesamoids than in feet without this condition. A significantly higher incidence of bipartite medial sesamoid was obtained in feet with hallux valgus compared with normal feet. (orig.)

  17. Bipartite hallucal sesamoid bones: relationship with hallux valgus and metatarsal index

    International Nuclear Information System (INIS)

    Munuera, Pedro V.; Dominguez, Gabriel; Reina, Maria; Trujillo, Piedad

    2007-01-01

    The objective was to relate the incidence of the partition of the hallucal sesamoid bones to the size of the first metatarsal and the hallux valgus deformity. In a sample of 474 radiographs, the frequency of appearance of bipartite sesamoids was studied. The length and relative protrusion of the first metatarsal, and the hallux abductus angle, were measured and compared between the feet with and without sesamoid partition. The results showed that 14.6% of the feet studied had at least one partite sesamoid, that the sesamoid most frequently divided was the medial, and that unilateral partition was the most common. No difference was found in the incidence of partite sesamoids between men and women, or between left and right feet. Protrusion and length of the first metatarsal are greater in feet with partite sesamoids than in feet without this condition. A significantly higher incidence of bipartite medial sesamoid was obtained in feet with hallux valgus compared with normal feet. (orig.)

  18. two-level inventory optimization under probability event chain

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems ... The paper introduces the concept of effective inventory level, which is used to evaluate the impact of upstream shortage on downstream inventory, models the inventory at warehouse and retailer under random lead time and demand, and makes the ...

  19. Application of Bipartite Entangled States to Quantum Mechanical Version of Complex Wavelet Transforms

    International Nuclear Information System (INIS)

    Fan Hongyi; Lu Hailiang; Xu Xuefen

    2006-01-01

    We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.

  20. Some Congruence Properties of a Restricted Bipartition Function cN(n

    Directory of Open Access Journals (Sweden)

    Nipen Saikia

    2016-01-01

    Full Text Available Let cN(n denote the number of bipartitions (λ,μ of a positive integer n subject to the restriction that each part of μ is divisible by N. In this paper, we prove some congruence properties of the function cN(n for N=7, 11, and 5l, for any integer l≥1, by employing Ramanujan’s theta-function identities.

  1. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-Chun; QI Kai-Guo

    2005-01-01

    We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.

  2. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    Science.gov (United States)

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  3. Optimizing ETL by a Two-level Data Staging Method

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Iftikhar, Nadeem; Nielsen, Per Sieverts

    2016-01-01

    In data warehousing, the data from source systems are populated into a central data warehouse (DW) through extraction, transformation and loading (ETL). The standard ETL approach usually uses sequential jobs to process the data with dependencies, such as dimension and fact data. It is a non......-/late-arriving data, and fast-/slowly-changing data. The introduced additional staging area decouples loading process from data extraction and transformation, which improves ETL flexibility and minimizes intervention to the data warehouse. This paper evaluates the proposed method empirically, which shows...

  4. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  5. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  6. Quantum averaging and resonances: two-level atom in a one-mode classical laser field

    Directory of Open Access Journals (Sweden)

    M. Amniat-Talab

    2007-06-01

    Full Text Available   We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.

  7. Oscillations of Doppler-Raby of two level atom moving in resonator

    International Nuclear Information System (INIS)

    Kozlovskij, A.V.

    2001-01-01

    The interaction of the two-level atom with the quantum mode of the high-quality resonator uniformly moving by the classic trajectory, is considered. The recurrent formula for the probability of the atom transition with the photon radiation is determined through the dressed states method. It is shown, that the ratio between the Doppler shift value of the atom transition and the Raby frequency value of the atom-field system qualitatively effects the dependence of the moving atom transition probability on its position in the resonator, as well as on its value [ru

  8. Limitations of two-level emitters as nonlinearities in two-photon controlled-PHASE gates

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara P. S.; Heuck, Mikkel

    2017-01-01

    We investigate the origin of imperfections in the fidelity of a two-photon controlled-PHASE gate based on two-level-emitter nonlinearities. We focus on a passive system that operates without external modulations to enhance its performance. We demonstrate that the fidelity of the gate is limited...... by opposing requirements on the input pulse width for one-and two-photon-scattering events. For one-photon scattering, the spectral pulse width must be narrow compared with the emitter linewidth, while two-photon-scattering processes require the pulse width and emitter linewidth to be comparable. We find...

  9. Probe transparency in a two-level medium embedded by a squeezed vacuum

    International Nuclear Information System (INIS)

    Swain, S.; Zhou, P.

    1994-08-01

    Effect of the detuning on the probe absorption spectra of a two-level system with and without a classically driven field in a squeezed vacuum is investigated. For a strong squeezing, there is a threshold which determines the positions and widths of the absorption peaks, for the squeezed parameter M. In a large detuning, the spectra exhibit some resemblance to the Fano spectrum. The squeezing-induced transparency occurs at the frequency 2ω L - ω A in the minimum-uncertainty squeezed vacuum. This effect is not phase-sensitive. (author). 15 refs, 8 figs

  10. SUBJECT «NUMBER SYSTEMS» IN TWO-LEVELED FORMAT PREPARATION TEACHERS OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    V. I. Igoshin

    2017-01-01

    Full Text Available The aim of this article is to analyze the format of a two-leveled training – bachelor and master – future teachers of mathematics from the point of view of the content of mathematical material, which is to develop prospective teachers of mathematics at those two levels, shaping their professional competence.Methods. The study involves the theoretical methods: the analysis of pedagogical and methodical literature, normative documents; historical, comparative and logical analysis of the content of pedagogical mathematical education; forecasting, planning and designing of two-leveled methodical system of training of future teachers of mathematics.Results and scientific novelty. The level differentiation of the higher education system requires developing the appropriate curricula for undergraduate and graduate programs. The fundamental principle must be the principle of continuity – the magister must continue to deepen and broaden knowledge and skills, along with competences acquired, developed and formed on the undergraduate level. From these positions, this paper examines the course «Number Systems» – the most important in terms of methodology course for future mathematics teachers, and shows what content should be filled with this course at the undergraduate level and the graduate level. At the undergraduate level it is proposed to study classical number systems – natural, integer, rational, real and complex. Further extensions of the number systems are studied at the graduate level. The theory of numeric systems is presented as a theory of algebraic systems, arising at the intersection of algebra and mathematical logic. Here we study algebras over a field, division algebra over a field, an alternative algebra with division over the field, Jordan algebra, Lie algebra. Comprehension of bases of the theory of algebras by the master of the «mathematical education» profile will promote more conscious

  11. Two-level Robust Measurement Fusion Kalman Filter for Clustering Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; QI Wen-Juan; DENG Zi-Li

    2014-01-01

    This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, two-level robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances. It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.

  12. Local hypothesis testing between a pure bipartite state and the white noise state

    OpenAIRE

    Owari, Masaki; Hayashi, Masahito

    2010-01-01

    In this paper, we treat a local discrimination problem in the framework of asymmetric hypothesis testing. We choose a known bipartite pure state $\\ket{\\Psi}$ as an alternative hypothesis, and the completely mixed state as a null hypothesis. As a result, we analytically derive an optimal type 2 error and an optimal POVM for one-way LOCC POVM and Separable POVM. For two-way LOCC POVM, we study a family of simple three-step LOCC protocols, and show that the best protocol in this family has stric...

  13. Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2007-10-12

    We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.

  14. Non-parametric co-clustering of large scale sparse bipartite networks on the GPU

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai

    2011-01-01

    of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale...... sparse bipartite networks and achieve a speedup of two orders of magnitude compared to estimation based on conventional CPUs. In terms of scalability we find for networks with more than 100 million links that reliable inference can be achieved in less than an hour on a single GPU. To efficiently manage...

  15. Bipartite Anterior Extraperitoneal Teratoma: Evidence for the Embryological Origins of Teratomas?

    Directory of Open Access Journals (Sweden)

    D. J. B. Keene

    2011-01-01

    Full Text Available Teratomas are thought to arise from totipotent primordial germ cells (PGCs Dehner (1983 which may miss their target destination Moore and Persaud (1984. Teratomas can occur anywhere from the brain to the coccygeal area but are usually in the midline close to the embryological position of the gonadal ridges Bale (1984, Nguyen and Laberge (2000. We report a case of a bipartite anterior extraperitoneal teratoma. This is an unusual position for a teratoma, but one which may support the “missed target” theory of embryology.

  16. Inefficiency and classical communication bounds for conversion between partially entangled pure bipartite states

    International Nuclear Information System (INIS)

    Fortescue, Ben; Lo, H.-K.

    2005-01-01

    We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states

  17. Editorial Commentary: Got Evidence? What We Really Need Is an Algorithm for Treating Symptomatic Bipartite Patella.

    Science.gov (United States)

    Fithian, Donald C

    2018-05-01

    Bipartite patella is an uncommon but potentially troublesome problem for young athletes. Numerous uncontrolled retrospective studies have reported good results after various treatments. What is needed are studies that will guide workup and support treatment decisions based on the condition of the cartilage surfaces of the fragment, presence of pseudoarthrosis, and size and location of the fragment. To support decisions, we need prospective comparative studies, either randomized or, at least, prospective cohort studies that identify patients at the time of presentation, document key decision points, and follow patients to successful resolution of symptoms. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica.

    Directory of Open Access Journals (Sweden)

    Adrien eTaudiere

    2015-10-01

    Full Text Available The ectomycorrhizal (ECM symbiosis connects mutualistic plants and fungal species into bipartite networks. While links between one focal ECM plant and its fungal symbionts have been widely documented, systemic views of ECM networks are lacking, in particular, concerning the ability of fungal species to mediate indirect ecological interactions between ECM plant species (projected-ECM networks. We assembled a large dataset of plant-fungi associations at the species level and at the scale of Corsica using molecular data and unambiguously host-assigned records to: (i examine the correlation between the number of fungal symbionts of a plant species and the average specialization of these fungal species, (ii explore the structure of the plant-plant projected network and (iii compare plant association patterns in regard to their position along the ecological succession. Our analysis reveals no trade-off between specialization of plants and specialization of their partners and a saturation of the plant projected network. Moreover, there is a significantly lower-than-expected sharing of partners between early- and late-successional plant species, with fewer fungal partners for early-successional ones and similar average specialization of symbionts of early- and late-successional plants. Our work paves the way for ecological readings of Mediterranean landscapes that include the astonishing diversity of below-ground interactions.

  19. Political Obstacles to Regionalization of the SUS: perceptions of Municipal Health Secretaries with seat in the Bipartite Interagency Commissions.

    Science.gov (United States)

    Moreira, Marcelo Rasga; Ribeiro, José Mendes; Ouverney, Assis Mafort

    2017-04-01

    This paper aims to identify and analyze the political obstacles to the implementation of Organizational Contract of Public Action (COAP) based on the perceptions of municipal health secretaries of Bipartite Interagency Commissions (CIB). For this purpose, we interviewed 195 secretaries (92% of the total) from October 2015 to August 2016. Based on the approach of policy analysis, the main hurdles identified were, in short, a traditional obstacle (lack of resources), one that has been gaining strength in recent years (judicialization of politics) and another, perhaps unheard of: the party-political system and the State Executive Branch are the great absentees in the coalitions in support of SUS regionalization policies. We can conclude that such obstacles indicate an extremely negative setting for the implementation of the COAP and other SUS regionalization policies. Thus, it is incumbent upon those involved to reflect, negotiate and build consensus on improving the health of the population and overcome such obstacles if, of course, they embrace the authors' concept that regionalization is fundamental for the SUS.

  20. Information Filtering via Heterogeneous Diffusion in Online Bipartite Networks.

    Science.gov (United States)

    Zhang, Fu-Guo; Zeng, An

    2015-01-01

    The rapid expansion of Internet brings us overwhelming online information, which is impossible for an individual to go through all of it. Therefore, recommender systems were created to help people dig through this abundance of information. In networks composed by users and objects, recommender algorithms based on diffusion have been proven to be one of the best performing methods. Previous works considered the diffusion process from user to object, and from object to user to be equivalent. We show in this work that it is not the case and we improve the quality of the recommendation by taking into account the asymmetrical nature of this process. We apply this idea to modify the state-of-the-art recommendation methods. The simulation results show that the new methods can outperform these existing methods in both recommendation accuracy and diversity. Finally, this modification is checked to be able to improve the recommendation in a realistic case.

  1. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    Science.gov (United States)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  2. Tolerating Correlated Failures for Generalized Cartesian Distributions via Bipartite Matching

    International Nuclear Information System (INIS)

    Ali, Nawab; Krishnamoorthy, Sriram; Halappanavar, Mahantesh; Daily, Jeffrey A.

    2011-01-01

    Faults are expected to play an increasingly important role in how algorithms and applications are designed to run on future extreme-scale systems. A key ingredient of any approach to fault tolerance is effective support for fault tolerant data storage. A typical application execution consists of phases in which certain data structures are modified while others are read-only. Often, read-only data structures constitute a large fraction of total memory consumed. Fault tolerance for read-only data can be ensured through the use of checksums or parities, without resorting to expensive in-memory duplication or checkpointing to secondary storage. In this paper, we present a graph-matching approach to compute and store parity data for read-only matrices that are compatible with fault tolerant linear algebra (FTLA). Typical approaches only support blocked data distributions with each process holding one block with the parity located on additional processes. The matrices are assumed to be blocked by a cartesian grid with each block assigned to a process. We consider a generalized distribution in which each process can be assigned arbitrary blocks. We also account for the fact that multiple processes might be part of the same failure unit, say an SMP node. The flexibility enabled by our novel application of graph matching extends fault tolerance support to data distributions beyond those supported by prior work. We evaluate the matching implementations and cost to compute the parity and recover lost data, demonstrating the low overhead incurred by our approach.

  3. Canyon of current suppression in an interacting two-level quantum dot

    DEFF Research Database (Denmark)

    Karlström, O; Pedersen, Jonas Nyvold; Samuelsson, P

    2011-01-01

    Motivated by the recent discovery of a canyon of conductance suppression in a two-level equal-spin quantum dot system [Phys. Rev. Lett. 104, 186804 (2010)], the transport through this system is studied in detail. At low bias and low temperature a strong current suppression is found around...... the electron-hole symmetry point independent of the couplings, in agreement with previous results. By means of a Schrieffer–Wolff transformation we are able to give an intuitive explanation to this suppression in the low-energy regime. In the general situation, numerical simulations are carried out using...... for the current suppression. It is also shown how broadening, interference, and a finite interaction energy cause a shift of the current minimum away from degeneracy. Finally we see how an increased population of the upper level leads to current peaks on each side of the suppression line. At sufficiently high...

  4. Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Bu Shenping; Zhang Guofeng

    2009-01-01

    Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.

  5. Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices

    Science.gov (United States)

    Polstyanko, Sergey V.; Lee, Jin-Fa

    1998-03-01

    In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.

  6. Phonon induced optical gain in a current carrying two-level quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)

    2017-05-15

    In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.

  7. Two-level modulation scheme to reduce latency for optical mobile fronthaul networks.

    Science.gov (United States)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Chang, Gee-Kung

    2016-10-31

    A system using optical two-level orthogonal-frequency-division-multiplexing (OFDM) - amplitude-shift-keying (ASK) modulation is proposed and demonstrated to reduce the processing latency for the optical mobile fronthaul networks. At the proposed remote-radio-head (RRH), the high data rate OFDM signal does not need to be processed, but is directly launched into a high speed photodiode (HSPD) and subsequently emitted by an antenna. Only a low bandwidth PD is needed to recover the low data rate ASK control signal. Hence, it is simple and provides low-latency. Furthermore, transporting the proposed system over the already deployed optical-distribution-networks (ODNs) of passive-optical-networks (PONs) is also demonstrated with 256 ODN split-ratios.

  8. Development and evaluation of a two-level functional structure for the thin film encapsulation

    International Nuclear Information System (INIS)

    Lee, Jae-Wung; Sharma, Jaibir; Singh, Navab; Kwong, Dim-Lee

    2013-01-01

    This paper reports a two level capping structure for encapsulating micro-electro-mechanical system (MEMS) devices. The two level capping solves the main issue of the longer release time as well as safe sealing in thin film encapsulation (TFE). In this technique, the first cap layer has many etch holes, which were uniformly distributed on it to enhance the removal of the sacrificial layer. The second cap layer forms a cap on every etch hole in the first cap layer to protect the mass loading on MEMS devices. This technique was found to be very effective in reducing the release time of the TFE. For the 1200 µm × 1200 µm sized cavity encapsulation, this technique decreases the release time of the TFE by a factor of 24 in comparison to the sidewall located channel scheme. The presented technique also helps in reducing the size of TFE as the etch holes are uniformly distributed on the TFE itself. Wide seal rings were not required to accommodate sidewall channels. (paper)

  9. Ramsey interferometry with a two-level generalized Tonks-Girardeau gas

    International Nuclear Information System (INIS)

    Mousavi, S. V.; Campo, A. del; Lizuain, I.; Muga, J. G.

    2007-01-01

    We propose a solvable generalization of the Tonks-Girardeau model that describes a coherent one-dimensional (1D) gas of cold two-level bosons which interact with two external fields in a Ramsey interferometer. They also interact among themselves by idealized, infinitely strong contact potentials, with interchange of momentum and internal state. We study the corresponding Ramsey fringes and the quantum projection noise which, essentially unaffected by the interactions, remains that for ideal bosons. The dual system of this gas, an ideal gas of two-level fermions coupled by the interaction with the separated fields, produces the same fringes and noise fluctuations. The cases of time-separated and spatially separated fields are studied. For spatially separated fields the fringes may be broadened slightly by increasing the number of particles, but only for large particle numbers far from present experiments with Tonks-Girardeau gases. The uncertainty in the determination of the atomic transition frequency diminishes, essentially with the inverse root of the particle number. The difficulties to implement the model experimentally and possible shortcomings of strongly interacting 1D gases for frequency standards and atomic clocks are discussed

  10. Balanced Bipartite Graph Based Register Allocation for Network Processors in Mobile and Wireless Networks

    Directory of Open Access Journals (Sweden)

    Feilong Tang

    2010-01-01

    Full Text Available Mobile and wireless networks are the integrant infrastructure of mobile and pervasive computing that aims at providing transparent and preferred information and services for people anytime anywhere. In such environments, end-to-end network bandwidth is crucial to improve user's transparent experience when providing on-demand services such as mobile video playing. As a result, powerful computing power is required for networked nodes, especially for routers. General-purpose processors cannot meet such requirements due to their limited processing ability, and poor programmability and scalability. Intel's network processor IXP is specially designed for fast packet processing to achieve a broad bandwidth. IXP provides a large number of registers to reduce the number of memory accesses. Registers in an IXP are physically partitioned as two banks so that two source operands in an instruction have to come from the two banks respectively, which makes the IXP register allocation tricky and different from conventional ones. In this paper, we investigate an approach for efficiently generating balanced bipartite graph and register allocation algorithms for the dual-bank register allocation in IXPs. The paper presents a graph uniform 2-way partition algorithm (FPT, which provides an optimal solution to the graph partition, and a heuristic algorithm for generating balanced bipartite graph. Finally, we design a framework for IXP register allocation. Experimental results demonstrate the framework and the algorithms are efficient in register allocation for IXP network processors.

  11. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  12. Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Clemens [ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, Brisbane (Australia); Lisenfeld, Juergen [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Shnirman, Alexander [Institut fuer Theory der Kondensierten Materie, Karlsruhe Institute of Technology, Karlsruhe (Germany); LD Landau Institute for Theoretical Physics, Moscow (Russian Federation); Poletto, Stefano [IBM TJ Watson Research Centre, Yorktown Heights (United States)

    2016-07-01

    Since the very first experiments, superconducting circuits have suffered from strong coupling to environmental noise, destroying quantum coherence and degrading performance. In state-of-the-art experiments, it is found that the relaxation time of superconducting qubits fluctuates as a function of time. We present measurements of such fluctuations in a 3D-transmon circuit and develop a qualitative model based on interactions within a bath of background two-level systems (TLS) which emerge from defects in the device material. In our model, the time-dependent noise density acting on the qubit emerges from its near-resonant coupling to high-frequency TLS which experience energy fluctuations due to their interaction with thermally fluctuating TLS at low frequencies. We support the model by providing experimental evidence of such energy fluctuations observed in a single TLS in a phase qubit circuit.

  13. Nonlinear Jaynes–Cummings model for two interacting two-level atoms

    International Nuclear Information System (INIS)

    Santos-Sánchez, O de los; González-Gutiérrez, C; Récamier, J

    2016-01-01

    In this work we examine a nonlinear version of the Jaynes–Cummings model for two identical two-level atoms allowing for Ising-like and dipole–dipole interplays between them. The model is said to be nonlinear in the sense that it can incorporate both a general intensity-dependent interaction between the atomic system and the cavity field and/or the presence of a nonlinear medium inside the cavity. As an example, we consider a particular type of atom-field coupling based upon the so-called Buck–Sukumar model and a lossless Kerr-like cavity. We describe the possible effects of such features on the evolution of some quantities of current interest, such as atomic excitation, purity, concurrence, the entropy of the field and the evolution of the latter in phase space. (paper)

  14. Bayesian feedback versus Markovian feedback in a two-level atom

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Mancini, Stefano; Wang Jin

    2002-01-01

    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections

  15. Atom-number squeezing and bipartite entanglement of two-component Bose-Einstein condensates: analytical results

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G R; Wang, X W; Li, D; Lu, Y W, E-mail: grjin@bjtu.edu.c [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-02-28

    We investigate spin dynamics of a two-component Bose-Einstein condensate with weak Josephson coupling. Analytical expressions of atom-number squeezing and bipartite entanglement are presented for atom-atom repulsive interactions. For attractive interactions, there is no number squeezing; however, the squeezing parameter is still useful to recognize the appearance of Schroedinger's cat state.

  16. Magnetic resonance imaging findings in bipartite medial cuneiform – a potential pitfall in diagnosis of midfoot injuries: a case series

    Directory of Open Access Journals (Sweden)

    Elias Ilan

    2008-08-01

    Full Text Available Abstract Introduction The bipartite medial cuneiform is an uncommon developmental osseous variant in the midfoot. To our knowledge, Magnetic Resonance Imaging (MRI characteristics of a non-symptomatic bipartite medial cuneiform have not been described in the orthopaedic literature. It is important for orthopaedic foot and ankle surgeons, musculoskeletal radiologists, and for podiatrists to identify this osseous variant as it may be mistakenly diagnosed as a fracture or not recognized as a source of non-traumatic or traumatic foot pain, which may sometimes even require surgical treatment. Case presentations In this report, we describe the characteristics of three cases of bipartite medial cuneiform on Magnetic Resonance Imaging and contrast its appearance to that of a medial cuneiform fracture. Conclusion A bipartite medial cuneiform is a rare developmental anomaly of the midfoot and may be the source of midfoot pain. Knowledge about its characteristic appearance on magnetic resonance imaging is important because it is a potential pitfall in diagnosis of midfoot injuries.

  17. On the balanced case of the Brualdi-Shen conjecture on 4-cycle decompositions of Eulerian bipartite tournaments

    Directory of Open Access Journals (Sweden)

    Rafael Del Valle Vega

    2015-10-01

    Full Text Available The Brualdi-Shen Conjecture on Eulerian Bipartite Tournaments states that any such graph can be decomposed into oriented 4-cycles. In this article we prove the balanced case of the mentioned conjecture. We show that for any $2n\\times 2n$ bipartite graph $G=(U\\cup V, E$ in which each vertex has $n$-neighbors with biadjacency matrix $M$ (or its transpose there is a proper edge coloring of a column permutation of $M$ denoted $M^{\\sigma}$ in which the nonzero entries of each of the $first$ $n$ columns are colored with elements from the set $\\{n+1, n+2, \\ldots, 2n\\}$ and the nonzero entries of each of the $last$  $n$ columns are colored with elements from the set $\\{1, 2, \\ldots, n\\}$ and if the nonzero entry $M^{\\sigma}_{r,j}$ is colored with color $i$ then $M^{\\sigma}_{r,i}$ must be a zero entry. Such a coloring will induce an oriented 4-cycle decomposition of the bipartite tournament corresponding to $M$. We achieve this by constructing an euler tour on the bipartite tournament which avoids traversing both pair of edges of any two internally disjoint $s$-$t$ 2-paths consecutively, where $s$ and $t$ belong to $V$.

  18. Segmental and global lordosis changes with two-level axial lumbar interbody fusion and posterior instrumentation

    Science.gov (United States)

    Melgar, Miguel A; Tobler, William D; Ernst, Robert J; Raley, Thomas J; Anand, Neel; Miller, Larry E; Nasca, Richard J

    2014-01-01

    Background Loss of lumbar lordosis has been reported after lumbar interbody fusion surgery and may portend poor clinical and radiographic outcome. The objective of this research was to measure changes in segmental and global lumbar lordosis in patients treated with presacral axial L4-S1 interbody fusion and posterior instrumentation and to determine if these changes influenced patient outcomes. Methods We performed a retrospective, multi-center review of prospectively collected data in 58 consecutive patients with disabling lumbar pain and radiculopathy unresponsive to nonsurgical treatment who underwent L4-S1 interbody fusion with the AxiaLIF two-level system (Baxano Surgical, Raleigh NC). Main outcomes included back pain severity, Oswestry Disability Index (ODI), Odom's outcome criteria, and fusion status using flexion and extension radiographs and computed tomography scans. Segmental (L4-S1) and global (L1-S1) lumbar lordosis measurements were made using standing lateral radiographs. All patients were followed for at least 24 months (mean: 29 months, range 24-56 months). Results There was no bowel injury, vascular injury, deep infection, neurologic complication or implant failure. Mean back pain severity improved from 7.8±1.7 at baseline to 3.3±2.6 at 2 years (p lordosis, defined as a change in Cobb angle ≤ 5°, was identified in 84% of patients at L4-S1 and 81% of patients at L1-S1. Patients with loss or gain in segmental or global lordosis experienced similar 2-year outcomes versus those with less than a 5° change. Conclusions/Clinical Relevance Two-level axial interbody fusion supplemented with posterior fixation does not alter segmental or global lordosis in most patients. Patients with postoperative change in lordosis greater than 5° have similarly favorable long-term clinical outcomes and fusion rates compared to patients with less than 5° lordosis change. PMID:25694920

  19. Two-step values for games with two-level communication structure

    NARCIS (Netherlands)

    Béal, Silvain; Khmelnitskaya, Anna Borisovna; Solal, Philippe

    TU games with two-level communication structure, in which a two-level communication structure relates fundamentally to the given coalition structure and consists of a communication graph on the collection of the a priori unions in the coalition structure, as well as a collection of communication

  20. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Caballero

    2017-04-01

    Full Text Available This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  1. Modeling the spread of vector-borne diseases on bipartite networks.

    Directory of Open Access Journals (Sweden)

    Donal Bisanzio

    Full Text Available BACKGROUND: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network. METHODOLOGY/PRINCIPAL FINDINGS: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution. CONCLUSIONS/SIGNIFICANCE: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.

  2. Domain decomposition method of stochastic PDEs: a two-level scalable preconditioner

    International Nuclear Information System (INIS)

    Subber, Waad; Sarkar, Abhijit

    2012-01-01

    For uncertainty quantification in many practical engineering problems, the stochastic finite element method (SFEM) may be computationally challenging. In SFEM, the size of the algebraic linear system grows rapidly with the spatial mesh resolution and the order of the stochastic dimension. In this paper, we describe a non-overlapping domain decomposition method, namely the iterative substructuring method to tackle the large-scale linear system arising in the SFEM. The SFEM is based on domain decomposition in the geometric space and a polynomial chaos expansion in the probabilistic space. In particular, a two-level scalable preconditioner is proposed for the iterative solver of the interface problem for the stochastic systems. The preconditioner is equipped with a coarse problem which globally connects the subdomains both in the geometric and probabilistic spaces via their corner nodes. This coarse problem propagates the information quickly across the subdomains leading to a scalable preconditioner. For numerical illustrations, a two-dimensional stochastic elliptic partial differential equation (SPDE) with spatially varying non-Gaussian random coefficients is considered. The numerical scalability of the the preconditioner is investigated with respect to the mesh size, subdomain size, fixed problem size per subdomain and order of polynomial chaos expansion. The numerical experiments are performed on a Linux cluster using MPI and PETSc parallel libraries.

  3. Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements

    Science.gov (United States)

    Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo

    2017-10-01

    Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non

  4. Generalized Heine–Stieltjes and Van Vleck polynomials associated with two-level, integrable BCS models

    International Nuclear Information System (INIS)

    Marquette, Ian; Links, Jon

    2012-01-01

    We study the Bethe ansatz/ordinary differential equation (BA/ODE) correspondence for Bethe ansatz equations that belong to a certain class of coupled, nonlinear, algebraic equations. Through this approach we numerically obtain the generalized Heine–Stieltjes and Van Vleck polynomials in the degenerate, two-level limit for four cases of integrable Bardeen–Cooper–Schrieffer (BCS) pairing models. These are the s-wave pairing model, the p + ip-wave pairing model, the p + ip pairing model coupled to a bosonic molecular pair degree of freedom, and a newly introduced extended d + id-wave pairing model with additional interactions. The zeros of the generalized Heine–Stieltjes polynomials provide solutions of the corresponding Bethe ansatz equations. We compare the roots of the ground states with curves obtained from the solution of a singular integral equation approximation, which allows for a characterization of ground-state phases in these systems. Our techniques also permit the computation of the roots of the excited states. These results illustrate how the BA/ODE correspondence can be used to provide new numerical methods to study a variety of integrable systems. (paper)

  5. SPONGY (SPam ONtoloGY: Email Classification Using Two-Level Dynamic Ontology

    Directory of Open Access Journals (Sweden)

    Seongwook Youn

    2014-01-01

    Full Text Available Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user’s background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1 to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2 to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  6. SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.

    Science.gov (United States)

    Youn, Seongwook

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  7. Testing a Quantum Heat Pump with a Two-Level Spin

    Directory of Open Access Journals (Sweden)

    Luis A. Correa

    2016-04-01

    Full Text Available Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a “quantum heat pump”. Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: they are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external “black-box” testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its “contact transitions”. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.

  8. SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology

    Science.gov (United States)

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240

  9. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    Science.gov (United States)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  10. Efficiency analysis on a two-level three-phase quasi-soft-switching inverter

    DEFF Research Database (Denmark)

    Geng, Pan; Wu, Weimin; Huang, Min

    2013-01-01

    When designing an inverter, an engineer often needs to select and predict the efficiency beforehand. For the standard inverters, plenty of researches are analyzing the power losses and also many software tools are being used for efficiency calculation. In this paper, the efficiency calculation...... for non-conventional inverters with special shoot-through state is introduced and illustrated through the analysis on a special two-level three-phase quasi-soft-switching inverter. Efficiency comparison between the classical two-stage two-level three-phase inverter and the two-level three-phase quasi......-soft-switching inverter is carried out. A 10 kW/380 V prototype is constructed to verify the analysis. The experimental results show that the efficiency of the new inverter is higher than that of the traditional two-stage two- level three-phase inverter....

  11. An EOQ Model with Stock-Dependent Demand under Two Levels of Trade Credit and Time Value of Money

    OpenAIRE

    H.A.O. Jia-Qin; M.O. Jiangtao

    2013-01-01

    Since the value of money changes with time, it is necessary to take account of the influence of time factor in making the replenishment policy. In this study, to investigate the influence of the time value of money to the inventory strategy, an inventory system for deteriorating items with stock-dependent demand is investigated under two levels of trade credit. The method to efficiently determine the optimal cycle time is presented. Numerical examples are provided to demonstrate the model and...

  12. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    Science.gov (United States)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  13. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  14. Asynchronous Two-Level Checkpointing Scheme for Large-Scale Adjoints in the Spectral-Element Solver Nek5000

    Energy Technology Data Exchange (ETDEWEB)

    Schanen, Michel; Marin, Oana; Zhang, Hong; Anitescu, Mihai

    2016-01-01

    Adjoints are an important computational tool for large-scale sensitivity evaluation, uncertainty quantification, and derivative-based optimization. An essential component of their performance is the storage/recomputation balance in which efficient checkpointing methods play a key role. We introduce a novel asynchronous two-level adjoint checkpointing scheme for multistep numerical time discretizations targeted at large-scale numerical simulations. The checkpointing scheme combines bandwidth-limited disk checkpointing and binomial memory checkpointing. Based on assumptions about the target petascale systems, which we later demonstrate to be realistic on the IBM Blue Gene/Q system Mira, we create a model of the expected performance of our checkpointing approach and validate it using the highly scalable Navier-Stokes spectralelement solver Nek5000 on small to moderate subsystems of the Mira supercomputer. In turn, this allows us to predict optimal algorithmic choices when using all of Mira. We also demonstrate that two-level checkpointing is significantly superior to single-level checkpointing when adjoining a large number of time integration steps. To our knowledge, this is the first time two-level checkpointing had been designed, implemented, tuned, and demonstrated on fluid dynamics codes at large scale of 50k+ cores.

  15. Solutions of the two-level problem in terms of biconfluent Heun functions

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak (Armenia)]. E-mail: artur@ec.sci.am; Suominen, Kalle-Antti [Helsinki Institute of Physics, Helsinki (Finland); Department of Applied Physics, University of Turku, Turku (Finland)

    2001-08-17

    Five four-parametric classes of quantum mechanical two-level models permitting solutions in terms of the biconfluent Heun function are derived. Three of these classes are generalizations of the well known classes of Landau-Zener, Nikitin and Crothers. It is shown that two other classes describe super- and sublinear and essentially nonlinear level crossings, as well as processes with three crossing points. In particular, these classes include two-level models where the field amplitude is constant and the detuning varies as {delta}{sub 0}t+{delta}{sub 2}t{sup 3} or {approx}t{sup 1/3}. For the essentially nonlinear cubic-crossing model, {delta}{sub t}{approx}{delta}{sub 2}t{sup 3}, the general solution of the two-level problem is shown to be expressed as series of confluent hypergeometric functions. (author)

  16. Two-Level Solutions to Exponentially Complex Problems in Glass Science

    DEFF Research Database (Denmark)

    Mauro, John C.; Smedskjær, Morten Mattrup

    Glass poses an especially challenging problem for physicists. The key to making progress in theoretical glass science is to extract the key physics governing properties of practical interest. In this spirit, we discuss several two-level solutions to exponentially complex problems in glass science....... Topological constraint theory, originally developed by J.C. Phillips, is based on a two-level description of rigid and floppy modes in a glass network and can be used to derive quantitatively accurate and analytically solvable models for a variety of macroscopic properties. The temperature dependence...... that captures both primary and secondary relaxation modes. Such a model also offers the ability to calculate the distinguishability of particles during glass transition and relaxation processes. Two-level models can also be used to capture the distribution of various network-forming species in mixed...

  17. Method and system for in vivo measurement of bone tissue using a two level energy source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Cameron, J.R.; Judy, P.F.

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content according to the following relationship: I = (I 0 ) exp [(μBM/sup M/BM) - (μST/sup M/ST)] wherein I 0 is the unattentuated intensity of the radiations in the beam, μ is the mass attenuation coefficient, M is mass in g/cm 2

  18. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Science.gov (United States)

    Segal, Dvira

    2014-04-01

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  19. Method and system for in vivo measurement of bone tissue using a two level energy source

    Science.gov (United States)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  20. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Segal, Dvira [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6 (Canada)

    2014-04-28

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  1. Lambda-Based Data Processing Architecture for Two-Level Load Forecasting in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Gde Dharma Nugraha

    2018-03-01

    Full Text Available Building energy management systems (BEMS have been intensively used to manage the electricity consumption of residential buildings more efficiently. However, the dynamic behavior of the occupants introduces uncertainty problems that affect the performance of the BEMS. To address this uncertainty problem, the BEMS may implement load forecasting as one of the BEMS modules. Load forecasting utilizes historical load data to compute model predictions for a specific time in the future. Recently, smart meters have been introduced to collect electricity consumption data. Smart meters not only capture aggregation data, but also individual data that is more frequently close to real-time. The processing of both smart meter data types for load forecasting can enhance the performance of the BEMS when confronted with uncertainty problems. The collection of smart meter data can be processed using a batch approach for short-term load forecasting, while the real-time smart meter data can be processed for very short-term load forecasting, which adjusts the short-term load forecasting to adapt to the dynamic behavior of the occupants. This approach requires different data processing techniques for aggregation and individual of smart meter data. In this paper, we propose Lambda-based data processing architecture to process the different types of smart meter data and implement the two-level load forecasting approach, which combines short-term and very short-term load forecasting techniques on top of our proposed data processing architecture. The proposed approach is expected to enhance the BEMS to address the uncertainty problem in order to process data in less time. Our experiment showed that the proposed approaches improved the accuracy by 7% compared to a typical BEMS with only one load forecasting technique, and had the lowest computation time when processing the smart meter data.

  2. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    International Nuclear Information System (INIS)

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    2016-01-01

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting path is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.

  3. Integration of Phenotypic Metadata and Protein Similarity in Archaea Using a Spectral Bipartitioning Approach

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D.; Anderson, Iain J; Pati, Amrita; Dalevi, Daniel; Mavromatis, Konstantinos; Kyrpides, Nikos C

    2009-01-01

    In order to simplify and meaningfully categorize large sets of protein sequence data, it is commonplace to cluster proteins based on the similarity of those sequences. However, it quickly becomes clear that the sequence flexibility allowed a given protein varies significantly among different protein families. The degree to which sequences are conserved not only differs for each protein family, but also is affected by the phylogenetic divergence of the source organisms. Clustering techniques that use similarity thresholds for protein families do not always allow for these variations and thus cannot be confidently used for applications such as automated annotation and phylogenetic profiling. In this work, we applied a spectral bipartitioning technique to all proteins from 53 archaeal genomes. Comparisons between different taxonomic levels allowed us to study the effects of phylogenetic distances on cluster structure. Likewise, by associating functional annotations and phenotypic metadata with each protein, we could compare our protein similarity clusters with both protein function and associated phenotype. Our clusters can be analyzed graphically and interactively online.

  4. Bank-firm credit network in Japan: an analysis of a bipartite network.

    Science.gov (United States)

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms.

  5. Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome

    Directory of Open Access Journals (Sweden)

    Vandamme Peter

    2003-03-01

    Full Text Available Abstract Background Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and compositon of simple sequence repeats (SSRs between both replicons and also compared the respective compositional biases. Results Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed. Conclusions The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.

  6. Bank-Firm Credit Network in Japan: An Analysis of a Bipartite Network

    Science.gov (United States)

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N.

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms. PMID:25933413

  7. An Extended HITS Algorithm on Bipartite Network for Features Extraction of Online Customer Reviews

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-05-01

    Full Text Available How to acquire useful information intelligently in the age of information explosion has become an important issue. In this context, sentiment analysis emerges with the growth of the need of information extraction. One of the most important tasks of sentiment analysis is feature extraction of entities in consumer reviews. This paper first constitutes a directed bipartite feature-sentiment relation network with a set of candidate features-sentiment pairs that is extracted by dependency syntax analysis from consumer reviews. Then, a novel method called MHITS which combines PMI with weighted HITS algorithm is proposed to rank these candidate product features to find out real product features. Empirical experiments indicate the effectiveness of our approach across different kinds and various data sizes of product. In addition, the effect of the proposed algorithm is not the same for the corpus with different proportions of the word pair that includes the “bad”, “good”, “poor”, “pretty good”, “not bad” these general collocation words.

  8. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  9. A Two-Level Cache for Distributed Information Retrieval in Search Engines

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2013-01-01

    Full Text Available To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users’ logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.

  10. A two-level cache for distributed information retrieval in search engines.

    Science.gov (United States)

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.

  11. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...

  12. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  13. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  14. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    International Nuclear Information System (INIS)

    Myhr, Geir Ove

    2010-01-01

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  15. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Myhr, Geir Ove

    2010-11-08

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  16. Experimental Research into the Two-Level Cylindrical Cyclone with a Different Number of Channels

    Directory of Open Access Journals (Sweden)

    Egidijus Baliukas

    2014-10-01

    Full Text Available The multichannel two-level cyclone has been designed for separating solid particles from airflow and built at the Laboratory of Environmental Protection Technologies of Vilnius Gediminas Technical University. The conducted research is aimed at determining air flow distribution at two levels and channels of the multichannel cyclone. The multifunctional meter Testo-400 and the dynamic Pitot tube have been used form easuring air flow rates in the channels. The obtained results show that the equal volume of air gets into two levels installed inside the cyclone, and rates are distributed equally in the channels of these levels. The maximum air flow rate is recorded in the first channel and occurs when half-rings are set in such positions so that 75% of air flow returns to the previous channel. The biggest aerodynamic resistance is 1660 Pa and has been recorded in the cyclone having eight channels under air flow distribution ratio 75/25. The highest air purification efficiency has been observed in the two-level six-channel cyclone under air flow distribution ratio 75/25. The effectiveness of separating granite particles is 92.1% and that of wood particles – 91.1 when the particles are up to 20 μm in diameter.

  17. Polynomial pseudosupersymmetry underlying a two-level atom in an external electromagnetic field

    International Nuclear Information System (INIS)

    Samsonov, B.F.; Shamshutdinova, V.V.; Gitman, D.M.

    2005-01-01

    Chains of transformations introduced previously were studied in order to obtain electric fields with a time-dependent frequency for which the equation of motion of a two-level atom in the presence of these fields can be solved exactly. It is shown that a polynomial pseudosupersymmetry may be associated to such chains

  18. Ultimate temperature for laser cooling of two-level neutral atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Zilio, S.C.

    1989-01-01

    We present a simple pedagogical method to evaluate the minimum attainable temperature for laser cooling of two-level neutral atoms. Results are given as a function of the laser detuning and intensity. We also discuss the use of this approach to predict the minimum temperature of neutral atoms confined in magnetic traps. (author) [pt

  19. An Owen-type value for games with two-level communication structures

    NARCIS (Netherlands)

    van den Brink, René; Khmelnitskaya, Anna Borisovna; van der Laan, Gerard

    We introduce an Owen-type value for games with two-level communication structure, which is a structure where the players are partitioned into a coalition structure such that there exists restricted communication between as well as within the a priori unions of the coalition structure. Both types of

  20. Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, M.

    2013-01-01

    The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...

  1. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2012-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  2. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2013-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  3. Localization of a two-level atom via the absorption spectrum

    International Nuclear Information System (INIS)

    Xu, Jun; Hu, Xiang-Ming

    2007-01-01

    We show that it is possible to localize a two-level atom as it passes through a standing-wave field by measuring the probe-field absorption. There is 50% detecting probability of the atom at the nodes of the standing-wave field in the subwavelength domain when the probe field is tuned resonant with the atomic transition

  4. Efficient two-level preconditionined conjugate gradient method on the GPU

    NARCIS (Netherlands)

    Gupta, R.; Van Gijzen, M.B.; Vuik, K.

    2011-01-01

    We present an implementation of Two-Level Preconditioned Conjugate Gradient Method for the GPU. We investigate a Truncated Neumann Series based preconditioner in combination with deflation and compare it with Block Incomplete Cholesky schemes. This combination exhibits fine-grain parallelism and

  5. A spatial scan statistic for nonisotropic two-level risk cluster.

    Science.gov (United States)

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Two-Level Designs to Estimate All Main Effects and Two-Factor Interactions

    NARCIS (Netherlands)

    Eendebak, P.T.; Schoen, E.D.

    2017-01-01

    We study the design of two-level experiments with N runs and n factors large enough to estimate the interaction model, which contains all the main effects and all the two-factor interactions. Yet, an effect hierarchy assumption suggests that main effect estimation should be given more prominence

  7. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  8. The yeast Ty3 retrotransposon contains a 5'-3' bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7.

    Science.gov (United States)

    Gabus, C; Ficheux, D; Rau, M; Keith, G; Sandmeyer, S; Darlix, J L

    1998-08-17

    Retroviruses, including HIV-1 and the distantly related yeast retroelement Ty3, all encode a nucleoprotein required for virion structure and replication. During an in vitro comparison of HIV-1 and Ty3 nucleoprotein function in RNA dimerization and cDNA synthesis, we discovered a bipartite primer-binding site (PBS) for Ty3 composed of sequences located at opposite ends of the genome. Ty3 cDNA synthesis requires the 3' PBS for primer tRNAiMet annealing to the genomic RNA, and the 5' PBS, in cis or in trans, as the reverse transcription start site. Ty3 RNA alone is unable to dimerize, but formation of dimeric tRNAiMet bound to the PBS was found to direct dimerization of Ty3 RNA-tRNAiMet. Interestingly, HIV-1 nucleocapsid protein NCp7 and Ty3 NCp9 were interchangeable using HIV-1 and Ty3 RNA template-primer systems. Our findings impact on the understanding of non-canonical reverse transcription as well as on the use of Ty3 systems to screen for anti-NCp7 drugs.

  9. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    Science.gov (United States)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  10. Two-Level Iteration Penalty Methods for the Navier-Stokes Equations with Friction Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2013-01-01

    Full Text Available This paper presents two-level iteration penalty finite element methods to approximate the solution of the Navier-Stokes equations with friction boundary conditions. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size H in combining with solving a Stokes, Oseen, or linearized Navier-Stokes type variational inequality problem for Stokes, Oseen, or Newton iteration on a fine mesh with mesh size h. The error estimate obtained in this paper shows that if H, h, and ε can be chosen appropriately, then these two-level iteration penalty methods are of the same convergence orders as the usual one-level iteration penalty method.

  11. A modified two-level three-phase quasi-soft-switching inverter

    DEFF Research Database (Denmark)

    Liu, Yusheng; Wu, Weimin; Blaabjerg, Frede

    2014-01-01

    A traditional Voltage Source Inverter (VSI) has higher efficiency than a Current Voltage Source (CSI) due to the less conduction power loss. However, the reverse recovery of the free-wheeling diode limits the efficiency improvement for the silicon devices based hard-switching VSI. The traditional...... quasi-soft-switching inverter can alternate between VSI and CSI by using a proper control scheme and thereby reduce the power losses caused by the reverse recovery of the free-wheeling diode. Nevertheless, slightly extra conduction power loss of the auxiliary switch is also introduced. In order...... to reduce the extra conduction power loss and the voltage stress across the DC-link capacitor, a modified two-level three-phase quasi-soft-switching inverter is proposed by using a SiC MOSFET instead of an IGBT. The principle of the modified two-level three-phase quasi-soft-switching inverter is analyzed...

  12. Revisional Surgery for Hallux Valgus with Serial Osteotomies at Two Levels

    Directory of Open Access Journals (Sweden)

    Jason B. T. Lim

    2011-01-01

    Full Text Available The aetiology and form of hallux valgus (HV is varied with many corrective procedures described. We report a 39-year-old woman, previously treated with a Chevron osteotomy, who presented with recurrent right HV, metatarsus primus varus, and associated bunion. Osteotomies were performed at two levels as a revisional procedure. This report highlights (1 limitations of the Chevron osteotomy and (2 the revisional procedure of the two level osteotomies: (i proximal opening-wedge basal osteotomy and (ii distal short Scarf with medial closing wedges. If a Chevron osteotomy is used inappropriately, for example, in an attempt to correct too large a deformity, it may angulate laterally causing a malunion with an increased distal metatarsal articular angle. Secondly, it is feasible to correct this combined deformity using a combination of proximal opening-wedge and distal short Scarf osteotomies.

  13. Urea metabolism in buffalo calves fed on rations containing two levels of crude protein

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.; Lal, M.; Varma, A.; Ranjhan, S.K.

    1974-01-01

    Urea entry rates into the body pools of Murrah Buffalo calves have been estimated using a single injection isotope dilution technique using 14 C-urea. The animals were fed two levels of crude proteins, namely, 13 percent lower and 19 percent higher than N.R.C. recommendations. Results show that the recycling of urea is significantly better in animals given low crude protein contents. (M.G.B.)

  14. FAST COMMUNICATION: A PDE Based Two Level Model of the Masking Property of the Human Ear

    OpenAIRE

    Xin, Jack; Qi, Yingyong

    2003-01-01

    Human ear has the masking property that certain audible sound becomes inaudible in the presence of another sound. Masking is quantified by the raised threshold from the absolute hearing threshold in quiet. It is of scientific and practical importance to compute masking thresholds. Empirical models on masking have applications in low bit rate digital music compression. A first principle based two level model is developed with partial differential equation (PDE) at the periphe...

  15. The off-resonant aspects of decoherence and a critique of the two-level approximation

    International Nuclear Information System (INIS)

    Savran, Kerim; Hakioglu, T; Mese, E; Sevincli, Haldun

    2006-01-01

    Conditions in favour of a realistic multilevelled description of a decohering quantum system are examined. In this regard the first crucial observation is that the thermal effects, contrary to the conventional belief, play a minor role at low temperatures in the decoherence properties. The system-environment coupling and the environmental energy spectrum dominantly affect the decoherence. In particular, zero temperature quantum fluctuations or non-equilibrium sources can be present and influential on the decoherence rates in a wide energy range allowed by the spectrum of the environment. A crucial observation against the validity of the two-level approximation is that the decoherence rates are found to be dominated not by the long time resonant but the short time off-resonant processes. This observation is demonstrated in two stages. Firstly, our zero temperature numerical results reveal that the calculated short time decoherence rates are Gaussian-like (the time dependence of the density matrix is led by the second time derivative at t = 0). Exact analytical results are also permitted in the short time limit, which, consistent with our numerical results, reveal that this specific Gaussian-like behaviour is a property of the non-Markovian correlations in the environment. These Gaussian-like rates have no dependence on any spectral parameter (position and the width of the spectrum) except, in totality, the spectral area itself. The dependence on the spectral area is a power law. Furthermore, the Gaussian-like character at short times is independent of the number of levels (N), but the numerical value of the decoherence rates is a monotonic function of N. In this context, we demonstrate that leakage, as a characteristic multilevel effect, is dominated by the non-resonant processes. The long time behaviour of decoherence is also examined. Since our spectral model allows Markovian environmental correlations at long times, the decoherence rates in this regime become

  16. Two-Level Micro-to-Nanoscale Hierarchical TiO2 Nanolayers on Titanium Surface

    Directory of Open Access Journals (Sweden)

    Elena G. Zemtsova

    2016-12-01

    Full Text Available Joint replacement is being actively developed within modern orthopedics. One novel material providing fast implantation is bioactive coatings. The synthesis of targeted nanocoatings on metallic nanotitanium surface is reported in this paper. TiO2-based micro- and nanocoatings were produced by sol-gel synthesis using dip-coating technology with subsequent fast (shock drying in hot plate mode at 400 °C. As a result of shock drying, the two-level hierarchical TiO2 nanolayer on the nanotitanium was obtained. This two-level hierarchy includes nanorelief of porous xerogel and microrelief of the micron-sized “defect” network (a crack network. The thickness of TiO2 nanolayers was controlled by repeating dip-coating process the necessary number of times after the first layer deposition. The state of the MS3T3-E1 osteoblast cell line (young cells that form bone tissue on the two-level hierarchical surface has been studied. Particularly, adhesion character, adhesion time and morphology have been studied. The reported results may serve the starting point for the development of novel bioactive coatings for bone and teeth implants.

  17. A quantum logic network for implementing optimal symmetric universal and phase-covariant telecloning of a bipartite entangled state

    International Nuclear Information System (INIS)

    Meng Fanyu; Zhu Aidong

    2008-01-01

    A quantum logic network to implement quantum telecloning is presented in this paper. The network includes two parts: the first part is used to create the telecloning channel and the second part to teleport the state. It can be used not only to implement universal telecloning for a bipartite entangled state which is completely unknown, but also to implement the phase-covariant telecloning for one that is partially known. Furthermore, the network can also be used to construct a tele-triplicator. It can easily be implemented in experiment because only single- and two-qubit operations are used in the network.

  18. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins

    Science.gov (United States)

    Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; Vasilakis, Nikos

    2017-01-01

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes.

  19. Characteristics of the 2011 Tohoku Tsunami and introduction of two level tsunamis for tsunami disaster mitigation.

    Science.gov (United States)

    Sato, Shinji

    2015-01-01

    Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.

  20. Teleporting the one-qubit state via two-level atoms with spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-05-14

    We study quantum teleportation via two two-level atoms coupled collectively to a multimode vacuum field and prepared initially in different atomic states. We concentrated on the influence of the spontaneous emission, collective damping and dipole-dipole interaction of the atoms on fidelity dynamics of quantum teleportation and obtained the region of spatial distance between the two atoms over which the state can be teleported nonclassically. Moreover, we showed through concrete examples that entanglement of the channel state is the prerequisite but not the only essential quantity for predicting the teleportation fidelity.

  1. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    Science.gov (United States)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  2. Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier

    International Nuclear Information System (INIS)

    Oh, Seongshik; Cicak, Katarina; Kline, Jeffrey S.; Sillanpaeae, Mika A.; Osborn, Kevin D.; Whittaker, Jed D.; Simmonds, Raymond W.; Pappas, David P.

    2006-01-01

    Quantum computing based on Josephson junction technology is considered promising due to its scalable architecture. However, decoherence is a major obstacle. Here, we report evidence for improved Josephson quantum bits (qubits) using a single-crystal Al 2 O 3 tunnel barrier. We have found an ∼80% reduction in the density of the spectral splittings that indicate the existence of two-level fluctators (TLFs) in amorphous tunnel barriers. The residual ∼20% TLFs can be attributed to interfacial effects that may be further reduced by different electrode materials. These results show that decoherence sources in the tunnel barrier of Josephson qubits can be identified and eliminated

  3. Geometric manipulation of the quantum states of two-level atoms

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2004-01-01

    Manipulation of the quantum states of two-level atoms has been investigated using laser-controlled geometric phase change, which has the potential to build robust quantum logic gates for quantum computing. For a qubit based on two electronic transition levels of an atom, two basic quantum operations that can make any universal single qubit gate have been designed employing resonant laser pulses. An operation equivalent to a phase gate has been demonstrated using Tm 3+ doped in a yttrium aluminum garnet crystal

  4. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    Science.gov (United States)

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions

  5. Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network

    Directory of Open Access Journals (Sweden)

    Ina Häuslein

    2017-06-01

    Full Text Available The human pathogen Coxiella burnetii causes Q-fever and is classified as a category B bio-weapon. Exploiting the development of the axenic growth medium ACCM-2, we have now used 13C-labeling experiments and isotopolog profiling to investigate the highly diverse metabolic network of C. burnetii. To this aim, C. burnetii RSA 439 NMII was cultured in ACCM-2 containing 5 mM of either [U-13C3]serine, [U-13C6]glucose, or [U-13C3]glycerol until the late-logarithmic phase. GC/MS-based isotopolog profiling of protein-derived amino acids, methanol-soluble polar metabolites, fatty acids, and cell wall components (e.g., diaminopimelate and sugars from the labeled bacteria revealed differential incorporation rates and isotopolog profiles. These data served to decipher the diverse usages of the labeled substrates and the relative carbon fluxes into the core metabolism of the pathogen. Whereas, de novo biosynthesis from any of these substrates could not be found for histidine, isoleucine, leucine, lysine, phenylalanine, proline and valine, the other amino acids and metabolites under study acquired 13C-label at specific rates depending on the nature of the tracer compound. Glucose was directly used for cell wall biosynthesis, but was also converted into pyruvate (and its downstream metabolites through the glycolytic pathway or into erythrose 4-phosphate (e.g., for the biosynthesis of tyrosine via the non-oxidative pentose phosphate pathway. Glycerol efficiently served as a gluconeogenetic substrate and could also be used via phosphoenolpyruvate and diaminopimelate as a major carbon source for cell wall biosynthesis. In contrast, exogenous serine was mainly utilized in downstream metabolic processes, e.g., via acetyl-CoA in a complete citrate cycle with fluxes in the oxidative direction and as a carbon feed for fatty acid biosynthesis. In summary, the data reflect multiple and differential substrate usages by C. burnetii in a bipartite-type metabolic network

  6. Loschmidt echo of a two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field

    International Nuclear Information System (INIS)

    Zhong Ming; Tong Peiqing

    2011-01-01

    The Loschmidt echo (LE) of a central two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field is studied. A general formula for LE is derived, which we use to discuss the influence of the criticality of the environment on LE. It is found that for the periodic XY chain the behaviors of LE in the vicinity of the critical points are similar to those of the uniform case. It is different for the disordered transverse Ising chains. For the aperiodic chains, if the surrounding systems are bounded chains, the behaviors of LE are similar to those of the uniform case, while if the surrounding systems are unbounded chains, they are similar to those of the disordered case.

  7. An Economic Order Quantity Model with Completely Backordering and Nondecreasing Demand under Two-Level Trade Credit

    Directory of Open Access Journals (Sweden)

    Zohreh Molamohamadi

    2014-01-01

    Full Text Available In the traditional inventory system, it was implicitly assumed that the buyer pays to the seller as soon as he receives the items. In today’s competitive industry, however, the seller usually offers the buyer a delay period to settle the account of the goods. Not only the seller but also the buyer may apply trade credit as a strategic tool to stimulate his customers’ demands. This paper investigates the effects of the latter policy, two-level trade credit, on a retailer’s optimal ordering decisions within the economic order quantity framework and allowable shortages. Unlike most of the previous studies, the demand function of the customers is considered to increase with time. The objective of the retailer’s inventory model is to maximize the profit. The replenishment decisions optimally are obtained using genetic algorithm. Two special cases of the proposed model are discussed and the impacts of parameters on the decision variables are finally investigated. Numerical examples demonstrate the profitability of the developed two-level supply chain with backorder.

  8. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions

    Science.gov (United States)

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.

    2018-01-01

    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  9. Identifying the Gene Signatures from Gene-Pathway Bipartite Network Guarantees the Robust Model Performance on Predicting the Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Li He

    2014-01-01

    Full Text Available For the purpose of improving the prediction of cancer prognosis in the clinical researches, various algorithms have been developed to construct the predictive models with the gene signatures detected by DNA microarrays. Due to the heterogeneity of the clinical samples, the list of differentially expressed genes (DEGs generated by the statistical methods or the machine learning algorithms often involves a number of false positive genes, which are not associated with the phenotypic differences between the compared clinical conditions, and subsequently impacts the reliability of the predictive models. In this study, we proposed a strategy, which combined the statistical algorithm with the gene-pathway bipartite networks, to generate the reliable lists of cancer-related DEGs and constructed the models by using support vector machine for predicting the prognosis of three types of cancers, namely, breast cancer, acute myeloma leukemia, and glioblastoma. Our results demonstrated that, combined with the gene-pathway bipartite networks, our proposed strategy can efficiently generate the reliable cancer-related DEG lists for constructing the predictive models. In addition, the model performance in the swap analysis was similar to that in the original analysis, indicating the robustness of the models in predicting the cancer outcomes.

  10. The N Terminus of the Retinoblastoma Protein Inhibits DNA Replication via a Bipartite Mechanism Disrupted in Partially Penetrant Retinoblastomas

    Science.gov (United States)

    Borysov, Sergiy I.; Nepon-Sixt, Brook S.

    2015-01-01

    The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer. Specifically, Rb exon 7 is necessary and sufficient to target and inhibit the replicative CMG helicase, resulting in the accumulation of inactive CMGs on chromatin. An independent N-terminal loop domain, which forms a projection, specifically blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting DNA polymerases ε and δ or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-to-S cell cycle transit. However, their combined loss abolishes these functions of Rb. Thus, Rb growth-suppressive functions include its ability to block replicative complexes via bipartite, independent, and additive N-terminal domains. The partial loss of replication, CMG, or Pol-α control provides a potential molecular explanation for how N-terminal Rb loss-of-function deletions contribute to the etiology of partially penetrant retinoblastomas. PMID:26711265

  11. A preventive maintenance model with a two-level inspection policy based on a three-stage failure process

    International Nuclear Information System (INIS)

    Wang, Wenbin; Zhao, Fei; Peng, Rui

    2014-01-01

    Inspection is always an important preventive maintenance (PM) activity and can have different depths and cover all or part of plant systems. This paper introduces a two-level inspection policy model for a single component plant system based on a three-stage failure process. Such a failure process divides the system′s life into three stages: good, minor defective and severe defective stages. The first level of inspection, the minor inspection, can only identify the minor defective stage with a certain probability, but can always reveal the severe defective stage. The major inspection can however identify both defective stages perfectly. Once the system is found to be in the minor defective stage, a shortened inspection interval is adopted. If however the system is found to be in the severe defective stage, we may delay the maintenance action if the time to the next planned PM window is less than a threshold level, but otherwise, replace immediately. This corresponds to the well adopted maintenance policy in practice such as periodic inspections with planned PMs. A numerical example is presented to demonstrate the proposed model by comparing with other models. - Highlights: • The system′s deterioration goes through a three-stage process, namely, normal, minor defective and severe defective. • Two levels of inspections are proposed, e.g., minor and major inspections. • Once the minor defective stage is found, instead of taking a maintenance action, a shortened inspection interval is recommended. • When the severe defective stage is found, we delay the maintenance according to the threshold to the next PM. • The decision variables are the inspection intervals and the threshold to PM

  12. SCREENING OF MEDIUM COMPOUNDS USING A TWO-LEVEL FACTORIAL DESIGN FOR SACCHAROMYCES BOULARDII

    Directory of Open Access Journals (Sweden)

    GUOWEI SHU

    2016-04-01

    Full Text Available Even if the probiotic effect of Saccharomyces boulardii is has been reported, this yeast is rarely used in medium composition. Based on single factor experiment, two-level factorial design was employed to evaluate the effect of carbon sources (sucrose, glucose, nitrogen sources (soy peptone, beef extract, yeast extract, calf serum, malt extract and salts (K2HPO4, KH2PO4, MgSO4, Na2HPO4, NaH2PO4, CaCl2, sodium citrate, sodium glutamate on the growth of S. boulardii. At the same time, the optical density (OD in the medium was measured at 560 nm after 36 h of incubation. The result of two-level factorial design experiment showed that calf serum (p = 0.0214 and sodium citrate (p = 0.0045 are the significant growth factors of S. boulardii, sucrose (p = 0.0861 and malt extract (p = 0.0763 are important factors. In addition, sucrose and sodium citrate showed positive effect on the growth of S. boulardii. However, calf serum and malt extract showed negative effect on the growth. And we determined that the optimum medium composition for S. boulardii was as follow: 37.5 g·L-1 sucrose, 6 g·L-1 calf serum, 6 g·L-1 malt extract, 5 g·L-1 sodium citrate.

  13. Improved Genetic Algorithm with Two-Level Approximation for Truss Optimization by Using Discrete Shape Variables

    Directory of Open Access Journals (Sweden)

    Shen-yan Chen

    2015-01-01

    Full Text Available This paper presents an Improved Genetic Algorithm with Two-Level Approximation (IGATA to minimize truss weight by simultaneously optimizing size, shape, and topology variables. On the basis of a previously presented truss sizing/topology optimization method based on two-level approximation and genetic algorithm (GA, a new method for adding shape variables is presented, in which the nodal positions are corresponding to a set of coordinate lists. A uniform optimization model including size/shape/topology variables is established. First, a first-level approximate problem is constructed to transform the original implicit problem to an explicit problem. To solve this explicit problem which involves size/shape/topology variables, GA is used to optimize individuals which include discrete topology variables and shape variables. When calculating the fitness value of each member in the current generation, a second-level approximation method is used to optimize the continuous size variables. With the introduction of shape variables, the original optimization algorithm was improved in individual coding strategy as well as GA execution techniques. Meanwhile, the update strategy of the first-level approximation problem was also improved. The results of numerical examples show that the proposed method is effective in dealing with the three kinds of design variables simultaneously, and the required computational cost for structural analysis is quite small.

  14. Two-level method for unsteady Navier-Stokes equations based on a new projection

    International Nuclear Information System (INIS)

    Hou Yanren; Li Kaitai

    2004-12-01

    A two-level algorithm for the two dimensional unsteady Navier-Stokes equations based on a new projection is proposed and investigated. The approximate solution is solved as a sum of a large eddy component and a small eddy component, which are in the sense of the new projection, constructed in this paper. These two terms advance in time explicitly. Actually, the new algorithm proposed here can be regarded as a sort of postprocessing algorithm for the standard Galerkin method (SGM). The large eddy part is solved by SGM in the usual L 2 -based large eddy subspace while the small eddy part (the correction part) is obtained in its complement subspace in the sense of the new projection. The stability analysis indicates the improvement of the stability comparing with SGM of the same scale, and the L 2 -error estimate shows that the scheme can improve the accuracy of SGM approximation for half order. We also propose a numerical implementation based on Lagrange multiplier for this two-level algorithm. (author)

  15. A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction

    Directory of Open Access Journals (Sweden)

    Qiegen Liu

    2014-01-01

    Full Text Available Nonconvex optimization has shown that it needs substantially fewer measurements than l1 minimization for exact recovery under fixed transform/overcomplete dictionary. In this work, two efficient numerical algorithms which are unified by the method named weighted two-level Bregman method with dictionary updating (WTBMDU are proposed for solving lp optimization under the dictionary learning model and subjecting the fidelity to the partial measurements. By incorporating the iteratively reweighted norm into the two-level Bregman iteration method with dictionary updating scheme (TBMDU, the modified alternating direction method (ADM solves the model of pursuing the approximated lp-norm penalty efficiently. Specifically, the algorithms converge after a relatively small number of iterations, under the formulation of iteratively reweighted l1 and l2 minimization. Experimental results on MR image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed method can efficiently reconstruct MR images from highly undersampled k-space data and presents advantages over the current state-of-the-art reconstruction approaches, in terms of higher PSNR and lower HFEN values.

  16. A novel two-level dynamic parallel data scheme for large 3-D SN calculations

    International Nuclear Information System (INIS)

    Sjoden, G.E.; Shedlock, D.; Haghighat, A.; Yi, C.

    2005-01-01

    We introduce a new dynamic parallel memory optimization scheme for executing large scale 3-D discrete ordinates (Sn) simulations on distributed memory parallel computers. In order for parallel transport codes to be truly scalable, they must use parallel data storage, where only the variables that are locally computed are locally stored. Even with parallel data storage for the angular variables, cumulative storage requirements for large discrete ordinates calculations can be prohibitive. To address this problem, Memory Tuning has been implemented into the PENTRAN 3-D parallel discrete ordinates code as an optimized, two-level ('large' array, 'small' array) parallel data storage scheme. Memory Tuning can be described as the process of parallel data memory optimization. Memory Tuning dynamically minimizes the amount of required parallel data in allocated memory on each processor using a statistical sampling algorithm. This algorithm is based on the integral average and standard deviation of the number of fine meshes contained in each coarse mesh in the global problem. Because PENTRAN only stores the locally computed problem phase space, optimal two-level memory assignments can be unique on each node, depending upon the parallel decomposition used (hybrid combinations of angular, energy, or spatial). As demonstrated in the two large discrete ordinates models presented (a storage cask and an OECD MOX Benchmark), Memory Tuning can save a substantial amount of memory per parallel processor, allowing one to accomplish very large scale Sn computations. (authors)

  17. Computer simulation of two-level pedicle subtraction osteotomy for severe thoracolumbar kyphosis in ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2017-01-01

    Full Text Available Background: Advanced ankylosing spondylitis is often associated with thoracolumbar kyphosis, resulting in an abnormal spinopelvic balance and pelvic morphology. Different osteotomy techniques have been used to correct AS deformities, unfortunnaly, not all AS patients can gain spinal sagittal balance and good horizontal vision after osteotomy. Materials and Methods: Fourteen consecutive AS patients with severe thoracolumbar kyphosis who were treated with two-level PSO were studied retrospectively. All were male with a mean age of 34.9 ± 9.6 years. The followup ranged from 1–5 years. Preoperative computer simulations using the Surgimap Spinal software were performed for all patients, and the osteotomy level and angle determined from the computer simulation were used surgically. Spinal sagittal parameters were measured preoperatively, after the computer simulation, and postoperatively and included thoracic kyphosis (TK, lumbar lordosis (LL, sagittal vertical axis (SVA, pelvic incidence, pelvic tilt (PT, and sacral slope (SS. The level of correlation between the computer simulation and postoperative parameters was evaluated, and the differences between preoperative and postoperative parameters were compared. The visual analog scale (VAS for back pain and clinical outcome was also assessed. Results: Six cases underwent PSO at L1 and L3, five cases at L2 and T12, and three cases at L3 and T12. TK was corrected from 57.8 ± 15.2° preoperatively to 45.3 ± 7.7° postoperatively (P < 0.05, LL from 9.3 ± 17.5° to −52.3 ± 3.9° (P < 0.001, SVA from 154.5 ± 36.7 to 37.8 ± 8.4 mm (P < 0.001, PT from 43.3 ± 6.1° to 18.0 ± 0.9° (P < 0.001, and SS from 0.8 ± 7.0° to 26.5 ± 10.6° (P < 0.001. The LL, VAS, and PT of the simulated two-level PSO were highly consistent with, or almost the same as, the postoperative parameters. The correlations between the computer simulations and postoperative parameters were significant. The VAS decreased

  18. Propagation of an attosecond pulse in a dense two-level medium

    International Nuclear Information System (INIS)

    Song Xiaohong; Gong Shangqing; Yang Weifeng; Xu Zhizhan

    2004-01-01

    We investigate the propagation of attosecond pulse in a dense two-level medium by using an iterative predictor-corrector finite-difference time-domain method. We find when attosecond pulse is considered, that the standard area theorem will break down even for small area pulses: ideal self-induced transparency cannot occur even for a 2π pulse, while the pulses whose areas are not integer multiples of 2π, such as 1.8π and 2.2π pulses, cannot evolve to 2π pulses as predicted by the standard area theorem. Significantly higher spectra components can occur on all these small area propagating pulses due to strong carrier reshaping. Furthermore, these higher spectral components dependent sensitively on the pulse area: the larger the pulse area is, the more evident are these higher spectral components

  19. Estimation of Missing Observations in Two-Level Split-Plot Designs

    DEFF Research Database (Denmark)

    Almimi, Ashraf A.; Kulahci, Murat; Montgomery, Douglas C.

    2008-01-01

    Inserting estimates for the missing observations from split-plot designs restores their balanced or orthogonal structure and alleviates the difficulties in the statistical analysis. In this article, we extend a method due to Draper and Stoneman to estimate the missing observations from unreplicated...... two-level factorial and fractional factorial split-plot (FSP and FFSP) designs. The missing observations, which can either be from the same whole plot, from different whole plots, or comprise entire whole plots, are estimated by equating to zero a number of specific contrast columns equal...... to the number of the missing observations. These estimates are inserted into the design table and the estimates for the remaining effects (or alias chains of effects as the case with FFSP designs) are plotted on two half-normal plots: one for the whole-plot effects and the other for the subplot effects...

  20. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  1. Two-Level Verification of Data Integrity for Data Storage in Cloud Computing

    Science.gov (United States)

    Xu, Guangwei; Chen, Chunlin; Wang, Hongya; Zang, Zhuping; Pang, Mugen; Jiang, Ping

    Data storage in cloud computing can save capital expenditure and relive burden of storage management for users. As the lose or corruption of files stored may happen, many researchers focus on the verification of data integrity. However, massive users often bring large numbers of verifying tasks for the auditor. Moreover, users also need to pay extra fee for these verifying tasks beyond storage fee. Therefore, we propose a two-level verification of data integrity to alleviate these problems. The key idea is to routinely verify the data integrity by users and arbitrate the challenge between the user and cloud provider by the auditor according to the MACs and ϕ values. The extensive performance simulations show that the proposed scheme obviously decreases auditor's verifying tasks and the ratio of wrong arbitration.

  2. TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES

    Directory of Open Access Journals (Sweden)

    M. V. Semenyaka

    2014-07-01

    Full Text Available The paper presents hierarchical coordination queuing method. Within the proposed method a queuing problem has been reduced to optimization problem solving that was presented as two-level hierarchical structure. The required distribution of flows and bandwidth allocation was calculated at the first level independently for each macro-queue; at the second level solutions obtained on lower level for each queue were coordinated in order to prevent probable network link overload. The method of goal coordination has been determined for multilevel structure managing, which makes it possible to define the order for consideration of queue cooperation restrictions and calculation tasks distribution between levels of hierarchy. Decisions coordination was performed by the method of Lagrange multipliers. The study of method convergence has been carried out by analytical modeling.

  3. Intensity profiles of superdeformed bands in Pb isotopes in a two-level mixing model

    International Nuclear Information System (INIS)

    Wilson, A. N.; Szigeti, S. S.; Rogers, J. I.; Davidson, P. M.; Cardamone, D. M.

    2009-01-01

    A recently developed two-level mixing model of the decay out of superdeformed bands is applied to examine the loss of flux from the yrast superdeformed bands in 192 Pb, 194 Pb, and 196 Pb. Probability distributions for decay to states at normal deformations are calculated at each level. The sensitivity of the results to parameters describing the levels at normal deformation and their coupling to levels in the superdeformed well is explored. It is found that except for narrow ranges of the interaction strength coupling the states, the amount of intensity lost is primarily determined by the ratio of γ decay widths in the normal and superdeformed wells. It is also found that while the model can accommodate the observed fractional intensity loss profiles for decay from bands at relatively high excitation, it cannot accommodate the similarly abrupt decay from bands at lower energies if standard estimates of the properties of the states in the first minimum are employed

  4. Photon echo with a few photons in two-level atoms

    International Nuclear Information System (INIS)

    Bonarota, M; Dajczgewand, J; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2014-01-01

    To store and retrieve signals at the single photon level, various photon echo schemes have resorted to complex preparation steps involving ancillary shelving states in multi-level atoms. For the first time, we experimentally demonstrate photon echo operation at such a low signal intensity without any preparation step, which allows us to work with mere two-level atoms. This simplified approach relies on the so-coined ‘revival of silenced echo’ (ROSE) scheme. Low noise conditions are obtained by returning the atoms to the ground state before the echo emission. In the present paper we manage ROSE in photon counting conditions, showing that very strong control fields can be compatible with extremely weak signals, making ROSE consistent with quantum memory requirements. (paper)

  5. Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2017-11-01

    Full Text Available Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1 indoor positioning and localization; 2 indoor space representation for navigation model generation; 3 indoor routing computation; 4 human wayfinding behaviours; and 5 indoor guidance (e.g., textual directories. So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles, which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest. In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges

  6. Inverse problem for a two-level medium with an inhomgeneously broadened transition in the field of a periodic wave

    International Nuclear Information System (INIS)

    Zabolotskii, A.A.

    1995-01-01

    The inverse problem is considered for a spectral problem, which is formally equivalent to a system of Bloch equations for an inhomogeneously broadened transition interacting with the electric field. Two cases are considered to demonstrate that, for any given frequency interval, one can determine the pulse of the shape which corresponds to the interaction with only this frequency interval. In the general case, the pulse shape is described by a nonlinear periodic wave. The first example is the resonance interaction of light with a gas of two-level atoms. The second example is interaction of a linearly polarized light with the molecular J-J transition, where J much-gt 1. In the latter case, the role of inhomogeneous broadening belongs to the frequency shift induced by the applied magnetic field. 10 refs

  7. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Science.gov (United States)

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  8. Dynamics of a trapped two-level and three-level atom interacting with classical electromagnetic field

    International Nuclear Information System (INIS)

    Ray, Aditi

    2004-01-01

    The dynamics of a two-level atom driven by a single laser beam and three-level atom (Lambda configuration) irradiated by two laser beams are studied taking into account of the quantized center-of-mass motion of the atom. It is shown that the trapped atom system under appropriate resonance condition exhibits the large time-scale revivals when the index of the vibrational sideband responsible for the atomic electronic transition is greater than unity. The revival times are shown to be dependent on the initial number of vibrational excitations and the magnitude of the Lamb-Dicke parameter. The sub-Poissonian statistics in vibrational quantum number is observed at certain time intervals. The minimum time of interaction for which the squeezed states of motional quadrature are generated is found to be decreasing with the increase in the Lamb-Dicke parameter

  9. The EPQ model under conditions of two levels of trade credit and limited storage capacity in supply chain management

    Science.gov (United States)

    Chung, Kun-Jen

    2013-09-01

    An inventory problem involves a lot of factors influencing inventory decisions. To understand it, the traditional economic production quantity (EPQ) model plays rather important role for inventory analysis. Although the traditional EPQ models are still widely used in industry, practitioners frequently question validities of assumptions of these models such that their use encounters challenges and difficulties. So, this article tries to present a new inventory model by considering two levels of trade credit, finite replenishment rate and limited storage capacity together to relax the basic assumptions of the traditional EPQ model to improve the environment of the use of it. Keeping in mind cost-minimisation strategy, four easy-to-use theorems are developed to characterise the optimal solution. Finally, the sensitivity analyses are executed to investigate the effects of the various parameters on ordering policies and the annual total relevant costs of the inventory system.

  10. Reduction of multipartite qubit density matrixes to bipartite qubit density matrixes and criteria of partial separability of multipartite qubit density matrixes

    OpenAIRE

    Zhong, Zai-Zhe

    2004-01-01

    The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.

  11. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.

    Science.gov (United States)

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-05-01

    Significant improvements in the prediction of protein residue-residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks-the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. chengji@missouri.edu. Supplementary data are available at Bioinformatics online.

  12. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins.

    Science.gov (United States)

    Dietzgen, Ralf G; Kondo, Hideki; Goodin, Michael M; Kurath, Gael; Vasilakis, Nikos

    2017-01-02

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)

    2016-09-15

    Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  14. Induced absorption and stimulated emission in a driven two-level atom

    International Nuclear Information System (INIS)

    Mavroyannis, C.

    1992-01-01

    We have considered the induced processes that occur in a driven two-level atom, where a laser photon is absorbed and emitted by the ground and by the excited states of the atom, respectively. In the low-intensity limit of the laser field, the induced spectra arising when a laser photon is absorbed by the ground state of the atom consist of two peaks describing induced absorption and stimulated-emission processes, respectively, where the former prevails over the latter. Asymmetry of the spectral lines occurs at off-resonance and its extent depends on the detuning of the laser field. The physical. process where a laser photon is emitted by the excited state is the reverse of that arising from the absorption of a laser photon by the ground state of the atom. The former differs from the latter in that the emission of a laser photon by the excited state occurs in the low frequency regime and that the stimulated-emission process prevails over that of the induced absorption. In this case, amplification of ultrashort pulses is likely to occur without the need of population inversion between the optical transitions. The computed spectra are graphically presented and discussed. (author)

  15. Vorticity, backscatter and counter-gradient transport predictions using two-level simulation of turbulent flows

    Science.gov (United States)

    Ranjan, R.; Menon, S.

    2018-04-01

    The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.

  16. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    Science.gov (United States)

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  17. Multilevel Converter by Cascading Two-Level Three-Phase Voltage Source Converter

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-04-01

    Full Text Available This paper proposes a topology using isolated, cascaded multilevel voltage source converters (VSCs and employing two-winding magnetic elements for high-power applications. The proposed topology synthesizes 6 two-level, three-phase VSCs, so the power capability of the presented converter is six times the capability of each VSC module. The characteristics of the proposed topology are demonstrated through analyzing its current relationships, voltage relationships and power capability in detail. The power rating is equally shared among the VSC modules without the need for a sharing algorithm; thus, the converter operates as a single three-phase VSC. The comparative analysis with classical neutral-point clamped, flying capacitor and cascaded H-bridge exhibits the superior features of fewer insulated gate bipolar transistors (IGBTs, capacitor requirement and fewer diodes. To validate the theoretical performance of the proposed converter, it is simulated in a MATLAB/Simulink environment and the results are experimentally demonstrated using a laboratory prototype.

  18. Two-Level Evaluation on Sensor Interoperability of Features in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Ya-Shuo Li

    2012-03-01

    Full Text Available Features used in fingerprint segmentation significantly affect the segmentation performance. Various features exhibit different discriminating abilities on fingerprint images derived from different sensors. One feature which has better discriminating ability on images derived from a certain sensor may not adapt to segment images derived from other sensors. This degrades the segmentation performance. This paper empirically analyzes the sensor interoperability problem of segmentation feature, which refers to the feature’s ability to adapt to the raw fingerprints captured by different sensors. To address this issue, this paper presents a two-level feature evaluation method, including the first level feature evaluation based on segmentation error rate and the second level feature evaluation based on decision tree. The proposed method is performed on a number of fingerprint databases which are obtained from various sensors. Experimental results show that the proposed method can effectively evaluate the sensor interoperability of features, and the features with good evaluation results acquire better segmentation accuracies of images originating from different sensors.

  19. Automatic QRS complex detection using two-level convolutional neural network.

    Science.gov (United States)

    Xiang, Yande; Lin, Zhitao; Meng, Jianyi

    2018-01-29

    The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.

  20. Injury patterns of child abuse: Experience of two Level 1 pediatric trauma centers.

    Science.gov (United States)

    Yu, Yangyang R; DeMello, Annalyn S; Greeley, Christopher S; Cox, Charles S; Naik-Mathuria, Bindi J; Wesson, David E

    2018-05-01

    This study examines non-accidental trauma (NAT) fatalities as a percentage of all injury fatalities and identifies injury patterns in NAT admissions to two level 1 pediatric trauma centers. We reviewed all children (<5years old) treated for NAT from 2011 to 2015. Patient demographics, injury sites, and survival were obtained from both institutional trauma registries. Of 4623 trauma admissions, 557 (12%) were due to NAT. However, 43 (46%) of 93 overall trauma fatalities were due to NAT. Head injuries were the most common injuries sustained (60%) and led to the greatest increased risk of death (RR 5.1, 95% CI 2.0-12.7). Less common injuries that increased the risk of death were facial injuries (14%, RR 2.9, 95% CI 1.6-5.3), abdominal injuries (8%, RR 2.8, 95% CI 1.4-5.6), and spinal injuries (3%, RR 3.9, 95% CI 1.8-8.8). Although 76% of head injuries occurred in infants <1year, children ages 1-4years old with head injuries had a significantly higher case fatality rate (27% vs. 6%, p<0.001). Child abuse accounts for a large proportion of trauma fatalities in children under 5years of age. Intracranial injuries are common in child abuse and increase the risk of death substantially. Preventing NAT in infants and young children should be a public health priority. Retrospective Review. II. Copyright © 2018. Published by Elsevier Inc.

  1. Risk Analysis of a Two-Level Supply Chain Subject to Misplaced Inventory

    Directory of Open Access Journals (Sweden)

    Lijing Zhu

    2017-06-01

    Full Text Available Misplaced inventory is prevalent in retail stores and may lead to the overall poor performance of the supply chain. We explore the impact of misplaced inventory on a two-level supply chain, which consists of a risk-neutral supplier and a risk-averse retailer. The supplier decides the wholesale price to maximize her profit, whereas the retailer decides the order quantity to maximize his utility. Under the Conditional Value-at-Risk (CVaR criterion, we formulate the problem as a Stackelberg game model and obtain the equilibrium solutions in three cases: (i information asymmetry about inventory errors exists; (ii the retailer shares information about inventory errors with the supplier; and (iii in order to reduce misplaced inventory, the supply chain deploys Radio-Frequency Identification (RFID technology. The benefits of information sharing and RFID implementation are explored. A revenue and cost sharing contract is proposed to coordinate the supply chain and to allocate the cost savings from RFID implementation among supply chain participants. Finally, we provide managerial insights for risk-averse decision makers that are considering investing in the RFID technology.

  2. Two level undercut-profile substrate-based filamentary coated conductors produced using metal organic chemical vapor deposition

    DEFF Research Database (Denmark)

    Insinga, Andrea R.; Sundaram, Aarthi; Hazelton, Drew W.

    2018-01-01

    The two level undercut-profile substrate (2LUPS) has been introduced as a concept for subdividing rare-earth-Ba$_{2}$Cu$_{3}$O$_{7}$ (REBCO) coated conductors (CC) into narrow filaments which reduces the AC losses and improves field stability for DC magnets. The 2LUPS consists of two levels...

  3. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    International Nuclear Information System (INIS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-01-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.

  4. Demand response strategy management with active and reactive power incentive in the smart grid: a two-level optimization approach

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2017-05-01

    Full Text Available High penetration of distributed generators (DGs using renewable energy sources (RESs is raising some important issues in the operation of modern po­wer system. The output power of RESs fluctuates very steeply, and that include uncertainty with weather conditions. This situation causes voltage deviation and reverse power flow. Several methods have been proposed for solving these problems. Fundamentally, these methods involve reactive power control for voltage deviation and/or the installation of large battery energy storage system (BESS at the interconnection point for reverse power flow. In order to reduce the installation cost of static var compensator (SVC, Distribution Company (DisCo gives reactive power incentive to the cooperating customers. On the other hand, photovoltaic (PV generator, energy storage and electric vehicle (EV are introduced in customer side with the aim of achieving zero net energy homes (ZEHs. This paper proposes not only reactive power control but also active power flow control using house BESS and EV. Moreover, incentive method is proposed to promote participation of customers in the control operation. Demand response (DR system is verified with several DR menu. To create profit for both side of DisCo and customer, two level optimization approach is executed in this research. Mathematical modeling of price elasticity and detailed simulations are executed by case study. The effectiveness of the proposed incentive menu is demonstrated by using heuristic optimization method.

  5. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    Science.gov (United States)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  6. A two level mutation-selection model of cultural evolution and diversity.

    Science.gov (United States)

    Salazar-Ciudad, Isaac

    2010-11-21

    Cultural evolution is a complex process that can happen at several levels. At the level of individuals in a population, each human bears a set of cultural traits that he or she can transmit to its offspring (vertical transmission) or to other members of his or her society (horizontal transmission). The relative frequency of a cultural trait in a population or society can thus increase or decrease with the relative reproductive success of its bearers (individual's level) or the relative success of transmission (called the idea's level). This article presents a mathematical model on the interplay between these two levels. The first aim of this article is to explore when cultural evolution is driven by the idea's level, when it is driven by the individual's level and when it is driven by both. These three possibilities are explored in relation to (a) the amount of interchange of cultural traits between individuals, (b) the selective pressure acting on individuals, (c) the rate of production of new cultural traits, (d) the individual's capacity to remember cultural traits and to the population size. The aim is to explore the conditions in which cultural evolution does not lead to a better adaptation of individuals to the environment. This is to contrast the spread of fitness-enhancing ideas, which make individual bearers better adapted to the environment, to the spread of "selfish" ideas, which spread well simply because they are easy to remember but do not help their individual bearers (and may even hurt them). At the same time this article explores in which conditions the adaptation of individuals is maximal. The second aim is to explore how these factors affect cultural diversity, or the amount of different cultural traits in a population. This study suggests that a larger interchange of cultural traits between populations could lead to cultural evolution not improving the adaptation of individuals to their environment and to a decrease of cultural diversity

  7. Quality of Service-Driven Requirements Analyses for Component Composition: A Two-Level Grammar++ Approach

    National Research Council Canada - National Science Library

    Liu, Shih-Hsi; Cao, Fei; Bryant, Barrett R; Gray, Jeff; Raje, Rajeev R; Olson, Andrew M; Auguston, Mikhail

    2005-01-01

    .... When applied to Distributed Real-Time and Embedded (DRE) systems, which components to assemble and how to assemble them are determined not only from functional correctness criteria but also assurance of the system's quality of service (QoS...

  8. Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations.

    Science.gov (United States)

    Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E

    2018-06-12

    We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).

  9. An Efficient Data Fingerprint Query Algorithm Based on Two-Leveled Bloom Filter

    OpenAIRE

    Bin Zhou; Rongbo Zhu; Ying Zhang; Linhui Cheng

    2013-01-01

    The function of the comparing fingerprints algorithm was to judge whether a new partitioned data chunk was in a storage system a decade ago.  At present, in the most de-duplication backup system the fingerprints of the big data chunks are huge and cannot be stored in the memory completely. The performance of the system is unavoidably retarded by data chunks accessing the storage system at the querying stage. Accordingly, a new query mechanism namely Two-stage Bloom Filter (TBF) mechanism...

  10. Controlled ultrafast transfer and stability degree of generalized coherent states of a kicked two-level ion

    Science.gov (United States)

    Chen, Hao; Kong, Chao; Hai, Wenhua

    2018-06-01

    We investigate quantum dynamics of a two-level ion trapped in the Lamb-Dicke regime of a δ -kicked optical lattice, based on the exact generalized coherent states rotated by a π / 2 pulse of Ramsey type experiment. The spatiotemporal evolutions of the spin-motion entangled states in different parameter regions are illustrated, and the parameter regions of different degrees of quantum stability described by the quantum fidelity are found. Time evolutions of the probability for the ion being in different pseudospin states reveal that the ultrafast entanglement generation and population transfers of the system can be analytically controlled by managing the laser pulses. The probability in an initially disentangled state shows periodic collapses (entanglement) and revivals (de-entanglement). Reduction of the stability degree results in enlarging the period of de-entanglement, while the instability and potential chaos will cause the sustained entanglement. The results could be justified experimentally in the existing setups and may be useful in engineering quantum dynamics for quantum information processing.

  11. Ordering policies of a deteriorating item in an EOQ model with backorder under two-level partial trade credit

    Science.gov (United States)

    Molamohamadi, Zohreh; Arshizadeh, Rahman; Ismail, Napsiah

    2015-05-01

    In the classical inventory model, it was assumed that the retailer must settle the accounts of the purchased items as soon as they are received. In practice, however, the supplier usually offers a full or partial delay period to the retailer to pay for the amount of the purchasing costs. In the partial trade credit contract, which is mostly applied to avoid non-payment risks, the retailer must pay for a portion of the purchased goods at the time of ordering and may delay settling the rest until the end of the predefined agreed upon period, so-called credit period. This paper assumes a two-level partial trade credit where both supplier and retailer offer a partial trade credit to their downstream members. The objective here is to determine the retailer's ordering policy of a deteriorating item by formulating his economic order quantity (EOQ) inventory system with backorder as a cost minimization problem. The sensitivity of the variables on different parameters has been also analyzed by applying numerical examples.

  12. Singularity of classical and quantum correlations at critical points of the Lipkin-Meshkov-Glick model in bipartition and tripartition of spins

    OpenAIRE

    Xiu-Xing, Zhang; Fu-Li, Li

    2012-01-01

    We study the classical correlation (CC) and quantum discord (QD) between two spin subgroups of the Lipkin-Meshkov-Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartition, we find that the classical correlations and all the quantum correlations including the QD, the entanglement of formation (EoF) and the logarithmic negativity (LN) are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartition, however, ...

  13. Switched Two-Level H∞ and Robust Fuzzy Learning Control of an Overhead Crane

    Directory of Open Access Journals (Sweden)

    Kao-Ting Hung

    2013-01-01

    Full Text Available Overhead cranes are typical dynamic systems which can be modeled as a combination of a nominal linear part and a highly nonlinear part. For such kind of systems, we propose a control scheme that deals with each part separately, yet ensures global Lyapunov stability. The former part is readily controllable by the H∞ PDC techniques, and the latter part is compensated by fuzzy mixture of affine constants, leaving the remaining unmodeled dynamics or modeling error under robust learning control using the Nelder-Mead simplex algorithm. Comparison with the adaptive fuzzy control method is given via simulation studies, and the validity of the proposed control scheme is demonstrated by experiments on a prototype crane system.

  14. The Implications of Contamination for Educational Experiments with Two Levels of Nesting

    Science.gov (United States)

    Rhoads, Christopher

    2016-01-01

    Experimental evaluations that involve the educational system usually involve a hierarchical structure (students are nested within classrooms that are nested within schools, etc.). Concerns about contamination, where research subjects receive certain features of an intervention intended for subjects in a different experimental group, have often led…

  15. Two-level preconditioned conjugate gradient methods with applications to bubbly flow problems

    NARCIS (Netherlands)

    Tang, J.M.

    2008-01-01

    The Preconditioned Conjugate Gradient (PCG) method is one of the most popular iterative methods for solving large linear systems with a symmetric and positive semi-definite coefficient matrix. However, if the preconditioned coefficient matrix is ill-conditioned, the convergence of the PCG method

  16. Cross-Circulating Current Suppression Method for Parallel Three-Phase Two-Level Inverters

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Guo, Xiaoqiang

    2015-01-01

    The parallel architecture is very popular for power inverters to increase the power level. This paper presents a method for the parallel operation of inverters in an ac-distributed system, to suppress the cross-circulating current based on virtual impedance without current-sharing bus...

  17. A TWO LEVEL ARCHITECTURE USING CONSENSUS METHOD FOR GLOBAL DECISION MAKING AGAINST DDoS ATTACKS

    Directory of Open Access Journals (Sweden)

    S.Seetha

    2010-06-01

    Full Text Available Distributed Denial of service is a major threat to the availability of internet services. Due to the distributed, large scale nature of the Internet makes DDoS (Distributed Denial-of-Service attacks stealthy and difficult to counter. Defense against Distributed Denial- of -Service attacks is one of the hardest security problems on the Internet. Recently these network attacks have been increasing. Therefore more effective countermeasures are required to counter the threat. This requirement has motivated us to propose a novel mechanism against DDoS attack. This paper presents the design details of a distributed defense mechanism against DDoS attack. In our approach, the egress routers of the intermediate network coordinate with each other to provide the information necessary to detect and respond to the attack. Thus, a detection system based on single site will have either high positive or high negative rates. Unlike the traditional IDSs (Intrusion Detection System this method has the potential to achieve high true positive ratio. This work has been done by using consensus algorithms for exchanging the information between the detection systems. So the overall detection time would be reduced for global decision making.

  18. A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions

    Directory of Open Access Journals (Sweden)

    Mengqu Ge

    2016-02-01

    Full Text Available As one large class of non-coding RNAs (ncRNAs, long ncRNAs (lncRNAs have gained considerable attention in recent years. Mutations and dysfunction of lncRNAs have been implicated in human disorders. Many lncRNAs exert their effects through interactions with the corresponding RNA-binding proteins. Several computational approaches have been developed, but only few are able to perform the prediction of these interactions from a network-based point of view. Here, we introduce a computational method named lncRNA–protein bipartite network inference (LPBNI. LPBNI aims to identify potential lncRNA–interacting proteins, by making full use of the known lncRNA–protein interactions. Leave-one-out cross validation (LOOCV test shows that LPBNI significantly outperforms other network-based methods, including random walk (RWR and protein-based collaborative filtering (ProCF. Furthermore, a case study was performed to demonstrate the performance of LPBNI using real data in predicting potential lncRNA–interacting proteins.

  19. Complete nucleotide sequences of a new bipartite begomovirus from Malvastrum sp. plants with bright yellow mosaic symptoms in South Texas.

    Science.gov (United States)

    Alabi, Olufemi J; Villegas, Cecilia; Gregg, Lori; Murray, K Daniel

    2016-06-01

    Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus.

  20. A two-level real-time vision machine combining coarse and fine grained parallelism

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Pauwels, Karl

    2010-01-01

    In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas...... a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU--core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications....

  1. Comparison of Helicopter Emergency Medical Services Transport Types and Delays on Patient Outcomes at Two Level I Trauma Centers.

    Science.gov (United States)

    Nolan, Brodie; Tien, Homer; Sawadsky, Bruce; Rizoli, Sandro; McFarlan, Amanda; Phillips, Andrea; Ackery, Alun

    2017-01-01

    Helicopter emergency medical services (HEMS) have become an engrained component of trauma systems. In Ontario, transportation for trauma patients is through one of three ways: scene call, modified scene call, or interfacility transfer. We hypothesize that differences exist between these types of transports in both patient demographics and patient outcomes. This study compares the characteristics of patients transported by each of these methods to two level 1 trauma centers and assesses for any impact on morbidity or mortality. As a secondary outcome reasons for delay were identified. A local trauma registry was used to identify and abstract data for all patients transported to two trauma centers by HEMS over a 36-month period. Further chart abstraction using the HEMS patient care reports was done to identify causes of delay during HEMS transport. During the study period HEMS transferred a total of 911 patients of which 139 were scene calls, 333 were modified scene calls and 439 were interfacility transfers. Scene calls had more patients with an ISS of less than 15 and had more patients discharged home from the ED. Modified scene calls had more patients with an ISS greater than 25. The most common delays that were considered modifiable included the sending physician doing a procedure, waiting to meet a land EMS crew, delays for diagnostic imaging and confirming disposition or destination. Differences exist between the types of transports done by HEMS for trauma patients. Many identified reasons for delay to HEMS transport are modifiable and have practical solutions. Future research should focus on solutions to identified delays to HEMS transport. Key words: helicopter emergency medical services; trauma; prehospital care; delays.

  2. Strategic production modeling for defective items with imperfect inspection process, rework, and sales return under two-level trade credit

    Directory of Open Access Journals (Sweden)

    Aditi Khanna

    2017-01-01

    Full Text Available Quality decisions are one of the major decisions in inventory management. It affects customer’s demand, loyalty and customer satisfaction and also inventory costs. Every manufacturing process is inherent to have some chance causes of variation which may lead to some defectives in the lot. So, in order to cater the customers with faultless products, an inspection process is inevitable, which may also be prone to errors. Thus for an operations manager, maintaining the quality of the lot and the screening process becomes a challenging task, when his objective is to determine the optimal order quantity for the inventory system. Besides these operational tasks, the goal is also to increase the customer base which eventually leads to higher profits. So, as a promotional tool, trade credit is being offered by both the retailer and supplier to their respective customers to encourage more frequent and higher volume purchases. Thus taking into account of these facts, a strategic production model is formulated here to study the combined effects of imperfect quality items, faulty inspection process, rework process, sales return under two level trade credit. The present study is a general framework for many articles and classical EPQ model. An analytical method is employed which jointly optimizes the retailer’s credit period and order quantity, so as to maximize the expected total profit per unit time. To study the behavior and application of the model, a numerical example has been cited and a comprehensive sensitivity analysis has been performed. The model can be widely applicable in manufacturing industries like textile, footwear, plastics, electronics, furniture etc.

  3. On the Performance Optimization of Two-Level Three-Phase Grid-Feeding Voltage-Source Inverters

    Directory of Open Access Journals (Sweden)

    Issam A. Smadi

    2018-02-01

    Full Text Available The performance optimization of the two-level, three-phase, grid-feeding, voltage-source inverter (VSI is studied in this paper, which adopts an online adaptive switching frequency algorithm (OASF. A new degree of freedom has been added to the employed OASF algorithm for optimal selection of the weighting factor and overall system optimization design. Toward that end, a full mathematical formulation, including the impact of the coupling inductor and the controller response time, is presented. At first, the weighting factor is selected to favor the switching losses, and the controller gains are optimized by minimizing the integral time-weighted absolute error (ITAE of the output active and reactive power. Different loading and ambient temperature conditions are considered to validate the optimized controller and its fast response through online field programmable gate array (FPGA-in-the-loop. Then, the weighting factor is optimally selected to reduce the cost of the L-filter and the heat-sink. An optimization problem to minimize the cost design at the worst case of loading condition for grid-feeding VSI is formulated. The results from this optimization problem are the filter inductance, the thermal resistance of the heat-sink, and the optimal switching frequency with the optimal weighting factor. The VSI test-bed using the optimized parameters is used to verify the proposed work experimentally. Adopting the OASF algorithm that employs the optimal weighting factor for grid-feeding VSI, the percentages of the reductions in the slope of the steady state junction temperature profile compared to fixed frequencies of 10 kHz, 14.434 kHz, and 20 kHz are about 6%, 30%, and 18%, respectively.

  4. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  5. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  6. Loading forces in shallow water running in two levels of immersion.

    Science.gov (United States)

    Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; de Brito Fontana, Heiliane; Roesler, Helio

    2010-07-01

    To analyse the vertical and anteroposterior components of the ground reaction force during shallow water running at 2 levels of immersion. Twenty-two healthy adults with no gait disorders, who were familiar with aquatic exercises. Subjects performed 6 trials of water running at a self-selected speed in chest and hip immersion. Force data were collected through an underwater force plate and running speed was measured with a photocell timing light system. Analysis of covariance was used for data analysis. Vertical forces corresponded to 0.80 and 0.98 times the subject's body weight at the chest and hip level, respectively. Anteroposterior forces corresponded to 0.26 and 0.31 times the subject's body weight at the chest and hip level, respectively. As the water level decreased the subjects ran faster. No significant differences were found for the force values between the immersions, probably due to variability in speed, which was self-selected. When thinking about load values in water running professionals should consider not only the immersion level, but also the speed, as it can affect the force components, mainly the anteroposterior one. Quantitative data on this subject could help professionals to conduct safer aqua-tic rehabilitation and physical conditioning protocols.

  7. Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Kai He; Yan Yongnian; Zhang Renji; Wang Xiaohong [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xinluan; Madhukar, Kumta Shekhar; Qin Ling [Department of Orthoapedics and Traumatology, The Chinese University of Hong Kong. Shatin, NT (Hong Kong)], E-mail: wangxiaohong@tsinghua.edu.cn, E-mail: kumta@cuhk.edu.hk, E-mail: qin@ort.cuhk.edu.hk

    2009-06-01

    After the removal of the giant cell tumor (GCT) of bone, it is necessary to fill the defects with adequate biomaterials. A new functional bone repair material with both stimulating osteoblast growth and inhibiting osteoclast activity has been developed with phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) as the additives of poly(lactic acid-co-glycolic acid) (PLGA)/calcium phosphate (TCP) scaffolds based on a double-nozzle low-temperature deposition manufacturing technique. A computer-assisted design model was used and the optimal fabrication parameters were determined through the manipulation of a pure PLGA/TCP system. The microscopic structures, water absorbability and mechanical properties of the samples with different P-chitosan and S-chitosan concentrations were characterized correspondingly. The results suggested that this unique composite porous scaffold material is a potential candidate for the repair of large bone defects after a surgical removal of GCT.

  8. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  9. Fractures of the talus: experience of two level 1 trauma centers.

    Science.gov (United States)

    Elgafy, H; Ebraheim, N A; Tile, M; Stephen, D; Kase, J

    2000-12-01

    Fifty-eight patients with 60 talar fractures were retrospectively reviewed. There were 39 men and 19 women. The age average was 32 (range, 14-74). Eighty six percent of the patients had multiple injuries. The most common mechanism of injury was a motor vehicle accident. Twenty-seven (45%) of the fractures were neck, 22 (36.7%) process, and 11 (18.3%) body. Forty-eight fractures had operative treatment and 12 had non-operative management. The average follow-up period was 30 months (range, 24-65). Thirty-two fractures (53.3%) developed subtalar arthritis. Two patients had subsequent subtalar fusion. Fifteen fractures (25%) developed ankle arthritis. None of these patients required ankle fusion. Fractures of the body of the talus were associated with the highest incidence of degenerative joint disease of both the subtalar and ankle joints. Ten fractures (16.6%) developed avascular necrosis (AVN), only one of which had subsequent slight collapse. Avascular necrosis occurred mostly after Hawkins Type 3 and 2 fractures of the talar neck. Three rating scores were used in this series to assess the outcome: the American Orthopedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score, Maryland Foot Score, and Hawkins Evaluation Criteria. The outcome was different with every rating system. However, the outcome with AOFAS Ankle-Hindfoot Score and Hawkins Evaluation Criteria were almost equivalent. Assessment with the three rating scores showed that the process fractures had the best results followed by the neck and then the body fractures.

  10. Analytical Design of Passive LCL Filter for Three-phase Two-level Power Factor Correction Rectifiers

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper proposes a comprehensive analytical LCL filter design method for three-phase two-level power factor correction rectifiers (PFCs). The high frequency converter current ripple generates the high frequency current harmonics that need to be attenuated with respect to the grid standards...

  11. On the structure of the master equation for a two-level system coupled to a thermal bath

    International Nuclear Information System (INIS)

    Vega, Inés de

    2015-01-01

    We derive a master equation from the exact stochastic Liouville–von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden). (paper)

  12. On the structure of the master equation for a two-level system coupled to a thermal bath

    Science.gov (United States)

    de Vega, Inés

    2015-04-01

    We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).

  13. Retailer's inventory system in a two-level trade credit financing with selling price discount and partial order cancelations

    Science.gov (United States)

    Thangam, A.

    2015-06-01

    In today's fast marketing over the Internet or online, many retailers want to trade at the same time and change their marketing strategy to attract more customers. Some of the customers may decide to cancel their orders partially with a retailer due to various reasons such as increase in customer's waiting time, loss of customer's goodwill on retailer's business, attractive promotional schemes offered by other retailers etc. Even though there is a lag in trading and order cancelation, this paper attempts to develop the retailer's inventory model with the effect of order cancelations during advance sales period. The retailer announces a price discount program during advance sales period to promote his sales and also he offers trade credit financing during the sales periods. The retailer availing trade credit period from his supplier offers a permissible delay period to his customers. The customer who gets an item has allowed paying on or before the permissible delay period which is accounted from the buying time rather than the start period of inventory sales. This accounts for significant changes in the calculations of interest payable and interest earned by the retailer. The retailer's total cost is minimized so as to find out the optimal replenishment cycle time and price discount policies through a solution procedure. The results derived in mathematical theorems are implemented in numerical examples and sensitivity analyses on several inventory parameters are obtained.

  14. Retailer's inventory system in a two-level trade credit financing with selling price discount and partial order cancellations

    Science.gov (United States)

    Thangam, A.

    2014-02-01

    In today's fast marketing over the Internet or online, many retailers want to trade at the same time and change their marketing strategy to attract more customers. Some of the customers may decide to cancel their orders partially with a retailer due to various reasons such as increase in customer's waiting time, loss of customer's goodwill on retailer's business, and attractive promotional schemes offered by other retailers. Even though there is a lag in trading and order cancellation, this paper attempts to develop the retailer's inventory model with the effect of order cancellations during advance sales period. The retailer announces a price discount program during advance sales period to promote his sales and also offers trade credit financing during the sales periods. The retailer availing trade credit period from his supplier offers a permissible delay period to his customers. The customer who gets an item is allowed to pay on or before the permissible delay period which is accounted from the buying time rather than from the start period of inventory sales. This accounts for significant changes in the calculations of interest payable and interest earned by the retailer. The retailer's total cost is minimized so as to find out the optimal replenishment cycle time and price discount policies through a solution procedure. The results derived in mathematical theorems are implemented in numerical examples, and sensitivity analyses on several inventory parameters are obtained.

  15. Role of spontaneous emission through operating transition in probe-field spectroscopy of two-level systems

    Energy Technology Data Exchange (ETDEWEB)

    Saprykin, E. G. [Russian Academy of Sciences, Institute of Automation and Electrometry, Siberian Branch (Russian Federation); Chernenko, A. A., E-mail: chernen@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Shalagin, A. M. [Russian Academy of Sciences, Institute of Automation and Electrometry, Siberian Branch (Russian Federation)

    2016-08-15

    Analytical and numerical investigations are carried out of the effect of spontaneous decay through operating transition on the shape of a resonance in the work of a probe field under a strong field applied to the transition. A narrow nonlinear resonance arising on transitions with long-living lower level in the work of a probe field can manifest itself in the form of a traditional minimum and a peak as a function of the first Einstein coefficient for the operating transition. The transformation of the resonance from a minimum to a peak is attributed to the specific character of relaxation of lower-level population beatings on a closed or almost closed transition (the decay of the upper level occurs completely or almost completely through the operating transition).

  16. Effects of quasiparticle tunnelling in a circuit-QED realization of a strongly driven two-level system

    International Nuclear Information System (INIS)

    Leppäkangas, J; De Graaf, S E; Adamyan, A; Fogelström, M; Danilov, A V; Kubatkin, S E; Johansson, G; Lindström, T

    2013-01-01

    We experimentally and theoretically study the frequency shift of a driven cavity coupled to a superconducting charge qubit. In addition to previous studies, here we also consider drive strengths large enough to energetically allow for quasiparticle creation. Quasiparticle tunnelling leads to the inclusion of more than two charge states in the dynamics. To explain the observed effects, we develop a master equation for the microwave dressed charge states, including quasiparticle tunnelling. A bimodal behaviour of the frequency shift as a function of gate voltage can be used for sensitive charge detection. However, at weak drives, the charge sensitivity is significantly reduced by nonequilibrium quasiparticles, which induce transitions to a non-sensitive state. Unexpectedly, at high-enough drives, the quasiparticle tunnelling enables a very fast relaxation channel to the sensitive state. In this regime, the charge sensitivity is thus robust against externally injected quasiparticles and the desired dynamics prevail over a broad range of temperatures. We find very good agreement between the theory and experiment over a wide range of drive strengths and temperatures. (paper)

  17. Observation of the widening and shifting of EIT windows in a quasi-degenerate two-level atomic system

    International Nuclear Information System (INIS)

    Dong Yabin; Zhang Junxiang; Wang Haihong; Gao Jiangrui

    2006-01-01

    Widening and shifting the EIT windows in a closed transition F e = 2 ↔ F g = 3 driven by linearly polarized coupling lights and probed by circularly polarized lights are observed in Cs vapour. It is shown that by increasing the strength of magnetic field i.e. Zeeman splitting in the upper and lower levels, the electromagnetically induced transparency window is divided into two windows and the EIT maxima are shifted away from the zero detuning. In the contrast, if the strength of the magnetic field is fixed and the Rabi frequency of coupling beam is increased, the two EIT windows become wider, and the gap between the two EIT windows becomes smaller and smaller. These effects are also theoretically discussed and they are qualitatively in agreement with the theoretical results

  18. Improving the recommender algorithms with the detected communities in bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Duo; Xiao, Jinghua

    2017-04-01

    Recommender system offers a powerful tool to make information overload problem well solved and thus gains wide concerns of scholars and engineers. A key challenge is how to make recommendations more accurate and personalized. We notice that community structures widely exist in many real networks, which could significantly affect the recommendation results. By incorporating the information of detected communities in the recommendation algorithms, an improved recommendation approach for the networks with communities is proposed. The approach is examined in both artificial and real networks, the results show that the improvement on accuracy and diversity can be 20% and 7%, respectively. This reveals that it is beneficial to classify the nodes based on the inherent properties in recommender systems.

  19. PSCAD modeling of a two-level space vector pulse width modulation algorithm for power electronics education

    Directory of Open Access Journals (Sweden)

    Ahmet Mete Vural

    2016-09-01

    Full Text Available This paper presents the design details of a two-level space vector pulse width modulation algorithm in PSCAD that is able to generate pulses for three-phase two-level DC/AC converters with two different switching patterns. The presented FORTRAN code is generic and can be easily modified to meet many other kinds of space vector modulation strategies. The code is also editable for hardware programming. The new component is tested and verified by comparing its output as six gating signals with those of a similar component in MATLAB library. Moreover the component is used to generate digital signals for closed-loop control of STATCOM for reactive power compensation in PSCAD. This add-on can be an effective tool to give students better understanding of the space vector modulation algorithm for different control tasks in power electronics area, and can motivate them for learning.

  20. Adiabatic interpretation of a two-level atom diode, a laser device for unidirectional transmission of ground-state atoms

    International Nuclear Information System (INIS)

    Ruschhaupt, A.; Muga, J. G.

    2006-01-01

    We present a generalized two-level scheme for an 'atom diode', namely, a laser device that lets a two-level ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation. The conditions to break down the approximation, which imply also the diode failure, are analyzed

  1. Two-level MOC calculation scheme in APOLLO2 for cross-section library generation for LWR hexagonal assemblies

    International Nuclear Information System (INIS)

    Petrov, Nikolay; Todorova, Galina; Kolev, Nikola; Damian, Frederic

    2011-01-01

    The accurate and efficient MOC calculation scheme in APOLLO2, developed by CEA for generating multi-parameterized cross-section libraries for PWR assemblies, has been adapted to hexagonal assemblies. The neutronic part of this scheme is based on a two-level calculation methodology. At the first level, a multi-cell method is used in 281 energy groups for cross-section definition and self-shielding. At the second level, precise MOC calculations are performed in a collapsed energy mesh (30-40 groups). In this paper, the application and validation of the two-level scheme for hexagonal assemblies is described. Solutions for a VVER assembly are compared with TRIPOLI4® calculations and direct 281g MOC solutions. The results show that the accuracy is close to that of the 281g MOC calculation while the CPU time is substantially reduced. Compared to the multi-cell method, the accuracy is markedly improved. (author)

  2. Fabrication of Ni stamp with high aspect ratio, two-leveled, cylindrical microstructures using dry etching and electroplating

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Hansen, Ole

    2015-01-01

    obtained by defining a reservoir and a separating trench with different depths of 85 and 125 μm, respectively, in a single embossing step. The fabrication of the required two leveled stamp is done using a modified DEEMO (dry etching, electroplating and molding) process. Dry etching using the Bosch process...... and electroplating are optimized to obtain a stamp with smooth stamp surfaces and a positive sidewall profile. Using this stamp, hot embossing is performed successfully with excellent yield and high replication fidelity....

  3. Coherent control of the group velocity in a dielectric slab doped with duplicated two-level atoms

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2016-01-01

    Coherent control of reflected and transmitted pulses is investigated theoretically through a slab doped with atoms in a duplicated two-level configuration. When a strong control field and a relatively weak probe field are employed, coherent control of the group velocity is achieved via changing the phase shift ϕ between control and probe fields. Furthermore, the peak values in the delay time of the reflected and transmitted pulses are also studied by varying the phase shift ϕ.

  4. Performance and meat quality traits of beef heifers fed with two levels of concentrate and ruminally undegradable protein.

    Science.gov (United States)

    Duarte, Marcio de Souza; Paulino, Pedro Veiga Rodrigues; Valadares Filho, Sebastião de Campos; Paulino, Mario Fonseca; Detmann, Edenio; Zervoudakis, Joanis Tilemahos; Monnerat, João Paulo Ismerio dos Santos; Viana, Gabriel da Silva; Silva, Luiz Henrique P; Serão, Nicola Vergara Lopes

    2011-04-01

    The effects of two levels of concentrate and ruminally undegradable protein (RUP) on performance, intake, digestibility, carcass characteristics, meat quality traits, and commercial cuts yield were assessed. Twenty crossbred heifers (240 kg average body weight) were used. At the beginning of the trial, four animals were slaughtered as reference group and the 16 remaining animals were randomly assigned to four treatments, in a 2 × 2 factorial design: two levels of concentrate (40% and 80%, dry matter (DM) basis) and two levels of RUP (48.79% and 27.19% of CP). At the end of the trial, all the animals were slaughtered. There was no interaction (P > 0.05) between concentrate and RUP levels. Dry matter intake and nutrients digestibility was not affected (P > 0.05) by RUP level. Heifers fed the highest RUP level had greater (P  0.05) DMI and ADG. Heifers fed diets with 80% concentrate had greater intake of TDN and EE, and lower intake of NDF (P RUP levels did not affect (P > 0.05) the carcass characteristics and carcass gain composition. Heifers fed 80% concentrate diets had larger (P  0.05) the composition of carcass gain. There was no effect (P > 0.05) of RUP and concentrate levels on meat quality traits and commercial cut yields.

  5. An Indication of Reliability of the Two-Level Approach of the AWIN Welfare Assessment Protocol for Horses

    Directory of Open Access Journals (Sweden)

    Irena Czycholl

    2018-01-01

    Full Text Available To enhance feasibility, the Animal Welfare Indicators (AWIN assessment protocol for horses consists of two levels: the first is a visual inspection of a sample of horses performed from a distance, the second a close-up inspection of all horses. The aim was to analyse whether information would be lost if only the first level were performed. In this study, 112 first and 112 second level assessments carried out on a subsequent day by one observer were compared by calculating the Spearman’s Rank Correlation Coefficient (RS, Intraclass Correlation Coefficients (ICC, Smallest Detectable Changes (SDC and Limits of Agreements (LoA. Most indicators demonstrated sufficient reliability between the two levels. Exceptions were the Horse Grimace Scale, the Avoidance Distance Test and the Voluntary Human Approach Test (e.g., Voluntary Human Approach Test: RS: 0.38, ICC: 0.38, SDC: 0.21, LoA: −0.25–0.17, which could, however, be also interpreted as a lack of test-retest reliability. Further disagreement was found for the indicator consistency of manure (RS: 0.31, ICC: 0.38, SDC: 0.36, LoA: −0.38–0.36. For these indicators, an adaptation of the first level would be beneficial. Overall, in this study, the division into two levels was reliable and might therewith have the potential to enhance feasibility in other welfare assessment schemes.

  6. Singularities of classical and quantum correlations at critical points of the Lipkin–Meshkov–Glick model in bipartitions and tripartitions of spins

    International Nuclear Information System (INIS)

    Zhang, Xiu-xing; Li, Fu-li

    2013-01-01

    By using the lowest order expansion in the number of spins, we study the classical correlation (CC) and quantum correlations (QCs) between two spin subgroups of the Lipkin–Meshkov–Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartitions, we find that the CC and all the QCs are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartitions, however, the CC is still divergent but the QCs remain finite at the critical point. The present result shows that the CC is very robust but the QCs are much frangible to the environment disturbance.

  7. Comparison of Cervical Kinematics, Pain, and Functional Disability Between Single- and Two-level Anterior Cervical Discectomy and Fusion.

    Science.gov (United States)

    Chien, Andy; Lai, Dar-Ming; Wang, Shwu-Fen; Hsu, Wei-Li; Cheng, Chih-Hsiu; Wang, Jaw-Lin

    2016-08-01

    A prospective, time series design. The purpose of this study is two-fold: firstly, to investigate the impact of altered cervical alignment and range of motion (ROM) on patients' self-reported outcomes after anterior cervical discectomy and fusion (ACDF), and secondly, to comparatively differentiate the influence of single- and two-level ACDF on the cervical ROM and adjacent segmental kinematics up to 12-month postoperatively. ACDF is one of the most commonly employed surgical interventions to treat degenerative disc disease. However, there are limited in vivo data on the impact of ACDF on the cervical kinematics and its association with patient-reported clinical outcomes. Sixty-two patients (36 males; 55.63 ± 11.6 yrs) undergoing either a single- or consecutive two-level ACDF were recruited. The clinical outcomes were assessed with the Pain Visual Analogue Scale (VAS) and the Neck Disability Index (NDI). Radiological results included cervical lordosis, global C2-C7 ROM, ROM of the Functional Spinal Unit (FSU), and its adjacent segments. The outcome measures were collected preoperatively and then at 3, 6, and 12-month postoperatively. A significant reduction of both VAS and NDI was found for both groups from the preoperative to 3-month period (P < 0.01). Pearson correlation revealed no significant correlation between global ROM with neither VAS (P = 0.667) nor NDI (P = 0.531). A significant reduction of global ROM was identified for the two-level ACDF group at 12 months (P = 0.017) but not for the single-level group. A significant interaction effect was identified for the upper adjacent segment ROM (P = 0.024) but not at the lower adjacent segment. Current study utilized dynamic radiographs to comparatively evaluate the biomechanical impact of single- and two-level ACDF. The results highlighted that the two-level group demonstrated a greater reduction of global ROM coupled with an increased upper adjacent segmental compensatory motions that

  8. Effects of high-order correlations on personalized recommendations for bipartite networks

    Science.gov (United States)

    Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng

    2010-02-01

    In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.

  9. Two-level anterior lumbar interbody fusion with percutaneous pedicle screw fixation. A minimum 3-year follow-up study

    International Nuclear Information System (INIS)

    Lee, Dong-Yeob; Lee, Sang-Ho; Maeng, Dae-Hyeon

    2010-01-01

    The clinical and radiological outcomes of two-level anterior lumbar interbody fusion (ALIF) with percutaneous pedicle screw fixation (PSF) were evaluated in 24 consecutive patients who underwent two level ALIF with percutaneous PSF for segmental instability and were followed up for more than 3 years. Clinical outcomes were assessed using a visual analogue scale (VAS) score and the Oswestry Disability Index (ODI). Sagittal alignment, bone union, and adjacent segment degeneration (ASD) were assessed using radiography and magnetic resonance imaging. The mean age of the patients at the time of operation was 56.3 years (range 39-70 years). Minor complications occurred in 2 patients in the perioperative period. At a mean follow-up duration of 39.4 months (range 36-42 months), VAS scores for back pain and leg pain, and ODI score decreased significantly (from 6.5, 6.8, and 46.9% to 3.0, 1.9, and 16.3%, respectively). Clinical success was achieved in 22 of the 24 patients. The mean segmental lordosis, whole lumbar lordosis, and sacral tilt significantly increased after surgery (from 25.1deg, 39.2deg, and 32.6deg to 32.9deg, 44.5deg, and 36.6deg, respectively). Solid fusion was achieved in 21 patients. ASD was found in 8 of the 24 patients. No patient underwent revision surgery due to nonunion or ASD. Two-level ALIF with percutaneous PSF yielded satisfactory clinical and radiological outcomes and could be a useful alternative to posterior fusion surgery. (author)

  10. Two-level anterior lumbar interbody fusion with percutaneous pedicle screw fixation. A minimum 3-year follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Yeob; Lee, Sang-Ho; Maeng, Dae-Hyeon [Wooridul Spine Hospital, Seoul (Korea, Republic of)

    2010-08-15

    The clinical and radiological outcomes of two-level anterior lumbar interbody fusion (ALIF) with percutaneous pedicle screw fixation (PSF) were evaluated in 24 consecutive patients who underwent two level ALIF with percutaneous PSF for segmental instability and were followed up for more than 3 years. Clinical outcomes were assessed using a visual analogue scale (VAS) score and the Oswestry Disability Index (ODI). Sagittal alignment, bone union, and adjacent segment degeneration (ASD) were assessed using radiography and magnetic resonance imaging. The mean age of the patients at the time of operation was 56.3 years (range 39-70 years). Minor complications occurred in 2 patients in the perioperative period. At a mean follow-up duration of 39.4 months (range 36-42 months), VAS scores for back pain and leg pain, and ODI score decreased significantly (from 6.5, 6.8, and 46.9% to 3.0, 1.9, and 16.3%, respectively). Clinical success was achieved in 22 of the 24 patients. The mean segmental lordosis, whole lumbar lordosis, and sacral tilt significantly increased after surgery (from 25.1deg, 39.2deg, and 32.6deg to 32.9deg, 44.5deg, and 36.6deg, respectively). Solid fusion was achieved in 21 patients. ASD was found in 8 of the 24 patients. No patient underwent revision surgery due to nonunion or ASD. Two-level ALIF with percutaneous PSF yielded satisfactory clinical and radiological outcomes and could be a useful alternative to posterior fusion surgery. (author)

  11. Case report of right hamate hook fracture in a patient with previous fracture history of left hamate hook: is it hamate bipartite?

    Directory of Open Access Journals (Sweden)

    Norton Sandra

    2006-10-01

    Full Text Available Abstract Background Hamate hook fracture is a common fracture in golfers and others who play sports that involve rackets or sticks such as tennis or hockey. This patient had a previous hamate fracture in the opposing wrist along with potential features of hamate bipartite. Case presentation A 19 year old male presented with a complaint of right wrist pain on the ulnar side of the wrist with no apparent mechanism of injury. The pain came on gradually one week before being seen in the office and he reported no prior care for the complaint. His history includes traumatic left hamate hook fracture with surgical excision. Conclusion The patient was found to have marked tenderness over the hamate and with a prior fracture to the other wrist, computed tomography of the wrist was ordered revealing a fracture to the hamate hook in the right wrist. He was referred for surgical evaluation and the hook of the hamate was excised. Post-surgically, the patient was able to return to normal activity within eight weeks. This case is indicative of fracture rather than hamate bipartite. This fracture should be considered in a case of ulnar sided wrist pain where marked tenderness is noted over the hamate, especially after participation in club or racket sports.

  12. 2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.

    Science.gov (United States)

    Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen

    2017-09-19

    A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.

  13. A Global Optimizing Policy for Decaying Items with Ramp-Type Demand Rate under Two-Level Trade Credit Financing Taking Account of Preservation Technology

    Directory of Open Access Journals (Sweden)

    S. R. Singh

    2013-01-01

    Full Text Available An inventory system for deteriorating items, with ramp-type demand rate, under two-level trade credit policy taking account of preservation technology is considered. The objective of this study is to develop a deteriorating inventory policy when the supplier provides to the retailer a permissible delay in payments, and during this credit period, the retailer accumulates the revenue and earns interest on that revenue; also the retailer invests on the preservation technology to reduce the rate of product deterioration. Shortages are allowed and partially backlogged. Sufficient conditions of the existence and uniqueness of the optimal replenishment policy are provided, and an algorithm, for its determination, is proposed. Numerical examples draw attention to the obtained results, and the sensitivity analysis of the optimal solution with respect to leading parameters of the system is carried out.

  14. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

    Science.gov (United States)

    Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

    2017-03-01

    In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Political legitimacy and European monetary union: contracts, constitutionalism and the normative logic of two-level games

    Science.gov (United States)

    Bellamy, Richard; Weale, Albert

    2015-01-01

    ABSTRACT The crisis of the euro area has severely tested the political authority of the European Union (EU). The crisis raises questions of normative legitimacy both because the EU is a normative order and because the construction of economic and monetary union (EMU) rested upon a theory that stressed the normative value of the depoliticization of money. However, this theory neglected the normative logic of the two-level game implicit in EMU. It also neglected the need for an impartial and publically acceptable constitutional order to acknowledge reasonable disagreements. By contrast, we contend that any reconstruction of the EU's economic constitution has to pay attention to reconciling a European monetary order with the legitimacy of member state governance. The EU requires a two-level contract to meet this standard. Member states must treat each other as equals and be representative of and accountable to their citizens on an equitable basis. These criteria entail that the EU's political legitimacy requires a form of demoicracy that we call ‘republican intergovernmentalism’. Only rules that could be acceptable as the product of a political constitution among the peoples of Europe can ultimately meet the required standards of political legitimacy. Such a political constitution could be brought about through empowering national parliaments in EU decision-making. PMID:26924935

  16. Can centralized sanctioning promote trust in social dilemmas? A two-level trust game with incomplete information.

    Science.gov (United States)

    Wang, Raymond Yu; Ng, Cho Nam

    2015-01-01

    The problem of trust is a paradigmatic social dilemma. Previous literature has paid much academic attention on effects of peer punishment and altruistic third-party punishment on trust and human cooperation in dyadic interactions. However, the effects of centralized sanctioning institutions on decentralized reciprocity in hierarchical interactions remain to be further explored. This paper presents a formal two-level trust game with incomplete information which adds an authority as a strategic purposive actor into the traditional trust game. This model allows scholars to examine the problem of trust in more complex game theoretic configurations. The analysis demonstrates how the centralized institutions might change the dynamics of reciprocity between the trustor and the trustee. Findings suggest that the sequential equilibria of the newly proposed two-level model simultaneously include the risk of placing trust for the trustor and the temptation of short-term defection for the trustee. Moreover, they have shown that even a slight uncertainty about the type of the newly introduced authority might facilitate the establishment of trust and reciprocity in social dilemmas.

  17. Can centralized sanctioning promote trust in social dilemmas? A two-level trust game with incomplete information.

    Directory of Open Access Journals (Sweden)

    Raymond Yu Wang

    Full Text Available The problem of trust is a paradigmatic social dilemma. Previous literature has paid much academic attention on effects of peer punishment and altruistic third-party punishment on trust and human cooperation in dyadic interactions. However, the effects of centralized sanctioning institutions on decentralized reciprocity in hierarchical interactions remain to be further explored. This paper presents a formal two-level trust game with incomplete information which adds an authority as a strategic purposive actor into the traditional trust game. This model allows scholars to examine the problem of trust in more complex game theoretic configurations. The analysis demonstrates how the centralized institutions might change the dynamics of reciprocity between the trustor and the trustee. Findings suggest that the sequential equilibria of the newly proposed two-level model simultaneously include the risk of placing trust for the trustor and the temptation of short-term defection for the trustee. Moreover, they have shown that even a slight uncertainty about the type of the newly introduced authority might facilitate the establishment of trust and reciprocity in social dilemmas.

  18. Political legitimacy and European monetary union: contracts, constitutionalism and the normative logic of two-level games.

    Science.gov (United States)

    Bellamy, Richard; Weale, Albert

    2015-02-07

    The crisis of the euro area has severely tested the political authority of the European Union (EU). The crisis raises questions of normative legitimacy both because the EU is a normative order and because the construction of economic and monetary union (EMU) rested upon a theory that stressed the normative value of the depoliticization of money. However, this theory neglected the normative logic of the two-level game implicit in EMU. It also neglected the need for an impartial and publically acceptable constitutional order to acknowledge reasonable disagreements. By contrast, we contend that any reconstruction of the EU's economic constitution has to pay attention to reconciling a European monetary order with the legitimacy of member state governance. The EU requires a two-level contract to meet this standard. Member states must treat each other as equals and be representative of and accountable to their citizens on an equitable basis. These criteria entail that the EU's political legitimacy requires a form of demoi cracy that we call 'republican intergovernmentalism'. Only rules that could be acceptable as the product of a political constitution among the peoples of Europe can ultimately meet the required standards of political legitimacy. Such a political constitution could be brought about through empowering national parliaments in EU decision-making.

  19. Stability of various entanglements in the interaction between two two-level atoms with a quantized field under the influences of several decay sources

    Science.gov (United States)

    Valizadeh, Sh.; Tavassoly, M. K.; Yazdanpanah, N.

    2018-02-01

    In this paper the interaction between two two-level atoms with a single-mode quantized field is studied. To achieve exact information about the physical properties of the system, one should take into account various sources of dissipation such as photon leakage of cavity, spontaneous emission rate of atoms, internal thermal radiation of cavity and dipole-dipole interaction between the two atoms. In order to achieve the desired goals, we obtain the time evolution of the associated density operator by solving the time-dependent Lindblad equation corresponding to the system. Then, we evaluate the temporal behavior of total population inversion and quantum entanglement between the evolved subsystems, numerically. We clearly show that how the damping parameters affect on the dynamics of considered properties. By analyzing the numerical results, we observe that increasing each of the damping sources leads to faster decay of total population inversion. Also, it is observed that, after starting the interaction, the entanglement between one atom with other parts of the system as well as the entanglement between "atom-atom" subsystem and the "field", tend to some constant values very soon. Moreover, the stable values of entanglement are reduced via increasing the damping factor Γ A (ΓA^{(1)} = ΓA^{(2)} = ΓA ) where ΓA is the spontaneous emission rate of each atom. In addition, we find that by increasing the thermal photons, the entropies (entanglements) tend sooner to some increased stable values. Accordingly, we study the atom-atom entanglement by evaluating the concurrence under the influence of dissipation sources, too. At last, the effects of dissipation sources on the genuine tripartite entanglement between the three subsystems include of two two-level atoms and a quantized field are numerically studied. Due to the important role of stationary entanglement in quantum information processing, our results may provide useful hints for practical protocols which require

  20. Supply chain model with price- and trade credit-sensitive demand under two-level permissible delay in payments

    Science.gov (United States)

    Giri, B. C.; Maiti, T.

    2013-05-01

    This article develops a single-manufacturer and single-retailer supply chain model under two-level permissible delay in payments when the manufacturer follows a lot-for-lot policy in response to the retailer's demand. The manufacturer offers a trade credit period to the retailer with the contract that the retailer must share a fraction of the profit earned during the trade credit period. On the other hand, the retailer provides his customer a partial trade credit which is less than that of the manufacturer. The demand at the retailer is assumed to be dependent on the selling price and the trade credit period offered to the customers. The average net profit of the supply chain is derived and an algorithm for finding the optimal solution is developed. Numerical examples are given to demonstrate the coordination policy of the supply chain and examine the sensitivity of key model-parameters.

  1. Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-Q resonator

    International Nuclear Information System (INIS)

    Huelga, S.F.; Marshall, T.W.; Santos, E.

    1996-01-01

    Following the strategy of showing specific quantum effects by means of the violation of a classical inequality, a pair of Bell-type inequalities is derived on the basis of certain additional assumptions, whose plausibility is discussed in detail. Such inequalities are violated by the quantum mechanical predictions for the interaction of a two-level Rydberg atom with a single mode sustained by a high-Q resonator. The experimental conditions required in order to show the existence of forbidden values, according to a hidden variables formalism, in a real experiment are analyzed for various initial field statistics. In particular, the revival dynamics expected for the interaction with a coherent field leads to classically forbidden values, which would indicate a purely quantum effect. copyright 1996 The American Physical Society

  2. LCL filter design for three-phase two-level power factor correction using line impedance stabilization network

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2016-01-01

    This paper presents LCL filter design method for three-phase two-level power factor correction (PFC) using line impedance stabilization network (LISN). A straightforward LCL filter design along with variation in grid impedance is not simply achievable and inevitably lead to an iterative solution...... for filter. By introducing of fast power switches for PFC applications such as silicon-carbide, major current harmonics around the switching frequency drops in the region that LISN can actively provide well-defined impedance for measuring the harmonics (i.e. 9 kHz- 30MHz). Therefore, LISN can be replaced...... is derived using the current ripple behavior of converter-side inductor. The grid-side inductor is achieved as a function of LISN impedance to fulfill the grid regulation. To verify the analyses, an LCL filter is designed for a 5 kW SiC-based PFC. The simulation and experimental results support the validity...

  3. An acceleration of the characteristics by a space-angle two-level method using surface discontinuity factors

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, G. [Commissariat a l' Energie Atomique, CEA de Saclay, DM2S/SERMA/LENR, 91191, Gif-sur-Yvette (France)

    2006-07-01

    We present a non-linear space-angle two-level acceleration scheme for the method of the characteristics (MOC). To the fine level on which the MOC transport calculation is performed, we associate a more coarsely discretized phase space in which a low-order problem is solved as an acceleration step. Cross sections on the coarse level are obtained by a flux-volume homogenisation technique, which entails the non-linearity of the acceleration. Discontinuity factors per surface are introduced as additional degrees of freedom on the coarse level in order to ensure the equivalence of the heterogeneous and the homogenised problem. After each fine transport iteration, a low-order transport problem is iteratively solved on the homogenised grid. The solution of this problem is then used to correct the angular moments of the flux resulting from the previous free transport sweep. Numerical tests for a given benchmark have been performed. Results are discussed. (authors)

  4. An acceleration of the characteristics by a space-angle two-level method using surface discontinuity factors

    International Nuclear Information System (INIS)

    Grassi, G.

    2006-01-01

    We present a non-linear space-angle two-level acceleration scheme for the method of the characteristics (MOC). To the fine level on which the MOC transport calculation is performed, we associate a more coarsely discretized phase space in which a low-order problem is solved as an acceleration step. Cross sections on the coarse level are obtained by a flux-volume homogenisation technique, which entails the non-linearity of the acceleration. Discontinuity factors per surface are introduced as additional degrees of freedom on the coarse level in order to ensure the equivalence of the heterogeneous and the homogenised problem. After each fine transport iteration, a low-order transport problem is iteratively solved on the homogenised grid. The solution of this problem is then used to correct the angular moments of the flux resulting from the previous free transport sweep. Numerical tests for a given benchmark have been performed. Results are discussed. (authors)

  5. A Two-level-games Analysis of AFTA Agreements: What Caused ASEAN States to Move towards Economic Integration?

    Directory of Open Access Journals (Sweden)

    Yi-hung Chiou

    2010-04-01

    Full Text Available The goal of this article is to investigate the conditions under which ASEAN states are more likely to pursue regional economic integration, namely, a series of ASEAN Free Trade Area (AFTA agreements/ protocols. Adopting Putnam’s two-level-games model, this article examines the influences of domestic politics, political elites’ preferences, economic performance, and external impacts. Through the construction of a set of hypotheses, this article investigates five AFTA agreements/ protocols and the conditions of ASEAN states during the 1992–2003 period. The findings indicate that political leaders’ preferences have played a pivotal role in the development of the AFTA. Economic performance and domestic support in individual states has also affected the AFTA. The close link between AFTA agreements and external impacts reveals that the AFTA’s inherent nature is defensive.

  6. Comparison of the effects of growth hormone on acylated ghrelin and following acute intermittent exercise in two levels of obesity

    Directory of Open Access Journals (Sweden)

    Majid Gholipour

    2013-08-01

    Full Text Available Background: The prevalence of obesity has risen enormously over the past few decad-es. Both food intake (Appetite and energy expenditure can influence body weight. Acylated ghrelin enhances appetite, and its plasma level is suppressed by growth horm-one. The present study, examines the effects of an intermittent exercise with progress-ive intensities on acylated ghrelin, appetite, and growth hormone in inactive male students with two levels of obesity.Methods: Eleven inactive males were allocated into two groups on the basis of their body mass index (BMI. Six subjects in group one, BMI= 31.18±0.92 kg/m2, and five subjects in group two, BMI= 36.94±2.25 kg/m2, ran on the treadmill with progressive intensities of 50, 60, 70 and 80% of VO2max for 10, 10, 5, and 2 min respectively. Blood samples were collected before the exercise (as the resting values, after each workload (during the exercise, and at 30, 60, and 120 min (during recovery.Results: Plasma acylated ghrelin concentrations and hunger ratings in two groups were decreased and remained significantly lower than resting values (P=0.008 and P=0.002 respectively at the end of the trial and there was no significant differences between groups. Growth hormone levels in two groups were increased and remained significant-ly higher than resting values (groups one P=0.012, group two P=0.005 at the end of the trial and there was no significant differences between groups. In addition, there were no significant differences between area under the curves (AUC values over total periods for acylated ghrelin, hunger ratings, and growth hormone in two groups.Conclusion: These findings indicate that individuals with two levels of obesity have the same response to the different intensities of treadmill running and two hours thereafter during recovery period, which can be considered for designing a more effective weighting loss training program.

  7. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae

    Directory of Open Access Journals (Sweden)

    Vandewalle Pierre

    2011-03-01

    Full Text Available Abstract Background Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the

  8. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)

    Science.gov (United States)

    2011-01-01

    Background Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide

  9. A two-level discount model for coordinating a decentralized supply chain considering stochastic price-sensitive demand

    Science.gov (United States)

    Heydari, Jafar; Norouzinasab, Yousef

    2015-12-01

    In this paper, a discount model is proposed to coordinate pricing and ordering decisions in a two-echelon supply chain (SC). Demand is stochastic and price sensitive while lead times are fixed. Decentralized decision making where downstream decides on selling price and order size is investigated. Then, joint pricing and ordering decisions are extracted where both members act as a single entity aim to maximize whole SC profit. Finally, a coordination mechanism based on quantity discount is proposed to coordinate both pricing and ordering decisions simultaneously. The proposed two-level discount policy can be characterized from two aspects: (1) marketing viewpoint: a retail price discount to increase the demand, and (2) operations management viewpoint: a wholesale price discount to induce the retailer to adjust its order quantity and selling price jointly. Results of numerical experiments demonstrate that the proposed policy is suitable to coordinate SC and improve the profitability of SC as well as all SC members in comparison with decentralized decision making.

  10. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  11. A Novel Scheme to Minimize Hop Count for GAF in Wireless Sensor Networks: Two-Level GAF

    Directory of Open Access Journals (Sweden)

    Vaibhav Soni

    2015-01-01

    Full Text Available In wireless sensor networks, geographic adaptive fidelity (GAF is one of the most popular energy-aware routing protocols. It conserves energy by identifying equivalence between sensors from a routing perspective and then turning off unnecessary sensors, while maintaining the connectivity of the network. Nevertheless, the traditional GAF still cannot reach the optimum energy usage since it needs more number of hops to transmit data packets to the sink. As a result, it also leads to higher packet delay. In this paper, we propose a modified version of GAF to minimize hop count for data routing, called two-level GAF (T-GAF. Furthermore, we use a generalized version of GAF called Diagonal-GAF (DGAF where two diagonal adjacent grids can also directly communicate. It has an advantage of less overhead of coordinator election based on the residual energy of sensors. Analysis and simulation results show significant improvements of the proposed work comparing to traditional GAF in the aspect of total hop count, energy consumption, total distance covered by the data packet before reaching the sink, and packet delay. As a result, compared to traditional GAF, it needs 40% to 47% less hop count and consumes 27% to 35% less energy to extend the network lifetime.

  12. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    Science.gov (United States)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  13. Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Li Gaoxiang; Evers, Joerg; Keitel, Christoph H

    2005-01-01

    We investigate the spontaneous-emission properties of a two-level atom embedded in a three-dimensional anisotropic photonic crystal. In addition to the modified density of states, the atom is driven by a coherent intense low-frequency field (LFF), which creates additional multiphoton decay channels with the exchange of two low-frequency photons and one spontaneous photon during an atomic transition. Due to the low frequency of the applied field, the various transition pathways may interfere with each other and thus give rise to a modified system dynamics. We find that even if all the atomic (bare and induced) transition frequencies are in the conducting band of the photonic crystal, there still may exist a photon-atom bound state in coexistence with propagating modes. The system also allows us to generate narrow lines in the spontaneous-emission spectrum. This spectrum is a function of the distance of the observer from the atom due to the band gap in the photonic crystal. The system properties depend on three characteristic frequencies, which are influenced by quantum interference effects. Thus these results can be attributed to a combination of interference and band-gap effects

  14. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N.

    Science.gov (United States)

    Li, Shuailin; Liang, Chutao; Shangguan, Zhouping

    2017-12-31

    The incorporation of biochar into soil has been proposed as a strategy for enhancing soil fertility and crop productivity. However, there is limited information regarding the responses of soil respiration and the C, N and P cycles to the addition of apple branch biochar at different rates to soil with different levels of N. A 108-day incubation experiment was conducted to investigate the effects of the rate of biochar addition (0, 1, 2 and 4% by mass) on soil respiration and nutrients and the activities of enzymes involved in C, N and P cycling under two levels of N. Our results showed that the application of apple branch biochar at rates of 2% and 4% increased the C-mineralization rate, while biochar amendment at 1% decreased the C-mineralization rate, regardless of the N level. The soil organic C and microbial biomass C and P contents increased as the rate of biochar addition was increased to 2%. The biochar had negative effects on β-glucosidase, N-acetyl-β-glucosaminidase and urease activity in N-poor soil but exerted a positive effect on all of these factors in N-rich soil. Alkaline phosphatase activity increased with an increase in the rate of biochar addition, but the available P contents after all biochar addition treatments were lower than those obtained in the treatments without biochar. Biochar application at rates of 2% and 4% reduced the soil nitrate content, particularly in N-rich soil. Thus, apple branch biochar has the potential to sequester C and improve soil fertility, but the responses of soil C mineralization and nutrient cycling depend on the rate of addition and soil N levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Productive and metabolic response to two levels of corn silage supplementation in grazing dairy cows in early lactation during autumn

    Directory of Open Access Journals (Sweden)

    Álvaro Morales

    2014-04-01

    Full Text Available Corn (Zea mays L. silage (CS is a nutritious food that can be used as a supplement in dairy cows. The aim of this study was to determine the effect of supplementation with two amounts of CS on milk production and composition, live weight and body condition, as well as on some blood indicators for energy and protein metabolism on dairy cows in early lactation and grazing low mass pasture during autumn. The study was carried out in 40 Holstein Friesian cows over 57 d. Prior to experimental treatment, milk production and days of lactation averaged 24.1 ± 2.8 kg d-1 and 62 ± 14 d, respectively. The dietary treatments consisted of two levels of supplementation with CS; 4.5 and 9 kg DM cow-1 d-1 (treatments LCS and HCS, respectively. Additionally, all the cows received a pasture allowance of 21 and 3 kg DM cow-1 d-1 of concentrate. Milk composition was determined using infrared spectrophotometry, while blood indicators were obtained using an autoanalyzer. There were not differences between treatments regarding milk production or composition, total DM or energy intake. Herbage and protein intake was higher for LCS treatment (P < 0.001. Increasing supplementation decreased (P < 0.001 daily weight gain but did not affect body condition. Plasma concentrations of βOH-butyrate were lower (P = 0.038 for the LCS treatment; while urea concentrations were higher (P = 0.003, with no differences for non-esterified fatty acids (NEFA concentrations. Supplementation with 4.5 kg d-1 of CS was sufficient to meet the production requirements of the cows.

  16. Identification of immiscible NAPL contaminant sources in aquifers by a modified two-level saturation based imperialist competitive algorithm

    Science.gov (United States)

    Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.

    2017-07-01

    A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. A model is proposed to identify characteristics of immiscible NAPL contaminant sources. The contaminant is immiscible in water and multi-phase flow is simulated. The model is a multi-level saturation-based optimization algorithm based on ICA. Each answer string in second level is divided into a set of provinces. Each ICA is modified by incorporating a new knock the base model.

  17. The biopsychosocial characteristics proceding the pregnancy in the teenages from two level one medical centers in Popayán

    Directory of Open Access Journals (Sweden)

    Sandra Yamile Martínez

    2010-12-01

    Full Text Available Objetive: To identify biopsychosocial characteristics preceding the pregnancy in teenagers that went to see the doctor in two level one medical centers in Popayán. Method: Descriptive study, gathering and analysing qualitative and quantitative information. Results: 38 teenagers with an average age of 16.37 years at conception. 90% (34 were first-time mothers. 73% (28 were attending high school and 68% (26 were from a low socioeconomic background. 36.8% (14 were planning a future involving study and work. 46% (17 had dropped out from school. The young girls average age and of commencing sexual activities are 12.89 and 15.32 respectively. 71% 27 had a sexual partner and mentioned that the main reasons for getting pregnant were falling in love and loneliness. Dysfunctional families were a notable feature with 32% (12 coming from broken nuclear families. In order of frequency, social activities in their free time 22/38; 34.2% (13 spend time with their boyfriends. 55%( 21 did not use any contraceptive. 50% (19 heard negative comments against teenage motherhood before their pregnancy. 63% (24 did not plan to get pregnant. 71% 27 had their mother, cousins or a friend with a history of teenage pregnancy. Conclusions: In this population, pregnancy is perhaps a way to establish the sexual identity. It is probable that there is an influence of the repetitive generational pattern of pregnancy at an early age. Teenagers find it viable to adopt adult roles to establish their identity creating a false identity, in addition the limited support from their parents lead them to a marriage or pregnancy as a way to reaffirm their role.

  18. Design heuristic for parallel many server systems under FCFS-ALIS

    NARCIS (Netherlands)

    Adan, I.J.B.F.; Boon, M.; Weiss, G.

    2016-01-01

    We study a parallel service queueing system with servers of types $s_1,\\ldots,s_J$, customers of types $c_1,\\ldots,c_I$, bipartite compatibility graph $\\mathcal{G}$, where arc $(c_i, s_j)$ indicates that server type $s_j$ can serve customer type $c_i$, and service policy of first come first served

  19. A Structural Analysis Method Formulation for Fault-tolerant Control System Design

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Staroswiecki, M

    2000-01-01

    An analysis of structural model representation has been used to extract available inherent redundant information in the system. The paper presents a refined structured model representation based on bipartite directed graph definition and the necessary condition for sensor fusion based...... on the structural observability is proposed...

  20. Extracting the information backbone in online system.

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.