WorldWideScience

Sample records for biowaste sludge maturation

  1. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices.

    Science.gov (United States)

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Hoyos, L V; Gonzales, S; Barrena, R; Komilis, D; Sanchez, A

    2015-10-01

    Stability and maturity are important criteria to guarantee the quality of a compost that is applied to agriculture or used as amendment in degraded soils. Although different techniques exist to evaluate stability and maturity, the application of laboratory tests in municipalities in developing countries can be limited due to cost and application complexities. In the composting facilities of such places, some classical low cost on-site tests to monitor the composting process are usually implemented; however, such tests do not necessarily clearly identify conditions of stability and maturity. In this article, we have applied and compared results of stability and maturity tests that can be easily employed on site (i.e. temperature, pH, moisture, electrical conductivity [EC], odor and color), and of tests that require more complex laboratory techniques (volatile solids, C/N ratio, self-heating, respirometric index, germination index [GI]). The evaluation of the above was performed in the field scale using 2 piles of biowaste applied compost. The monitoring period was from day 70 to day 190 of the process. Results showed that the low-cost tests traditionally employed to monitor the composting process on-site, such as temperature, color and moisture, do not provide consistent determinations with the more complex laboratory tests used to assess stability (e.g. respiration index, self-heating, volatile solids). In the case of maturity tests (GI, pH, EC), both the on-site tests (pH, EC) and the laboratory test (GI) provided consistent results. Although, stability was indicated for most of the samples, the maturity tests indicated that products were consistently immature. Thus, a stable product is not necessarily mature. Conclusively, the decision on the quality of the compost in the installations located in developing countries requires the simultaneous use of a combination of tests that are performed both in the laboratory and on-site. PMID:26216503

  2. Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis.

    Science.gov (United States)

    Ferreira, Catarina I A; Calisto, Vânia; Cuerda-Correa, Eduardo M; Otero, Marta; Nadais, Helena; Esteves, Valdemar I

    2016-10-01

    Combustion and pyrolysis processes were assessed and compared for two types of lignocellulosic biowastes: agricultural (Eucalyptus bark, grape seeds, peach stones, walnut shells, olive waste and peanut shells) and industrial (primary and biological paper mill sludge) biowastes. They were characterized by elemental, proximate and thermal analyses; the pyrolysis behaviour was studied by thermogravimetric analysis and the gases produced were identified using mass spectrometry. Agricultural biowastes showed the highest calorific values, close to the fossil fuel values (20-30MJkg(-1)) and, in general, emission of gases containing the carbon element (CH4, C2H2, CO and CO2) was higher than that of the tested industrial biowastes, making the agricultural biowastes highly competitive for combustion applications such as gas fuel. Further, the solid product which resulted from the pyrolysis of industrial biowastes is a material with large specific surface area, which is a good characteristic for possible applications as adsorbent in water remediation. PMID:27441829

  3. CO-DIGESTION OF SEWAGE SLUDGE AND MATURE LANDFILL LEACHATE IN PRE-BIOAUGMENTED SYSTEM

    Directory of Open Access Journals (Sweden)

    Agnieszka Montusiewicz

    2014-10-01

    Full Text Available The study examined the effects of co-digestion of sewage sludge and mature landfill leachate at the volumetric ratio of 95:5% in primarily bioaugmented system. Bioaugmentation was carried out with the use of commercial product Arkea® in the volumetric dose of 5% and lasted three months prior to the co-digestion start-up. Co-digestion was undergone without bioaugmentation. The results indicated that in the first period (of three months following bioaugmentation, co-digestion led to biogas/methane yields only 5-8% lower as compared to anaerobic digestion of sewage sludge, and the differences were not statistically significant. Moreover, a comparable value of volatile solids removal was obtained. However, the effects became worse over time, i.e. a lower organics removal efficiency of 16% as well as 9.5–13% decreases of biogas/methane yields were achieved by applying co-digestion for a further period (of the same duration. Co-digestion of sewage sludge and mature landfill leachate could be recognized as quite efficient in the system that was primarily bioaugmented with the use of Arkea®. However, the beneficial impact of bioaugmentation remained for the limited period of three months after its completion. To sustain the favourable effects a periodical, repeatable bioaugmentation of the co-digestion system is required.

  4. Image parameters for maturity determination of a composted material containing sewage sludge

    Science.gov (United States)

    Kujawa, S.; Nowakowski, K.; Tomczak, R. J.; Boniecki, P.; Dach, J.

    2013-07-01

    Composting is one of the best methods for management of sewage sludge. In a reasonably conducted composting process it is important to early identify the moment in which a material reaches the young compost stage. The objective of this study was to determine parameters contained in images of composted material's samples that can be used for evaluation of the degree of compost maturity. The study focused on two types of compost: containing sewage sludge with corn straw and sewage sludge with rapeseed straw. The photographing of the samples was carried out on a prepared stand for the image acquisition using VIS, UV-A and mixed (VIS + UV-A) light. In the case of UV-A light, three values of the exposure time were assumed. The values of 46 parameters were estimated for each of the images extracted from the photographs of the composted material's samples. Exemplary averaged values of selected parameters obtained from the images of the composted material in the following sampling days were presented. All of the parameters obtained from the composted material's images are the basis for preparation of training, validation and test data sets necessary in development of neural models for classification of the young compost stage.

  5. Hydrolysis inhibition of complex biowaste

    OpenAIRE

    Vasconcelos Fernandes, T.

    2010-01-01

    The increasing demand of renewable energy sources and reuse of wastes, challenges our society for better technological solutions for energy production. Co-digestion of agricultural biowaste, such as animal manure and plant residues, offers an interesting contribution to the renewable energy strategies. The biogas plants, where the complex substrates, such as agricultural biowaste, get converted into biogas, are then able to produce electricity and heat, which can be used in the farm and deliv...

  6. Hydrolysis inhibition of complex biowaste

    NARCIS (Netherlands)

    Vasconcelos Fernandes, T.

    2010-01-01

    The increasing demand of renewable energy sources and reuse of wastes, challenges our society for better technological solutions for energy production. Co-digestion of agricultural biowaste, such as animal manure and plant residues, offers an interesting contribution to the renewable energy strategi

  7. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil. PMID:25940492

  8. Biowaste energy potential in Kenya

    OpenAIRE

    Nzila, C.; DeWulf, J.; Spanjers, H.; Kiriamiti, H.; H. Van Langenhove

    2010-01-01

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the energy crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and sugarcane. Biogas technology is assumed to have the capa...

  9. Maturity and hygiene quality of composts and hygiene indicators in agricultural soil fertilised with municipal waste or manure compost.

    Science.gov (United States)

    Tontti, Tiina; Heinonen-Tanski, Helvi; Karinen, Päivi; Reinikainen, Olli; Halinen, Arja

    2011-02-01

    Composts produced from municipal source separated biowaste (Biowaste), a mixture of biowaste and anaerobically digested sewage sludge (Biosludge) and cattle manure (Manure) were examined for their maturity and hygiene quality. The composts were applied to a potato crop in 2004 and to a barley nurse crop of forage ley in 2005 in a field experiment. Numbers of faecal coliforms, enterococci, clostridia and Salmonella in field soil were determined 2 weeks and 16 weeks after compost applications. Municipal compost batches chosen based on successful processing showed variable maturity during field application, and the need to evaluate compost maturity with multiple variables was confirmed. The numbers of faecal coliform were similar in all compost types, averaging 4.7 and 2.3 log( 10) CFU g(-1) in the first and second years, respectively. The highest number of enterococci was 5.2 log(10) CFU g(-1), found in Manure compost in the first year, while the highest clostridia numbers were found in Biosludge compost, averaging 4.0 log(10) CFU g(-1) over both years. Except for one case, less than 2.4 log(10) CFU g(-1) of faecal coliforms or clostridia were found in compost-fertilised soil, while the numbers of enterococci were mostly higher than in unfertilised soil (potato at harvest. Overall, compost fertilisations caused rather small changes in the counts of hygiene indicators in the field environment. PMID:20392787

  10. Long-Term Survival of Pathogenic and Sanitation Indicator Bacteria in Experimental Biowaste Composts

    OpenAIRE

    Lemunier, Mélanie; Francou, Cédric; Rousseaux, Sandrine; Houot, Sabine; Dantigny, Philippe; Piveteau, Pascal; Guzzo, Jean

    2005-01-01

    For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocyt...

  11. Phytotoxicity Evolution of Biowastes Undergoing Aerobic Decomposition

    Directory of Open Access Journals (Sweden)

    M. R. Soares

    2013-01-01

    Full Text Available This study is mainly focused on the phytotoxicity improvement within five to six weeks of thermophilic composting of biowastes. Two sets of experiments were conducted involving both sawdust and rice husk as bulking agents, which were composted in self-heating reactors with potato-peel industrial waste and grass clippings as organic materials. The main variables observed over time were temperature, oxygen uptake rate (OUR, biodegradability, and germination index (GI. The effects of compost water extracts on seed germination and primary root growth of garden cress (Lepidium sativum were measured to calculate the germination index (GI. The biodegradability was well assessed by measuring lignin content, using the Klason method. The experimental results showed that initial compositions strongly determined the profiles of phytotoxicity and the period of maturation. The phytotoxicity assessment in the experiments with sawdust revealed that after 39 days of composting, the GI attained the maximum value of 30%, but using rice husk, it was possible to reach 70% in the same period of time. Our findings showed that, at a certain point, higher cumulative OUR led to lower germination index, and proportional relationship between the cumulative OUR and GI was observed, after thermophilic phase.

  12. MONITORING OF ORGANIC POLLUTION AND MATURITY OF ORGANIC MATTER FROM SLUDGE LANDFILLING

    Directory of Open Access Journals (Sweden)

    SLIMANE LAHSAINI

    2016-07-01

    Full Text Available The biotransformation during the 3 years of sludge landfilling was evaluated by physicochemical analysis and phytotoxicity test. The final product exhibited a high degree of decomposition rate (51.06 % than the controls as shown by a decrease of C/N ratio of about 19.67. The results showed that the lipid, surfactant and polyphenol as main compound of the sludge were breakdown over time. The concentrations decreased from 29.9 to 11.8 mg·g-1 and 3.4 to 0.6 mg·g-1, respectively for surfactant and polyphenols after 3 years of landfilling. This corresponds to a reduction of 80.2 % for polyphenols and 60.4 % for surfactant, due to the microorganisms activity. Total lipids decrease from 16.5 to 6.27 mg·g-1 of dry matter, representing an abatement rate of about 62 %. The evolution of organic matter reflects the progress of the humification process, which judging by the increase in the polymerization degree, is about 20 %. The landfilling efficiency to reduce phytotoxicity of sludge was confirmed by the germination index, which reached 52 and 59 %, respectively for alfalfa and cress after 3 years of landfilling. These results are promising and pave the way for agricultural spreading of sludge.

  13. Biowaste energy potential in Kenya

    International Nuclear Information System (INIS)

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the energy crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and sugarcane. Biogas technology is assumed to have the capacity to economically and sustainably convert these vast amounts of biowaste into renewable energy, thereby replacing the unsustainable fossil energy sources, and reducing dependency on fossil fuels. However, the total energy potential of biogas production from crop residues available in Kenya has never been evaluated and quantified. To this end, we selected five different types of residues (maize, barley, cotton, tea and sugarcane) from Kenya and evaluated their energy potential through biomethane potential analysis at 30 C and a test time of 30 days. The specific methane yields for maize, barley, cotton, tea and sugarcane residues obtained under batch conditions were respectively 363, 271, 365, 67 and 177 m3 per tonne volatile solids. In terms of energy potential, maize, cotton and barley residues were found to be better substrates for methane production than tea and sugarcane residues and could be considered as potential substrates or supplements for methane production without compromising food security in the country. The evaluated residues have a combined national annual maximum potential of about 1313 million cubic meters of methane which represent about 3916 Gigawatt hour (GWh) of electricity and 5887 GWh of thermal energy. The combined electrical potential is equivalent to 73% of the country's annual power production of 5307 GWh. Utilization of the residues that are readily available on a 'free on site' basis for energy production could substitute the fossil fuels that

  14. Biowaste energy potential in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nzila, Charles; Dewulf, Jo; van Langenhove, Herman [Laboratory for Environmental and Organic Chemistry, Gent University, Copure Links 653 - B9000 Gent (Belgium); Spanjers, Henri [Lettinga Associates Foundation, Wageningen, P.O Box 500 - 6700 AM Wageningen (Netherlands); Kiriamiti, Henry [Department of Chemical and Process Engineering, Moi university, P.O. Box 3900, 30100 Eldoret (Kenya)

    2010-12-15

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the energy crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and sugarcane. Biogas technology is assumed to have the capacity to economically and sustainably convert these vast amounts of biowaste into renewable energy, thereby replacing the unsustainable fossil energy sources, and reducing dependency on fossil fuels. However, the total energy potential of biogas production from crop residues available in Kenya has never been evaluated and quantified. To this end, we selected five different types of residues (maize, barley, cotton, tea and sugarcane) from Kenya and evaluated their energy potential through biomethane potential analysis at 30 C and a test time of 30 days. The specific methane yields for maize, barley, cotton, tea and sugarcane residues obtained under batch conditions were respectively 363, 271, 365, 67 and 177 m{sup 3} per tonne volatile solids. In terms of energy potential, maize, cotton and barley residues were found to be better substrates for methane production than tea and sugarcane residues and could be considered as potential substrates or supplements for methane production without compromising food security in the country. The evaluated residues have a combined national annual maximum potential of about 1313 million cubic meters of methane which represent about 3916 Gigawatt hour (GWh) of electricity and 5887 GWh of thermal energy. The combined electrical potential is equivalent to 73% of the country's annual power production of 5307 GWh. Utilization of the residues that are readily available on a 'free on site' basis for energy production could substitute

  15. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Huang, Hui; Ren, Xiuna; Lahori, Altaf Hussain; Mahar, Amanullah; Ali, Amjad; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2016-09-01

    This study aimed to evaluate the role of different amount of zeolite with low dosage of lime amendment on the greenhouse gas (GHGs) emission and maturity during the dewatered fresh sewage sludge (DFSS) composting. The evolution of CO2, CH4, NH3 and N2O and maturity indexes were monitored in five composting mixtures prepared from DFSS mixed with wheat straw, while 10%, 15% and 30% zeolite+1% lime were supplemented (dry weight basis of DFSS) into the composting mass and compared with treatment only 1% lime amended and control without any amendment. The results showed that addition of higher dosage of zeolite+1% lime drastically reduce the GHGs emissions and NH3 loss. Comparison of GHGs emissions and compost quality showed that zeolite amended treatments were superior than control and 1% lime amended treatments. Therefore, DFSS composting with 30% zeolite+1% lime as consortium of additives were found to emit very less amount of GHGs and gave the highest maturity than other treatments. PMID:27240232

  16. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge.

    Science.gov (United States)

    Yang, Lian; Zhang, Shihua; Chen, Zhiqiang; Wen, Qinxue; Wang, Yao

    2016-03-01

    In this work, penicillin fermentation dregs (PFDs) and sewage sludge (SWS) were co-composted to analyze the possibility of recycling nutrients in PFDs. The temperature was maintained above 55°C for more than 3 days, and the final electrical conductivity (EC), pH and C/N all met the national standards in maturity. A nearly 100% removal of the residual penicillin was achieved, and the seed germination index (GI) increased from 0.02% to 83.54±3.1% by the end of the composting process. However, monitoring the quantity of antibiotic resistance genes (ARGs) showed that the logarithm of the number of copies of blaTEM increased from 4.17±0.19 at the initial phase to 8.92±0.27 by the end of the composting process, which means that there is a high risk for land use when using PFD compost products. PMID:26799590

  17. Changes in microbial communities in green waste and sewage sludge composts following maturity

    International Nuclear Information System (INIS)

    Composting is an interesting way to valorize various bio wastes and is becoming an increasingly used soil amendment. compost is a product obtained after a humification process. However, compost utilization as amendment needs to know precisely its stability and maturity. since composting is mainly a microbial process, knowledge of the various microbial groups and their role in the process of bio-oxidation is essential. (Author)

  18. Effect of Substrate-Inoculum Ratio on the Biochemical Methane Potential of Municipal Biowastes

    Directory of Open Access Journals (Sweden)

    Parra-Orobio Brayan Alexis

    2015-09-01

    Full Text Available Biowastes are the predominant fraction of municipal solid waste (MSW of developing countries. Biowastes are characterized by a high content of organic matter; characteristics which facilitates its transformation through biological processes such as anaerobic digestion (AD. Using biochemical methane potential (PBM assays, in this study we evaluated the influence of substrate-inoculum (S/I ratio on the AD of biowaste from MSW. The S/I ranged between 0.25 to 9 gSVsubstrate * gSVinoculum -1. Sludge from an anaerobic digester of the domestic wastewater treatment plant located in Cali-Colombia, was used as inoculum. It were found that the S/I ratio has an effect on the AD (p < 0.1. Best results was obtained with the ratio 0.25 gSVsubstrate*gSVinoculum -1 (176.19 mLCH4*gSV-1 and a rate of 73.12% biodegradability, while 9 gSVsubstrate*gSVinoculum -1 produced the lowest results (17.56 and 7.29% respectively. Furthermore, it was found that S/I ratios lower than 2 gSVsubstrate*gSVinoculum -1 provided a suitable process. In the other hand, with S/I ratios greater than 2, the process becomes unstable due to acidification processes, caused by accumulation of VFA’s; those VFA’s cannot be he stabilized due to the low buffering capacity of the system.

  19. Phytotoxicity Evolution of Biowastes Undergoing Aerobic Decomposition

    OpenAIRE

    M. R. Soares; Matsinhe, C.; Belo, S; M. J. Quina; Quinta-Ferreira, R.

    2013-01-01

    This study is mainly focused on the phytotoxicity improvement within five to six weeks of thermophilic composting of biowastes. Two sets of experiments were conducted involving both sawdust and rice husk as bulking agents, which were composted in self-heating reactors with potato-peel industrial waste and grass clippings as organic materials. The main variables observed over time were temperature, oxygen uptake rate (OUR), biodegradability, and germination index (GI). The effects of compo...

  20. How to enhance humification during composting of separately collected biowaste: impact of feedstock and processing.

    Science.gov (United States)

    Binner, Erwin; Smidt, Ena; Tintner, Johannes; Böhm, Katharina; Lechner, Peter

    2011-11-01

    Conventional parameters (loss on ignition, total organic carbon, total nitrogen, C/N-ratio, respiration activity (RA₄), compost status (= 'Rottegrad'), NH₄-N and NO₃-N) are not correlated to humification. At best, they provide information on the biological stability (status of degradation) of composts. Humic substances which are a source of stable organic matter and nutrients are discussed as a parameter describing compost quality. Thus, in the present research project a photometric method evaluating humic acids was used to characterize the quality of 211 Austrian and foreign composts made from source-separated collected biowaste or sewage sludge. Furthermore, parameters influencing the formation of humic acids during the rotting process were investigated by implementing rotting experiments in the laboratory as well as in composting plants. The analysed composts showed humic acid contents between 2.5 and 47 %, calculated on a organic dry matter (oDM) basis. In addition to the duration of treatment the main influence on humification was the feedstock used. Stabilized sewage sludge, biowaste after intensive anaerobic pre-treatment or biowaste with low reactivity (RA₄) or uniform composition (e.g. mainly grass) showed a low formation of humic acids. For optimum humification the feedstock needed to contain components that are well balanced from scarcely to easily degradable compounds. Processing also influenced humification. Open windrow systems and reactor systems allow the same quality to be produced when operated well, but optimizing mineralization (e.g. very intensive aeration) showed negative effects. The positive condition required for humification is an unhurried (not too intense) degradation with long-lasting biological activity in which microbes have enough time to use the metabolic products of degradation for humification. PMID:21930517

  1. Recycling Biowaste – Human and Animal Health Problems

    Directory of Open Access Journals (Sweden)

    Albihn Ann

    2002-03-01

    Full Text Available Biowaste from the food chain is of potential benefit to use in agriculture. Agriculture in general and organic farming in particular needs alternative plant nutrients. However, the quality concerning hygiene and soil contaminants must be assured. This recycling has to be regulated in a way that harmful effects on soil, vegetation, animals and man are prevented. The problems with heavy metals and organic contaminants have been focused on. Still, maximum threshold values are continuously discussed to avoid an increase of soil concentrations. The effect on the ecosystems of residues from use of medicines needs further attention. There is also a risk for a spread of antibiotic resistant micro-organisms in the environment and then to animals and man. Infectious diseases may be spread from biowaste and new routes of disease transmission between animals and humans can be created. Zoonotic diseases in this context play a central role. Pathogens recently introduced to a country may be further spread when biowaste is recycled. The very good health status of domestic animals in the Nordic countries may then quickly change. The quality of biowaste is of enormous importance if biowaste is to gain general acceptance for agricultural use, especially for organic production. A balance needs to be maintained between risk and advantage for its use.

  2. Demand-driven energy supply from stored biowaste for biomethanisation.

    Science.gov (United States)

    Aichinger, Peter; Kuprian, Martin; Probst, Maraike; Insam, Heribert; Ebner, Christian

    2015-10-01

    Energy supply is a global hot topic. The social and political pressure forces a higher percentage of energy supplied by renewable resources. The production of renewable energy in form of biomethane can be increased by co-substrates such as municipal biowaste. However, a demand-driven energy production or its storage needs optimisation, the option to store the substrate with its inherent energy is investigated in this study. The calorific content of biowaste was found unchanged after 45 d of storage (19.9±0.19 kJ g(-1) total solids), and the methane yield obtained from stored biowaste was comparable to fresh biowaste or even higher (approx. 400 m(3) Mg(-1) volatile solids). Our results show that the storage supports the hydrolysis of the co-substrate via acidification and production of volatile fatty acids. The data indicate that storage of biowaste is an efficient way to produce bioenergy on demand. This could in strengthen the role of biomethane plants for electricity supply the future. PMID:26189781

  3. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products.

    Science.gov (United States)

    Fernández-Delgado Juárez, M; Gómez-Brandón, M; Insam, H

    2015-04-01

    A trial was carried out to evaluate the influence of wood ash admixture on biowaste composting. The aim was to find the optimal dosage of ash addition to enhance the composting process without endangering the final compost characteristics and use. Six treatments including an unamended control (K0) and composts with additions of 3% (K3), 6% (K6), 9% (K9), 12% (K12) and 15% (K15) of wood ash (w/w) were studied. The composting process was monitored in situ for 49days, by measuring temperature, CO2, O2, and CH4 in the piles and pH, electric conductivity (EC), and inorganic N in the laboratory. At the end of the process, the products were tested for Reifegrad (maturity), toxicity and quality. The addition of up to 15% of wood ash to biowaste did not negatively affect the composting process, and the initial differences found between both the low and high ash-treated composts were attenuated with the ongoing process development. Nevertheless, and mainly due to Cd level, composts with higher ash amendment did not comply with the highest quality standards established by the Austrian Compost Ordinance. The failure of obtaining class A+ quality after ash amendment emphasizes the need for a rigid quality selection of (bottom) ashes and thus reducing environmental risks related to high pollutant loads originating from the ashes. PMID:25536175

  4. Degradation of household biowaste in reactors.

    Science.gov (United States)

    Krzystek, L; Ledakowicz, S; Kahle, H J; Kaczorek, K

    2001-12-28

    Household derived biowaste was degraded by biological methods. The system involves the combined method of low-solids (up to 10% w/v of total solids (TS)) anaerobic digestion and aerobic degradation for the recovery of energy (biogas) and the production of fine humus-like material which can be used as a soil amender or a substrate for further thermal treatment (pyrolysis, gasification). The performance of batch and continuous processes carried out in bioreactors (stirred tank reactor, air-lift) of working volume 6 and 18 dm(3), at different temperatures (25-42 degrees C) was monitored by reduction of TS, volatile solids, chemical oxygen demand, total organic carbon, C/N in time. The application of continuous process with recirculation (33%) caused that for residence time of 8-16 h the obtained degree of organic load reduction was similar to that obtained after 72-96 h of the batch process. The experimental data of batch aerobic degradation was also subjected to kinetic analysis. The sequence of the two processes: aerobic and anaerobic or anaerobic and aerobic showed that the degree of organic load reduction was similar in both cases, while the amount of produced biogas was four times higher when the first stage was anaerobic. The final product after dewatering was subjected to pyrolysis and gasification. The gases obtained were characterised by a high heat of combustion of about 11-15 MJ Nm(-3). PMID:11640982

  5. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMSW...

  6. Biowaste biorefinery in Europe: opportunities and research & development needs.

    Science.gov (United States)

    Fava, Fabio; Totaro, Grazia; Diels, Ludo; Reis, Maria; Duarte, Jose; Carioca, Osvaldo Beserra; Poggi-Varaldo, Héctor M; Ferreira, Bruno Sommer

    2015-01-25

    This review aims to explore the needs and opportunities of research & development in the field of biowaste biorefinery in Europe. Modern industry in recent years is giving its close attention on organic waste as a new precious bioresource. Specific biowaste valorisation pathways are focusing on food processing waste, being food sector the first manufacture in Europe. Anyway they need to be further tested and validated and then transferred at the larger scale. In particular, they also need to become integrated, combining biomass pretreatments and recovery of biogenic chemicals with bioconversion processes in order to obtain a large class of chemicals. This will help to (a) use the whole biowaste, by avoiding producing residues and providing to the approach the required environmental sustainability, and (b) producing different biobased products that enter different markets, to get the possible economical sustainability of the whole biorefinery. However, the costs of the developed integrated processes might be high, mostly for the fact that the industry dealing with such issues is still underdeveloped and therefore dominated by high processing costs. Such costs can be significantly reduced by intensifying research & development on process integration and intensification. The low or no cost of starting material along with the environmental benefits coming from the concomitant biowaste disposal would offset the high capital costs for initiating such a biorefinery. As long as the oil prices tend to increase (and they will) this strategy will become even more attractive. PMID:24284045

  7. End-product inhibition and acidification limit biowaste fermentation efficiency.

    Science.gov (United States)

    Probst, Maraike; Walter, Andreas; Dreschke, Gilbert; Fornasier, Flavio; Pümpel, Thomas; Walde, Janette; Insam, Heribert

    2015-12-01

    Converting waste to resource may mitigate environmental pollution and global resource limitation. The platform chemical lactic acid can be produced from biowaste and its liquid fraction after solid-liquid separation. A fermentation step for lactic acid production prior to the conversion of biowaste to methane and organic fertilizer would increase the biowaste's value. Despite the huge potential and promising results of the treatment procedure, the reasons for efficiency loss observed previously need to be addressed in order to pave the way for an up-scaling of the fermentation process. Therefore, biowaste was fermented applying pH control, acid extraction and glucose addition in order to counteract reasons such as acidification, end-product inhibition and carbon limitation, respectively. The fermentation was competitive compared to other renewable lactic acid production substrates and reached a maximum productivity of >5 g Clactic acidg(-1)Ch(-1) and a concentration exceeding 30 g L(-1). A combination of acidification and end-product inhibition was identified as major obstacle. Lactobacillus crispatus and its closest relatives were identified as key lactic acid producers within the process using Miseq Illumina sequencing. PMID:26433150

  8. Economic evaluation of system concepts for biowaste fermentation

    International Nuclear Information System (INIS)

    Currently, the utilization of biowaste from separate waste collection as well as industrial organic waste and waste from the food industry are of little significance for biogas generation in Germany. Nevertheless, the number of biogas plants that exclusively or predominantly digest biowaste and organic waste continues to grow. With regard to the biogas plants that have come into operation since 2012 as well as plants that are still under construction or in planning, it becomes apparent that the utilization of biowaste and green waste from separate collection for biogas generation plays an increasingly important role. By the end of 2014, about 140 plants generating biogas from organic waste digestion have been in operation. 83 of these plants use municipal biowaste from separate waste collection. According to the DBFZ database, 68 biogas plants are digestion plants that exclusively or predominantly use biowaste under the terms of paragraph 27a Renewable Energy Sources Act of 2012/ paragraph 45 Renewable Energy Sources Act of 2014. Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants. The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  9. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    Science.gov (United States)

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals. PMID:26381784

  10. Processing of biowaste for sustainable products in developing countries

    DEFF Research Database (Denmark)

    Dantoft, Shruti Harnal; Hansen, Anders Cai Holm; Jensen, Peter Ruhdal

    2014-01-01

    The modern global society faces great challenges in supply of energy, feed, food, and other products in a sustainable way. One way to mitigate the negative effects of providing these local eco-services is to convert biomass – instead of petroleum or natural gas – into a variety of food, feed......, biomaterials, energy and fertilizer, maximizing the value of the biomass and minimizing the waste. This integrated approach corresponds to the biorefinery concept and is gaining attention in many parts of the world (Kam & Kam 2004). Energy, food and feed production is the driver for development in this area...... municipal biowastes have the potential to be that resource. However, it is of great importance to be aware of how to utilize the different sources of biowaste and for which purpose. In October 2012, a new EU project, funded under the FP7 programme was launched with partners from the EU, Africa and Malaysia...

  11. Utilization of keratin-containing biowaste to produce biohydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Balint, B.; Rakhely, G.; Kovacs, K.L. [Szeged Univ. (Hungary). Dept. of Biotechnology; Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics; Bagi, Z.; Perei, K. [Szeged Univ. (Hungary). Dept. of Biotechnology; Toth, A. [Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics

    2005-12-01

    A two-stage fermentation system was constructed to test and demonstrate the feasibility of biohydrogen generation from keratin-rich biowaste. We isolated a novel aerobic Bacillus strain (Bacillus licheniformis KK1) that displays outstanding keratinolytic activity. The isolated strain was employed to convert keratin-containing biowaste into a fermentation product that is rich in amino acids and peptides. The process was optimized for the second fermentation step, in which the product of keratin fermentation-supplemented with essential minerals-was metabolized by Thermococcus litoralis, an anaerobic hyperthermophilic archaeon. T. litoralis grew on the keratin hydrolysate and produced hydrogen gas as a physiological fermentation byproduct. Hyperthermophilic cells utilized the keratin hydrolysate in a similar way as their standard nutrient, i.e., bacto-peptone. The generalization of the findings to protein-rich waste treatment and production of biohydrogen is discussed and possible means of further improvements are listed. (orig.)

  12. Managing biowaste and promoting sustainability - profiling community composting

    OpenAIRE

    Slater, Rachel; Frederickson, James

    2008-01-01

    The voluntary and community waste sector makes an important contribution to waste objectives (Williams et al, 2006). The community composting sector would appear to be leading the development of innovative biowaste collection and processing systems in areas unsuitable for traditional kerbside. Such schemes can contribute to developing local areas by improving local soils and green spaces as well as diverting waste from landfill. However, this is often only part of the story. Well managed ...

  13. Anaerobic fungi induced changes of microbial communities in biowaste material

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Štrosová, Lenka; Procházka, J.; Dolejš, P.; Kopečný, Jan; Fliegerová, Kateřina

    Clermont-Ferrand : INRA, 2012. s. 148-148. [8th INRA-RRI Symposium, Gut Microbiota . 17.06.2012-20.06.2012, Clermont-Ferrand] R&D Projects: GA ČR GPP503/10/P394; GA MZe QI92A286 Institutional research plan: CEZ:AV0Z50450515 Keywords : anaerobic fungi * biowaste material Subject RIV: EH - Ecology, Behaviour https://colloque4.inra.fr/inra_rowett_2012/

  14. Biowaste and vegetable waste compost application to agriculture

    OpenAIRE

    Kokkora, Maria I.

    2008-01-01

    The landfilling of biodegradable waste is proven to contribute to environmental degradation. Compost use in agriculture is increasing as both an alternative to landfilling for the management of biodegradable waste, as well as means of increasing or preserving soil organic matter. This research aimed to contribute to the identification of a system for managing the utilization of vegetable waste (agricultural plant-tissue waste) and biowaste (source-separated biodegradable municipal solid waste...

  15. Strategies for the dewatering of anaerobic digested biowastes with the regard of the quality of the biowastes and process water. Final report; Strategien zur Entwaesserung von Gaerschlaemmen aus der Bioabfallfermentation unter Beruecksichtigung der Gaerproduktqualitaet und Prozesswasserbelastung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dohmann, M.; Buer, T.; Kuepper, R.; Yamamoto, K.

    1998-12-01

    Aim of the research project was to develop strategies for the dewatering of fermentation sludges from the fermentation of biowastes. The quality of the fermentation product as well as the process water load was to be studied in dependence of the flocculation and a downstream-arranged dewatering stage. A membrane filter press and a sieve screw press in semi-technical scale as well as a lab-scale centrifuge were used as dewatering aggregates. The fermentation sludge used for the dewatering experiments came from a semi-technical fermentation plant for biowastes with a total anaerobic reactor volume of 8 m{sup 2}. It turned out that quality and pollution load of the dewatered product and the process water can be decisively influenced by the choice of the flocculant and of the dewatering aggregate. It depends on the separation efficiency whether the resulting waste water can be discharged into the municipal sewer system without expensive pre-treatment (centrifuge, membrane chamber filter press). However, with high separation efficiency the heavy metals adsorbing preferentially at fine particles are kept back together with them, resulting in deterioration of the fermentation product quality. Thus the total dissolved heavy metal load in the digested sludge, which had to be dewatered, was low. Moreover, at least particular constituents should be removed from the process water of a biowaste fermentation plant when dewatering with a sieve screw press before it is reused for mashing the raw biowaste. In this way it can be avoided that heavy metals adsorbed at solid matter concentrate in the fermentation reactor and thus in the fermentation product. (orig.) [Deutsch] Ziel des Untersuchungsvorhabens war es, Strategien fuer die Entwaesserung von Gaerschlaemmen aus der Bioabfallfermentation zu entwickeln. Hierbei sollte insbesondere die Gaerproduktqualitaet als auch die Prozesswasserbelastung in Abhaengigkeit der Flockung und einer nachgeschalteten Entwaesserungsstufe betrachtet

  16. Electrostatic Separation of Biowaste: An Approach for Landfills Reduction in Malaysia

    Directory of Open Access Journals (Sweden)

    Koonchun Lai

    2015-04-01

    Full Text Available Leachate and methane production due to the landfilling of biowaste has become an environmental threat. This study targets to investigate the extractability of biowaste from waste mixture as an approach of reduction of solid waste and landfill. A statistical analysis was conducted to analyze the performance of electrostatically waste separation. Individual and interactive effects of independent factors, namely rotation speed; electrical potential and electrodes interval on separation efficiency were assessed. Optimal operational conditions were deduced as 60 rpm rotation speed, 30 kV supply potential and 54 mm electrodes interval. Under these conditions, biowaste separation efficiency of 83.88% was experimentally achieved. Separation efficiency of non-biowaste was 89.51% under same operational condition. These results fitted well with the predicted model. Results in this study conclude the electrostatic separation could be an effective pre-treatment alternative in dealing with leachate and methane problems of landfilled biowaste.

  17. Combination of decentralized waste drying and SSF techniques for household biowaste minimization and ethanol production.

    Science.gov (United States)

    Sotiropoulos, A; Vourka, I; Erotokritou, A; Novakovic, J; Panaretou, V; Vakalis, S; Thanos, T; Moustakas, K; Malamis, D

    2016-06-01

    The results of the demonstration of an innovative household biowaste management and treatment scheme established in two Greek Municipalities for the production of lignocellulosic ethanol using dehydrated household biowaste as a substrate, are presented within this research. This is the first time that biowaste drying was tested at a decentralized level for the production of ethanol using the Simultaneous Saccharification and Fermentation (SSF) process, at a pilot scale in Greece. The decentralized biowaste drying method proved that the household biowaste mass and volume reduction may reach 80% through the dehydration process used. The chemical characteristics related to lignocellulosic ethanol production have proved to differ substantially between seasons thus; special attention should be given to the process applied for ethanol production mainly regarding the enzyme quality and quantity used during the pretreatment stage. The maximum ethanol production achieved was 29.12g/L, approximately 60% of the maximum theoretical yield based on the substrate's sugar content. The use of the decentralized waste drying as an alternative approach for household biowaste minimization and the production of second generation ethanol is considered to be a promising approach for efficient biowaste management and treatment in the future. PMID:27084105

  18. Anaerobic digestion of solid biomass and biowaste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    ;'BioGazEnergoStroy'' (Andreas Taeuber); (17) Generation of biogas from residual matter (Frank Hofmann); (17) Synergetic effects of the cofermentation of waste water concentrate and leftover foodstuffs (Konrad Koch); (18) Impacts of additional biofilm carrier and biogas generation from packed foodstuffs in the example of a large-scale plant in England (Dieter Juergen Korz); (19) ATRES performance control - Tools to advance in profits (Marcel Mayer); (20) Substrates with lignocellulose - (no) a problem for biogas plants? (Thilo Lehmann); (21) Pros and cons of separate hydrolysis systems: An overview (Birgit Pfeifer); (22) Methanos - Increase of efficiency of biogas plants by means of microorganisms (Monika Reuter); (23) SulphPur desulfurization of biogas, a core component of modern biogas generation (Joerg Stockinger); (24) Tightment measurement at biogas plants via gas camera - reduction of emissions and minimisation of losses (Frank Schillig); (25) Analysis of the technologies for an effective recycling of ammonia from waste water of biogas plants (Jerzy Mackowiak); (26) Utilization of waste heat by drying biomass, especially sewage sludge (Henk Haaring); (27) Duerr Cyplan ORC technology - 10% increase in performance by power generation from exhaust gases (Jochen Fink).

  19. Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.

    OpenAIRE

    Veeken, A.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal solid waste. Biowaste is referred to as an organic waste stream but surprisingly it was found that a large part of biowaste is composed of inorganic material, i.e. sand, silt and clay minerals. The i...

  20. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.;

    2004-01-01

    Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solilds, lower methane emissions to the environment, and higher green energy....... Measured methane yields for raw yard waste, wet oxidized yard waste, raw food waste, and wet oxidized food waste were 345, 685, 536, and 571 mL of CH4/g of volatile suspended solids, respectively. Higher oxygen pressure during wet oxidation of digested biowaste considerably increased the total methane...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability of the...

  1. An integrated approach for efficient biomethane production from solid bio-wastes in a compact system

    OpenAIRE

    Wang, H.; Tao, Y; Temudo, M.; Schooneveld, M.; Bijl, H.; Ren, N.; Wolf, M.; Heine, C.; Foerster, A.; Pelenc, V.; Kloek, J.; van Lier, J B; De Kreuk, M.K.

    2015-01-01

    Background Solid bio-wastes (or organic residues) are worldwide produced in high amount and increasingly considered bioenergy containers rather than waste products. A complete bioprocess from recalcitrant solid wastes to methane (SW2M) via anaerobic digestion (AD) is believed to be a sustainable way to utilize solid bio-wastes. However, the complex and recalcitrance of these organic solids make the hydrolysis process inefficient and thus a rate-limiting step to many AD technologies. Effort ha...

  2. Electrostatic Separation of Biowaste: An Approach for Landfills Reduction in Malaysia

    OpenAIRE

    Koonchun Lai; Sooking Lim; Pehchiong Teh; Kimho Yeap

    2015-01-01

    Leachate and methane production due to the landfilling of biowaste has become an environmental threat. This study targets to investigate the extractability of biowaste from waste mixture as an approach of reduction of solid waste and landfill. A statistical analysis was conducted to analyze the performance of electrostatically waste separation. Individual and interactive effects of independent factors, namely rotation speed; electrical potential and electrodes interval on separation efficienc...

  3. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    Science.gov (United States)

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies. PMID:24008328

  4. Biowaste fuels South-East Asian COGEN schemes

    International Nuclear Information System (INIS)

    This article reports on the COGEN Programme of the European Commission in association with the Association of South East Asian Nations (ASEAN), and considers the benefits of using biowaste for the production of energy using cogeneration with the corresponding reduction in the emission of greenhouse gases. The substitution of rice husks for the fuel in a cogeneration plant at a Thai rice mill, and the combustion of wood in the cogeneration plant at the Homet Raya plant in Malaysia are described, and details are given of the backgrounds to the projects, locations, the technologies used, and the process economics. The next phase of the COGEN programme due to start in 1998 which will see the programme expanded to include coal-fired and gas-fired cogeneration projects is discussed

  5. Quantification of methane emissions from full-scale open windrow composting of biowaste using an inverse dispersion technique.

    Science.gov (United States)

    Hrad, Marlies; Binner, Erwin; Piringer, Martin; Huber-Humer, Marion

    2014-12-01

    An inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OP-TDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g. before, during and after turning and/or sieving events) were considered to reflect the plant-specific process efficiency. In addition, the tracer technique using acetylene (C2H2) was applied during the measurement campaigns as a comparison to the dispersion model. Plant-specific methane emissions varied between 1.7 and 14.3 gCH4/m(3)d (1.3-10.7 kg CH4/h) under real-life management assuming a rotting volume of 18,000 m(3). In addition, emission measurements indicated that the turning frequency of the open windrows appears to be a crucial factor controlling CH4 emissions when composting biowaste. The lowest CH4 emission was measured at a passive state of the windrows without any turning event ("standstill" and "sieving of matured compost"). Not surprisingly, higher CH4 emissions occurred during turning events, which can be mainly attributed to the instant release of trapped CH4. Besides the operation mode, the meteorological conditions (e.g. wind speed, atmospheric stability) may be further factors that likely affect the release of CH4 emissions at an open windrow system. However, the maximum daily CH4 emissions of 1m(3) rotting material of the composting plant are only 0.7-6.5% of the potential daily methane emissions released from 1m(3) of mechanically-biologically treated (MBT) waste being landfilled according to the required limit values given in the Austrian landfill ordinance. PMID:25242603

  6. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen.

    Science.gov (United States)

    Chen, Zhenguo; Wang, Xiaojun; Yang, YongYuan; Mirino, Markus W; Yuan, Yanlei

    2016-10-01

    Controlling of low dissolved oxygen (DO) levels (0.1-0.5mg/L), a cost-effective strategy, was applied to a pilot-scale anoxic-oxic-oxic-anoxic process for partial nitrification and denitrification of mature landfill leachate. High ammonium removal efficiency, stable nitrite accumulation rate and total nitrogen removal efficiency was higher than 95.0%, 90.0% and 66.4%, respectively, implying potential application of this process for nitrogen removal of mature landfill leachate. Efficient nitrite accumulation in the first oxic reactor depended on low DO conditions and sufficient alkalinity. However, operational limit was mainly decided by actual hydraulic retention time (AHRT) of the first oxic reactor and appeared with AHRT less than 13.9h under DO of 0.3-0.5mg/L. High-throughput sequencing analysis demonstrated significant change of bacterial diversity in the first oxic reactor after a long-term operation and dominant bacteria genus Nitrosomonas was shown to be responsible for NH4(+)-N removal and nitrite accumulation under low DO levels. PMID:27403860

  7. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste

    International Nuclear Information System (INIS)

    Graphical abstract: Volatile fatty acid spectra of acidified WBS, RBS or FBS differ, but methanogenesis is similar. Display Omitted - Highlights: • Biogas improvement by co-digestion of wheat and rye bread. • Increased population density at high organic loading rates. • Less Pelotomaculum but increased numbers of Syntrophobacter and Smithella found in rye bread reactor. • Replacement of Methanosarcinales by acetate-oxidizers in rye bread co-digestion. • Increasing proportion of Methanomicrobiales in biowaste + rye bread reactor. - Abstract: Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogas production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m−3 d−1 organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m−3 d−1 and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m−3 d−1 OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO2 and hydrogen

  8. Sludge characterization as a support to European regulations developments

    Energy Technology Data Exchange (ETDEWEB)

    Spinos, Ludovico; Lattarulo, Onofrio

    2003-07-01

    Sludge management is one of the critical issues facing modern society due to the fast increase in its production as a result of extended sewerage, new work installations and up-grading of existing facilities. The need for a regular and environmentally safe utilisation and disposal of sludges of different origin is well recognised by the EU countries, whose sludge management policy is addressed to both (i) the development of treatment methods able to reduce the mass production and (ii) the application of reuse options instead of simple disposal ones. However, to properly perform sludge management, and correctly fulfill the legal requirements, the definition of standardized characterization methods and procedures is necessary. For this reason, the European Committee for Standardization (CEN) has established the Technical Committee 308 (TC308) whose scope is the standardisation of methods and procedures employed for sludge characterization, and the production of guidelines for good management practice. A project, named Horizontal, to develop harmonised european standards in the field of sludge, soil and treated biowaste has been also established. (author)

  9. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste.

    Science.gov (United States)

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2015-06-01

    Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogas production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m(-3) d(-1) organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m(-3) d(-1) and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m(-3) d(-1) OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO2 and hydrogen. PMID:25843354

  10. Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.

    NARCIS (Netherlands)

    Veeken, A.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal so

  11. Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2000-01-01

    Lab-scale experiments were performed and a mechanistic model was developed to simulate the solid state digestion of biowaste in a batch reactor. Both experiments and model showed that the substrate-seed mixing degree and leachate recirculation rate have a strong effect on the reactor performance. Th

  12. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chaoran, E-mail: Chaoran.Li3@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); Mörtelmaier, Christoph, E-mail: Christoph.Moertelmaier@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); Winter, Josef, E-mail: Josef.Winter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); Gallert, Claudia, E-mail: Claudia.Gallert@HS-Emden-Leer.de [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); University of Applied Science, Hochschule Emden-Leer, Faculty of Technology, Division Microbiology – Biotechnology, Constantiaplatz 4, D-26723 Emden (Germany)

    2015-06-15

    Graphical abstract: Volatile fatty acid spectra of acidified WBS, RBS or FBS differ, but methanogenesis is similar. Display Omitted - Highlights: • Biogas improvement by co-digestion of wheat and rye bread. • Increased population density at high organic loading rates. • Less Pelotomaculum but increased numbers of Syntrophobacter and Smithella found in rye bread reactor. • Replacement of Methanosarcinales by acetate-oxidizers in rye bread co-digestion. • Increasing proportion of Methanomicrobiales in biowaste + rye bread reactor. - Abstract: Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogas production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m{sup −3} d{sup −1} organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m{sup −3} d{sup −1} and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m{sup −3} d{sup −1} OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO{sub 2} and hydrogen.

  13. Economic evaluation of system concepts for biowaste fermentation; Wirtschaftliche Bewertung von Anlagenkonzepten zur Bioabfallvergaerung

    Energy Technology Data Exchange (ETDEWEB)

    Barchmann, Tino; Rensberg, Nadja [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2015-07-01

    Currently, the utilization of biowaste from separate waste collection as well as industrial organic waste and waste from the food industry are of little significance for biogas generation in Germany. Nevertheless, the number of biogas plants that exclusively or predominantly digest biowaste and organic waste continues to grow. With regard to the biogas plants that have come into operation since 2012 as well as plants that are still under construction or in planning, it becomes apparent that the utilization of biowaste and green waste from separate collection for biogas generation plays an increasingly important role. By the end of 2014, about 140 plants generating biogas from organic waste digestion have been in operation. 83 of these plants use municipal biowaste from separate waste collection. According to the DBFZ database, 68 biogas plants are digestion plants that exclusively or predominantly use biowaste under the terms of paragraph 27a Renewable Energy Sources Act of 2012/ paragraph 45 Renewable Energy Sources Act of 2014. Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants. The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  14. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    Science.gov (United States)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6

  15. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries.

    Science.gov (United States)

    Scoma, Alberto; Rebecchi, Stefano; Bertin, Lorenzo; Fava, Fabio

    2016-01-01

    Availability of bio-based chemicals, materials and energy at reasonable cost will be one of the forthcoming issues for the EU economy. In particular, the development of technologies making use of alternative resources to fossil fuels is encouraged by the current European research and innovation strategy to face the societal challenge of natural resource scarcity, fossil resource dependence and sustainable economic growth. In this respect, second- generation biorefineries, i.e. biorefineries fed with biowastes, appear to be good candidates to substitute and replace the present downstream processing scheme. Contrary to first-generation biorefineries, which make use of dedicated crops or primary cultivations to achieve such a goal, the former employ agricultural, industrial, zootechnical, fishery and forestry biowastes as the main feedstock. This leaves aside any ethical and social issue generated by first-generation approaches, and concomitantly prevents environmental and economical issues associated with the disposal of the aforementioned leftovers. Unfortunately, to date, a comprehensive and updated mapping of the availability and potential use of bioresources for second-generation biorefineries in Europe is missing. This is a lack that severely limits R&D and industrial applications in the sector. On the other hand, attempts at valorizing the most diverse biowastes dates back to the nineteenth century and plenty of information in the literature on their sustainable exploitation is available. However, the large majority of these investigations have been focused on single fractions of biowastes or single steps of biowaste processing, preventing considerations on an integrated and modular (cascade) approach for the whole valorization of organic leftovers. This review aims at addressing these issues by gathering recent data on (a) some of the main high-impact biowastes located in Europe and in particular in its Southern part, and (b) the bio-based chemicals, materials

  16. Seasonal variation in bioaerosol exposure during biowaste collection and measurements of leaked percolate

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Herbert; Nielsen, Eva Møller; Breum, Niels O.

    2000-01-01

    The seasonal variation in waste collectors' exposure to microorganisms, endotoxin and dust was measured with personal sampling equipment. The measurement was carried out in three different combinations of storage and collection system for biowaste: container/compactor truck (CIC), paper sack...... endotoxin occurred in the CIC system (P <0.05) during the summer. Percolate from the biowaste was collected from the bottom of the compactor trucks. Concentrations of endotoxin ranged from 3.9 to 6.1 x 10(5) EU ml(-1) (25 to 52 mu g ml(-1)) and the microflora of the percolate was dominated by bacteria (1.......2 to 2.3 x 10(9) cfu ml(-1)). A seasonal variation was observed for concentrations of total microorganisms, moulds and endotoxin with a maximum occurring during the summer (P <0.05) and no differences were observed between percolate collected from the CIC and the PIC system, respectively. The high...

  17. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents

    OpenAIRE

    Sumanjit Kaur; Seema Rani; Rakesh Kumar Mahajan

    2013-01-01

    The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and...

  18. Microbial Community Shifts during Biogas Production from Biowaste and/or Propionate

    Directory of Open Access Journals (Sweden)

    Chaoran Li

    2015-02-01

    Full Text Available Propionate is the most delicate intermediate during anaerobic digestion as its degradation is thermodynamically unfavorable. To determine its maximum possible degradation rates during anaerobic digestion, a reactor was fed Monday to Friday with an organic loading rate (OLR of 12/14 kg CODbiowaste·m−3·d−1 plus propionate up to a final OLR of 18 kg COD·m−3·d−1. No feed was supplied on weekends as it was the case in full-scale. To maintain permanently high propionate oxidizing activity (POA, a basic OLR of 3 kg CODpropionate·m−3·d−1 all week + 11 kg CODbiowaste·m−3·d−1 from Monday to Friday was supplied. Finally a reactor was operated with an OLR of 12 kg CODbiowaste·m−3·d−1 from Monday to Friday and 5 kg CODpropionate·m−3·d−1 from Friday night to Monday morning to maintain a constant gas production for permanent operation of a gas engine. The propionate degradation rates (PDRs were determined for biowaste + propionate feeding. Decreasing PDRs during starvation were analyzed. The POA was higher after propionate supply than after biowaste feeding and decreased faster during starvation of a propionate-fed rather than a biowaste-fed inoculum. Shifts of the propionate-oxidizing and methanogenic community were determined.

  19. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study.

    Science.gov (United States)

    Bernad-Beltrán, D; Simó, A; Bovea, M D

    2014-12-01

    European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the household, work, education and income) was analysed. Chi-square independence tests and binary logistic regression was used for willingness to participate, not being obtained any significant relationship. Chi-square independence tests, ordinal logistic regression and

  20. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  1. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    International Nuclear Information System (INIS)

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH4Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  2. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Bernad-Beltrán, D. [Department of Mechanical Engineering and Construction, Universitat Jaume I, Av Sos Baynat s/n, E12071 Castellón (Spain); Simó, A. [Department of Mathematics, Universitat Jaume I, Av Sos Baynat s/n, E12071 Castellón (Spain); Bovea, M.D., E-mail: bovea@uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, Av Sos Baynat s/n, E12071 Castellón (Spain)

    2014-12-15

    Highlights: • Attitude towards incorporating biowaste selective collection is analysed. • Willingness to participate and to pay in biowaste selective collection is obtained. • Socioeconomic aspects affecting WtParticipate and WtPay are identified. - Abstract: European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the

  3. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study

    International Nuclear Information System (INIS)

    Highlights: • Attitude towards incorporating biowaste selective collection is analysed. • Willingness to participate and to pay in biowaste selective collection is obtained. • Socioeconomic aspects affecting WtParticipate and WtPay are identified. - Abstract: European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the

  4. Activated Sludge.

    Science.gov (United States)

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  5. Biogas production from presorted biowaste and municipal solid waste from Sweden : substrate characterization, wet fermentation and cash flow analysis

    OpenAIRE

    Wu, Lishan

    2014-01-01

    Due to the great demand of methane as car fuel by the local population in the state of Västmanland, Sweden, a Swedish company called Svensk Växtkraft AB needs to the triple the biogas production until year 2016. A problem is the availability of biowaste, which is nearly completed utilized in the biogas plant already. To solve this problem, the utilization of presorted municipal solid waste (MSW) is an option. This thesis is aiming at characterization of pre-sorted biowaste and municipal s...

  6. Increased aeration for improved large-scale composting of low-pH biowaste

    OpenAIRE

    Sundberg, Cecilia

    2005-01-01

    Biowaste composting at several plants in Scandinavia has been troubled by low pH in the collected waste as well as after the composting process. Our hypothesis was that increased aeration would give a higher and faster rise in pH during the composting process, and that this would give a higher decomposition rate. The objective was to test this hypothesis by experiments in full scale, with an emphasis on the role of temperature in the transition from acidic to neutral pH. Experiments were carr...

  7. Evaluation of the energetic potential of sewage sludge by characterization of its organic composition.

    Science.gov (United States)

    Schaum, C; Lensch, D; Cornel, P

    2016-01-01

    The composition of sewage sludge and, thus, its energetic potential is influenced by wastewater and wastewater treatment processes. Higher or lower heating values (HHV or LHV) are decisive factors for the incineration/gasification/pyrolysis of sewage sludge. The HHV is analyzed with a bomb calorimeter and converted to the LHV. It is also possible to calculate the heating value via chemical oxygen demand (COD), total volatile solids (TVS), and elemental composition. Calculating the LHV via the COD provides a suitable method. In contrast, the correlation of the HHV or LHV with the TVS is limited. One prerequisite here is a constant specific energy density; this was given with the types of sewage sludge (primary, surplus/excess, and digested sludge) investigated. If the energy density is not comparable with sewage sludge, for instance with the co-substrate (bio-waste, grease, etc.), the estimation of the heating value using TVS will fail. When calculating the HHV or LHV via the elemental composition, one has to consider the validity of the coefficients of the calculation equation. Depending on the organic composition, it might be necessary to adjust the coefficients, e.g. when adding co-substrates. PMID:27332855

  8. The effect of hygienic treatment on the microbial flora of biowaste at biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Bagge, E.; Sahlstroem, L.; Albihn, A. [National Veterinary Institute, Uppsala (Sweden). Dept. of Bacteriology

    2005-12-15

    In Sweden, full-scale, commercial biogas plants (BGP), which process low-risk animal waste, operate a separate pre-pasteurisation at 70{sup o}C for 60 min as required by EEC regulation 1774/2002. The purpose of this study was to establish if, during pasteurisation and further processing and handling in full-scale BGPs, pathogens in biowaste could be sufficiently reduced to allow its use on arable land. Four BGPs were sampled on six occasions during 1 year. Sampling was performed from six locations during biogas production. The samples being analysed quantitatively to detect indicator bacteria (Escherichia coli, Enterococcus spp. and coliforms) and spore-forming bacteria (Clostridium spp. and Bacillus spp.) and qualitatively for bacterial pathogens (salmonella, listeria, campylobacter and VTEC O157). Salmonella was the most frequently isolated pathogen before pasteurisation In general, the treatment adequately reduced both indicator and pathogenic bacteria. Spore-forming bacteria were not reduced. However, recontamination and regrowth of bacteria in biowaste was frequently noted after pasteurisation and digestion. (author)

  9. Urban biowaste for solid fuel production: waste suitability assessment and experimental carbonization in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Lohri, Christian Riuji; Faraji, Adam; Ephata, Elia; Rajabu, Hassan Mtoro; Zurbrügg, Christian

    2015-02-01

    The poor state of solid waste management in Dar es Salaam (DSM), Tanzania, the large fraction of organic waste generated and a high charcoal consumption by city residents has triggered this research on carbonization of municipal biowaste. Char produced by the thermochemical conversion method of slow pyrolysis can be briquetted and used as cooking fuel alternative to wood-based charcoal. To explore the potential of biowaste carbonization in DSM, the most suitable organic wastes were selected and pyrolyzed in a simple, externally heated carbonization system developed as part of this study. A Multi-Criteria Analysis framework allowed to assess prevailing biowaste types regarding availability and accessibility, and respective suitability in terms of physical-chemical properties. The assessment, using data from a survey and lab analysis, revealed the following biowaste types with highest overall potential for char production in DSM: packaging grass/leaves (PG) used for transportation of fruit and vegetables to the markets, wood waste (WW) from wood workshops, and cardboard (CB) waste. Best practice carbonization of these biowastes in the pyrolyzer showed satisfactory char yields (PG: 38.7%; WW: 36.2%; CB: 35.7% on dry basis). Proximate composition (including volatile, fixed carbon and ash content) and heating value (PG: 20.1 MJ kg(-1); WW: 29.4 MJ kg(-1); CB: 26.7 MJ kg(-1)) of the produced char also compare well with literature data. The energy and emission-related aspects of the system still require further research and optimizations to allow financially viable and safe operation. PMID:25649406

  10. Comparison of olive pomace and biowaste composts in a vegetable cropping system

    Directory of Open Access Journals (Sweden)

    Luigi Morra

    2013-10-01

    Full Text Available The main objective of this paper was to study the growth and the yield responses of different vegetable crops to pomace compost and biowaste (source-separated municipal organic fraction compost and to the increase in their rates. A secondary aim was to assess the efficiency of nitrogen (N supplied to the crops by the compost rate integrated or not with N fertilisers. Finally, the ability of the two composts to improve the soil organic carbon content was also compared. The research was carried out from July 2009 to June 2011. A comparison was made of treatments resulting from the factorial combination of two composts, two rates of application, and two levels of nitrogen fertiliser. A non-fertilised control was also analysed and a standard mineral fertilisation completed the group of treatments. Cauliflower and potato were harvested after the first compost distribution, and onion and lettuce after the second. Our results indicated that the higher the quantity of olive pomace compost applied the greater the slow release of NO3–N for crop needs. This has to be related to the high carbon:nitrogen ratio of the olive pomace compost.The halved rate of N fertiliser added to compost was sufficient to overcome the competition between soil microorganisms and roots for nitrogen, only on the second crop in the annual sequence. The biowaste compost without N fertiliser integration also reduced crop yields, but this was to a lesser degree than that achieved with olive pomace compost and was independent of the rate applied. The halved rate of N fertiliser supplied was able to overcome the problems of nitrogen availability. As a consequence, the nitrogen utilisation efficiency showed a higher recovery of nitrogen from biowaste compost than from olive pomace compost, as well as from the 10 t ha–1 dose (rate 10 of dry matter than from the 20 t ha–1 dose. On the other hand, the soil organic carbon content increased significantly only when the composts were

  11. Compost maturity. Method book; Kompostin kypsyystestit. Menetelmaeohjeet

    Energy Technology Data Exchange (ETDEWEB)

    Itaevaara, M.; Vikman, M.; Kapanen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Venelampi, O.; Vuorinen, A. [Evira Finnish Food Safety Authority, Helsinki (Finland)

    2006-08-15

    widely used as maturity tests, such as the Rottegrad test. Standard tests have been modified for practical applications. Some methods have only been described shortly: the source reference is given so that the reader can obtain more information if interested. We hope that the guidebook will enhance the production of good quality composts and increase the recycling of biowaste as a plant growth substrate. (orig.)

  12. Biowaste separate collection and composting in a Small Island Developing State: The case study of São Tomé and Principe, West Africa.

    Science.gov (United States)

    Vaz, João M; Ferreira, José S; Dias-Ferreira, Celia

    2015-12-01

    São Tomé and Principe archipelago in West Africa is a Small Island Developing State facing acute waste management problems. This article describes the implementation of selective collection of biowaste combined with composting in São Tomé, as a case-study of an innovative action in the framework of a Small Island Developing State. Collection was designed to gather 225 t y(-1), targeting non-domestic biowaste producers, namely local businesses, municipal markets and municipal green waste. A municipal composting plant was built using basic facilities and windrow composting. The total investment amounted to €50,000, mainly supported by external aid. Biowaste producers reacted very positively, source segregating enthusiastically. Irregular service - collection collapsed each time the old vehicle was repaired - together with political disengagement and unmotivated work force were the major constrains. Biowaste was intermittently delivered to the composting plant and yielded 2 t of compost from July to December 2013 and 10 t during 2014. Compost was sold as organic fertiliser to a touristic resource, to small farmers and to gardeners, at a market price slightly below production costs, meaning the process is not economically sustainable without support. Nevertheless, biowaste is one of the few waste fractions (other than glass) that can be turned into a product that has both market value and a real demand, showing the enormous potential of composting source-separated biowaste in this part of the world. PMID:26526021

  13. Economic comparison of the possibilities of reduction of plastics in biowaste, executed for an open compost-heap; Oekonomischer Vergleich von Moeglichkeiten zur Reduzierung von Kunststoffen im Bioabfall am Beispiel einer offenen Mietenkompostierung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, S.; Borg, H. [Halle-Wittenberg Univ., Halle (Germany). Inst. fuer Agrartechnik und Landeskultur; Jank, M.; Schnabel, R. [Halle-Wittenberg Univ., Halle (Germany). Fachbereich Ingenieurwissenschaften

    2002-01-01

    Often, biowaste is collected in the household in plastic bags, that are thrown into the biowaste container. Therefore, non-compostable plastic bags are found in the compost-heap. The use of biodegradable (paper) bags for gathering the biowaste may help to solve this problem. Alternatively, the plastics impurities might be separated from the compostable material by using a cyclon device. A comparison of both methods indicate, that the overall costs are lower when biodegradable bag are used in the household.

  14. SLUDGE ORGANICS BIOAVAILABILITY

    Science.gov (United States)

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. vailable data, however, show that concentrations of priority organics in normal sludges are low. ludges applied at agronomic rates yield chemical c...

  15. Behavior of heteroatom compounds in hydrothermal gasification of biowaste for hydrogen production

    International Nuclear Information System (INIS)

    Highlights: → In hydrothermal gasification, cow dung and chicken manure used as real biowastes. → L-cysteine and O-phospho-DL-serine used as test samples of them. → Hydrogen was produced as the main gas, other gas was efficiently suppressed. → The P elements of liquid phase were converted to solid compounds. → The best condition was obtained with the use of 3 mmol Ca(OH)2, under 400 oC, 22 MPa. -- Abstract: Hydrogen gas has successfully been produced from biomass by hydrothermal gasification. Various alkaline additives have been found to increase the hydrogen yield. However, studies have not yet been done on pollutants that would be produced in the hydrothermal gasification with real biomass waste containing hetero-atoms such as S, N, and P elements. Studies have also yet to be done on finding ways to suppress the formation of pollutants. For this purpose, L-cysteine containing hetero-atoms S and N, and O-phospho-DL-serine with P, were selected as pure test samples. The objective was to determine the optimum conditions for the suppression of the pollutants produced in the hydrothermal gasifications, while effectively generating hydrogen. Phosphate ion was found in the liquid phase after the gasification of O-phospho-DL-serine with and without additive at 400 oC. Phosphorus compounds were not detected in the gas phase. When a large quantity of Ca(OH)2 was added, phosphorus compounds were precipitated in the solid phase. Hydrogen gas yields were increased and other gases were suppressed by using the additive. These results were same as those of chicken manure. The test samples were used to determine the optimum conditions of 400 oC, 21 MPa, and the Ca(OH)2 additive. NH4+ was mainly produced in liquid phase by using the model sample of L-cysteine. With the addition of Ca(OH)2, the yields of SO2 and H2S are significantly decreased. NO2- and NO3- were detected at trace levels. The main gas produced was hydrogen and the generation of CO2 gas was efficiently

  16. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution.

    Science.gov (United States)

    Manoj Kumar Reddy, P; Mahammadunnisa, Sk; Ramaraju, B; Sreedhar, B; Subrahmanyam, Ch

    2013-06-01

    Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ∼585 m(2)/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H(2)O(2)-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics. PMID:23233187

  17. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.

    Science.gov (United States)

    Cecchi, Franco; Cavinato, Cristina

    2015-05-01

    Scientific and industrial experiences, together with economical and policies changes of last 30 years, bring anaerobic digestion among the most environmental friendly and economically advantageous technologies for organic waste treatment and management in Europe. In this short review, the role of anaerobic digestion of organic wastes is discussed, considering the opportunity of a territorial friendly approach, without barriers, where different organic wastes are co-treated. This objective can be achieved through two proposed strategies: one is the anaerobic digestion applied as a service for the agricultural and farming sector; the other as a service for citizen (biowaste, diapers and wastewater treatment integration). The union of these two strategies is an environmental- and territorial-friendly process that aims to produce renewable energy and fertiliser material, with a low greenhouse gas emission and nutrients recovery. The advantage of forthcoming application of anaerobic digestion of organic wastes, even for added value bioproducts production and new energy carriers, are finally discussed. Among several advantages of anaerobic digestion, the role of the environmental controller was evaluated, considering the ability of minimising the impacts exploiting the biochemical equilibrium and sensitivity as a quality assurance for digestate. PMID:25687916

  18. Biowaste compost effects on productive and qualitative characteristics of some field crops and on soil fertility

    Directory of Open Access Journals (Sweden)

    Giovanni Fecondo

    2015-06-01

    Full Text Available Biowaste compost exploitation is a way of recovering agricultural soil fertility that in these last decades decreased up to a desertification limit. In order to test compost efficacy on crop yield and soil fertility, in the period 2011-2013 at COTIR experimental farm, a trial comparing different amounts of compost on two crop rotations was carried out. Crop rotations tested were durum wheat-sunflower-durum wheat and tomato-durum wheat-pepper. Results showed that the use of 40 t ha–1 of compost increased wheat grain yield and protein content if compared to control and mineral fertilised treatment. Compost application at 40 t ha–1 increased also yield of pepper in the first two harvest times, while during the third harvest, which included green and red berries, (the yield was statistically different only if compared to control treatment. Moreover, compost improved soil fertility both in terms of organic matter and main nutritional elements, while a negative aspect of its use was the increase of soil electric conductivity, although no negative effect on crops yield were observed.

  19. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.

    Science.gov (United States)

    Kumar, Prasun; Ray, Subhasree; Kalia, Vipin C

    2016-01-01

    Production of polyhydroxyalkanoate (PHA) co-polymers by Bacillus spp. was studied by feeding defined volatile fatty acids (VFAs) obtained through controlled hydrolysis of various wastes. Eleven mixed hydrolytic cultures (MHCs) each containing 6 strains could generate VFA from slurries of (2% total solids): pea-shells (PS), potato peels (PP), apple pomace (AP) and onion peels (OP). PS hydrolysates (obtained with MHC2 and MHC5) inoculated with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45 produced co-polymers of PHA at the rate of 15-60mg/L with a 3HV content of 1%w/w. An enhancement in PHA yield of 3.66-fold, i.e. 205-550mg/L with 3HV content up to 7.5%(w/w) was observed upon addition of OP hydrolysate and 1% glucose (w/v) to PS hydrolysates. This is the first demonstration, where PHA co-polymer composition, under non-axenic conditions, could be controlled by customizing VFA profile of the hydrolysate by the addition of different biowastes. PMID:26512866

  20. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    Science.gov (United States)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  1. Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization.

    Science.gov (United States)

    Kumari, Sapana; Chauhan, Ghanshyam S; Ahn, Jou-Hyeon; Reddy, N S

    2016-04-01

    Enzyme immobilization is an important technique to enhance stability, storability and reusability of enzymes. In the present work, pine needles, a forest bio-waste, were used as a feedstock of cellulose to synthesize new materials as supports for immobilization of α-chymotrypsin (CT) enzyme. The extracted cellulose from pine needles was etherified with different alkyl bromides (RBr) and etherified products were further modified to dialdehyde via oxidation with NaIO4 to get the desired products, dialdehyde cellulose ethers (ROcellCHO). CT was then covalently immobilized onto as-synthesized dialdehyde cellulose ethers via Schiff-base formation, i.e., imine linkage. The synthesized products and enzyme immobilization were confirmed by different characterization techniques and the activity assay of the free and the immobilized CT was carried out using standard protocol with variation of different parameters such as temperature, pH and substrate concentration. The storage stability and reusability of the immobilized CT were also investigated. CT activity was also studied in simulated physiological conditions in the artificial gastric fluid and artificial intestinal fluid. Artificial neural network (ANN) model was employed to correlate the relationship with% relative activity and time, temperature and pH affecting enzyme activity. A good correlation of experimental data was predicted by ANN model. PMID:26723248

  2. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  3. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  4. Hot balls dry sludge

    NARCIS (Netherlands)

    Hartmann, L.

    2004-01-01

    Each year some 25 million m3 of mineral sludge are dredged from rivers, canals and harbours in the Netherlands alone, twenty percent of which is polluted. The unpolluted sludge is usually dumped at sea. The remaining five million m3 may only be dumped in a few selected landfill locations, at conside

  5. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  6. Utilization of sewage sludge for enhancing agricultural productivity - II. Responses of rice to fertilizer N and irradiated sewage sludge

    International Nuclear Information System (INIS)

    A microplot field experiment was conducted to study the effects of γ-irradiated and non-irradiated sewage sludge on dry-matter yield and N uptake of wheat. Irradiation of sewage sludge at 5 kGy showed almost complete kill of coliform bacteria. Sludge was applied at rates equivalent to 120, 180, and 240 kg N ha-1, either with or without 15N-labelled (NH4)2SO4 at 20 kg N ha-1. In addition, one control (no treatment) and a treatment receiving 120 kg N ha-1 as 15N-labelled (NH4)2SO4 were also included in the experiment. Wheat was grown to maturity and drymatter yields and N uptake obtained. A highly positive effect of sewage sludge, whether irradiated or not, was observed on dry-matter yield and N uptake. Sewage sludge not only served as an additional source of plantavailable N but also helped conserve fertilizer N leading to its increased uptake by plants. The beneficial effect of sludge was more pronounced in the presence of fertilizer N and the effect increased with the rate of application. However, physico-chemical and biological properties of the soil after harvest indicated that probably the applied sewage sludge decomposed quite rapidly and thus did not add much to the soil organic matter content and other properties. Nevertheless, N content of the soil showed some improvement although not necessarily consistent with the rate of application. (author)

  7. Development and field testing of agricultural snowmelting agents made from recycled bio-waste materials

    International Nuclear Information System (INIS)

    In snow-covering region of Japan, the promotion of snowmelting with application of agricultural snowmelting agents ('Yusetsuzai' in Japanese) has been widely carried out by farmers at the snowmelting season. When black colored materials with albedo-lowering effect are spread on snow surface, absorption of solar radiation by snow is increased, the snowmelting is promoted and snow thawing date becomes earlier. As a result, the growing season of crop plants is extended. Existing agricultural snowmelting agents have been mostly made from industrial waste materials or industrial processed products due to requirement for the low cost of the raw materials. These agents may contain harmful heavy metal elements and may lead to environmental pollution. To solve these problems, we developed the new agricultural snowmelting agents made from recycled bio-waste materials generated from the fields of agriculture and fishery. The developed snowmelting agents were made from shells of Patinopecten yessoensis, fowl droppings and processed wastes of fish and shellfish, etc. Especially, the shells of Patinopecten yessoensis has problems due to generation of a huge quantity in Hokkaido. Therefore, the recycling-use of these waste materials was strongly requested and expected. The developed snowmelting agents were possible to spread efficiently and safely on the snow-surface without wide scattering by controlling the particle size within the range larger than 100 microm and smaller than 1180 microm. Results obtained from the field experiment showed that the albedo was decreased from 0.70 for natural snow to 0.20 and the promotion of snowmelting for 11 days was recognized when 100 kg/10a of developed agent was spread. The promoting ability of the developed agent was equivalent to those of the existing commercial snowmelting agents. (author)

  8. Co-composting of biowaste and wood ash, influence on a microbially driven-process.

    Science.gov (United States)

    Fernández-Delgado Juárez, Marina; Prähauser, Barbara; Walter, Andreas; Insam, Heribert; Franke-Whittle, Ingrid H

    2015-12-01

    A trial at semi-industrial scale was conducted to evaluate the effect of wood ash amendment on communal biowaste in a composting process and on the final composts produced. For this purpose, three treatments including an unamended control (C0) and composts with additions of 6% (C6), and 12% (C12) of wood ash (w/w) were studied, and physico-chemical parameters as well as microbial activity and community composition were investigated. At the end of the process, composts were tested for toxicity and quality, and microbial physiological activity. The influence of ash addition on compost temperature, pH, microbial activity and composition was stronger during the early composting stages and diminished with time, whereby composts became more similar. Using the COMPOCHIP microarray, a reduction in the pathogenic genera Listeria and Clostridium was observed, which together with the temperature increases of the composting process helped in the hygienisation of composts. Lactobacillus species were also affected, such that reduced hybridisation signals were observed with increased ash addition, due to the increased pH values in amended composts. Organic matter mineralisation was also increased through ash addition, and no negative effects on the composting process were observed. The nutrient content of the final products was increased through the addition of ash, and no toxic effects were observed. Nonetheless, greater concentrations of heavy metals were found in composts amended with more ash, which resulted in a downgrading of the compost quality according to the Austrian Compost Ordinance. Thus, regulation of both input materials and end-product quality is essential in optimising composting processes. PMID:26394680

  9. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste.

    Science.gov (United States)

    Villar, Iria; Alves, David; Garrido, Josefina; Mato, Salustiano

    2016-08-01

    During composting, facilities usually exert greater control over the bio-oxidative phase of the process, which uses a specific technology and generally has a fixed duration. After this phase, the material is deposited to mature, with less monitoring during the maturation phase. While there has been considerable study of biological parameters during the thermophilic phase, there is less research on the stabilization and maturation phase. This study evaluates the effects of the type of starting material on the evolution of microbial dynamics during the maturation phase of composting. Three waste types were used: sludge from the fish processing industry, municipal sewage sludge and pig manure, each independently mixed with shredded pine wood as bulking agent. The composting system for each waste type comprised a static reactor with capacity of 600L for the bio-oxidative phase followed by stabilization and maturation phase in triplicate 200L boxes for 112days. Phospholipid fatty acids, enzyme activities and physico-chemical parameters were measured throughout the maturation phase. The evolution of the total microbial biomass, Gram + bacteria, Gram - bacteria, fungi and enzymatic activities (β-glucosidase, cellulase, protease, acid and alkaline phosphatase) depended significantly on the waste type (pfish sludge maturation, manure and municipal sludge were characterized by a greater proportion of bacteria. Both the structure of the microbial community and enzymatic activities provided important information for monitoring the composting process. More attention should be paid to the maturation phase in order to optimize composting. PMID:27236404

  10. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol-gel combustion method.

    Science.gov (United States)

    Choudhary, Rajan; Vecstaudza, Jana; Krishnamurithy, G; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku; Swamiappan, Sasikumar; Locs, Janis

    2016-11-01

    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. PMID:27524000

  11. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    Science.gov (United States)

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  12. Response of rice to nitrogenous fertilizer and irradiated sewage sludge

    International Nuclear Information System (INIS)

    A greenhouse pot experiment was conducted to study the effect of Gamma-irradiated sewage sludge, applied alone or along with /sup 15/N-labelled ammonium sulphate (1.0 atom % /sup 15/N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended wit sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg/sub -1/ soil. In other treatments nitrogen was applied at 120 mg kg/sup -1/ as /sup 15/N-labelled ammonium sulphate or 120 mg kg/sub -1/ as /sup 15/NH/sub 4/-N + sludge-N in the ratios of 1:3, 1:1, or 3:1. All the treatments were given before transplanting rice. Three healthy seedlings (4-week old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted pot/sup -1/ and the plants harvested at maturity. Application of sewage sludge caused a significant improvement in rice yield. Grain yield increased by 188% at sludge-N of 120 mg N kg/sup -1/. The yield benefit at similar rate of fertilizer N was 304%, the increase being more at higher rates of application. The increase in rice yield was dependent on uptake of N and sewage sludge significantly improved the availability of N to the plants. The additional plant N in sludge treated soil was partially attributable to enhanced mineralization of soil N and N/sub 2/ fixation by free living microorganisms. Application of inorganic N led to a significant increase in the availability of N to plants from soil organic matter and sewage sludge. Results of combined application suggested that substantial savings of fertilizer N can be made by using sewage sludge on rice-fields. (author)

  13. Dewatering of sludges

    International Nuclear Information System (INIS)

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  14. Optimizing Arteriovenous Fistula Maturation

    OpenAIRE

    Zangan, Steven M.; Falk, Abigail

    2009-01-01

    Autogenous arteriovenous fistulas are the preferred vascular access in patients undergoing hemodialysis. Increasing fistula prevalence depends on increasing fistula placement, improving the maturation of fistula that fail to mature and enhancing the long-term patency of mature fistula. Percutaneous methods for optimizing arteriovenous fistula maturation will be reviewed.

  15. Utilization of sewage sludge for enhancing agricultural productivity - II. Responses of rice to fertilizer N and irradiated sewage sludge

    International Nuclear Information System (INIS)

    A greenhouse experiment was conducted to study the effects of -irradiated sewage sludge, applied alone or with 15N-labelled ammonium sulphate (1.0 atom % 15N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended with sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg-1 soil. In other treatments, N was applied at 120 mg kg-1 as 15N-labelled ammonium sulphate or 120 mg kg-1 as 15NH4-N plus sludge-N in the ratio of 1:3, 1:1, or 3:1. All of the treatments were made before transplanting the rice. Three healthy seedlings (4 weeks old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted per pot, and the plants were harvested at maturity. Applications of sewage sludge caused significant improvements in rice yield (grain yield increased by 188% with sludge-N at 120 mg N kg-1, whereas the yield benefit at a similar rate of fertilizer N was 304%); increases were greater at higher rates of application. Increase in rice yield was dependent on uptake of N, and sewage sludge significantly improved the plant availability of N. The additional plant N in sludge-treated soil was partially attributable to enhanced mineralization of soil N and N2 fixation by free-living microorganisms. Application of inorganic N led to a significant increase in the plant availability of N from soil organic matter and sewage sludge. Data from combined applications suggest that substantial savings of fertilizer N can be made by disposing of sewage sludge on rice fields. (author)

  16. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  17. Sludge treatment studies

    International Nuclear Information System (INIS)

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na7(PO4)2F·19H2O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO2-H2O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO3 sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth

  18. Sludge technology assessment

    International Nuclear Information System (INIS)

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  19. Sludge treatment studies

    Energy Technology Data Exchange (ETDEWEB)

    Beahm, E.C.; Weber, C.F.; Dillow, T.A.; Bush, S.A.; Lee, S.Y.; Hunt, R.D.

    1997-06-01

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na{sub 7}(PO{sub 4}){sub 2}F{center_dot}19H{sub 2}O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO{sub 2}-H{sub 2}O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO{sub 3} sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth.

  20. Enhancement of sludge granulation in hydrolytic acidogenesis by denitrification.

    Science.gov (United States)

    Li, Yang; Zhang, Yaobin; Zhao, Zisheng; Sun, Songlan; Quan, Xie; Zhao, Huimin

    2016-04-01

    Acidogenesis is an important pretreatment process for various industrial wastewater treatments. Granular sludge is an efficient form of a microbial community in anaerobic methanogenic reactors, such as upflow anaerobic sludge blanket (UASB), but it is hard to develop in the acidogenic process due to the short hydraulic retention times (HRTs) of acidogenesis. In this study, nitrate was added into an acidogenic reactor as an electron acceptor to enhance electron exchange between acidogenic and denitrifying bacteria to accelerate sludge growth in the acidogenesis process. The results showed that it developed solid and mature granular sludge with a mean size of 410 ± 35 μm over 84 days of operation. Comparatively, the sludge in a no-nitrate acidogenic reactor showed a flocculent appearance with a mean size of 110 ± 18 μm. Analysis of the microbial community indicated that denitrifying bacteria interwoven with propionate-oxidizing bacteria were distributed in the outer granule layer, which provided an ideal shield for susceptible microorganisms inside the granules. This microbial structure was favorable for the development of granular sludge and made the system possible to respond well to shocks in the operation. PMID:26637420

  1. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  2. Sludge Stabilization Campaign blend plan

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, M.L.

    1994-10-04

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material.

  3. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    Science.gov (United States)

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge. PMID:25442095

  4. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization

    International Nuclear Information System (INIS)

    Highlights: • Hydrothermal fuel production recovered about 40% of net energy from sewage sludge. • Hydrothermal temperature plays the most important role in solid fuel properties. • Carbon content of fuel increases with hydrothermal temperature and holding time. • Optimal condition is hydrothermal temperature of 200 °C and holding time of 30 min. • Intensifying the mechanical dewatering is effective to save energy. - Abstract: The hydrothermal (HT) conversion has been proposed to produce nitrogen, chlorine free solid biofuel or liquid fertilizer from high moisture and nitrogen content bio-wastes, such as municipal solid waste (MSW), mycelial waste, sewage sludge and paper sludge. However, the energy and economic efficiency of this process has not been fully investigated yet. This work focuses on energy recycling from sewage sludge by producing solid biofuel with HT carbonization, in order to optimize the operating parameters and evaluate the energy efficiency of this fuel production process. The effect of the HT temperature and holding time on the biofuel recovering ratio, calorific value and energy recovery rate was investigated. This evaluation fully considered the effect of the HT conditions, mechanical dewatering, thermal drying, and biofuel recovery ratio. Moreover, the energy consumption of sludge thermal drying was introduced to illustrate the economic efficiency of the HT biofuel production process more intuitively. The results show that the HT biofuel production process was more cost-effective than the conventional thermal drying. The HT temperature was the most important parameter to affect the biofuel properties. The carbon content of solid biofuel kept increasing both with HT temperature and holding time, resulting in an increase in the calorific value of biofuel; whereas, the biofuel recovering ratio α, defined as the mass ratio of solid biofuel to raw sludge, also dropped causing a reduction in the energy recovery rate. After the HT

  5. Maturity and maturity models in lean construction

    Directory of Open Access Journals (Sweden)

    Claus Nesensohn

    2014-03-01

    Full Text Available In recent years there has been an increasing interest in maturity models in management-related disciplines; which reflects a growing recognition that becoming more mature and having a model to guide the route to maturity can help organisations in managing major transformational change. Lean Construction (LC is an increasingly important improvement approach that organisations seek to embed. This study explores how to apply the maturity models to LC. Hence the attitudes, opinions and experiences of key industry informants with high levels of knowledge of LC were investigated. To achieve this, a review of maturity models was conducted, and data for the analysis was collected through a sequential process involving three methods. First a group interview with seven key informants. Second a follow up discussion with the same individuals to investigate some of the issues raised in more depth. Third an online discussion held via LinkedIn in which members shared their views on some of the results. Overall, we found that there is a lack of common understanding as to what maturity means in LC, though there is general agreement that the concept of maturity is a suitable one to reflect the path of evolution for LC within organisations.

  6. Evaluation of the Addition of Wood Ash to Control the pH of Substrates in Municipal Biowaste Composting

    Directory of Open Access Journals (Sweden)

    Oviedo-Ocaña Edgar Ricardo

    2014-07-01

    Full Text Available This study evaluates the addition of wood ashes (WA for controlling the pH of substrates in municipal biowaste (MBW composting. Three combinations in wet weight percent (w/w of MBW and WA were tested: i BC1: 2% WA and 98% MBW; ii BC2: 4% WA and 96% MBW; and iii BC3: 8% WA and 92% MBW. Each combination was compared with a control (100% MBW called B1, B2 and B3 respectively. The experiment was conducted to pilot scale, with piles of 510 kg. The results indicate that the addition of WA improved the pH level and nutrients for the composting process; however, it had not substantial benefit in the process (start of the thermophilic phase and the behavior of the substrate degradation rate. Furthermore, a higher presence of salts and phytotoxic compounds in the product was observed. This could limit the product use for agricultural activities.

  7. Thickening methods in sludge processing

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj

    2011-01-01

    The treatment of wastewater occur a large amount of sludge that contains high percentage of water and substances that provide a poor quality of wastewater (suspended organic and inorganic substances, substances that give unpleasant odors, bacteria, etc.). The high content of water in the sludge requires relatively large objects for sludge processing. This indicates the need for application procedures for treating sludge to volume reduce, stabilization of substances subject to decay and ...

  8. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  9. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  10. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank;

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and...... filtration). It therefore is an important property related to process performance, including process economics. To account for this, rheological behaviour is being included in process design, necessitating its measurement. However, measurements and corresponding protocols in literature are quite diverse...

  11. Vermistabilization of primary sewage sludge.

    Science.gov (United States)

    Hait, Subrata; Tare, Vinod

    2011-02-01

    An integrated composting-vermicomposting process has been developed for utilization of primary sewage sludge (PSS). Matured vermicompost was used as bulking material and a source of active microbial culture during aerobic activated composting (AAC). AAC resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with PSS and produced materials acceptable for vermicomposting. Vermicomposting caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total organic carbon (TOC), C/N ratio and pathogens and substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP) as compared to compost. Environmental conditions and stocking density have profound effects on vermicomposting. Temperature of 20°C with high humidity is favorable environmental condition for vermicomposting employing Eisenia fetida. Favorable stocking density range for vermiculture is 0.5-2.0 kg m(-2) (optimum: 0.5 kg m(-2)) and for vermicomposting is 2.0-4.0 kg m(-2) (optimum: 3.0 kg m(-2)), respectively. PMID:21036608

  12. Using biowaste and CO2 to produce biogas from algae: the experimental plant of the B4B FP7 Project in Augusta (Sicily, Italy)

    OpenAIRE

    Cappelli, Andrea; Simoni, Silvano; Renda, Roberto; Gigli, Emanuele; Muzi, Luca

    2011-01-01

    1. Introduction – GHG emissions, eutrophication and energy dependence are problems that the EU has to face in the near future. The BioWALK4Biofuels (B4B) FP7 project aims to find a common response to these challenges, taking advantage of spontaneous biological processes: the growth of algae and anaerobic digestion of biomass. Biowastes and carbon dioxide will be inoculated in the cultivation tanks because of their ability to stimulate algal growth; algal biomass will keep growing and reproduc...

  13. Chemical conditioning of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Novak, John T.; Park, Chul

    2003-07-01

    With all the advances made in understanding the structure and composition of sewage sludges, chemical conditioning remains a trial and error process, both with regard to the type and dose of conditioner needed. Recent studies at Virginia Tech have found that biological floc consists of two types of biopolymer, material associated with iron and aluminum and material associated with calcium and magnesium. These materials behave differently when sludges undergo digestion. This results in very different material being released into solution during digestion and very different conditioning requirements. This study shows that the primary materials released during anaerobic digestion are proteins and coagulation of the colloidal protein fraction in solution is the primary mechanism for conditioning. For aerobically digested sludges, both proteins and polysaccharides make up the colloid fraction that interferes with dewatering. This research also shows that the effectiveness of the digestion process as characterized by volatile solids destruction is directly related to the chemical dose required for conditioning. That is, as the solids destruction increases, the conditioning chemical requirement also increases. Well-digested sludges dewater more poorly and require more conditioning chemical that those with less volatile solids destruction. (author)

  14. Chemical conditioning of sludge.

    Science.gov (United States)

    Novak, J T; Park, C

    2004-01-01

    With all the advances made in understanding the structure and composition of sewage sludges, chemical conditioning remains a trial and error process, both with regard to the type and dose of conditioner needed. Recent studies at Virginia Tech have found that biological floc consists of two types of biopolymer, material associated with iron and aluminium and material associated with calcium and magnesium. These materials behave differently when sludges undergo digestion. This results in very different material being released into solution during digestion and very different conditioning requirements. This study shows that the primary materials released during anaerobic digestion are proteins and coagulation of the colloidal protein fraction in solution is the primary mechanism for conditioning. For aerobically digested sludges, both proteins and polysaccharides make up the colloid fraction, which interferes with dewatering. This research also shows that the effectiveness of the digestion process as characterized by volatile solids destruction is directly related to the chemical dose required for conditioning. That is, as the solids destruction increases, the conditioning chemical requirement also increases. Well digested sludges dewater more poorly and require more conditioning chemical than those with less volatile solids destruction. PMID:15259940

  15. Sewage sludge treatment system

    Science.gov (United States)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  16. The Flight from Maturity

    OpenAIRE

    Gary B. Gorton; Andrew Metrick; Lei Xie

    2014-01-01

    Why did the failure of Lehman Brothers make the financial crisis dramatically worse? The financial crisis was a process of a build-up of risk during the crisis prior to the Lehman failure. Market participants tried to preserve an option or exit by shortening maturities - the "flight from maturity". With increasingly short maturities, lenders created the possibility of fast exit. The failure of Lehman Brothers was the tipping point of this build-up of systemic fragility. We produce a chronolog...

  17. Audit Maturity Model

    Directory of Open Access Journals (Sweden)

    Bhattacharya Uttam

    2014-01-01

    Full Text Available Today it is crucial for organizations to pay even greater attention on quality management as the importance of this function in achieving ultimate business objectives is increasingly becoming clearer. Importance of the Quality Management (QM Function in achieving basic need by ensuring compliance with Capability Maturity Model Integrated (CMMI / International Organization for Standardization (ISO is a basic demand from business nowadays. However, QM Function and its processes need to be made much more mature to prevent delivery outages and to achieve business excellence through their review and auditing capability. Many organizations now face challenges in determining the maturity of the QM group along with the service offered by them and the right way to elevate the maturity of the same. The objective of this whitepaper is to propose a new model –the Audit Maturity Model (AMM which will provide organizations with a measure of their maturity in quality management in the perspective of auditing, along with recommendations for preventing delivery outage, and identifying risk to achieve business excellence. This will enable organizations to assess QM maturity higher than basic hygiene and will also help them to identify gaps and to take corrective actions for achieving higher maturity levels. Hence the objective is to envisage a new auditing model as a part of organisation quality management function which can be a guide for them to achieve higher level of maturity and ultimately help to achieve delivery and business excellence.

  18. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  19. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.

    Science.gov (United States)

    Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik

    2015-07-01

    Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system

  20. K Basins sludge removal temporary sludge storage tank system

    International Nuclear Information System (INIS)

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A recommendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge

  1. K Basins sludge removal temporary sludge storage tank system

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  2. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  3. Characterization of lorry washing sludge

    OpenAIRE

    Moreno Caballero, Ana Isabel; Font Montesinos, Rafael; Gómez-Rico Núñez de Arenas, María Francisca

    2014-01-01

    The sludge generated by washing lorry refuse and some fractions of municipal solid waste have been studied, to justify that washing sludge presents no danger and can therefore be managed adequately in a landfill, as well as other municipal solid waste fractions. One problem attributed to this type of sludge is its high level of sulfide content, which causes this waste to be considered hazardous. The determination of sulfide content in the studied samples was carried out according to environme...

  4. Faecal Sludge Management Systems

    OpenAIRE

    Strande, Linda; Brdjanovic, Damir

    2014-01-01

    "It is estimated that literally billions of residents in urban and peri-urban areas of Africa, Asia, and Latin America are served by onsite sanitation systems (e.g. various types of latrines and septic tanks). Until recently, the management of faecal sludge from these onsite systems has been grossly neglected, partially as a result of them being considered temporary solutions until sewer-based systems could be implemented. However, the perception of onsite or decentralized sanitation technolo...

  5. Glazed Sludge Tile

    OpenAIRE

    Dayalan J; Beulah. M

    2014-01-01

    In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA) and Clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Three different proportions of clay (by weight ratio) were replaced by ISSA. Tiles of size 10cm *10cm*1 cm were made and left in an electric furnace to make biscuit tiles at 800°C. Afterwards, four colorants, Fe2O3 ...

  6. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  7. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Sewage systems serve about 70% of the Austrian population, producing 6 million m3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  8. Glazed Sludge Tile

    Directory of Open Access Journals (Sweden)

    Dayalan J

    2014-03-01

    Full Text Available In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA and Clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Three different proportions of clay (by weight ratio were replaced by ISSA. Tiles of size 10cm *10cm*1 cm were made and left in an electric furnace to make biscuit tiles at 800°C. Afterwards, four colorants, Fe2O3 (red, V2O5 (yellow, and CoCO3 (blue and three different glaze concentrations were applied on biscuit tile specimens. These specimens were later sintered into glazed tiles at 1050°C. The study shows that replacement of clay by sludge ash had adverse effects on properties of tiles. Water absorption increased and bending strength reduced with increased amounts of sludge ash. However, both water absorption and bending strength improved for glazed ash tiles. Abrasion of grazed tiles reduced noticeably from 0.001 to 0.002 g. This implies glaze can enhance abrasion resistance of tiles.

  9. Activated Sludge Ozonation to Reduce Sludge Production in MBR

    Institute of Scientific and Technical Information of China (English)

    HE Sheng-bing; XUE Gang; WANG Bao-zhen

    2005-01-01

    The total experimental period was divided into two stages.At the first stage, a series of batch studies were carried out to get an understanding of the effect of ozonation on sludge properties. At the following stages, three MBRs with different amounts of activated sludge to be ozonated were run in parallel for a long period to evaluate the influence of sludge ozonation on sludge yield and permeate quality.Through batch study, it was found that ozone could disrupt the cell walls and caused the release of plasm from the cells,then the amounts of soluble organics in the solution increased with ozonation time. With the rise of soluble organics, the amount of soluble organics to be mineralized increased as well, which wonld reduce the soluble organics content. For the counteraction between these two aspects, a pseudo-balance could be achieved, and soluble organics would vary in a limited range. Sludge ozonation also increased the contents of nitrogen and phosphorus in the solution. In addition, ozonation was effective in improving sludge settling property. On the basis of batch study, a suitable ozone dosage of 0.16 kgO3/kgMLSS wasdetermined. Three systems were run in parallel for a total period of 39 days, it was demonstrated that a part of activated sludge ozonation could reduce sludge production significantly, and biological performance of mineralization and nitrification would not be inhibited due to sludge ozonation. Experimental results proved that the combination of ozonation unit with MBR unit could achieve an excellent quality of permeate as well as a small quantity of sludge production, and economic analysis indicated that an additional ozonation operating cost for treatment of both wastewater and sludge was only 0.096Yuan (US $0.011,5)/m3 wastewater.

  10. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation - integrating sanitation, bio-waste management and agriculture.

    Science.gov (United States)

    Factura, H; Bettendorf, T; Buzie, C; Pieplow, H; Reckin, J; Otterpohl, R

    2010-01-01

    The recent discovery of the bio-waste and excreta treatment of a former civilisation in the Amazon reveals the possibility of a highly efficient and simple sanitation system. With the end product that was black soil they converted 10% of former infertile soil of the region: Terra Preta do Indio (black soil of the Indians). These soils are still very fertile 500 years after this civilisation had disappeared. Deriving from these concepts, Terra Preta Sanitation (TPS) has been re-developed and adopted. TPS includes urine diversion, addition of a charcoal mixture and is based on lactic-acid-fermentation with subsequent vermicomposting. No water, ventilation or external energy is required. Natural formation processes are employed to transform excreta into lasting fertile soil that can be utilised in urban agriculture. The authors studied the lacto-fermentation of faecal matter with a minimum of 4 weeks followed by vermicomposting. The results showed that lactic-acid fermentation with addition of a charcoal mixture is a suitable option for dry toilets as the container can be closed after usage. Hardly any odour occured even after periods of several weeks. Lactic-acid fermentation alone without addition of bulking agents such as paper and sliced-cut wood to raise the C/N ratio is creating a substrate that is not accepted by worms. PMID:20453341

  11. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  12. Solids Control in Sludge Pretreatment

    International Nuclear Information System (INIS)

    Sludge pretreatment will likely involve washing, followed by caustic or acidic leaching and washing of sludge residues after leaching. The principal goal of pretreatment is to obtain a low-volume high-activity waste stream and a high-volume low-activity waste stream. Also, some waste constituents such as chromium and phosphate can be included in glass formulations only at very low concentrations; therefore, it is desirable to remove them from high-level waste streams. Two aspects of sludge treatment and subsequent separations should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns.Before any treatment technology is adopted, it must be demonstrated that the process can be carried out as planned. Three pretreatment methods were considered in the Tri-Party (Washington State Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy) negotiations: (1) sludge washing with corrosion- inhibiting water, (2) Enhanced Sludge Washing, and (3)acidic dissolution with separations processes. Enhanced Sludge Washing is the baseline process. In Enhanced Sludge Washing, sludge is first washed with corrosion-inhibiting water; it is then leached with caustic (sodium hydroxide solution) and washed again with corrosion- inhibiting water. The initial concern is whether a pretreatment technique is effective in separating sludge components. This can be evaluated by bench-scale tests with sludge specimens from underground storage tanks. The results give data on the distribution of important species such as aluminum, phosphate, and radionuclides between wash and leach solutions and solid sludge residues

  13. Solids Control in Sludge Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Beahm, E.C., Weber, C.F., Hunt, R.D., Dillow, T.A.

    1997-12-31

    Sludge pretreatment will likely involve washing, followed by caustic or acidic leaching and washing of sludge residues after leaching. The principal goal of pretreatment is to obtain a low-volume high-activity waste stream and a high-volume low-activity waste stream. Also, some waste constituents such as chromium and phosphate can be included in glass formulations only at very low concentrations; therefore, it is desirable to remove them from high-level waste streams. Two aspects of sludge treatment and subsequent separations should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns.Before any treatment technology is adopted, it must be demonstrated that the process can be carried out as planned. Three pretreatment methods were considered in the Tri-Party (Washington State Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy) negotiations: (1) sludge washing with corrosion- inhibiting water, (2) Enhanced Sludge Washing, and (3)acidic dissolution with separations processes. Enhanced Sludge Washing is the baseline process. In Enhanced Sludge Washing, sludge is first washed with corrosion-inhibiting water; it is then leached with caustic (sodium hydroxide solution) and washed again with corrosion- inhibiting water. The initial concern is whether a pretreatment technique is effective in separating sludge components. This can be evaluated by bench-scale tests with sludge specimens from underground storage tanks. The results give data on the distribution of important species such as aluminum, phosphate, and radionuclides between wash and leach solutions and solid sludge residues.

  14. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge.

    Science.gov (United States)

    Gottumukkala, Lalitha Devi; Haigh, Kate; Collard, François-Xavier; van Rensburg, Eugéne; Görgens, Johann

    2016-09-01

    The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load. PMID:27080100

  15. Nitrogen availability of anaerobic swine lagoon sludge: sludge source effects.

    Science.gov (United States)

    Moore, Amber D; Israel, Daniel W; Mikkelsen, Robert L

    2005-02-01

    Increased numbers of swine producers will be removing sludge from their anaerobic waste treatment lagoons in the next few years, due to sludge exceeding designed storage capacity. Information on availability of nitrogen (N) in the sludge is needed to improve application recommendations for crops. The objective of this study was to investigate possible effects of different companies and types of swine operations on the availability of N in sludge from their associated lagoons. A laboratory incubation study was conducted to quantify the availability of N (i.e. initial inorganic N plus the potentially mineralizable organic N) in the sludge. Nine sludge sources from lagoons of sow, nursery and finishing operations of three different swine companies were mixed with a loamy sand soil (200 mg total Kjeldahl N kg(-1) soil) and incubated at a water content of 0.19 g. water g(-1) dry soil and 25+/-2 degrees C for 12 weeks. Samples were taken at eight times over the 12-week period and analyzed for inorganic N (i.e. NH(4)-N and NO(3)-N) to determine mineralization of organic N in the sludge. Company and type of swine operation had no significant effects (P incubation. While plant N availability coefficients were not measured in this study, the lack of significant company or type of swine operation effects on sludge N mineralization suggests that use of the same plant N availability coefficient for sludge from different types of lagoons is justifiable. The validity of this interpretation depends on the assumption that variation in other components of different sludge sources such as Cu and Zn does not differentially alter N uptake by the receiver crops. PMID:15474933

  16. Sludge Digestion Manual; Handboek Slibgisting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    This manual offers a guideline for developing, designing, optimizing and operating sludge digestion installations based on sewage sludge. It also offers tools for solving operation problems [Dutch] Het Handboek is een leidraad voor het ontwikkelen, ontwerpen, optimaliseren en bedrijven van slibgistingsinstallaties voor zuiveringsslib. Ook geeft het handvatten voor het oplossen van operationele problemen.

  17. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    Science.gov (United States)

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  18. Measuring project portfolio management maturity

    OpenAIRE

    Hänninen, Kirsti

    2016-01-01

    The thesis is researching portfolio management maturity in organizations that have project type of work. The objective of the thesis is to define what factors affect portfolio management maturity, how the maturity level can be evaluated and create a method for measuring current level of maturity. The thesis also provides maturity level improvement suggestions. Why is maturity measurement useful? The organizations that have project type of work often have some standardized practices. But t...

  19. Ultrasonic sludge pretreatment under pressure.

    Science.gov (United States)

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2013-09-01

    The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. PMID:23587728

  20. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  1. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption.

    Science.gov (United States)

    Salazar Gómez, J I; Lohmann, H; Krassowski, J

    2016-06-01

    Characterisation of biogases is normally dedicated to the online monitoring of the major components methane and carbon dioxide and, to a lesser extent, to the determination of ammonia and hydrogen sulphide. For the case of Volatile Organic Compounds (VOCs), much less attention is usually paid, since such compounds are normally removed during gas conditioning and with exception of sulphur compounds and siloxanes represent a rather low risk to conventional downstream devices but could be a hindrance for fuel cells. However, there is very little information in the literature about the type of substances found in biogases generated from biowaste or co-fermentation plants and their concentration fluctuations. The main aim of this study was to provide information about the time dependencies of the VOCs in three biogas plants spread out through Germany from autumn until summer, which have different process control, in order to assess their potential as biofuels. Additionally, this study was an attempt to establish a correlation between the nature of the substrates used in the biogas plants and the composition of the VOCs present in the gas phase. Significant time-dependent variations in concentration were observed for most VOCs but only small changes in composition were observed. In general, terpenes and ketones appeared as the predominant VOCs in biogas. Although for substances such as esters, sulphur-organic compounds and siloxanes the average concentrations observed were rather low, they exhibited significant concentration peaks. The second biogas plant which operates with dry fermentation was found to contain the highest levels of VOCs. The amount of total volatile organic compounds (TVOCs) for the first, second and third biogas plants ranged from 35 to 259 mg Nm(-3), 291-1731 mg Nm(-3) and 84-528 mg Nm(-3), respectively. PMID:27010166

  2. Sewage sludge drying and combustion

    OpenAIRE

    Salgado, Mario Alejandro Heredia

    2014-01-01

    A brief review of the paper pulp production process in order to understand the origin of the sewage sludge was performed. Then a general revision of the current treatment options for this type of waste was addressed. The thermal treatment by combustion was focused and a review of the state of the art of this process was performed. The high moisture content of sludge was identified as a major concern. Thus a revision of the state of the art regarding thermal drying of sewage sludge was perform...

  3. Long Maturity Forward Rates

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2001-01-01

    The paper aims to improve the knowledge of the empirical properties of the long maturity region of the forward rate curve. Firstly, the theoretical negative correlation between the slope at the long end of the forward rate curve and the term structure variance is recovered empirically and found to...... be statistically significant. Secondly, the expectations hypothesis is analyzed for the long maturity region of the forward rate curve using "forward rate" regressions. The expectations hypothesis is numerically close to being accepted but is statistically rejected. The findings provide mixed support...

  4. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  5. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...

  6. Radiation processing of sewage sludge

    International Nuclear Information System (INIS)

    The sludge resulting from municipal wastewater treatment usually is in the form of a liquid or semisolid liquid that typically contains 0.25-12% solids by weight, depending on the operations and processes used. Of the components removed in wastewater treatment, sludge is by far the greatest in volume, and the problems associated with its processing and disposal are complex because: - It is composed of the substances responsible for the offensive character of untreated wastewater; - The portion of sludge produced from biological treatment and requiring disposal is composed of the organic matter contained in the wastewater, but in a form that can decompose and become offensive; - Only a small portion of the sludge is solid matter

  7. Aluminum removal from washed sludge

    International Nuclear Information System (INIS)

    Purpose of this project is to reduce the volume of storage tank sludge to be treated by removing the Al and other nonradioactive components. In initial sludge surrogate studies, Al, Cr, and Zn showed the highest solubility in NaOH solutions; Ce and Zr were the least soluble of the elements tested. Removal of Fe and Bi approached 2%, the rest of the elements studied showed <1% removal. Amount of Al removed increased as the NaOH conc. increased from 0.1 to 6 M. Sequential washing of the sludge surrogate with 3 M NaOH removed 84% of the Al, 39% of the Cr, and 65% of the Zn. Surrogate sludges containing U and Th were also studied

  8. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  9. Irradiation of municipal sludge for agricultural use

    Science.gov (United States)

    Ahlstrom, Scott B.

    Research has demonstrated that irradiation is an effective means for reducing pathogens in sewage sludge to levels where sludge reuse in public areas meets criteria for protection of the public health. Complementary research has demonstrated the value of the irradiated sludge in both agronomic and animal science applications. The benefits of sludge application to cropland are well documented. The irradiation process does not increase the extractability and plant uptake of a broad range of nutrients and heavy metals from sludge-amended soils. However, it does eliminate the hazards associated with pathogen contamination when applying sludge to agricultural land. Irradiated sludge has also been evaluated as a supplemental foodstuff for cattle and sheep. The data indicate that products derived from raw sewage may have a substantial nutritive value for ruminant animals. Irradiation of sewage sludge is a practical means of sludge disinfection. Where a highly disinfected sludge is required, it should be considered as a viable sludge management alternative. Evaluation of sludge irradiation technology and its associated costs must be done with consideration of other sludge treatment processes to develop an acceptable sludge management system.

  10. Enhanced sludge washing evaluation plan

    International Nuclear Information System (INIS)

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices

  11. Effects of extracellular polymeric substances on granulation of anoxic sludge in sequencing batch reactor.

    Science.gov (United States)

    Wang, Binbin; Liu, Shunlian; Zhao, Hongmei; Zhang, Xinyan; Peng, Dangcong

    2012-01-01

    Variations of extracellular polymeric substances (EPS) and its components with sludge granulation were examined in a lab-scale sequencing batch reactor (SBR) which was fed with sodium nitrate and sodium acetate. Ultrasonication plus cation exchange resin (CER) were used as the EPS extraction method. Results showed that after approximately 90 d cultivation, the sludge in the reactor was almost granulated. The content of extracellular polysaccharides increased from 10.36 mg/g-VSS (volatile suspended solids) at start-up with flocculent sludge to 23.18 mg/g-VSS at 91 d with matured granular sludge, while the content of extracellular proteins were almost unchanged. Polysaccharides were the major components of EPS in anoxic granular sludge, accounting for about 70.6-79.0%, while proteins and DNA accounted for about 16.5-18.9% and 4.6-9.9%, respectively. It is proposed that EPS play a positive role in anoxic sludge granulation and polysaccharides might be strongly involved in aggregation of flocs into granules. PMID:22744684

  12. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    Science.gov (United States)

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-01

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge. PMID:26642353

  13. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming;

    2001-01-01

    Hydrophobic contaminants sorb to sludge in wastewater treatment plants and enter the soil environment when the sludge is applied to agricultural fields. The mineralization of pyrene was examined in soil, in sludge mixed homogeneously into soil, and in sludge-soil systems containing a lump of sludge....... Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  14. Activated Sludge Process Overview

    OpenAIRE

    B. Ahansazan; H. Afrashteh; N. Ahansazan; Z. Ahansazan

    2014-01-01

    In recent years the waste water ministerial regulations have led to a constant ascend in the purification performance demanded of waste water treatment plants. Because of this, the number of waste water treatment plants has been maturing, and technical complexity has also been growing. In order to hold the connected rising costs of capital expenditure and operation within bounds, sagacious process technology solutions have to be found. Besides having a deeper understanding of the individual p...

  15. Work plan for integrated sludge packaging demonstration

    International Nuclear Information System (INIS)

    This document describes the tasks which will be performed to support the hot demonstration of the integrated sludge packaging system to package the sludge that has accumulated in the KE Basin. This activity will be performed in three phases: Phase 1 will consist of testing component and sub-system performance using a surrogate sludge, Phase 2 will consist of cold testing the integrated sludge packaging system using a surrogate sludge, and Phase 3 will consist of the hot demonstration of the integrated sludge packaging system

  16. Enuresis: A maturational lag

    OpenAIRE

    Cary, Paul

    2003-01-01

    Enuresis is not a disease, but a disorder caused by delays in the maturation of three physiological processes: persistence of spontaneous bladder contractions, bladder volume exceeding the nocturnal functional bladder capacity and persistence of elevated sleep/arousal thresholds. Enuresis has been subtyped into two different groups, depending on whether the predominant feature is frequent small voidings (excessive bladder contractions) or large urinary volume (volume-dependent). The clinical ...

  17. Audit Maturity Model

    OpenAIRE

    Bhattacharya Uttam; Rahut Amit Kumar; De Sujoy

    2014-01-01

    Today it is crucial for organizations to pay even greater attention on quality management as the importance of this function in achieving ultimate business objectives is increasingly becoming clearer. Importance of the Quality Management Function in achieving basic need by ensuring compliance with Capability Maturity Model Integrated or International Organization for Standardization is a basic demand from business nowadays. However, Quality Management Function and its processes need to be mad...

  18. Mechanisms of lipase maturation

    OpenAIRE

    Doolittle, Mark H.; Péterfy, Miklós

    2010-01-01

    Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding ...

  19. Fractionation and business potential from sludge - Pafrak

    Energy Technology Data Exchange (ETDEWEB)

    Kylloenen, H.; Groenroos, A.; Pirkonen, P. (VTT Tecchnical Research Centre of Finland, Jyvaeskylae (Finland)), Email: hanna.kyllonen@vtt.fi; Maekinen, L.; Aemmaelae, A.; Niinimaeki, J. (Univ. of Oulu (Finland)), Email: liisa.makinen@oulu.fi

    2010-10-15

    Wastewater sludges contain valuable components which can be recycled and converted to secondary raw material. High water content of sludge can hinder the further processing. Dry solids content of waste activated sludge after dewatering can be as low as 12-20% and even lower for tertiary sludge. This research aimed with better knowledge of sludge and fractionation to generate potential business ideas, which could lead to new sludge based products and services in national and international markets already in this project or in separate development projects. Primary, waste activated, tertiary and deinking sludge from pulp and paper industry and municipal waste activated sludge were the suspensions to be studied. Basic properties of these sludges have been determined by large number of analysing methods. Wood based components and chemical elements have been determined to clarify the raw material potential for biorefineries. Conventional fractionation techniques (decanter centrifuge, hydrocyclone, belt filter press and sieve bend) have been used to see how the sludge can be fractionated. Correlations of wood based components and dewatering properties have been studied especially for the waste activated sludge. The effects of wood based filter aids were studied on the dewatering properties of waste activated sludge. State of the art has been drawn up about the current utilisation of wastewater sludge. (orig.)

  20. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  1. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  2. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 108 to 1.6 x 109 and from 2.2 x 107 to 1.5 x 108 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  3. Stepwise calibration of the activated sludge model no. 1 at a partially denitrifying large wastewater treatment plant.

    Science.gov (United States)

    Fall, C; Espinosa-Rodriguez, M A; Flores-Alamo, N; van Loosdrecht, M C M; Hooijmans, C M

    2011-11-01

    Activated sludge modeling technology is maturing; however, currently, there exists a great need to increase its use in daily engineering practice worldwide. A good way for building the capacities of the practitioners is to promote good modeling practices and standardize the protocols. In this study, a systematic procedure was proposed to calibrate the Activated Sludge Model No. 1 (ASM1) at a large wastewater treatment plant, by which the model adequately predicted the quality of the effluent and the sludge quantities. A hydraulics model was set up and validated through a tracer test. The Vesilind settling constants were measured and combined with the default value of the flocculent zone settling parameter, to calibrate the clarifiers. A virtual anoxic tank was installed in the return activated sludge to mimic the denitrification occurring in the settlers. In ASM1, the calibrated parameters were only two influent chemical oxygen demand fractions and one kinetic constant (oxygen half-saturation coefficient). PMID:22195426

  4. Maturity effects in energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1992-04-01

    This paper examines the effects of maturity on future price volatility and trading volume for 129 energy futures contracts recently traded in the NYMEX. The results provide support for the maturity effect hypothesis, that is, energy futures prices to become more volatile and trading volume increases as futures contracts approach maturity. (author).

  5. Integral study of sewage sludges

    International Nuclear Information System (INIS)

    Sewage sludges are the by-product generated during the treatment process of waste water, and they are conformed by a solid phase which origin is the accumulation of pollutant materials which has been added to water during natural and anthropogenic activities. Its handling is one of the most serious problems faced by water treatment plants which involve the production, gathering, transportation, re utilization and final disposal of sewage sludges. The main purpose of this project is to perform a technical evaluation of the process of sewage sludge irradiation for its possible application as a choice for treatment and final disposal. Irradiation with gammas from Cobalt-60 shows effectiveness in disinfestation of sewage sludges, since they reduce six times the microbial population with a 7 KGy dose. In like manners with doses of 10 KGy is possible to bring down in 70 % the concentration of organic compounds, as well as to eliminate the presence of 6 to 22 organic compounds on samples of sewage sludges. The whole content of this work is presented in six sections: Introduction, Antecedents, Methodology, Conclusions, Suggestions and Bibliography. (Author)

  6. Effect of cations on activated sludge dewatering

    OpenAIRE

    Raynaud, M.; Vaxelaire, J.; Héritier, P.; Baudez, J.C.

    2010-01-01

    Even after mechanical dewatering, the residual water within activated sludge remains high. Due to its complex structure, this material is usually extremely compressible and known to be difficult to dewater. The ability of sludge to dewater depends on its biological nature, its composition and also the type of treatment it comes from. Indeed, changes in ionic strength and in ionic composition of sludge affect the stability of structural properties of activated sludge and thus the dewatering...

  7. Hybrid Sludge Modeling in Water Treatment Processes

    OpenAIRE

    Brenda, Marian

    2015-01-01

    Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...

  8. Filterability and Sludge Concentration in Membrane Bioreactors

    OpenAIRE

    Lousada-Ferreira, M

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of the sludge to be filtrated through a membrane, in a wastewater treatment system designated as Membrane Bioreactor (MBR). An MBR is a wastewater treatment system that combines an activated sludge proc...

  9. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR).

    Science.gov (United States)

    Zhu, Liang; Lv, Mei-le; Dai, Xin; Zhou, Jia-heng; Xu, Xiang-yang

    2013-07-01

    The aerobic granular sludge technology has a great potential in treatment of municipal wastewater and industrial wastewater containing toxic non-degradable pollutants. However, the formation and structural stability of aerobic granular sludge is susceptible to toxic shock. In the study, the effect of 4-chloroaniline (4-ClA) as a common toxic pollutant on the granular structure and performance was investigated, and the mechanism was revealed to provide more information on 4-ClA degradation with aerobic granular sludge process. The results showed that a 4-ClA shock at influent 200 mg L(-1) could cause the disintegration of aerobic granular sludge and decrease of the pollutant removal performance. The analysis of extracellular polymeric substances (EPS) within the mature and disintegrated granular sludge showed that the decrease of protein content in EPS, especially the components like Amide I 3-turn helix and β-sheet structures and aspartate, was not good for the stability of aerobic granular sludge. The microbial community results demonstrated that the disappearance of dominant bacteria like Kineosphaera limosa or appearance like Acinetobacter, might contribute to the reduction of EPS and disintegration of aerobic granular sludge. PMID:23685649

  10. Fractionation and business potential from sludge (Pafrak)

    Energy Technology Data Exchange (ETDEWEB)

    Pirkonen, P.; Kylloenen, H. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)); Niinimaeki, J.; Oksanen, J. (Univ. of Oulu (Finland))

    2008-07-01

    Wastewater sludge contains valuable components which can be recycled and converted to secondary raw material. High water content of sludge can hinder the further processing. Dry solids content of waste activated sludge after dewatering can be as low as 12-20% and even lower for tertiary sludge. This research aims with better knowledge of sludge and fractionation to generation of potential business ideas which could lead to new sludge based products and services in national and international markets already in this project or in separate development projects. Municipal waste activated sludge and deinking, primary, waste activated and tertiary sludge from pulp and paper industry are the suspensions to be studied. Basic properties of these sludges have been determined by large number of analysing methods. Dewatering properties, which are one of the key topics, have been studied with a novel flocculation/filtration device. Conventional fractionation equipment (decanter centrifuge, hydrocyclone. filter belt press and sieve bend) have been used to see how the sludge could be fractionated. State of the art has been drawn up about the current utilisation of wastewater sludge. One of the key issues in future research is how to affect the binding forces between different substances in sludge. (orig.)

  11. Supplementary information on K-Basin sludges

    Energy Technology Data Exchange (ETDEWEB)

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  12. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  13. Mature Cystic Renal Teratoma

    OpenAIRE

    Yavuz, Alpaslan; Ceken, Kagan; Alimoglu, Emel; Bahar AKKAYA

    2014-01-01

    Teratomas are rare germline tumors that originate from one or more embryonic germ cell layers. Teratoma of the kidney is extremely rare, and less than 30 cases of primary intrarenal teratomas have been published to date. We report the main radiologic features of an unusual case of mature cystic teratoma arising from the left kidney in a two-year-old boy. A left-sided abdominal mass was detected on physical examination and B-Mod Ultrasound (US) examination revealed a heterogeneous mass with ce...

  14. Chemical modeling of waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety.

  15. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge base compost

    International Nuclear Information System (INIS)

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. since the chemical form of the metal in the sewage sludge-based compost depends on the effect of stabilization and maturation of the organic material during composting, the objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals in a mixture of ADSS and wood chips (70:30 on wet basis) with an initial C/N ratio of 30.4, during its aerobic batch composting at 30 degree centigrade of external temperature in an open type lab-scale reactor with-out lixiviation. (Author)

  16. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  17. Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor. The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activated sludge system were investigated. The membrane foulants was also characterized by Fourier Transform Infrared (FTIR) spectroscopy technique. The results showed that the aerobic granular sludge had excellent denitrification ability; the removal efficiency of TN could reach 90%. The aerobic granular sludge could alleviate membrane fouling effectively. The steady membrane flux of aerobic granular sludge was twice as much as that of activated sludge system. In addition, it was found that the aerobic granular sludge could result in severe membrane pore-blocking, however, the activated sludge could cause severe cake fouling. The major components of the foulants were identified as comprising of proteins and polysaccharide materials.

  18. Biowastes-to-biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Demirbas, M., E-mail: muhammeddemirbas@yahoo.co [Sila Science and Energy Company, University Mah, Trabzon (Turkey); Balat, Mustafa; Balat, Havva [Sila Science and Energy Company, University Mah, Trabzon (Turkey)

    2011-04-15

    In recent years, there has been a steadily increasing in the amount of solid waste due to the increasing human population and urbanization. Waste materials are generated from manufacturing processes, industries and municipal solid wastes (MSW). Waste-to-energy (WTE) technologies convert waste matter into various forms of fuel that can be used to supply energy. Today, a new generation of WTE technologies is emerging which hold the potential to create renewable energy from waste matter, including MSW, industrial waste, agricultural waste, and waste byproducts. There are four major methods for conversion of organic wastes to synthetic fuels: (1) hydrogenation, (2) pyrolysis, (3) gasification, and (4) bioconversion.

  19. Mature Cystic Renal Teratoma

    International Nuclear Information System (INIS)

    Teratomas are rare germline tumors that originate from one or more embryonic germ cell layers. Teratoma of the kidney is extremely rare, and less than 30 cases of primary intrarenal teratomas have been published to date. We report the main radiologic features of an unusual case of mature cystic teratoma arising from the left kidney in a two-year-old boy. A left-sided abdominal mass was detected on physical examination and B-Mod Ultrasound (US) examination revealed a heterogeneous mass with central cystic component. Computed tomography (CT) demonstrated a lobulated, heterogeneous, hypodense mass extending craniocaudally from the splenic hilum to the level of the left iliac fossa. Nephrectomy was performed and a large, fatty mass arising from the left kidney was excised. The final pathologic diagnosis was confirmed as cystic renal teratoma

  20. Solidification process for sludge residue

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, K.L.

    1998-09-10

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria.

  1. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  2. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  3. Quantification of wastewater sludge dewatering.

    Science.gov (United States)

    Skinner, Samuel J; Studer, Lindsay J; Dixon, David R; Hillis, Peter; Rees, Catherine A; Wall, Rachael C; Cavalida, Raul G; Usher, Shane P; Stickland, Anthony D; Scales, Peter J

    2015-10-01

    Quantification and comparison of the dewatering characteristics of fifteen sewage sludges from a range of digestion scenarios are described. The method proposed uses laboratory dewatering measurements and integrity analysis of the extracted material properties. These properties were used as inputs into a model of filtration, the output of which provides the dewatering comparison. This method is shown to be necessary for quantification and comparison of dewaterability as the permeability and compressibility of the sludges varies by up to ten orders of magnitude in the range of solids concentration of interest to industry. This causes a high sensitivity of the dewaterability comparison to the starting concentration of laboratory tests, thus simple dewaterability comparison based on parameters such as the specific resistance to filtration is difficult. The new approach is demonstrated to be robust relative to traditional methods such as specific resistance to filtration analysis and has an in-built integrity check. Comparison of the quantified dewaterability of the fifteen sludges to the relative volatile solids content showed a very strong correlation in the volatile solids range from 40 to 80%. The data indicate that the volatile solids parameter is a strong indicator of the dewatering behaviour of sewage sludges. PMID:26003332

  4. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172. ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  5. Spot test analysis of microbial contents during composting of kitchen- and garden biowaste: sampling procedures, bacterial reductions, time-temperature relationships, and their relevance for EU-regulations concerning animal by-products.

    Science.gov (United States)

    Bijlsma, P B; de Wit, D H; Duindam, J W; Elsinga, G J; Elsinga, W

    2013-01-30

    This study was aimed to collect data and develop methodologies to determine if and how Dutch biowaste composting plants can meet the microbiological requirements set out in EU-Regulations (EC) 1774/2002 and (EC) 1069/2009, and to provide the European Food and Safety Authority (EFSA) with data and analysis for evaluation of these regulations. We examined twenty plant locations and four types of composting technologies, all with forced aeration and without an anaerobic digestion phase. Raw biowaste, material after sanitation and compost were sampled by spot test analysis according to a standard protocol, and according to an additional protocol with enhanced hygienic precautions. Samples were analyzed for Escherichia coli, Enterococcaceae and Salmonella content. The latter protocol resulted in improved bacterial reductions after sanitation, whereas in compost Enterococcus levels but not E. coli levels increased substantially with both protocols, due to more thermo-resistant regrowth. Salmonella presence in compost coincided with low temperatures and increased levels of E. coli and Enterococcus, absence of Salmonella was associated with absence of E. coli (74%), but not with absence of Enterococcus (17%). In compost, E. coli and Salmonella showed a comparable time-temperature inactivation pattern. A pilot study with co-composting of biowaste and poultry manure indicated a similar inactivation pattern for ESBL-containing bacteria. We conclude that the abundance of Enterococcus in compost is caused by regrowth and not by (re)contamination, and that E. coli is a more reliable indicator species for the absence/presence of Salmonella in compost. Compliance with current EU-regulations concerning biowaste composting can be shown by spot test analysis at all examined plants, provided that adequate hygienic precautions are taken during sampling. PMID:23262408

  6. Transcriptional Landscape of Cardiomyocyte Maturation

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    2015-11-01

    Full Text Available Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM differentiation. However, control of the CM maturation that is subsequently required to generate adult myocytes remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs, which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent-stem-cell-derived CMs mature early in culture but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation.

  7. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  8. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    Science.gov (United States)

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. PMID:23339903

  9. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  10. Maturational and Non-Maturational Factors in Heritage Language Acquisition

    Science.gov (United States)

    Moon, Ji Hye

    2012-01-01

    This dissertation aims to understand the maturational and non-maturational aspects of early bilingualism and language attrition in heritage speakers who have acquired their L1 incompletely in childhood. The study highlights the influential role of age and input dynamics in early L1 development, where the timing of reduction in L1 input and the…

  11. Irradiation of sewage sludge and waste water

    International Nuclear Information System (INIS)

    The aim of this investigaton was to establish how the chemico-physical nature of sewage sludge varies with irradiation dose and circulaton frequency. For aerobically-stable sludge, irradiation treatment was found to improve settling, whereas dehydration was impaired. Irradiation achieved an approx. 20% improvement in dehydration for anaerobically stable sewage from a non-heated fermentation room. Filtration resistance and the amount of organic flocculant required deteriorated, however. For anaerobic sludge from a heated fermentation room, settling behaviour improved by 10%, specific filtration resistance by 50% and dehyration by as much as 80% upon irradiation. A radiation dose greater than 300 krad (3000 T/kg) was however necessary. The amount of organic flocculant required remained uncharged and at the same time more favourable settling and filtering characteristics of the sludge could be observed. Increase in dry matter of the liquid sludge on irradiation was caused to same 60-95% by suspended matter (> 0.45 μm). Increasing circulation frequency led, in general, to a deterioration in the sludge characteristics of all treated sludges. In order to achieve a dose distribution as homogenous as possible, irradiation should be carried out with a medium circulation frequency of approx. 1.5 rotations/min. Irradiated sewage sludge had more favourable physical properties compared to pasteurisation and had no repugnant odor. Provided sufficient inoculating sludge is added to raw sewage, irradiation treatment does not affect the fermentation gas production. Irradiated sludge exhibited a slightly more favourable settling and filtration behaviour. (orig./MG)

  12. Biosorption of fluoroquinolones by activated sludge and aerobic granules sludge

    OpenAIRE

    Ferreira, Vanessa R. A.; Amorim, Catarina L.; Cravo, Sara M.; Tiritan, Maria E.; Castro, Paula M. L.; Afonso, Carlos M. M.

    2015-01-01

    Oral communication Antibiotic residues have been detected in various environmental matrices, such as surface water and even drinking water. Although present at low levels (μg/L, ng/L), many antibiotics are bioaccumulative, pseudo-persistent and can promote resistance/alterations in bacterial populations [1]. Recent studies on antibiotics removal by activated sludge (AS) and aerobic granules (AGS) show biosorption as the dominant process, determining the fate of these micropollutants [2-3]....

  13. K Basin sludge dissolution engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  14. Career Maturity of Welfare Recipients.

    Science.gov (United States)

    Beckman, Carol M.

    To investigate the career maturity of welfare recipients, this thesis examines six independent variables: (1) race; (2) sex; (3) age; (4) level of formal education; (5) general intelligence; and (6) locus of control. Scales taken from the Career Maturity Inventory served as the dependent variables. The sample consisted of 83 welfare recipients who…

  15. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  16. The influence of sewage sludge treatment on the fate of nonylphenol in sludge amended soils

    OpenAIRE

    Kouloumpos, Vasileios

    2009-01-01

    The objectives of the current work were a) to identify the correlation between sewage sludge conditioning / dewatering processing and fate of a major sludge organic pollutant (Nonylphenol, NP) in sludge-amended soils and b) to provide, if possible, clues about the mechanism driving this correlation. In view was a contribution to predicting and controlling the fate of organic xenobiotics in the soil-sludge environment, by examining an until now not adequately studied, but nevertheless potentia...

  17. F-Canyon Sludge Physical Properties

    International Nuclear Information System (INIS)

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, DandD requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution

  18. Leachability of heavy metals from solidified sludge

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuYuan; WANG Bao; DONG XingLing; FENG Lei; FAN ZhiMing

    2009-01-01

    Solidified sludge undergoes progressive depletion of the alkalinity materials under natural weathering condition and releases out of heavy metals. The leaching of heavy metals from solidified sewage sludge was studied by acid neutralization capacity (ANC) test and flow-through leaching test. The results of ANC test showed that heavy metals release at high concentration when the pH of extract lowers than 6. The disintegration of solidified sludge and the transformation of heavy metals are the main reasons for the resolubilisation of contaminants. Flow-through leaching test indicated that leaching of heavy metals from solidified sludge occurs in a slow way. A mathematical model has been developed to predict the stabilization time of heavy metals in solidified sludge. The research results showed that decreasing hydraulic conductivity is more important than cement addition for controlling the release of heavy metals from solidified sludge.

  19. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    The European Water Framework Directive addresses the issue of pollution from urban waste water and is thereby changing the scope of sewage treatment. As part of this process, the Neptune project (EU, FP6) focuses on developing new and upgrading existing technologies of waste water and sludge...... treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  20. Sludge Properties, Sellafield, United Kingdom

    International Nuclear Information System (INIS)

    As part of the preparation for decommissioning pond facilities, it will be necessary to characterize wastes. However, it should be recognized that it is difficult to fully characterize wastes that are dispersed over large areas. The design of retrievals and treatment techniques needs to include provisions to make the techniques robust to variations in properties. It may be necessary to engage experts with specific experience to help understand sludge wastes (e.g. rheologists, microbiologists and experts from other industries that handle sludge). The output of all characterization work should be compiled into a single point of reference that is used to underpin all work on the project. During the preparation of project schedules, allowance should be made for these activities. This approach will be beneficial in removing the opportunity for inconsistence use of data or protracted debate about which data sources to use

  1. Anaerobic treatment of thermal sludge conditioning liquor with granular sludge

    International Nuclear Information System (INIS)

    Thermal sludge conditioning liquor was successfully treated by a pilot-scale upflow anaerobic hybrid system with an effective volume of 10.4 m3. The reactor was similar to the HYAN reactor in Lakeview but without a recirculation system. A gas-solid separator was installed above a filter packed with polypropylene pall rings. The organic loading rate was increased stepwise to 30 kg chemical oxygen demand (COD)/m3·d. The hydraulic retention time was only 6 hours at the target loading rate. More than 70% of soluble COD in the influent was removed, even at an organic loading as high as 30 kg COD/m3·d. Soluble 5-day biochemical oxygen demand (BOD5) removal efficiency at the loading rate exceeded 95%. Volatile fatty acids concentration in the effluent was consistently less than 60 mg/L after the day when stable treatment had been obtained. The methane production fluctuated between 0.3 and 0.4 L/g COD removed. The inside of the reactor consisted of two zones, a sludge blanket zone with less than 1% solids concentration and a sludge bed zone with 4-7% solids concentration. Although the reactor was seeded with an anaerobically digested sludge, granular sludge was produced in the reactor. The ratio of granules to the solids remaining in the reactor increased to approximately 70% at the end of the experiments. Most of the granules had diameters of less than 1 mm and their settling velocity was 0.6 cm/s or more. The granules were composed of bacteria like Methanothrix according to SEM observations. The methane production rate was between 0.8 and 1.1 kg methane as COD/kg SS·d in an acetate solution. According to substrates distribution in the reactor and tracer tests, the bed zone in the reactor worked similarly to a continuously stirred tank reactor (CSTR). Evaluation of soluble COD removal rates in the reactor indicated that the rate could be simulated by a Monod type reaction. 10 refs., 12 figs., 8 tabs

  2. Design of automated oil sludge treatment unit

    Science.gov (United States)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  3. Electroremediation of heavy metals in sewage sludge

    OpenAIRE

    C. Elicker; P. J. Sanches Filho; K. R. L. Castagno

    2014-01-01

    This paper presents the application of electrokinetic remediation in the treatment of sludge in a sewage treatment station. The study consisted of, in a first step, the characterization of physicochemical parameters of sludge and, in a second step, the implementation of the electrokinetic remediation technique. The concentrations of Cu, Cr, Pb and Zn in sludge samples, before and after the experiment, were determined by atomic absorption spectroscopy. After 40 hours of experiment, considering...

  4. Using Boiling for Treating Waste Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this work we investigated the feasibility of using short time, low superheat boiling to treat biological sludge. The treated sludge exhibited reduced filterability and enhanced settleability. The boiling treatment released a large amount of extra-cellular polymers (ECPs) from the solid phase and reduced the microbial density levels of the total coliform bacteria and the heterotrophic bacteria. A diluted sludge is preferable for its high degree of organic hydrolysis and sufficient reduction in microbial density levels.

  5. Cations and activated sludge floc structure

    OpenAIRE

    Park, Chul

    2002-01-01

    This research was designed to investigate the effect of cations on activated sludge characteristics and also to determine their influence on digestion performance. For this purpose, cations in solution and in floc were evaluated along with various activated sludge characteristics and the collected waste activated sludge underwent both anaerobic and aerobic digestion. It was found that large amounts of biopolymer (protein + polysaccharide) remained in the effluent of WWTP that received high in...

  6. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  7. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  8. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  9. Process of Waste Sludge Facultative Metabolism

    Institute of Scientific and Technical Information of China (English)

    李茵

    2001-01-01

    Laboratory- scale experiments were conducted to determine new technology of waste sludge facultative metabolism . 10-L laboratory-scale facultative reactors were operated during 24-hour sludge residence time (SRT) and in room temperature . Results show that the organic matter in waste sludge after hydrolysis acidification will be reduced by 75.39%, the removal rate of CODer above 85% . Advantage of the process is hydrolysis-acidification in ambient air temperature as there is no need for facilities to be sealed or heated. In addition, the sludge will be recycled into the wastewater treatment system and finally towards zero-discharge.

  10. Convective drying of sludge cake

    Science.gov (United States)

    Chen, Jianbo; Peng, Xiaofeng; Xue, Yuan; Lee, Duujong; Chu, Chingping

    2002-08-01

    This paper presented an experimental study on convective drying of waste water sludge collected from Beijing GaoBeiDian Sewage Treatment Plant, particularly on the correlation between the observed shrinkage dynamics of sludge cake and the drying curve. During the initial stage of drying the process resembles to that of a particulate bed, in which moisture diffuses and evaporates at the upper surface. Conventional drying theory assuming a diffusion-evaporating front interprets this period of drying. Consequently, owing to the very large shrinkage ratio of the dried cake, cracks emerges and propagates on and within the cake body, whence inducing evaporating channel that facilitates the water removal. This occurrence compensates the reduction of surface area for evaporation, whence extending the constant-rate period during the test. Afterwards, the cracks meet with each other and form isolated cake piles, while the subsequent drying occur mainly within these piles and the conventional theory fails. The transition between the drying on a plain cake layer and that on the isolated piles demonstrates the need to adopt distinct descriptions on these two regimes of drying for the sludge cake.

  11. Determination of sorption of seventy five pharmaceuticals in sewage sludge

    DEFF Research Database (Denmark)

    Hörsing, Maritha; Ledin, Anna; Grabic, Roman;

    2011-01-01

    Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentr......Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal...

  12. BUSINESS PROCESS MANAGEMENT MATURITY MODEL - SERBIAN ENTERPRISES' MATURITY LEVEL

    OpenAIRE

    Marija Anđelković Pešić; Vesna Janković Milić; Aleksandra Anđelković

    2012-01-01

    Business process management maturity model enables description of "as-is" enterprise's state, in terms of presence and acceptance of process approach.The heart of this model includes five factors or levers, critical for successful implementation of business process management. These factors are: strategic approach, process management, technology, employee management, and business culture. The above-mentioned factors influence the level of enterprise's maturity. At each level, an enterprise is...

  13. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    Science.gov (United States)

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. PMID:27453288

  14. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    Science.gov (United States)

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  15. Microwave energy-assisted formation of bioactive CaO–MgO–SiO$_2$ ternary glass from bio-wastes

    Indian Academy of Sciences (India)

    ENOBONG R ESSIEN; VIOLETTE N ATASIE; ESTHER U UDOBANG

    2016-08-01

    Regeneration technique is extensively being sought after as a means of achieving bone repair without adverse immunological response. Silicate-based bioactive glasses containing Mg are gaining increasing attention for their biocompatibility. The current work has been focused on designing a facile and economic route using bio-wastes for synthesizing bioactive glasses in the CaO–MgO–SiO$_2$ system. Rice husk ash (RHA) obtained from burning ricehusk was used as silica source, while Ca was extracted from eggshells for preparing the glass through a modified sol–gel approach. The gel formed was irradiated in microwave before sintering at 950$^{\\circ}$C for 3 h. Thereafter, bioactivity test was conducted on the samples in simulated body fluid (SBF) at physiological conditions for a maximum of 14 days. Characterization of samples were performed before and after immersion in SBF to evaluate thecomposition, morphology and phases present in the glass using energy-dispersive X-ray analysis, scanning electron microscopy and X-ray diffraction. Apatite formation was confirmed using Fourier transform infrared spectroscopy.Results obtained showed the presence of diopside, wollastonite and pseudo-wollastonite as major bioactive phases. Hydroxyapatite formed on the material within 3 days in SBF, indicating good bioactivity.

  16. Processed vs. Non-Processed Biowastes for Agriculture: Effects of Post-Harvest Tomato Plants and Biochar on Radish Growth, Chlorophyll Content and Protein Production

    Science.gov (United States)

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-01-01

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472

  17. Some Aspects of School Maturity

    OpenAIRE

    SATRAPOVÁ, Jana

    2008-01-01

    This bachelor{\\crq}s thesis is focused on the maturity of pre-school children for school work. Particularly it researches the level of children{\\crq}s knowledge in the period just before and immediately after entering school. The theoretical part of the thesis deals with pre-school characteristics, various aspects of school maturity and readiness for elementary school regarding the fact that in the period just before entering school and immediately after the beginning of school attendance cer...

  18. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  19. Impact of sludge deposition on biodiversity.

    Science.gov (United States)

    Manzetti, Sergio; van der Spoel, David

    2015-11-01

    Sludge deposition in the environment is carried out in several countries. It encompasses the dispersion of treated or untreated sludge in forests, marsh lands, open waters as well as estuarine systems resulting in the gradual accumulation of toxins and persistent organic compounds in the environment. Studies on the life cycle of compounds from sludge deposition and the consequences of deposition are few. Most reports focus rather on treatment-methods and approaches, legislative aspects as well as analytical evaluations of the chemical profiles of sludge. This paper reviews recent as well as some older studies on sludge deposition in forests and other ecosystems. From the literature covered it can be concluded that sludge deposition induces two detrimental effects on the environment: (1) raising of the levels of persistent toxins in soil, vegetation and wild life and (2) slow and long-termed biodiversity-reduction through the fertilizing nutrient pollution operating on the vegetation. Since recent studies show that eutrophication of the environment is a major threat to global biodiversity supplying additional nutrients through sludge-based fertilization seems imprudent. Toxins that accumulate in the vegetation are transferred to feeding herbivores and their predators, resulting in a reduced long-term survival chance of exposed species. We briefly review current legislation for sludge deposition and suggest alternative routes to handling this difficult class of waste. PMID:26318179

  20. Pathogen reduction in sludges by irradiation

    International Nuclear Information System (INIS)

    There is international interest in the use of ionizing radiation in waste water and sludge treatment. Results of programs to study effects of radiation on disease-causing microbes commonly found in wastewater sludges will be discussed. Although emphasis will be on the work conducted at Sandia Laboratories, the discussion will include work in progress in West Germany, France, South Africa, and other countries

  1. Electrodialytic removal of cadmium from wastewater sludge

    DEFF Research Database (Denmark)

    Jakobsen, M. R.; Fritt-Rasmussen, Janne; Nielsen, S.;

    2004-01-01

    /solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO"3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal...

  2. Nitrogen mineralization of sewage sludges in soils

    Energy Technology Data Exchange (ETDEWEB)

    Garau, M.A.; Felipo, M.T.; de Villa, M.C.R.

    In order to profit from recycling sewage sludge through the soil-plant system and avoid the hazards associated with excessive NO/sub 3//sup -/-N in soils, it is necessary to know the amount of mineralizable organic-N from sludge. The purpose of this study was to determine N-mineralization of two sewage sludges in two different soils, comparing leached and nonleached incubation procedures. The cumulative N mineralized during successive incubation periods increased linearly with incubation time and sludge incorporation rate. The mineralization process was more influenced by soil type than by rate and kind of sludge applied. The amount of mineralized-N was higher for the leaching procedure. This cumulative-N expressed as the percentage of applied organic-N was inversely dependent on sewage sludge rate added for the leached procedure and is independent of the rate for the nonleached. The N-mineralization rate was 0.0202 +/- 0.0011 and 0.0650 +/- 0.0068 d/sup -1/, respectively, for leached and nonleached procedures. The potentially mineralizable N increased with the sludge rate applied and was higher for aerobic sludge and neutral soil. In general, the leached method gave twofold higher values than the nonleached method. The net percentage of potentially mineralizable N vs. organic-N added was 43.0 +/- 7.8 and 27.7 +/- 4.0, respectively, for leached and nonleached procedures.

  3. DESIGN MANUAL: LAND APPLICATION OF MUNICIPAL SLUDGE

    Science.gov (United States)

    A rational procedure is presented in this manual for the design of municipal sludge land application systems. he utilization of sludge in agriculture and forestry, reclamation of disturbed and marginal lands, and dedicated high-rate surface disposal practices are discussed in det...

  4. BEHAVIOUR OF METALS IN MUNICIPAL SLUDGE INCINERATORS

    Science.gov (United States)

    The emission of toxic metals from sewage sludge incinerators can present a risk to human health and the environment. ignificant base of data on the behaviour of metals in sludge incinerators has been compiled. hese data were examined in detail to identify the mechanisms responsib...

  5. Stabilization process within a sewage sludge landfill determined through both particle size distribution and content of humic substances as well as by FT-IR analysis.

    Science.gov (United States)

    Zhu, Ying; Zhao, Youcai

    2011-04-01

    Landfill is largely considered as a reliable option for sewage sludge disposal in most metropolitan areas worldwide due to the huge quantities of this waste to be disposed of and the relatively low costs of such a kind of sludge management. It has been found that the sludge in the landfill degrades rapidly and becomes stabilized within a few years. In the present study, the sludge from different landfill stages was characterized by particle size distribution, humic substances contents and elemental composition, and Fourier transform infrared spectroscopy (FT-IR), as the landfill time increased. In general, the mean particle size of the sludge increased from 37 μm at day 0 to 143 μm at 300 days and the corresponding median particle size increased from 13 to 70 μm. The stability of particle size distribution can be assessed by the mean or median particle size. The humic acid (HA) and fulvic acid (FA) contents extracted from dry sludge after different landfill periods increased from 4.2 and 2.7% of day 0 to 5.6 and 3.1%, respectively, at 400 days, thereby indicating that the stabilization process of sludge in a landfill is also a humification process. The HA samples contained more carbon and nitrogen, and less hydrogen and oxygen than the FA samples, indicating a high degree of maturity and humification of these HA samples. The FT-IR spectra indicated that easily degradable organic matter components, such as aliphatic chains and protein, were distinctly decomposed during landfill. Based on the changes in the band relative intensity, it was concluded that after 300 days in a landfill the sludge is still in the process of degradation and maturity. PMID:21030423

  6. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability.

    Science.gov (United States)

    Maňáková, Blanka; Kuta, Jan; Svobodová, Markéta; Hofman, Jakub

    2014-09-15

    Composting and vermicomposting are traditional processes for the treatment of sludge. During these processes, the humification of organic matter has a significant effect on the physicochemical form and distribution of heavy metals. In this study, industrial sludge (groundwater treatment waste) contaminated by arsenic (396 ± 1 mg kg(-1)) was used. Such sludge poses a significant challenge with respect to effective treatment. Composting, vermicomposting (with Eisenia fetida), and the combined approach of composting and vermicomposting were performed to determine the evolution of arsenic speciation, mobility and bioavailability. The composting/vermicomposting was done with sludge, horse manure, and grass in the ratios of 3:6:1. A solution of 0.1M NH4COOCH3 was used as a single extraction solvent for determination of the mobile arsenic pool and targeted arsenic species (As(III), As(V), monomethylarsenic acid - MMA(V), dimethylarsenic acid - DMA(V)). The analysis of arsenic in the extracts was carried out by means of HPLC-ICP-MS spectrometry. In addition, the earthworm species E. fetida was used for bioaccumulation tests that followed the compost and vermicompost processes. The obtained results indicate a reduction in arsenic mobility and bioavailability in all matured composts and vermicomposts. The combined process exhibited a greater effect than compost or vermicompost alone. PMID:25209831

  7. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge.

    Science.gov (United States)

    Villar, Iria; Alves, David; Pérez-Díaz, Domingo; Mato, Salustiano

    2016-02-01

    Municipal sewage sludge is a waste with high organic load generated in large quantities that can be treated by biodegradation techniques to reduce its risk to the environment. This research studies vermicomposting and vermicomposting after composting of sewage sludge with the earthworm specie Eisenia andrei. In order to determine the effect that earthworms cause on the microbial dynamics depending on the treatment, the structure and activity of the microbial community was assessed using phospholipid fatty acid analysis and enzyme activities, during 112days of vermicomposting of fresh and composted sewage sludge, with and without earthworms. The presence of earthworms significantly reduced microbial biomass and all microbial groups (Gram+ bacteria, Gram- bacteria and fungi), as well as cellulase and alkaline phosphatase activities. Combined composting-vermicomposting treatment showed a lesser development of earthworms, higher bacterial and fungal biomass than vermicomposting treatment and greater differences, compared with the control without earthworms, in cellulase, β-glucosidase, alkaline and acid phosphatase. Both treatments were suitable for the stabilization of municipal sewage sludge and the combined composting-vermicomposting treatment can be a viable process for maturation of fresh compost. PMID:26489796

  8. Reactivity Studies of Sludge and Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Mohammad T Afzal

    2009-11-01

    Full Text Available Sludge and biomass are wastes with energy value. Both can provide a renewable energy in the form of gaseous fuels through thermal conversion processes. Proper understanding of the thermal properties and reaction kinetic of sludge and biomass is important for efficient design, operation and modeling of the conversion process. This study was carried out to obtain the kinetics data of the sludge and biomass in pure oxygen atmosphere at 30 mlmin-1 with the combustion temperature ranging from 50 to 900oC. The effect of sample size and heating rate on thermal degradation were studied and kinetic parameters of sludge, bagasse and sawdust combustion were described using Arrhenius equation. Two distinct reaction zones were observed for sludge, bagasse and sawdust samples. The activation energy and pre-exponential factors, in the first zone were found to be significantly higher than that of the second zone where as the opposite way for sawdust.

  9. Novel method for sludge blanket measurements.

    Science.gov (United States)

    Schewerda, J; Förster, G; Heinrichmeier, J

    2014-01-01

    The most widely used methods for sludge blanket measurements are based on acoustic or optic principles. In operation, both methods are expensive and often maintenance-intensive. Therefore a novel, reliable and simple method for sludge blanket measurement is proposed. It is based on the differential pressure measurement in the sludge zone compared with the differential pressure in the clear water zone, so that it is possible to measure the upper and the lower sludge level in a tank. Full-scale tests of this method were done in the secondary clarifier at the waste water treatment plant in Hecklingen, Germany. The result shows a good approximation of the manually measured sludge level. PMID:24569276

  10. Pretreatment of neutralized cladding removal waste sludge

    International Nuclear Information System (INIS)

    This report describes the status of process development for pretreating Hanford neutralized cladding removal waste (NCRW) sludge, of which ∼ 3.3 x 106 L is stored in Tanks 103-AW and 105-AW at the Hanford Site. The initial baseline process chosen for pretreating NCRW sludge is to dissolve the sludge in nitric acid and extract the -transuranic (MU) elements from the dissolved sludge solution with octyl(phenyl)-N,N-diisobutylcarbamoyl methyl phosphine oxide (CNWO). This process converts the NCRW sludge into a relatively large volume of low-level waste (LLW) to be disposed of as grout, leaving only a small volume of high-level waste (HLW) requiring vitrification in the Hanford Waste Vitrification Plant (HWVP)

  11. Maturity Model of Software Product with Educational Maturity Model

    Directory of Open Access Journals (Sweden)

    R.Manjula

    2011-06-01

    Full Text Available Software product line engineering is an inter-disciplinary concept. It spans the dimensions of business, architecture, process,and the organization. Similarly, Education System engineering is also an inter-disciplinary concept, which spans the dimensions of academic, infrastructure, facilities, administration etc. Some of the potential benefits of this approach includecontinuous improvements in System quality and adhering to global standards. The increasing competency in IT and Educational Sectors necessitates a process maturity evaluation methodology. Accordingly, this paper presents an organizational maturity model for Education system for evaluating the maturity of multi- dimension factors and attributes of an Education System. Assessment questionnaires and a rating methodology comprise the framework of this Educational maturity model. The objective and design of the questionnaires are to collect information about the Education system engineering process from the multi perspectives of academic, infrastructure, administration, facilities etc. Furthermore, we conducted one case study and reported the assessment results using the organizational maturity model presented in this paper.

  12. Waste sludge resuspension and transfer: development program

    International Nuclear Information System (INIS)

    The six Gunite waste tanks at Oak Ridge National Laboratory (ORNL) contain about 400,000 gal of sludge that has precipitated from solution and settled during the 35 years these tanks have been in service. Eventual decommissioning of the tanks has been proposed. The first part of this program is to resuspend the accumulated sludge, to transfer it to new storage tanks in Melton Valley, and to dispose of it by the shale-fracturing process. On the basis of preliminary information, a tentative operational concept was adopted. The sludge in each tank would be resuspended by hydraulic sluicing and pumped from the tank. This resuspended sludge would be treated as necessary to keep the particles in suspension and would be pumped to the new waste-storage tanks. Subsequently the sludge would be pumped from the tanks, combined with a cement-base mix, and disposed of by the shale-fracturing facility. Verification of the feasibility of this concept required development effort on characterization of the sludge and development of techniques for resuspending the sludge and for keeping it in suspension. These development efforts are described in this report. Sections of the report describe both the known properties of the sludge and the tests of grinding methods investigated, discuss tests of various suspenders, describe tests with cement-base mixes, summarize hot-cell tests on actual sludge samples, and describe tests that were made at a mockup of a Gunite tank installation. On the basis of the tests made, it was concluded that reslurrying and resuspension of the sludge is quite feasible and that the suspensions can be made compatible with cement mixes

  13. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  14. Priority and emerging pollutants in sewage sludge and fate during sludge treatment.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Chebbo, G; Rocher, V

    2014-07-01

    This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n=117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM - dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols - except NP - BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). PMID:24797622

  15. From Crescent to Mature Virion: Vaccinia Virus Assembly and Maturation

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2014-10-01

    Full Text Available Vaccinia virus (VACV has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV to mature virus (MV, and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions.

  16. Activated Sludge and other Aerobic Suspended Culture Processes.

    Science.gov (United States)

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  17. A granulation model using diosgenin wastewater in an upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    Jianguo BAO; Hui LIU; Yanxin WANG; Lijun ZHANG

    2009-01-01

    An enhanced start-up of an upfiow anaerobic sludge blanket (UASB) reactor for diosgenin wastewater treatment was designed and experimentally tested. Gran-ular sludge was formed on day 35 in the reactor with high concentrations of chloride (4000-7000 mg/L) and COD (5000-13000mg/L) as substrate. A new model for the granulation was proposed which divides the formation of anaerobic granules into six consecutive stages; they include semi-embryonic granule formation, embryonic granule formation, single-nucleus granule formation, multi-nuclei granule formation, granule growth and granule maturation. A model of the granule structure was also proposed based on scanning electron microscope observation. The microspores occurring on the surface and further leading into the interior of the granules were considered as the channels and the passage of the materials and the products of the microorganisms' metabolism inside the granules.

  18. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  19. Recovery of phosphorus from sewage sludge and sewage sludge ash; Rueckgewinnung von Phosphor aus Klaerschlamm und Klaerschlammaschen

    Energy Technology Data Exchange (ETDEWEB)

    Cornel, P. [Institut WAR, Technische Univ. Darmstadt (Germany)

    2002-07-01

    The use of sewage sludge as fertilizer in agriculture is not reasonable because it contains high amounts of heavy metals and other persistent xenobiotics. Since resources of phosphat minerals for fertilizer industry are limited the high amount of phosphates in sewage sludge should be recovered. Various separation processes for phosphates from sewage sludge or sewage sludge ashes are presented and described. (uke)

  20. Aquatic worm reactor for improved sludge processing and resource recovery

    OpenAIRE

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste sludge would be both environmentally and economically attractive. Aquatic worms can be used to reduce the amount of waste sludge. After predation by the worms, the amount of final sludge is lower....

  1. Forest industry sludge as a resource for energy recovery

    OpenAIRE

    Hagelqvist, Alina

    2009-01-01

    Forest industries produce large amounts of carbon rich sludges as by-products in their processes. Presently sludge is treated as a poor quality biofuel for co-incineration, some mills treat it solely as a disposal problem. This thesis provides an introduction to production, composition and disposal issues of sludge. It also includes a presentation of strategies for sludge handling. The main concern with energy recovery from sludge is connected to high content of water (50-80%). Mechanical dew...

  2. Sludge washing and dissolution of Melton Valley Storage Tank waste

    International Nuclear Information System (INIS)

    Focus is on experimental and modeling R ampersand D for comprehensive sludge/supernatant processing flowsheet being done for the Underground Storage Tank Integration Demonstration; emphasis is on Hanford tank waste disposal involving dissolution of the sluge before pretreatment. Combination of tests on actual Melton Valley Storage Tank (MVST) sludge, tests on sludge simulants, and modeling of sludge chemistry provides a broad evaluation of sludge and supernate processing. The information is useful for both MVST and Hanford tank wastes

  3. ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS

    International Nuclear Information System (INIS)

    The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining

  4. Virological investigations on inadiated sewage sludge

    International Nuclear Information System (INIS)

    The virusinactivating activity of a Co60-irradiation pilot plant at Geiselbullach/Munich was to be examined. We investigated 16 impure sewage water, 15 purified sewage water, 32 raw sladge samples, 62 digested sludge samples before irradiation, 52 digested sludge samples after irradiation and 9 raw sludge samples after irradiation. We completed these investigations by adding poliovaccinevirus type 1 to the digested sludge before irradiation and by adding suspensions of pure virus in MEM + 2% FBS packed in synthetic capsules and mixtures of virus and sludge packed in synthetic capsules to the digested sludge. After the irradiation we collected the capsules and determined the virustiter. The testviruses were poliovaccinevirus type 1, poliowildvirus type 1, echovirus type 6, coxsackie-B-virus type 5, coxsackie-A-virus type 9 and adenovirus type 1. In the field trial the irradiation results were like the laboratory results assuming that the sewage sludge was homogenized enough by digestion and the solid particle concentration was not more than 3%. The D-value was 300-400 krad for enteroviruses and 700 krad for adenovirus. (orig.)

  5. Radioactivity of sludge in Finland in 1987

    International Nuclear Information System (INIS)

    Sewage sludge from municipal wastewater treatment plants was studied to determine its radionuclide concentrations. Measurements were made to find out whether any radionuclides from the nuclear power stations at Loviisa and Olkiluoto and from hospitals and medical laboratories could be detected in sludge additional to those originating from global and Chernobyl fallout. In the treatment process of water, aluminium sulphate sludge is developed at treatment plants using surface water. This kind of sludge was measured since it also concentrates radionuclides. Fallout nuclides from the Chernobyl nuclear power station after the accident predominated in all sewage sludge samples in Finland. In 1987 six different radionuclides originating from the Chernobyl fallout were detected in sewage sludge. In spring when the snow melted and large quantities of run off water flowed into the treatment plants, the activity concentrations clearly increased, but then started decreasing again. At the end of the year the highest measured 137Cs activity concentrations were below 1000 Bq kg-1 dry weight. The highest activity concentration in sludge originated from iodine used fro medical purposes

  6. Sludge reed bed facilities: operation and problems.

    Science.gov (United States)

    Nielsen, S

    2005-01-01

    Short operating periods and problems with dewatering efficiency, vegetation, mineralisation and odour are primarily caused by incorrect construction of the filter, poor capillary connections, an inadequate number of basins, insufficient basin area and overloading during commissioning and during subsequent operation. Dimensioning should be based on the sludge quality including the dewatering qualities and not solely on calculations of the sludge production. Loading after planting depends on the development level of the vegetation. The loading program should ensure that reed establishment is not impeded and should prevent the sludge residue from growing so quickly horizontally and vertically that the reeds cannot colonise the sludge residue. Overloading results in an anaerobic sludge residue with ensuing methane production. Typically, a sludge reed bed facility with a loading period of maximum 5 days, must be built with 10 basins to permit a rest phase of about 40 days. Facilities with 8 basins, where it is possible to load 1 basin for 7 days, will be able to have a 7-week rest phase before the first basin is loaded again. Facilities with for example 8-13 basins and loading period of between 4 and 10 days are able to achieve rest periods of up to 2 to 2(1/2) months, which results in the optimal evapotranspiration and minerilization. The conditions and thus the possibilities vary depending upon the type of sludge. PMID:16042248

  7. Modelling the structure of sludge aggregates.

    Science.gov (United States)

    Smoczyński, Lech; Ratnaweera, Harsha; Kosobucka, Marta; Smoczyński, Michał; Kalinowski, Sławomir; Kvaal, Knut

    2016-05-01

    The structure of sludge is closely associated with the process of wastewater treatment. Synthetic dyestuff wastewater and sewage were coagulated using the PAX and PIX methods, and electro-coagulated on aluminium electrodes. The processes of wastewater treatment were supported with an organic polymer. The images of surface structures of the investigated sludge were obtained using scanning electron microscopy (SEM). The software image analysis permitted obtaining plots log A vs. log P, wherein A is the surface area and P is the perimeter of the object, for individual objects comprised in the structure of the sludge. The resulting database confirmed the 'self-similarity' of the structural objects in the studied groups of sludge, which enabled calculating their fractal dimension and proposing models for these objects. A quantitative description of the sludge aggregates permitted proposing a mechanism of the processes responsible for their formation. In the paper, also, the impact of the structure of the investigated sludge on the process of sedimentation, and dehydration of the thickened sludge after sedimentation, was discussed. PMID:26549812

  8. Enrichment of radioactive nuclides in sewage sludge

    International Nuclear Information System (INIS)

    As a consequence of the Chernobyl reactor accident, precipitations in various parts of Europe carried radioactivity for a short period. This meant necessarily that the water received by sewage treatment plants was also polluted. Measurements in a sewage treatment plant having received sewage water which carried radioactivity showed the following: Active nuclides are removed from the sewage water and are to a high extent enriched in sewage sludge. On comparison of the values for the activity of sludges with the stages of the plant, an increase in specific activity (nCi/kg) is found in parallel to the increase in the share of dry substance. Centrifugation of sludges yields a supernatant of relatively low radioactivity, while the radioactive elements are enriched in the sediment. By far the highest activities are found in the ashes of burnt sludge (2860 nCi/kg) and in dewatered sludges. These results are confirmed by comparison measurements in six other plants. In the period between May 7th, 1986 and June 16th, 1986, activities in digester sludge were measured ranging from 395 to 58.6 nCi/l; in pressed sludge, 1717 to 290.4 nCi/l were measured. (orig./RB)

  9. A microbiological study on sewage sludge treatment

    International Nuclear Information System (INIS)

    Isolation and identification of salmonellae in sewage sludge cake and radiation sensitivities of the isolated strains were studied. Disinfection of the sludge by heat or radiation and effect of such treatment on composting were also carried out. Five groups of O-antigen and seven serotypes of salmonellae were identified from the sludge cakes. D10 values of the salmonellae in phosphate buffer were ranged from 0.16 to 0.22 kGy and those in sludge were about three times larger. Total bacterial counts and coliforms in the sludges were determined to be 4.6 x 107 - 5.1 x 109 and 1.3 x 105 - 1.1 x 109 colony forming unit (cfu/g). After irradiation at 20 kGy by gamma ray or electron beam, decrease of total bacterial count was 5 - 7 log cycles and a dose of 5 kGy was enough to eliminate all of the coliforms. Coliforms decreased rapidly by heating at 65degC, but only one log cycle decrease was observed in total bacterial count. By heating at 100degC, total bacterial count decreased rapidly. Two peaks were observed in CO2 evolution curves of radiation disinfected sludge composting, but only one peak in heat disinfected sludge composting. (author)

  10. Sustainable sludge management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Barrios, J.A.; Mendez, J.M.; Diaz, J.

    2003-07-01

    Worldwide, unsanitary conditions are responsible of more than three million deaths annually. One of the reasons is the low level of sanitation in developing countries. Particularly, sludge from these regions has a high parasite concentration and low heavy metal content even though the available information is limited. Different issues needed to achieve a sustainable sludge management in developing nations are analysed. Based on this analysis some conclusions arise: sludge management plays an important role in sanitation programs by helping reduce health problems and associated risks; investments in sanitation should consider sludge management within the overall projects; the main restriction for reusing sludge is the high microbial concentration, which requires a science-based decision of the treatment process, while heavy metals are generally low; the adequate sludge management needs the commitment of those sectors involved in the development and enforcement of the regulations as well as those that are directly related to its generation, treatment, reuse or disposal; current regulations have followed different approaches, based mainly on local conditions, but they favour sludge reuse to fight problems like soil degradation, reduced crop production, and the increased use of inorganic fertilizers. This paper summarises an overview of theses issues. (author)

  11. Cheese maturity assessment using ultrasonics.

    Science.gov (United States)

    Benedito, J; Carcel, J; Clemente, G; Mulet, A

    2000-02-01

    The relationship between Mahon cheese maturity and ultrasonic velocity was examined. Moisture and textural properties were used as maturity indicators. The ultrasonic velocity of the cheese varied between 1630 and 1740 m/s, increasing with the curing time mainly because of loss of water, which also produced an increase of the textural properties. Because of the nature of low-intensity ultrasonics, velocity was better related to those textural parameters that involved small displacements. Ultrasonic velocity decreased with increasing temperature because of the negative temperature coefficient of the ultrasonic velocity of fat and the melting of fat. These results highlight the potential use of ultrasonic velocity measurements to rapidly and nondestructively assess cheese maturity. PMID:10714857

  12. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  13. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  14. A microbiological study on irradiated sludge composting

    International Nuclear Information System (INIS)

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author)

  15. Disinfection of sewage sludge with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Melmed, L.N.; Comninos, D.K.

    1979-10-01

    Disinfection of sewage sludge by ionizing radiation, thermoradiation, and radiation combined with oxygenation was investigated in experimentation in Johannesburg, South Africa. Inactivation of Ascaris lumbricoides ova was used as the criterion of disinfection. Experimentation and methodology are explained. Complete inactivation could be obtained when 0.5 kGy radiation was applied at 50..cap alpha..C to a sludge containing 3% solids and when 0.4 kGy radiation was applied at 55..cap alpha..C to a sludge with 20% solids. (1 drawing, 5 graphs, 4 photos, 4 tables)

  16. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully withnitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammoxgranular sludge with good settling property and high conversion activity. The Anammox reactor worked well with theshortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitritewas 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding

  17. Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model

    Institute of Scientific and Technical Information of China (English)

    Yuxuan Zhang; Panyue Zhang; Boqiang Ma; Hao Wu; Sheng Zhang; Xin Xu

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge.The effects of homogenization pressure,homogenization cycle number,and total solid content on sludge disintegration were investigated.The sludge disintegration degree (DDCOD),protein concentration,and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number,and decreased with the increase of sludge total solid (TS) content.The maximum DDCOD of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample.A HPH sludge disintegration model of DDcoo=kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters.The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively,showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N).The value of the rate constant k decreased with the increase of sludge total solid content.The specific energy consumption increased with the increment of sludge disintegration efficiency.Lower specific energy consumption was required for higher total solid content sludge.

  18. Leadership Development and Organizational Maturity.

    Science.gov (United States)

    Iannuzzi, Patricia

    1992-01-01

    Urges the design and implementation of strategies in academic libraries for the development of leadership potential. Discusses the components of organizations that lead to organizational maturity, and calls for library leaders with vision, skill, and commitment to nurture an organizational culture that emphasizes leadership development. (20…

  19. Public Sector IS Maturity Models

    DEFF Research Database (Denmark)

    Zinner Henriksen, Helle; Andersen, Kim Normann; Medaglia, Rony

    2011-01-01

    Online applications and processing of tax forms, driver licenses, and construction permits are examples of where policy attention and research have been united in efforts aiming to categorize the maturity level of e-services. Less attention has been attributed to policy areas with continuous online...

  20. Studies on textile sludge treatment options

    International Nuclear Information System (INIS)

    Analysis of sludge samples of a textile processing factory revealed that the BOD and COD as well as the levels of total solids, nitrogen and phosphorus contents of sludge liquor were high needing treatment before disposal or reuse. Detention time of 60 days was established for aerobic treatment of the sludge. Optimum dosage for physicochemical methods were established at 4 g/l, using alum and iron III chloride each and 15.5 g/l and 550 mg/l, for lime and polyelectrolyte each. Solids were reduced by 67%, through aerobic and 61 % through anaerobic digestion, while the sludge treated by physicochemical method had higher solid content, recording the highest increase with lime. (author)

  1. Biodiesel production from municipal secondary sludge.

    Science.gov (United States)

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2016-09-01

    In the present study, feasibility of biodiesel production from freeze dried sewage sludge was studied and its yield was enhanced by optimization of the in situ transesterification conditions (temperature, catalyst and concentration of sludge solids). Optimized conditions (45°C, 5% catalyst and 0.16g/mL sludge solids) resulted in a 20.76±0.04% biodiesel yield. The purity of biodiesel was ascertained by GC-MS, FT-IR and NMR ((1)H and (13)C) spectroscopy. The biodiesel profile obtained revealed the predominance of methyl esters of fatty acids such as oleic, palmitic, myristic, stearic, lauric, palmitoleic and linoleic acids indicating potential use of sludge as a biodiesel feedstock. PMID:27240231

  2. Application of Chitosan Flocculant to Conditioning Sludge

    Institute of Scientific and Technical Information of China (English)

    李步祥; 陈亮; 陈东辉; 张印堂

    2003-01-01

    The dewaterability of activated sludge conditioned by chitosan fiocculant was studied. The effects of chitasan characteristics such as molecular weight,degree of deacetylation, and dose on the dewaterability were investigated. The sludge dewaterability is evaluated in terms of specific resistance to filtration, residual turbidity of supernatant, moisture content of cake, and settling rate. Sludge dehydrating behaviors conditioned with CTS, PAM and PAC fiocculants were compared. The conditioning was also carried out with dual flocculants in two stages. It is found that the sludge conditioned with CTS has better dewaterability than that with PAC. The optimum conditions with chitosan are: dose 0.8~1.2 g per 100 g dry cake, molecular weight 300,000, and degree of deacetylation 70%. The conditioning in two stages with dual flocculants is found to be more effective than that with single flocculant.

  3. 183-H Basin sludge treatability test report

    International Nuclear Information System (INIS)

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  4. Electroremediation of heavy metals in sewage sludge

    Directory of Open Access Journals (Sweden)

    C. Elicker

    2014-06-01

    Full Text Available This paper presents the application of electrokinetic remediation in the treatment of sludge in a sewage treatment station. The study consisted of, in a first step, the characterization of physicochemical parameters of sludge and, in a second step, the implementation of the electrokinetic remediation technique. The concentrations of Cu, Cr, Pb and Zn in sludge samples, before and after the experiment, were determined by atomic absorption spectroscopy. After 40 hours of experiment, considering an electrolyte flow-rate of 1.34 L.h-1 at a voltage of 20 V, the removal rate of all the metals accompanied was over 50%; the highest removal efficiency was for Pb, with 72.49%. The results show the feasibility of using the electrochemical technique of electrokinetic remediation for metal removal from a sludge sewage treatment station.

  5. HYDRAULIC CHARACTERISTICS OF ACTIVATED SLUDGE SECONDARY CLARIFIERS

    Science.gov (United States)

    This study documented the hydraulic characteristics of typical activated sludge clarifiers. Modifications to the clarifier structures were made in an attempt to improve clarifier hydraulic characteristics and performance. Innovative fluorometric dye tracer studies were used to ob...

  6. Determination of heavy metals in sludge

    International Nuclear Information System (INIS)

    The determination of heavy metals in sludge has been investigated. The sludge was separated from waste water sewage by precipitation. The heavy metals analysis has been done using neutron activation (NAA) and x-ray fluorescence. The existence of some metals (Cu, Fe, Ca, K, and Ti) is very important for plants. Otherwise, Pb and Cr had polluted the environment. The results are compared with sheep dung, rubbish and cow dung that are used as natural fertilizer. It is found that the sludge has a low concentration of heavy metals than other. Tow standard samples derived from IAEA have been analyzed with our samples. It is found that our sludge contains some concentration of heavy metals less than the standard. It is found that the increase of Cu and Zn concentration due to uses of pesticides. (author)

  7. Disinfection of sewage sludge with gamma radiation

    International Nuclear Information System (INIS)

    Disinfection of sewage sludge by means of gamma radiation to render it suitable for unrestricted reuse as a fertiliser or soil conditioner in the urban environment, was investigated. Inactivation of Ascaris lumbricoides ova was used as the criterion of disfection. It was found that a total radiation dose of 1 kGy effectively reduced the development of potentially infective larvae in a sludge containing 20% solids, by 99%. The 1% of larvae developing after radiation were infective to white mice. Higher doses of radiation up to 10 kGy did not achieve a 100% kill. Complete inactivation could be obtained when 0,5 kGy radiation was applied at 50 degrees Celsius to a sludge containing 3% solids and when 0,4 kGy radiation was applied at 55 degrees Celsius to a sludge with 20% solids

  8. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  9. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  10. ISOTHERMAL PYROLYSIS OF KRAFT PULP MILL SLUDGE

    OpenAIRE

    Syamsudin Syamsudin; Herri Susanto; Subagjo Subagjo

    2014-01-01

    Kraft pulp mill sludge cake composed of rejected wood fibers and activated sludge microorganisms. With a heating value about 14 MJ/kg (dried basis), this type of biomass had a potential as an alternative energy source. Unfortunately, it had an ash content of 27.6% and a moisture content of 80%. For reducing moisture content with minimum energy consumption, a combination of mechanical dewatering and thermal drying was studied previously. Meanwhile, experiments on isothermal pyrolysis had been ...

  11. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  12. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-800C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  13. Sanitisation of faecal sludge by ammonia

    OpenAIRE

    Fidjeland, Jörgen

    2015-01-01

    Faecal sludge contains valuable plant nutrients and can be used as a fertiliser in agriculture, instead of being emitted as a pollutant. As this involves a risk of pathogen transmission, it is crucial to inactivate the pathogens in faecal sludge. One treatment alternative is ammonia sanitisation, as uncharged ammonia (NH₃) inactivates pathogens. The aim of this thesis was to study how the pathogen inactivation depends on treatment factors, mainly NH₃ concentration, temperature and storage tim...

  14. Summary status of K Basins sludge characterization

    International Nuclear Information System (INIS)

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline

  15. Inhibition Of Washed Sludge With Sodium Nitrite

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

  16. Leachability of barium-radium sulphate sludges

    International Nuclear Information System (INIS)

    This paper presents results from the first phase of a research program designed to examine the leachability of radium-226 from barium-radium sulphate sludges. Batch leaching tests were performed. Results showed that liquid:solid contact time was relatively unimportant; radium in the sludge was stable in the presence of deionized water with a slight increase in the amount leached per gram of sludge occurring at higher liquid:solid ratios. Not unexpectedly, low and high values of leachant pH increased radium leaching. Both monovalent and divalent salt solutions also increased leaching; however, dissolved radium-226 activity levels in the leachate decreased as leachant molarity increased. For divalent salts this can be explained by the common ion effect; for monovalent salts it is opposite to results expected from solubility considerations. The interpretation of all results is complicated by the fact that in most tests, the amount of radium-226 present in the leachate was lower than the calculated contribution from the mother liquour present with the sludge. This apparent ability of the sludge to absorb radium from solution may be related to dissolution and reprecipitation of the sludge during the leaching tests

  17. To Mature or not to Mature: The Information Systems Conundrum

    Directory of Open Access Journals (Sweden)

    Carl Marnewick

    2013-12-01

    Full Text Available Research has been done within the South African information technology (IT industry over the last decade with regard to project management maturity (PMM and the impact it has on delivering information systems (IS projects successfully. The research was done to determine whether IS PMM per knowledge area has improved over the last decade. It investigates if there is a correlation between maturity levels and project success. Four independent surveys over the last decade focused on IS PMM and the longitudinal analysis provides a benchmark for whether IS PMM has increased or not. This article focuses on whether certain knowledge areas are more of a problem within the IT industry and to determine what the overall IS PMM is. The longitudinal analysis indicates trends and highlights areas of concern. It indicates that most IT companies are still operating at level 3 and that risk and procurement management are the knowledge areas of concern. A comparative analysis indicates that there is no difference between South African and international maturity levels. The results provide a South African perspective of IS PMM. It highlights that risk management is still a knowledge area that is neglected and that emphasis must be placed on managing risk within IT projects.

  18. Nitrogen removal from the saline sludge liquor by electrochemical denitrification

    OpenAIRE

    Li, XY; Chan, KY; Xie, ZM

    2006-01-01

    Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4 + - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge li...

  19. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit;

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... was 78.1±0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration. The maximum power density generated from raw sludge reached 190±5 mW/m2. Dilution of the raw sludge resulted in higher power density. The power density was saturated at sludge...

  20. IRRADIATION EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SEWAGE SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M-J.; Lee, J-K.; Yoo, D-H.; Ho, K.

    2004-10-05

    The radiation effects on the physical characteristic of the sewage sludge were studied in order to obtain information which will be used for study on the enhancement of the sludge's dewaterability. Water contents, capillary suction time, zeta potential, irradiation dose, sludge acidity, total solid concentration, sludge particle size and microbiology before and after irradiation were investigated. Irradiation gave an effect on physical characteristics sludge. Water content in sludge cake could be reduced by irradiation at the dose of 10kGy.

  1. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    Science.gov (United States)

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. PMID:16570625

  2. Microbial diversity differences within aerobic granular sludge and activated sludge flocs.

    Science.gov (United States)

    Winkler, M-K H; Kleerebezem, R; de Bruin, L M M; Verheijen, P J T; Abbas, B; Habermacher, J; van Loosdrecht, M C M

    2013-08-01

    In this study, we investigated during 400 days the microbial community variations as observed from 16S DNA gene DGGE banding patterns from an aerobic granular sludge pilot plant as well as the from a full-scale activated sludge treatment plant in Epe, the Netherlands. Both plants obtained the same wastewater and had the same relative hydraulic variations and run stable over time. For the total bacterial population, a similarity analysis was conducted showing that the community composition of both sludge types was very dissimilar. Despite this difference, general bacterial population of both systems had on average comparable species richness, entropy, and evenness, suggesting that different bacteria were sharing the same functionality. Moreover, multi-dimensional scaling analysis revealed that the microbial populations of the flocculent sludge system moved closely around the initial population, whereas the bacterial population in the aerobic granular sludge moved away from its initial population representing a permanent change. In addition, the ammonium-oxidizing community of both sludge systems was studied in detail showing more unevenness than the general bacterial community. Nitrosomonas was the dominant AOB in flocculent sludge, whereas in granular sludge, Nitrosomonas and Nitrosospira were present in equal amounts. A correlation analysis of process data and microbial data from DGGE gels showed that the microbial diversity shift in ammonium-oxidizing bacteria clearly correlated with fluctuations in temperature. PMID:23064482

  3. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using on

  4. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  5. The enrichment industry reaches maturity

    International Nuclear Information System (INIS)

    As the nuclear power industry enters the 1980s, uranium enrichment supply can no longer be considered one of the critical problem areas of the nuclear fuel cycle. It has become an industrial and commercial activity which has reached a high degree of maturity. Three main aspects of this maturity are discussed: 1. the availability of enrichment services from several facilities with very diverse ownership; 2. the involvement of private industry, especially in Europe, and the application of normal commercial rules to enrichment contracts; 3. the ability of the enrichment industry to cope with recent setbacks in the advancement of nuclear power programmes whilst carrying out an active research and development programme that will help to ensure its future technical and economic viability. (U.K.)

  6. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    Science.gov (United States)

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  7. Maturation of the adolescent brain

    Directory of Open Access Journals (Sweden)

    Arain M

    2013-04-01

    Full Text Available Mariam Arain, Maliha Haque, Lina Johal, Puja Mathur, Wynand Nel, Afsha Rais, Ranbir Sandhu, Sushil Sharma Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands Abstract: Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain's region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone, which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also

  8. Maturation of the adolescent brain

    OpenAIRE

    Arain M; Haque M; Johal L; Mathur P; Nel W; Rais A; Sandhu R; Sharma S

    2013-01-01

    Mariam Arain, Maliha Haque, Lina Johal, Puja Mathur, Wynand Nel, Afsha Rais, Ranbir Sandhu, Sushil Sharma Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands Abstract: Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance...

  9. Maturity model for enterprise interoperability

    Science.gov (United States)

    Guédria, Wided; Naudet, Yannick; Chen, David

    2015-01-01

    Historically, progress occurs when entities communicate, share information and together create something that no one individually could do alone. Moving beyond people to machines and systems, interoperability is becoming a key factor of success in all domains. In particular, interoperability has become a challenge for enterprises, to exploit market opportunities, to meet their own objectives of cooperation or simply to survive in a growing competitive world where the networked enterprise is becoming a standard. Within this context, many research works have been conducted over the past few years and enterprise interoperability has become an important area of research, ensuring the competitiveness and growth of European enterprises. Among others, enterprises have to control their interoperability strategy and enhance their ability to interoperate. This is the purpose of the interoperability assessment. Assessing interoperability maturity allows a company to know its strengths and weaknesses in terms of interoperability with its current and potential partners, and to prioritise actions for improvement. The objective of this paper is to define a maturity model for enterprise interoperability that takes into account existing maturity models while extending the coverage of the interoperability domain. The assessment methodology is also presented. Both are demonstrated with a real case study.

  10. K Basin sludge treatment process description

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  11. Anammox enrichment from different conventional sludges.

    Science.gov (United States)

    Chamchoi, Nutchanat; Nitisoravut, Suwanchai

    2007-02-01

    Three sets of sequencing batch reactor (SBR) were used for Anammox enrichment from conventional sludges including upflow anaerobic sludge blanket, activated sludge, and anaerobic digestion sludge. After four months of operation, the Anammox activity occurred in all reactors allowing continuous removal of ammonium and nitrite. The morphology of the cultivated Anammox sludge was observed using scanning electron microscope. The photographs showed that the obtained culture was mostly spherical in shape, presumably Anammox culture. There were also filamentous-like bacteria co-existing in the system. Fluorescence in situ hybridization (FISH) analysis using 16S rRNA targeting oligonucleotide probes PLA46 and Amx820 showed that the dominant population developed in all SBRs was hybridized with both PLA46 and Amx820 gene probes. It means that the cultivated biomass in all SBRs was classified in the group of Planctomycetales bacteria with respect to the anaerobic ammonium-oxidizing bacteria, Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis. Numerous time sequences were tested in this experiment. The shortest workable reaction time was found in the range from 5 to 7 h. Good quiescence of sludge was obtained at 30 min of settle period followed by a discharge period of 15 min. A long-term performance showed a near perfect removal of nitrite based on the influent NO2(-)-N concentration of 50-70 mg l(-1). The maximum ammonia removal efficiency was 80% with the influent NH4(+)-N concentration of 40-60 mg l(-1). It is, therefore, concluded that Anammox cultivation from conventional sludges was highly possible under control environment within four months. PMID:17207839

  12. K Basin sludge treatment process description

    International Nuclear Information System (INIS)

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998)

  13. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. PMID:26086084

  14. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes.

    Science.gov (United States)

    Raj, Dev; Antil, R S

    2011-02-01

    The objective of this study was to evaluate changes in physical, chemical and biological parameters to assess the maturity and stability of composts prepared from mixture of different farm and agro-industrial wastes over a period of 150 days. All the composts appeared granular, dark grey in color without foul odor and attained an ambient temperature at 120 days of composting indicating the stable nature of composts. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss >42%, C:N ratio humic acid (HA):fulvic acid (FA) ratio >1.9, humification index (HI) >30%, cation exchange capacity (CEC):total organic carbon (TOC) ratio >1.7 and germination index (GI) >70%. Compost enriched with sewage sludge, pressmud and poultry waste matured earlier compared to composts either enriched with distillery effluent or un-enriched. PMID:21075622

  15. Diagnostics of school maturity and school readiness

    OpenAIRE

    SÝKOROVÁ, Štěpánka

    2011-01-01

    In my bachelor´s work I have focused on problems of school readiness and maturity. My objective was to asses the optimal school maturity in pre-school class. In the theoretical part I described the pre-school session, school maturity and readiness and its characteristics. I compared the different definitions of school readiness and maturity, as indicated in the literature. On the basis of the research and consultation I approached appropriate diagnostic materials for detecting the level of sc...

  16. Transfer of Cobalt-60 to plants from soils treated with sewage sludge

    International Nuclear Information System (INIS)

    The uptake of 60Co from soils fertilized with contaminated sewage sludge has been investigated under a variety of experimental conditions. A number of garden plots were prepared by thoroughly mixing sludge containing 60Co with farm soils from the Ottawa Valley. Edible plants were grown in the open on these plots under conditions approximating those in market gardens. The crops were harvested at maturity and were prepared for measurement of 60Co by drying portions of the roots, leaves, stems and fruit. The samples were counted on a large germanium detector which was capable of resolving 60Co from other gamma-emitting nuclides. Cobalt was readily taken up from contaminated sludge but was nonuniformly distributed in various parts of the plant. In general, the roots showed the highest levels while edible portions such as seeds and tubers had much lower concentrations. The uptake ratio, expressed as radioactivity in the sample to radioactivity in the soil, varied from 0.003 to 8 on a dry-weight basis. (author)

  17. Evaluation of water treatment sludges toxicity using the Daphnia bioassay.

    Science.gov (United States)

    Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr

    2005-10-01

    Alum and ferric chloride sludges from two water treatment plants (WTPs) were analyzed regarding their physicochemical characteristics and toxicity to Daphnia similis. Experiments were carried out in the dry and rainy seasons. Acute and chronic toxicity was measured using survival and reproduction as measurement endpoints. No acute toxicity of the sludge was observed in 48 h exposure. Ferric chloride sludge caused chronic toxicity, demonstrated by low fecundity and some mortality, while alum sludge caused chronic toxicity characterized by low fecundity. Some sludge characteristics varied between samplings, including turbidity, solids contents, N, P and metal (Al and Fe) concentrations. These variables and the increase of chemical oxygen demand (COD) were identified as the main cause of degradation of the receiving waters. However, no relationship was observed between these variables and degree of toxicity. It is apparent from these results that water treatment sludges may be toxic and therefore may impair receiving waters. Alum sludge was less toxic than ferric chloride sludge. PMID:16112168

  18. Gas Generation from K East Basin Sludges - Series II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2001-03-14

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

  19. Genotoxic and mutagenic effects of sewage sludge on higher plants.

    Science.gov (United States)

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; Souza, Tatiana da Silva

    2016-02-01

    Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils. PMID:26643763

  20. 7 CFR 51.1904 - Maturity classification.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Maturity classification. 51.1904 Section 51.1904... STANDARDS) United States Consumer Standards for Fresh Tomatoes Size and Maturity Classification § 51.1904 Maturity classification. Tomatoes which are characteristically red when ripe, but are not overripe or...

  1. Recovery of phosphorus from sewerage treatment sludge

    Energy Technology Data Exchange (ETDEWEB)

    Manuilova, Anastasia

    1999-07-01

    This thesis is a review of the current state of technologies for the removal of phosphorus from wastewater and sludge, and the recovery and re-use of phosphorus. It explains the need for phosphorus removal and describes the current removal processes. Focus is given to phosphorus crystallisation processes and to the processes which treat sewage treatment sludges into potential sources of phosphorus. An interesting possibility to recover phosphorus from sewage sludge by use of Psenner fractionation is also discussed. By this method, the following phosphate fractions of technological significance may be distinguished: (1) redox sensitive phosphates, mainly bound to Fe(OH){sub 3}; (2) phosphate adsorbed to surfaces (Al{sub 2}O{sub 3}), exchangeable against OH{sup -}, and alkali-soluble phosphate; (3) phosphate bound to CaCO{sub 3}, MgCO{sub 3} and in apatite; and (4) organically bound phosphate. The basic removal mechanisms, process schemes and treatment results are described. Two experiments with three different types of sludges from Henriksdal wastewater treatment plant in Stockholm were performed in the laboratory. It was shown that the addition of sodium hydroxide or hydrochloric acid cause the significant release of phosphate (about 80%) for all types of sludges. If a whole Psenner fractionation was performed the phosphate release is approximately 100%.

  2. Solar drying in sludge management in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Salihoglu, Nezih; Pinarli, Vedat; Salihoglu, Guray [Faculty of Engineering and Architecture, Environmental Engineering Department, Uludag University, 16059, Bursa (Turkey)

    2007-08-15

    Two main wastewater treatment plants in Bursa city in Turkey will start to operate and produce at least 27,000 tons of dry solids per year by the end of 2006. The purpose of this study was to investigate an economical solution to the sludge management problem that Bursa city would encounter. The general trend in Turkey is mechanical dewatering to obtain a dry solid (DS) content of 20%, and liming the mechanically dewatered sludge to reach the legal land filling requirement, 35% DS content. This study recommends limited liming and solar drying as an alternative to only-liming the mechanically dewatered sludge. Open and covered solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. Faecal coliform reduction was also monitored. The specially designed covered solar drying plant proved to be more efficient than the open plant in terms of drying and faecal coliform reduction. It was found that, if the limited liming and solar drying method was applied after mechanical dewatering instead of only-liming method, the total amount of the sludge to be disposed would be reduced by approximately 40%. This would lead to a reduction in the transportation, handling, and land filling costs. The covered drying system would amortize itself in 4 years. (author)

  3. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks

  4. Sewage Sludge Gasification for CHP Applications

    Energy Technology Data Exchange (ETDEWEB)

    McCahey, S.; Huang, Y.; McMullan, J.T.

    2003-07-01

    Many routes previously available for sewage sludge disposal within the European Union are now prohibited or constrained by environmental legislation. Meanwhile, sewage sludge production increases annually as more rigorous treatment processes are used. This paper introduces an ongoing project, supported by the European Commission FP5 Programme, which seeks to examine the key technical environmental and economic issues relating to the gasification of sewage sludge for utilisation in CHP applications and ultimately to establish the commercial viability of the process. Sewage sludge treatment data has been collected by country and region and a database compiled. Laboratory and pilot plant scale gasification trials are underway and two small engines and a generator have been installed and commissioned. This paper discusses the concurrent development of ECLIPSE process simulation models for the three selected gasification processes, namely fluidised bed, spouted bed and fixed bed. These models have been validated and are being used to predict the behaviour of appropriately sized commercial scale plant, enabling informed decisions regarding technical suitability. The next step in this project is to determine capital costs and economic performance. Process routes will be identified that offer the most cost effective routes to reducing environmental burdens by using sewage sludge in CHP applications. (author)

  5. The characteristics of organic sludge/sawdust derived fuel.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing

    2011-05-01

    A fundamental study of the characteristics of a sludge refuse-derived fuel (RDF) and the combustion behaviors were done. The test data demonstrate good results for the development of energy recovery technology of organic sludge or waste. The ash deposit formation propensity has been based on pretreatment, temperature and the ratio of organic sludge to sawdust. The usage of organic sludge and waste as an alternative fuel is cost effective and has environmental benefits. PMID:21129953

  6. Effects of storage on water treatment plant sludges

    OpenAIRE

    Cumbie, William E.

    1985-01-01

    The effects of in-basin storage of sludge on the iron, manganese, and TOC removal of water treatment plant (WTP) clarifiers and on the dewatering characteristics of sludge were examined. The use of chlorine dioxide as a preoxidant to retard observed detrimental effects was also investigated. Sludge samples that were stored over a period of 120 days were found to release up to ten times the original supernatant concentration of iron and manganese from the sludge into the o...

  7. Thermal activation of an industrial sludge for a possible valorization

    OpenAIRE

    Lamrani Sanae; Ben Allal Laïla; Ammari Mohammed; Boutamou Sara; Azmani Amina

    2014-01-01

    This work fits within the framework of sustainable management of sludge generated from wastewater treatment in industrial network. The studied sludge comes from an industry manufacturing sanitary ware products.Physico-chemical and mineralogical characterization was performed to give an identity card to the sludge. We noted the absence of metal pollution.The industrial sludge has been subjected to thermal activation at various temperatures (650°C to 850°C). The pozzolanic activity was evaluate...

  8. Maintenance and Operations study for K basins sludge treatment

    International Nuclear Information System (INIS)

    This study evaluates maintenance and operating concepts for the chemical treatment of sludge from the 100 K Basins at Hanford. The sludge treatment equipment that will require remote operation or maintenance was identified. Then various maintenance and operating concepts used in the nuclear industry were evaluated for applicability to sludge treatment. A hot cell or cells is recommended as the best maintenance and operating concept for a sludge treatment facility

  9. Utilization of sewage sludge in the manufacture of lightweight aggregate

    OpenAIRE

    Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena

    2015-01-01

    This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports t...

  10. Physical procedures of sludge thickening and dehydration at municipal WWT

    OpenAIRE

    Debeljak, Pavel

    2008-01-01

    In graduation thesis are described and mutually compared most important physical procedures of thickening and dehydration of sewage sludge which is occurring on municipal wastewater treatment plants. All processes of treatment of sewage sludge and difference between processes of thickening and dehydration of sewage sludge are listed in the preface. Main part of graduation thesis is divided into two assembles. Most frequent physical procedures of thickening of sewage sludge (gravitation, flota...

  11. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    OpenAIRE

    Basim Yalda; Farzadkia Mahdi; Jaafarzadeh Nematollah; Hendrickx Tim

    2012-01-01

    Abstract Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahva...

  12. Utilisation of sludge from municipal wastewater treatment plant

    OpenAIRE

    Vesel, Nejc

    2011-01-01

    In this diploma I will present the possibilities of using sewage sludge from municipal wastewater treatmentplant. The initial part of the diploma are the official documents and various literature to describe what should be the future application of this type of waste and uses. The following thesis has described some common options of sewage sludge, and products that can be extracted from the sewage sludge. In addition I described restrictions on the parameters of sludge from wastewater tr...

  13. An Investigation into the Mechanisms of Sludge Reduction Technologies

    OpenAIRE

    Riedel, David John

    2009-01-01

    Anaerobic digestion has been the preferred method for reducing and stabilizing waste sludge from biological wastewater treatment for over a century; however, as sludge volumes and disposal costs increase, there has been a desire to develop various methods for reducing the volume of sludge to be treated, improving the performance of the digesters, and increasing the energy value of the sludge. To this end, there have been numerous pretreatment and side-stream systems studied and developed ove...

  14. Optimization of Dairy Sludge for Growth of Rhizobium Cells

    OpenAIRE

    Ashok Kumar Singh; Gauri Singh; Digvijay Gautam; Manjinder Kaur Bedi

    2013-01-01

    In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with differ...

  15. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization.

    Science.gov (United States)

    Sui, Pengzhe; Nishimura, Fumitake; Nagare, Hideaki; Hidaka, Taira; Nakagawa, Yuko; Tsuno, Hiroshi

    2011-02-01

    The behavior of inorganic elements (including phosphorus, nitrogen, and metals) during sludge ozonation was investigated using batch tests and the effects of metals on sludge solubilization were elucidated. A decrease of ∼ 50% in the ratio of sludge solubilization was found to relate to a high iron content 80-120 mgFe/gSS than that of 4.7-7.4 mgFe/gSS. During sludge ozonation, the pH decreased from 7 to 5, which resulted in the dissolution of chemically precipitated metals and phosphorus. Based on experimental results and thermodynamic calculation, phosphate precipitated by iron and aluminum was more difficult to release while that by calcium released with decrease in pH. The release of barium, manganese, and chrome did not exceed 10% and was much lower than COD solubilization; however, that of nickel, copper, and zinc was similar to COD solubilization. The ratio of nitrogen solubilization was 1.2 times higher than that of COD solubilization (R(2)=0.85). Of the total nitrogen solubilized, 80% was organic nitrogen. Because of their high accumulation potential and negative effect on sludge solubilization, high levels of iron and aluminum in both sewage and sludge should be considered carefully for the application of the advanced sewage treatment process with sludge ozonation and phosphorus crystallization. PMID:21215984

  16. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering.

    Science.gov (United States)

    Neyens, Elisabeth; Baeyens, Jan; Dewil, Raf; De heyder, Bart

    2004-01-30

    The management of wastewater sludge, now often referred to as biosolids, accounts for a major portion of the cost of the wastewater treatment process and represents significant technical challenges. In many wastewater treatment facilities, the bottleneck of the sludge handling system is the dewatering operation. Advanced sludge treatment (AST) processes have been developed in order to improve sludge dewatering and to facilitate handling and ultimate disposal. The authors have extensively reported lab-scale, semi-pilot and pilot investigations on either thermal and thermochemical processes, or chemical oxidation using hydrogen peroxide. To understand the action of these advanced sludge technologies, the essential role played by extracellular polymeric substances (EPS) needs to be understood. EPS form a highly hydrated biofilm matrix, in which the micro-organisms are embedded. Hence they are of considerable importance in the removal of pollutants from wastewater, in bioflocculation, in settling and in dewatering of activated sludge. The present paper reviews the characteristics of EPS and the influence of thermochemical and oxidation mechanisms on degradation and flocculation of EPS. Experimental investigations on waste activated sludge are conducted by the authors to evaluate the various literature findings. From the experiments, it is concluded that AST methods enhance cake dewaterability in two ways: (i) they degrade EPS proteins and polysaccharides reducing the EPS water retention properties; and (ii) they promote flocculation which reduces the amount of fine flocs. PMID:15177096

  17. An innovative sludge management system based on separation of primary and secondary sludge treatment.

    Science.gov (United States)

    Mininni, G; Braguglia, C M; Ramadori, R; Tomei, M C

    2004-01-01

    An innovative sludge management system based on separation of treatment and disposal of primary and secondary sludge is discussed with reference to a sewage treatment plant of 500,000 equivalent person capacity. Secondary sludge, if treated separately from primary sludge, can be recovered in agriculture considering its relatively high content of nitrogen and phosphorus and negligible presence of pathogens and micropollutants. One typical outlet for primary sludge is still incineration which can be optimised by rendering the process auto thermal and significantly reducing the size of the incineration plant units (dryer, fluidised bed furnace, boiler and units for exhaust gas treatment) in comparison with those required for mixed sludge incineration. Biogas produced in anaerobic digestion is totally available for energy conversion when sludge treatment separation is performed, while in the other case a large proportion may be used as fuel in incineration, thus reducing the net electric energy conversion from 0.85-0.9 to 0.35-0.4 MW for the plant considered. PMID:15581006

  18. Agriculture reuse feasibility studies of sludges for the sewage sludge irradiation plant in Argentina

    International Nuclear Information System (INIS)

    The Argentine Sewage Sludge Irradiation Project, conceived by CNEA in 1992, decided the construction of an industrial-scale irradiation plant for disinfection of liquid sludges coming from a sewerage treatment plant and their recycling as fertilizers. This plant is being constructed and installed in Tucuman City in an agricultural zone of North Western Argentina. It is based on a gamma radiation process by batches of six cubic metres and using Argentine made Cobalt-60 sources. The feasibility studies on the Tucuman's Sewage Treatment Plant sludges involves: Technical parameters and chemical characterization of the sludges; Microbiological test to verify disinfection by irradiation; Toxic elements evaluation, both inorganic elements (heavy metals) and organic compounds (pesticide traces). These pollutant concentrations should meet the criteria set by the environmental regulations. Many of these experiments have been conducted within two Research Coordinated Programmes organized by the IAEA and the Joint FAO/IAEA Division. Another important aspect is the bioavailability of soil nutrients (N and P) from the sludges: it will determine the real economic value of sludges as fertilizers. Further studies on the behaviour of toxic elements accumulation on soil and plants, and also the capability of sludges to improve soil properties, will lead to the environment impact assessment of the application on land

  19. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  20. Processed wastewater sludge for improvement of mechanical properties of concretes

    International Nuclear Information System (INIS)

    Highlights: → Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. → Wastewater sludge contains a large amount of water. → The residual sludge is used to prepare cylinder specimen concrete. → There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  1. Utilization of Household Sewage Sludge in Brick making

    Institute of Scientific and Technical Information of China (English)

    SunGuofeng

    2005-01-01

    Household sewage sludge is a kind of solid waste produced in sewage purifying at sewage farm. in procedure of water purifying, which can be used as raw material for producing fired brick. This article compares the chemical composition between household sewage sludge and clay, and explores two kinds of production process for making brick with Household sewage sludge.

  2. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  3. Technology for improving sludge concentration; Odei noshukusei kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Sludge generating in a sewage treatment plant is disposed through the processes such as concentration, dehydration, and incineration in sludge disposal facilities. In recent years, there has been a trend that this sludge increases in volume as well as worsens in the concentration. A case is predictable where the sludge load to the dehydrating process is so large that the sludge can no longer be processed in sufficient quantity. In the meantime, if sludge is ozone-treated, viscous substance on the surface of sludge particles can be separated with a comparatively small amount of ozone, with sludge concentration enhanced. At Meidensha, an experimental plant was set up for the ozone treatment of sludge in a sludge intensive treatment plant of a metropolis, with a verification experiment carried out for a sludge concentration improving system by ozone. As a result of comparison of the treatment performance between an assessment system for performing ozone treatment and a reference system for not performing, the average value of the sludge concentration of a gravity concentration tank was 1.9% of the reference system against 1.7% of the assessment system in a continuous treatment experiment in the summer, while the solid collection ratio was 65.8% of the reference system against 95.5% of the assessment system, enabling a superior improving effect to be obtained. (NEDO)

  4. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing......, and are economically and environmentally more favourable compared to deposition of the waterworks sludge in controlled landfills....

  5. The role of lipids in activated sludge floc formation

    Directory of Open Access Journals (Sweden)

    Anna Liza Kretzschmar

    2015-03-01

    Full Text Available Activated sludge is widely used to treat municipal and industrial wastewater globally and the formation of activated sludge flocculates (flocs underpins the ability to separate sludge from treated water. Despite the importance of activated sludge flocs to human civilization there have been precious few attempts to rationally design fit for purpose flocs using a bottom-up approach based on a solid scientific foundation. Recently we have been developing experimental models for activated sludge floc formation based on the colonization and consumption of particulate organic matter (chitin and cellulose. In this study we lay the foundation for investigation of activated sludge floc formation based on biofilm formation around spheres of the lipid glycerol trioleate (GT that form spontaneously when GT is introduced into activated sludge incubations. Sludge biomass was observed to associate tightly with the lipid spheres. An increase in extracellular lipase activity was associated with a decrease in size of the colonized lipid spheres over a 25 day incubation. Bacterial community composition shifted from predominantly Betaproteobacteria to Alphaproteobacteria in GT treated sludge. Four activated sludge bacteria were isolated from lipid spheres and two of them were shown to produce AHL like quorum sensing signal activity, suggesting quorum sensing may play a role in lipid spheres colonization and biodegradation in activated sludge. The development of this experimental model of activated sludge floc formation lays the foundation for rational production of flocs for wastewater treatment using lipids as floc nuclei and further development of the flocculate life-cycle concept.

  6. Properties of bacterial radioresistance observed in sewage sludge

    International Nuclear Information System (INIS)

    The changes in radiosensitivities of bacteria in sludge were investigated. The coliforms are more radioresistant in raw sludge than in cake (dewatered sludge). This radioresistance of coliforms was observed not only in raw sludge but also in the cake diluted with water. The radioresistance was independent of the difference of treatment plant, kind of sludge, and season. The oxygen effect on the radioresistance was not observed, but the resistance was changed during storage of sludge. Escherichia coli isolated from sludge was radiosensitive in buffer, but its radiosensitivity was protected by the water-extracts of sludge. On the other hand, radioresistant bacteria were present in total bacteria of sludge irradiated at 2 Mrad. However, the dominant flora in the irradiated sludge consisted of radiosensitive bacteria (mainly Pseudomonas). When a strain of radiosensitive Pseudomonas was irradiated in raw sludge and diluted cake, the radiosensitivity was remarkably protected. From these results, it is suggested that a factor affecting the radiosensitivity of bacteria is present in sludge. (author)

  7. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rencun [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Environmental Science, Hangzhou Normal University, Hangzhou 310036 (China); Zheng Ping [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: pzheng@zju.edu.cn; Mahmood, Qaisar; Zhang Lei [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-09-15

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h{sup -1} and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min{sup -1}, accurately.

  8. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

    International Nuclear Information System (INIS)

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h-1 and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min-1, accurately

  9. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge.

    Science.gov (United States)

    Marti, Erica J; Batista, Jacimaria R

    2014-02-01

    Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced

  10. Utilization of irradiated sludge for fish feed

    International Nuclear Information System (INIS)

    An experiment was conducted to study the use of irradiated sludge pellet for fish feed, namely pellet A consisting of irradiated sludge and shrimp waste (1:3); pellet B consisting of irradiated sludge and commercial pellet (1:2). Pellet C, which is a commercial fish feed, was used as control. Catfish (Clarias gariepinus) was used in this experiment. The feed pellet with a dose of 5% of total body weight was given 3 times per day. The results of the experiments showed that based on food conversion for the relative growth of the catfishes, and heavy metal content, pellet A was the best. No contamination of Salmonella or Shigella bacteria was detected in each pellet. (author). 8 refs, 3 tabs, 1 fig

  11. Analysis of methane emissions from digested sludge.

    Science.gov (United States)

    Schaum, C; Fundneider, T; Cornel, P

    2016-01-01

    The energetic use of sewage sludge is an important step in the generation of electricity and heat within a wastewater treatment plant (WWTP). For a holistic approach, methane emissions derived from anaerobic treatment have to be considered. Measurements show that methane dissolved in digested sludge can be analyzed via the vacuum salting out degassing method. At different WWTPs, dissolved methane was measured, showing a concentration range of approximately 7-37 mg CH4/L. The average concentration of dissolved methane in mesophilic digested sludge was approximately 29 mg CH4/L, which corresponds to an estimated yearly specific load of approximately 14-21 g CH4 per population equivalent. Comparisons between continuous and discontinuous digester feeding show that a temporary rise in the volume load causes increased concentrations of dissolved methane. Investigations using an industrial-scale digestion plant, consisting of three digestion tank operated in series, show comparable results. PMID:27054731

  12. Sludge incineration: good practice and environmental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Braguglia, C.M.; Mininni, G.; Marani, D.; Lotito, V.

    2003-07-01

    Growing difficulties in the sludge utilization in agriculture or landfill make incineration an attractive alternative for sludge disposal. Capital and operating costs and concern about gaseous emissions may however limit convenience and acceptance. In this paper a model is presented for optimisation of the cake concentration before the furnace, allowing an autogenous operation with a minimization of exhaust gas production. As far as emissions of heavy metals and organic micropollutants at the stack is concerned, results of tests on a demonstrative plant, including a fluidised bed and a rotary kiln furnace, are presented. The tests were carried out in different feeding (sludge alone or spiked with chlorinated hydrocarbons) and operating conditions (temperature of the afterburning chamber). (author)

  13. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  14. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.;

    2003-01-01

    gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination for......In the process of wastewater treatment hydrolysis of polymeric substances is the first and rate-limiting step. A closer study of the enzymes catalysing these reactions is essential for a better understanding of the microbial activity in the wastewater treatment process. Therefore, development of...... the extraction of lipases and proteases from activated sludge. The sludge was continuously stirred in the presence of either buffer alone or in the presence of detergent and/or chelating agents. In all cases, a marked reduction in floc size was observed upon continuous stirring. However, no lipase...

  15. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue. PMID:23007373

  16. Maturity Models Development in IS Research

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan; Vatrapu, Ravi; Andersen, Kim Normann

    2015-01-01

    Maturity models are widespread in IS research and in particular, IT practitioner communities. However, theoretically sound, methodologically rigorous and empirically validated maturity models are quite rare. This literature review paper focuses on the challenges faced during the development of...... maturity models. Specifically, it explores maturity models literature in IS and standard guidelines, if any to develop maturity models, challenges identified and solutions proposed. Our systematic literature review of IS publications revealed over hundred and fifty articles on maturity models. Extant...... literature reveals that researchers have primarily focused on developing new maturity models pertaining to domain-specific problems and/or new enterprise technologies. We find rampant re-use of the design structure of widely adopted models such as Nolan’s Stage of Growth Model, Crosby’s Grid, and Capability...

  17. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading. PMID:24494501

  18. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance. PMID:26358216

  19. Irradiation-composing of sewage sludge

    International Nuclear Information System (INIS)

    The residual sludge, generated as sub product of water treatment plants, is considered a commendable material of agronomic quality that it can be used as soil conditioner, organic fertilizer, in floriculture, forestation or in parks and gardens. However, its use is limited by its big pathogen contents, toxic chemical compound and heavy metals. The National Institute of Nuclear Research and the Mexico's State University are developing a research work for evaluate a process on laboratory scale: irradiation-sludge treatment moreover and to determine its use, handling and final disposal of this material. (Author)

  20. A Sludge Drum in the APNea System

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, D.

    1998-11-17

    The assay of sludge drums pushes the APNea System to a definite extreme. Even though it seems clear that neutron based assay should be the method of choice for sludge drums, the difficulties posed by this matrix push any NDA technique to its limits. Special emphasis is given here to the differential die-away technique, which appears to approach the desired sensitivity. A parallel analysis of ethafoam drums will be presented, since the ethafoam matrix fits well within the operating range of the AIWea System, and, having been part of the early PDP trials, has been assayed by many in the NDA community.

  1. Irradiation treatment of sewage sludge: History and prospects

    International Nuclear Information System (INIS)

    This paper first reviews the history of irradiation treatment of sewage sludge in the world. The first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 and used 60Co as irradiation source. Since then, many sludge irradiators were constructed in U.S.A., India, Japan, Canada, Poland, etc., which used 60Co, 137Cs or electron beam as irradiation sources. The paper then describes some basic research on irradiation treatment of sewage sludge including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge. Some proposals have been suggested for further development of this technology in the future

  2. Design criteria for dry-sludge irradiation demonstration plant (DSIDP)

    International Nuclear Information System (INIS)

    The DSIDP is to process up to 25 tons of dry sewage sludge per day on a 24 hour day basis. The sludge will be either in 40 pound bags or bulk and will be subjected to a radiation dose of 1 Mrad. The low energy (0.66 million electron volt) gamma rays from cesium-137 will not induce any radioactivity in the sludge. The radiation will disinfect the sludge for use as a fertilizer, soil conditioner, livestock feed, and other possible uses. More sludge can be treated at a lower radiation dose by speeding up the bucket conveyor

  3. PENERAPAN ELEKTROOSMOSIS UNTUK PENGERINGAN SLUDGE DARI PENGOLAHAN LIMBAH CAIR

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2013-11-01

    Full Text Available APPLICATION OF ELECTROOSMOSIS FOR DEWATERING OF SLUDGE FROM WASTE WATER TREATMENT. Wastewater treatment produces semi-solid residue (sludge that must be handled carefully during dumping and discharge to avoid polluting the environment. A low cost and easy treatment of dewatering is needed. This research aimed to apply electroosmosis technique for dewatering sludge in order to seek for parameters that can efficiently reduce water content of sludge, including range of voltage, type of electrodes, and distance between electrodes; and to determine the effect of electroosmosis processes on changes of chemical characteristics of sludge. The results showed that: (1 electroosmosis dewatering occurred on the sludge taken from waste water treatment of landfill but not on sludge from water purification plant (PDAM, (2 direct current voltage of 30 volts was the optimum voltage, (3 copper rod cathode provided electroosmosis process as good as stainless steel cathode and both were better than the woven stainless steel cathode, (4 the dewatering time to reduce 1200% (w/w water content to about 400% was about 40 hours for sludge of 2500 cm3 in volume (laboratory bench scale, (5 the anode need to reinserted gradually approaching the cathode due to current lost when the water content at the anode point reached 400% and sludge at the point shrink, and (6 some chemical elements in the sludge decreased significantly after treatment. Pengolahan limbah cair menghasilkan residu berupa bahan semi padat yang dikenal sebagai sludge. Sludge tersebut juga perlu dikelola penyimpanan dan pembuangannya agar tidak mencemari lingkungan. Salah satu pengelolaan sludge yang perlu dilakukan adalah pengeringan (dewatering. Salahsatu teknik dewatering yang mungkin diterapkan ialah teknik elektroosmosis, yaitu teknik yang memanfaatkan adanya pergerakan air pada media poros di dalam medan istrik searah. Penelitian ini bertujuan untuk mencari parameter sistem dewatering secara

  4. Bio-remediation of a sludge containing hydrocarbons

    OpenAIRE

    Ayotamuno, M. J.; Okparanma, R. N.; Nweneka, E. K.; Ogaji, S. O. T.; Probert, S. D.

    2007-01-01

    Bio-augmentation has been used as a bio-remediation option for hydrocarbon-contaminated, oily-sludge restoration. This sludge was obtained from the Bonny-Terminal Improvement Project (BTIP) for Bonny Island, near Port Harcourt, Nigeria. Its total hydrocarbon-content (THC) was 69,372 mg/kg of sludge. Three treatment reactors (X, Y and Z) and one control reactor (A) were charged with 1500 g of oily sludge and 250 g of agricultural soil (i.e. an oily sludge to soil ratio of 6:1), the mixture hom...

  5. Characterization of Dimension Stone Sawing Sludge in Egypt

    Directory of Open Access Journals (Sweden)

    E. El-Hinnawi

    2011-01-01

    Full Text Available The aim of the present study is to determine the mineralogical and chemical characteristics of dimension stone sawing sludge in Egypt. Particle size, XRD, SEM and XRF analysis were carried out on representative samples of marble (limestone and granite sludge. The marble sludge was found to mainly compose of calcium carbonate whereas the granite sludge varies in composition according to the mineralogy of the parent stone processed. The mineralogical and chemical characteristics of the dimension stone sludge are important factors in the determination of the most appropriate recycling options of this waste into different applications.

  6. Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design:Equilibrium, kinetic, thermodynamic and regeneration studies

    Institute of Scientific and Technical Information of China (English)

    Jaya Sre Varsihini C; Devlina Das; Nilanjana Das

    2014-01-01

    Response surface methodology (RSM) employing 5-level Box-Behnken design was used to optimize the biosorption of ce-rium(III) onto biowaste materials of animal and plant origin viz. prawn carapace (PC) and corn style (CS). Various process parame-ters viz. pH (A:3.0-9.0), biomass dosage (B:0.05-0.35 g/L), initial metal concentration (C:50-350 mg/L), contact time (D:2-6 h) and temperature (E:20-60 °C) were chosen for optimization. A log transformation was suggested by the Box-Cox plot in the present case. A low p-value of<0.0001 validated the significance of the model. Maximum Ce(III) uptake of 218.3 mg/g for PC and 180.2 mg/g for CS was noted under optimum conditions. Among the equilibrium isotherms, Freundlich model was found to be the best fit-ted one suggesting a heterogeneous mode of biosorption on PC whereas Langmuir model showed the best fit suggesting homogene-ous mode of cerium biosorption on CS. This was further confirmed by scanning electron microscopy (SEM). Kinetic studies showed better applicability of pseudo-first order model suggesting physisorption as phenomena underlying the process. Film-diffusion was suggested by the non-linearity of the Boyd plot. Thermodynamic studies showed that the process was endothermic and spontaneous. FTIR analysis confirmed a major involvement of the participation of amide, amines, ketones and primary alcohol groups during Ce(III) biosorption. EDAX analysis confirmed the major participation of carbon group during Ce(III) biosorption. This was the first report on parameter optimization of Ce(III) biosorption onto biowaste materials using 5-level Box-Behnken experimental design which might be helpful for the recovery of Ce(III) from aqueous environment.

  7. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  8. Sewage sludge hygienization by treatment with gamma rays

    International Nuclear Information System (INIS)

    A recently developed method for decontaminating sludge is now possible by treating with gamma-rays. Full scale trials have been made with an irradiation plant with a strength of 300 krad in order to estimate the hygienic effect and the influence on the behaviour of sewage sludge. A satisfactory rate of reduction of the micro-organisms could be proved by means of three different sludges as long as the total solids concentration was not greater than 4%. Although the thickening ability of the sludge was basically improved by the irradiation the artificial dewatering proved that a higher amount of chemicals is necessary to centrifuge the ray-treated sludges. No definite effects were determined by the dewatering in filterpresses. Supernatent liquors of the thickened sludge, filtrates and centrifugates from ray-treated sludges generally show a higher concentration of BOD5 and COD. (orig.)

  9. Gravity Drainage of Activated Sludge on Reed Beds

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian;

    operation of reed beds and the efficiencies are often lower than predicted. One reason is that the sludge quality varies from plant to plant and even within plants from time to time. No good method exists for measuring the sludge quality with respect to drainage characteristics. A new experimental method...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows......Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design and...

  10. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    International Nuclear Information System (INIS)

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of 137Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including 90Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na2O), would be less than NRC Class C in TRU elements and less than NRC Class B in 90Sr

  11. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    International Nuclear Information System (INIS)

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185 C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (∼50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185 C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention

  12. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  13. The maturity of Nuclear Law

    International Nuclear Information System (INIS)

    The ever-increasing use of atomic energy since 1950 has generated a set of rules called for practical reasons Nuclear Law. This branch of law covers a wide scope of related activities and, specialized studies have apparently foreseen all conceivable hypotheses. The international character of Nuclear Law explains the basic harmony of international legislation. The methods of comparative Law and International Private Law as well as the joint, indepth work of scientists and jurists will bring about steady progress towards legislative unity and prompt solution to conflicts. The expectable revitalization of nuclear-electric programs early in the 21st. century will give rise to a Nuclear juridical community which can already be perceived through the maturity Nuclear Law has reached. (Author)

  14. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, U.; Topac, F.O.; Birden, B.; Baskaya, H.S. [Uludag University, Gorukle (Turkey). Dept. of Environmnetal Engineering

    2007-10-15

    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g{center_dot} 1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  15. Bacterial composition of activated sludge - importance for floc and sludge properties

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Thomsen, Trine R.; Nielsen, Jeppe L.

    2003-07-01

    Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. in our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest. (author)

  16. Improved Performance of Membrane Bioreactor by Sludge Ozonation for Reduction of Excess Sludge Production

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi-feng; HE Sheng-bing; CHEN Jian-meng

    2009-01-01

    To seek for an alternative solution for the treatment and disposal of excess activated sludge, a hybrid system of membrane bioreactor ( MBR) coupled with ozonation process (i.e., ozonation run) was set up to treat the domestic wastewater. A reference run without ozonation was also preformed as a control. The optimal ozone dose of solubilization in the ozonation run was firstly determined through the batch sludge ozonation tests. A 40-day continuous operation of the two parallel systems demonstrated that circulation of ozonized sludge as lysate did not impact the performance of MBR in terms of organic and ammonia removal. On the contrary, an improvement in TN removal (by 7.7%) and sludge reduction (by 54%) was observed in the ozonation-combined MBR, and it was furthermore illustrated by the calculation of the mass balance based on the COD and TN substances. In addition,ozonation did not deteriorate the sludge activities for the ozonation run, indicating that not much inert organic materials built up in the bioreactor. Decreased VSS/SS ratio and lower amount of filamentous bacteria after ozonation treatment on the other hand improved the sludge settleability, as lower and constant Sluge Volume Index (SVI) values were detected in the ozonation run.

  17. Biogas recovery from microwave heated sludge by anaerobic digestion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biogas generated from sewage sludge,livestock waste,and food waste by anaerobic digestion is a valuable renewable energy resource.However,conventional anaerobic digestion is not an efficient process.A long hydraulic retention time and low biogas recovery rate hinder the applications of those resources.An effective pretreatment method to destroy sludge microbial cells has been one of the major concerns regarding improvement of the biogas production.This article focuses on the effects of microwave heating on sludge anaerobic digestion.Volatile suspended solid(VSS) and chemical organic demand solubilization of heated sludge were investigated.Microwave heating was found to be a rapid and efficient process for releasing organic substrates from sludge.The increase of organic dissolution ratio was not obvious when holding time was over 5 min with microwave heating.The effect of the VSS solubilization was primarily dependent on heating temperature.The highest value of VSS dissolving ratio,36.4%,was obtained at 170°C for 30 min.The COD dissolving ratio was about 25% at 170°C.Total organic carbon of treated sludge liquor was 1.98 and 2.73 g/L at 150°C and 170°C for 5 min,respectively.A biochemical methane potential(BMP) test of excess sludge and a mixture of primary and excess sludge demonstrated an increase in biogas production.The total biogas from microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days of digestion.Biogas production was 11.1% to 25.9% higher for excess sludge than for untreated sludge.The VS removal ratios of mixture sludge and excess sludge were 12% and 11% higher,respectively,compared to the untreated sludge.

  18. Effects of various pretreatments on biohydrogen production from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    XIAO BenYi; LIU JunXin

    2009-01-01

    The sewage sludge of wastewater treatment plant is a kind of biomass which contains many organics,mainly carbohydrates and proteins. Four pretreatments, acid pretreatment, alkaline pretreatment,thermal pretreatment and ultrasonic pretreatment, were used to enhance biohydrogen production from sewage sludge. The experimental results showed that the four pretreatments could all increase the soluble chemical oxygen demand (SCOD) of sludge and decrease the dry solid (DS) and volatile solid(VS) because the pretreatments could disrupt the floc structure and even the microbial cells of sludge.The results of batch anaerobic fermentation experiments demonstrated that all of the four pretreat-ments could select hydrogen-producing microorganisms from the microflora of sludge and enhance the hydrogen production. The hydrogen yield of the alkaline pretreated sludge at initial pH of 11.5 was the maximal (11.68 mL H2/g VS) and that of the thermal pretreated sludge was the next (8.62 mL H2/g VS).The result showed that the hydrogen yield of pretreated sludge was correlative with its SCOD. The hydrogen yields of acid pretreated sludge and alkaline pretreated sludge were also influenced by their initial pH. No methane could be detected in the anaerobic fermentation of alkaline pretreated sludge and thermal pretreated sludge, which suggested that these pretreatments could fully inhibit the activity of methanogens. The volatile fatty acids (VFA) production in anaerobic fermentation of alkaline pretreated sludge was the maximum and the next is that of thermal pretreated sludge.

  19. Structure and stability of methanogenic granular sludge.

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.

    1992-01-01

    Immobilization of anaerobic bacteria was essential for the development of high rate anaerobic systems for the treatment of waste waters. The most widely applied anaerobic reactor type in which solids retention time is uncoupled from the hydraulic retention time is the Upflow Anaerobic Sludge Blanket

  20. Sorption of perfluoroalkyl substances in sewage sludge.

    Science.gov (United States)

    Milinovic, Jelena; Lacorte, Silvia; Rigol, Anna; Vidal, Miquel

    2016-05-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs) (perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanesulfonic acid (PFBS)) was studied in sewage sludge samples. Sorption isotherms were obtained by varying initial concentrations of PFOS, PFOA and PFBS. The maximum values of the sorption solid-liquid distribution coefficients (Kd,max) varied by almost two orders of magnitude among the target PFASs: 140-281 mL g(-1) for PFOS, 30-54 mL g(-1) for PFOA and 9-18 mL g(-1) for PFBS. Freundlich and linear fittings were appropriate for describing the sorption behaviour of PFASs in the sludge samples, and the derived KF and Kd,linear parameters correlated well. The hydrophobicity of the PFASs was the key parameter that influenced their sorption in sewage sludge. Sorption parameters and log(KOW) were correlated, and for PFOS (the most hydrophobic compound), pH and Ca + Mg status of the sludge controlled the variation in the sorption parameter values. Sorption reversibility was also tested from desorption isotherms, which were also linear. Desorption parameters were systematically higher than the corresponding sorption parameters (up to sixfold higher), thus indicating a significant degree of irreversible sorption, which decreased in the sequence PFOS > PFOA > PFBS. PMID:26780052

  1. Collecting of Hanji fibrous sludge with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.S.; Kim, T.J. [The University of Suwon, Suwon (Korea)

    2001-04-01

    The technique that could collect efficiently the hanji fibrous sludge from wastewater using surfactants was developed. When fibrous sludge of which concentration was about 80 mg/L, was floated and collected, the optimum concentration of sodium oleate, the pore size of glass filter and the air flow rate were 10 mg/L, 5-10 {mu}m and 200 mL/min., respectively. The behavior of sodium oleate might be interfered by polyvalent cations such as Ca{sup 2+}. But when the concentration of Ca{sup 2+} was less than 100 mg/L, the interference effect did not appear. And when a typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used, the collecting yield was less than of sodium oleate, and the amount of foam was higher than sodium oleate. When 1 mg/L of CTAB was added to the hanji sludge sample contained 1 mg/L of PAMID, a dispersant, fibrous sludge was effectively coagulated, the flotation time was very short and the collecting yield was above 95%. But in this case, sodium oleate was inefficient. (author). 8 refs., 6 figs.

  2. Recovery potential of German sewage sludge ash.

    Science.gov (United States)

    Krüger, Oliver; Adam, Christian

    2015-11-01

    Incineration of sewage sludge is expected to increase in the future due to growing concerns about the direct use of sludge in agriculture. Sewage sludge is the pollutant sink of wastewater treatment and thus loaded with contaminants that might pose environmental hazards. Incineration degrades organic pollutants efficiently, but since the ash is currently mostly disposed of, all valuable component like phosphorus (P) and technologically relevant metals present in the sewage sludge ash (SSA) are removed from the economic cycle entirely. We conducted a complete survey of SSA from German mono-incineration facilities and determined the theoretical recovery potential of 57 elements. German SSA contains up to 19,000 t/a P which equals approximately 13% of phosphorus applied in the German agriculture in form of phosphate rock based mineral fertilizers. Thus, SSA is an important secondary resource of P. However, its P-solubility in ammonium citrate solution, an indicator for the bioavailability, is only about 26%. Treatment of SSA is recommended to enhance P bioavailability and remove heavy metals before it is applied as fertilizer. The recovery potential for technologically relevant metals is generally low, but some of these elements might be recovered efficiently in the course of P recovery exploiting synergies. PMID:25697389

  3. Complete survey of German sewage sludge ash.

    Science.gov (United States)

    Krüger, Oliver; Grabner, Angela; Adam, Christian

    2014-10-21

    The amount of sewage sludge produced worldwide is expected to further increase due to rising efforts in wastewater treatment. There is a growing concern against its direct use as fertilizer due to contamination of the sludge with heavy metals and organic pollutants. Incinerating the sludge degrades organic compounds almost completely and concentrates heavy metals and phosphorus. However, the sewage sludge ash (SSA) is almost completely disposed of and with it all resources are removed from the economic cycle. Comprehensive knowledge of the composition of SSA is crucial to assess the resource recovery potentials. We conducted a survey of all SSA emerging in Germany and determined the respective mass fractions of 57 elements over a period of one year. The median content of phosphorus was 7.9%, indicating an important recovery potential. Important trace elements were Zn (2.5 g/kg), Mn (1.3 g/kg), and Cu (0.9 g/kg). Mass fractions of technology metals such as V, Cr, Ga, Nb, and rare earths were comparatively low. Considering the possible use of SSA as secondary raw material for fertilizer production it should be noted that its Cd and U content (2.7 mg/kg and 4.9 mg/kg respectively) is significantly lower than that of rock phosphate based mineral fertilizers. PMID:25265150

  4. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, S.R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching con

  5. DENSITY CURRENTS IN ACTIVATED SLUDGE SECONDARY CLARIFIERS

    Science.gov (United States)

    Density currents form in activated sludge secondary clarifiers because the mixed liquor has a density greater than the treated wastewater in the clarifier. This causes the mixed liquor to plunge to the bottom of the clarifier establishing relatively high velocity currents within ...

  6. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  7. Synchronous municipal sewerage-sludge stabilization

    Institute of Scientific and Technical Information of China (English)

    Godefroid Bukuru; Yang Jian

    2005-01-01

    A study on a pilot plant accomplishing synchronous municipal sewerage-sludge stabilization was conducted at a municipal sewerage treatment plant. Stabilization of sewerage and sludge is achieved in three-step process: anaerobic reactor, roughing filter and a microbial-earthworm-ecofilter. The integrated ecofilter utilizes an artificial ecosystem to degrade and stabilize the sewerage and sludge.When the hydraulic retention time(HRT) of the anaerobic reactor is 6 h, the hydraulic load(HL) of the bio-filter is 16 m3/(m2· d), the HL of the eco-filter is 5 m3/(m2 ·d), the recycle ratio of nitrified liquor is 1.5, the removal efficiency is 83%-89% for CODCr, 94%-96% for BOD5, 96%-98% for SS, and 76%-95% for NH3-N. The whole system realizes the zero emission of sludge, and has the characteristics of saving energy consumption and operational costs.

  8. Phosphorus Recovery from Ashes of Sewage Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cornel, Peter; Schaum, Peter

    2003-07-01

    About 90% of the incoming phosphorus load of waste water is eliminated by waste water treatment and transferred into the sewage sludge. Considerable amounts of sewage sludge can not be used agriculturally but are incinerated. Thus the ash from mono sludge incineration plants contains significant amounts of phosphorus (up to 25% P{sub 2}O{sub 5}) and could be used as raw material in fertilizer industry. The ash is hygienically harmless and free of organic substances. The ratio of phosphorus to heavy metals is basically the same as in the sewage sludge. The first step in separating phosphorus from heavy metals is to dissolve phosphorus by extraction. The most promising way seems to be the release of phosphorus with acids or bases. With 1 m sulphuric acid it is possible to release phosphorus completely. By use of acid most of the heavy metals dissolve, too. With caustic soda as solvent, only 30-40% of the phosphorus can be dissolved but the eluate is almost free of heavy metals. The amount of phosphorus which can be released with caustic soda, depends on the applied precipitant (Al or Fe salts) for phosphorus elimination at the waste water treatment. (author)

  9. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 550C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  10. Advanced sludge reduction and phosphorous removal process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia ρ(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous ρ(TP) is 6.0 - 9.0 mg/L in influent, the system still ensures ρ(COD)<23 mg/L, ρ(NH3-N)<3.2 mg/L and ρ(TP)<0.72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91%. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.

  11. Reactor waste utilization in sewage sludge treatment

    International Nuclear Information System (INIS)

    This paper deals with inactivation of sewage pathogens by means of heat and γ radiation, either singly or simultaneously (thermoradiation). Bacteria, viruses, and Ascaris were studied. Chemical and physical effects on the sludges were also studied. A 137Cs facility is under development

  12. Sludge irradiation disinfection for beneficial use

    International Nuclear Information System (INIS)

    Papers given at the symposium are included in this volume. The symposium was organized to facilitate the transfer of information on the use of sludge irradiation as a process to further reduce pathogens. State-of-the-art gamma radiation of dried sewage solids is reviewed. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base

  13. DOWNFLOW GRANULAR FILTRATION OF ACTIVATED SLUDGE EFFLUENTS

    Science.gov (United States)

    The performance of downflow granular filters subjected to effluents from activated sludge processes was investigated at the EPA-DC Pilot Plant in Washington, D.C. Several media combinations were investigated, including both single anthracite and dual anthracite-sand configuration...

  14. Oxidation of oily sludge in supercritical water

    International Nuclear Information System (INIS)

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O2 excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O2 excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 1014 (mol L-1)-0.405 s-1; the activation energy was 213.13 ± 1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  15. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  16. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    Science.gov (United States)

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal. PMID:25719420

  17. Sulphation characteristics of paper sludge ash

    Energy Technology Data Exchange (ETDEWEB)

    Roh, S.A. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of); Kim, S.D. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2007-04-15

    Landfills are no longer a viable solution for the disposal of sludge produced from waste water treatment plants because of the decrease in available space, rising fees and growing environmental concerns. However, thermal utilization of this waste may be an economic and sustainable disposal solution. Co-combustion of low heating value sludge with fossil fuels has a positive effect for sulfur dioxide (SO{sub 2}) emissions due to the low sulphur content of biomass fuels and increased sulphur retention in the ash. The sulphur retention is attributed to the formation of sulphates, such as CaSO{sub 4}, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}. The amount of fuel-ash-related sulphur sorption increases during co-combustion. Therefore, sorbents for sulphur reduction may not be required if proper control of the biomass feed is maintained. This paper presented a study in which the sulphation characteristics of calcium-rich paper sludge ash were determined for the use of co-combustion of biomass and coal. The calcium in the paper sludge ash came from the limestone filler used in the manufacturing process to increase the density and whiteness of the paper at 2 paper mills in Korea. A thermobalance reactor along with XRD and SEM-EDX were used for the analysis of sulphated ash to determine the effects of sulphation temperature, particle size and SO{sub 2} concentration on sulphation conversion. The activation energy and pre-exponential factor of sulphation reaction of sludge ash were determined based on the uniform-reaction model. X-ray diffraction analysis revealed that most of the sulphation compounds were CaSO{sub 4}. The sulphation occurred uniformly throughout the ash and the CaSO{sub 4} did not block the outer pore of the sludge ash. The uniform distributions of CaO and other inert minerals in the ash resulted in uniform sulphation with good penetration of SO{sub 2} into pores of the sludge ash without pore blocking during sulphation of CaO. 13 refs., 1 tab., 9 figs.

  18. Phase Chemistry of Tank Sludge Residual Components

    Energy Technology Data Exchange (ETDEWEB)

    KRUMHANSL,JAMES L.; LIU,JUN; NAGY,KATHRYN L.; BRADY,PATRICK V.

    1999-11-29

    We are attempting to understand the solid phase chemistry of the high level nuclear waste (HLW) stored in tanks at Hanford. Because this waste is compositionally complex, our approach is to study experimentally the aging dynamics of simplified systems whose bulk chemistry approximates that of the tank sludges. After a basic understanding of these dynamics has been attained we plan to increase the compositional complexities one component at a time, in order to assess the influence of each component. Results will allow for reliable prediction of sludge phase chemistry over a range of sludge compositions. Iron and aluminum comprise the bulk of most HLW sludges, so we chose to begin by studying the behavior of iron-aluminum systems. Fe/Al ratios were chosen to approximate those relevant to the solutions that produced the sludge. Aluminum and iron concentrations in the various process fluids are summarized and compared to our experimental starting solutions in Table 1 (process solution data from Krumhansl, personal communication, 1998). Our low aluminum experiments serve as direct analogues to both Bismuth Phosphate and low-Fe PUREX waste. Cornell and Giovanoli (1985) found that, in a pure iron system at 70 C, a 10-fold or even 50-fold increase in suspension concentration had only very slight effects on the final aged products. Since our experiments have similar Al/Fe ratios to some high Fe-PUREX process solutions our results are probably relevant to those wastes as well. However, our results may not apply to the high-Fe and high-Al PUREX wastes, as discussed below. The high Al experiments were designed specifically to simulate REDOX waste.

  19. High temperature steam gasification of wastewater sludge

    International Nuclear Information System (INIS)

    High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current power systems. Wastewater sludge is a good source of sustainable fuel after fuel reforming with steam gasification. The use of steam is shown to provide value added characteristics to the sewage sludge with increased hydrogen content as well total energy. Results obtained on the syngas properties from sewage sludge are presented here at various steam to carbon ratios at a reactor temperature of 1173 K. Effect of steam to carbon ratio on syngas properties are evaluated with specific focus on the amounts of syngas yield, syngas composition, hydrogen yield, energy yield, and apparent thermal efficiency. The apparent thermal efficiency is similar to cold gas efficiency used in industry and was determined from the ratio of energy in syngas to energy in the solid sewage sludge feedstock. A laboratory scale semi-batch type gasifier was used to determine the evolutionary behavior of the syngas properties using calibrated experiments and diagnostic facilities. Results showed an optimum steam to carbon ratio of 5.62 for the range of conditions examined here for syngas yield, hydrogen yield, energy yield and energy ratio of syngas to sewage sludge fuel. The results show that steam gasification provided 25% increase in energy yield as compared to pyrolysis at the same temperature.

  20. Rheology of sludge-slurry grouts

    International Nuclear Information System (INIS)

    A series of rheograms was developed that relates the critical velocity (velocity where flow changes from laminar to turbulent) of a cementitious grout that incorporates a suspended sludge-slurry to the critical velocity of a reference grout made with a simulated waste solution. The sludge that is now in the Gunite waste tanks at the Oak Ridge National Laboratory (ORNL) will be suspended and pumped to the new waste storage tanks in Melton Valley. The sludge will then be blended with a cement mix base to form a grout which will be injected underground by the shale fracturing process. This report describes the materials, equipment, and techniques used in the laboratory studies to suspend sludges and mix sludge-slurry grouts that have flow properties similar to those of current shale fracturing grouts. Bentonite clay is an effective suspender in dilute NaNO3 solutions; 15 wt % solids can be suspended with 2.0 wt % bentonite in a 0.1 M NaNO3 solution. Other suspending materials were evaluated, but bentonite gave the best results. If a slurry grout becomes too viscous to pump, methods must be available to thin the mixture. A number of thinners, friction reducers, and plasticizers were examined. Q-Broxin, a thinner supplied by Baroid, reduced the velocity of a grout required for turbulent flow in a 5.0-cm (2-in.)-diam tube from 1.76 to 1.20 m/s (5.79 to 3.95 ft/s); FX-32C, a plasticizer supplied by Fox Industries, Inc., reduced the velocity from 1.76 to 0.75 m/s

  1. Preparation of biochar from sewage sludge

    Science.gov (United States)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  2. Fiscal year 1994 1/25-scale sludge mobilization testing

    International Nuclear Information System (INIS)

    There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge

  3. Radiation sterilization and effective utilization of sewer sludge

    International Nuclear Information System (INIS)

    The treatment and disposal of the sludge that is generated in sewage treatment plants in large quantity have become a social problem. At present it is disposed mostly by landfill or reclamation. The research and development of the effective utilization of sewer sludge as fertilizer after sterilizing it by radiation have been carried out since relatively long ago. In this report, the technology of the sterilization and effective utilization of sludge by using radiation is introduced, centering around the research carried out by Japan Atomic Energy Research Institute. The general treatment process for sewage in Japan is explained. Sewer sludge is a useful resource, but when it is used for farmland as fertilizer, the problems are the possibility of the contamination with high concentration heavy metals, the possibility of the contamination by pathogenic bacteria and parasites and the bad smell of sludge. The radiation sterilization of sewer sludge, the electron sterilization of sewer sludge, the basic test and the pilot plant test on making compost, the effect of applying electron beam-sterilized sludge compost, and the economical efficiency of this process are reported. Accompanying recent environment pollution, small amount of harmful substances have become to be mixed in sludge, and it becomes the obstacle to the effective use of sludge. (K.I.)

  4. Pre-treatment of tannery sludge for sustainable landfilling.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-06-01

    The wastewater produced during tanning activities are commonly conveyed to centralised industrial wastewater treatment plants. Sludge from physical-chemical treatments (i.e. primary sedimentation) and waste activated sludge from biological treatment units are called tannery sludge. Tannery sludge is a solid waste that needs to be carefully managed and its disposal represents one of the major problems in tannery industry. Conventional treatment and disposal of tannery sludge are based mainly on incineration and landfilling. The aim of this study was to evaluate the effects of a pre-treatment process composed of aerobic stabilisation, compaction and drying, for a sustainable landfilling of tannery sludge. The process produced a reduction of volume, mass and biodegradability of treated sludge. Results also demonstrated a reduced leachability of organic and inorganic compounds from treated sludge. The pre-treatment process could allow to extend landfill life time due to lower amounts of tannery sludge to be disposed off, minimise long terms landfill emissions and obtain a state of carbon sink for tannery sludge landfilling. PMID:27103400

  5. [Characteristics of municipal sludge and vacuum filtration thickening process].

    Science.gov (United States)

    Qiao, Wei; Wang, Wei; Yin, Ke-qing

    2008-04-01

    It was found that sludge total solid (TS) concentration was equal to chemical oxygen demand (COD), while volatile solid (VS) was 1.5 times of COD concentration. R2 of linear regression of TS and VS with COD was 0.9314 and 0.9228 respectively. Total COD in sludge was approximately 60% of that removed in water treatment process. Sludge contained high level protein and low fat. The TS of present gravity thickening sludge was universally lower than 3.3%. Efficiency of vacuum filtration process was determined by sludge type, sludge solid concentration, PAM molecular weight and PAM addition dose. Under - 34.7 kPa pressure, sludge dry solid filtration thickening rate of primary sludge was up to 31 kg/(m2 x h). While, for wasted actived sludge the rate was lower than 15 kg/(m2 x h). Rate of gravity thickening sludge was up to 43 kg/(m2 x h). TS of vacuum filtrate were lower than 1.5 g/L. PMID:18637370

  6. Treatment and disposal of refinery sludges: Indian scenario.

    Science.gov (United States)

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented. PMID:12870645

  7. Kraft mill sludge to improve vegetal production in Chilean Andisol.

    Science.gov (United States)

    Gallardo, F; Mora, M L; Diez, M C

    2007-01-01

    The effect of kraft mill sludge addition (25 to 75 ton/ha) to soil derived from volcanic ashes (Andisol) on wheat (Triticum aestivum L.cv. Puken) biomass production, and in the nutrient absorption by the plants was evaluated. Respiration activity and seed germination tests were carried out on the soil/sludge mixtures, in order to evaluate possible toxic effects due to the sludge addition to the soil. Soil without sludge was used as a control treatment. The plants were grown in a greenhouse (25 degrees C, 14 h-photoperiod) during 120 days, then the plants were collected and dried at 65 degrees C for 72 h for the determination of biomass production (root and aerial) and analyzed for mineral content (Ca, Mg, K and P). The mixtures of soil/sludge showed no toxicity. Seed germination and respiration activity increased with the increment of the sludge. The accumulated CO2 in the soil without sludge was 41.66 mg CO2/100; this value shows a low microbial activity. The biomass increased with the increment of sludge addition to the soil and five times more biomass was obtained when 75 ton/ha sludge was added to the soil. The nutrient absorption efficiency was also improved with the sludge addition. PMID:17486832

  8. Waste composts as nitrogen fertilizers for forage leys

    OpenAIRE

    Tontti, Tiina; Nykänen, Arja; Kuisma, Miia

    2009-01-01

    Two field experiments, conventional grass ley and organic grass-clover ley, were established with barley as a nurse crop in spring 2000 and given either low or high fertilization with mineral fertilizer (Mineral) or composts. The compost types were municipal biowaste (Biowaste), biowaste + sewage sludge (BioSludge) and cattle manure (Manure). Plant yields and nitrogen (N) uptakes were measured for three years and efficiency of N utilization was estimated. In single application of compost, the...

  9. Expansion of biowaste collection as a means of resolving capacity bottlenecks in residual waste treatment - new incentives from the Landfill Ordinance and the Renewable Energy Law; Ausweitung der Bioabfallerfassung als Massnahme zur Loesung von Kapazitaetsengpaessen bei der Restabfallbehandlung - AbfAblV und EEG schaffen neue Anreize

    Energy Technology Data Exchange (ETDEWEB)

    Kern, M. [Witzenhausen-Institut fuer Abfall, Unwelt und Energie GmbH (Germany)

    2006-07-01

    One year after the enactment of the Landfill Ordinance the German Federal Environment Ministry sees no alleviation of Germany's shortage of waste disposal capacities. According to the Laender Working Group on Wastes (LAGA) some 1.2 mil. Mg of high-caloric and untreated wastes distributed over more than 70 interim stores currently await final disposal (EUWID, 2006). The Federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU) has stated that in mid-2006 ca. 16.3 mil. Mg of waste incineration capacity and ca. 5.5 mil. Mg of mechanical biological waste treatment capacity were available. The forecast 2.3 mil. Mg of mono-/co-combustion capacity have not been reached so far. At the same time Germany has substantial unused capacity for biological waste treatment. This brings to one's mind the obvious idea of expanding the collection of biowastes, thus also easing the bottleneck in residual waste disposal. This notion gains all the more significance as many municipalities run their biowaste collection system suboptimally or have none in place at all. The present article documents arisings and available waste treatment capacities for biowaste and green waste and points out new utilisation options, particularly with a mind to the German Renewable Energy Law.

  10. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    Science.gov (United States)

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio. PMID:12697235

  11. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion.

    Science.gov (United States)

    Onyeche, T I; Schläfer, O; Bormann, H; Schröder, C; Sievers, M

    2002-05-01

    The world-wide increasing environmental awareness and its subsequent regulations have led to the application of improved technologies in wastewater purification plants. This has resulted in higher wastewater and sludge productions. Sludge is the by-product of such plants and it is not only rich in organic carbon and pathogens but also in heavy metals and other environmental pollutants. In Europe, agricultural application of dried sludge (bio-solids) is confronted with negative reactions from the citizens, governmental organisations, farmers and the food industry. Ultrasonic disruption of sludge is a popular mechanical disruption process in sludge treatment. During ultrasonic treatment, high frequency acoustic signals are used to initiate the cavitation process. The applied ultrasonic field leads to a breakdown of cohesive forces of the liquid molecules resulting in the generation of cavitation bubbles. A shock wave is released by the collapse of the cavitation bubbles and propagates in the surrounding medium forming jet streams that cause the disruption of cells in sludge. Disruption of sludge cells enables the release of light organic substances into the sludge water thereby exposing them for further anaerobic digestion. This paper presents results on the disruption of conventionally stabilised sludge through the application of the ultrasonic field. In order to reduce the specific energy input (i.e. ratio of the consumed energy during ultrasonic disruption to the input sludge mass) and improve biogas production, the total solids content of the stabilised sludge was increased before disruption. The anaerobic digestion of sludge samples was carried out in a set of specially constructed laboratory anaerobic digesters. Results showed that subsequent anaerobic digestion of the ultrasonically disrupted sludge could improve biogas production with reduced sludge quantity that is vital to the economic consideration of the wastewater treatment plants. This process

  12. The Mature Woman and the Community College

    Science.gov (United States)

    Elliot, Jeffrey M.; Mantz, Concetta M.

    1976-01-01

    The factors and motivations contributing to the presence of increasing numbers of mature women in college are examined, and seven proposals are offered, representing an attempt to develop a total community college program which will meet the needs of mature women students. (NHM)

  13. The FMI: Dimensions of Follower Maturity

    Science.gov (United States)

    Moore, Loren I.

    1976-01-01

    The Follower Maturity Index (FMI) is an instrument derived from leadership theory and based on observations of verbal and nonverbal behavior of followers in task groups. Dimensions of follower maturity--achievement, responsibility, experience, activity, dependence, variety, interests, perspective, position, and awareness--are discussed. For…

  14. Preliminary investigation on the effect of earthworm and vegetation for sludge treatment in sludge treatment reed beds system.

    Science.gov (United States)

    Chen, Zhongbing; Hu, Shanshan; Hu, Chengxiao; Huang, Liangliang; Liu, Hongbo; Vymazal, Jan

    2016-06-01

    Sewage sludge treatment is becoming one of the most significant challenges for domestic wastewater management. Optimization of sludge management for reducing sludge handling cost in wastewater treatment plant is highly demanded. Sludge treatment reed bed system (STRB) is an eco-environmentally friendly technology which has a low investment input and reduced costs for operation and maintenance. The objective of this study is to evaluate the effect of earthworm assistant STRB in terms of sludge dewatering and stabilization of surplus sludge. The results show that draining and evapotranspiration (ET) take the main role for sludge dewatering; with maximum of 77 and 43 % water was removed through draining and ET, respectively. Plants improved ET rate up to 13.1 % in the planted STRB compare with the unplanted STRB. The combination of plants and earthworms increased ET rate of 20.9 % more than the control STRB (unplanted without earthworms). The planted STRB with earthworm reached the lowest water content in accumulated sludge of 46 %. There was a systematic increase of total solids (TS) concentration from 0.5 % in the influent to 25-54 % in the accumulated sludge. Earthworms enhanced the sludge stabilization dramatic with the ratio of volatile solids (VS)/TS decreased from 49 % in the influent to 18 % in the accumulated sludge in the earthworm assistant STRB. The results demonstrated a good efficiency for sludge dewatering and stabilization with the assistant of earthworms in STRBs, which can be an alternative technology for sludge treatment in wastewater treatment plants. PMID:26961527

  15. Sludge reduction potential of the activated sludge process by integrating an oligochaete reactor

    International Nuclear Information System (INIS)

    An oligochaete reactor linked to an integrated oxidation ditch with vertical cycle (IODVC) was used to investigate the sludge reduction potential induced by worms. The presence of Tubificidae was observed in the worm reactor throughout the operational period after its inoculation, and Tubificidae was occasionally found in the IODVC. Free-swimming worms, Aeolosoma hemprichi, Nais elinguis, and Aulophorus furcatus, were found in both the IODVC and the worm reactor, but A. hemprichi was dominant. A. hemprichi reached its maximum, 322 and 339 Aeolosoma/mL mixed liquor on day 49 in the worm reactor and the IODVC, respectively. The presence of oligochaetes or the integration of worm reactor with the IODVC had little effect on sludge yield, but the worm growth was helpful for improving sludge settling characteristics. The average sludge yield and sludge volume index (SVI) in the IODVC were 0.33 kgSS/kgCODremoved and 78 mL/g, respectively. The worm presence had little impact on effluent quality of the IODVC, but it caused phosphorus release into the effluent. The average COD, NH4+-N, and SS concentrations in the effluent of the IODVC were 49.06, 12.82, and 58.25 mg/L, respectively. No total nitrogen (TN) release into the effluent of the IODVC occurred

  16. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    Science.gov (United States)

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  17. Use of sewage sludge for agriculture in Japan

    International Nuclear Information System (INIS)

    In Japan, the use of sewage sludge and composted sewage sludge is gradually increasing. They are applied not only to agricultural land, but also to golf courses, parks, etc. The presence of heavy metals and pathogens poses a major problem for such utilization of sludge. Composting is a traditional method of sewage treatment. Laws have been introduced and guidelines prepared for proper and safe use of these materials by farmers. Public acceptance plays a crucial role. At a time when environmental preservation is a major issue in almost every aspect of life, greater emphasis will have to be placed on making sludge and compost hygienically acceptable with minimum contamination from pathogenic organisms and heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. This paper reviews studies conducted on the use of sewage sludge in agriculture in japan. (author)

  18. Cadmium sorption and mobility in sludge-amended soil

    International Nuclear Information System (INIS)

    Cadmium sorption was examined in three soils that were unamended, freshly amended, or preconditioned with gamma-irradiated sewage sludge. Metal sorption in the same soils treated with a CaCl2-extract of the sludge was also studied. Cadmium sorption was greatest in the unamended soils, less in soils preconditioned with sludge, and least in the freshly amended soils and sludge-extract-treated soils. The authors attempted to explain the treatment effects on the basis of reduced free metal ion activity, but the explanations were not adequate. Despite the reduction in metal retention effected by various treatments, cadmium mobility was very limited. Short- or long-term leaching studies showed cadmium movement to be limited to 1 or 2 m below the zone of sludge (109Cd) incorporation. Cadmium mobility is expected to be very limited in calcareous soils, regardless of sludge treatments. 24 references, 1 figure, 5 tables

  19. Sludge disinfection by combined treatment of bleaching powder and irradiation

    International Nuclear Information System (INIS)

    Sludge disinfection by combined treatment of bleaching powder and irradiation. Disinfection of sludge by combined treatment of bleaching powder and irradiation has been investigated. Sludge were obtained from water and waste sanitation department (Dinas Kebersihan) DKI located at Kebon Nanas, Jakarta. Sludge were mixed with bleaching powder at the concentration of 0, 10 and 20 mg/l and then irradiated in multipurpose panoramic batch irradiator (PANBIT) with doses of 2, 4, 6, 8, and 10 kGy and a dose rate 9 kGy/h. The reducing colony form unit caused by the combined treatment depend on type bacteria observed in sludge. Pathogenic bacteria as Clostridium still survive at a dose of 10 kGy on sludge containing 20 mg/l bleaching powder, but Salmonella, Shigella, and Vibrio were not detected in this experiment, neither in the control nor in the irradiated samples. (author). 14 refs.; 4 figs

  20. Laboratory tests of sludge-control additives

    Energy Technology Data Exchange (ETDEWEB)

    Tatnall, R.E. [MIC Associates, Inc., Chadds Ford, PA (United States)

    1996-07-01

    Laboratory {open_quotes}jar{close_quotes} tests compared eleven different fuel oil and diesel fuel sludge-control additives. Factors studied included (1) ability to disperse and prevent buildup of sludge deposits on surfaces, (2) ability to protect steel from corrosion, (3) ability to inhibit growth and proliferation of bacteria, and (4) ability to disperse water. Results varied greatly, and it was found that many commercial products do not do what they claim. It is concluded that fuel retailers should not believe manufacturers` claims for their additive products, but rather should test such products themselves to be sure that the benefits of treatment are real. A simplified form of the procedure used here is proposed as one way for dealers to do such testing.

  1. Modelling Analysis of Sewage Sludge Amended Soil

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Carlsen, L.; Vikelsøe, J.; Rasmussen, A. G.

    plant effluent. The focus in this work is the top soil as this layer is important for the fate of a xenobiotic substance due to the high biological activity. A simple model for the top soil is used where the substance is assumed homogeneously distributed as suggested in the European Union System for the...... Evaluation of Substances (EUSES). It is shown how the fraction of substance mass, which is leached, from the top soil is a simple function of the ratio between the degradation half lifetime and the adsorption coefficient. This model can be used in probabilistic risk assessment of agricultural soils and......The topic is risk assessment of sludge supply to agricultural soil in relation to xenobiotics. A large variety of xenobiotics arrive to the wastewater treatment plant in the wastewater. Many of these components are hydrophobic and thus will accumulate in the sludge solids and are removed from the...

  2. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Studies reported herein have shown that a treatment of 550C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads γ radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron-beam (which, for all practical purposes, is equivalent to γ irradiation for a given absorbed dose) was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  3. Degradation of corticosteroids during activated sludge processing.

    Science.gov (United States)

    Miyamoto, Aoi; Kitaichi, Yuko; Uchikura, Kazuo

    2014-01-01

    Laboratory tests of the decomposition of corticosteroids during activated sludge processing were investigated. Corticosteroid standards were added to activated sludge, and aliquots were regularly taken for analysis. The corticosteroids were extracted from the samples using a solid-phase extraction method and analyzed LC-MS. Ten types of corticosteroids were measured and roughly classified into three groups: 1) prednisolone, triamcinolone, betamethasone, prednisolone acetate, and hydrocortisone acetate, which decomposed within 4 h; 2) flunisolide, betamethasone valerate, and budesonide of which more than 50% remained after 4 h, but almost all of which decomposed within 24 h; and 3) triamcinolone acetonide, and fluocinolone acetonide of which more than 50% remained after 24 h. The decomposed ratio was correlated with each corticosteroid's Log P, especially groups 2) and 3). PMID:24390495

  4. Who is actively denitrifying in activated sludge?

    DEFF Research Database (Denmark)

    Hansen, Aviaja Anna; Nielsen, Jeppe Lund

    -scale wastewater treatment plant the transcripts (mRNA) of the nirS, nirK and nosZ denitrification genes expressed under acetate or amino acid consumption were amplified, sequenced and identified. This revealed that the majority of the denitrifiers belonged to Alpha- and Betaproteobacteria, while only few...... genetic diversity was observed from the nirS transcripts and not the nosZ transcripts. Likewise, denitrifying cultures obtained from the activated sludge affiliated with the same Alpha- and Betaproteobacteria as detected with the denitrification genes, except one culture, which affiliated with...... Bacteroidetes. Furthermore, potential denitrifying genera of Alpha- and Betaproteobacteria were quantified in the activated sludge with 16S rRNA gene probes for fluorescence in situ hybridization (FISH). This revealed that Aquaspirillum-related bacteria were dominant followed by bacteria related to Azoarcus...

  5. Reduction in Ammonium Ions in Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Eglė Šlajūtė

    2013-12-01

    Full Text Available Liquor rejected from the centrifugation of the digested sludge can contain the concentrations of ammonium ions up to 1750 mg/L. These loads are usually returned to the intake of wastewater treatment plants (WWTP without additional treatment and can have a negative impact on biological wastewater and/or sludge treatment processes, e.g. phosphorus and nitrogen removal. This article deals with the use of naturally obtained sorbent, zeolite, in batch and column test procedure for removing ammonium from the rejected liquor. This research study was carried out using different sizes of zeolite particles: 0.8–1.6 mm and 1.6–2.5 mm. The highest efficiency of ammonium removal (up to 98 % was achieved by applying the zeolite particles of 0.8–1.6 mm.Article in Lithuanian

  6. Cavitation for improved sludge conversion into biogas

    Science.gov (United States)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  7. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  8. Chemical Inhibitors for Biomass Yield Reduction in Activated Sludge

    OpenAIRE

    Mayhew, Maxine Eleanor

    1999-01-01

    Increasing legislation and rising treatment and disposal costs have promoted optimisation of the activated sludge process to encompass reduction of waste biomass. Manipulation of process control such as increasing sludge age and decreasing food to microorganism ratio can lower waste sludge production, but capital works as well as increased operating costs in the form of power requirement for oxygen supply may be required. The need for a cost effective method of biomass reductio...

  9. Characterization of Hanford N Reactor spent fuel and associated sludges

    International Nuclear Information System (INIS)

    Characterization encompasses the examination of samples of fuel and sludge which have been removed for the characterization of fuel and sludge from the two basins and shipped to laboratories. Examinations have included metallography and furnace (ignition, in-basin examination, drying, and passivation) tests for fuel and chemical/physical property determinations for sludge. Visual examinations of fuel condition are possible for the open-top canisters as they reside in K East Basin

  10. Fenton peroxidation improves the drying performance of waste activated sludge.

    Science.gov (United States)

    Dewil, Raf; Baeyens, Jan; Neyens, Elisabeth

    2005-01-31

    Advanced sludge treatment processes (AST) reduce the amount of sludge produced and improve the dewaterability, thus probably also affecting the heat transfer properties and the drying characteristics of the sludge. This paper studies the influence of the Fenton peroxidation on the thermal conductivity of the sludge. Results demonstrate that the Fenton's peroxidation positively influences the sludge cake consistency and hence enhances the mechanical dewaterability and the drying characteristics of the dewatered sludge. For the two sludges used in this study, i.e. obtained from the wastewater treatment plants (WWTP) of Tienen and Sint-Niklaas--the dry solids content of the mechanically dewatered sludge increased from 22.5% to 40.3% and from 18.7% to 35.2%, respectively. The effective thermal conductivity k(e) of the untreated and the peroxidized sludges is measured and used to determine the heat transfer coefficient h(s). An average improvement for k(e) of 16.7% (Tienen) and 5.8% (Sint-Niklaas) was observed. Consequently the value of h(s) increased with 15.6% (Tienen) and 5.0% (Sint-Niklaas). This increased heat transfer coefficient in combination with the increased dewaterability has direct implications on the design of sludge dryers. A plate-to-plate calculation of a multiple hearth dryer illustrates that the number of plates required to dry the peroxidized sludge to 90% DS is less than half the number of plates needed to dry untreated sludge. This results in reduced dryer dimensions or a higher capacity for an existing dryer of given dimensions. PMID:15629575

  11. Properties of biosolids from sludge treatment wetlands for land application

    OpenAIRE

    Enrica UGGETTI; Ferrer Martí, Ivet; Llorens Ribes, Esther; Güell, David; García Serrano, Joan

    2010-01-01

    Sludge treatment wetlands consist of constructed wetlands which have been upgraded for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soil conditioner. In this study, biosolids from full-scale treatment wetlands were characterised in order to evaluate the quality of the final product for land application, even without further post-treatment such a...

  12. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    OpenAIRE

    Katherine D McMahon; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria kn...

  13. Fate of adsorbable micropollutants through sludge drying and composting processes

    OpenAIRE

    Besnault, S.; Martin Ruel, S.; Choubert, JM.; Budzinski, H.; Miege, C.; Esperanza, M.; Noyon, N.; Garnaud, S.; Coquery, M.

    2012-01-01

    The objective of the paper was to evaluate the fate of 79 adsorbed micropollutants through 9 sludge treatment processes. A specific sampling strategy was applied to follow a “batch” of sludge through the treatment (inlet and outlet sludge, intermediary mixture for some processes such as composting and condensates). Mass balances were established to calculate micropollutants removal efficiencies and the fate of the substances through these facilities was evaluated. In order to limi...

  14. A Study on the Sludge Solubilization by Alkaline Treatment and Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Sludge is a major product in the wastewater treatment operations. The disposal of wastewater sludge which contains mainly microbial pathogens and organic compounds remains a critical problem in the world. The sludge solubilization reduces the amount of sludge for the final disposal. Moreover, it makes possible to utilize recovered organic acids from the sludge as an external carbon source in the denitrification process. In this study, we studied the sludge solubilization and E. coli sterilization by an alkaline treatment and electron beam irradiation

  15. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    Science.gov (United States)

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the

  16. Cavitation for improved sludge conversion into biogas

    OpenAIRE

    Stoop, A.H.; Bakker, T.W.; Kramer, H.J.M.

    2015-01-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and ...

  17. Hydrogen utilization by clostridia in sewage sludge.

    Science.gov (United States)

    Ohwaki, K; Hungate, R E

    1977-06-01

    A sporeformer morphologically different but physiologically similar to Clostridium aceticum Wieringa was isolated from sewage sludge. It used large amounts of H2 and CO2, converting them chiefly to acetic acid. Growth occurs anaerobically on yeast extract alone, but after the nutrients in yeast extract are used, growth continues at a reduced rate, supported by the conversion of the gases to acetate. PMID:879782

  18. Modeling of Activated Sludge Floc Characteristics

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Mustafa

    2009-01-01

    Full Text Available Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii Study the effect of bulk concentrations of oxygen and nitrates, power input and substrates diffusivity on the portion aerobic portion of the floc. Approach: An appropriate mathematical model based on heterogeneous modeling is developed for activated sludge flocs. The model was taking into account three growth processes: Carbon oxidation, nitrification and de-nitrification in terms of four components: substrate, nitrate, ammonia, and oxygen. The model accounts for the internal and external mass transfer limitations and relates the external mass transfer resistance with power input. The floc model equations were two- point boundary value differential equations. Therefore a central finite difference method is employed. Results: The percentage aerobic portion increased with increasing with oxygen bulk concentrations and power input and decreases when the bulk concentration of ammonia and substrate increases. Both will compete to consume the internal oxygen by autotrophic and heterotrophic bacteria through aerobic growth processes. The biofloc activity through the profiles was either totally active or partially active. The totally active biofloc is either totally aerobic or aerobic and anoxic together. Conclusions: The heterogeneous floc model was able to describe the biofloc characteristics and reflects the real phenomena existing in the activated sludge processes.

  19. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Basim Yalda

    2012-08-01

    Full Text Available Abstract Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm. The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1 and 33% (run 2 in worm reactor and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  20. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  1. Recovery of wastewater sludge components by acid hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Recktenwald, Michael; Karlsson, Ingemar

    2003-07-01

    Municipal waste water sludge is a complex product containing both valuable products and contaminants. The valuable products are phosphorus, organic matter and precipitants. The contaminants include heavy metals and organic micro pollutants. Consumers, farmers and their organisations are restrictive to utilisation of sludge on arable land. Disposal of organic waste will be prohibited in 2005. Thus the sludge treatment process, KREPRO, has been developed. From the waste water sludge, different fractions can be separated and reused such as organic fraction, phosphate, precipitants and carbon source. (author)

  2. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    Science.gov (United States)

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation. PMID:11337847

  3. Energy and resource utilization of deinking sludge pyrolysis

    International Nuclear Information System (INIS)

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO3) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  4. Enhanced aerobic sludge granulation with layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Jizhi Zhou

    2014-06-01

    Full Text Available Aerobic granular sludge technology has been developed for the biochemical treatment of wastewater in the present study. A fast cultivation of aerobic granular sludge was realized in Sequencing Batch Reactor (SBR, where Mg-Al layered double hydroxide (LDH was used as a carrier for granules growth. In comparison, the sludge particle size with LDH addition was bigger than those without LDH, with more than 50% of compact granular sludge >1.4 mm in size. This indicatestheLDH improved the growth ofthegranular sludge. The frequency of LDH addition had little effect on the granule growth. Moreover, the formation of granules led to the low sludge volume index (SVI and high mixed liquid suspended solids (MLSS in SBR reactor. With the formation of granular sludge, more than 80% of COD was removed in SBR reactor. The high COD removal efficiency of wastewater was observed regardless of various COD loading strength. The results suggest that the growth of granular sludge with LDH as a carrier enhanced the treatment efficiency. Therefore, our results have provided a promising way to prepare the granular sludge for wastewater treatment.

  5. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant.

    Science.gov (United States)

    Basim, Yalda; Farzadkia, Mahdi; Jaafarzadeh, Nematollah; Hendrickx, Tim

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing. PMID:23369451

  6. Electron ray facilities for the pasteurization of sewage sludges

    International Nuclear Information System (INIS)

    Growing industrialization and the simultaneous increase in population density demand broad preventive measures in the area of waste water and sewage sludges. Electron irradiation is becoming an important tool for disinfection in this field. The AEG-Telefunken sludge pasteurization process works in continuous operation with homogenized sludge at electron energies between 1,0 to 1,5 MeV and a radiation dosage of 4 kJ/kg. The system offers the capabilities for an effective and costadvantageous disinfection of waste sludges of differing consistencies and origins and their harmless reuse as fertilizer in agriculture. (orig.)

  7. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. PMID:22868380

  8. Mobility of heavy metals in soils amended with sewage sludge

    OpenAIRE

    Morera Luzán, María Teresa; Echeverría Morrás, Jesús; Garrido Segovia, Julián José

    2001-01-01

    Sewage sludges added to arable land can improve soil fertility and physical properties. However, the concentrations of heavy metals commonly found in sludges limits their application to soil. The purpose of this paper is to evaluate the mobility of heavy metals (Cd, Cu, Ni, Pb and Zn) in four soils amended with different rates (0, 80, 60 and 320 t ha-1) of anaerobically stabilized urban sewage sludge. Total metal content in the sewage sludge was Zn much greater than Cu > Pb > Ni much grea...

  9. Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability

    Institute of Scientific and Technical Information of China (English)

    SHAO Liming; HE Peipei; YU Guanghui; HE Pinjing

    2009-01-01

    Four batch experiments of hydrolysis and acidification were carried out to investigate the distributions of proteins (PN) and polysaccharides (PS) in the sludge, the PN/PS ratio, the particle sizes, and their relationship with sludge dewaterability (as determined by capillary suction time, CST). The sludge flocs were stratified through centrifugation- and ultrasound-based method into four layers: (1) slime, (2) loosely bound extracellular polymeric substances (LB-EPS), (3) tightly bound EPS (TB-EPS), and (4) pellet. The results showed that PN was mainly partitioned in the pellet (80.7%) and TB-EPS (9.6%) layers, while PS distributed evenly in the four layers. During hydrolysis and acidification, PN was transferred from the pellet and TB-EPS layers to the slime layer, but PS had no significant transfer trends. The mean particle sizes of the sludge flocs decreased with hydrolysis and acidification. The pH had a more significant influence on the dewaterability of sludge flocs than temperature. Sludge dewaterability during hydrolysis and acidification processes greatly deteriorated from 9.7 s at raw sludge to 340--450 s under alkaline conditions. However, it was just slightly increased under acidic conditions. Further investigation suggested that CST was affected by soluble PN, soluble PN/PS, and particle sizes of sludge flocs, but was affected slightly by total PN, PS, or PN/PS in the whole sludge flocs and other layers (except slime).

  10. Treating both wastewater and excess sludge with an innovative process

    Institute of Scientific and Technical Information of China (English)

    HE Sheng-bing; WANG Bao-zhen; WANG Lin; JIANG Yi-feng

    2003-01-01

    The innovative process consists of biological unit for wastewater treatment and ozonation unit for excess sludge treatment. An aerobic membrane bioreactor(MBR) was used to remove organics and nitrogen, and an anaerobic reactor was added to the biological unit for the release of phosphorus contained at aerobic sludge to enhance the removal of phosphorus. For the excess sludge produced in the MBR, which was fed to ozone contact column and reacted with ozone, then the ozonated sludge was returned to the MBR for further biological treatment. Experimental results showed that this process could remove organics, nitrogen and phosphorus efficiently, and the removals for COD, NH3-N, TN and TP were 93.17 %, 97.57 %, 82.77 % and 79.5 %, respectively. Batch test indicated that the specific nitrification rate and specific denitrification Under the test conditions, the sludge concentration in the MBR was kept at 5000-6000 mg/L, and the wasted sludge was ozonated at an ozone dosage of 0.10 kgO3/kgSS. During the experimental period of two months, no excess sludge was wasted, and a zero withdrawal of excess sludge was implemented. Through economic analysis, it was found that an additional ozonation operating cost for treatment of both wastewater and excess sludge was only 0.045 RMB Yuan(USD 0.0054)/m3 wastewater.

  11. Experimental Study on Minimization of Sludge Production by Ozonation Process

    Institute of Scientific and Technical Information of China (English)

    何圣兵; 薛罡; 王宝贞; 王琳

    2003-01-01

    Based on the hypothesis of reducing sludge production under cryptic growth conditions, ozone was used as cell lysis agent to treat excess sludge,and then the ozonated supernatant was returned to the aeration tank. The results show that COD and NH+4-N removal efficiencies in ozonation process were 87.96% and 84.42%, respectively. Meanwhile, a low excess sludge yield coefficient of 0. 113 ( g SS/g COD removed) was obtained. Compared with that of the control test, the process configuration decreased the excess sludge production by 51.3%.

  12. The Thermal-Reaction Between Paper Mill Sludge And Adhesive

    International Nuclear Information System (INIS)

    The thermal-reaction among paper mill sludge and urea-formaldehyde(UF), phenol-formaldehyde(PF) by the thermogravimetry-differencial were tested.The results showed that there were no obvious heat absorption and leak effects when the paper mill sludge was heated.In the course of heating,the UF presented significant absorpting and leaking effects,but the thermal reaction was not significant when the paper mill sludge blended with UF,while it was significant when mill sludge blended with PF

  13. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    International Nuclear Information System (INIS)

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal. - Research highlights: → This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewagesludge. → The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. → It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  14. Electron beam/biological processing of anaerobic and aerobic sludge

    International Nuclear Information System (INIS)

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters. (author)

  15. Urban energy mining from sewage sludge.

    Science.gov (United States)

    Kwon, E E; Yi, H; Kwon, H H

    2013-01-01

    This work showed that sewage sludge could be a strong candidate for biodiesel production. High lipid content (18-20%) with C(16-18)-carbon range was experimentally identified and measured. These lipids from sewage sludge were converted into biodiesel via the transesterification reaction with MgO-CaO/Al(2)O(3) derived from magnesium slag, and biodiesel conversion was ~98%. The experimental work enabled explaining that temperature is the main driving force for the transesterification reaction, which can be enhanced in the presence of CO(2). This also enables combination of esterification of free fatty acids and transesterification of triglycerides into a single process within 1 min in the temperature range of 350-500°C. Sewage sludge residue after extracting lipids was also a good feedstock for recovering energy via thermo-chemical processes. The impact of CO(2) co-feed on the pyrolysis/gasification process of SS residue was also investigated in this work. The CO(2) injected into the thermo-chemical process remarkably increased the generation of CO by a factor of 2. Moreover, the introduction of CO(2) into the pyrolysis/gasification process enabled reducing condensable hydrocarbons (tar) by expediting cracking; thus, utilizing CO(2) as chemical feedstock for the gasification process not only leads to higher thermal efficiency but also has environmental benefits. PMID:23017593

  16. Fractional Distribution of Lead and Cadmium in Sludge and Soil Amended with Sludge Compost

    Institute of Scientific and Technical Information of China (English)

    E Yong; BIAN Wei; SHAN Dexin; ZHANG Di; FU Chunlei

    2006-01-01

    The modified three-step sequential extraction procedure proposed by the BCR was used to predict Pb and Cd fractional distribution in sewage sludge and tomato soil amended with sludge compost. There was no significant increasing of Pb and Cd contents in the soil with sludge application as compared with that in the reference soil. The Pb contents were much lower for the soil samples than for the National Soil Standards of Environmental Quality, but Cd contents in soil were much more than background mean Cd contents. Pb content in soil fractions was followed with residual Pb > reducible Pb > exchangeable and weak acid soluble Pb > oxidizable Pb. In all soil samples, the partitioning of Cd had the same extractability in the first two steps of the procedure and the residual fraction. Only a small fraction or almost zero extractability was observed at the oxidation step for Pb and Cd.

  17. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  18. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  19. Factors influencing microbiological and chemical composition of South-Belgian raw sludge

    Directory of Open Access Journals (Sweden)

    Guillemet TA.

    2009-01-01

    Full Text Available Wastewater treatment plants produce sludges which are likely to contain microbial pathogens, metallic trace elements and organic micropollutants. The aim of this study was to assess factors influencing the quality of raw sludge, i.e. freshly-produced and non-treated sludge. The survey of raw sludge quality was conducted each season over a year with controlled factors such as sludge type (primary or biological; rural or urban area origin and seasonal evolution. Quality of raw sludge was characterized by the determination of microbiological (Salmonella spp., Escherichia coli, enterococci, spores of Clostridium perfringens and chemical parameters (metallic trace elements, organic index. The organic index is a new parameter based on a gas chromatography method and developed in this study in order to estimate global organic semi-volatile load in sludge. Results showed significant differences in raw sludge quality depending on controlled factors. Thus, E. coli, and enterococci concentrations were higher in primary and biological urban raw sludge compared to biological rural sludge. Concentrations of Hg and organic semi-volatile compounds, estimated by organic index, were higher in primary urban raw sludge than biological sludges of rural or urban origin. As, Ni and Co loads were higher in biological rural raw sludge compared to primary and biological urban sludge. Spores of C. perfringens concentration in raw sludge was lower in autumn. Organic index in raw sludge was lower in spring and in summer. In conclusion, results showed that sludge quality varies significantly, depending of sludge type and seasonal evolution.

  20. Fate of organic micropollutants during anaerobic digestion of sewage sludge: localization of micropollutants within sludge organic matter pools

    OpenAIRE

    Aemig, Quentin; Cheron, Claire; Delgenès, Nadine; Houot, Sabine; Patureau, Dominique

    2013-01-01

    Many organic micropolluants enter the environment through wastewaters. Some are partly degraded during wastewater treatment. For others, due to hydrophobic properties, sorption to sludge is the main removal process. Anaerobic digestion is widely used to treat sludge because it produced renewable energy in the form of methane. The digested sludge can be used as organic fertilizer. To evaluate the risk of soil contamination, it is necessary to know if organic pollutants are dissipated during th...

  1. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables.

    OpenAIRE

    Meerburg, Francis A; Vlaeminck, Siegfried E.; Roume, Hugo; Seuntjens, Dries; Dietmar H. Pieper; Jauregui, Ruy; Vilchez-Vargas, Ramiro; Boon, Nico

    2016-01-01

    High-rate activated sludge processes allow for the recovery of organics and energy from wastewaters. These systems are operated at a short sludge retention time and high sludge-specific loading rates, which results in a higher sludge yield and better digestibility than conventional, low-rate activated sludge. Little is known about the microbial ecology of high-rate systems. In this work, we address the need for a fundamental understanding of how high-rate microbial communities differ from low...

  2. STUDIES OF GREASE SLUDGE AND LABORATORY ANALYSES OF WATER SEPARATED FROM GREASE SLUDGE

    OpenAIRE

    Ojalammi, Risto

    2014-01-01

    The main purpose of this thesis was to make analysis for water separated from grease sludge. Lassila Tikanoja Oyj (L&T) is collecting grease sludge, also called fat oil and grease (FOG), from interceptors of restaurants and hospitals and transporting it to further treatment to biogas facility. Distances are long and transportation costs are very high because of small loads. L&T is aiming to decrease the expenses, hence they built a separation tank as a temporary storage. In the separation tan...

  3. Service Quality and Process Maturity Assessment

    Directory of Open Access Journals (Sweden)

    Serek Radomir

    2013-12-01

    Full Text Available This article deals with service quality and the methods for its measurement and improvements to reach the so called service excellence. Besides older methods such as SERVQUAL and SERPERF, there are also shortly described capability maturity models based on which the own methodology is developed and used for process maturity assessment in organizations providing technical services. This method is equally described and accompanied by examples on pictures. The verification of method functionality is explored on finding a correlation between service employee satisfaction and average process maturity in a service organization. The results seem to be quite promising and open an arena for further studies.

  4. Game Maturity Model for Health Care.

    Science.gov (United States)

    de Boer, Jan C; Adriani, Paul; van Houwelingen, Jan Willem; Geerts, A

    2016-04-01

    This article introduces the Game Maturity Model for the healthcare industry as an extension to the general Game Maturity Model and describes the usage by two case studies of applied health games. The Game Maturity Model for healthcare provides a practical and value-adding method to assess existing games and to determine strategic considerations for application of applied health games. Our forecast is that within 5 years the use and development of applied games will have a role in our daily lives and the way we organize health care that will be similar to the role social media has today. PMID:26859720

  5. Constitutional and Anatomical Characteristics of Mature Women

    Institute of Scientific and Technical Information of China (English)

    Vladimir NNikolenko; DmitryBNikityuk; SvetlanaVKlochkova; AnastasiaABahmet

    2015-01-01

    Objective To identify the constitutional and anatomical peculiarities of constitution of women of mature age.Methods There was completed comprehensive anthropometric and bio-electrical survey of 651 mature women ( relative norm) living in the Moscow region .Results The quantitative distribution of women by somatotypological affiliation was revealed;anthropometric and body component composition in representatives of different somatotypes were defined .Conclusion Thus, the performed study revealed and quantiely character-ised the distribution of women according to their constitutional types in the studied population of mature age women living in Moscow region under the relative norm conditions .

  6. The influence of SRT on phosphorus removal and sludge characteristics in the HA-A/A-MCO sludge reduction process

    Science.gov (United States)

    Zuo, N.; Ji, F. Y.

    2013-02-01

    By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.

  7. The Effect of Sludge Application-to-Planting Interval on the Number of Coliforms Recovered from Vegetables Grown on Sludge-Amended Soils

    Science.gov (United States)

    Ngole, Veronica M.

    Studies were carried out to determine whether there is any difference in the health risk involved in growing carrots and spinach on sludge-amended soils when a 90-day sludge application-to-planting interval and sludge application-to-harvest intervals are used for further pathogen reduction. The health risk was determined by enumerating the Most Probable Number (MPN) of Faecal Coliform (FC) recovered from both vegetables and identifying the different types of enteric bacteria recovered at harvest. The spinach and carrots were grown on four different soil types unto which a 3 year old sludge (type 1 sludge) and three month old sludge (type 2 sludge) had been separately applied at different rates. Two sludge application-to-planting and sludge application-to-harvest interval were used. A higher number of FC were recovered from carrots (1.5 log10 MPN/10 g-1.8 log10 MPN/10 g) than spinach (sludge applied at the same rate. More FC was recovered when a 0±3 day sludge application-to-planting interval was used as opposed to a 90 day sludge application-to-planting interval. Soil type, sludge age and sludge application rate affected the amount of FC recovered. The implications of these results on the specification of time interval in Regulations guiding the growth of vegetables on sludge-amended soil are discussed.

  8. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    Science.gov (United States)

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  9. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor.

    Science.gov (United States)

    He, Qiulai; Zhou, Jun; Wang, Hongyu; Zhang, Jing; Wei, Li

    2016-08-01

    The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor. PMID:27115745

  10. Generalized thermal maturity map of Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of a polygon coverage and associated attribute data derived from the onshore portion of the 1996 "Generalized Thermal Maturity Map of Alaska"...

  11. Pristipomoides filamentosus Size at Maturity Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains information used to help determine median size at 50% maturity for the bottomfish species, Pristipomoides filamentosus in the Main Hawaiian...

  12. Maturational Changes in Dentin Mineral Properties

    OpenAIRE

    Verdelis, K.; Lukashova, L.; Wright, J. T.; Mendelsohn, R; Peterson, M. G. E.; Doty, S.; Boskey, A. L.

    2007-01-01

    In this study the changes in properties of the maturing mantle and circumpulpal dentin were quantitatively analyzed. Sections from six fetal bovine undecalcified incisors were used. Regions of mantle and circumpulpal dentin of sequential maturation stages were identified on spectroscopic images acquired by Fourier Transform Infrared Imaging. Spectroscopic parameters corresponding to mineral properties at these stages were analyzed and reported as a function of distance from the cervix of the ...

  13. Obesity accelerates secondary sexual maturity in girls

    OpenAIRE

    Meiriani Sari; Endy Paryanto Prawirohartono; Madarina Julia

    2012-01-01

    Background Worldwide incidence of obesity in children is increasing. Obesity may have many health effects including advancement of sexual maturity. Objective The aim of this study was to assess the timing of secondary sexual maturation in obese vs. non-obese girls. Methods Subjects were 105 obese and 105 non-obese girls, aged 7 to 8 years who had not entered puberty. Breast and pubic hair growth, secondary sexual characteristics, were assessed at baseline and every 4 months for two ye...

  14. SKIN DENDRITIC CELLS: ACTIVATION, MATURATION AND MIGRATION

    OpenAIRE

    Eaton, Laura

    2012-01-01

    Langerhans’ cells (LC) are the dendritic cells (DC) of the epidermis and, as sentinels of the immune system, act as a bridge between the innate and adaptive immune responses. When LC, and other DC, recognise an antigen or pathogen they mature and are stimulated to migrate to the lymph nodes, where they orchestrate immune responses. Pathogen derived toll-like receptor (TLR) ligands, and chemical allergens, are recognised as being potentially harmful and stimulate LC to mobilise and mature. Cyt...

  15. General smile asymptotics with bounded maturity

    OpenAIRE

    Francesco Caravenna; Jacopo Corbetta

    2014-01-01

    We provide explicit conditions on the distribution of risk-neutral log-returns which yield sharp asymptotic estimates on the implied volatility smile. We allow for a variety of asymptotic regimes, including both small maturity (with arbitrary strike) and extreme strike (with arbitrary bounded maturity), extending previous work of Benaim and Friz [Math. Finance 19 (2009), 1-12]. We present applications to popular models, including Carr-Wu finite moment logstable model, Merton's jump diffusion ...

  16. Mature students' perspectives of studying radiography

    International Nuclear Information System (INIS)

    The study set out to explore the experiences of all final year mature students on a diagnostic radiography course, in one United Kingdom University. The aims were to identify any difficulties they may have had and to make recommendations to improve mature students' learning experiences with the hope of lowering attrition rates in this group. A qualitative study involving one-to-one audio recorded interviews was utilised. Analysis of the transcripts of interviews suggested that the group believed that their maturity and previous experiences helped them in the clinical environment and put them in a good position, when asked, to counsel younger students. However for some of the mature students these experiential skills did not extend fully into seeking appropriate support for themselves. The mature students were found to be highly motivated but there was a conflict between balancing clinical and academic aspects of studying as well as balancing studying with home life. The group was found to be unprepared for the volume of academic work and its detrimental effect on family life as they sacrificed other aspects of their lives in order to complete the course. It is recommended that forewarning and forearming prospective mature students be considered by radiography education providers. Setting up and utilising an on-line forum providing a 24/7 peer support environment would aid in coping with academic, clinical or personal problems

  17. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    Science.gov (United States)

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required. PMID:26810032

  18. Upflow Sludge Blanket Filtration (USBF: An Innovative Technology in Activated Sludge Process

    Directory of Open Access Journals (Sweden)

    R Saeedi

    2010-06-01

    Full Text Available Background: A new biological domestic wastewater treatment process, which has been presented these days in activated sludge modification, is Upflow Sludge Blanket Filtration (USBF. This process is aerobic and acts by using a sludge blanket in the separator of sedimentation tank. All biological flocs and suspended solids, which are presented in the aeration basin, pas through this blanket. The performance of a single stage USBF process for treatment of domestic wastewater was studied in laboratory scale.Methods: The pilot of USBF has been made from fiberglass and the main electromechanical equipments consisted of an air com­pressor, a mixing device and two pumps for sludge return and wastewater injection. The wastewater samples used for the experiments were prepared synthetically to have qualitative characteristics similar to a typical domestic wastewater (COD= 277 mg/l, BOD5= 250 mg/l and TSS= 1 mg/l.Results: On the average, the treatment system was capable to remove 82.2% of the BOD5 and 85.7% of COD in 6 h hydraulic re­tention time (HRT. At 2 h HRT BOD and COD removal efficiencies dramatically reduced to 50% and 46.5%, respectively.Conclusion: Even by increasing the concentrations of pollutants to as high as 50%, the removal rates of all pollutants were re­mained similar to the HRT of 6 h.

  19. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale

    2010-04-01

    Secondary pulp/paper-mill sludge (SPP) and sewage sludges (primary, secondary, and digested sewage sludges) were treated in supercritical water at temperatures ranging between 400 degrees Celsius and 550 degrees Celsius over 20-120 min for energy recovery. Low temperature and short reaction time favored the formation of heavy oil (HO) products, which were mainly composed of a variety of phenol and phenolic compounds, as well as some nitrogen-containing compounds, long-chain alkenes and alcohols, etc., with high gross calorific values (>36 MJ/kg). By contrast, the formation of synthetic gases, a mixture of hydrogen, carbon monoxide, carbon dioxide, methane, and other light hydrocarbons, were not significantly affected by reaction time but greatly enhanced with increasing temperature. The highest gas yield was obtained at 550 degrees Celsius, where 37.7 wt.% of the SPP (on dry basis) was converted into gases, with hydrogen yields as high as 14.5 mol H(2)/kg SPP (on a dry basis). In comparison to sewage sludges, SPP exhibited a greater capability for the production of HO and gases owing to its higher contents of volatiles and alkali metals, indicating a prospective utilization potential for SPP as a source of bio-energy. PMID:20044251

  20. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    Science.gov (United States)

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined. PMID:24866947

  1. IMPROVING THE GRAVITATIONAL PROPERTIES OF SEWAGE SLUDGE BY PRETREATMENTS

    Directory of Open Access Journals (Sweden)

    Ewelina Nowicka

    2015-01-01

    Full Text Available The formation of sludge is an inevitable consequence of wastewater treatment processes. Their disposal and utilization requires knowledge on technology and engineering. The application of pretreatment processes/conditioning allows to obtain better mechanical properties of sludge. In the last decade a lot of research from around the world focused on new methods of conditioning of sludge can be noticed, i.e. The processes of disintegration, of which the destruction of the mechanical, chemical and biological. Despite different activities of each method (introduced energy, thermal phenomena, chemical reactions, mechanical, their common goal is the destruction of activated sludge floc structure and micro-organisms, which result in changes of properties in sediment and supernatant liquid. The influence of the disintegration of the microwave and freezing/thawing dry ice on selected properties of gravitational surplus activated sludge were presented. Characteristic parameters determined sludge sedimentation processes, i.e. the rate of descent and compaction density index sediment and sludge volume index and changes in the supernatant liquid. The study showed the efficacy of selected methods of sludge disintegration with regard to improving the properties of gravity and becoming a contribution to the determination of the effective methods of deposits’ preconditioning.

  2. Performance of paper mill sludges as landfill capping material

    Energy Technology Data Exchange (ETDEWEB)

    Moo-Young, H.K. Jr. [Lehigh Univ., Bethlehem, PA (United States); Zimmie, T.F. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-12-31

    The high cost of waste containment has sparked interest in low cost and effective strategies of containing wastes. Paper mill sludges have been effectively used as the impermeable barrier in landfill covers. Since paper mill sludges are viewed as a waste material, the sludge is given to the landfill owner at little or no cost. Thus, when a clay soil is not locally available to use as the impermeable barrier in a cover system, paper sludge barriers can save $20,000 to $50,000 per acre in construction costs. This study looks at the utilization and performance of blended and primary paper sludge as landfill capping material. To determine the effectiveness of paper sludge as an impermeable barrier layer, test pads were constructed to simulate a typical landfill cover with paper sludge and clay as the impermeable barrier and were monitored for infiltration rates for five years. Long-term hydraulic conductivity values estimated from the leachate generation rates of the test pads indicate that paper sludge provides an acceptable hydraulic barrier.

  3. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aqua

  4. 33 CFR 157.17 - Oil residue (sludge) tank.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil residue (sludge) tank. 157.17... Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross tons or more must have a tank that receives and holds oil residue resulting from purification of...

  5. Electrokinetic copper and iron migration in anaerobic granular sludge

    NARCIS (Netherlands)

    Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.

    2006-01-01

    The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially contaminat

  6. SPREADING LAGOONED SEWAGE SLUDGE ON FARMLAND: A CASE HISTORY

    Science.gov (United States)

    This project demonstrated that land application is feasible and practical for a metropolitan treatment plant for disposal of a large volume (265,000 cu m) of stabilized, liquid sewage sludge stored in lagoons. The project involved transportation of sludge by semi-trailer tankers ...

  7. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit;

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...

  8. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit;

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...

  9. Application of Ultrasonic Technology in Detecting of Sludge Level

    Institute of Scientific and Technical Information of China (English)

    姚来凤; FENG Yi-hua; Kong Ling-ping

    2007-01-01

    The basic principle and the method of detecting the sludge level have been presented, and thé merits and demerits of different methods have been compared. The method of detecting by ultrasonic has been put forward based on characteristic and the need of measuring of sludge level.

  10. Performance of paper mill sludges as landfill capping material

    International Nuclear Information System (INIS)

    The high cost of waste containment has sparked interest in low cost and effective strategies of containing wastes. Paper mill sludges have been effectively used as the impermeable barrier in landfill covers. Since paper mill sludges are viewed as a waste material, the sludge is given to the landfill owner at little or no cost. Thus, when a clay soil is not locally available to use as the impermeable barrier in a cover system, paper sludge barriers can save $20,000 to $50,000 per acre in construction costs. This study looks at the utilization and performance of blended and primary paper sludge as landfill capping material. To determine the effectiveness of paper sludge as an impermeable barrier layer, test pads were constructed to simulate a typical landfill cover with paper sludge and clay as the impermeable barrier and were monitored for infiltration rates for five years. Long-term hydraulic conductivity values estimated from the leachate generation rates of the test pads indicate that paper sludge provides an acceptable hydraulic barrier

  11. The final destination of the sludges; Destination finale des boues

    Energy Technology Data Exchange (ETDEWEB)

    Rat, D. [Ministere de l' Agriculture et de la Peche, 75 - Paris (France). Direction de l' espace rural et de la foret; Guitton Bernet, I. [HSD Ernst and Young Tour Ersnt andYoung, 92 - Paris-La Defense (France); Jacquinot, B. [Bertin Technologies, 78 - Montigny le Bretonneux (France); Ribeyron, J. [CETIM, 93 - Saint-Ouen (France); Maillot, M. [AM ECO Industries, 30 - Salindres (France); Noel, A. [SYPREA, 75 - Paris (France); Seutin, H. [Vinci Environnement, Rueil Malmaison (France); Buson, Ch. [GES, 35 - Noyal sur Vilaine (France); Solains Ezquerra, R.; Myrope, A. [Lurgi (Germany); Chabrier, J.P. [Sechage Thermique des Boues, 78 - le Pecq (France); Oudenne, D. [Nesa Productlne de Umicore Engineering, Louvain-la-Neuve (Belgium); Cauvin, A. [IKOS Environnement, 76 - Blangy sur Bresle (France); Wacquez, M.L. [TERIS, 78 - Plaisir (France)

    2003-11-01

    This conference deals with the following topics: the impacts and the stakes around the regulation context and the future of the sludges management; the project management; the processing choice and the valorization; the possible certifications for the sludges; the agricultural valorization; the interests of the thermal valorization; the other possibilities of valorization. (A.L.B.)

  12. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.

    2008-01-01

    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge. S

  13. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  14. Characteristics of biosolids from sludge treatment wetlands for agricultural reuse

    DEFF Research Database (Denmark)

    Uggetti, Enrica; Ferrer, Ivet; Nielsen, Steen;

    2012-01-01

    Sludge treatment wetlands (STW) consist of constructed wetlands systems specifically developed for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soi...... legal limits for land application of the sludge. Our results suggest that biosolids from the studied STW can be valorised in agriculture, especially as soil conditioner.......Sludge treatment wetlands (STW) consist of constructed wetlands systems specifically developed for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soil...... conditioner. In this study, biosolids from full-scale STW were characterised in order to evaluate the quality of the final product for land application, even without composting post-treatment. Samples of influent and treated sludge were analysed for pH, electrical conductivity, total solids (TS), volatile...

  15. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO4) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  16. On-line Measurements of Settling Charateristics in Activated Sludge

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben

    An on-line settling column for measuring the dynamic variations of settling velocity of activated sludge has been developed. The settling column is automatic and self-cleansing insuring continuous and reliable measurements. The settling column was tested on sludge from a batch reactor where sucrose...

  17. Westinghouse Hanford Company recommended strategy for K Basin sludge disposition

    International Nuclear Information System (INIS)

    The objective of this document is to present the recommended strategy for removal of sludges from the K Basins. This document ties sludge removal activities to the plan for the K Basin spent nuclear fuel (SNF) described in WHC-EP-0830, Hanford Spent Nuclear Fuel Project Recommended Path Forward and is consistent with follow-on direction provided in February 1995. Solutions and processes for resolving sludge removal technical and management issues to meet accelerated K Basin deactivation objectives are described. The following outlines the major elements of the recommendation: (1) manage all sludges as SNF while in the K Basins; (2) once loose sludges are collected and removed from the facilities, manage them as radioactive or mixed waste consistent with the upcoming characterization results, the preferred sludge path forward alternative sends sludges to the Tank Waste Remediation System (TWRS) and/or the Hanford Solid Waste Disposal as appropriate; (3) continue to manage sludge within the fuel canisters at the time they are loaded into the multi-canister overpacks as SNF

  18. Caustic Leaching of Hanford Tank S-110 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Carson, Katharine J.; Darnell, Lori P.; Greenwood, Lawrence R.; Hoopes, Francis V.; Sell, Richard L.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Urie, Michael W.; Wagner, John J.

    2001-10-31

    This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM﷓50).

  19. Maturity acceleration of Italian dried sausage by Staphylococcus carnosus - Relationship between maturity and flavor compounds

    DEFF Research Database (Denmark)

    Stahnke, Louise Heller; Holck, A.; Jensen, Anni;

    2002-01-01

    The mature flavor of Salame Milano, an Italian dried sausage, was increased in two ways: by increasing maturation time or with a strain of Staphylococcus carnosus. The sensory and volatile profiles of the sausages were determined and the data analyzed by analysis of variance and chemometrics. Sau......, and valine, or from microbial beta-oxidation of fatty acids. Also, sulfur compounds arising from added garlic correlated positively with mature flavor....

  20. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2011-10-25

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not

  1. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus;

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and...... attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to...

  2. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The OUR (oxygen uptake rate) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads was prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4+-N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.

  3. High Level Waste System Impacts from Acid Dissolution of Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  4. Heavy metals and organic micropollutants in Norwegian sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nedland, Kjell Terje; Storhaug, Ragnar

    2003-07-01

    The heavy metal concentration in sewage sludge is one of the most important factors affecting sewage sludge use. During the last 20 years there has been a constant decline in the heavy metals concentration. Occasional point discharges and diffuse sources are now the main sources for heavy metals in sludge. In 1996-97 and in 2001-02 similar surveys of organic micropollutans in Norwegian sewage sludge have been performed. Monthly composite samples from 7 WWTPs have been analysed for PCDD/PCDF, PCB (7), PAH (16), NPE, DBP, DEHP and LAS. The two studies have used the same methods in the same months and at the same treatment plants. The results show a decline of between 23 and 92 % of different organic micropollutants in Norwegian sludge from 1996-97 to 2001-02. (author)

  5. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed......The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...

  6. Crop soil air carbon dioxide concentration and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Guiresse, M.; Gers, C.; Dourel, L.; Kaemmerer, M.; Revel, J.C. [Institut National Polytechnique de Toulouse, Toulouse (France). Ecole Nationale Superieure Agronomique de Toulouse

    1995-12-31

    The introduction of organic compounds into the soil may increase carbon dioxide emission and thus change the composition of the soil air and microfauna. These factors were studied in a field experiment in luvi-redoxisoils in the South West of France. The untreated liquid sludge from the wastewater treatment plant of Toulouse was tested. The first field plot was an unploughed plot, without any fertilizer and any sludge; the second was a control plot sown with Zea mays and a standard mineral fertilizer without any sludge; the third plot was sown with Zea mays and a normal amount of sludge; and the last plot was sown with Zea mays and a large amount of sludge. In these plots soil air dioxide carbon concentration during all the maize cultivation was measured using the Draeger field method twice a week. The results showed that burying degradable organic compounds increases soil air CO{sub 2}. 8 refs., 6 figs.

  7. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    Science.gov (United States)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  8. The effect of bioleaching on sewage sludge pyrolysis.

    Science.gov (United States)

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. PMID:26481636

  9. Processing method and device of radioactive sludge waste

    International Nuclear Information System (INIS)

    Radioactive nuclides in a relatively highly radioactivated sludges generated from a nuclear power plant or like other facility are at first leached by using acids. Then, the leached sludge wastes are devolumed or solidified, or solidified after devoluming depending on the radioactivity level, to stabilize the sludge wastes. That is, the radioactivity of the radioactive sludge wastes is separated, to lower the radioactivity level of the radioactive sludge wastes, and they are devolumed by burning or applied with solidification of drying and solidifying into a plastic solid material or dehydrating and solidifying into a solid cement material depending on the level. Further, most of acids used for leaching the radioactive nuclides is recovered and reused. Accordingly, the amount of residual liquid wastes is decreased to a small amount and they are neutralized, and thereafter, can be stored for a long period of time as condensed liquid wastes as they are. (T.M.)

  10. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  11. Analysis of sludge from Hanford K East Basin canisters

    Energy Technology Data Exchange (ETDEWEB)

    Makenas, B.J. [ed.] [comp.] [DE and S Hanford, Inc., Richland, WA (United States); Welsh, T.L. [B and W Protec, Inc. (United States); Baker, R.B. [DE and S Hanford, Inc., Richland, WA (United States); Hoppe, E.W.; Schmidt, A.J.; Abrefah, J.; Tingey, J.M.; Bredt, P.R.; Golcar, G.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-09-12

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the data on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.

  12. Analysis of sludge from Hanford K East Basin canisters

    International Nuclear Information System (INIS)

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the data on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible

  13. X-616 Chromium Sludge Lagoons pictorial overview, Piketon, Ohio

    International Nuclear Information System (INIS)

    The Portsmouth Gaseous Diffusion Plant uses large quantities of water for process cooling. The X-616 Liquid Effluent Control Facility was placed in operation in December 1976 to treat recirculation cooling water blowdown from the process cooling system. A chromium-based corrosion inhibitor was used in the cooling water system. A chromium sludge was produced in a clarifier to control chromium levels in the water. Chromium sludge produced by this process was stored in two surface impoundments called the X-616 Chromium Sludge Lagoons. The sludge was toxic due to its chromium concentration and therefore required treatment. The sludge was treated, turning it into a sanitary waste, and buried in an Ohio EPA approved landfill. The plant's process cooling water system has changed to a more environmentally acceptable phosphate-based inhibitor. Closure activities at X-616 began in August 1990, with all construction activities completed in June 1991, at a total cost of $8.0 million

  14. Can aquatic worms enhance methane production from waste activated sludge?

    Science.gov (United States)

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues. PMID:26998797

  15. Solidification of low-volume power plant sludges. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, N.E.; Halverson, M.A.; Mercer, B.M.

    1981-12-01

    A literature review was conducted to obtain information on the status of hazardous waste solidification technology and application of this technology to low-volume power plant waste sludges. Because of scarcity of sludge composition data, anticipated major components were identified primarily by chemical reactions that are known to occur during treatment of specific wastewaters. Chemical and physical properties of these sludges were critically analyzed for compatibility with several types of commercially available solidification processes. The study pointed out the need for additional information on the nature of these sludges, especially leaching characteristics and the presence of substances that will interfere with solidification processes. Laboratory studies were recommended for evaluation of solidification process which have the greatest potential for converting hazardous low-volume sludges to non-hazardous waste forms.

  16. Recycling of wood chips and wheat dregs for sludge processing.

    Science.gov (United States)

    Lin, Y F; Jing, S R; Lee, D Y

    2001-01-01

    A Buchner filtration study was conducted to investigate the effect on sludge dewatering of adding organic waste solids (wood chips or wheat dregs) to sludge after chemical preconditioning (with ferric chloride or alum). Increasing the dose of wood chips or wheat dregs enhanced sludge filtration performance and increased the energy content of the filter cake, but did not consistently increase the total filtrate removed. The additional filtrate removal was found to balance the inert solids load only when the chemical preconditioner used did not result in sufficient coagulation of the sludge and the skeleton builder dose was low (< or = 90%). Accordingly, various dose ranges of wood chips and wheat dregs are suggested for different sludge management schemes. PMID:11131800

  17. Prediction of mixer pump effectiveness for sludge mixing

    International Nuclear Information System (INIS)

    Jet mixer pumps will be used to suspend and mix the solids that have settled on the bottom of many radioactive waste storage tanks at the Department of Energy's Hanford Site in southeastern Washington. A series of twenty-six tests were conducted in a 1/25-scale mock-up using simulated waste. The capability of the single, centrally located mixer pump to suspend a layer of cohesive tank sludge simulant was quantified and correlated to both the mixer pump jet properties and the physical properties of the simulated sludge. The data suggest that sludge that owes the majority of its shear strength to cohesive forces (rather than frictional forces) will exhibit a specific relationship between mobilization resistance and vane shear strength. Sludge that owes a greater fraction of its shear strength to frictional forces will mobilize more readily than predicted by the cohesive sludge correlation

  18. Ozone treatment of wastewater sludge for reduction and stabilization.

    Science.gov (United States)

    Park, K Y; Maeng, S K; Song, K G; Ahn, K H

    2008-11-01

    Ozonation was applied to wastewater sludge for reduction and stabilization. Ozone was found to be very effective at reducing sludge and producing a useful carbon source. An ozone dose of 0.3 g/gDS fulfilled the criteria for the disinfection of class A type biosolids. The sludge treated with 0.5 gO(3)/gDS produced no hydrogen sulfide for a month at 29 degrees C. Ozonation resulted in low pH conditions, which might facilitate the mobilization of heavy metals from sludge. The results of a geotechnical investigation proved that the residuals of ozone-treated sludge did not meet the required properties required for landfill cover without the addition of quick lime. PMID:18821242

  19. Stabilization of Mercury in High pH Tank Sludges

    International Nuclear Information System (INIS)

    DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges

  20. Bulking sludge for PHA production: Energy saving and comparative storage capacity with well-settled sludge

    Institute of Scientific and Technical Information of China (English)

    Qinxue Wen; Zhiqiang Chen; Changyong Wang; Nanqi Ren

    2012-01-01

    Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response.Although kinetic selection based on storage response should bring about a predominance of floc-formers,a bulking sludge with storage response comparable to well-settled sludge was steadily established.An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1),however,due to the consequent increased feast/famine ratio,the performance of SBR #1,in terms of both the maximum PHB (polyhydroxybutyrate) cell content and △PHB,was lower than that of SBR #2.SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation.The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X.hr) and 0.18 Cmol Ac/(Cmol PHB.hr),respectively,resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase.A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB.hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation.The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge.Furthermore,the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.