WorldWideScience

Sample records for biotin-functionalized luminescent quantum

  1. Design of Biotin-Functionalized Luminescent Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kimihiro Susumu

    2007-01-01

    Full Text Available We report the design and synthesis of a tetraethylene glycol- (TEG- based bidentate ligand functionalized with dihydrolipoic acid (DHLA and biotin (DHLA—TEG—biotin to promote biocompatibility of luminescent quantum dots (QD's. This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG- (molecular weight average ∼600 modified DHLA (DHLA—PEG600 and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.

  2. Biosensing with Luminescent Semiconductor Quantum Dots

    OpenAIRE

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapti...

  3. Biosensing with Luminescent Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hedi Mattoussi

    2006-08-01

    Full Text Available Luminescent semiconductor nanocrystals or quantum dots (QDs are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent emissions and exceptional resistance to both photobleaching andchemical degradation. In this review, we examine the progress in adapting QDs for severalpredominantly in vitro biosensing applications including use in immunoassays, asgeneralized probes, in nucleic acid detection and fluorescence resonance energy transfer(FRET - based sensing. We also describe several important considerations when workingwith QDs mainly centered on the choice of material(s and appropriate strategies forattaching biomolecules to the QDs.

  4. Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, Noah D.; Yao, Yuan; Xu, Lu; O’Brien, Erin; Powers, Alexander S.; Ferry, Vivian E. [Department; Alivisatos, A. Paul [Materials; Nuzzo, Ralph G.

    2015-08-21

    Luminescent solar concentrators doped with CdSe/CdS quantum dots provide a potentially low-cost and high-performance alternative to costly high-band-gap III–V semiconductor materials to serve as a top junction in multijunction photovoltaic devices for efficient utilization of blue photons. In this study, a photonic mirror was coupled with such a luminescent waveguide to form an optical cavity where emitted luminescence was trapped omnidirectionally. By mitigating escape cone and scattering losses, 82% of luminesced photons travel the length of the waveguide, creating a concentration ratio of 30.3 for blue photons in a waveguide with a geometric gain of 61. Further, we study the photon transport inside the luminescent waveguide, showing unimpeded photon collection across the entire length of the waveguide.

  5. High-quantum efficiency, long-lived luminescing refractory oxides

    Science.gov (United States)

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  6. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    Science.gov (United States)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  7. Sexithiophenes as efficient luminescence quenchers of quantum dots

    Directory of Open Access Journals (Sweden)

    Christopher R. Mason

    2011-12-01

    Full Text Available Sexithiophenes 1a and 1b, in which a 4-(dimethylaminophenyl unit is incorporated as an end-capping group, were synthesised and characterised by cyclic voltammetry, absorption spectroscopy and UV–vis spectroelectrochemistry. Additionally, their ability to function as effective luminescence quenchers for quantum dot emission was studied by photoluminescence spectroscopy and compared with the performance of alkyl end-capped sexithiophenes 2a and 2b.

  8. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  9. Nd sup(3+): YLF luminescence quantum efficiency determination using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Vieira, M.M.F.; Franca, E.J.; Bandochi, S.L.; Morato, S.P.

    1990-01-01

    The optical properties of Nd sup(3+):LiYF sub(4) crystals were studied using absorption, emission, excitation and photoacoustic spectroscopies. A new method based on parameters from these spectra was used to determine the luminescence quantum efficiency. This method was applied to four bands centered on 517, 577, 743 and 792 nm. The luminescence quantum efficiency values obtained are presented. (author)

  10. Biosynthesis of luminescent quantum dots in an earthworm

    Science.gov (United States)

    Stürzenbaum, S. R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.-S.; Taniguchi, S.; Dailey, L.-A.; Khanbeigi, R. Ahmad; Rosca, E. V.; Thanou, M.; Suhling, K.; Zayats, A. V.; Green, M.

    2013-01-01

    The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co3O4) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl2 and Na2TeO3 salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

  11. Excitonic effects in the luminescence of quantum wells

    International Nuclear Information System (INIS)

    Deveaud, B.; Kappei, L.; Berney, J.; Morier-Genoud, F.; Portella-Oberli, M.T.; Szczytko, J.; Piermarocchi, C.

    2005-01-01

    We report on the origin of the excitonic luminescence in quantum wells. This study is carried out by time-resolved photoluminescence experiments performed on a very high-quality InGaAs quantum well sample in which the photoluminescence contributions at the energy of the exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. This allows us to compare the two conflicting theoretical approaches to the question of the origin of the excitonic luminescence in quantum wells: the model of the exciton population and the model of the Coulomb correlated plasma. We measure the exciton formation time and we show the fast exciton formation and its dependence with carrier density. We are also able to give the boundaries of the Mott transition in our system, and to show the absence of observable renormalization of the gap below the onset of this transition. We detail the characteristics of the trion formation and evidence the possible formation of both positive and negative trions in the absence of any resident free carrier populations

  12. Stable Luminescence of Single Quantum Emitters: Applications in Quantum Optics

    Directory of Open Access Journals (Sweden)

    Naumov A.V.

    2015-01-01

    Full Text Available Abstract. In our work, we demonstrate the advantages and drawbacks of the methods for generating nonclassical light using single luminescent molecules in solid matrices at cryogenic temperatures when excitation of zero-phonon spectral lines is possible. It is shown that for certain impurity-matrix systems it is possible to guarantee the following: single-photon generation at a rate of up to tens-hundreds MHz, allocation of an extremely narrow generation band (a few MHz, wavelength tuning over a wide range (tens of nanometers, generation of biphoton radiation, high photostability and absence of a stochastic spectral dynamics.

  13. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane.

    Science.gov (United States)

    Marek, Patrick; Senecal, Kris; Nida, Dawn; Magnone, Joshua; Senecal, Andre

    2011-10-24

    The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs) 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed. A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented. Avidin was covalently bound to electrospun fibrous polyvinyl chloride (PVC 1.8% COOH w/w containing 10% w/w carbon black) membranes using primary amine reactive EDC-Sulfo NHS linkage chemistry. After a 12 h exposure of the avidin coated membranes to the biotin-QD complex, fluorescence intensity was measured and the total amount of attached QDs was determined from a standard curve of QD in solution (total fluorescence vs. femtomole of QD 655). Additionally, fluorescence confocal microscopy verified the labeling of avidin coated nanofibers with QDs. The developed method was tested against 2.4, 5.2, 7.3 and 13.7 mg spray weights of electrospun nanofiber mats. Of the spray weight samples tested, maximum fluorescence was measured for a weight of 7.3 mg, not at the highest weight of 13.7 mg. The data of total fluorescence from QDs bound to immobilized avidin on increasing weights of nanofiber membrane was best fit with a second order polynomial equation (R(2) = .9973) while the standard curve of total fluorescence vs. femtomole QDs in solution had a linear response (R(2) = .999). A QD assay was developed in this study that provides a direct method for quantifying ligand attachment sites of avidin covalently bound to surfaces. The strong fluorescence signal that is a fundamental characteristic of QDs allows for the measurement of small changes in the amount of these particles in solution or attached to surfaces.

  14. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane

    Directory of Open Access Journals (Sweden)

    Magnone Joshua

    2011-10-01

    Full Text Available Abstract Background The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed. Results A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented. Avidin was covalently bound to electrospun fibrous polyvinyl chloride (PVC 1.8% COOH w/w containing 10% w/w carbon black membranes using primary amine reactive EDC-Sulfo NHS linkage chemistry. After a 12 h exposure of the avidin coated membranes to the biotin-QD complex, fluorescence intensity was measured and the total amount of attached QDs was determined from a standard curve of QD in solution (total fluorescence vs. femtomole of QD 655. Additionally, fluorescence confocal microscopy verified the labeling of avidin coated nanofibers with QDs. The developed method was tested against 2.4, 5.2, 7.3 and 13.7 mg spray weights of electrospun nanofiber mats. Of the spray weight samples tested, maximum fluorescence was measured for a weight of 7.3 mg, not at the highest weight of 13.7 mg. The data of total fluorescence from QDs bound to immobilized avidin on increasing weights of nanofiber membrane was best fit with a second order polynomial equation (R2 = .9973 while the standard curve of total fluorescence vs. femtomole QDs in solution had a linear response (R2 = .999. Conclusion A QD assay was developed in this study that provides a direct method for quantifying ligand attachment sites of avidin covalently bound to surfaces. The strong fluorescence signal that is a fundamental characteristic of QDs allows for the measurement of small changes in the amount of these particles in solution or attached to surfaces.

  15. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  16. Tandem luminescent solar concentrators based on engineered quantum dots

    Science.gov (United States)

    Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.

    2018-02-01

    Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

  17. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

    DEFF Research Database (Denmark)

    Zhang, Aihua; Peng, Mingzeng; Willatzen, Morten

    2017-01-01

    The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain...

  18. Highly Luminescent Carbon-​Nanoparticle-​Based Materials: Factors Influencing Photoluminescence Quantum Yield

    NARCIS (Netherlands)

    Qu, S.; Shen, D.; Liu, X.; Jing, P.; Zhang, L.; Ji, W.; Zhao, H.; Fan, X.; Zhang, H.

    2014-01-01

    Unravelling the factors influencing photoluminescence (PL) quantum yield of the carbon nanoparticles (CNPs) is the prerequisite for prepg. highly luminescent CNP-​based materials. In this work, an easy and effective method is reported for prepg. highly luminescent CNP-​based materials. Water-​sol.

  19. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Switching CdSe quantum dot luminescence with a-Si:H.

    Science.gov (United States)

    Di Vece, M; van Duren, S N F; van den Heuvel, D J; Mitoraj, D; Kuang, Y; Gerritsen, H C; Schropp, R E I

    2013-08-09

    Dynamical control of the luminescence of quantum dots is highly important for technology in the field of telecommunication, displays, and photovoltaics. In this work we use an a-Si:H solar cell structure in which CdSe quantum dots are sandwiched. By applying a positive potential over the device, charge carriers generated in the quantum dots are transported to the a-Si:H layer and transformed into electrical energy, changing the luminescence intensity with a switching time lower than 60 ms. This is a promising new step towards using quantum dots in optical switching devices.

  1. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available High fluorescence quantum yield graphene quantum dots (GQDs have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications.

  2. Influence of the QD luminescence quantum yield on photocurrent in QD/graphene hybrid structures

    Science.gov (United States)

    Reznik, Ivan A.; Gromova, Yulia A.; Zlatov, Andrei S.; Baranov, Mikhail A.; Orlova, Anna O.; Moshkalev, Stanislav A.; Maslov, Vladimir G.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2016-04-01

    Photoinduced changes in luminescent and photoelectrical properties of the hybrid structure based on CdSe/ZnS QDs and multilayer graphene nanobelts were studied. It was shown that an irradiation of the structures by 365 nm mercury line in doses up to 23 J led to growth of QD luminescent quantum yield and photocurrent in the QD/graphene structures. This confirms the proximity of the rates of the QD luminescence decay and energy/charge transfer from QDs to graphene, and opens an opportunity to photoinduced control of the photoelectric response of the graphene based hybrid structures with semiconductor quantum dots.

  3. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and method of use

    Science.gov (United States)

    Nie, Shuming; Chan, Warren C. W.; Emory, Steven R.

    2002-01-01

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  4. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and methods of use

    Science.gov (United States)

    Nie, Shuming; Chan, Warren C. W.; Emory, Stephen

    2007-03-20

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  5. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  6. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    International Nuclear Information System (INIS)

    Xie, Ruishi; Zhang, Xingquan; Liu, Haifeng

    2014-01-01

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  7. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com; Zhang, Xingquan; Liu, Haifeng

    2014-03-15

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  8. Blue and green luminescence of reduced graphene oxide quantum dots

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Henych, Jiří; Lang, Kamil; Kormunda, M.

    2013-01-01

    Roč. 63, november (2013), s. 537-546 ISSN 0008-6223 Institutional support: RVO:61388980 Keywords : different solvents * graphene oxides * green luminescence * intensive cavitations * N-methyl-2-pyrrolidone Subject RIV: CA - Inorganic Chemistry Impact factor: 6.160, year: 2013

  9. Doping the dots: doped quantum dots for luminescent solar concentrators

    NARCIS (Netherlands)

    Eilers, J.J.

    2015-01-01

    In this thesis, synthesis methods for luminescent organically capped colloidal ZnSe QDs of different sizes, ranging from 4.0 to 7.5 nm are reported. These QDs are analyzed using TEM, absorption spectroscopy, photoluminescence measurements and temperature dependent photoluminescence decay

  10. Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots.

    Science.gov (United States)

    Gégout, Claire; McAtee, Maria L; Bennett, Nichole M; Viranga Tillekeratne, L M; Kirchhoff, Jon R

    2012-08-07

    Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by (1)H and (31)P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.

  11. Sensitisation of visible and NIR lanthanide emission by InPZnS quantum dots in bi-luminescent hybrids

    NARCIS (Netherlands)

    Molloy, Jennifer K.; Lincheneau, Christophe; Karimdjy, Maria Moula; Agnese, Fabio; Mattera, Lucia; Gateau, Christelle; Reiss, Peter; Imbert, Daniel; Mazzanti, Marinella

    2016-01-01

    The synthesis of stable hybrid nanoparticles combining InPZnS@ZnSe/ZnS quantum dots (QDs) and grafted lanthanide complexes has been performed using two different approaches in organic and aqueous media. The final bi-luminescent hybrids exhibit Ln(III) (Ln = Eu and Yb) centred luminescence upon QD

  12. Enhanced quantum cutting luminescence by Au nanorods through improving radiative transition rate

    Science.gov (United States)

    Zheng, Biao; Lin, Lin; Feng, Zhuohong; Huang, Lili; Zhuang, Luoqing; Wang, Zhezhe; Zheng, Zhiqiang

    2017-11-01

    Quantum cutting (QC) phosphor β-NaYF4:Tb3+, Yb3+ nanoparticles (NPs) are decorated with Au nanorods (NRs). By tailoring Au NRs longitudinal plasmon resonance to match the emission wavelength of Yb3+ ion, plasmon-enhanced near-infrared (NIR) QC luminescence is achieved through improving Yb3+ ion's radiative transition rate. The decay curves of Yb3+ ion in β-NaYF4:Tb3+, Yb3+ NPs decorated with Au NRs further confirm the improvement of radiative transition rate. The influence of Au NRs concentration on QC luminescence is also investigated, and the results show that the optimal concentration of Au NRs is 0.12% with the maximum enhancement factor about 3. Our study may not only path the way to achieve simultaneous excitation and emission enhancement of QC luminescence, but also provide a potential application as QC layer to silicon-based solar cells.

  13. Controlling free superflow, dark matter and luminescence rings of excitons in quantum well structures

    OpenAIRE

    Alexandrov, A. S.; Savel'ev, S. E.

    2010-01-01

    Following the discovery of Bose-Einstein condensation (BEC) in ultra cold atoms [E. Gosta, Nobel Lectures in Physics (2001-2005), World Scientific (2008)], there has been a huge experimental and theoretical push to try and illuminate a superfluid state of Wannier-Mott excitons. Excitons in quantum wells, generated by a laser pulse, typically diffuse only a few micrometers from the spot they are created. However, Butov et al. and Snoke et al. reported luminescence from indirect and direct exci...

  14. Near-Field Spectroscopy of the Quantum Constituents of a Luminescent System

    Science.gov (United States)

    Hess, H. F.; Betzig, E.; Harris, T. D.; Pfeiffer, L. N.; West, K. W.

    1994-06-01

    Luminescent centers with sharp (<0.07 millielectron volt), spectrally distinct emission lines were imaged in a GaAs/AlGaAs quantum well by means of low-temperature near-field scanning optical microscopy. Temperature, magnetic field, and linewidth measurements establish that these centers arise from excitons laterally localized at interface fluctuations. For sufficiently narrow wells, virtually all emission originates from such centers. Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.

  15. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  16. Bioconjugation of quantum dot luminescent probes for Western blot analysis.

    Science.gov (United States)

    Makrides, Savvas C; Gasbarro, Christina; Bello, Job M

    2005-10-01

    Western blot analysis is a widely used technique for protein immunodetection. Its current format, however is unsuitable for multiplex detection of proteins, primarily due to intrinsic limitations of standard organic dyes employed as probes. Quantum dot (QD) semiconductor nanoparticles exhibit significant advantages over organic dyes, including their broad absorption bands, narrow, tunable, and symmetric emission spectra, large Stokes shifts, and excellent photostability. Here we describe a novel method for the functionalization of streptavidin-coated QDs with an in vivo biotinylated peptide (head-to-tail dimerized Z domain derived from protein A) that permits the facile conjugation of antibodies to QDs. In this study, we demonstrate the simultaneous detection of two different types of protein in a Western blot. The bioconjugation of QDs described here makes it possible to achieve multiplex detection of proteins in Western blot analysis in a more straightforward manner.

  17. Super-Resolution Definition of Coordinates of Single Semiconductor Nanocrystal (Quantum Dot: Luminescence Intensity Dependence

    Directory of Open Access Journals (Sweden)

    Eremchev M. Yu.

    2015-01-01

    Full Text Available In this research a relation between the accuracy of restoration of the single quantum dots (QD CdSe/CdS/ZnS cross-cut coordinates and luminescence intensity was investigated. It was shown that the limit of the accuracy of determining the coordinates of a single QD for a considerable total amount of registered photons approaches its limiting value that is comparable to the size of the QD. It also means that the installation used in the research is mechanically stable enough to reach the limiting values of determination accuracy of point emitters coordinates.

  18. Is the Chain of Oxidation and Reduction Process Reversible in Luminescent Graphene Quantum Dots?

    Science.gov (United States)

    Jang, Min-Ho; Ha, Hyun Dong; Lee, Eui-Sup; Liu, Fei; Kim, Yong-Hyun; Seo, Tae Seok; Cho, Yong-Hoon

    2015-08-01

    Graphene-based quantum dots (QDs) have received a tremendous amount of attention as a new type of light-emitting materials. However, their luminescence origins remain controversial due to extrinsic states of the impurities and disorder structures. Especially, the function of oxygen-contents should be understood and controlled as a crucial element for tuning the optical properties of graphene-based QDs. Herein, a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents are first synthesized via a direct oxidation route of graphite nanoparticle and thoroughly compared with a series of reduced GOQDs (rGOQDs) prepared by the conventional chemical reduction. Irreversible emission and different carrier dynamics are observed between the GOQDs and rGOQDs, although both routes show a similar tendency with regard to the variation of oxygen-functional components. Their luminescence mechanisms are closely associated with different atomic structures. The mechanism for the rGOQDs can be associated with a formation of small sp(2) nanodomains as luminescent centers, whereas those of GOQDs may be composed of oxygen-islands with difference sizes depending on oxidation conditions surrounded by a large area of sp(2) bonding. Important insights for understanding the optical properties of graphene-based QDs and how they are affected by oxygen-functional groups are shown. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study

    Directory of Open Access Journals (Sweden)

    Chang Zhang

    Full Text Available High photostable epoxy polymerized carbon quantum dots (C-dots luminescent thin films were prepared and their performances were compared with the CdTe quantum dots (QDs. First, water soluble C-dots (λem = 543.60 nm were synthesized. Poly (ethylene glycol diglycidyl ether (PEG and diaminooctane were used as the polymer matrix to make the epoxy resin films. FT-IR spectra showed that there were vibration at 3448 cm−1 and 1644 cm−1 which contributed to -OH and -NH respectively. SEM observations showed that the polymerizations of the films were uniform and there were no structure defects. Mechanical tests showed the tensile modulus of C-dots composite films were 4.6, 4.9, 6.4 and 7.8 MPa respectively with corresponding 0%, 1%, 2% and 5% mass fraction of C-dots, while the tensile modulus of CdTe QDs films were 4.6 MPa under the same mass fraction of CdTe QDs. Compared with semiconductor QDs, the decay of quantum yield were 5% and 10% for the C-dots and CdTe QDs, respectively. The pictures in the continuous irradiation of 48 h showed that the C-dots film was more photostable. This study provides much helpful and profound towards the fluorescent enhancement films in the field of flexible displays. Keywords: Carbon-dots, Waterborne epoxy resin, Luminescent materials, Quantum dots displays

  20. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  1. Microwave-assisted hydrothermal synthesis of highly luminescent ZnSe-based quantum dots with a quantum yield higher than 90%

    Science.gov (United States)

    Lee, Yong-Shin; Nakano, Kaoru; Bu, Hang-Beom; Gwi Kim, Dae

    2017-06-01

    Highly luminescent ZnSe-based quantum dots (QDs) were synthesized by a microwave-assisted hydrothermal method. The characteristics of the ZnSe precursor solution strongly influenced the photoluminescence (PL) quantum yields (QYs) of the QDs. The PL QY of ZnSe-core QDs synthesized under the optimum conditions reached 60%. Furthermore, the PL QY further increased to higher than 90% when a ZnS shell was applied to prepare ZnSe/ZnS-core/shell QDs.

  2. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    Science.gov (United States)

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  3. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    Science.gov (United States)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  4. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging.

    Science.gov (United States)

    Montalti, M; Cantelli, A; Battistelli, G

    2015-07-21

    Fluorescence bioimaging is a powerful, versatile, method for investigating, both in vivo and in vitro, the complex structures and functions of living organisms in real time and space, also using super-resolution techniques. Being poorly invasive, fluorescence bioimaging is suitable for long-term observation of biological processes. Long-term detection is partially prevented by photobleaching of organic fluorescent probes. Semiconductor quantum dots, in contrast, are ultrastable, fluorescent contrast agents detectable even at the single nanoparticle level. Emission color of quantum dots is size dependent and nanoprobes emitting in the near infrared (NIR) region are ideal for low back-ground in vivo imaging. Biocompatibility of nanoparticles, containing toxic elements, is debated. Recent safety concerns enforced the search for alternative ultrastable luminescent nanoprobes. Most recent results demonstrated that optimized silicon quantum dots (Si QDs) and fluorescent nanodiamonds (FNDs) show almost no photobleaching in a physiological environment. Moreover in vitro and in vivo toxicity studies demonstrated their unique biocompatibility. Si QDs and FNDs are hence ideal diagnostic tools and promising non-toxic vectors for the delivery of therapeutic cargos. Most relevant examples of applications of Si QDs and FNDs to long-term bioimaging are discussed in this review comparing the toxicity and the stability of different nanoprobes.

  5. Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots

    Science.gov (United States)

    Han, Qiuju; Wu, Wenzhi; Liu, Weilong; Yang, Qingxin; Yang, Yanqiang

    2018-01-01

    The nonlinear optical and the upconversion luminescence (UCL) properties of CsPbX3 (X = Br or its binary mixtures with Cl, I) quantum dots (QDs) are investigated by femtosecond open-aperture (OA) Z-scan and time-resolved luminescence techniques in nonresonant spectral region. The OA Z-scan results show that CsPbX3 QDs have strong reverse saturable absorption (RSA), which is ascribed to two-photon absorption. Partially changing halide composition from Cl to Br, to I, two-photon absorption cross sections become larger at the same laser excitation intensity. The composition-tunable nonlinear absorption should be attributed to the gradual decrease of the lowest direct band gaps with the halide substitute. Moreover, the strong UCL can be observed under near infrared femtosecond laser excitation. Halide composition-tunable UCL dynamics of CsPbX3 QDs is analyzed by use of two-exponential fitting with deconvolution. When CsPbX3 QDs have similar sizes (10-13 nm), with partially changing halide composition from Cl to Br, to I, the average UCL lifetime becomes longer due to the variation of Kane energy. Our findings suggest all-inorganic perovskite QDs can be used as excellent gain medium for high-performance frequency-upconversion lasers and provide reference to engineer such QDs toward practical optoelectronic applications.

  6. Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles.

    Science.gov (United States)

    Campos, B B; Gelde, L; Algarra, M; Esteves da Silva, J C G; Vázquez, M I; Benavente, J

    2016-10-20

    A highly hydrophilic planar membrane fabricated with regenerated cellulose (RC-4 membrane), a biocompatible polymer, was modified by inclusion of water-soluble silicon quantum dot nanoparticles (SiQDs). Both bare SiQDs and SiQDs coated with a PAMAM-OH dendrimer were employed in order to obtain luminescent and thermally stable membrane systems (RC-4/SiQDs and RC-4/SiQDs-PAMAM-OH membranes). Original and SiQDs-modified membranes were characterized by fluorescence spectroscopy (steady and confocal), derivative thermogravimetric analysis and impedance spectroscopy measurements. According to these results, both SiQDs-regenerated cellulose composite membranes present luminescent character as well as higher thermal resistance and conductivity than the original sample, although the dendrimer coverage of the SiQDs might partially shield such effects. Moreover, the permanence of SiQDs nanoparticles in the structure of the cellulosic support in aqueous environments and their effect on diffusive transport were determined by water uptake as well as by membrane potential measurements at different concentrations of a model electrolyte (KCl). These results demonstrate the possible use of these stable nano-engineered membranes, which are based on SiQDs nanoparticles, in electrochemical devices under flow conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots.

    Science.gov (United States)

    Kovalchuk, Anton; Huang, Kewei; Xiang, Changsheng; Martí, Angel A; Tour, James M

    2015-12-02

    Luminescent polymer composite materials, based on poly(vinyl alcohol) (PVA), as a matrix polymer and graphene quantum dots (GQDs) derived from coal, were prepared by casting from aqueous solutions. The coal-derived GQDs impart fluorescent properties to the polymer matrix, and the fabricated composite films exhibit solid state fluorescence. Optical, thermal, and fluorescent properties of the PVA/GQD nanocomposites have been studied. High optical transparency of the composite films (78 to 91%) and excellent dispersion of the nanoparticles are observed at GQD concentrations from 1 to 5 wt %. The maximum intensity of materials photoluminescence has been achieved at 10 wt % GQD content. These materials could be used in light emitting diodes (LEDs), flexible electronic displays, and other optoelectronic applications.

  8. Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment

    International Nuclear Information System (INIS)

    Wu, Jeslin J; Siva Santosh Kumar Kondeti, Vighneswara; Bruggeman, Peter J; Kortshagen, Uwe R

    2016-01-01

    Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton’s reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs. (letter)

  9. Biotin-Functionalized Semiconducting Polymer in an Organic Field Effect Transistor and Application as a Biosensor

    Directory of Open Access Journals (Sweden)

    Yong Suk Yang

    2012-08-01

    Full Text Available This report presents biotin-functionalized semiconducting polymers that are based on fluorene and bithiophene co-polymers (F8T2. Also presented is the application of these polymers to an organic thin film transistor used as a biosensor. The side chains of fluorene were partially biotinylated after the esterification of the biotin with corresponding alcohol-groups at the side chain in F8T2. Their properties as an organic semiconductor were tested using an organic thin film transistor (OTFT and were found to show typical p-type semiconductor curves. The functionality of this biosensor in the sensing of biologically active molecules such as avidin in comparison with bovine serum albumin (BSA was established through a selective decrease in the conductivity of the transistor, as measured with a device that was developed by the authors. Changes to the optical properties of this polymer were also measured through the change in the color of the UV-fluorescence before and after a reaction with avidin or BSA.

  10. Quantum theory of luminescence in multiple-quantum-well Bragg structures

    Science.gov (United States)

    Schäfer, M.; Werchner, M.; Hoyer, W.; Kira, M.; Koch, S. W.

    2006-10-01

    The quantum emission in radiatively coupled semiconductor multiple-quantum-well structures is investigated theoretically. It is shown that coupling effects can lead to a subradiant suppression of the emission compared to the emission of a single quantum well (QW). The suppression strength depends on the number and spacing of the QWs as well as on the homogeneous broadening and leads to an enhancement of the radiative lifetime of excitons in the structure. The strongest lifetime enhancement is found for Bragg-arranged QWs with small homogeneous broadening. Additionally, the radiative coupling between the QWs provides an exciton pumping mechanism such that excitons can directly be created into the state that has vanishing center-of-mass momentum.

  11. Effect of antimony incorporation on the density, shape, and luminescence of InAs quantum dots

    Science.gov (United States)

    Chen, J. F.; Chiang, C. H.; Wu, Y. H.; Chang, L.; Chi, J. Y.

    2008-07-01

    This work investigates the surfactant effect on exposed and buried InAs quantum dots (QDs) by incorporating Sb into the QD layers with various Sb beam equivalent pressures (BEPs). Secondary ion mass spectroscopy shows the presence of Sb in the exposed and buried QD layers with the Sb intensity in the exposed layer substantially exceeding that in the buried layer. Incorporating Sb can reduce the density of the exposed QDs by more than two orders of magnitude. However, a high Sb BEP yields a surface morphology with a regular periodic structure of ellipsoid terraces. A good room-temperature photoluminescence (PL) at ˜1600 nm from the exposed QDs is observed, suggesting that the Sb incorporation probably improves the emission efficiency by reducing the surface recombination velocity at the surface of the exposed QDs. Increasing Sb BEP causes a blueshift of the emission from the exposed QDs due to a reduction in the dot height as suggested by atomic force microscopy. Increasing Sb BEP can also blueshift the ˜1300 nm emission from the buried QDs by decreasing the dot height. However, a high Sb BEP yields a quantum well-like PL feature formed by the clustering of the buried QDs into an undulated planar layer. These results indicate a marked Sb surfactant effect that can be used to control the density, shape, and luminescence of the exposed and buried QDs.

  12. Exploiting the optical and luminescence characteristic of quantum dots for optical device fabrication

    Science.gov (United States)

    Suriyaprakash, Jagadeesh; Qiao, Ting Ting

    2018-02-01

    One can design a robust optical device by engineering the optical band gap of the quantum dots (QDs) owing to their size-tunable quantum confinement effect. To do this, understanding the optical effects of QDs and composite materials is crucial. In this context, various sizes (2.8-4.2 nm) of CdSe QDs-PMMA nanocomposite are fabricated in a two-step process and their absorbance, luminescence and optical constants studied systematically. The ellipsometry spectroscopic analysis exhibits the heterogeneous medium feature of Ψ value and also the measured refractive index (1.51-1.59) values are increased with decreased band gap (2.24-2.10 eV). The observed red shift in the UV-Vis and photoluminescence spectra is indicative of early stage CdSe QD followed by a nucleation process of bigger size QD. In addition, the growth kinetics of the reaction and the band gap of the QDs are evaluated with respect to the time to testify the colloidal QDs formation. The thickness and QD composition of the nanocomposite thin films calculated by effective medium approximation are 100 nm and 8-12%, respectively. Morphology and structural feature transmission electron microscopy study of the fabricated nanocomposite demonstrated that spherical CdSe QDs are well dispersed in PMMA.

  13. Absorption Enhancement in "Giant" Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator.

    Science.gov (United States)

    Zhao, Haiguang; Benetti, Daniele; Jin, Lei; Zhou, Yufeng; Rosei, Federico; Vomiero, Alberto

    2016-10-01

    Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of "giant" CdSe/Cd x Pb 1- x S core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes "giant" CdSe/Cd x Pb 1- x S QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100-300 K). Subsequently these thick alloyed-shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300-600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure-CdS-shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in "giant" QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence

    International Nuclear Information System (INIS)

    Zhu, Xiaohua; Zuo, Xiaoxi; Hu, Ruiping; Xiao, Xin; Liang, Yong; Nan, Junmin

    2014-01-01

    A simple and effective chemical synthesis of the photoluminescent nitrogen-doped graphene quantum dots (N-GQDs) biomaterial is reported. Using the hydrothermal treatment of graphene oxide (GO) in the presence of hydrogen peroxide (H 2 O 2 ) and ammonia, the N-GQDs are synthesized through H 2 O 2 exfoliating the GO into nanocrystals with lateral dimensions and ammonia passivating the generated active surface. Then, after a dialytic separation, two water-soluble N-GQDs with average size of about 2.1 nm/6.2 nm, which emit green/khaki luminescence and exhibit excitation dependent/independent photoluminescence (PL) behaviors, are obtained. In addition, it is also demonstrated that these two N-GQDs are stable over a broad pH range and have the upconversion PL property, showing this approach provides a simple and effective method to synthesize the functional N-GQDs. - Highlights: • Nitrogen-doped graphene quantum dots (N-GQDs) are prepared by hydrothermal routine. • Two N-GQDs with different size distribution emit green/khaki photoluminescence. • Two N-GQDs exhibit excitation-dependent/independent photoluminescence behaviors

  15. Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

    Directory of Open Access Journals (Sweden)

    Hyeoung Woo Park

    2012-01-01

    Full Text Available We have investigated the effect of water (H2O cooling and heat treatment on the luminescence efficiency of core CdSe quantum dots (QDs. The photoluminescence (PL quantum yield of the CdSe QDs was enhanced up to ~85%, and some periodic bright points were observed in wide color ranges during the heat treatment of QDs mixed with H2O. The PL enhancement of QDs could be attributed to the recovery of QDs surface traps by unreacted ligands confined within the hydrophilic H2O molecule containers.

  16. Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin

    International Nuclear Information System (INIS)

    Borissevitch, I.E.; Parra, G.G.; Zagidullin, V.E.; Lukashev, E.P.; Knox, P.P.; Paschenko, V.Z.; Rubin, A.B.

    2013-01-01

    In this work we report on the study of the interaction of CdSe/ZnS-PEGOH 570 Quantum Dot (QD) with negatively charged meso-tetrakis(p-sulfonato-phenyl)porphyrin (TPPS 4 ) using optical absorption and fluorescence spectroscopies accompanied with time resolved “single photon counting” and dynamic and resonance light scattering techniques. In the steady-state experiments the QD luminescence quenching by TPPS 4 was well approximated by a square law. In the time-resolved experiments we observed a typical multi-exponential luminescence decay curve, successfully fitted by a bi-exponential approximation. At QD interaction with porphyrin the time quenching of both components was described by a linear Stern–Volmer dependence. The discrepancy between Stern–Volmer dependences in the steady-state and time resolved experiments may be due to formation of mixed m(TPPS 4 )+n(QD) complexes, in which one TPPS 4 molecule can quench several excited QDs. This idea is in accordance with the dynamic and resonance light scattering data, which demonstrate an increase of the scattering particle size at the TPPS 4 addition to QD solutions. - Highlights: ► Quantum Dot luminescence quenching by TPPS porphyrin was studied in water solutions. ► The size of particles in QD solutions possessed increase at the TPPS4 addition. ► Quenching of the QD luminescence by TPPS4 is realized in contact QD–porphyrin complexes. ► The formation of mixed quantum dot–porphyrin aggregates takes place.

  17. Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Borissevitch, I.E., E-mail: iourib@ffclrp.usp.br [Departamento de Fisica, Faculdade de Filosofia Ciencia e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP (Brazil); Parra, G.G. [Departamento de Fisica, Faculdade de Filosofia Ciencia e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP (Brazil); Zagidullin, V.E.; Lukashev, E.P.; Knox, P.P.; Paschenko, V.Z.; Rubin, A.B. [Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Vorobyovy Gory, 119991 Moscow (Russian Federation)

    2013-02-15

    In this work we report on the study of the interaction of CdSe/ZnS-PEGOH 570 Quantum Dot (QD) with negatively charged meso-tetrakis(p-sulfonato-phenyl)porphyrin (TPPS{sub 4}) using optical absorption and fluorescence spectroscopies accompanied with time resolved 'single photon counting' and dynamic and resonance light scattering techniques. In the steady-state experiments the QD luminescence quenching by TPPS{sub 4} was well approximated by a square law. In the time-resolved experiments we observed a typical multi-exponential luminescence decay curve, successfully fitted by a bi-exponential approximation. At QD interaction with porphyrin the time quenching of both components was described by a linear Stern-Volmer dependence. The discrepancy between Stern-Volmer dependences in the steady-state and time resolved experiments may be due to formation of mixed m(TPPS{sub 4})+n(QD) complexes, in which one TPPS{sub 4} molecule can quench several excited QDs. This idea is in accordance with the dynamic and resonance light scattering data, which demonstrate an increase of the scattering particle size at the TPPS{sub 4} addition to QD solutions. - Highlights: Black-Right-Pointing-Pointer Quantum Dot luminescence quenching by TPPS porphyrin was studied in water solutions. Black-Right-Pointing-Pointer The size of particles in QD solutions possessed increase at the TPPS4 addition. Black-Right-Pointing-Pointer Quenching of the QD luminescence by TPPS4 is realized in contact QD-porphyrin complexes. Black-Right-Pointing-Pointer The formation of mixed quantum dot-porphyrin aggregates takes place.

  18. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  19. Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mirnajafizadeh, Fatemeh; Ramsey, Deborah; McAlpine, Shelli [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Fan; Reece, Peter [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Stride, John Arron, E-mail: j.stride@unsw.edu.au [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2016-07-01

    Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4′,6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5 g/L, which makes them of potential use in biological imaging applications. - Highlights: • Highly luminescent ZnSe(S) QDs were synthesized using a simple, one-step hydrothermal method. • The as-synthesized QDs were found to be nontoxic in the presence of biological cells. • The QDs were stable in biological media with identical emission profile to that in water.

  20. Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yunfei; Li, Yan, E-mail: yli@ecust.edu.cn; Zhong, Xinhua, E-mail: zhongxh@ecust.edu.cn

    2014-12-15

    Graphical abstract: A facile route based on modified Stöber method was used for the synthesis of silica coated QDs (QD@SiO{sub 2}) starting from aqueously prepared CdTe/CdS QDs. The resultant QD@SiO{sub 2} exhibited a significant increase in emission efficiency compared with that of the initial QDs, along with a small size (∼5 nm in diameter), great stability and low cytotoxicity, which makes it a good candidate as robust biomarker. - Highlights: • We present a facile modified Stöber method to prepare highly luminescent QD@SiO{sub 2}. • The PL efficiency of QDs increases significantly after silica coating. • QD@SiO{sub 2} exhibits small size (∼5 nm) and great dispersibility in aqueous solution. • QD@SiO{sub 2} presents extraordinary photo and colloidal stability. • The silica shell eliminates QD cytotoxicity, providing the access of bioconjugation. - Abstract: Silica coating is an effective approach for rendering luminescent quantum dots (QDs) with water dispersibility and biocompatibility. However, it is still challenging to prepare silica-coated QDs (QD@SiO{sub 2}) with high emission efficiency, small size and great stability in favor for bioapplication. Herein, we reported a modified Stöber method for silica coating of aqueously-prepared CdTe/CdS QDs. With the coexistence of Cd{sup 2+} and thioglycolic acid (TGA), a thin silica shell was formed around QDs by the hydrolysis of tetraethyl orthosilicate (TEOS). The resultant QD@SiO{sub 2} with a small size (∼5 nm in diameter) exhibits significantly higher emission efficiencies than that of the initial QDs. Also, QD@SiO{sub 2} has extraordinary photo and colloidal stability (pH range of 5–13, 4.0 M NaCl solution). Protected by the silica shell, the cytotoxicity of QDs could be reduced. Moreover, the QD@SiO{sub 2} conjugated with folic acid (FA) presents high specific binding toward receptor-positive HeLa cells over receptor-negative A549 cells.

  1. Heterostructure of Au nanocluster tipping on a ZnS quantum rod: controlled synthesis and novel luminescence.

    Science.gov (United States)

    Tian, Yang; Wang, Ligang; Yu, Shanshan; Zhou, Weiwei

    2015-08-14

    Heterostructures of metal nanoparticles and semiconductors are widely studied for their unique properties. However, few reports are available on the heterostructure of metal nanoclusters and semiconductors. In the present study, a heterostructure, in which gold nanoclusters selectively locate at ZnS quantum rod (QR) tips, was fabricated using a two-step solvothermal route. The composition, intrinsic crystallography, and junction of the prepared heterostructure were thoroughly investigated, and it was observed to exhibit novel luminescent behaviours. By comparison with the individual components of ZnS QRs and gold clusters, the resultant heterostructure shows an enhanced exciton emission and complete depression of defect emission for the ZnS component, and a pronounced red emission for the gold nanocluster component. The mechanism of these properties and the charge transfer between gold nanoclusters and ZnS QRs were also explored. The size and location of gold in the heterostructure were also controlled during synthesis to study their effects on the luminescence.

  2. Spectral analysis in microscopy : a study of FRET and single quantum dot luminescence

    NARCIS (Netherlands)

    Frederix, Patrick Louis Theodorus Martin

    2001-01-01

    This thesis deals with the development of new techniques and luminescent markers, to improve the quality of luminescence studies in microscopy. A sensitive spectrograph that can be used for spectrally resolved emission spectroscopy in the microscope is described, including design considerations,

  3. Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots

    NARCIS (Netherlands)

    Krumer, Z.; Pera, S.J.; Dijk-Moes, R.J.A. van; Zhao, Y.; Brouwer, A.F.P. de; Groeneveld, E.; Sark, W.G.J.H.M. van; Schropp, R.E.I.; Mello-Donega, C. de

    2013-01-01

    Luminescent solar concentrators are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a solar collector by means of concentration. The device is comprised a thin plastic plate in which luminescent species (fluorophores) have been

  4. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    Science.gov (United States)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  5. Luminescence model with quantum impact parameter for low energies; Modelo de luminiscencia con parametro de impacto cuantico para bajas energias

    Energy Technology Data Exchange (ETDEWEB)

    Cruz G, H.S.; Michaelian, K.; Galindo U, S.; Martinez D, A.; Belmont M, E. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico- Toluca Km. 36.5, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The analytical model of induced light production in scintillator materials by energetic ions proposed by Michaelian and Menchaca (M-M) adjusts very well the luminescence substance data in a wide energy interval of the incident ions (10-100 MeV). However at low energies, that is, under to 10 MeV, the experimental deviations of the predictions of M-M model, show that the causes may be certain physical effects, all they important at low energies, which were not considered. We have modified lightly the M-M model using the basic fact that the Quantum mechanics gives to a different limit for the quantum impact parameter instead of the classic approximation. (Author)

  6. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging

    International Nuclear Information System (INIS)

    Manzoor, Koyakutty; Johny, Seby; Thomas, Deepa; Setua, Sonali; Menon, Deepthy; Nair, Shantikumar

    2009-01-01

    A heavy-metal-free luminescent quantum dot (QD) based on doped zinc sulfide (ZnS), conjugated with a cancer-targeting ligand, folic acid (FA), is presented as a promising bio-friendly system for targeted cancer imaging. Doped QDs were prepared by a simple aqueous method at room temperature. X-ray diffraction and transmission electron microscopy studies showed the formation of monodisperse QDs of average size ∼4 nm with cubic (sphalerite) crystal structure. Doping of the QDs with metals (Al 3+ ), transition metals (Cu + , Mn 2+ ) and halides (F - ) resulted in multi-color emission with dopant-specific color tunability ranging from blue (480 nm) to red (622 nm). Luminescent centers in doped QDs could be excited using bio-friendly visible light >400 nm by directly populating the dopant centers, leading to bright emission. The cytotoxicity of bare and FA conjugated QDs was tested in vitro using normal lung fibroblast cell line (L929), folate-receptor-positive (FR+) nasopharyngeal epidermoid carcinoma cell line (KB), and FR-negative (FR-) lung cancer cell line (A549). Both bare and FA-conjugated ZnS QDs elicited no apparent toxicity even at high concentrations of ∼100 μM and 48 h of incubation. In contrast, CdS QDs prepared under identical conditions showed relatively high toxicity even at low concentrations of ∼0.1 μM and 24 h of incubation. Interaction of FA-QDs with different cell lines showed highly specific attachment of QDs in the FR+ cancer cell line, leaving others unaffected. The bright and stable luminescence of the QDs could be used to image both single cancer cells and colonies of cancer cells without affecting their metabolic activity and morphology. Thus, this study presents, for the first time, the use of non-toxic, Cd-, Te-, Se-, Pb- and Hg-free luminescent QDs for targeted cancer imaging.

  7. Aqueous synthesis of highly luminescent glutathione-capped Mn²⁺-doped ZnS quantum dots.

    Science.gov (United States)

    Kolmykov, Oleksii; Coulon, Joël; Lalevée, Jacques; Alem, Halima; Medjahdi, Ghouti; Schneider, Raphaël

    2014-11-01

    In this paper, an aqueous-based route has been developed to prepare highly luminescent glutathione (GSH)-capped Mn-doped ZnS quantum dots (QDs). The dots obtained have an average diameter of 4.3 nm and exhibit the Mn(2+)-related orange luminescence with very low surface defect density. The highest photoluminescence was observed for a Mn(2+) to Zn(2+) molar ratio of 3%. Consecutive overcoating of the Mn:ZnS@GSH QDs by a ZnS shell was done, and the core/shell structured QDs exhibit a PL quantum yield of 23%. Transmission electron microscopy, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy, UV-visible spectroscopy and spectrofluorometry have been used to characterize the crystal structure, the doping status, and the optical properties of the doped-QDs. Our systematic investigation shows that Mn:ZnS/ZnS@GSH QDs are highly promising fluorescent labels in biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fabrication of blue luminescent MoS{sub 2} quantum dots by wet grinding assisted co-solvent sonication

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Junaid; Siddiqui, Ghayas Uddin [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Choi, Kyung Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Jang, Yunseok [Department of Printed Electronics, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea (Korea, Republic of); Lee, Kangtaek [Department of Chemical and Biomolecular Engineering, Yonsei University (Korea, Republic of)

    2016-01-15

    Molybdenum disulfide (MoS{sub 2}) belongs to transition-metal dichalcogenides (TMDs) family and has vital position among 2D materials. Here, an efficient strategy for the synthesis of zero-dimensional MoS{sub 2} quantum dots (QDs) has been represented. This strategy consists of wet grinding of pristine MoS{sub 2} in N-methyl-2-pyrrolidone (NMP) followed by sonication in NMP and 1,2-dichlorobenzene (o-DCB). The efficacy of this approach to synthesize MoS{sub 2} QDs has been reported by analyzing the as synthesized MoS{sub 2} QDs by different characterization techniques such as high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. The concentration (yield) of as synthesized MoS{sub 2} QDs was found to be 7 mg mL{sup −1}. Most of the MoS{sub 2} QDs were measured around 2–5 nm in size. The as synthesized MoS{sub 2} QDs showed distinct blue luminescence upon UV excitation. - Highlights: • Synthesis of MoS{sub 2} quantum dots. • Wet grinding of MoS{sub 2} flakes for 6 h in NMP. • Ultrasonication of MoS{sub 2} in NMP and DCB. • Particle size 2–5 nm and concentration 7 mg/ml. • MoS{sub 2} QDs showed blue luminescence.

  9. Stimulation of Cysteine-Coated CdSe/ZnS Quantum Dot Luminescence by meso-Tetrakis (p-sulfonato-phenyl) Porphyrin

    Science.gov (United States)

    Parra, Gustavo G.; Ferreira, Lucimara P.; Gonçalves, Pablo J.; Sizova, Svetlana V.; Oleinikov, Vladimir A.; Morozov, Vladimir N.; Kuzmin, Vladimir A.; Borissevitch, Iouri E.

    2018-02-01

    Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

  10. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  11. Low-Temperature Growth of Inverted Hexagonal ZnS/CdS Quantum Dots: Functional and Luminescence Properties

    Science.gov (United States)

    Kumar, Hitanshu; Barman, P. B.; Singh, Ragini Raj

    2015-02-01

    A novel low-temperature wet chemical method is proposed for direct growth of type-I inverted hexagonal ZnS/CdS quantum dots (QD). 2-Mercaptoethanol (2-ME) was used as a capping agent for confinement by passivation, and also helped to prevent agglomeration of the QD. The band gap calculated from optical absorption spectra was 2.63 eV for the smallest core/shell QD. Absorption edge onset and results from transmission electron microscopy revealed formation of inverted core/shell QD. X-ray diffraction studies revealed the ZnS/CdS had a stable hexagonal crystal structure at low temperature. The average diameter of the core/shell QD was 4.2 nm. Tunable luminescence with substantial tunability was revealed by study of the photoluminescence of the inverted ZnS/CdS quantum dots. Surface passivation of ZnS/CdS QD by 2-ME was confirmed by Fourier-transform infrared spectroscopy.

  12. Parameters affecting the luminescence of nanodiamond particles:Quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Kovalenko, Alexander; Petráková, Vladimíra; Ashcheulov, Petr; Záliš, Stanislav; Nesladek, M.; Kraus, I.; Kratochvílová, Irena

    2012-01-01

    Roč. 209, č. 9 (2012), s. 1769-1773 ISSN 1862-6300 R&D Projects: GA TA ČR TA01011165; GA ČR(CZ) GAP304/10/1951 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : defects * luminescence * nanodiamonds * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.469, year: 2012 http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1862-6319/earlyview

  13. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture.

    Science.gov (United States)

    Borovaya, Mariya N; Burlaka, Olga M; Naumenko, Antonina P; Blume, Yaroslav B; Yemets, Alla I

    2016-12-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects.

  14. Fast and Straightforward Synthesis of Luminescent Titanium(IV Dioxide Quantum Dots

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2017-01-01

    Full Text Available The nucleus of titania was prepared by reaction of solution titanium oxosulphate with hydrazine hydrate. These titania nuclei were used for titania quantum dots synthesis by a simple and fast method. The prepared titanium(IV dioxide quantum dots were characterized by measurement of X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM, high-resolution electron microscopy (HRTEM, and selected area electron diffraction (SAED. The optical properties were determined by photoluminescence (PL spectra. The prepared titanium(IV dioxide quantum dots have the narrow range of UV excitation (365–400 nm and also a close range of emission maxima (450–500 nm.

  15. Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers

    International Nuclear Information System (INIS)

    Azizi, Seyed Naser; Chaichi, Mohammad Javad; Shakeri, Parmis; Bekhradnia, Ahmadreza

    2013-01-01

    A novel chemiluminescence (CL) method using water-soluble Mn-doped ZnS quantum dots (QDs) as sensitizers is proposed for the chemiluminometric determination of atropine in pharmaceutical formulation. Water-soluble Mn-doped ZnS QDs were synthesized by using L-cysteine as stabilizer in aqueous solutions. The nanoparticles were structurally and optically characterized by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), UV–vis absorption spectroscopy and photoluminescence (PL) emission spectroscopy. It was found that ZnS quantum dots acted as enhancers of the weak CL emission produced upon oxidation of sulfite by Ce(IV) in acidic medium. Trace amounts of atropine improved the sensitize effect of ZnS quantum dots yielding a significant chemiluminescence enhancement of the Ce(IV)–SO 3 2− –ZnS QD system. Therefore, a new CL analysis system was developed for the determination of atropine. Under the optimum conditions, there is a good linear relationship between the relative chemiluminescence intensity and the concentration of atropine in the range of 1×10 −9 –1×10 −6 M of atropine with a correlation coefficient (R 2 ) of 0.9992. The limit of detection of this system was found to be 2.54×10 −10 M. This method is not only simple, sensitive and low cost, but also reliable for practical applications. -- Highlights: • Mn-doped ZnS quantum dots could enhance the chemiluminescence (CL) of cerium(IV)–sodium sulfite system. • ZnS quantum dots were used as the nanocatalyst. • Trace amounts of atropine improved the sensitize effect of ZnS quantum dots. • This work is introduced as a new method for the determination of atropine commercial drugs. • Detection limit of atropine was obtained 2.54×10 −10 mol L −1

  16. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    NARCIS (Netherlands)

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, A

    2017-01-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control

  17. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Permutite incorporating CdSe in mesopores has been prepared with a simple route. Firstly, mercaptosuccinic acid-capped CdSe quantum dots (QDs) were prepared in aqueous solution by using SeO2 as selenium source and NaBH4 as reductant. Secondly, the commercial permutite was treated with acetic acid to induce a ...

  18. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Administrator

    tosuccinic acid-capped CdSe quantum dots (QDs) were prepared in aqueous solution by using SeO2 as selenium source and NaBH4 as reductant. Secondly, the commercial permutite was treated with acetic acid to induce a partial dealumnization, which can introduce a large number of intracrystal mesopores, and the.

  19. Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, Seyed Naser [Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 4741695447 (Iran, Islamic Republic of); Chaichi, Mohammad Javad, E-mail: jchaichi@yahoo.com [Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 4741695447 (Iran, Islamic Republic of); Shakeri, Parmis [Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 4741695447 (Iran, Islamic Republic of); Bekhradnia, Ahmadreza [Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2013-12-15

    A novel chemiluminescence (CL) method using water-soluble Mn-doped ZnS quantum dots (QDs) as sensitizers is proposed for the chemiluminometric determination of atropine in pharmaceutical formulation. Water-soluble Mn-doped ZnS QDs were synthesized by using L-cysteine as stabilizer in aqueous solutions. The nanoparticles were structurally and optically characterized by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), UV–vis absorption spectroscopy and photoluminescence (PL) emission spectroscopy. It was found that ZnS quantum dots acted as enhancers of the weak CL emission produced upon oxidation of sulfite by Ce(IV) in acidic medium. Trace amounts of atropine improved the sensitize effect of ZnS quantum dots yielding a significant chemiluminescence enhancement of the Ce(IV)–SO{sub 3}{sup 2−}–ZnS QD system. Therefore, a new CL analysis system was developed for the determination of atropine. Under the optimum conditions, there is a good linear relationship between the relative chemiluminescence intensity and the concentration of atropine in the range of 1×10{sup −9}–1×10{sup −6} M of atropine with a correlation coefficient (R{sup 2}) of 0.9992. The limit of detection of this system was found to be 2.54×10{sup −10} M. This method is not only simple, sensitive and low cost, but also reliable for practical applications. -- Highlights: • Mn-doped ZnS quantum dots could enhance the chemiluminescence (CL) of cerium(IV)–sodium sulfite system. • ZnS quantum dots were used as the nanocatalyst. • Trace amounts of atropine improved the sensitize effect of ZnS quantum dots. • This work is introduced as a new method for the determination of atropine commercial drugs. • Detection limit of atropine was obtained 2.54×10{sup −10} mol L{sup −1}.

  20. Focusing on luminescent graphene quantum dots: current status and future perspectives

    Science.gov (United States)

    Li, Lingling; Wu, Gehui; Yang, Guohai; Peng, Juan; Zhao, Jianwei; Zhu, Jun-Jie

    2013-05-01

    To obtain graphene-based fluorescent materials, one of the effective approaches is to convert one-dimensional (1D) graphene to 0D graphene quantum dots (GQDs), yielding an emerging nanolight with extraordinary properties due to their remarkable quantum confinement and edge effects. In this review, the state-of-the-art knowledge of GQDs is presented. The synthetic methods were summarized, with emphasis on the top-down routes which possess the advantages of abundant raw materials, large scale production and simple operation. Optical properties of GQDs are also systematically discussed ranging from the mechanism, the influencing factors to the optical tunability. The current applications are also reviewed, followed by an outlook on their future and potential development, involving the effective synthetic methods, systematic photoluminescent mechanism, bandgap engineering, in addition to the potential applications in bioimaging, sensors, etc.

  1. Effect of the quantum confinement on the luminescent properties of sesquioxydes

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Bruno [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, Villeurbanne, Cedex 69622 (France); Dujardin, Christophe [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, Villeurbanne, Cedex 69622 (France)]. E-mail: dujardin@pcml.univ-lyon1.fr; Ledoux, Gilles [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, Villeurbanne, Cedex 69622 (France); Nicolas, David [Laboratoire de Physique de la Matiere Condensee et Nanostructures, UMR 5586 du CNRS, Universite Claude Bernard Lyon I, Villeurbanne, Cedex 69622 (France); Masenelli, Bruno [Laboratoire de Physique de la Matiere Condensee et Nanostructures, UMR 5586 du CNRS, Universite Claude Bernard Lyon I, Villeurbanne, Cedex 69622 (France); Melinon, Patrice [Laboratoire de Physique de la Matiere Condensee et Nanostructures, UMR 5586 du CNRS, Universite Claude Bernard Lyon I, Villeurbanne, Cedex 69622 (France)

    2007-01-15

    Spectroscopic behaviour of Y{sub 2}O{sub 3}:Ce{sup 3+} nanocrystals is presented. A new fluorescence peaking around 430 nm appears in small particles. This emission is interpreted as the 5d-4f radiative recombination of Ce{sup 3+}, which does not occur in bulk materials due to autoionisation processes. This change in behaviour could be due to both quantum confinement inside the nanoparticles and changes in the crystal field for small sizes.

  2. Elucidation of luminescent mechanisms of size-controllable MoSe2 quantum dots

    Science.gov (United States)

    Luan, Chun-Yan; Xie, Shuang; Ma, Chunyan; Wang, Shengping; Kong, Yuhan; Xu, Mingsheng

    2017-08-01

    Transition metal dichalcogenides such as MoS2 and WS2 quantum dots (QDs) have been found to show a dramatic enhancement of photoluminescence (PL) quantum efficiency as compared with their planar sheet counterparts. However, the mechanisms of PL enhancement remain not to be very clear. In this work, MoSe2 QDs with the size ranging from about 5.30 nm to 1.55 nm were prepared by a probe-assistant ultrasonication exfoliation approach. The as-prepared MoSe2 QDs are strongly fluorescent, suggesting the existence of quantum confinement effects, and show two distinct PL emissions in the ultraviolet and visible ranges, which are attributed to a band-edge state and a surface related defect state, respectively. We observed blue shifts of the PL peak position and the absorption band edge with the change in the QD size, and the discrepancy of the shifted energies between the PL emission and the estimation based on documented models is briefly addressed.

  3. Luminescent behavior of CdTe quantum dots: Neodymium(III) complex-capped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Margarida S. [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Algarra, Manuel, E-mail: magonzal@fc.up.pt [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Jimenez-Jimenez, Jose; Rodriguez-Castellon, Enrique [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos s/n 29071, Malaga (Spain); Campos, Bruno B.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal)

    2013-02-15

    A water soluble complex of neodymium(III) with CdTe quantum dots nanoparticles was synthesized. The obtained homogeneous solutions were characterized by fluorescence, X-ray photoelectron and energy dispersive X-ray spectroscopies. The effect of the refluxing time of the reaction on the fluorescence intensity and emission wavelength has been studied. It was found that the emission wavelength of the solutions of neodymium(III) complex capped CdTe QDs nanoparticles shifted from about 540 to 735 nm. For an emission wavelength of 668 nm, the most reproducible nanoparticles obtained, the pH effect over the fluorescence emission and its intensity were studied. The purified and lyophilized solid obtained was morphologically characterized by transmission electron microscopy (TEM). The quantitative composition was determined by fluorescence X-ray spectroscopy (EDAX) and the X-ray photoelectron analysis (XPS) confirmed the presence of neodymium(III) at the surface of the CdTe nanoparticles forming a complex with the carboxylate groups from 3-mercaptopropanoic acid of the CdTe QDs. Due to the optical behavior of this complex, it could be of potential interest as a light source in optical devices. - Highlights: Black-Right-Pointing-Pointer CdTe quantum dots nanoparticles. Black-Right-Pointing-Pointer Neodymium(III) complexed quantum dots. Black-Right-Pointing-Pointer Strong red fluorescent emission nanomaterial soluble in water.

  4. New luminescent materials and filters for Luminescent Solar Concentrators

    OpenAIRE

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited sunlight absorption, limited quantum efficiency and high self absorption. To tackle these problems, a suitable luminescent material is needed. Another important loss mechanism is the escape of luminescen...

  5. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...

  6. Two-step synthesis of luminescent MoS(2)-ZnS hybrid quantum dots.

    Science.gov (United States)

    Clark, Rhiannon M; Carey, Benjamin J; Daeneke, Torben; Atkin, Paul; Bhaskaran, Madhu; Latham, Kay; Cole, Ivan S; Kalantar-Zadeh, Kourosh

    2015-10-28

    A surfactant assisted technique has been used to promote the exfoliation of molybdenum disulphide (MoS2) in a water-ethanol mixture, to avoid the use of harsh organic solvents, whilst still producing sufficient concentration of MoS2 in suspension. The exfoliated flakes are converted into MoS2 quantum dots (QDs), through a hydrothermal procedure. Alternatively, when the flakes are processed with precursors for zinc sulphide (ZnS) synthesis, a simultaneous break-down and composite growth is achieved. The products are separated by centrifugation, into large ZnS spheres (200-300 nm) and small MoS2-ZnS hybrid QD materials (ZnS components of QDs, respectively. The PL emission from MoS2-ZnS QDs is of high energy and is more intense than the bare MoS2 flakes or QDs, with a quantum yield as high as 1.96%. The emission wavelength is independent from the excitation wavelength and does not change over time. Due to such properties, the developed hybrid QDs are potentially suitable for imaging and sensing applications.

  7. Tuning quantum dot luminescence below the bulk band gap using tensile strain.

    Science.gov (United States)

    Simmonds, Paul J; Yerino, Christopher D; Sun, Meng; Liang, Baolai; Huffaker, Diana L; Dorogan, Vitaliy G; Mazur, Yuriy; Salamo, Gregory; Lee, Minjoo Larry

    2013-06-25

    Self-assembled quantum dots (SAQDs) grown under biaxial tension could enable novel devices by taking advantage of the strong band gap reduction induced by tensile strain. Tensile SAQDs with low optical transition energies could find application in the technologically important area of mid-infrared optoelectronics. In the case of Ge, biaxial tension can even cause a highly desirable crossover from an indirect- to a direct-gap band structure. However, the inability to grow tensile SAQDs without dislocations has impeded progress in these directions. In this article, we demonstrate a method to grow dislocation-free, tensile SAQDs by employing the unique strain relief mechanisms of (110)-oriented surfaces. As a model system, we show that tensile GaAs SAQDs form spontaneously, controllably, and without dislocations on InAlAs(110) surfaces. The tensile strain reduces the band gap in GaAs SAQDs by ~40%, leading to robust type-I quantum confinement and photoluminescence at energies lower than that of bulk GaAs. This method can be extended to other zinc blende and diamond cubic materials to form novel optoelectronic devices based on tensile SAQDs.

  8. Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals

    KAUST Repository

    de Bastiani, Michele

    2017-08-01

    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission linewidth, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behaviour, which is contradictory to the well-studied APbX3 perovskites. In this work, we synthesize single crystals of Cs4PbBr6 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behaviour reminiscent of a quantum confined structure rather than a typical bulk perovskite material.

  9. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots.

    Science.gov (United States)

    Swarnkar, Abhishek; Chulliyil, Ramya; Ravi, Vikash Kumar; Irfanullah, Mir; Chowdhury, Arindam; Nag, Angshuman

    2015-12-14

    Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Förster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Irradiation route to aqueous synthesis of highly luminescent ZnSe quantum dots and its function as a copper ion fluorescence sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yeluri Narayana; Datta, Aparna [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India); Das, Satyendra K. [Radiochemistry Division, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064 (India); Saha, Abhijit, E-mail: abhijit@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India)

    2016-08-15

    Highlights: • Radiation chemical technique can provide a useful route for synthesis of ZnSe QDs. • Chelating nature of ethylene diamine is exploited for capping nanoparticles. • ZnSe QDs can be a suitable sensitive alternative to toxic cadmium-based system. • Cu(II) ion is probed by QDs in the presence of other physiologically relevant ions. - Abstract: Size-controlled synthesis of stable ZnSe QDs with narrow distribution in aqueous environment through conventional soft chemical method still poses a challenge. The proposed radiation assisted strategy demonstrates aqueous synthesis of stable, monodisperse and luminescent ZnSe QDs capped with chelating ethylene diamine under ambient conditions and at room temperature. Radiation chemical method facilitates in slow and in-situ release of selenium ion from sodium selenosulfate. The concentrations of precursors, such as zinc salt, selenium source, ethylene diamine and absorbed radiation (7–90 kGy) dose were optimized for obtaining good quality particles. Selective quenching of luminescence of as-synthesized quantum dots (QDs) by Cu{sup 2+} ions vis-à-vis other physiologically important cations provide evidence for use of ZnSe quantum dots as alternative to toxic Cd-based quantum dots to probe Cu{sup 2+} ions. The linear relation of ratio of loss in emission intensity as a function of concentration of Cu(II) indicates detection limit in nano-molar range.

  11. Theoretical luminescence spectra in p-type quantum wells and superlattices based on InGaAsN

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Freire de; Rodrigues, Sara Cristina Pinto [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Fisica; Silva Junior, Eronides Felisberto da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Fisica; Sipahi, Guilherme Matos [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Scolfaro, Luisa Maria Ribeiro [Texas State University, San Marcos, TX (United States), Dept. of Physics

    2012-07-01

    Full text: In the past few years, the dilute nitride system, InGaAsN, is proposed as a good candidate for several device applications. InGaAsN is considered a promising material for laser devices working at 1:3 or 1:5{mu}m and high-efficiency multijunction solar cells. Incorporation of In and N into GaAs result in a strong redshift of the emission wavelength. Besides, the strain can be minimized since the opposite effect of In and N on the lattice constant enables lattice matching of InGaAsN on GaAs. However, despite their great potential for applications, the understanding of their physical properties is rather incomplete. In particular, the dominant mechanisms of light emission in these alloys and their dependence on the nitrogen composition are not well established. Such information is crucial not only for a better understanding of the optical properties of the nitrogen containing III-V alloys, but also for a better technological control of alloy formation and optimization light emission efficiency. Another point concerns to investigation in p-type doping in InGaAsN. This is of great importance since, for example, can improve the transport in HBT (Heterojunction Bipolar Transistors) devices. In this work we report on theoretical luminescence spectra calculations for p-doped GaAs/InGaAsN quantum wells and superlattices. The calculations are performed within the k-vector.p-vector method by solving the full 8 x 8 Kane Hamiltonian, generalized to treat different materials. Strain effects due the lattice mismatch between InGaAsN and GaAs are taken into account. By varying the acceptor concentration we analyze the effect of exchange-correlation, which plays an important role in profile potential and electronic transition. These results can explain several important aspects about optical properties in these systems. (author)

  12. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies

    International Nuclear Information System (INIS)

    Xiong, Sicheng; Zhou, Yaofeng; Huang, Xiaolin; Yu, Ruijin; Lai, Weihua; Xiong, Yonghua

    2017-01-01

    Herein, for the first time we report a novel direct competitive fluorescence-linked immunosorbent assay (dcFLISA) for the ultrasensitive detection of ochratoxin A (OTA) by introducing a large size polymer beads loaded with quantum dots (QBs) as carrier of competing antigen for decreasing binding affinity to antibody and enhancing the fluorescent signal intensity. When using 255 nm QBs as carrier of competing antigen, the equilibrium dissociation constant of QB based competing antigen to antibodies can be tuned to 100 times higher than that of the horseradish peroxidase (HRP) based competing antigen by controlling labeled amounts of antigen on the surface of QBs. Various parameters that influenced the sensitivity of dcFLISA were investigated and optimized. Under optimum detection parameters, the dynamic linear range of developed dcFLISA for detecting OTA was established at 0.05 pg/mL to 1.56 pg/mL with a half maximal inhibitory concentration at 0.14 ± 0.04 pg/mL (n = 5), which is three orders of magnitude lower than that of conventional HRP-based dcELISA (0.24 ng/mL). The developed FLISA is also highly accurate, reliable, and shows no cross reaction to other mycotoxins. In summary, the proposed method offers a straightforward approach to improve the sensitivity of direct competitive immunoassay for trace small chemical molecule detection in food quality control, environmental monitoring, and clinical diagnosis. - Highlights: • Highly luminescent QBs were used as a carrier of competing antigen for ultrasensitive detection of OTA. • It is the first time to use a large size QBs as a carrier for tuning affinity of competing antigen to antibodies. • IC 50 value of QB-based dcFLISA is three orders of magnitude lower than that of HRP-based dcELISA.

  13. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield

    KAUST Repository

    Soldan, Giada

    2016-04-10

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-xAux(BDT)12(TPP)4, x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.

  14. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang, Lei; Chen, Haibin; Wu, Jingshen; Bi, Xianghong

    2014-01-01

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence

  15. White light emission from radical carbonyl-terminations in Al2O3-SiO2 porous glasses with high luminescence quantum efficiencies

    International Nuclear Information System (INIS)

    Hayakawa, Tomokatsu; Hiramitsu, Ai; Nogami, Masayuki

    2003-01-01

    Development of white phosphors with highly emissive, stable, and less toxic characteristics has been important for display and lighting technology. In this letter, it is shown that sol-gel-derived glasses of aluminosilicate composition, followed by a heat treatment in air at low temperatures around 500 deg. C, exhibit two intense, visible photoluminescence bands: One is due to point defects in these glasses and the other comes from radical carbonyl-terminations on the surface of pores. The photoluminescence provides a white light with high luminescence quantum efficiency (∼66.5%) under long-wavelength ultraviolet excitation

  16. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS{sub 4} porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Gustavo G.; Borissevitch, Iouri E. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Fisica; Kuzmin, Vladimir A. [Emanuel Institute of Biophysical Chemistry, RAS-RU, Moscow (Russian Federation); Oleinikov, Vladimir A. [Shemyakin and Ovchinnikov Institute of Biooganic Cemistry, RAS-RU, Moscow (Russian Federation)

    2012-07-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS{sub 4} porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS{sub 4} porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS{sub 4} adding into the QD solutions until the 5{mu}M concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS{sub 4} concentrations higher than 20{mu}M the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS{sub 4} because both, (CdSe/ZnS)Cys and TPPS{sub 4}, are negatively charged. We suppose that TPPS{sub 4} porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS{sub 4} molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS{sub 4}. However

  17. Luminescent Poly(vinyl alcohol)/Carbon Quantum Dots Composites with Tunable Water-Induced Shape Memory Behavior in Different pH and Temperature Environments.

    Science.gov (United States)

    Yang, Guanghui; Wan, Xuejuan; Liu, Yijin; Li, Rui; Su, Yikun; Zeng, Xierong; Tang, Jiaoning

    2016-12-21

    Luminescent water-induced shape memory polymer (SMP) composites with tunable shape recovery rate are developed by blending poly(vinyl alcohol) (PVA) and carbon quantum dots (CQDs). The oxygen and active hydrogen-rich CQDs can serve as extra physical cross-linking points in PVA via strong hydrogen bonding interaction, which largely improves the shape memory performances of PVA. At room temperature, water can successfully actuate the shape recovery of deformed PVA/CQDs composite. It is demonstrated that this water-induced shape recovery is mainly attributed to the plasticizing effect of water and its competitive hydrogen bonding. Furthermore, a quantitative bending test suggests that the shape recovery time of this water-induced SMP is tunable by altering the environmental pH value and temperature, and a relatively large shape recovery time window (from 20 to 200 s) can be achieved. In addition, the introduction of CQDs endows the PVA/CQDs SMP composites with excellent luminescent property, which makes the shape change of SMP visible under UV light. It should be noted that the mild stimulus condition and tunable shape recovery performances make the luminescent visible PVA/CQDs SMP feasible for diverse biological applications in smart medical devices, stimuli-responsive drug-release, and intelligent sensors in vivo and in vitro.

  18. Application of quantum dots CdZnSeS / ZnS luminescence, enhanced by plasmons of silver rough surface for detection of albumin in blood facies of infected person

    Science.gov (United States)

    Konstantinova, E.; Zyubin, A.; Moiseeva, E.; Matveeva, K.; Slezhkin, V.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    The study of the luminescence of CdZnSeS / ZnS quantum dots (QDs) absorbed on the rough surface of a silver film, including the energy transfer between human serum albumin molecules, isolated from the blood plasma of healthy and infected with sepsis patients, was performed by spectral-kinetic methods.

  19. Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application.

    Science.gov (United States)

    Chen, Yameng; Zhou, Yang; Zhao, Qing; Zhang, Junying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao

    2018-04-18

    All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs4PbBr6-related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an enviromentally friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs4PbBr6/CsPbBr3 perovskite composites with near-unity PLQY (95%), high product yield (71%) and good stability, using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr3 nanocrystals well passivated by the zero-dimensional Cs4PbBr6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs4PbBr6/CsPbBr3, combined with red-emitting K2SiF6:Mn4+, can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.

  20. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2- xS nanocrystals

    NARCIS (Netherlands)

    Van Der Stam, Ward; Berends, Anne C.; Rabouw, Freddy T.; Willhammar, Tom; Ke, Xiaoxing; Meeldijk, Johannes D.; Bals, Sara; De Mello Donega, Celso

    2015-01-01

    Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS

  1. Probing the sensitive and selective luminescent detection of peroxynitrite using thiol-capped CdTe and CdTe-ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Adegoke, Oluwasesan [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2013-02-15

    CdTe and CdTe-ZnS quantum dots (QDs) capped with 3-mercaptopropionic acid (MPA), thioglycolic acid (TGA), or glutathione (GSH) have been employed for the first time as luminescent probes for the sensitive and selective detection of peroxynitrite (ONOO{sup -}) in aqueous solution. The sensitivity of the proposed probe followed the order: MPA-{sub TGA}-CdTe-ZnS>GSH-{sub TGA}-CdTe-ZnS>MPA-CdTe QDs. The varying degree of quenching is elucidated based on the QD-thiolate bond of CdTe-ZnS being more sensitive to oxidation from ONOO{sup -} than CdTe. The selectivity of the probe in the presence of co-existing species followed the order: GSH-{sub TGA}-CdTe-ZnS>MPA-{sub TGA}-CdTe-ZnS>MPA-CdTe QDs. QDs capped with MPA showed less selectivity for ONOO{sup -} than GSH. The best limit of detection (LOD) of 12.6 nM was obtained for MPA-{sub TGA}-CdTe-ZnS QDs. Time-resolved fluorescence measurements indicated that the interaction between ONOO{sup -} and the QDs is static in nature. - Graphical abstract: CdTe and CdTe-ZnS quantum dots capped with 3-mercaptopropionic acid or glutathione are employed for the detection of peroxynitrite in aqueous solution, with glutathione capped quantum dots showing the best selectivity and core-shell quantum dots showing better sensitivity than core quantum dots. Highlights: Black-Right-Pointing-Pointer CdTe and CdTe-ZnS quantum dots were employed for the detection of peroxynitrite. Black-Right-Pointing-Pointer The best limit of detection of 12.6 nM was obtained. Black-Right-Pointing-Pointer Quantum dots capped with mercaptopropionic acid were less selective for ONOO{sup -} than glutathione. Black-Right-Pointing-Pointer Interaction between peroxynitrite and the quantum dots is static in nature.

  2. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  3. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots.

    Science.gov (United States)

    Xia, Chenghui; Meeldijk, Johannes D; Gerritsen, Hans C; de Mello Donega, Celso

    2017-06-13

    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu 2- x S nanocrystals (NCs), which are converted by topotactic partial Cu + for In 3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750-1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators.

  4. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  5. Tapping the potential of trioctylphosphine (TOP) in the realization of highly luminescent blue-emitting colloidal indium phosphide (InP) quantum dots

    Science.gov (United States)

    Singh, Akanksha; Chawla, Parul; Jain, Shefali; Sharma, Shailesh Narain

    2017-06-01

    In this work, extremely small blue emitting colloidal InP-based quantum dots (size 2-5 nm) have been synthesized using trioctylphosphine (TOP) as a source of phosphorus. The method reported here is unconventional, quite rapid ( 90 min), more viable, less expensive and relatively greener as compared to other conventional methods that employ tristrimethylsilyylphosphine(P(SiMe3)3) which is scarce, expensive, flammable, highly toxic and even banned in a few countries. Highly luminescent InP QDs having bluish-green emission (λ 490 nm) can be synthesized using this method without resorting to any post-synthesis etching to tune the emission to the blue region. Besides being the source of phosphorus and the particle size regulating agent, the efficacy of TOP is further realized during synthesis via its reduction of indium salt, which aids in the formation of indium metal and then subsequently in the development of InP QDs. The PL intensity of as-synthesized InP QDs is further enhanced by growing a shell of wide band gap material, i.e. ZnS resulting in a concurrent increment in quantum yield from 25% to 38% respectively.

  6. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands.

    Science.gov (United States)

    He, Hua; Sun, Xing; Wang, Xiaojuan; Xu, Hai

    2014-11-01

    We compared the effects of several ligands frequently used in aqueous synthesis, including L-cysteine, L-cysteine hydrochloride, N-acetyl-L-cysteine (NAC), glutathione and 3-mercaptopropionic acid, for microwave synthesis of CdTe quantum dots (QDs) in a sealed vessel with varied temperatures and times, and then developed a rapid microwave-assisted protocol for preparing highly luminescent, photostable and biocompatible CdTe/CdS/ZnS core-multishell QDs. The effects of molecular structures of these ligands on QD synthesis under high temperatures were explored. Among these ligands, NAC was found to be the optimal ligand in terms of the optical properties of resultant QDs and reaction conditions. The emission wavelength of NAC-capped CdTe QDs could reach 700 nm in 5 min by controlling the reaction temperature, and the resultant CdTe/CdS/ZnS core-multishell QDs could achieve the highest quantum yields up to 74% with robust photostability. In addition, the effects of temperature, growth time and shell-precursor ratio on shell growth were examined. Finally, cell culturing indicated the low cytotoxicity of CdTe/CdS/ZnS core-multishell QDs as compared to CdTe and CdTe/CdS QDs, suggesting their high potential for applications in biomedical imaging and diagnostics. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications.

    Science.gov (United States)

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming

    2015-02-09

    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Size-tunable luminescence in Eu{sup 3+} doped nanocomposite containing In{sub 2}O{sub 3} quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yunlong, E-mail: yunlongyu@yeah.net [College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, Fujian 350108 (China); Guan, Xiangfeng; Li, Xiaoyan [College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, Fujian 350108 (China); Li, Wei, E-mail: fjutlw@163.com [School of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350108 (China); Jiang, Linqin; Chen, Dagui [College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, Fujian 350108 (China)

    2016-07-05

    Eu{sup 3+} doped nanocomposite containing In{sub 2}O{sub 3} quantum dots (QDs) was successfully fabricated by a melt quenching technique. The crystallization process of cubic In{sub 2}O{sub 3} phase was revealed by X-ray diffraction and transmissions electron microscopy. The size of In{sub 2}O{sub 3} QDs can be well tuned by adjusting treatment duration and a size-tunable In{sub 2}O{sub 3} emission was obtained. Impressively, In{sub 2}O{sub 3} QDs can act as strong sensitizers for Eu{sup 3+} emission, and the emission intensity enhances up to 26 times with respect to the one without In{sub 2}O{sub 3}. The enhancement factor gradually decreases with increasing In{sub 2}O{sub 3} QDs size. Analyzing the excitation and emission spectra, a possible energy transfer process from In{sub 2}O{sub 3} QDs to Eu{sup 3+} ions was established. These results indicate that In{sub 2}O{sub 3} QDs with suitable size have great potential for use as sensitizers of Eu{sup 3+} ions in high-performance luminescent converter materials. - Highlights: • Eu{sup 3+} doped nanocomposite containing In{sub 2}O{sub 3} QDs was prepared by melt quenching. • The crystallization process of cubic In{sub 2}O{sub 3} phase in glass matrix was revealed. • The QDs size can be tuned and the size-tunable In{sub 2}O{sub 3} luminescence was obtained. • The enhanced Eu{sup 3+} emission induced by energy transfer from In{sub 2}O{sub 3} was confirmed. • Relation between microstructure and enhanced Eu{sup 3+} emission was discussed.

  9. Effect of the Concentration on the X-ray Luminescence Efficiency of a Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Solution

    Science.gov (United States)

    Valais, I.; Michail, C.; Nikolopoulos, D.; Fountzoula, C.; Bakas, A.; Yannakopoulos, P.; Fountos, G.; Panayiotakis, G.; Kandarakis, I.

    2015-09-01

    In the current study preliminary results on the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS, Sigma-Aldrich, Lumidot 694622) quantum dot samples (QDs) after exposure to X-rays of variable radiation flux are shown. The distinctive influence of the weight over volume (w/v) concentration of the samples in LE was investigated. The light emission of the QDs was additionally measured after UV irradiation. The distribution of the emitted light was symmetrical with a maximum at 590 nm. The w/v concentration of the QDs varied between 7.1×10-5 mg/mL to 28.4×10-5 mg/mL. The samples were handled in a cubic 12.5×12.5×45mm3 quartz cuvette. Each sample was excited under X-ray irradiation, in the energy range from 50 to 130 kVp using a BMI General Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. The X-ray LE, induced by the 28.4×10-5 mg/mL QDs found higher, however, the distinction was vague in the highly concentrated samples. The maximum efficiency was obtained at the 90 kVp for QDs with 21.3×10-5 mg/mL w/v concentration. In the high energy range (120-130 kVp) all concentration levels exhibited comparable X-ray induced LE. The luminescence properties of the investigated QDs appear promising for X-ray detection applications.

  10. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements

    International Nuclear Information System (INIS)

    Fernandez-Argueelles, Maria Teresa; Jin, Wei Jun; Costa-Fernandez, Jose M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2005-01-01

    The use of water-soluble luminescent CdSe quantum dots (QDs), whose surface was modified either with 2-mercaptoethane sulphonic acid or with 2-mercaptoacetic acid, was investigated for the sensitive and selective determination of copper(II) ions in aqueous solutions. A pH 5.5 was selected for measurement. Also, the effect of the presence of different surfactant agents in the sample solution, in order to stabilize the fluorescent signals of the QDs in water, has been investigated. A 10 -3 M of dodecyltrimethylammonium chloride final concentration was selected. Fluorescence signals were found to be stable for at least several days in such conditions. Higher sensitivity was obtained for the sulphonic-modified CdSe QDs. Detection limits for Cu(II) of 0.2 μg l -1 , a dynamic range up to 30 μg l -1 , and a R.S.D. of ±2.8% for 10 replicates of a 2.5 μg l -1 Cu(II) solution were obtained as analytical performance characteristics. Besides, the influence on the fluorescence signal of foreign cations, including Na + , K + , Ca 2+ , Mg 2+ , Zn 2+ , Mn 2+ , Co 3+ , Ag + , Hg 2+ and Fe 3+ was studied (to avoid inner filter effect, the colourless complex FeF 6 3- was investigated instead of Fe 3+ ). Results showed a high selectivity of the sulphonic-modified QDs towards Cu(II) ions. The proposed method demonstrated improved sensitivity and selectivity characteristics for Cu(II) determinations as compared to other already described luminescence QDs-based analytical methods for metal ions determinations. Analytical applicability of the QDs has been demonstrated by tap and fountain water analysis. Results of Cu(II) determinations were in good agreement to those obtained by using an alternative analytical method

  11. The luminescent concentrator illuminated

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Kinderman, R.; Burgers, A.R.; Van Roosmalen, J.A.M. [ECN Solar Energy, Petten (Netherlands); Buechtemann, A.; Danz, R. [Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, D-14476 Golm (Germany); Meyer, T.B. [Solaronix SA, Rue de l' Ouriette 129, CH-1170 Aubonne (Switzerland); Chatten, A.J.; Farell, D.; Barnham, K.W.J. [Physics Department, Imperial College London, SW7 2BW (United Kingdom)

    2006-04-15

    Luminescent concentrator (LC) plates with different dyes were combined with standard multicrystalline silicon solar cells. External quantum efficiency measurements were performed, showing an increase in electrical current of the silicon cell (under AM1.5, 1 sun conditions, at normal incidence) compared to a bare cell. The influence of dye concentration and plate dimensions are addressed. The best results show a 1.7 times increase in the current from the LC/silicon cell compared to the silicon cell alone. This corresponds to an increase in power conversion efficiency of the silicon cell from 15 to 25%. To broaden the absorption spectrum of the LC, a second dye was incorporated in the LC plates. This results in a relative increase of 5-8% with respect to the one dye LC, giving a maximum power conversion efficiency of 26% on cell area. Using an extended ray-tracing model transmission, reflection and external quantum efficiency spectra were simulated and compared with measured spectra. The simulations deliver the luminescent quantum efficiencies of the two dyes as well as the background absorption by the polymer host. It is found that the quantum efficiency of the red emitting dye is 87%, which is one of the major loss factors in the measured LC. Using ray-tracing simulations it can be predicted that increasing the quantum efficiency to 95% would reduce this loss by almost 30%.

  12. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  13. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  14. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  15. Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core-shell quantum dots

    Czech Academy of Sciences Publication Activity Database

    Chen, J.; Žídek, Karel; Abdellah, M.; Al-Marri, M.J.; Zheng, K.; Pullerits, T.

    2016-01-01

    Roč. 28, č. 25 (2016), č. článku 254001. ISSN 0953-8984 Institutional support: RVO:61389021 Keywords : surface plasmon * gold nanorods * quantum dots * energy transfer * photoactivation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016 http://dx.doi.org/10.1088/0953-8984/28/25/254001

  16. Analysis of the temperature dependence of the luminescence spectra of liquid-crystal nanocomposites with a cadmium selenide quantum dots

    Science.gov (United States)

    Karimullin, K. R.; Mikhailov, M. A.; Georgieva, M. G.; Magaryan, K. A.; Vasilieva, I. A.

    2018-01-01

    A theoretical model is proposed for describing the interaction of excitons with phonons and defect states in semiconductor nanocrystals. On the basis of this model, numerical simulation was performed and experimental data on the temperature dependence of the absorption and fluorescence spectra of cadmium selenide quantum dots in liquid crystal solid solutions of cadmium caprylate was discussed.

  17. Luminescence of CsPbCl.sub.3./sub.-like quantum dots in CsCl:Pb crystals

    Czech Academy of Sciences Publication Activity Database

    Aceves, R.; Flores, B. M.; Babin, V.; Fabeni, P.; Nikl, Martin; Nitsch, Karel; Pazzi, G.P.; Salas, R. P.; Zazubovich, S.

    2001-01-01

    Roč. 225, - (2001), s. 247-255 ISSN 0370-1972 R&D Projects: GA MŠk ME 059 Institutional research plan: CEZ:AV0Z1010914 Keywords : CsPbCl 3 -like quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.873, year: 2001

  18. Highly luminescent CdSe/ZnSe core-shell quantum dots of one-pot preparation in octadecene

    NARCIS (Netherlands)

    Zeng, Q.; Kong, X.; Zhang, Y.; Zhang, H.

    2008-01-01

    CdSe/ZnSe core-shell quantum dots were synthesized using a new one-pot procedure where the core was prepared in octadecene. A ZnSe shell around a CdSe nanoparticle was formed by the reaction of selenium-richness on the surfaces of CdSe nanoparticles with Zn2+ from the injected zinc stearate

  19. Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging.

    Science.gov (United States)

    Foda, Mohamed F; Huang, Liang; Shao, Feng; Han, He-You

    2014-02-12

    Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/ZnS@SiO2 nanoparticles homogeneously comprised both single-core and multicore remarkable CuInS2/ZnS QDs, while the silica shell thickness could be controlled to within 5-10 nm and their overall size was 17-25 nm. Also, the functionalized CuInS2/ZnS QDs encapsulated in the silica spheres, expedited their bioconjugation with holo-Transferrin (Tf) for further cancer cell imaging. The CuInS2/ZnS@SiO2 nanoparticles not only showed a dominant NIR band-edge luminescence at 650-720 nm with a quantum yield (QY) between 30 and 50%, without a recognized photoluminescence (PL) red shift, but also exhibited excellent PL and colloidal stability in aqueous media. Impressively, the cytotoxicity studies revealed minor suppression on cell viability under both CuInS2/ZnS@SiO2 and CuInS2/ZnS@SiO2@Tf concentrations up to 1 mg/mL. The application in live-cell imaging revealed that the potential of CuInS2/ZnS QDs as biocompatible, robust, cadmium-free, and brilliant NIR emitters is considered promising for fluorescent labels.

  20. Intrinsically Radioactive [64Cu]CuInS/ZnS Quantum Dots for PET and Optical Imaging: Improved Radiochemical Stability and Controllable Cerenkov Luminescence

    Science.gov (United States)

    2015-01-01

    Functionalized quantum dots (QDs) have been widely explored for multimodality bioimaging and proven to be versatile agents. Attaching positron-emitting radioisotopes onto QDs not only endows their positron emission tomography (PET) functionality, but also results in self-illuminating QDs, with no need for an external light source, by Cerenkov resonance energy transfer (CRET). Traditional chelation methods have been used to incorporate the radionuclide, but these methods are compromised by the potential for loss of radionuclide due to cleavage of the linker between particle and chelator, decomplexation of the metal, and possible altered pharmacokinetics of nanomaterials. Herein, we described a straightforward synthesis of intrinsically radioactive [64Cu]CuInS/ZnS QDs by directly incorporating 64Cu into CuInS/ZnS nanostructure with 64CuCl2 as synthesis precursor. The [64Cu]CuInS/ZnS QDs demonstrated excellent radiochemical stability with less than 3% free 64Cu detected even after exposure to serum containing EDTA (5 mM) for 24 h. PEGylation can be achieved in situ during synthesis, and the PEGylated radioactive QDs showed high tumor uptake (10.8% ID/g) in a U87MG mouse xenograft model. CRET efficiency was studied as a function of concentration and 64Cu radioactivity concentration. These [64Cu]CuInS/ZnS QDs were successfully applied as an efficient PET/self-illuminating luminescence in vivo imaging agents. PMID:25549258

  1. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence.

    Science.gov (United States)

    Guo, Weisheng; Sun, Xiaolian; Jacobson, Orit; Yan, Xuefeng; Min, Kyunghyun; Srivatsan, Avinash; Niu, Gang; Kiesewetter, Dale O; Chang, Jin; Chen, Xiaoyuan

    2015-01-27

    Functionalized quantum dots (QDs) have been widely explored for multimodality bioimaging and proven to be versatile agents. Attaching positron-emitting radioisotopes onto QDs not only endows their positron emission tomography (PET) functionality, but also results in self-illuminating QDs, with no need for an external light source, by Cerenkov resonance energy transfer (CRET). Traditional chelation methods have been used to incorporate the radionuclide, but these methods are compromised by the potential for loss of radionuclide due to cleavage of the linker between particle and chelator, decomplexation of the metal, and possible altered pharmacokinetics of nanomaterials. Herein, we described a straightforward synthesis of intrinsically radioactive [(64)Cu]CuInS/ZnS QDs by directly incorporating (64)Cu into CuInS/ZnS nanostructure with (64)CuCl2 as synthesis precursor. The [(64)Cu]CuInS/ZnS QDs demonstrated excellent radiochemical stability with less than 3% free (64)Cu detected even after exposure to serum containing EDTA (5 mM) for 24 h. PEGylation can be achieved in situ during synthesis, and the PEGylated radioactive QDs showed high tumor uptake (10.8% ID/g) in a U87MG mouse xenograft model. CRET efficiency was studied as a function of concentration and (64)Cu radioactivity concentration. These [(64)Cu]CuInS/ZnS QDs were successfully applied as an efficient PET/self-illuminating luminescence in vivo imaging agents.

  2. Luminescence study of bare and coated CdS quantum dots: Effect of SHI irradiation and ageing

    International Nuclear Information System (INIS)

    Chowdhury, S.; Ahmed, G.A.; Mohanta, D.; Dolui, S.K.; Avasthi, D.K.; Choudhury, A.

    2005-01-01

    Bare and silica coated CdS quantum dots are prepared following chemical route. Swift heavy ion (SHI) irradiation of the samples was carried out with 160 MeV Ni 12+ ion beam with fluences 10 12 -10 13 ions/cm 2 . Photoluminescence (PL) studies of all the samples were carried out with excitation wavelength 325 nm. The surface state emission is dominant in case of bare samples while e-h recombination is observed in case of coated samples. Red shift in the absorption response in the optical absorption spectra of bare samples reveal size enhancement of the quantum dots after irradiation. No such shift is observed for coated samples. The coated samples also exhibit enhanced photo stability

  3. Exciton luminescence in In0.3Ga0.7As/GaAs quantum well heterostructures

    International Nuclear Information System (INIS)

    Kapon, Eli; Mereuta, Alexandru; Dorogan, Andrei; Dragutan, Nicolae; Vieru, Tatiana; Syrbu, Nicolae

    2011-01-01

    Radiation maxima were observed in photoluminescence spectra of GaAs/ In 0.3 Ga 0.7 As/ GaAs in case of 632.8 nm and 532 nm He-Ne laser excitation conditioned by the recombination from ground (e1-hh1, e1-lh1) and excited (e2-hh2, e2-lh2) states of polarionic excitons in quantum wells. The doublet character of e1-hh1, e1-lh1 transitions can be explained by the interaction of excitons in quantum wells. Radiation maxima are revealed in the region of 1.5eV energy conditioned by recombination transitions E b -hh1, E b -lh1of the GaAs buffer layer.

  4. Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices.

    Science.gov (United States)

    Boccolini, Alessandro; Marques-Hueso, Jose; Richards, Bryce S

    2014-05-15

    This Letter details a theoretical investigation of self-absorption within an upconverter (UC) material, consisting of trivalent erbium (Er3+)-doped hexagonal sodium yttrium fluoride (β-NaYF4) and its implications on two experimental situations: the case of a quantum yield measurement, and on the effective performance in a UC-enhanced photovoltaic (PV) device. The study demonstrates that an optimization of the thickness is essential in order to reduce the effect of self-absorption and maximize the possible additional photocurrent that could be harvested. It also has been found that the external photoluminescence quantum yield (ePLQY) measured through an integrating sphere may result in an underestimation with respect to the performance that the UC material could achieve in a UC-PV device. Finally, it has been found the optimal thickness and the molar concentration of Er3+ ions are inversely proportional, suggesting that an optimal number (1.3-2.9·10(17)) of Er3+ ions should be contained within the UC layer.

  5. Hydrothermal synthesis of ZnSe:Cu quantum dots and their luminescent mechanism study by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qingshuang; Bai, Yijia; Han, Lin; Deng, Xiaolong [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 10049 (China); Wu, Xiaojie [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wang, Zhongchang [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Liu, Xiaojuan, E-mail: lxjuan@ciac.jl.cn [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2013-11-15

    An one-pot synthesis of aqueous ZnSe:Cu nanocrystals (NCs) is realized in aqueous solution by a facile yet efficient hydrothermal technique. The dopant emission spectrum of the NCs is tunable, spanning a wide range from 438 to 543 nm. Room-temperature quantum yield for the NCs prepared at the optimal conditions reaches as high as 20% without any post-treatment. The ZnSe:Cu NCs prepared in a neutral aqueous solution (pH=8) are remarkably stable and exhibit comparatively high photoluminescent quantum yield (PL QY) as high as 17%. First-principles pseudopotential calculations using plane-wave basis functions have been performed. The formation energies of copper ions occupied in the interstitial octahedron and substitutional tetrahedral Zn{sup 2+} sites have been calculated. The occupation of copper ions in the interstitial octahedral site is found to be more thermodynamics-facilitated by −0.98 eV. The density of state analysis indicates that the Cu-related emission is primary dominated by the substitutional tetrahedral Cu ions, and the large dopant related emission width of ZnSe:Cu NCs originated from the corresponding Cu 3d impurity band. Highlights: • One-pot synthesis of aqueous ZnSe:Cu nanocrystals with tunable emission and high QY%. • ZnSe:Cu NCs exhibit high QY% at neutral pH suitable for biological application. • The microscopic mechanism underlying Cu-related emission has been provided.

  6. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    Directory of Open Access Journals (Sweden)

    Qian Feng

    2018-01-01

    Full Text Available A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3 groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science.

  7. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    Science.gov (United States)

    Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao

    2018-01-01

    A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730

  8. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration

    International Nuclear Information System (INIS)

    Fujioka, Kouki; Manabe, Noriyoshi; Hanada, Sanshiro; Hoshino, Akiyoshi; Yamamoto, Kenji; Hiruoka, Masaki; Sato, Keisuke; Hirakuri, Kenji; Miyasaka, Ryosuke; Tilley, Richard D; Manome, Yoshinobu

    2008-01-01

    Semiconductor quantum dots (QDs) hold some advantages over conventional organic fluorescent dyes. Due to these advantages, they are becoming increasingly popular in the field of bioimaging. However, recent work suggests that cadmium based QDs affect cellular activity. As a substitute for cadmium based QDs, we have developed photoluminescent stable silicon quantum dots (Si-QDs) with a passive-oxidation technique. Si-QDs (size: 6.5 ± 1.5 nm) emit green light, and they have been used as biological labels for living cell imaging. In order to determine the minimum concentration for cytotoxicity, we investigated the response of HeLa cells. We have shown that the toxicity of Si-QDs was not observed at 112 μg ml -1 and that Si-QDs were less toxic than CdSe-QDs at high concentration in mitochondrial assays and with lactate dehydrogenase (LDH) assays. Especially under UV exposure, Si-QDs were more than ten times safer than CdSe-QDs. We suggest that one mechanism for the cytotoxicity is that Si-QDs can generate oxygen radicals and these radicals are associated with membrane damages. This work has demonstrated the suitability of Si-QDs for bioimaging in lower concentration, and their cytotoxicity and one toxicity mechanism at high concentration

  9. Stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hitanshu; Barman, P.B.; Singh, Ragini Raj [Jaypee University of Information Technology, Department of Physics and Materials Science, Waknaghat, Solan, HP (India); Kumar, Manoj [Jaypee Institute of Information Technology, Department of Physics and Materials Science, Noida, Uttar Pradesh (India)

    2014-11-15

    This article presents first report on the highly stable and luminescent wurtzite CdS, ZnS and CdS/ZnS quantum dots (QDs) where the role of precursor selection at room temperature is the key. X-ray diffraction (XRD), optical absorbance spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy have been employed in order to characterize these QDs. XRD indicates the formation of wurtzite CdS, ZnS and CdS/ZnS system. Broadening in XRD peaks revealed the reduction in particle size such as 4.2, 5.2 and 5.8 nm for CdS, ZnS and CdS/ZnS, respectively, compared to their bulk counterparts. Blue shift in absorbance has been observed in each case as particles size decreases. The photoluminescence intensity emission of CdS/ZnS core/shell was strongly superior from that observed in individual CdS and ZnS nanoparticles. We also propose that the core and shell interface leads to favourable conditions that instigate photoluminescence emission in CdS/ZnS core/shell system. One notable result of this work obtained from the photoluminescence analysis is the significant reduction in full width at half maxima, in emission peak of core/shell structure which shows the enhanced monochromaticity. We have found that OH, CH{sub 2} and C-O functional groups are present on the QDs surface and that is why these QDs can be easily attachable to biomolecules. TEM analysis has been employed for confirmation of particle size and found to be 5.3, 5.8 and 6.2 nm for CdS, ZnS and CdS/ZnS structures, respectively. (orig.)

  10. Stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots

    Science.gov (United States)

    Kumar, Hitanshu; Kumar, Manoj; Barman, P. B.; Singh, Ragini Raj

    2014-06-01

    This article presents first report on the highly stable and luminescent wurtzite CdS, ZnS and CdS/ZnS quantum dots (QDs) where the role of precursor selection at room temperature is the key. X-ray diffraction (XRD), optical absorbance spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy have been employed in order to characterize these QDs. XRD indicates the formation of wurtzite CdS, ZnS and CdS/ZnS system. Broadening in XRD peaks revealed the reduction in particle size such as 4.2, 5.2 and 5.8 nm for CdS, ZnS and CdS/ZnS, respectively, compared to their bulk counterparts. Blue shift in absorbance has been observed in each case as particles size decreases. The photoluminescence intensity emission of CdS/ZnS core/shell was strongly superior from that observed in individual CdS and ZnS nanoparticles. We also propose that the core and shell interface leads to favourable conditions that instigate photoluminescence emission in CdS/ZnS core/shell system. One notable result of this work obtained from the photoluminescence analysis is the significant reduction in full width at half maxima, in emission peak of core/shell structure which shows the enhanced monochromaticity. We have found that OH, CH2 and C-O functional groups are present on the QDs surface and that is why these QDs can be easily attachable to biomolecules. TEM analysis has been employed for confirmation of particle size and found to be 5.3, 5.8 and 6.2 nm for CdS, ZnS and CdS/ZnS structures, respectively.

  11. Terahertz luminescence of GaAs based on heterostructures with quantum wells at optical excitation of donors

    International Nuclear Information System (INIS)

    Bekin, N.A.; Zhukavin, R.Kh.; Kovalevskij, K.A.; Pavlov, S.G.; Shastin, V.N.; Zvonkov, B.N.; Uskova, E.A.

    2005-01-01

    Terahertz spontaneous emission (∼ 3-3.5 THz) based on 2D-continuum-shallow donor (Si) states transitions has been investigated from both GaAs/InGaAs:Si and GaAs/InGaAsP:Si selectively doped heterostructures under CO 2 laser excitation at the liquid helium temperature. It is shown that the population inversion and the amplification with the coefficient up to 100-300 cm -1 per active layer can be realized for the planar doping level N D ≅ 10 11 cm -2 in multilayer structures with 50 periods of quantum wells under the pump flux density 10 23 quant/cm 2 s [ru

  12. In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility.

    Science.gov (United States)

    Liu, Ying-Fan; Yu, Jun-Sheng

    2010-11-01

    This paper focuses on the in situ synthesis of novel CdTe/ZnS core-shell quantum dots (QDs) in aqueous solution. Glutathione (GSH) was used as both capping reagent and sulfur source for in situ growth of ZnS shell on the CdTe core QDs. The maximum emission wavelengths of the prepared CdTe/ZnS QDs can be simply tuned from 569 nm to 630 nm. The PL quantum yield of CdTe/ZnS QDs synthesized is up to 84%, larger than the original CdTe QDs by around 1.7 times. The PL lifetime results reveal a triexponential decay model of exciton and trap radiation behavior. The average exciton lifetime at room temperature is 17.1 ns for CdTe (2.8 nm) and 27.4 ns for CdTe/ZnS (3.7 nm), respectively. When the solution of QDs is dialyzed for 3 h, 1.17 ppm of Cd(2+) is released from CdTe QDs and 0.35 ppm is released from CdTe/ZnS. At the dose of 120 microg/ml QDs, 9.5% of hemolysis was induced by CdTe QDs and 3.9% was induced by CdTe/ZnS QDs. These results indicate that the synthesized glutathione-capped CdTe/ZnS QDs are of less toxicity and better biocompatibility, so that are attractive for use in biological detection and related fields. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  14. Synthesis, biocompatibility and luminescence properties of quantum dots conjugated with amino acid-functionalized β-cyclodextrin

    International Nuclear Information System (INIS)

    Zhao Meixia; Su Hua; Mao Zongwan; Ji Liangnian

    2012-01-01

    A series of CdSe and CdSe/CdS quantum dots (QDs) labeled with amino acid-modified β-cyclodextrin (β-CD) was prepared by a simple ultrasonic method. These amino acid-modified β-CD-coated QDs are very soluble and stable in biological buffer. They also have high colloidal stability and strong optical emission properties that are similar to those of untreated tri-n-octylphosphine oxide (TOPO)-coated QDs. The quantum yields (QYs) of these amino acid-modified β-CD-coated CdSe and CdSe/CdS QDs in biological buffer were found to be very high. In particular, the QYs of the positively charged L-His-β-CD-coated CdSe/CdS QDs were as high as 33.5±1.8%. In addition, the fluorescence lifetime of these QDs was also very long in PBS solutions as determined by frequency domain spectroscopy. For example, the lifetime of L-His-β-CD-coated CdSe/CdS QDs was 8.6 ns. The in vitro cytotoxicity of these QDs in ECV-304, SH-SY5Y and HeLa cells was found to be lower. L-His-β-CD-coated CdSe/CdS QDs were the least cytotoxic (IC 50 95.6±3.2 mg mL -1 in ECV-304 cells after 48 h). The flow cytometry results show that the positively charged amino acid led to a considerable increase in biocompatibility of QDs. This may be attributed to the presence of an amino acid-modified β-CD outer layer, which enhanced the biocompatibility. - Highlights: → Amino acid-modified β-CD-coated QDs were prepared by a simple ultrasonic method. → Amino acid-modified β-CD-coated QDs have appropriate size, high colloidal stability and strong optical emission properties. → In vitro cytotoxicity is lower in ECV-304, SH-SY5Y and HeLa cells. → The positive charge of amino acid resulted in a considerable increase in biocompatibility of QDs.

  15. Highly luminescent and ultrastable CsPbBr{sub 3} perovskite quantum dots incorporated into a silica/alumina monolith

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang [School of Environmental Science and Engineering, Shanghai Jiao Tong University (China)

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr{sub 3} QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr{sub 3} QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr{sub 3} QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr{sub 3} QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W{sup -1} and a narrow emission with a full width at half maximum (FWHM) of 25 nm. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Kobak, J.; Janik, E.; Slupinski, T.; Golnik, A.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland); Parlinska-Wojtan, M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2016-05-14

    We report on the optical properties of structures containing self assembled CdTe quantum dots (QDs) combined with Te and Se based distributed Bragg reflectors either in a half cavity geometry with a relatively broad cavity mode or in a full cavity geometry where the cavity mode is much narrower. We show that for both structures the extraction coefficient of the light emitted from the QDs ensemble is enhanced by more than one order of magnitude with respect to the QDs grown on a ZnTe buffer. However, a single QD line broadening is observed and attributed to an unintentional incorporation of Se in the vicinity of the CdTe QDs. We show that postponing the QDs growth for 24 h after the distributed Bragg reflector deposition allows recovering sharp emission lines from individual QDs. This two step growth method is proven to be efficient also for the structures with CdTe QDs containing a single Mn{sup 2+} ion.

  17. Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes

    Science.gov (United States)

    Xie, Bin; Zhang, Jingjing; Chen, Wei; Hao, Junjie; Cheng, Yanhua; Hu, Run; Wu, Dan; Wang, Kai; Luo, Xiaobing

    2017-10-01

    Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs’ peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability.

  18. Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith.

    Science.gov (United States)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr 3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr 3 QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr 3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr 3 QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W -1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. luminescence properties

    Indian Academy of Sciences (India)

    Gd3+, Tb3+ and Lu3+ in MTiO3 (M = Mg and Sr) luminescence properties. 1085. Table 4. Phosphorescence properties of phosphors. Radiation. Radiation. Radiation. Undoped–doped. Phosphors intensity/a.u. colour wavelength (nm) radiation difference. MgTiO3. 600. Yellow. 514. –. MgTiO3:1 %Tb3+. 415. Yellow. 514.

  20. luminescence properties

    Indian Academy of Sciences (India)

    EDX analysis were taken with LEO 440 model scanning electron microscope using an accelerating voltage of 20 kV. The excitation and emission spectra of phosphors were recorded by Perkin Elmer LS 45 model luminescence spec- trophotometer with xenon lamp. Thermoluminescence (TL) glow curves of phosphors were.

  1. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  2. Luminescence properties of some food dye-stuffs

    International Nuclear Information System (INIS)

    Astanov, S.Kh.; Muminova, Z.A.; Urunov, R.G.

    2004-01-01

    The luminescence properties of the natural food dye-stuffs and vitamins in temperature range of 300-5.2 K are studied. On the basis of experimental data on quantum yields of the fluorescence, trans-cis-isomerization and luminescence of the molecular oxygen the main ways of the inactivation of electronic excitations in researching compounds have been defined. (author)

  3. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  4. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  5. Oxide/polymer nanocomposites as new luminescent materials

    Science.gov (United States)

    Vollath, D.; Szabó, D. V.; Schlabach, S.

    2004-06-01

    It is demonstrated that nanocomposites, consisting of an electrically insulating oxide core and PMMA coating exhibit strong luminescence. This luminescence is connected to the interface, where PMMA is bond via a carboxylate bonding to the surface. In this case, luminescence is originated at the carbonyl group of the coating polymer. With decreasing particle size, this emission shows a blue shift, following a law inversely the ones found for quantum confinement systems. For semi-conducting oxides, such as ZnO, this interface related emission is found additionally to quantum confinement phenomena.

  6. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  7. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  8. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    Energy Technology Data Exchange (ETDEWEB)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir; Tischler, Jonathan R.; Tisdale, William A.; Walker, Brian J.

    2017-12-12

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  9. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host.

    Science.gov (United States)

    Kuznetsov, A S; Tikhomirov, V K; Moshchalkov, V V

    2012-09-10

    A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

  10. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  11. CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion

    International Nuclear Information System (INIS)

    Adegoke, Oluwasesan; Hosten, Eric; McCleland, Cedric; Nyokong, Tebello

    2012-01-01

    Graphical abstract: A bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) showed a high selectivity and sensitivity for the determination of bromide ion using fluorescence recovery. Highlights: ► Water soluble CdTe quantum dots interact with tetramethylpiperidine-N-oxide. ► Quantum dots fluorescence is quenched by the radical. ► In the presence of bromide ions the fluorescence is restored. ► The sensor is more selective to bromine ions than other common ions. - Abstract: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 μM. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.

  12. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots

    NARCIS (Netherlands)

    Xia, Chenghui; Meeldijk, Johannes D.; Gerritsen, Hans C.; De Mello Donega, Celso

    2017-01-01

    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the

  13. Hybrid structures based on quantum dots and graphene nanobelts

    Science.gov (United States)

    Reznik, I. A.; Gromova, Yu. A.; Zlatov, A. S.; Baranov, M. A.; Orlova, A. O.; Moshkalev, S. A.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    Luminescence and photoelectric properties of hybrid structures based on CdSe/ZnS quantum dots (QDs) and multilayer graphene have been investigated. A correlation between the luminescence quantum yield of QDs and their photoelectric properties in hybrid structures is established. It is shown that a decrease in the QD luminescence quantum yield due to adsorption of 1-(2-pyridylazo)-2-naphtol azo dye molecules onto the QD surface and a photoinduced increase in the QD luminescence quantum yield are accompanied by a symbate change in the hybrid structure photoconductivity.

  14. CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion

    Energy Technology Data Exchange (ETDEWEB)

    Adegoke, Oluwasesan [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Hosten, Eric; McCleland, Cedric [Department of Chemistry, Nelson Mandela Metropolitan University (South Campus), Port Elizabeth 6031 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2012-04-06

    Graphical abstract: A bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) showed a high selectivity and sensitivity for the determination of bromide ion using fluorescence recovery. Highlights: Black-Right-Pointing-Pointer Water soluble CdTe quantum dots interact with tetramethylpiperidine-N-oxide. Black-Right-Pointing-Pointer Quantum dots fluorescence is quenched by the radical. Black-Right-Pointing-Pointer In the presence of bromide ions the fluorescence is restored. Black-Right-Pointing-Pointer The sensor is more selective to bromine ions than other common ions. - Abstract: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 {mu}M. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.

  15. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  16. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS

    Science.gov (United States)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-05-01

    The size and shape dependent semiconductor quantum dots (0D nanoparticles) with color tunability demonstrating significant influence in a biological system and considered as ideal probes. Here, a non-coordinated colloidal approach was used for the synthesis of CdSe, CdSe/ZnS and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm. The synthesized nanocrystals show a high crystallinity, examined by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The core-shell semiconductor QDs exhibit stronger photoluminescence (PL) as compared to the core QDs. The strong PL with small full-width half maximum (FWHM) indicates that the prepared QDs have a nearly uniform size distribution and well dispersibility. The quantum yield (QY) of core-shell QDs increases due to the surface passivation. Further, the PL of BSA is quenched strongly by the presence of core-shell QDs and follows the well-known Stern-Volmer (S-V) relation, whereas the PL lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among CdSe core, CdSe/ZnS and CdSe/CdS core-shell QDs, the CdSe/ZnS QDs shows the least cytotoxicity and most biocompatibility. Thus, the prepared core-shell QDs are biocompatible and exhibit strong sensing ability.

  17. Spectral converters and luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Scudo, Petra F.; Abbondanza, Luigi; Fusco, Roberto; Caccianotti, Luciano [Eni S.p.A, Research Center for Non-Conventional Energies - Istituto ENI Donegani, Via G.Fauser 4, 28100 Novara (Italy)

    2010-07-15

    In this paper we present a comprehensive theoretical description of molecular spectral converters in the specific context of luminescent solar concentrators (LSCs). The theoretical model is an extension to a three-level system interacting with a solar radiation bath of the standard quantum theory of atomic radiative processes. We derive the equilibrium equations of the conversion process and provide specific examples of application of this principle to the development of solar concentration devices. (author)

  18. Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: Conversion of bio-waste into bio-asset

    Science.gov (United States)

    Pramanik, A.; Biswas, S.; Kumbhakar, P.

    2018-02-01

    Recently studies on synthesis and fluorescence based sensing in biocompatible carbon quantum dots (CQDs) have become a widely spoken topic of research due to the several advantageous properties of CQDs in compared to semiconductor quantum dots. In this work, we have reported the rarely reported solvatochromism along-with a high photoluminescence (PL) quantum yield (PLQY) of 22%. Samples have been synthesized by using a simple process of hydrothermal carbonization of a naturally occurring bio-waste i.e. Aegle marmelos leaves powder. The linear absorption and PL emission characteristics of CQDs have been studied in different solvent environments to explore the origin of the observed excitation dependent PL emissions characteristics of the sample. The interesting solvatochromic PL (SPL) behavior of CQDs are observed at an excitation wavelength of 325 nm by dispersing them in different polar protic and aprotic solvents, which suggest their possible applications as a replacement of solvatochromic dye molecules for sensing applications. Different polarity functions and molecular-microscopic solvent polarity parameter (ETN) are used to calculate the change in dipole moment (Δδ) of the solute-solvent system and the origin of SPL in CQDs has been explained. The SPL behavior of CQDs has been utilized for fluorescence sensing of organic liquids (Ethanol and Tetrahydrofuran) in water. Whereas, the photo-induced electron transfer mediated quenching in PL of aqueous dispersion of CQDs has led to development of ;turn off; fluorescence Fe3 + ion sensor with a detection limit of 0.12 μM. Therefore, this work may open a new avenue of conversion of a bio-waste into a fluorescent bio-asset.

  19. Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells

    Science.gov (United States)

    Wang, Xiaowei; Yang, Jing; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Liu, Wei; Liang, Feng; Liu, Shuangtao; Xing, Yao; Wang, Wenjie; Li, Mo

    2018-02-01

    Optical investigation was performed on InGaN/GaN multiple quantum well (MQW) structures grown by metalorganic chemical vapor deposition (MOCVD) with different temperatures. It is found that the emission intensity decreases abruptly when the growth temperature of InGaN QW decreases from 710 to 670 °C. The XRD measurements show that a poorer quality interface between the QW layers could decrease the emission quite a bit when the growth temperature is lower. In addition, due to the weakening surface mobility of adatoms, the localization states accompanied with defects are distributed more inhomogeneous at lower growth temperature, which is also responsible for the low emission intensity.

  20. Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Reda, S.M. [Chemistry Department, Faculty of Science, Benha University, Benha (Egypt)], E-mail: safenazr@yahoo.com

    2008-01-15

    CdS quantum dot (QD) solar concentrators were prepared by a sol-gel spin coating method. Thin films were prepared at different annealing temperatures and characterized by X-ray diffraction and spectroscopic techniques. The effect of temperature on the optical properties of CdS QDs embedded in silica matrix was assessed before and after exposure of the samples to sunlight for up to 4 weeks. The results show that as the annealing temperature increases, the fluorescent intensity and Stokes shift decrease. Therefore lower temperatures are preferable for the preparation of highly efficient QD solar concentrator systems.

  1. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  2. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  3. Luminescence techniques: Instrumentation and methods

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    1997-01-01

    This paper describes techniques, instruments and methods used in luminescence dating and environmental dosimetry in many laboratories around the world. These techniques are based on two phenomena - thermally stimulated luminescence and optically stimulated luminescence. The most commonly used...... luminescence stimulation and detection techniques are reviewed and information is given on recent developments in instrument design and on the stale of the art in luminescence measurements and analysis. (C) 1998 Elsevier Science Ltd. All rights reserved....

  4. Recombination-Enhanced Effect in Green/Yellow Luminescence from BeZnCdSe Quantum Wells Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Akimoto, Ryoichi

    2018-02-01

    The recombination-enhanced defect reaction (REDR) effect in single green/yellow emission BeZnCdSe quantum wells (QWs) has been investigated using photoluminescence (PL) microscopy and time-resolved PL measurements. Even though a lattice hardening effect is expected in BeZnCdSe QWs alloyed with beryllium, PL intensity enhancement due to photoannealing as well as subsequent degradation due to generation of dark spot defects (DSDs) and dark line defects (DLDs) were observed. PL microscopy provided insights into the REDR effect during photoannealing. PL images were spatially inhomogeneous in intensity for the as-grown wafer, with the darker areas having size from submicrometer to 1 μm becoming brighter with the progress of photoannealing, revealing a built-in distribution of point defects incorporated in the structure during crystal growth. In addition, we showed that the PL lifetime increased with the progress of photoannealing; hence, the density of point defects decreased due to the REDR effect. A nonradiative decay channel insensitive to the REDR effect was also found in the area free from DSDs and DLDs, suggesting that another type of defect remained in the structure (note that this is not the defect reported in study of slow-mode degradation in long-lived laser diodes). As the degradation progresses, a nonradiative channel such as photocarrier diffusion and subsequent trapping by a patch of DLDs will emerge before radiative recombination.

  5. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging.

    Science.gov (United States)

    Chatzimitakos, Theodoros; Kasouni, Athanasia; Sygellou, Lamprini; Avgeropoulos, Apostolos; Troganis, Anastasios; Stalikas, Constantine

    2017-12-01

    Citrus sinensis and Citrus limon peels were used to synthesize two different kinds of carbon quantum dots (CQDs) via an unsophisticated and inexpensive carbonization procedure. The proposed synthesis is straightforward and adheres to the principles of green chemistry since no organic solvents are used and no toxic by-products are formed, while the residual resources employed facilitate the large scale synthesis of dots. The Citrus sinensis and Citrus limon peels are proved to be excellent precursors for the synthesis of CQDs with highly practical applications. The CQDs display strong excitation-independent, blue fluorescence, which is stable over time. Splendid water dispersibility, photostability and stability over a wide range of pH are some of the main advantages of the CQDs, which enable them to be used as a fluorescent probes. Although many of their features are alike, our findings demonstrate that each kind of the CQDs lend itself to quite distinct analytical applications. The developed fluorescent probes possess high potential for sensitive and selective detection of Fe 3+ (Citrus sinensis CQDs) and tartrazine (Citrus limon CQDs) via a quenching mechanism. The decrease in fluorescence intensity is in linear relationship with the concentrations of Fe 3+ and tartrazine in the ranges of 0.01-1.0μM and 0.6-23.5μΜ, respectively. Moreover, their low cytotoxicity reinforces their applicability towards cell bioimaging and intracellular detection of Fe 3+ , which were further studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Aqueous EuII-containing complex with bright yellow luminescence

    Science.gov (United States)

    Kuda-Wedagedara, Akhila N. W.; Wang, Chengcheng; Martin, Philip D.; Allen, Matthew J.

    2015-01-01

    EuII-containing materials have unique luminescence, redox, and magnetic properties that have potential applications in optoelectronics, sensors, and imaging. Here, we report the synthesis and characterization of EuII-containing aza-222 cryptate that displays yellow luminescence and a quantum yield of 26% in aqueous media. The crystal structure reveals a staggered hulahoop geometry. Both solid-state and solution-phase data are presented that indicate that the high quantum yield is a result of the absence of OH oscillators in the inner sphere of the complex. We expect that EuII-containing aza-222 cryptate is a step toward EuII-containing luminescent materials that can be used in a variety of applications including biological imaging. PMID:25853298

  7. Modeling of the luminescent concentrators by ray-tracing

    Energy Technology Data Exchange (ETDEWEB)

    Burgers, A.R.; Van Roosmalen, J.A.M.; Slooff, L.H.; Kinderman, R. [ECN Solar Energy, Petten (Netherlands)

    2005-06-01

    We have made luminescent concentrator devices by gluing multi-crystalline silicon solar cells to polymer plates containing fluorescent dyes. The devices have been characterised by optical reflection- and transmission measurements and with external quantum efficiency measurements. We have applied different mirror configurations to the devices to improve the external quantum efficiency. The measurements have been modelled with a ray-tracing simulation. The simulation allows us to analyse loss mechanisms in the device.

  8. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  9. Interaction of porphyrins with CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  10. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  11. Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification

    Science.gov (United States)

    Mathew, Ammu; Varghese, Elizabeth; Choudhury, Susobhan; Pal, Samir Kumar; Pradeep, T.

    2015-08-01

    An efficient method to enhance visible luminescence in a visibly non-luminescent organic-soluble 4-(tert butyl)benzyl mercaptan (SBB)-stabilized Au25 cluster has been developed. This method relies mainly on enhancing the surface charge density on the cluster by creating an additional shell of thiolate on the cluster surface, which enhances visible luminescence. The viability of this method has been demonstrated by imparting red luminescence to various ligand-protected quantum clusters (QCs), observable to the naked eye. The bright red luminescent material derived from Au25SBB18 clusters was characterized using UV-vis and luminescence spectroscopy, TEM, SEM/EDS, XPS, TG, ESI and MALDI mass spectrometry, which collectively proposed an uncommon molecular formula of Au29SBB24S, suggested to be due to different stapler motifs protecting the Au25 core. The critical role of temperature on the emergence of luminescence in QCs has been studied. The restoration of the surface ligand shell on the Au25 cluster and subsequent physicochemical modification to the cluster were probed by various mass spectral and spectroscopic techniques. Our results provide fundamental insights into the ligand characteristics determining luminescence in QCs.An efficient method to enhance visible luminescence in a visibly non-luminescent organic-soluble 4-(tert butyl)benzyl mercaptan (SBB)-stabilized Au25 cluster has been developed. This method relies mainly on enhancing the surface charge density on the cluster by creating an additional shell of thiolate on the cluster surface, which enhances visible luminescence. The viability of this method has been demonstrated by imparting red luminescence to various ligand-protected quantum clusters (QCs), observable to the naked eye. The bright red luminescent material derived from Au25SBB18 clusters was characterized using UV-vis and luminescence spectroscopy, TEM, SEM/EDS, XPS, TG, ESI and MALDI mass spectrometry, which collectively proposed an uncommon

  12. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  13. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  14. Wireless Luminescence Integrated Sensors (WLIS)

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M.L.; Sayler, G.S. (Univ. Tennessee)

    2003-11-10

    The goal of this project was the development of a family of wireless, single-chip, luminescence-sensing devices to solve a number of difficult distributed measurement problems in areas ranging from environmental monitoring and assessment to high-throughput screening of combinatorial chemistry libraries. These wireless luminescence integrated sensors (WLIS) consist of a microluminometer, wireless data transmitter, and RF power input circuit all realized in a standard integrated circuit (IC) process with genetically engineered, whole-cell, bioluminescent bioreporters encapsulated and deposited on the IC. The end product is a family of compact, low-power, rugged, low-cost sensors. As part of this program they developed an integrated photodiode/signal-processing scheme with an rms noise level of 175 electrons/second for a 13-minute integration time, and a quantum efficiency of 66% at the 490-nm bioluminescent wavelength. this performance provided a detection limit of < 1000 photons/second. Although sol-gel has previously been used to encapsulate yeast cells, the reaction conditions necessary for polymerization (primarily low pH) have beforehand proven too harsh for bacterial cell immobilizations. Utilizing sonication methods, they have were able to initiate polymerization under pH conditions conductive to cell survival. both a toluene bioreporter (Pseudomonas putida TVA8) and a naphthalene bioreporter (Pseudomonas fluorescens HK44) were successfully encapsulated in sol-gel and shown to produce a fairly significant bioluminescent response. In addition to the previously developed naphthalene- and toluene-sensitive bioreporters, they developed a yeast-based xenoestrogen reporter. This technology has been licensed by Micro Systems Technologies, a startup company in Dayton, Ohio for applications in environmental containments monitoring, and for detecting weapons of mass destruction (i.e. homeland security).

  15. The luminescent concentrator: a bright idea for spectrum conversion?

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Kinderman, R.; Burgers, A.R.; Van Roosmalen, J.A.M. [ECN Solar Energy, Petten (Netherlands); Buechtemann, A. [Fraunhofer Institut for Applied Polymer Research, Golm (Germany); Chatten, J.; Farrel, D.; Barnham, K.W.J. [Physics Department, Imperial College, London (United Kingdom)

    2005-06-01

    Luminescent concentrator plates with different dyes were combined with multicrystalline silicon solar cells at one side of the plate. Spectral response and IV measurements were performed. The results show an external quantum efficiency of 25 % for an optical concentration factor of 10, giving an effective concentration factor of 2.5 at the absorption maximum. The electrical current of the silicon cell is increased by a factor 1.5 with respect to the bare cell under normal incidence. The influence of dye concentration, mirrored surfaces and plate dimensions on the performance of the luminescent concentrator is addressed.

  16. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  17. BG2003 luminescent spectrograph

    International Nuclear Information System (INIS)

    Li Huhou

    2004-01-01

    A new equipment for luminescent spectrograph has been created. The prototype is named BG2003. It is qualified for running. Dating with selected frequency optical luminescence means that the wavelength of the stimulating source and the emission photons can be selected. Then, one can use this equipment to do the separation of the minerals in the fine grains sample for the fine grains dating technique. And also it may be effective to resolve many problems for the minerals authentication. A new optical separate technique will be created and developed in mineralogy. (authors)

  18. The luminescent concentrator. Stability issues

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Budel, T.; Burgers, A.R.; Bakker, N.J. [ECN Solar Energy, P.O.Box 1, 1755 ZG Petten (Netherlands); Buechtemann, A.; Danz, R. [Fraunhofer-Institute for Applied Polymer Research, Geiselbergstr.69, D-14476 Golm (Germany); Meyer, T.; Meyer, A. [Solaronix SA, Rue de l' Ouriette 129, CH-1170 Aubonne (Switzerland)

    2007-08-15

    One of the major challenges in the research on luminescent concentrators is the lifetime of the luminescent polymer plates. There are some commercial plates available, but data on lifetime are very limited, especially when dedicated to applications like the luminescent concentrator. In this paper we report stability experiments on luminescent concentrator plates, aged under continuous white light illumination, outdoor conditions and high intensity monochromatic illumination. The results show that the lifetime strongly depends on the organic luminescent dye in the plate. The best materials exhibit an initial decrease in performance of about 20% and then remain more or less stable. It is shown that the degradation is not caused by UV illumination.

  19. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  20. Luminescence study of spodumene

    International Nuclear Information System (INIS)

    Isotani, S.; Fujii, A.T.; Antonini, R.; Pontuschka, W.M.; Rabani, S.R.; Furtado, W.W.

    1990-02-01

    A comparative study is made of the luminescence of five kinds of spodumene from Minas Gerais, Brazil, studied previously by optical absorption spectroscopy. Natural gemstones are used which, in the course of the experiments, were irradiated with X-rays. (L.C.) [pt

  1. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots

    NARCIS (Netherlands)

    de Weerd, C.; Shin, Y.; Marino, E.; Kim, J.; Lee, H.; Saeed, S.; Gregorkiewicz, T.

    2017-01-01

    Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other

  2. Electric field effect on luminescence efficiency in 8-hydroxyquinoline aluminum (Alq3) thin films

    Science.gov (United States)

    Stampor, W.; Kalinowski, J.; Di Marco, P.; Fattori, V.

    1997-04-01

    Electric field-induced luminescence quenching in thin films made from common organic electroluminescent material of aluminum (III) 8-hydroxyquinoline (Alq3) is reported. The dependence of luminescence quenching on excitation wavelength and electric field is attributed to field-assisted hopping separation of charge in localized excited states. The effect extrapolated to high electric fields can reduce the luminescence yield by as much as 60% limiting electroluminescence quantum efficiency in high-field-driven light emitting diodes based on the Alq3 emitter.

  3. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials.

    Science.gov (United States)

    Sagara, Yoshimitsu; Yamane, Shogo; Mitani, Masato; Weder, Christoph; Kato, Takashi

    2016-02-10

    The possibility to change the molecular assembled structures of organic and organometallic materials through mechanical stimulation is emerging as a general and powerful concept for the design of functional materials. In particular, the photophysical properties such as photoluminescence color, quantum yield, and emission lifetime of organic and organometallic fluorophores can significantly depend on the molecular packing, enabling the development of molecular materials with mechanoresponsive luminescence characteristics. Indeed, an increasing number of studies have shown in recent years that mechanical force can be utilized to change the molecular arrangement, and thereby the optical response, of luminescent molecular assemblies of π-conjugated organic or organometallic molecules. Here, the development of such mechanoresponsive luminescent (MRL) molecular assemblies consisting of organic or organometallic molecules is reviewed and emerging trends in this research field are summarized. After a brief introduction of mechanoresponsive luminescence observed in molecular assemblies, the concept of "luminescent molecular domino" is introduced, before molecular materials that show turn-on/off of photoluminescence in response to mechanical stimulation are reviewed. Mechanically stimulated multicolor changes and water-soluble MRL materials are also highlighted and approaches that combine the concept of MRL molecular assemblies with other materials types are presented in the last part of this progress report. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantum efficiency of double activated Tb 3Al 5O 12:Ce 3+, Eu 3+

    Science.gov (United States)

    Nazarov, Mihail; Young Noh, Do; Sohn, Jongrak; Yoon, Chulsoo

    2007-09-01

    The quantum efficiency and luminescence properties of double activated terbium aluminum garnet samples were investigated in the present study. A mathematical procedure and PL measurement system are developed for express analysis of quantum efficiency of luminescent materials. The energy-level diagram was proposed to explain the luminescence mechanism. Application of TAG:Ce,Eu with improved CIE and CRI in LED device is demonstrated.

  5. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  6. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  7. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  8. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  9. Design and optimization of luminescent semiconductor nanocrystals for optoelectronic applications

    OpenAIRE

    Levchuk, Ievgen

    2017-01-01

    Luminescent colloidal semiconductor nanocrystals have attracted prominent attention for the last three decades since their size-dependent optical properties were discovered. Numerous applications in fields of light conversion such as light-emitting diodes (LED), photovoltaics, medicine, lasers and TV displays were developed. Despite the strong and rapid expansion of this field in the scope of material quality reflected by narrow size distribution and photoluminescence quantum yield, simplific...

  10. New luminescent materials and filters for Luminescent Solar Concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited

  11. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  12. The effects of binding type on luminescence LED phosphor based on GGG/Ce3+

    Science.gov (United States)

    Mikhailov, M. M.; Neshchimenko, V. V.; Shavlyuk, V. V.

    2014-12-01

    Luminescence and reflectance spectra of coatings based on gadolinium gallium garnet doped by cerium (GGG/Ce3+) with silicone resin or potassium liquid glass compound were analyzed depending on concentration. It was established that the maximum emissions of the coatings at 75 wt.% compound concentration have luminescence band at 570 nm and absorption band at 470 nm. Both bands were detected by absorption or emission of cerium ions in gadolinium gallium garnet. Ce3+ ion transition into Ce4+ ion was observed upon quantum absorption, and the reverse transition was observed upon quantum emission.

  13. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  14. Luminescence dating of Netherlands’ sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we review: 1) the development of the methodology; 2) tests of the reliability of luminescence dating on Netherlands’ sediments;

  15. Luminescence studies of semiconductor electrodes

    NARCIS (Netherlands)

    Kelly, J.J.; Kooij, Ernst S.; Meulenkamp, E.A.

    1999-01-01

    In this paper we review our recent results of in-situ luminescence studies of semiconductor electrodes. Three classes of materials are considered: single crystal compound semiconductors, porous silicon and semiconducting oxides doped with luminescent ions. We show how photoluminescence (PL) and

  16. Design, synthesis and characterization of a highly luminescent Eu-complex monomer featuring thenoyltrifluoroacetone and 5-acryloxyethoxymethyl-8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Xu Cunjin [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Li Bogeng, E-mail: bgli@zju.edu.cn [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); Wan Jintao; Bu Zhiyang [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-08-15

    A multi-functional ligand, 5-acryloxyethoxymethyl-8-hydroxyquinoline (Hamq), was synthesized, which contained a polymerizable C=C double bond for the copolymerization with other vinyl monomers and acted as photon antenna able to transfer energy to Eu{sup 3+} ions effectively. The triplet state energy of Hamq was determined to be 22,370 cm{sup -1} via the phosphorescence spectra of Hamq and its gadolinium complex. The title complex monomer Eu(tta){sub 2}(amq) was prepared by coordination reaction of Hamq with europium isopropoxide and 2-thenoyltrifluoroacetone (Htta) in dry organic solvents under argon atmosphere and characterized by elemental analysis and IR spectrum. The photophysical properties of the complex were studied in detail with UV-vis, luminescence spectra, luminescence lifetime and quantum yield. The complex exhibited nearly monochromatic red emission at 612 nm, a remarkable luminescence quantum yield at room temperature (30.6%) upon ligand excitation and a long {sup 5}D{sub 0} lifetime (389 {mu}s), which indicated that the ligand Hamq could sensitize the luminescence of Eu(III) ion efficiently in Eu(tta){sub 2}(amq), resulting in a strong luminescence of its copolymer poly[MMA-co-Eu(TTA){sub 2}(amq)] under UV excitation. The excellent luminescence properties of the complex made it not only a promising light-conversion molecular device but also an excellent luminescent monomer. - Highlights: >iWe designed and synthesized a highly luminescent Eu-complex monomer. > Quantum yield and lifetime of the complex are 30.6% and 389 {mu}s, respectively. > Excellent luminescence of the complex made it an excellent luminescent monomer.

  17. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  18. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.

  19. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  20. LUMINESCENCE DETERMINATION OF ETODOLAC

    Directory of Open Access Journals (Sweden)

    A. V. Yegorova

    2015-02-01

    Full Text Available A highly sensitive, simple and rapid method for determination of non-steroidal anti- inflammatory drug – etodolac (Et in washings from surfaces of pharmaceutical equipment have been proposed. The intensity of native luminescence of water-n-propanol solutions of etodolac (λex= 274 nm; λlum= 350 nm was used as the analytical signal. The calibration graph is linear in the concentration range 0.014-2.3 μg/ml, the limit of detection is 0.5 ng/ml.

  1. Enhanced radiation detectors using luminescent materials

    Science.gov (United States)

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  2. Luminescent solutions and powders of new samarium complexes with N,N',O,O'-chelating ligands

    Science.gov (United States)

    Kharcheva, Anastasia V.; Nikolskiy, Kirill S.; Borisova, Nataliya E.; Ivanov, Alexey V.; Reshetova, Marina D.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.

    2016-04-01

    Imaging techniques in biology and medicine are crucial tools to obtain information on structural and functional properties of living cells and organisms. To fulfill the requirements associated with application of these techniques it appears necessary to design markers with specific characteristics. Luminescent complexes of trivalent lanthanide ions with chelating ligands are of increasing importance in biomedical applications because of their millisecond luminescence lifetime, narrow emission band, high signal-to-noise ratio and minimal photodamage to biological samples. In order to extend the available emission wavelength range the luminescent samarium chelates are highly desirable. In this study the ligands with diamides of 2,2'-bipyridin-6,6'-dicarboxylic acid were used to improve photophysical characteristics of samarium complexes. We report the luminescence characteristics of samarium complexes with novel ligands. All complexes exhibited the characteristic emission of Sm (III) ion with the lines at 565, 597, 605, 645 and 654 nm, the intensity strongly depended on the ligand. Absorption and luminescence excitation spectra of Sm (III) complexes showed main peaks in the UV range demonstrating lanthanide coordination to the ligand. The absolute lumenescence quantum yield was measured for solutions in acetonitrile with excitation at 350 nm. The largest luminescence quantum yield was found for the samarium complex Bipy 6MePy Sm (3%) being much higher that for samarium complexes reported in the literature earlier. These results prove as well that samarium chelates are potential markers for multiparametric imaging techniques.

  3. Optically stimulated luminescence

    International Nuclear Information System (INIS)

    Espinosa, G.; Bogard, J.S.

    2007-01-01

    Full text: The use of Optically Stimulated Luminescence (OSL) for radiation dosimetry has become increasingly popular in recent years. The OSL method is based on luminescence emitted from semiconductor materials stimulated with specific wavelengths of light, after being exposed to ionizing radiation. The OSL intensity is a function of the radiation dose absorbed by the material. This work complements previous studies by the authors of the thermoluminescence (TL) response by SiO 2 commercial optical fiber exposed to ionizing radiation and provides preliminary results describing some of the material's OSL properties. Linear OSL response to beta radiation dose, along with a consistent shape of the photon emission curve with time, were observed using a green/blue OSL excitation laser. The reproducibility of OSL response after repeated irradiations and the change in intensity with time were also examined. The search and characterization of materials that exhibit this OSL response, in parallel with the continued development of OSL methodology and instrumentation, is an important scientific and commercial issue. (Author)

  4. Luminescence dating in archaeology

    International Nuclear Information System (INIS)

    Wintle, A.G.

    2001-01-01

    Thermoluminescence (TL) dating is routinely applied to burnt lithic material. Simple fires are capable of enabling stones weighing a few hundred grams to reach 450 o C, thus zeroing the TL signal. TL dates have been obtained for Upper and Lower Paleolithic sites in Europe and the Near East. TL dating continues to be used for dating pottery and for authentification of ceramic works of art. Some recent studies report the use of optically stimulated luminescence (OSL) (also know as photoluminescence) for dating very small samples of quartz, e.g. from small pieces of pottery or frm metallurgical slag The major recent advance has been in the development of a reliable laboratory procedure for using the OSL signal from quartz to obtain the past radiation exposure. The quartz OSL signal is extremely sensitive to light and is reduced to a negligible level on exposure to direct sunlight for radionuclides during burial, signal to date san.sized quartz grains extracted from sediments, The OSL signal is stimulated by 470 nm light from emitting diodes and the detected using flirters centred on 340 nm A similar signal can be obtained from feldspar grain when are exposed to infrared wavelengths around 880 nm. The infrared stimulated luminescence (IRSL) signals is also rapidly depleted by exposure to sunlight, and dating of colluvial deposits from archaeological sites has been reported

  5. Nanoscale luminescent lanthanide-based metal-organic frameworks: properties, synthesis, and applications

    Science.gov (United States)

    Hu, Dongqin; Song, Yonghai; Wang, Li

    2015-07-01

    Nanoscale luminescent lanthanide-based metal-organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal-organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  6. Tuning the Phosphorescence and Solid State Luminescence of Triarylborane-Functionalized Acetylacetonato Platinum Complexes.

    Science.gov (United States)

    Rajendra Kumar, George; Thilagar, Pakkirisamy

    2016-12-05

    A new series of luminescent cyclometalated platinum complexes with triarylborane-functionalized acetylacetonate ligands is reported. The complexes exhibit solid state luminescence and phosphorescence under ambient conditions. The luminescence color can be tuned from green to red by varying the cyclometalating ligand [2-phenylpyridine (for 1 and 2), 2-thiophenylpyridine (for 3 and 4), 2-thianapthenylpyridine (for 5 and 6)]. The luminescence originates from mixed 3 MLCT/ 3 IL [MLCT, metal to ligand charge transfer; IL, intraligand] states of square planar platinum and borane moieties. The π spacer (phenyl or duryl) which connects the boryl and platinum entities has a significant role in determining the photoluminescence efficiency. The bulky duryl spacer in 2, 4, and 6 significantly reduces π-π stacking of the square planar platinum moiety in the solid state and provides a rigid backbone, thereby increasing their quantum yield significantly. The role of Lewis-acidic borane on the photoluminescence features is evaluated by fluoride binding experiments.

  7. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  8. Luminescence in Sulfides: A Rich History and a Bright Future

    Science.gov (United States)

    Smet, Philippe F.; Moreels, Iwan; Hens, Zeger; Poelman, Dirk

    2010-01-01

    Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  9. Temperature lags of luminescence measurements in a commercial luminescence reader

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Kiyak, Nafiye G. [ISIK University, Faculty of Science and Arts, Physics Department, Sile, 34980 Istanbul (Turkey); Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, Beşevler, 06100 Ankara (Turkey)

    2015-09-15

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  10. The first example of intensive luminescence of LMCT state based on metal complexes in solution

    International Nuclear Information System (INIS)

    Lukova, G.V.; Vasil'ev, V.P.; Smirnov, V.A.; Huhn, W.

    2007-01-01

    A bridge complex rac-C 6 H 10 (IndH 4 ) 2 ZrC 2 , featuring a unique long-living luminescence in liquid solutions at 20 deg C, has been prepared for the first time by catalytic hydrogenation of bis-indinyl complex C 6 H 10 (Ind) 2 Zr 2 Cl 2 . It has been identified that quantum yields of luminescence of the complex solutions at room temperature are the greatest ones for the known compounds possessing emission states of charge transfer from ligand to metal. Linear correlations of quantum yield of metal complex luminescence in a solution with steric features of the solvent molecules have been detected for the first time [ru

  11. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  12. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  13. Highly Luminescent Solution-Grown Thiophene-Phenylene Co-Oligomer Single Crystals

    NARCIS (Netherlands)

    Kudryashova, Lyudmila G.; Kazantsev, Maxim S.; Postnikov, Valery A.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Surin, Nikolay M.; Borshchev, Oleg V.; Ponomarenko, Sergei A.; Pshenichnikov, Maxim S.; Paraschuk, Dmitry Yu.

    2016-01-01

    Thiophene-phenylene co-oligomers (TPCOs) are among the most promising materials for organic light emitting devices. Here we report on record high among TPCO single crystals photoluminescence quantum yield reaching 60%. The solution-grown crystals are stronger luminescent than the vapor-grown ones,

  14. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

    NARCIS (Netherlands)

    Bomm, J.; Büchtemann, A.; Fiore, Angela; Manna, L.; Nelson, J.H.; Hill, D.; van Sark, W.G.J.H.M.

    2010-01-01

    Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt

  15. Luminescence of vanadium and rare earth ions in alkaline earth sulfates

    NARCIS (Netherlands)

    Blasse, G.; Pietersen, H.G.

    2006-01-01

    The luminescence of samples MeSO4---V, RE (Me = Mg, Ca, Ba) depends strongly on the nature of the Me ions. The amount of association of the V5+ and RE3+ ions can be estimated from the measured quantum efficiencies

  16. Luminescent hybrid materials of lanthanide β-diketonate and mesoporous host through covalent and ionic bonding with anion metathesis.

    Science.gov (United States)

    Li, Qiu-Ping; Yan, Bing

    2012-07-28

    Luminescent mesoporous materials were prepared by performing an anion metathesis reaction on ionic liquid modified SBA15, which has imidazolium chloride bridging units. The lanthanide β-diketonate complex anion was successfully anchored onto the SBA15 framework after the anion metathesis reaction. The resulting materials were characterized by FTIR, TEM, TGA, small-angle X-ray powder diffraction (SAXRD) and nitrogen adsorption-desorption isotherms. The photoluminescent properties of these materials were investigated in detail, and the results reveal that these hybrid mesoporous SBA15, prepared through this preparation approach, present favorable photoluminescent behavior such as high luminescent quantum efficiencies and long luminescent lifetimes.

  17. Characterization of UV fluorophores for application to luminescent solar concentrators

    Science.gov (United States)

    Hellier, Kaitlin; Carter, Sue

    The implementation of solar as an alternative energy source faces many challenges, including the competition for space with agriculture and the environmental impacts of solar farms in deserts. As a solution to these problems, the Carter Lab has developed Luminescent Solar Concentrator (LSC) panels for applications to greenhouses. These panels utilize a luminescent dye compatible with the spectrum used in photosynthesis for the plants below and front-facing PV cells, achieving power enhancement of greater than 20% compared with the cells alone. To increase this enhancement, additional portions of the unused spectrum must be harvested. In this talk, we will discuss the characterization of UV absorbing fluorophores, including spectra, quantum yield, and the enhancement of light output and power generation. We will also address the combination of these UV dyes with the original LSC dye in low and high concentration, and the FRET efficiency and potential applications associated with high concentration films.

  18. Naturally Efficient Emitters: Luminescent Organometallic Complexes Derived from Natural Products

    Science.gov (United States)

    Zhang, Wen-Hua; Young, David J.

    2013-08-01

    Naturally occurring molecules offer intricate structures and functionality that are the basis of modern medicinal chemistry, but are under-represented in materials science. Herein, we review recent literature describing the use of abundant and relatively inexpensive, natural products for the synthesis of ligands for luminescent organometallic complexes used for organic light emitting diodes (OLEDs) and related technologies. These ligands are prepared from the renewable starting materials caffeine, camphor, pinene and cinchonine and, with the exception of caffeine, impart performance improvements to the emissive metal complexes and resulting OLED devices, with emission wavelengths that span the visible spectrum from blue to red. The advantages of these biologically-derived molecules include improved solution processibility and phase homogeneity, brighter luminescence, higher quantum efficiencies and lower turn-on voltages. While nature has evolved these carbon-skeletons for specific purposes, they also offer some intriguing benefits in materials science and technology.

  19. Luminescent phosphor materials

    International Nuclear Information System (INIS)

    Jamieson, P.B.

    1980-01-01

    The invention relates to luminescent phosphors and in particular those phosphors which emit ultra-violet radiation when struck by X-rays. The formula of the phosphor is Lasub(1-x-y-z-a)Gdsub(x)Cesub(y)Tbsub(z)Thsub(a)XO 4 in which X represents phosphorus atoms, arsenic atoms or a mixture of phosphorus and arsenic atoms, x is 0.01 to 0.50 and preferably 0.05 to 0.30, y is 0 or up to 0.50, z is 0 or up to 0.10 and preferably 0 or up to 0.02, a is 0 or up to 0.02, and when X represents phosphor atoms alone y + z + a is at least 0.01. The phosphors emit strong ultra-violet radiation when irradiated by X-rays and so can be used in intensifying screens particularly where the photographic material is UV radiation sensitive. In this case the overall emission should be in the 250-400 nm wavelength range. Another use is in the emission coating of cathode ray tubes. Details of the characteristics of various compositions are given with examples of preparation and emission spectra. (UK)

  20. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  1. Towards Ideal Quantum Dots

    Directory of Open Access Journals (Sweden)

    Vyacheslav A. Elyukhin

    2013-01-01

    Full Text Available Arrays of single photon emitters with the same energy of luminescence are necessary for the development of quantum imformation technology. The studied epitaxial quantum dots have an undresired inhomogeneity of luminescence. Here, AxB1-xCyD1-y alloys of AC, AD, BC and BD compounds are presented as semiconductors in which non-random distribution of cations and anions may result in self-assembling of identical tetrahedral clusters. It can be due to the preference of AC and BD bonding over AD and BC one, a decrease of the strain energy or both of them. The self-assembling conditions of 1P4Ga clusters in AlN-rich AlxGa1-xPyN1-y alloys with Ga and phosphorus contents in the dilute and ultra dilute limits, correspondingly, are represented. All phosphorus atoms should be in 1P4Ga clusters at ~1000 oC if the Ga content reaches several percents. AlN-rich AlxGa1-xPyN1-y alloys with 1P4Ga clusters are promising semiconductors for fabrication of arrays of identical single photon emitters with the same energy of luminescence

  2. Method of measuring luminescence of a material

    Science.gov (United States)

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  3. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Florian Mayer

    2018-01-01

    Full Text Available Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth. We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  4. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Science.gov (United States)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes. PMID:29441345

  5. Metal-enhanced luminescence: Current trend and future perspectives- A review

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajeev [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Esimbekova, Elena N., E-mail: esimbekova@yandex.ru [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation); Kirillova, Maria A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Kratasyuk, Valentina A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation)

    2017-06-08

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  6. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    2009-01-01

    This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...

  7. Self absorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Krumer, Z.

    2014-01-01

    Luminescent solar concentrators are photovoltaic devices made of thin transparent material, in which luminescent particles are dispersed. The incident light enters the device through its large facets and is subsequently absorbed by the luminescent particles, which re-emit it whilst changing its

  8. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    3.4 Luminescence properties of 1. The solid state luminescence property of 1 along with free ligand was investigated at room temperature. On photoexcitation at 365 nm, a characteristic peak at. 583 nm was observed in the emission spectrum of. 1 (figure 6). The yellow luminescence observed at. 583 nm is possibly due to ...

  9. How far are luminescence properties predictable?

    NARCIS (Netherlands)

    Blasse, G.

    Our knowledge of the luminescence of isolators has increased considerably during the past decade. As a consequence it has become possible to understand the luminescence of technically important phosphors and even to predict efficient luminescent materials. We first illustrate how emission spectra of

  10. Method for enhancement of useful luminescence from vacancy defects in refractory oxides for tunable lasers

    Science.gov (United States)

    Chen, Yok

    1990-01-01

    Refractory oxide crystals suitable for use in tunable lasers and a method for preparing the same are provided. The crystals are characterized by high quantum efficiency, high thermal stability, good crystal transparency, and a high percentage of useful luminescence. The method for preparation of the crystals involves removing substantially all the hydrogen, thermochemically reducing the crystal's oxygen content to produce oxygen (anion) vacancy defects, and subsequently irradiating the crystal with electrons to inactivate trace H.sup.- ions so that an increased amount of short lived F.sup.+ luminescence is produced when the crystal is optically excited.

  11. Spectroscopic studies on the lanthanide sensitized luminescence and chemiluminescence properties of fluoroquinolone with different structure

    Science.gov (United States)

    Sun, Chunyan; Ping, Hong; Zhang, Minwei; Li, Hongkun; Guan, Fengrui

    2011-11-01

    Lanthanide sensitized luminescence and chemiluminescence (CL) are of great importance because of the unique spectral properties, such as long lifetime, large Stokes shifts, and narrow emission bands characteristic to lanthanide ions (Ln 3+). With the fluoroquinolone (FQ) compounds including enoxacin (ENX), norfloxacin (NFLX), lomefloxacin (LMFX), fleroxacin (FLRX), ofloxacin (OFLX), rufloxacin (RFX), gatifloxacin (GFLX) and sparfloxacin (SPFX), the luminescence and CL properties of Tb 3+-FQ and Eu 3+-FQ complexes have been investigated in this contribution. Ce 4+-SO 32- in acidic conditions was taken as the CL system and sensitized CL intensities of Tb 3+-FQ and Eu 3+-FQ complexes were determined by flow-injection analysis. The luminescence and CL spectra of Tb 3+-FQ complexes show characteristic peaks of Tb 3+ at 490 nm, 545 nm, 585 nm and 620 nm. Complexes of Tb 3+-ENX, Tb 3+-NFLX, Tb 3+-LMFX and Tb 3+-FLRX display relatively strong emission intensity compared with Tb 3+-OFLX, Tb 3+-RFX, Tb 3+-GFLX and Tb 3+-SPFX. Quite weak peaks with unique characters of Eu 3+ at 590 nm and 617 nm appear in the luminescence and CL spectra of Eu 3+-ENX, but no notable sensitized luminescence and CL of Eu 3+ could be observed when Eu 3+ is added into other FQ. The distinct differences on emission intensity of Tb 3+-FQ and Eu 3+-FQ might originate from the different energy gap between the triplet levels of FQ and the excited levels of the Ln 3+. The different sensitized luminescence and CL signals among Tb 3+-FQ complexes could be attributed to different optical properties and substituents of these FQ compounds. The detailed mechanism involved in the luminescence and CL properties of Tb 3+-FQ and Eu 3+-FQ complexes has been investigated by analyzing the luminescence and CL spectra, quantum yields, and theoretical calculation results.

  12. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  13. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  14. Designing spectrally-selective mirrors for use in luminescent solar concentrators

    Science.gov (United States)

    Connell, Ryan; Pinnell, Christian; Ferry, Vivian E.

    2018-02-01

    Spectrally-selective mirrors improve the performance of luminescent solar concentrators (LSCs) by trapping emitted light within the waveguide. However, this beneficial property comes with a spectral restriction on incident sunlight that enters the concentrator. Especially for luminophores with overlap between the absorption and emission bands, design of the spectrally-selective mirrors requires a tradeoff between transmission of incident sunlight and trapping of luminescent photons. In this paper, we explore how the design of a spectrally-selective top mirror changes for LSCs containing luminophores of varying loading fractions, quantum yield, and overlap between the absorption and emission spectra, as well as LSCs with different back reflectors and lateral sizes. Using CdSe/CdS core/shell nanocrystals as the luminophore, we find that specific conditions favor different mirror designs. Mirrors designed to trap luminescent light have higher predicted performance than mirrors designed for sunlight transmission when the luminophore quantum yield is greater than 0.85, the luminophore optical density is less than 1.4 at 450 nm, the lateral size of the concentrator is greater than 10 cm, or there is low overlap between the luminophore absorption and emission. Mirrors optimized for either transmission or luminescence trapping have comparable performance for quantum yields less than 0.85, and the other conditions favor mirrors optimized for light transmission. For a LSC with unity quantum yield, a lateral size of 1 m × 1 m, and a mirror designed to trap luminescent light, a concentration factor of 37× is possible, as compared to 10× for a LSC with an open top. This research indicates the importance of tailoring the design of the spectrally-selective top mirror to the properties of the luminophore and LSC.

  15. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  16. Improved Method of Fluorescence Quantum Yield Determination.

    Science.gov (United States)

    Nawara, Krzysztof; Waluk, Jacek

    2017-09-05

    In the most widely used procedure for luminescence quantum yield determination, absorption and emission spectra are measured on two different instruments. This leads to errors caused by wavelength misalignment and different monochromator characteristics of the spectrophotometer and the spectrofluorometer. These errors can be avoided using a method for fluorescence quantum yield determination that relies on simultaneous absorption and fluorescence emission (SAFE) measurement using a single commercial spectrofluorometer. The method's performance is compared with the standard routinely used procedure for the relative quantum yield determination. The advantages of SAFE measurement are discussed. The proposed novel approach eliminates a number of potential errors in quantum yield determination protocol and provides higher accuracy.

  17. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  18. Thermally stimulated luminescence and photoluminescence ...

    Indian Academy of Sciences (India)

    2012-01-13

    Jan 13, 2012 ... Peltier cooled photo-multiplier tube as detector (Jain et al. 2008). The acquisition and analysis of the data were carried out by F-900 software supplied by Edinburgh Analytical. Instruments, UK. Thermally stimulated luminescence (TSL) glow curves were recorded using home-built unit between. 300 and ...

  19. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  20. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  1. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA HAQ NAWAZ SHEIKH. Volume 39 Issue 4 August 2016 pp 943-952 ...

  2. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene

    Czech Academy of Sciences Publication Activity Database

    Chua, C. K.; Sofer, Z.; Šimek, P.; Jankovský, O.; Klímová, K.; Bakardjieva, Snejana; Hrdličková-Kučková, Š.; Pumera, M.

    2015-01-01

    Roč. 9, č. 3 (2015), s. 2548-2555 ISSN 1936-0851 Institutional support: RVO:61388980 Keywords : fullerenes * graphene * luminescence * oxidation * quantum dots Subject RIV: CA - Inorganic Chemistry Impact factor: 13.334, year: 2015

  3. Ultrafast spectral interferometry of resonant secondary emmission from semiconductor quantum wells

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons follwing resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve the coherent...

  4. Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si

    Science.gov (United States)

    Schuppler, S.; Friedman, S. L.; Marcus, M. A.; Adler, D. L.; Xie, Y.-H.; Ross, F. M.; Chabal, Y. J.; Harris, T. D.; Brus, L. E.; Brown, W. L.; Chaban, E. E.; Szajowski, P. F.; Christman, S. B.; Citrin, P. H.

    1995-08-01

    Near-edge and extended x-ray-absorption fine-structure measurements from a wide variety of oxidized Si nanocrystals and H-passivated porous Si samples, combined with electron microscopy, ir absorption, forward recoil scattering, and luminescence emission data, provide a consistent structural picture of the species responsible for the luminescence observed in these systems. For porous Si samples whose luminescence wavelengths peak in the visible region, i.e., at <700 nm, their mass-weighted-average structures are determined here to be particles (not wires) whose short-range character is crystalline and whose dimensions-typically <15 Å-are significantly smaller than previously reported or proposed. Results are also presented which demonstrate that the observed visible luminescence is not related to either a photo-oxidized Si species in porous Si or an interfacial suboxide species in the Si nanocrystals. The structural and compositional findings reported here depend only on sample luminescence behavior, not on how the luminescent particles are produced, and thus have general implications in assigning quantum confinement as the mechanism responsible for the visible luminescence observed in both nanocrystalline and porous silicon.

  5. Mathematical aspects of ground state tunneling models in luminescence materials

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [Physics Department, McDaniel College, Westminster, MD 21157 (United States); Kitis, George [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-12-15

    Luminescence signals from a variety of natural materials have been known to decrease with storage time at room temperature due to quantum tunneling, a phenomenon known as anomalous fading. This paper is a study of several mathematical aspects of two previously published luminescence models which describe tunneling phenomena from the ground state of a donor–acceptor system. It is shown that both models are described by the same type of integral equation, and two new analytical equations are presented. The first new analytical equation describes the effect of anomalous fading on the dose response curves (DRCs) of naturally irradiated samples. The DRCs in the model were previously expressed in the form of integral equations requiring numerical integration, while the new analytical equation can be used immediately as a tool for analyzing experimental data. The second analytical equation presented in this paper describes the anomalous fading rate (g-Value per decade) as a function of the charge density in the model. This new analytical expression for the g-Value is tested using experimental anomalous fading data for several apatite crystals which exhibit high rate of anomalous fading. The two new analytical results can be useful tools for analyzing anomalous fading data from luminescence materials. In addition to the two new analytical equations, an explanation is provided for the numerical value of a constant previously introduced in the models. - Highlights: • Comparative study of two luminescence models for feldspars. • Two new analytical equations for dose response curves and anomalous fading rate. • The numerical value z=1.8 of previously introduced constant in models explained.

  6. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  7. Rare earth fluoride nano-/microstructures: hydrothermal synthesis, luminescent properties and applications.

    Science.gov (United States)

    Zhao, Qian; Xu, Zhenhe; Sun, Yaguang

    2014-02-01

    Rare earth fluoride materials have attracted wide interest and come to the forefront in nanophotonics due to their distinct electrical, optical and magnetic properties as well as their potential applications in diverse fields such as optical telecommunication, lasers, biochemical probes, infrared quantum counters, and medical diagnostics. This review presents a comprehensive overview of the flourishing field of rare earth fluorides materials in the past decade. We summarize the recent research progress on the preparation, morphology, luminescent properties and application of rare earth fluoride-based luminescent materials by hydrothermal systems. Various rare earth fluoride materials are obtained by fine-tuning of experimental conditions, such as capping agents, fluoride source, acidity, temperature and reaction time. The controlled morphology, luminescent properties and application of the rare earth fluorides are briefly discussed with typical examples.

  8. Novel luminescent soft materials of terpyridine-containing ionic liquids and europium(III).

    Science.gov (United States)

    Wang, Dongyue; Wang, Huifang; Li, Huanrong

    2013-07-10

    Herein, we describe novel luminescent soft materials via reaction of Eu(3+)-coordinated carboxyl functionalized ionic liquids with terpyridine-functionalized imidazolium salts that are built from an imidazolium ring substituted on one side with a terpyridine derivative and, on the opposite side, a paraffin chain of various lengths. The obtained materials are either pastelike substances or viscous fluids, depending on the anions of the carboxyl functionalized ionic liquids. The soft luminescent materials were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG), and luminescence spectroscopy. The soft materials show bright red emission irradiated with UV light, because of the energy transfer from terpyridine-functionalized imidazolium salts to the Eu(3+) ions. The absolute quantum yields of the materials were determined and the energy transfer efficiency was estimated according to the reported method.

  9. Magnetic quantum dots for multimodal imaging

    NARCIS (Netherlands)

    Koole, Rolf; Mulder, Willem J. M.; van Schooneveld, Matti M.; Strijkers, Gustav J.; Meijerink, Andries; Nicolay, Klaas

    2009-01-01

    Multimodal contrast agents based on highly luminescent quantum dots (QDs) combined with magnetic nanoparticles (MNPs) or ions form an exciting class of new materials for bioimaging. With two functionalities integrated in a single nanoparticle, a sensitive contrast agent for two very powerful and

  10. Highly luminescent Eu{sup 3+}-doped benzenetricarboxylate based materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ivan G.N. [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Mustafa, Danilo, E-mail: dmustafa@iq.usp.br [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Andreoli, Bruno [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Felinto, Maria C.F.C. [Centro de Química do Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP (Brazil); Malta, Oscar L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-90, PE (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil)

    2016-02-15

    [RE(TMA)] anhydrous complexes (RE{sup 3+}: Y, Gd and Lu) present high red emission intensity with a quantum efficiency (~45%) for the [Y(TMA):Eu{sup 3+}] complexes, due to the absence of non-radioactive decay pathways mediated by water molecules. The complexes were prepared in mild conditions. All the compounds are crystalline and thermostable up to 460 °C. Phosphorescence data of the complexes with Y, Gd and Lu show that the T{sub 1} state of the TMA{sup 3−} anion has energy higher than the {sup 5}D{sub 0} emitting level of the Eu{sup 3+} ion, indicating that the ligand can act as an intramolecular energy sensitizer. The photoluminescence properties of the doped materials were studied based on the excitation and emission spectra and luminescence decay curves. The experimental intensity parameters (Ω{sub λ}), lifetimes (τ), radiative (A{sub rad}) and non-radiative (A{sub nrad}) decay rates were determined and discussed. - Highlights: • Highly luminescent Europium doped anhydrous complexes. • Efficient monochromatic red light conversion molecular devices (LCMDs). • High emission quantum efficiencies.

  11. Fabrication of CuCl quantum dots and the size dependence of the biexciton binding energy

    CERN Document Server

    Park, S T; Kim, H Y; Kim, I G

    2000-01-01

    We fabricated CuCl quantum dots (QDs) in an aluminoborosilicate glass matrix. The photoluminescence of the CuCl QDs was surveyed by using the band-to-band excitation and the site selective luminescence methods. The excitation density dependence of the exciton and the biexciton luminescence was measured, and the saturation effects of the luminescence intensities were observed. The biexciton binding energies measured using the site selective luminescence method increased with decreasing QD size. The data were well fitted by a function resulting from the numerical matrix-diagonalization method.

  12. Fluorescence "switch on" of conjugates of CdTe@ZnS quantum dots with Al, Ni and Zn tetraamino-phthalocyanines by hydrogen peroxide: characterization and applications as luminescent nanosensors.

    Science.gov (United States)

    Adegoke, Oluwasesan; Khene, Samson; Nyokong, Tebello

    2013-09-01

    In this study, we have developed a novel nanoprobe for H2O2 based on the conjugation of CdTe@ZnS quantum dots (QDs) to different metal tetraamino-phthalocyanine (MTAPc): (M = (OAc)Al, {OAc = acetate}, Ni and Zn). Chemical coordination of the QDs to the MTAPc resulted in the fluorescence "switch off" of the linked QDs which was associated with Förster resonance energy transfer (FRET). In the presence of varying concentration of H2O2, the fluorescence of the linked QDs was progressively "switched on" and the FRET mechanism between the QDs and the MTAPc was disrupted. The sensitivity/limit of detection of the nanoprobe followed the order: QDs-ZnTAPc (2.2 μM) > QDs-NiTAPc (4.4 μM) > QDs-AlTAPc (9.8 μM) while the selectivity followed the order: QDs-NiTAPc > QDs-AlTAPc > QDs-ZnTAPc. The varying degree of sensitivity/selectivity and mechanism of detection is discussed in detail.

  13. Strong Circularly Polarized Luminescence from Highly Emissive Terbium Complexes in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda; Lunkley, Jamie; Muller, Gilles; Raymond, Kenneth

    2010-03-15

    Two luminescent terbium(III) complexes have been prepared from chiral ligands containing 2-hydroxyisophthalamide (IAM) antenna chromophores and their non-polarized and circularly-polarized luminescence properties have been studied. These tetradentate ligands, which form 2:1 ligand/Tb{sup III} complexes, utilize diaminocyclohexane (cyLI) and diphenylethylenediamine (dpenLI) backbones, which we reasoned would impart conformational rigidity and result in Tb{sup III} complexes that display both large luminescence quantum yield ({phi}) values and strong circularly polarized luminescence (CPL) activities. Both Tb{sup III} complexes are highly emissive, with {phi} values of 0.32 (dpenLI-Tb) and 0.60 (cyLI-Tb). Luminescence lifetime measurements in H{sub 2}O and D{sub 2}O indicate that while cyLI-Tb exists as a single species in solution, dpenLI-Tb exists as two species: a monohydrate complex with one H{sub 2}O molecule directly bound to the Tb{sup III} ion and a complex with no water molecules in the inner coordination sphere. Both cyLI-Tb and dpenLI-Tb display increased CPL activity compared to previously reported Tb{sup III} complexes made with chiral IAM ligands. The CPL measurements also provide additional confirmation of the presence of a single emissive species in solution in the case of cyLI-Tb, and multiple emissive species in the case of dpenLI-Tb.

  14. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Do, King; Ingram, Andrew; Moore, Evan; Muller, Gilles; Raymond, Kenneth

    2009-06-04

    The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields {phi}{sub Eu} = 0.05-0.08 and {phi}{sub Tb} = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.

  15. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  16. Luminescent Solar Concentrators – a low cost photovoltaics alternative

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van

    2013-01-01

    The development and current status of luminescent solar concentrators is reviewed. These solar concentrators generally consist of transparent polymer sheets doped with luminescent species; presently mainly organic dye molecules are used as luminescent species, however semiconductor nanocrystals

  17. Luminescence of LiH(D):Ru monocrystals

    International Nuclear Information System (INIS)

    Sabirzyanov, A.A.; Oparin, D.V.; Pilipenko, G.I.; Gavrilov, F.F.

    1993-01-01

    Luminescence of lithium hydride (deuteride) activated by ruthenium is recorded for the first time. The features connected with the structure and oscillations of the basic lattice are detected in luminescence spectrum. The qualitative model of luminescence spectrum is suggested

  18. Lanthanide Organic Framework Luminescent Thermometers.

    Science.gov (United States)

    Rocha, João; Brites, Carlos D S; Carlos, Luís D

    2016-10-10

    Metal-organic frameworks (MOFs) are excellent platforms for engineering luminescence properties as their building blocks, metal ions, linkers, and guest ions or molecules, are all potential sources of light emission. Temperature is one of the most important physical properties affecting the dynamics and viability of natural and engineered systems. Because the luminescence of certain lanthanide-bearing MOFs changes considerably with temperature, in the last few years, these materials have been explored as optical thermometers, especially in temperature sensing based on the intensity ratios of two separate electronic transitions. This review discusses the main concepts and ideas assisting the design of such ratiometric thermometers, and identifies the main challenges presented to this nascent field: develop nanothermometers for bio-applications and nanomedicine; understand the energy transfer mechanisms determining the thermal sensitivity; achieve effective primary thermometers; realize multifunctional nanothermometers; integrate Ln 3+ -based thermometers in commercial products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  20. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  1. A portable luminescence dating instrument

    DEFF Research Database (Denmark)

    Kook, M.H.; Murray, A.S.; Lapp, Torben

    2011-01-01

    in both continuous wave and pulsed mode; photon counting can be gated such that it is active only during the pulse off-period. There are also two bleaching light sources (470nm, 5W and 940nm, 3W), and the luminescence signals can be regenerated using a cold-cathode 30kV X-ray tube, delivering ∼0.06Gy.s−1...

  2. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  3. Luminescence studies on phosphor screens

    International Nuclear Information System (INIS)

    Panayiotakis, G.; Nomikos, C.; Bakas, A.; Proimos, B.

    1994-01-01

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors)

  4. A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite.

    Science.gov (United States)

    Karimi, B; Ramezanzadeh, B

    2017-05-01

    The reinforcement effect of graphene oxide nanosheets on the mechanical properties of an epoxy coating has been extensively studied. However, the effect of graphene oxide quantum dot (GOQD) as a new unique carbon based nanomaterial (with lateral dimension of 5-6nm and thickness of one carbon atom) on the mechanical properties of epoxy coating has not been reported and compared with GO yet. So this study aims at fabrication of a high-performance polymer composite with unique mechanical properties using GOQD nanosheets. GO and GOQD were obtained through two different strategies of "top-down" synthesis from an expandable graphite by a modified Hummers' method and an easy "bottom-up" method by carbonizing citric acid, respectively. The morphology, size distribution, microstructure and chemistry of the GO and GOQD were compared by utilizing X-ray diffraction (XRD) analysis, atomic force microscopy (AFM), high resolution-transmission electron microscopy (HR-TEM), high resolution field-emission scanning electron microscopy (FE-SEM), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS). Results obtained from these analyses confirmed successful synthesize of GOQD and GO nanosheets. The reinforcement effect of GO and GOQD nanosheets on the mechanical properties of the epoxy coating was studied by dynamic mechanical thermal analysis (DMTA) and tensile test. It was found that the GOQD could remarkably enhance the energy of break, Young's modulus, tensile stress and interfacial interactions compared to the neat epoxy and the one reinforced with GO nanosheets. GOQD improved the fracture toughness by factor of 175% and 700% compared to the GO/Epoxy and neat epoxy, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Wei, Song; Yang, Yanchun; Kang, Xiaojiao; Wang, Lan; Huang, Lijian; Pan, Daocheng

    2017-03-06

    Highly luminescent CsPbBr 3 perovskite nanocrystals (PNCs) are homogeneously synthesized by mixing toluene solutions of PbBr 2 and cesium oleate at room temperature in open air. We found that PbBr 2 can be easily dissolved in nonpolar toluene in the presence of tetraoctylammonium bromide, which allows us to homogeneously prepare CsPbBr 3 perovskite quantum dots and prevents the use of harmful polar organic solvents, such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone. Additionally, this method can be extended to synthesize highly luminescent CH 3 NH 3 PbBr 3 perovskite quantum dots. An electroluminescence device with a maximal luminance of 110 cd/m 2 has been fabricated by using high-quality CsPbBr 3 PNCs as the emitting layer.

  6. Luminescent Organic Semiconducting Langmuir Monolayers.

    Science.gov (United States)

    Agina, Elena V; Mannanov, Artur A; Sizov, Alexey S; Vechter, Olga; Borshchev, Oleg V; Bakirov, Artem V; Shcherbina, Maxim A; Chvalun, Sergei N; Konstantinov, Vladislav G; Bruevich, Vladimir V; Kozlov, Oleg V; Pshenichnikov, Maxim S; Paraschuk, Dmitry Yu; Ponomarenko, Sergei A

    2017-05-31

    In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

  7. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  8. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  9. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  10. Discuss on luminescence dose data analysis technology

    International Nuclear Information System (INIS)

    Ma Xinhua; Xiao Wuyun; Ai Xianyun; Shi Zhilan; Liu Ying

    2009-01-01

    This article describes the development of luminescence dose data measurement and processing technology. General design planning of luminescence dose data measurement and processing technology is put forward with the diverse demands. The emphasis is focused on dose data processing method, luminescence curve analysis method, using of network, mechanics of communication among computers, data base management system of individual dose in this paper. The main methods and skills used in this technology as well as their advantages are also discussed. And it offers general design references for development luminescence dose data processing software. (authors)

  11. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  12. The fluorescence decay times and quantum efficiencies of 1,4,5,8-naphthalisoimides

    Energy Technology Data Exchange (ETDEWEB)

    Mazurak, Zbigniew, E-mail: zbigniew.mazurak@cmpw-pan.edu.pl [Center of Polymer and Carbon Materials of Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze (Poland); Wanic, Andrzej [Center of Polymer and Carbon Materials of Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze (Poland); Karolczak, Jerzy [Department of Physics and Center for Ultrafast Laser Spectroscopy, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Czaja, Maria [University of Silesia, Department of Earth Sciences, Będzińska 60, 41-200 Sosnowiec (Poland)

    2015-02-15

    Presented herein are the luminescence properties of several 1,4,5,8- polinahthalisoimides. The luminescence decay curves after deconvolution exhibit three decay times: τ{sub 1}, τ{sub 2}, and τ{sub 3}.The luminescence lifetimes change along with the growth of excitation energy, as well as the contribution of each luminescence decay mechanism (A{sub 1}, A{sub 2}, and A{sub 3}). The manner of change is distinct for one sample, namely, the pure E-isomer, in comparison to the others. The radiative deexcitation coupled with radiationless vibrational energy transfer to other luminescence centers, mainly other isomer units, is discussed as a possible deexcitation mechanism of fluorescence. The Kasha–Vavilov empirical rule is not fulfilled for the studied samples, as the luminescence quantum efficiency (Φ{sub F}) distinctly depends on the excitation wavelength (λ{sub exc}). The quantum yield of one sample (about 63% of Z-isomer) is quite high, at 1%. - Highlights: • The fluorescence decay curves and quantum yields of naphthalimides are presented for the first time. • Luminescence decay curves (3 compounds) and deexcitation processes are discussed. • Fluorescence quantum efficiency measurements did not confirmed Kasha-Vavilov rule. • Large Stokes shift is regard as the main cause of the characteristics of the studied samples.

  13. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  14. A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers.

    Science.gov (United States)

    Gutierrez, Gregory D; Coropceanu, Igor; Bawendi, Moungi G; Swager, Timothy M

    2016-01-20

    A highly efficient thin-film luminescent solar concentrator (LSC) utilizing two π-conjugated polymers as antennae for small amounts of the valued perylene bisimide Lumogen F Red 305 is presented. The LSC exhibits high photoluminescence quantum yield, low reabsorption, and relatively low refractive indices for waveguide matching. A Monte Carlo simulation predicts the LSC to possess exceptionally high optical efficiencies on large scales. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

    Directory of Open Access Journals (Sweden)

    Jana Bomm

    2010-11-01

    Full Text Available Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt % and at a UV-initiator concentration of 0.1 wt % for poly(lauryl methacrylate. Nanorods tend to agglomerate in cellulose triacetate.

  16. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve t...

  17. Eu2+-activated Ba3Ca3(PO4)4 phosphor with doping-concentration dependent luminescence

    Science.gov (United States)

    Tang, Huidong; Yang, Rong; Li, Rongzhu

    2017-10-01

    A color tunable phosphor of Eu2+-activated monophosphate Ba3Ca3(PO4)4 was developed via facile solid-state reaction synthesis. The samples were tested by X-ray powder diffraction (XRD) patterns, morphological properties, luminescence and decay lifetime measurements. The structural characteristics were discussed. The excitation bands of the phosphors cover the UV-, near-UV and blue-wavelength bands extending from 300 to 440 nm. The luminescence spectra of the phosphors show a great dependence on the Eu2+-concentration in Ba3Ca3(PO4)4, which can give blue to yellow emission colors. There are two kinds of Eu2+ centers in Ba3Ca3(PO4)4 lattices, which give yellow (EuI) and blue (EuII) luminescence with the maximum wavelength at 565 nm and 450 nm, respectively. The structural occupations and luminescence properties of EuI and EuII centers were discussed. EuI (yellow center) has a dominant contribution to the total luminescence with the increase of the Eu2+-doping level. The luminescence internal quantum efficiency and thermal stability (activation energy) were reported. The reported results could be helpful for the further potential application of the phosphor.

  18. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region

    International Nuclear Information System (INIS)

    Mayolet, A.

    1995-01-01

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the 'impurity bound exciton' model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author)

  19. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...... in feldspar. © 2015 Elsevier Ltd. All rights reserved....

  20. Violet stimulated luminescence: geo- or thermochronometer?

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Guralnik, Benny; Porat, N.

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ~0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative...

  1. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  2. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    of these processes is, in general, thermally dependent, and leads either to enhancement or quenching of the luminescence with increasing temperature. Previous studies have measured the combined thermal activation characteristics of all three processes, and show a strong dependence on stimulation energy....... In this article, an initial attempt is made to isolate only the recombination part of the luminescence cycle, and determine its thermal characteristics separately. A Variety of luminescence transitions are examined in a range of both alkali and plagioclase feldspars; three distinct emission types are identified...... of the defect. The third category is the most difficult to analyse since it involves irreversible changes in the luminescence characteristics with increasing temperature; we consider these to be due to thermally-induced destruction or creation of luminescence centres. Most of the alkali and plagioclase...

  3. Luminescence detection of irradiated foods

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.

    1990-01-01

    The need for forensic tests to identify irradiated foods has been widely recognised at a time of growing international trade in such products and impending changes in UK and EEC legislation to control the process. This paper outlines the requirements for and of such tests, and discusses recent developments in luminescence approaches aimed at meeting the needs of public analysts, retailers and consumers. Detecting whether or not food has been irradiated, and if so to what dose, is one of the challenges which food irradiation poses to the scientist. (author)

  4. Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings.

    Science.gov (United States)

    Thoury, Mathieu; Delaney, John K; Rie, E René de la; Palmer, Michael; Morales, Kathryn; Krueger, Jay

    2011-08-01

    A comprehensive study of the luminescence properties of cadmium pigments was undertaken to determine whether these properties could be used for in situ identification and mapping of the pigments in paintings. Cadmium pigments are semiconductors that show band edge luminescence in the visible range and deep trap luminescence in the red/infrared range. Emission maxima, quantum yields, and excitation spectra from the band edge and deep trap emissions were studied for sixty commercial cadmium pigments that span the color range from yellow to red (reflectance transition 470 to 660 nm). For paints containing cadmium pigments, luminescence from deep traps was more readily observable than that from the band edge, although the yield varied widely from zero to around 4.5%. Optimal excitation for emission is found to be in the visible for both pigments in powder form and mixed with a medium. The maxima of the deep trap emission shift with the band gap energy, providing a potentially useful way to assign pigment type even when used in pigment mixtures. The usefulness of the results of the study on mockups was demonstrated by the mapping of cadmium pigments of different hues with the aid of calibrated luminescence imaging spectroscopy in a painting by Edward Steichen, entitled Study for 'Le Tournesol' (1920). Analysis of the luminescence image cube reveals at least six unique spectral components, associated with emission from white pigments, paint binder, and cadmium red and yellow pigments. The results were compared with those from X-ray fluorescence spectrometry (XRF) and fiber-optic reflection spectroscopy (FORS) and the results obtained on paint samples containing cadmium pigments. These results show that, when present, the emission from traps can be used as an analytical tool to identify cadmium pigments, to distinguish among cadmium sulfide, cadmium zinc sulfide, and cadmium sulfoselenide, and to map cadmium pigments, even in mixtures.

  5. Luminescent hybrid materials functionalized with lanthanide ethylenodiaminotetraacetate complexes containing β-diketonate as antenna ligands

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Franklin P.; Costa, Israel F.; Espínola, José Geraldo P.; Faustino, Wagner M.; Moura, Jandeilson L. [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Brito, Hermi F.; Paolini, Tiago B. [Departamento de Química Fundamental-Instituto de Química da Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Felinto, Maria Cláudia F.C. [Instituto de Pesquisas energéticas e Nucleares-IPEN, 05508-900 São Paulo, SP (Brazil); Teotonio, Ercules E.S., E-mail: teotonioees@quimica.ufpb.br [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-02-15

    Three organic–inorganic hybrid materials based on silica gel functionalized with (3-aminopropyl)trimethoxysilane (APTS), [3-(2-aminoetilamino)-propil]-trimetoxissilano (DAPTS) and 3-[2-(2-aminoetilamino)etilamino] propiltrimetoxysilane (TAPTS) and subsequently modified with EDTA derivative were prepared by nonhomogeneous route and were then characterized. The resulting materials named SilXN-EDTA (X=1 for APTS, 2 for DAPTS and 3 for TAPTS) were used to obtain new lanthanide Ln{sup 3+}-β-diketonate (Ln{sup 3+}=Eu{sup 3+}, Gd{sup 3+} and Tb{sup 3+}) complexes covalently linked to the functionalized silica gel surfaces (named SilXN-EDTALn-dik, dik=tta, dbm, bzac and acac). The photophysical properties of the new luminescent materials were investigated and compared with those with similar system presenting water molecules coordinated to the lanthanide ions, SilXN-EDTALn-H{sub 2}O. The SilXN-EDTAEu-dik and SilXN-EDTATb-dik systems displayed characteristic red and green luminescence when excited by UV radiation. Furthermore, the quantitative results showed that the emission quantum efficiency (η), experimental intensity parameters Ω{sub 2} and Ω{sub 4}, and Einstein's emission coefficient (A{sub 0J}) of the SilXN-EDTAEu-dik materials were largely dependent on the ligands. Based on the luminescence data, the most efficient intramolecular energy transfer processes were found to the SilXN-EDTAEu-dik (dik: tta and dbm) and SilXN-EDTATb-acac materials, which exhibited more pure emission colors. These materials are promising red and green phosphors, respectively. - Highlights: • New highly luminescent hybrid materials containing lanthanide-EDTA complexes. • The effect of three silylanting agent on the adsorption and luminescent properties has been studied. • The luminescence sensitizing by different β-diketonate ligands have been investigated.

  6. Perovskite-Initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites.

    Science.gov (United States)

    Wong, Ying-Chieh; De Andrew Ng, Jun; Tan, Zhi-Kuang

    2018-04-11

    Metal halide perovskites have demonstrated rich photophysics and remarkable potential in photovoltaic and electroluminescent devices. However, the photoactivity of perovskite semiconductors in chemical processes remains relatively unexplored. Here, a general approach toward the synthesis of luminescent perovskite-polymer nanocomposites is reported, whereby perovskite nanocrystals are used as photoinitiators in the polymerization of vinyl monomers. The white-light illumination of a perovskite-monomer mixture triggers a free-radical chain-growth polymerization process, giving rise to high molecular weight polymers of ≈200 kDa. The in situ growth of polymer chains from the perovskite crystal surface allows the formation of individually dispersed nanocrystal cores within an encapsulating polymer matrix, and leads to a significant threefold enhancement in photoluminescence quantum yield. This photoluminescence enhancement is attributed to the spatial separation of the perovskite nanocrystals and hence the deactivation of energy transfer to dark crystals. The resulting perovskite-polymer nanocomposites exhibit excellent stability against moisture and are shown to be useful as functional downconversion phosphor films for luminescent displays and lighting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Functional silk: colored and luminescent.

    Science.gov (United States)

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Discrete breathers and the anomalous decay of luminescence

    International Nuclear Information System (INIS)

    Mihokova, E; Schulman, L S

    2010-01-01

    Some years ago an anomaly was noted in the decay of luminescence in certain doped alkali halides. The anomaly was eventually explained using a factor 1 billion (10 9 ) slowdown in lattice relaxation, a remarkable stretching of time scales. This slowdown was found to be caused by the creation of a 'breather' in the neighborhood of the dopant. Discrete breathers are nondispersive classical excitations that are known to be significant in many natural systems. Broad ranging reviews of mathematical techniques and physical applications have recently appeared. In the present review we focus on the occurrence of breathers in doped alkali halides. Several more general properties of breathers have arisen from this study and these are presented as well. Among them is the study of the quantum breather, its quantization and stability, a topic less fully explored than the classical theory because it does not yield easily to numerical simulation. (topical review)

  9. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  10. Intraligand Charge Transfer Sensitization on Self-Assembled Europium Tetrahedral Cage Leads to Dual-Selective Luminescent Sensing toward Anion and Cation.

    Science.gov (United States)

    Liu, Cui-Lian; Zhang, Rui-Ling; Lin, Chen-Sheng; Zhou, Li-Peng; Cai, Li-Xuan; Kong, Jin-Tao; Yang, Song-Qiu; Han, Ke-Li; Sun, Qing-Fu

    2017-09-13

    Luminescent supramolecular lanthanide edifices have many potential applications in biology, environments, and materials science. However, it is still a big challenge to improve the luminescent performance of multinuclear lanthanide assemblies in contrast to their mononuclear counterparts. Herein, we demonstrate that combination of intraligand charge transfer (ILCT) sensitization and coordination-driven self-assembly gives birth to bright Eu III tetrahedral cages with a record emission quantum yield of 23.1%. The ILCT sensitization mechanism has been unambiguously confirmed by both time-dependent density functional theory calculation and femtosecond transient absorption studies. Meanwhile, dual-responsive sensing toward both anions and cations has been demonstrated making use of the ILCT transition on the ligand. Without introduction of additional recognition units, high sensitivity and selectivity are revealed for the cage in both turn-off luminescent sensing toward I - and turn-on sensing toward Cu 2+ . This study offers important design principles for the future development of luminescent lanthanide molecular materials.

  11. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  12. Spectrometer for cluster ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Ryuto, H., E-mail: ryuto@kuee.kyoto-u.ac.jp; Sakata, A.; Takeuchi, M.; Takaoka, G. H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510 (Japan); Musumeci, F. [Department of Physics and Astronomy, Catania University, Catania 95123 (Italy); INFN Laboratori Nazionali del Sud, Catania 95123 (Italy)

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  13. A luminescent solar concentrator with 7.1% power conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Bende, E.E.; Burgers, A.R.; Budel, T. [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Pravettoni, M.; Kenny, R.P.; Dunlop, E.D. [Joint Research Centre of the European Commission, Institute for Energy, Renewable Energies Unit, Ispra (Italy); Buechtemann, A. [Fraunhofer-Institute for Applied Polymer Research (FhG-IAP), Golm (Germany)

    2008-12-15

    The luminescent solar concentrator (LSC) consists of a transparent polymer plate, containing luminescent particles. Solar cells are connected to one or more edges of the polymer plate. Incident light is absorbed by the luminescent particles and re-emitted. Part of the light emitted by the luminescent particles is guided towards the solar cells by total internal reflection. Since the edge area is smaller than the receiving one, this allows for concentration of sunlight without the need for solar tracking. External quantum efficiency (EQE) and current-voltage (I -V) measurements were performed on LSC devices with multicrystalline silicon (mc-Si) or GaAs cells attached to the sides. The best result was obtained for an LSC with four GaAs cells. The power conversion efficiency of this device, as measured at European Solar Test Installation laboratories, was 7.1% (geometrical concentration of a factor 2.5). With one GaAs cell attached to one edge only, the power efficiency was still as high as 4.6% (geometrical concentration of a factor 10). To our knowledge these efficiencies are among the highest reported for the LSC. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  14. Luminescent solutions and films of new europium complexes with chelating ligands

    Science.gov (United States)

    Kharcheva, Anastasia V.; Ivanov, Alexey V.; Borisova, Nataliya E.; Kaminskaya, Tatiana P.; Patsaeva, Svetlana V.; Popov, Vladimir V.; Yuzhakov, Viktor I.

    2015-03-01

    The development of new complexes of rare earth elements (REE) with chelating organic ligands opens up the possibility of purposeful alteration in the composition and structure of the complexes, and therefore tuning their optical properties. New ligands possessing two pyridine rings in their structure were synthesized to improve coordination properties and photophysical characteristics of REE compounds. Complexes of trivalent europium with novel chelating ligands were investigated using luminescence and absorption spectroscopy, as well as atomic force microscopy. Luminescence properties of new compounds were studied both for solutions and films deposited on the solid support. All complexes exhibit the characteristic red luminescence of Eu (III) ion with the absolute lumenescence quantum yield in polar acetonitrile solution varying from 0.21 to 1.45 % and emission lifetime ranged from 0.1 to 1 ms. Excitation spectra of Eu coordination complexes correspond with absorption bands of chelating ligand. The energy levels of the triplet state of the new ligands were determined from the phosphorescence at 77 K of the corresponding Gd (III) complexes. The morphology of films of europium complexes with different substituents in the organic ligands was investigated by atomic force microscopy (AFM). It strongly depends both on the type of substituent in the organic ligand, and the rotation speed of the spin-coater. New europium complexes with chelating ligands containing additional pyridine fragments represent outstanding candidates for phosphors with improved luminescence properties.

  15. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters.

    Science.gov (United States)

    Zhang, Pu; Lan, Jing; Wang, Yi; Xiong, Zu Hong; Huang, Cheng Zhi

    2015-01-01

    Silk is an excellent natural material and has been used for a variety of applications. Modification of the pristine silk is usually needed depending on the intended purpose. The technical treatments involved in the modification not only should be easy, rapid, environmentally friendly, and cheap but should also retain the features of the pristine silk. Herein, we demonstrate that luminescent silk and fabric can be produced through nanotechnology. The surface of the natural silk fiber is chemically coated with luminescent gold nanoclusters (AuNCs) composed of tens to hundreds of Au atoms through a redox reaction between the protein-based silk and an Au salt precursor. The luminescent silk coated with AuNCs (called golden silk) possesses good optical properties, including a relatively long wavelength emission, high quantum yields, a long fluorescent lifetime, and photostability. Moreover, golden silk prepared this way has better mechanical properties than pristine silk, is better able to inhibit UV, and has lower toxicity in vitro. This work not only provides an effective strategy for in situ preparation of luminescent metal nanoclusters on a solid substrate but also paves the way for large-scale and industrialized production of novel silk-based materials or fabrics through nanotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Concerning infrared-stimulated luminescence from K-feldspars: evidence from heating before stimulating

    CERN Document Server

    Galloway, R B

    1999-01-01

    Repeated heating and stimulation by infrared of feldspar samples causes a reduction in the luminescence signal. Two feldspars were investigated, one microcline and one orthoclase. Empirically the fraction of luminescence signal f(n) remaining after the nth cycle of heating and stimulation is given by f(n)=1-a ln(n) for laboratory dosed samples of both microcline and orthoclase feldspars, for heating temperatures of 150 deg. C, 180 deg. C and 220 deg. C, for heating durations per cycle ranging from 20 s to 2400 s and with the study covering 10 cycles of heating and stimulation. Logarithmic decay of luminescence with time has been explained previously, in other contexts, as due either to quantum tunnelling or to a continuous distribution of states being involved but it is shown that these explanations do not fit the present data. The measured data on f(n) were corrected for the loss of luminescence due to infrared stimulation to ensure that this did not account for the differences between the data and the expec...

  17. Tuning solid-state blue and red luminescence by the formation of solvate crystals.

    Science.gov (United States)

    Yan, Dongpeng; Fan, Guoling; Guan, Yan; Meng, Qingyun; Li, Congju; Wang, Jiaona

    2013-12-07

    Tuning and controlling the solid-state luminescence of molecular solids play a key role in developing multi-color displays and tunable dye laser. In this work, we report the tunable blue and red luminescence by the formation of solvate crystals of 1,4-bis(5-phenyl-2-oxazolyl)benzene (POPOP) and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). Upon introduction of guest solvents (chloroform and dichloromethane) into the POPOP and DCM host matrices, the obtained solvate crystals exhibit an alternated stacking arrangement, interaction fashion, and crystal symmetry compared with the pristine chromophore solids. Furthermore, the solvates of POPOP (CCl3H) and DCM (CCl2H2) present changeable luminescent properties (such as one-/two-photon emissive wavelength, fluorescence lifetime and photoluminescent quantum yield) in the blue/red regions relative to the pristine POPOP and DCM. In addition, the second harmonic generation can also be obtained for the DCM (CCl2H2) due to the transformation of the centrosymmetric to a non-centrosymmetric structure from pristine DCM. Periodic density functional theoretical calculations suggest that the guest solvents do not participate in the frontier orbital distribution within the solvate crystals. Therefore, by the combination of experimental and theoretical studies on the solvate crystals, this work not only reports the supramolecular assembly of new types of host-guest photoactive systems, but also provides a detailed understanding of the electronic structures of the solid-state luminescent materials.

  18. Effect of particle size and morphology on the properties of luminescence in ZnWO4

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Valiev, D.T.; Tupitsyna, I.A.; Polisadova, E.F.; Oleshko, V.I.; Lisitsyna, L.A.; Andryuschenko, L.A.; Yakubovskaya, A.G.; Vovk, O.M.

    2014-01-01

    We investigated pulsed photoluminescence and pulsed cathodoluminescence in ZnWO 4 crystals and composite materials based on dispersed powders of zinc tungstate in the polymer matrix. It is shown that the size of crystal particles affects the luminescence decay time in excitation by electron and laser radiation. The decay time obtained for the composite material with nanoparticles 25 nm and 100 nm in size is equal to 5 µs and 7 µs, respectively. Relative values of the light yield of composite containing zinc tungstate crystals in the form of rods are found to be larger in comparison with crystallites in the form of grains. The mechanisms of luminescence recombination in laser and electron excitation are discussed. - Highlights: • Pulsed photoluminescence and pulsed cathodoluminescence spectra and decay kinetics of nano- and microcrystals of zinc tungstate in the organosilicic matrix compared to a single crystal were studied. • The luminescence decay kinetics and life-time of the excited state depend on the size of particles in the composite materials and on the type of excitation. • The probability of excitation of luminescence centers responsible for the band at 490 nm is higher which is apparently due to the larger capture cross-section and quantum yield

  19. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  20. The Enhanced Intramolecular Energy Transfer and Strengthened ff Luminescence of a Stable Helical Eu Complex in Ionic Liquids.

    Science.gov (United States)

    Hasegawa, Yuki; Ishii, Ayumi; Inazuka, Yudai; Yajima, Naho; Kawaguchi, Shogo; Sugimoto, Kunihisa; Hasegawa, Miki

    2018-01-24

    The luminescence of a Eu complex (EuL) is enhanced by stabilization of the coordination structure in highly viscous ionic liquids. The EuL was found to maintain a stable single helical structure both in organic solvents and in the ionic liquids [BMIM][PF₆] and [EMIM][PF₆]. A colorless solution of EuL dissolved in [BMIM][PF₆] exhibits bright red luminescence with a quantum yield of 32.3%, a value that is much higher than that in acetonitrile (12%). Estimated rate constants for the energy relaxation pathway indicate that the energy transfer efficiency is enhanced in [BMIM][PF₆] as a result of the suppression of molecular fluctuations in the ligands. Additionally, a highly luminescent helical structure is preserved in [EMIM][PF₆] up to 120 °C.

  1. Luminescence spectroscopy of quantum cutting phosphors : materials, measurements and mechanisms

    NARCIS (Netherlands)

    Vergeer, Peter

    2005-01-01

    The industrial drive for this research is to find new phosphors for application in mercury-free fluorescent lamps and plasma display panels. The vacuum-ultraviolet (VUV) excitation light that is used in these devices allows for the use of phosphors that show emission of two photons for each photon

  2. Nanocrystals for luminescent solar concentrators.

    Science.gov (United States)

    Bradshaw, Liam R; Knowles, Kathryn E; McDowall, Stephen; Gamelin, Daniel R

    2015-02-11

    Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.

  3. Optics of colloidal quantum-confined CdSe nanoscrolls

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, R B; Sokolikova, M S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Vitukhnovskii, A G; Ambrozevich, S A; Selyukov, A S; Lebedev, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-09-30

    Nanostructures in the form of 1.2-nm-thick colloidal CdSe nanoplatelets rolled into scrolls are investigated. The morphology of these scrolls is analysed and their basic geometric parameters are determined (diameter 29 nm, longitudinal size 100 – 150 nm) by TEM microscopy. Absorption and photoluminescence spectra of these objects are recorded, and the luminescence decay kinetics is studied. It is shown that the optical properties of CdSe nanoscrolls differ significantly from the properties of CdSe quantum dots and that these nanoscrolls are attractive for nanophotonic devices due to large oscillator strengths of the transition, small widths of excitonic peaks and short luminescence decay times. Nanoscrolls can be used to design hybrid organic–inorganic pure-color LEDs with a high luminescence quantum yield and low operating voltages. (optics and technology of nanostructures)

  4. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  5. Luminescence of ions with s2 configuration

    International Nuclear Information System (INIS)

    Steen, A. van der.

    1980-01-01

    Some Bi 3+ -activated oxidic compounds show a red luminescence (e.g. BaSO 4 -Bi 3+ and Ca 2 P 2 O 7 -Bi 3+ ); others show an ultraviolet emission (e.g. LaGaO 3 -Bi 3+ and Ln 2 SO 6 -Bi 3+ (Ln=Y, La, Lu)). This thesis investigates which factors are responsible for these large differences in the position of the emission bands, which factors determine the occurrence of vibrational structure in the luminescence spectra of an s 2 ion and what the influence of the non-radiative processes in the 3 P multiplet is on the luminescence characteristics of the luminescent materials. (Auth.)

  6. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  7. Luminescent Lariat Aza-Crown Ether

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2010-03-01

    Full Text Available Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat ether with triglycol chain by azide–alkyne (Huisgen cycloaddition is presented.

  8. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far...... retrospective assessment of accident doses received by the population after a nuclear accident. The development of new luminescence techniques after the Chernobyl accident has considerably improved the sensitivity and precision in the evaluation of accident doses. This paper reviews the development work......, especially on optically stimulated luminescence methods for retrospective assessment of accident doses carried out at Riso National Laboratory in collaboration with the University of Helsinki as part bf a joint European Union research project. We demonstrate that doses lower than 100 mGy can be measured from...

  9. Quartz as a natural luminescence dosimeter

    Science.gov (United States)

    Preusser, Frank; Chithambo, Makaiko L.; Götte, Thomas; Martini, Marco; Ramseyer, Karl; Sendezera, Emmanuel J.; Susino, George J.; Wintle, Ann G.

    2009-12-01

    Luminescence from quartz is commonly used in retrospective dosimetry, in particular for the dating of archaeological materials and sediments from the Quaternary period. The phenomenon of luminescence is related to the interaction of natural radiation with mineral grains, by the activation of and subsequent trapping of electrons at defects within the quartz lattice. The latent luminescence signal (i.e. the trapped electrons) is released when the grains are exposed to stimulation energy in the form of light or heat. Despite the fact that quartz is most nominally pure SiO 2, the mineral forms in several different geological settings, i.e. under different pressure and temperature conditions. The luminescence emitted from quartz is complex and shows a variety of different components with diverse physical properties. This complexity is explained by the variety of defects in quartz that are either intrinsic (e.g., Si and O vacancies) or related to impurity atoms (e.g., Al or Ti). The concentration of impurity-related defects is dependent on the conditions of mineral formation or subsequent alteration. Experimental data have shown that the luminescence properties of quartz are highly variable with geological source and vary even at a grain-to-grain level within a sediment. As a consequence, caution is needed when making any general statements about the luminescence properties of quartz. When using luminescence measurements as a dating technique, it is necessary to adjust the measurement procedures for each geological provenance. Furthermore, some quartz has luminescence properties that make it problematic, or even unsuitable, for certain applications. These problems can arise from low and changing luminescence sensitivity, thermal transfer of trapped electrons, thermal instability of the trapped electrons and low saturation dose. Reviewing the present knowledge reveals that insufficient information is available either to unambiguously link distinctive lattice defects with

  10. Switching-on quantum size effects in silicon nanocrystals.

    Science.gov (United States)

    Sun, Wei; Qian, Chenxi; Wang, Liwei; Wei, Muan; Mastronardi, Melanie L; Casillas, Gilberto; Breu, Josef; Ozin, Geoffrey A

    2015-01-27

    The size-dependence of the absolute luminescence quantum yield of size-separated silicon nanocrystals reveals a "volcano" behavior, which switches on around 5 nm, peaks at near 3.7-3.9 nm, and decreases thereafter. These three regions respectively define: i) the transition from bulk to strongly quantum confined emissive silicon, ii) increasing confinement enhancing radiative recombination, and iii) increasing contributions favoring non-radiative recombination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  12. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  13. Model for luminescent response of scintillation detectors at low energies; Modelo para la respuesta luminiscente de detectores de centelleo a bajas energias

    Energy Technology Data Exchange (ETDEWEB)

    Cruz G, H.S.; Michaelian P, K.; Menchaca R, A.; Martinez D, A.; Belmont M, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it was used the induced luminescence by incident energetic ions model over a material proposed by K. Michaelian and A. Menchaca (1) which was changed the classic impact parameter for one quantum so seeing whether this one improve or not the model to experimental data at low energies. (Author)

  14. "Rigid" Luminescent Soft Materials: Europium-Containing Lyotropic Liquid Crystals Based on Polyoxyethylene Phytosterols and Ionic Liquids.

    Science.gov (United States)

    Yi, Sijing; Wang, Jiao; Feng, Zhenyu; Chen, Xiao

    2017-10-05

    Soft materials of europium β-diketonate complexes constructed in lyotropic liquid crystals (LLCs) mediated by ionic liquids (ILs) are impressive for their excellent luminescence performance and stability. For the aim to further improve their mechanical processability and luminescent tunablility, the polyoxyethylene phytosterols (BPS-n) were introduced here as structure directing agents to prepare relatively "rigid" lamellar luminescent LLCs in 1-butyl-3-methyl-imidazolium hexafluorophosphate by doping europium β-diketonate complexes with different imidazolium counterions. As a result of the solvophobic sterol ring structure of BPS-n, the more effective isolation and confinement effects of europium complexes could be achieved. The longest fluorescence lifetime and the highest quantum efficiency reported so far for europium containing lyotropic organized soft materials were thus obtained. Changing the molecular structures of BPS-n with different oxyethylene chains or doped complexes with imidazolium counterions of different alkyl chain lengths, the spacings of lamellar LLC matrixes and position of dispersed complexes became tunable. The measured luminescent and rheological properties for such composite LLCs showed a dependence on the rigidity and isolation capability afforded by sterol molecules. It was also found that the increase of counterion alkyl chain length would weaken the LLC matrix's confinement and isolation effects and therefore exhibit the deteriorated luminescence performance. The enhanced luminescence efficiency and stability of doped BPS-n LLCs reflected the excellent segregation of europium complexes from each other and therefore the reduced self-quenching process. The obtained results here present the designability of LLC matrixes and their great potential to promote achieving the luminescence tunability of soft materials.

  15. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  16. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  17. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes

    Science.gov (United States)

    Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang

    2017-11-01

    Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.

  18. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures

    Science.gov (United States)

    Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W.

    1999-11-01

    A fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum-well systems is developed. The resulting many-body hierarchy for the correlation functions is truncated using a dynamical decoupling scheme leading to coupled semiconductor luminescence and Bloch equations. For incoherent excitation conditions, the theory is used to describe nonlinear excitonic emission properties of single-quantum wells, optically coupled multiple quantum-well systems, and quantum wells in a microcavity. Resonant coherent optical excitation leads to a direct coupling between the induced coherent polarization and photoluminescence. The resulting quantum corrections to the semiclassical semiconductor Bloch equations and the coherent contributions to the semiconductor luminescence equations are discussed. The secondary emission in directions deviating from the coherent excitation direction after femtosecond-pulse excitation is studied. Coherent control and quadrature squeezing for the light emission are analyzed.

  19. Optical Fiber Sensing Using Quantum Dots

    Directory of Open Access Journals (Sweden)

    Faramarz Farahi

    2007-12-01

    Full Text Available Recent advances in the application of semiconductor nanocrystals, or quantumdots, as biochemical sensors are reviewed. Quantum dots have unique optical properties thatmake them promising alternatives to traditional dyes in many luminescence basedbioanalytical techniques. An overview of the more relevant progresses in the application ofquantum dots as biochemical probes is addressed. Special focus will be given toconfigurations where the sensing dots are incorporated in solid membranes and immobilizedin optical fibers or planar waveguide platforms.

  20. Color-tunable magnetic and luminescent hybrid nanoparticles: Synthesis, optical and magnetic properties

    International Nuclear Information System (INIS)

    Lou Lei; Yu Ke; Wang Yiting; Zhu Ziqiang

    2012-01-01

    A facile method for synthesizing color-tunable magnetic and luminescent hybrid bifunctional nanoparticles is presented. A series of CdSe/ZnS core-shell quantum dots (QDs) with different sizes were successfully fabricated and self-assembled to Fe 3 O 4 magnetic nanoparticles (MNP), which were subsequently coated with a polyethyleneimine (PEI) layer to prevent large aggregates. The hydrophobic QDs capped with trioctylphosphine oxide (TOPO) formed a coating surrounding MNP, and were transferred into hydrophilic phase by PEI with high efficiency. The samples were characterized by TEM, FT-IR, XRD, EDS, UV-vis spectrophotometer, fluorescent spectrophotometer and PPMS. Results show that the original properties of the nanoparticles were well-preserved in the hybrid structure. All MNP-QDs hybrid nanoparticles showed paramagnetic behavior and the nanocomposites were still highly luminescent with no shift in the PL peak position.

  1. Quantum Multiverses

    OpenAIRE

    Hartle, James B.

    2018-01-01

    A quantum theory of the universe consists of a theory of its quantum dynamics and a theory of its quantum state The theory predicts quantum multiverses in the form of decoherent sets of alternative histories describing the evolution of the universe's spacetime geometry and matter content. These consequences follow: (a) The universe generally exhibits different quantum multiverses at different levels and kinds of coarse graining. (b) Quantum multiverses are not a choice or an assumption but ar...

  2. Quantum Imaging

    CERN Document Server

    Kolobov, Mikhail I

    2007-01-01

    Quantum Imaging is a newly born branch of quantum optics that investigates the ultimate performance limits of optical imaging allowed by the laws of quantum mechanics. Using the methods and techniques from quantum optics, quantum imaging addresses the questions of image formation, processing and detection with sensitivity and resolution exceeding the limits of classical imaging. This book contains the most important theoretical and experimental results achieved by the researchers of the Quantum Imaging network, a research programme of the European Community.

  3. Quantum Malware

    OpenAIRE

    Wu, Lian-Ao; Lidar, Daniel A.

    2005-01-01

    When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...

  4. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn [State Key Laboratory of Integration Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  5. Beyond quantum

    CERN Document Server

    Khrennikov, Andrei

    2014-01-01

    The present wave of interest in quantum foundations is caused by the tremendous development of quantum information science and its applications to quantum computing and quantum communication. It has become clear that some of the difficulties encountered in realizations of quantum information processing have roots at the very fundamental level. To solve such problems, quantum theory has to be reconsidered. This book is devoted to the analysis of the probabilistic structure of quantum theory, probing the limits of classical probabilistic representation of quantum phenomena.

  6. Light-emitting-diode Lambertian light sources as low-radiant-flux standards applicable to quantitative luminescence-intensity imaging

    Science.gov (United States)

    Yoshita, Masahiro; Kubota, Hidehiro; Shimogawara, Masahiro; Mori, Kaneo; Ohmiya, Yoshihiro; Akiyama, Hidefumi

    2017-09-01

    Planar-type Lambertian light-emitting diodes (LEDs) with a circular aperture of several tens of μ m to a few mm in diameter were developed for use as radiant-flux standard light sources, which have been in strong demand for applications such as quantitative or absolute intensity measurements of weak luminescence from solid-state materials and devices. Via pulse-width modulation, time-averaged emission intensity of the LED devices was controlled linearly to cover a wide dynamic range of about nine orders of magnitude, from 10 μ W down to 10 fW. The developed planar LED devices were applied as the radiant-flux standards to quantitative measurements and analyses of photoluminescence (PL) intensity and PL quantum efficiency of a GaAs quantum-well sample. The results demonstrated the utility and applicability of the LED standards in quantitative luminescence-intensity measurements in Lambertian-type low radiant-flux level sources.

  7. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  8. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.

    2014-01-01

    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers......, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic...

  9. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  10. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  11. Photodegradation in multiple-dye luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Alex M.; Warner, Kathryn E. [School of Science, Pennsylvania State University: Erie, The Behrend College, 4205 College Drive, Erie, PA 16563-0203 (United States); Fontecchio, Paul J. [School of Engineering, Pennsylvania State University: Erie, The Behrend College, 5101 Jordan Road, Erie, PA 16563-1701 (United States); Zhang, Yu-Zhong [Life Technologies Corp., 29851 Willow Creek Road, Eugene, OR 97402 (United States); Wittmershaus, Bruce P., E-mail: bpw2@psu.edu [School of Science, Pennsylvania State University: Erie, The Behrend College, 4205 College Drive, Erie, PA 16563-0203 (United States)

    2013-11-15

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield.

  12. Luminescence dating at Rose cottage cave: a progress report

    CSIR Research Space (South Africa)

    Woodborne, S

    1997-10-01

    Full Text Available Deal with infrared-stimulated luminescence and thermoluminescence dates from Rose Cottage Cave in South Africa. Discrepancy between luminescence and radiocarbon dates; Concentration of radioactive elements in sediments before and after leaching...

  13. Luminescent ceramics for LED conversion

    Science.gov (United States)

    Raukas, M.; Wei, G.; Bergenek, K.; Kelso, J.; Zink, N.; Zheng, Y.; Hannah, M.; Stough, M.; Wirth, R.; Linkov, A.; Jermann, F.; Eisert, D.

    2011-03-01

    Many LED-based applications would benefit from more efficient and/or high lumen output devices that enable usage in both white and single color illumination schemes. In the present article we briefly review the materials research history leading to optical ceramic converters and discuss their typical characteristics. Recently demonstrated high performance values in terms of efficacy and external quantum efficiency in orange (amber) spectral region are described.

  14. Monitoring Temperatures of Tires Using Luminescent Materials

    Science.gov (United States)

    Bencic, Timothy J

    2006-01-01

    A method of noncontact, optical monitoring of the surface temperature of a tire has been devised to enable the use of local temperature rise as an indication of potential or impending failures. The method involves the use of temperature-sensitive paint (or filler): Temperature-sensitive luminescent dye molecules or other luminescent particles are incorporated into a thin, flexible material coating the tire surface of interest. (Alternatively, in principle, the luminescent material could be incorporated directly into the tire rubber, though this approach has not yet been tested.) The coated surface is illuminated with shorter-wavelength light to excite longer-wavelength luminescence, which is observed by use of a charge-coupled-device camera or a photodetector (see Figure 1). If temporally constant illumination is used, then the temperature can be deduced from the known temperature dependence of the intensity response of the luminescence. If pulsed illumination is used, then the temperature can be deduced from the known temperature dependence of the time or frequency response of the luminescence. If sinusoidally varying illumination is used, then the temperature can be deduced from the known temperature dependence of the phase response of the luminescence. Unlike a prior method of monitoring the temperature at a fixed spot on a tire by use of a thermocouple, this method is not restricted to one spot and can, therefore, yield information on the spatial distribution of temperature: in particular, it enables the discovery of newly forming hot spots where damage may be starting. Also unlike in the thermocouple method, the measurements in this method are not vulnerable to breakage of wires in repeated flexing of the tire. Moreover, unlike in another method in which infrared radiation is monitored as an indication of surface temperature, the luminescence measurements in this method are not significantly affected by changes in infrared emissivity. This method has been

  15. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  16. Quantum mechanics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum

  17. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  18. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  19. Electroluminescence in p-InAs/AlSb/InAsSb/AlSb/p(n)-GaSb type II heterostructures with deep quantum wells at the interface

    International Nuclear Information System (INIS)

    Mikhailova, M. P.; Ivanov, E. V.; Moiseev, K. D.; Yakovlev, Yu. P.; Hulicius, E.; Hospodkova, A.; Pangrac, J.; Simecek, T.

    2010-01-01

    Luminescent characteristics of asymmetric p-InAs/AlSb/InAsSb/AlSb/p-GaSb type II heterostructures with deep quantum wells at the heterointerface are studied. The heterostructures were grown by metalorganic vapor phase epitaxy. Intense positive and negative luminescence was observed in the range of photon energies of 0.3-0.4 eV with a forward and reverse bias, respectively. Dependences of the spectra and intensities for positive and negative luminescence on the pumping current and on the temperature are studied in the range of 77-380 K. It is established that, at a temperature higher than 75 deg. C, intensity of negative luminescence surpasses that of positive luminescence by 60%. The suggested heterostructures can be used as lightemitting diodes (photodiodes) with switched positive and negative luminescence in the mid-IR spectral range of 3-4 μm.

  20. Progress in phosphors and filters for luminescent solar concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Broer, D.J.; Debije, M.G.; Keur, W.C.; Meijerink, A.; Ronda, C.R.; Verbunt, P.P.C.

    2012-01-01

    Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introducea phosphor with close-to-optimal luminescent properties and hardlyany reabsorption. A problem for use in a luminescent concentrator isthe large scattering of this

  1. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  2. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  3. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  4. Taking advantage of luminescent lanthanide ions.

    Science.gov (United States)

    Bünzli, Jean-Claude G; Piguet, Claude

    2005-12-01

    Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.).

  5. Plasmon-induced enhancement of yellow-red luminescence in InGaN/Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, K. G., E-mail: belyaev.kirill@mail.ioffe.ru; Usikova, A. A.; Jmerik, V. N.; Kop’ev, P. S.; Ivanov, S. V.; Toropov, A. A.; Brunkov, P. N. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2015-02-15

    A significant (by up to a factor of 7) increase in the internal quantum efficiency of luminescence is achieved at room temperature in semiconductor-metal-insulator hybrid structures fabricated by the successive deposition of gold and Si{sub 3}N{sub 4} over an array of InGaN nanoblocks, grown by molecular-beam epitaxy. The observed effect can be accounted for by the resonant interaction of excitons localized in InGaN nanoblocks with localized surface-plasmon modes in gold intrusions embedded into InGaN and Si{sub 3}N{sub 4}.

  6. A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites

    KAUST Repository

    Pan, Jun

    2017-06-02

    Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.

  7. Luminescent Properties of Zn and Mg Complexes on N-(2-Carboxyphenylsalicylidenimine Basis

    Directory of Open Access Journals (Sweden)

    Alexey Gusev

    2017-08-01

    Full Text Available New zinc and magnesium complexes of N-(2-carboxyphenylsalicylidenimine were synthesized and structurally characterized by elemental analysis, FT-IR, and X-ray single-crystal analysis. These complexes exhibit tuneable luminescence in the solid state from blue to green by varying by metal ion and composition. Moreover, the quantum yields range from 0.11 to 0.41, while lifetimes were determined to be in the nanosecond timescale. Thermal analysis shows that these complexes exhibit good thermal stability and can therefore well be used as electroluminescent materials.

  8. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  9. Spectroscopic properties of colloidal indium phosphide quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  10. X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators.

    Science.gov (United States)

    Kirakci, Kaplan; Kubát, Pavel; Fejfarová, Karla; Martinčík, Jiří; Nikl, Martin; Lang, Kamil

    2016-01-19

    Newly synthesized octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OOC-1-adamantane)6] revealed uncharted features applicable for the development of X-ray inducible luminescent materials and sensitizers of singlet oxygen, O2((1)Δg). The compound exhibits a red-NIR luminescence in the solid state and in solution (e.g., quantum yield of 0.76 in tetrahydrofuran) upon excitation by UV-vis light. The luminescence originating from the excited triplet states is quenched by molecular oxygen to produce O2((1)Δg) with a high quantum yield. Irradiation of the compound by X-rays generated a radioluminescence with the same emission spectrum as that obtained by UV-vis excitation. It proves the formation of the same excited triplet states regardless of the excitation source. By virtue of the described behavior, the compound is suggested as an efficient sensitizer of O2((1)Δg) upon X-ray excitation. The luminescence and radioluminescence properties were maintained upon embedding the compound in polystyrene films. In addition, polystyrene induced an enhancement of the radioluminescence intensity via energy transfer from the scintillating polymeric matrix. Sulfonated polystyrene nanofibers were used for the preparation of nanoparticles which form stable dispersions in water, while keeping intact the luminescence properties of the embedded compound over a long time period. Due to their small size and high oxygen diffusivity, these nanoparticles are suitable carriers of sensitizers of O2((1)Δg). The presented results define a new class of nanoscintillators with promising properties for X-ray inducible photodynamic therapy.

  11. Luminescence dating of glaciofluvial deposits: A review

    Science.gov (United States)

    Thrasher, I. M.; Mauz, B.; Chiverrell, R. C.; Lang, A.

    2009-12-01

    For glacigenic sediments, Optically Stimulated Luminescence (OSL) dating offers an opportunity to date the time of deposition of quartz and feldspar minerals that are ubiquitous within the sediment matrix, rather than relying upon the chance occurrence of organic material for radiocarbon dating. The OSL dating signal or charge accumulates in crystal defects of individual quartz and feldspar minerals through exposure to environmental radiation within their depositional setting. The OSL signal within individual grains can be reset or bleached through exposure to daylight during transportation processes. Thus OSL dating of sediments attempts to determine the time elapsed since burial. Glacigenic sediments present considerable challenges for OSL dating not only in terms of poor bleaching of the OSL signal during the transport and deposition cycle, but also poor quartz luminescence characteristics which are often related to sediment provenance, the nature of the bedrock or source material, and the freshly eroded nature of many such deposits. This paper reviews luminescence dating techniques as applied to glaciofluvial sediments and explores the challenges that such deposits present to the technique. Successful application of OSL techniques can be judged in a number of ways: comparison with the 'independent' chronologies is prevalent in the literature, but recently the movement towards measurement of large numbers of small aliquots and single grains allows a more robust assessment of luminescence properties and behaviour for individual samples and ultimately more precise luminescence ages to be determined. For glaciofluvial sediments in particular, it is important to investigate the depositional sub-environment of each sample in relation to the chance of sufficient bleaching during transport and deposition. A lithofacies-based approach to sampling for optically stimulated luminescence dating of these sediments is suggested whereby hypothetically well-bleached deposits

  12. Synthesis and luminescence of Eu3+ and Tb3+ complexes with novel calix[4]arene ligands carrying 2,2'-bipyridine subunits

    International Nuclear Information System (INIS)

    Sabbatini, N.; Guardigli, M.; Manet, I.; Ungaro, R.; Casnati, A.; Fischer, C.; Ziessel, R.; Ulrich, G.

    1995-01-01

    Eu 3+ and Tb 3+ complexes with novel branched calix[4]arene ligands incorporating 2,2' -bipyridine subunits functionalized in the 6- or 5,5'-positions have been synthesized and their photophysical properties investigated. High luminescence intensity was obtained for the Eu 3+ complex of the calix[4]arene ligand carrying four 5,5' -substituted- 2,2' -bipyridines, which has high molar extinction coefficients (ε max 39 600 M -1 cm -1 ) and a high luminescence quantum yield (15%). (authors). 12 refs., 2 figs., 1 tab

  13. Luminescent nanodiamonds for biomedical applications.

    Science.gov (United States)

    Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C

    2011-12-01

    In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

  14. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps, demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....

  15. Long coherence times in self-assembled semiconductor quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, K.; Hvam, Jørn Märcher

    2002-01-01

    We report measurements of ultra-long coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mueV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....

  16. Quantum memristors

    Science.gov (United States)

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  17. Lanthanide luminescence for functional materials and bio-sciences.

    Science.gov (United States)

    Eliseeva, Svetlana V; Bünzli, Jean-Claude G

    2010-01-01

    Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

  18. Light and pH tunable luminescence in a photochromic bisdiarylethene.

    Science.gov (United States)

    Ortica, Fausto; Cipolloni, Marco; Heynderickx, Arnault; Siri, Olivier; Favaro, Gianna

    2012-05-01

    In this work the luminescence of a bisdiarylethene, containing a benzobis(imidazole) core substituted with two aniline moieties, has been investigated. In previous research, it was found that both acidification and irradiation reversibly triggered colour changes of this compound, thus generating a multi-responsive acidichromic and photochromic system. Intense fluorescence emission, which was detected in several organic solvents, can be an additional light driven signal. In a dioxane/water (1 : 1, v/v) mixture, intensity and spectral position of luminescence have been found to drastically depend on the pH/H0 values of the solutions (pH 5/H0-2 range) due to subsequent protonations (four steps) as the acidity of the solution changes. Alternated irradiations with UV and visible light lead to a decrease and increase, respectively, of the fluorescence intensity, due to the photochromic reaction producing a non-fluorescent compound. Quantum yields and lifetimes of fluorescence were determined as a function of the acidity. The results indicate that protonation shifts the emission to the red and decreases its intensity. The possibility of tuning the colour and intensity of luminescence by both acidification and irradiation generates a multi-switchable "fluorochromic" material.

  19. Non-tinted Transparent Luminescent Solar Concentrators Employing Both UV and NIR Selective Absorbers

    Science.gov (United States)

    Zhao, Yimu; Lunt, Richard

    2014-03-01

    Luminescent solar concentrators are a potentially low-cost solar harvesting solution that additionally offer opportunities for integration around buildings and windows. However, the visible absorption and emission of previously demonstrated chromophores hamper their widespread applications including solar windows. Here, we demonstrate non-tinted transparent luminescent solar concentrators (TLSC) that employ both ultraviolet (UV) and near-infrared (NIR) selective absorbing luminophores that create an entirely new paradigm for power-producing transparent surfaces and enhances the potential over UV-only TLSCs. We have previously designed UV-harvesting systems composed of metal halide phosphorescent luminophore blends that enable absorption cutoff positioned at the edge of visible spectrum (430nm) and massive-downconverted emission in the near-infrared (800nm) with quantum yields for luminescence of 75%. Here, we have developed a complimentary TLSC employing fluorescent organic salts with both efficient NIR absorption and deeper NIR emission. We will discuss the photophysical properties of these luminophores, the impact of ligand-host control, and optimization of the TLSC architectures.

  20. Transparent CuInS2/PMMA nanocomposites luminescent in the visible and NIR region

    International Nuclear Information System (INIS)

    Gugula, Krzysztof; Bredol, Michael

    2014-01-01

    Nanocomposites combining functional nanoparticles and transparent polymers allow for stabilization of filler properties over long periods of time while retaining transparency of the polymer matrix. Here we employ CuInS 2 /ZnS quantum dots (QDs), ternary visible- and NIR-emitting semiconductors as wavelength-tunable luminescent fillers. Luminescence in the near infrared (NIR) is of particular interest in medicine which allows deep penetration into human tissue enabling in vivo diagnostics and treatment, while visible emitters may serve as color converters in displays or lighting. To stabilize the optical properties of QDs and prevent agglomeration, polymethyl metacrylate (PMMA) was chosen as a matrix. These novel polymer nanocomposites (PNCs) show good optical properties and stability under ambient conditions, and can be easily deposited over large areas. High-quality QDs and hydrophobic functionalization with long-chain hydrocarbons are a prerequisite for embedding into a PMMA matrix. Transparent PNC films without visible scattering losses were obtained for 1 wt-% QD loading with respect to the polymer. Partial transparency is retained up to 10 wt-% QD loading and vanishes rapidly at higher loading. Luminescence properties increase up to 5 wt-% and then decrease rapidly due to QD agglomeration and reabsorption between adjacent particles. Potential applications include converter materials for medical applications, laser layers, displays and white LEDs. (orig.)

  1. Reduction of escape cone losses in luminescent solar concentrators with cholesteric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R. [ECN Solar Energy, Petten (Netherlands); Debije, M.G. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2008-08-15

    The Luminescent Solar Concentrator (LSC) consists of a transparent polymer plate, containing luminescent particles. Solar cells are connected to one or more sides of the polymer plate. Part of the light emitted by the luminescent particles is guided towards the solar cells by total internal reflection. About 25% of the dye emission is typically emitted within the optical escape cone of the matrix material and is lost. We study the application of selectively-reflective cholesteric layers to reduce these losses. We have implemented these mirrors in the ray-tracing model for the LSC. The simulations show that an optimum in performance can be obtained, by selecting an appropriate centre wavelength of the cholesteric mirror. External Quantum Efficiency measurements were performed on LSC devices with a mc-Si, GaAs or InGaP cell and a dichroic mirror. This mirror shows a similar behavior as the cholesteric mirror. The results show that for a 5x5 cm{sup 2} LSC the mirror does improve the EQE in the absorption range of the dye.

  2. Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials.

    Science.gov (United States)

    Saeed, Saeed El-Sayed; El-Molla, Mohamed M; Hassan, Mohammad L; Bakir, Esam; Abdel-Mottaleb, Mohamed M S; Abdel-Mottaleb, Mohamed S A

    2014-01-01

    Novel chitosan-ZnO composites have been synthesized as luminescent taggants for cellulosic materials. The synthesized chitosan-ZnO nanospheres (CS-ZnO NS), chitosan-ZnO-oleic acid quantum dots (CS-ZnO-oleic QD) and chitosan-ZnO-oleic acid:Eu(3+) doped nanorods (CS-ZnO-oleic:Eu(3+) NR) were characterized by X-ray diffraction, photoluminescence spectroscopy, FTIR spectroscopy and transmission electron microscopy. The prepared luminescent CS-ZnO composites were used in printing paste and applied to different types of papers and textiles by using screen printing technique. The colorimetric values of the printed CS-ZnO-oleic acid and CS-ZnO-oleic:Eu(3+) showed that printing caused slightly change in color values. Scanning electron microscopy images and color values of the printed surface showed that CS-ZnO-oleic QD and highly luminescence CS-ZnO-olic:Eu(3+) NR are suitable for use as a printed security feature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthesis of Efficiently Green Luminescent CdSe/ZnS Nanocrystals Via Microfluidic Reaction

    Directory of Open Access Journals (Sweden)

    Luan Weiling

    2008-01-01

    Full Text Available AbstractQuantum dots with emission in the spectral region from 525 to 535 nm are of special interest for their application in green LEDs and white-light generation, where CdSe/ZnS core-shell structured nanocrystals (NCs are among promising candidates. In this study, triple-ligand system (trioctylphosphine oxide–oleic acid–oleylamine was designed to improve the stability of CdSe NCs during the early reaction stage. With the precisely controlled reaction temperature (285 °C and residence time (10 s by the recently introduced microfluidic reaction technology, green luminescent CdSe NCs (λ = 522 nm exhibiting narrow FWHM of PL (30 nm was reproducibly obtained. After that, CdSe/ZnS core-shell NCs were achieved with efficient luminescence in the pure green spectral region, which demonstrated high PL QY up to 70% and narrow PL FWHM as 30 nm. The strengthened mass and heat transfer in the microchannel allowed the formation of highly luminescent CdSe/ZnS NCs under low reaction temperature and short residence time (T = 120 °C,t = 10 s. The successful formation of ZnS layer was evidence of the substantial improvement of PL intensity, being further confirmed by XRD, HRTEM, and EDS study.

  4. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  5. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  6. The mensuration of delayed luminescence on ginseng

    Science.gov (United States)

    Xiang, Fenghua; Bai, Hua; Tang, Guoqing

    2008-12-01

    In this paper, the delayed luminescence of ginseng produced from two different areas was determined with the self built bioluminescence detecting system. And the attenuation curve of bioluminescence of the experimental samples were studied, before and after the samples extracted by 58% alcohol. We primarily gave out the parameters describing emitting characteristic. Using the method of optic induced bioluminescence, we also determined the weak luminescence emitting from the ginseng tuber, and find the intensity and decay time having obvious difference from skin and core, with these data we can distinguish the producing area and feature of the ginseng. In the experiment, the light-induce luminescence of the sample was menstruated, which has been infused by water and 58% alcohol; the difference between two kinds of samples which were infused and not infused has been delivered. In order to investigate the effect of excitation-light spectrum component to delayed luminescence of ginseng, a light filter witch allow a wavelength scope of 225nm~420nm pass through was installed between the light source and sample, keeping other work condition unchanged, the bioluminescence was also determined. For investigating the effect of extracting to emitting, the absorption spectrum of above samples ware studied, and the time-sequence of absorption spectrum was obtained. Based on the data obtained from our experiment, we analyzed the radiation mechanism of ginseng slice and tuber.

  7. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  8. Synthesis, spectroscopic, electrochemical and luminescence studies ...

    Indian Academy of Sciences (India)

    hydrazino-5-mercapto-1,2,4-triazole (LH2) as co-ligand were synthesised and characterized by elemental analysis, IR, UV/Vis, 1H NMR spectra and FAB-mass data. The electrochemical and luminescent properties of the complexes were also ...

  9. Studies of positron induced luminescence from polymers

    International Nuclear Information System (INIS)

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-01-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes

  10. Optically stimulated luminescence dating of rock surfaces

    DEFF Research Database (Denmark)

    Sohbati, Reza

    There are many examples of rock surfaces, rock art and stone structures whose ages are of great importance to the understanding of various phenomena in geology, climatology and archaeology. Optically stimulated luminescence (OSL) dating is a well-established chronological tool that has successful...

  11. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 12. Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(III) coordination polymer with 2,5-pyridinedicarboxylic acid. Kranthi Kumar Gangu Anima S Dadhich Saratchandra Babu Mukkamala. Volume 127 Issue 12 ...

  12. Understanding the influence of nanoenvironment on luminescence ...

    Indian Academy of Sciences (India)

    The role of the rare-earth ion concentration, crystal size and crystal phase on the up- and downconversion emission of rare-earth ions in oxide nanocrystals and their underlying mechanisms are discussed. It is also found that the luminescence lifetime of the excited state rare-earth ions is sensitive to the particle crystalline ...

  13. Understanding the influence of nanoenvironment on luminescence ...

    Indian Academy of Sciences (India)

    Understanding the influence of nanoenvironment on luminescence of rare-earth ions. PUSHPAL GHOSH and AMITAVA PATRA∗. Sol-Gel Division, Central Glass & Ceramic Research Institute, Jadavpur, Kolkata 700 032,. India. *Corresponding author. E-mail: apatra@cgcri.res.in. Abstract. This paper presents an overview ...

  14. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  15. Multistate Luminescent Solar Concentrator "Smart" Windows

    NARCIS (Netherlands)

    Sol, Jeroen A.H.P.; Timmermans, Gilles H.; Breugel, van Abraham J.; Schenning, Albertus P.H.J.; Debije, Michael G.

    2018-01-01

    A supertwist liquid crystalline luminescent solar concentrator (LSC) "smart" window is fabricated which can be switched electrically between three states: one designed for increased light absorption and electrical generation (the "dark" state), one for transparency (the "light" state), and one for

  16. Optically stimulated luminescence dating of young sediments

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, Andrew S.

    2009-01-01

    Optically stimulated luminescence (OSL) dating of young (... of OSL dating, outlines the problems specific to the dating of young material, and then uses recent applications to young sediments to illustrate the greatly increased scope and potential of the method in geomorphology and the geology of recent deposits. The overall reliability of this new generation...

  17. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    performed on complex 1 to rationalize its experimental absorption spectra. Complex 1 exhibits luminescence in EtOH ... potential applications in biological systems like, devel- opment of structural and functional models for ... to react with [WOnS4−n] (n = 0-2).11,12 These reactions result in the formation of a large number of ...

  18. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    bustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of. LBPT material consists of two peaks at 204.54 and 251.21◦C. The optimum concentration was 0.005 mol to obtain the higher TL intensity compared to commercial TLD-100 phosphor. The peak shape method was ...

  19. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    6, October 2015, pp. 1527–1531. c Indian Academy of Sciences. Combustion synthesis and preliminary luminescence studies of. LiBaPO4 : Tb. 3+ phosphor. C B PALAN1,∗, N S BAJAJ1, ... MS received 28 April 2015; accepted 8 June 2015. Abstract. ... In CW-OSL mode its sensitivity for beta expo- sure was found to be ...

  20. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    irradiated alkali halide crystals are similar to the luminescence excited by high energy radiation. Ueta et al [11] ... emission, a correlation between the deformation bleaching and mechanoluminescence of coloured alkali ..... [32] V P Zakrevskii, T S Orlova and A V Shuldiner, J. Solid State 37, 675 (1995). [33] C D Clark and ...

  1. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region; Etude des processus d`absorption et de transfert d`energie au sein de materiaux inorganiques luminescents dans le domaine UV et VUV

    Energy Technology Data Exchange (ETDEWEB)

    Mayolet, A

    1995-11-29

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the `impurity bound exciton` model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author) 134 refs.

  2. Quantum computers and quantum computations

    International Nuclear Information System (INIS)

    Valiev, Kamil' A

    2005-01-01

    This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)

  3. Quantum robots and quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  4. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko

    2013-02-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.

  5. Quantum Cosmology

    OpenAIRE

    Kiefer, Claus; Sandhoefer, Barbara

    2008-01-01

    We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler--DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approximation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodyn...

  6. Ring-shaped spatial pattern of exciton luminescence formed due to the hot carrier transport in a locally photoexcited electron-hole bilayer

    Science.gov (United States)

    Paraskevov, A. V.

    2012-06-01

    A consistent explanation of the formation of a ring-shaped pattern of exciton luminescence in GaAs/AlGaAs double quantum wells is suggested. The pattern consists of two concentric rings around the laser excitation spot. It is shown that the luminescence rings appear due to the in-layer transport of hot charge carriers at high photoexcitation intensity. Interestingly, one of two causes of this transport might involve self-organized criticality (SOC) that would be the first case of the SOC observation in semiconductor physics. We test this cause in a many-body numerical model by performing extensive molecular dynamics simulations. The results show good agreement with experiments. Moreover, the simulations have enabled us to identify the particular kinetic processes underlying the formation of each of these two luminescence rings.

  7. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  8. Quantum criticality.

    Science.gov (United States)

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  9. Quantum Computing

    Indian Academy of Sciences (India)

    It was suggested that the dynamics of quantum systems could be used to perform computation in a much more efficient way. After this initial excitement, things slowed down for some time till 1994 when Peter Shor announced his polynomial time factorization algorithm 1 which uses quantum dynamics. The study of quantum ...

  10. Quantum Computing

    Indian Academy of Sciences (India)

    quantum dynamics. The study of quantum systems for computation has come into its own since then. In this article we will look at a few concepts which make this framewor k so powerful. 2. Quantum Physics Basics. Consider an electron (say, in a H atom) with two energy levels (ground state and one excited state). In general ...

  11. Quantum Computing

    Indian Academy of Sciences (India)

    In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.

  12. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of

  13. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  14. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  15. Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: Luminescence application

    International Nuclear Information System (INIS)

    Luwang, Meitram Niraj

    2014-01-01

    The triangular prism shapes of SnO 2 ·xH 2 O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO 2 nanoparticles was studied. There is the quantum size effect in absorption study of SnO 2 nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO 2 nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO 2 nanoparticles in both microemulsion and powder form. SnO 2 nanoparticles show green emission due to oxygen vacancy. SnO 2 nanoparticles when doped with Eu 3+ ions give the enhanced luminescence of Eu 3+ due to the surface mediated energy transfer from SnO 2 to Eu 3+ ion.

  16. A series of new Eu/Tb mixed MOFs with tunable color luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ximing; He, Xingxiang; Shi, Jie; Cui, Chenhui; Xu, Yan [College of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing (China)

    2018-01-17

    Two isostructural lanthanide metal-organic frameworks [Ln-MOFs, Ln = Tb (1), Eu (8)] containing oxalic acid ligand with green, red luminescence were solvothermally synthesized. A series of Eu/Tb mixed MOFs (2-7), (C{sub 5}H{sub 6}N){sub 2}[Eu{sub x}Tb{sub 2-x}(H{sub 2}O){sub 2}(C{sub 2}O{sub 4}){sub 4}].2H{sub 2}O, were designed and obtained, which displayed highly tunable luminescence color by adjusting the excitation wavelength. Complexes 1-8 were characterized by IR, elemental analysis, ICP, powder XRD, and TG measurements. The quantum yields of the complexes 1-8 range from 6.89 to 4.15 %, whereas the fluorescence lifetime of 1-8 varies between 1.12 and 0.87 ms. Therefore, with the increase of the molar ratio of Eu, the quantum yields and fluorescence lifetime of the complexes 1-8 gradually decrease. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Quantum cheques

    Science.gov (United States)

    Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-06-01

    We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.

  18. New cyanopyridone based luminescent liquid crystalline materials: synthesis and characterization.

    Science.gov (United States)

    N, Ahipa T; Adhikari, Airody Vasudeva

    2014-11-01

    A new series of 4-(3,4-bis(akyloxy)phenyl)-6-(4-((1-(4-cyano- or 4-nitro-benzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2-oxo-1,2-dihydropyridine-3-carbonitriles carrying terminal di-alkoxy chain lengths (viz. octyloxy, decyloxy, dodecyloxy, tetradecyloxy and hexadodecyloxy) as well as terminal polar groups -CN or -NO2 have been designed and synthesized successfully as luminescent mesogens. Their thermotropic behaviors have been studied by means of differential scanning calorimetry and polarized optical microscopy. The supramolecular organizations in them were explored by the temperature dependent X-ray diffraction method and their photophysical properties were investigated using UV-visible and fluorescence spectral methods. The mesogenic study reveals that the presence of hydrogen bonds, as well as dimerization between the molecules, is mainly responsible for the formation of the ambient temperature hexagonal columnar phase (Colh) in the new molecules. Their photophysical study indicates that the compounds exhibit a strong absorption band at ∼370 nm and a blue emission band at ∼466 nm with good quantum yields of ∼0.62 when compared to quinine sulphate (Φf = 0.54) in chloroform. Also, the compounds show a slightly red shift in the absorption band with increased solvent polarity. In liquid crystalline films, they display a bathochromic shift in the emission band because of the intimate overlap of molecular cores in the hexagonal columnar phase.

  19. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  20. Effect of Mg.sup.2+./sup. ions co-doping on luminescence and defects formation processes in Gd.sub.3./sub.(Ga,Al).sub.5./sub.O.sub.12./sub.:Ce single crystals

    Czech Academy of Sciences Publication Activity Database

    Babin, Vladimir; Boháček, Pavel; Grigorjeva, L.; Kučera, M.; Nikl, Martin; Zazubovich, S.; Zolotarjovs, A.

    2017-01-01

    Roč. 66, Apr (2017), s. 48-58 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : luminescence * multicomponent garnets * Ce 3+ * Mg 2+ * scintillators Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.238, year: 2016

  1. Onion like growth and inverted many-particle energies in quantum dots

    International Nuclear Information System (INIS)

    Bimberg, D.

    2008-01-01

    Use of surfactants like antimony in MOCVD growth enables novel growth regimes for quantum dots (QDs). The quantum dot ensemble luminescence no longer appears as a single inhomogeneously broadened peak but shows a multi-modal structure. Quantum dot subensembles are forming which differ in height by exactly one monolayer. For the first time the systematic dependence of excitonic properties on quantum dot size and shape can be investigated in detail. Both biexcitonic binding energy and excitonic fine-structure splitting vary from large positive through zero to negative values. Correlation and piezoelectric effects explain the observations

  2. Time-related luminescence spectroscopic investigation of electron trapping and recombination in infrared stimulated luminescence

    Science.gov (United States)

    Wu, J.; Newman, D.; Viney, I.

    2004-11-01

    Infrared stimulated luminescence (ISL) occurred in CaS:Eu,Sm due to formation of luminescent centres Eu2+ and electron trapping centres Sm3+. The electron trapping centres Sm3+ became occupied (forming Sm2+ by trapping excited electrons) in photoluminescence (PL) excitation (PLX) process causing simultaneous ionization of luminescent centres Eu2+ (leaving Eu3+ by losing an electron or capturing a hole). In this paper, the electron trapping in PLX and the recombination in ISL were examined by the time-related PL and ISL spectra of CaS:Eu,Sm. The spectroscopic evidence confirmed that the ISL in CaS:Eu,Sm was produced due to recombination of de-trapped electrons and previously ionized luminescent centres (Eu3+). It was believed that the electron trapping occurred concurrently as occurrence of the PL of Eu2+ in PLX process. However, the recombination of de-trapped electrons and previously ionized luminescent centres took about 10 μs or even more to occur after infrared irradiation.

  3. Luminescence properties of 4-hydroxy-5-phenylpyrido[3,2,1-jk]carbazol-6-one: solvatochromism and sensitivity to amine solution.

    Science.gov (United States)

    Lee, Hyo-Sung; Kim, Hyun-Joon; Kang, Jun-Gill

    2011-08-01

    A detailed photophysical analysis of 4-hydroxy-5-phenylpyrido[3,2,1-jk]carbazol-6-one (HPPCO) is presented. When exposed to UV light, the compound produced deep blue to green luminescence, depending on the solvent. The luminescence peak shifts with the Gutmann donor number (DN) of the solvent and the proton substitution affects luminescence; a correlation between quantum yield and decay time indicated that proton transfer plays a key role in the observed solvatochromism. The ground-state deprotonation of HPPCO was apparently evidenced from the absorption and/or the excitation spectra in the solvents with large DN values. DFT and ZINDO calculations on the structural and optical properties have shown that deprotonation increases the contribution of oxygen atoms to the HOMO, thereby lowering the transition energy from the HOMO to the LUMO. Because the luminescence properties of HPPCO depend on proton transfer, it may be used to detect and quantitate amines in solution. The sensitivity of the luminescence to various amines was ∼10(5) M(-1) and was more effective in ethanol than in methanol. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  4. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  5. Anti-Stokes shift luminescent materials for bio-applications.

    Science.gov (United States)

    Zhu, Xingjun; Su, Qianqian; Feng, Wei; Li, Fuyou

    2017-02-20

    Anti-Stokes shift luminescence is a special optical process, which converts long-wavelength excitation to short-wavelength emission. This unique ability is especially helpful for bio-applications, because the longer-wavelength light source, usually referring to near infrared light, has a larger penetration depth offering a longer working distance for in vivo applications. The anti-Stokes shift luminescence signal can also be distinguished from the auto-fluorescence of biological tissues, thus reducing background interference during bioimaging. Herein, we summarize recent advances in anti-Stokes shift luminescent materials, including lanthanide and triplet-triplet-annihilation-based upconversion nanomaterials, and newly improved hot-band absorption-based luminescent materials. We focus on the synthetic strategies, optical optimization and biological applications as well as present comparative discussions on the luminescence mechanisms and characteristics of these three types of luminescent materials.

  6. Recent progress in biomedical applications of persistent luminescence nanoparticles.

    Science.gov (United States)

    Wang, Jie; Ma, Qinqin; Wang, Yingqian; Shen, Haijing; Yuan, Quan

    2017-05-18

    Persistent luminescence nanoparticles (PLNPs) are an emerging group of promising luminescent materials that can remain luminescent after the excitation ceases. In the past decade, PLNPs with intriguing optical properties have been developed and their applications in biomedicine have been widely studied. Due to the ultra-long decay time of persistent luminescence, autofluorescence interference in biosensing and bioimaging can be efficiently eliminated. Moreover, PLNPs can remain luminescent for hours, making them valuable in bio-tracing. Also, persistent luminescence imaging can guide cancer therapy with a high signal-to-noise ratio (SNR) and superior sensitivity. Briefly, PLNPs are demonstrated to be a newly-emerging class of functional materials with unprecedented advantages in biomedicine. In this review, we summarized recent advances in the preparation of PLNPs and the applications of PLNPs in biosensing, bioimaging and cancer therapy.

  7. Luminescence imaging: a powerful characterization tool for photovoltaic applications

    Science.gov (United States)

    Trupke, T.; Weber, J. W.

    2010-08-01

    Luminescence imaging techniques are increasingly used in photovoltaics (PV) related research and development and in the production of solar cells and modules. Intense research in this area has revealed a variety of material and device parameters that can be measured, generally with very short measurement times and high spatial resolution. While the focus of luminescence imaging R&D has so far been on traditional wafer based silicon solar cells, the principles of luminescence imaging, and its inherent benefits apply generally to other solar cell concepts and can therefore be expected to accelerate progress also with the further development and realization of advanced, so-called third generation solar cell approaches. This paper reviews some fundamental aspects of luminescence, specifically the relation between the luminescence intensity and both the minority carrier lifetime and the diode voltage. Some resulting specific luminescence imaging applications for silicon solar cells will be discussed.

  8. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.; Papakonstantinou, Ioannis, E-mail: i.papakonstantinou@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.

  9. Time-resolved luminescence imaging of intracellular oxygen levels based on long-lived phosphorescent iridium(III) complex.

    Science.gov (United States)

    Liu, Shujuan; Zhang, Yangliu; Liang, Hua; Chen, Zejing; Liu, Ziyu; Zhao, Qiang

    2016-07-11

    Time-resolved luminescence imaging of intracellular oxygen levels has been demonstrated based on long-lived phosphorescent signal. A phosphorescent dinuclear iridium(III) complex Ir1 has been designed and synthesized, which exhibits excellent optical properties, such as high quantum yields, large Stokes shift, high photostability and long emission lifetime. The phosphorescent intensity and lifetime of complex are very sensitive to oxygen levels. Thus, the application of Ir1 for monitoring intracellular oxygen levels has been realized successfully. Especially, utilizing the advantageous long emission lifetime of Ir1, the background fluorescence interference could be eliminated effectively by using the photoluminescence lifetime imaging and time-gated luminescence imaging techniques, improving the signal-to-noise ratios in bioimaging.

  10. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non......), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when...... radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity.Finally we summarise two recently-developed novel facilities to help investigate (i) the time...

  11. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Luminescence of YAB:Er single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Foeldvari, I.; Beregi, E.; Watterich, A. [Research Institute for Solid State Physics and Optics, HAS, Konkoly-Thege u. 29-33, 1121 Budapest (Hungary); Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50422 Wroclaw (Poland)

    2007-03-15

    Luminescence spectra of YAB:Er crystals were studied in the ultraviolet-visible region and in the 10-300 K temperature range. The dominant Er{sup 3+}-emission belonged to the {sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} transition (18000-18500 cm{sup -1}). Its Stark components were assigned and found to be consistent with those derived from the absorption spectra. The lifetime of the luminescence was determined as a function of temperature and Er-concentration, and the decay kinetics was analyzed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  14. Blue luminescence in ZnO single crystals, nanopowders, ceramic

    International Nuclear Information System (INIS)

    LGrigorjeva; Millers, D; Pankratov, V; Kalinko, A; Grabis, J; Monty, C

    2007-01-01

    The luminescence spectra and luminescence decay processes were studied in a ZnO single crystal, nanopowders and ceramic at liquid helium and room temperature under VUV synchrotron radiation as well as under pulsed laser excitation. The exciton-exciton and exciton-multiphonon processes were compared in different ZnO nanopowders (commercial powder, powders obtained by vaporization-condensation technique) and ceramic. The possibility of luminescence decay time modification by Al 3+ doping was shown

  15. Intrinsic luminescence of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, V.I.; Grabovskis, V.Y.; Tolstoi, M.N.; Vitol, I.K.

    1986-09-01

    This study obtains additional information on L centers and their role in electron excitation and intrinsic luminescence of a whole series. (Li, Na, K, Rb, and Cs) of alkali silicate glasses. The authors compare the features of the interaction with radiation of specimens of glass and crystal of a similar chemical composition, since silicates of alkali metals can be obtained in both the glassy and crystalline states.

  16. Luminescent materials incorporating pyrazine or quinoxaline moieties

    OpenAIRE

    Achelle, Sylvain; Baudequin, Christine; Plé, Nelly

    2013-01-01

    International audience; Though the past few decades, the development of new luminescent materials has received a lot of attention due to their applications as fluorescent sensors, in biological microscopy and in optoelectronic devices. Most of these applications are relied on intramolecular charge transfer (ICT). Presence of electron withdrawing N-heterocycles such as pyrazine and quinoxaline rings appeared therefore particularly interesting to be used as electron-attracting part in π-conjuga...

  17. Luminescence dating applied to medieval architecture

    OpenAIRE

    Bouvier, Armel; Pinto, Grégory; Guibert, Pierre; Nicolas-Méry, David; Baylé, Maylis

    2014-01-01

    Avranches’ keep remains constitute a witness of Anglo-Norman knowledge on castle building. Their similarity with other buildings such as Ivry-la-Bataille castle or London Tower required determining the place of Avranches keep in this group: pioneer or imitation? Therefore, samples of brick for luminescence dating were taken from the remaining little tower. Results indicate a chronology later than assumed: second part of the 12th century and first part of 13th century. These dates tend to prov...

  18. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  19. Recombination luminescence in lead tungstate scintillating crystals

    Czech Academy of Sciences Publication Activity Database

    Pazzi, G.P.; Fabeni, P.; Susini, C.; Nikl, Martin; Boháček, Pavel; Mihóková, Eva; Vedda, A.; Martini, M.; Kobayashi, M.; Usuki, Y.

    2004-01-01

    Roč. 38, - (2004), s. 381-384 ISSN 1350-4487 R&D Projects: GA ČR GA202/01/0753 Grant - others:NATO(XX) SfP 973510 Institutional research plan: CEZ:AV0Z1010914 Keywords : lead tungstate * BaMo-doping * radioluminescence * luminescence time decay * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.664, year: 2004

  20. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  1. Kinetics of infrared stimulated luminescence from feldspars

    International Nuclear Information System (INIS)

    Jain, M.; Sohbati, R.; Guralnik, B.; Murray, A.S.; Kook, M.; Lapp, T.; Prasad, A.K.; Thomsen, K.J.; Buylaert, J.P.

    2015-01-01

    We extend the localised transition model based on randomly varying recombination distances (Jain et al., 2012) to include Arrhenius analysis and truncated nearest neighbour distributions. The model makes important predictions regarding a) the physical understanding of the linear intercepts in the Arrhenius analysis for localised recombination systems and b) the relationship between charge depletion and shape of the luminescence decay curves; these predictions are successfully tested by experimental investigations. We demonstrate that this model successfully describes the kinetic behaviour, both thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same electron (dosimetric) trap. The differences in thermal stabilities of the different emissions results from differences in number densities of the recombination sites. The results have implications for understanding the mechanism of the far-red emission, and the spatial distributions of recombination sites in feldspar. - Highlights: • Arrhenius analysis of IRSL based on localized transition model (Jain et al., 2012). • Kinetics of IRSL for the different emission bands. • A new analytical description for IRSL. • Demonstrating that feldspar IRSL is consistent with the predictions of the LTM.

  2. Ion beam induced luminescence of materials

    CERN Document Server

    Brooks, R

    2001-01-01

    luminescence dead zone at the domain walls. Neodymium-yttrium-aluminium garnet (Nd:YAG) was examined and the spectra measured as a function of temperature to show the evolution of intensity of the narrow line emission from the Nd rare earth. Shifts and changes in the intrinsic UV band in the YAG material were also apparent. Thin films of alumina grown on silica on a silicon substrate, along with some that contained copper nanoclusters were also examined. TRIM software was used to model the rate of excitation within the different layers of the material for the various implant energies and to identify the source of the luminescence profile observed in each case. Evidence of thin film interference fringes was apparent in the spectra by fringe patterns modulated onto the luminescence signal as a function of wavelength and film thickness. Analysis of an alkali feldspar material using IBL, and combined with work done using RL and CL experiments, showed a shift towards lower wavelengths of the main red/IR band with ...

  3. Irradiation induced luminescence from ceramic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, K.J.; Cooper, R. [Melbourne Univ., Parkville, VIC (Australia). School of Chemistry

    1998-12-31

    Full text: Point defects created in solids by irradiation produce a range of interesting properties. Such processes are important in, thermoluminescent dosimetry and artefact dating; the development of F-centre lasers, and particularly with the use of ceramic metal oxides as a first-wall insulator in nuclear fusion reactors. Point defect formation is an initial process which can ultimately lead to dielectric breakdown in insulators. Luminescence in the near UV may be used to monitor the formation of point defects by elastic collision processes resulting from electron irradiation. Pulse radiolysis studies using the controlled energy electrons from a Febetron 706 have enabled thresholds to be determined for atomic displacement necessary to produce F type centres. In general, the energy required to displace an oxygen anion in ceramic oxide lattices is of the order of 50 eV and this process requires collisions with high energy electrons of 0.3 MeV or greater. The time-dependent spectroscopy and decay kinetics of luminescence over the time range nanoseconds to milliseconds and at temperatures from ambient to 10K, reveals distinctive features which are interpreted as indicating a multitrap model for recombination luminescence. A model comprising bimolecular electron-hole recombination, in conjunction with unimolecular electron-detrapping will be presented

  4. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    Science.gov (United States)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  5. Weak Measurement and Quantum Correlation

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    Quantum Information. These are resources which can be used to design quantum computer, quantum information processor, quantum communication and quantum information technology. Merging of quantum mechanics and information theory —quantum information science – with important developments like quantum.

  6. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  7. Quantum measurement

    CERN Document Server

    Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari

    2016-01-01

    This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....

  8. Quantum cryptography

    CERN Document Server

    Gilbert, Gerald; Hamrick, Michael

    2013-01-01

    This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...

  9. Luminescence of water or ice as a new detection method for magnetic monopoles

    Directory of Open Access Journals (Sweden)

    Pollmann Anna Obertacke

    2017-01-01

    We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.

  10. Cavity switching : A novel resource for solid-state quantum optics

    NARCIS (Netherlands)

    Sattler, T.; Peinke, E.; Bleuse, J.; Claudon, J.; Vos, W. L.; Gerard, J.M.

    2017-01-01

    We present switching experiments performed on pillar microcavities containing a collection of quantum dots (QDs). Switching events are probed using QD luminescence, after ultrafast optical injection of free carriers. We observe large switching amplitudes (by as much as 20 linewidths), as well as

  11. Formation of an order in a system of exciton condensed phase islands in quantum wells

    OpenAIRE

    Sugakov, V. I.

    2004-01-01

    A theory of exciton condensed phase creation in two-dimensional system is presented. The theory is applied to explain the appearance of the periodical fragmentation which was observed last years in luminescence from the ring around laser spot in crystal with double quantum wells.

  12. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film

    Science.gov (United States)

    Sidorov, A. I.; Lebedev, V. F.; Kobranova, A. A.; Nashchekin, A. V.

    2018-01-01

    We have experimentally shown that nanosecond near-IR pulsed laser ablation of a thin amorphous carbon film produces carbon quantum dots with a graphite structure and nanodiamonds with a characteristic size of 20 - 500 nm on the substrate surface. The formation of these nanostructures is confirmed by electron microscopic images, luminescence spectra and Raman spectra. The mechanisms explaining the observed effects are proposed.

  13. Magneto-photoluminescence study of electronic transitions in InAs/GaAS quantum dot layers

    Czech Academy of Sciences Publication Activity Database

    Kuldová, Karla; Oswald, Jiří; Zeman, Jan; Hulicius, Eduard; Pangrác, Jiří; Melichar, Karel; Šimeček, Tomislav

    2002-01-01

    Roč. 88, - (2002), s. 247-251 ISSN 0921-5107 R&D Projects: GA ČR GA202/99/1613; GA ČR GA102/99/0414 Institutional research plan: CEZ:AV0Z1010914 Keywords : InAs * GaAs * quantum dots * magneto- luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells

    DEFF Research Database (Denmark)

    Hoffmann, J.; Umlauff, M.; Kalt, H.

    1997-01-01

    Thermalization of hot-exciton populations in ZnSe quantum wells occurs on a time scale of 100 ps. Strong exciton-phonon coupling in II-VI semiconductors leads to a direct access to the thermalization dynamics via time-resolved spectroscopy of phonon-assisted luminescence. The experimental spectra...

  15. Quantum Integers

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Klein, Moshe; Mor, Tal

    2010-01-01

    In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.

  16. Quantum information

    CERN Document Server

    Barnett, Stephen M

    2009-01-01

    Quantum information- the subject- is a new and exciting area of science, which brings together physics, information theory, computer science and mathematics. "Quantum Information"- the book- is based on two successful lecture courses given to advanced undergraduate and beginning postgraduate students in physics. The intention is to introduce readers at this level to the fundamental, but offer rather simple, ideas behind ground-breaking developments including quantum cryptography,teleportation and quantum computing. The text is necessarily rather mathematical in style, but the mathema

  17. Quantum mechanics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibard, J.; Joffre, M.

    2008-01-01

    All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)

  18. Quantum information

    International Nuclear Information System (INIS)

    Rodgers, P.

    1998-01-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  19. Quantum computation

    International Nuclear Information System (INIS)

    Deutsch, D.

    1992-01-01

    As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)

  20. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  1. Rapid detection of bacteria by carbon quantum dots.

    Science.gov (United States)

    Mandal, Tapas K; Parvin, Nargish

    2011-12-01

    This work demonstrated a fluorescence measurement method for rapid detection of bacteria and their counting by using water-soluble carbon quantum dots (CQDs) as a fluorescence marker while sewage water bacteria were detection target bacteria. Highly luminescent water-soluble CQDs were prepared by carbonizing waste part of rice straw materials in a furnace under in-sufficient air flow. Bacteria in a LB media with count the total number of bacteria within a shortest time from any sample of environment.

  2. Quantum computation with superconductors

    OpenAIRE

    Irastorza Gabilondo, Amaia

    2017-01-01

    Quantum computation using supercoducting qubits. Qubits are quantum bits used in quantum computers. Superconducting qubits are a strong option for building a quantum computer. But not just that, as they are macroscopic objects they question the limits of quantum physics.

  3. Synthesis, characterization and luminescence of europium perchlorate with MABA-Si complex and coating structure SiO2@Eu(MABA-Si) luminescence nanoparticles.

    Science.gov (United States)

    Fu, Zhi-Fang; Li, Wen-Xian; Bai, Juan; Bao, Jin-Rong; Cao, Xiao-Fang; Zheng, Yu-Shan

    2017-05-01

    This article reports a novel category of coating structure SiO 2 @Eu(MABA-Si) luminescence nanoparticles (NPs) consisting of a unique organic shell, composed of perchlorate europium(III) complex, and an inorganic core, composed of silica. The binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O was synthesized using HOOCC 6 H 4 N(CONH(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 ) 2 (MABA-Si) and was used as a ligand. Furthermore, the as-prepared silica NPs were successfully coated with the -Si(OCH 2 CH 3 ) 3 group of MABA-Si to form Si-O-Si chemical bonds by means of the hydrolyzation of MABA-Si. The binary complexes were characterized by elemental analysis, molar conductivity and coordination titration analysis. The results indicated that the composition of the binary complex was Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O. Coating structure SiO 2 @Eu(MABA-Si) NPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared (IR) spectra. Based on the SEM and TEM measurements, the diameter of core-SiO 2 particles was ~400 and 600 nm, and the thickness of the cladding layer Eu(MABA-Si) was ~20 nm. In the binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O, the fluorescence spectra illustrated that the energy of the ligand MABA-Si transferred to the energy level for the excitation state of europium(III) ion. Coating structure SiO 2 @Eu(MABA-Si) NPs exhibited intense red luminescence compared with the binary complex. The fluorescence lifetime and fluorescence quantum efficiency of the binary complex and of the coating structure NPs were also calculated. The way in which the size of core-SiO 2 spheres influences the luminescence was also studied. Moreover, the luminescent mechanisms of the complex were studied and explained. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Impurities confined in quantum structures

    CERN Document Server

    Holtz, Per Olof

    2004-01-01

    The introduction of impurities, even in very small concentrations, in a semiconductor can change its optical and electrical properties entirely. This attribute of the semiconductor is utilized in the manifoldness of their applications. In this book, the progress on elucidating the physical properties of impurities confined in quantum structures are reviewed with an emphasis on the experimental aspects. The major results of various kinds of characterization, such as infrared spectroscopy, Raman measurements, luminescence characterization, perturbation spectroscopy and dynamical studies of the confined impurities are reviewed, but also the theoretical basis to calculate the electronic structure of the confined donors and acceptors are presented. This monograph also describes more specific aspects of the confined impurities such as the properties in the high doping regime and the effects of hydrogen passivation.

  5. New route for preparation of luminescent mercaptoethanoate ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3 ... Semiconductor quantum dots; chalcogenides; chemical synthesis; photoluminescence. Abstract. We report a synthesis of cadmium selenide quantum dots (Q-CdSe) by refluxing a mixture of cadmium acetate, selenium powder, sodium sulfite and ...

  6. New route for preparation of luminescent mercaptoethanoate ...

    Indian Academy of Sciences (India)

    Wintec

    II–VI materials, especially CdSe quantum dots (Q-CdSe), have shown high quantum yield and size dependent nar- row emissions in entire visible spectrum thus viewed as potential material in the bio-labeling applications. Various methods have been reported for the preparation of Q-CdSe, which can be classified based on ...

  7. Quantum information. Teleportation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Koenneker, Carsten

    2012-01-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  8. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  9. Quantum ensembles of quantum classifiers.

    Science.gov (United States)

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  10. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Aaron Clapp

    2011-11-01

    Full Text Available Luminescent colloidal quantum dots (QDs possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

  11. Quantum Computing

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Hormonal control of luminescence from lantern shark (Etmopterus spinax) photophores.

    Science.gov (United States)

    Claes, Julien M; Mallefet, Jérôme

    2009-11-01

    The velvet belly lantern shark (Etmopterus spinax) emits a blue luminescence from thousands of tiny photophores. In this work, we performed a pharmacological study to determine the physiological control of luminescence from these luminous organs. Isolated photophore-filled skin patches produced light under melatonin (MT) and prolactin (PRL) stimulation in a dose-dependent manner but did not react to classical neurotransmitters. The alpha-melanocyte-stimulating hormone (alpha-MSH) had an inhibitory effect on hormonal-induced luminescence. Because luzindole and 4P-PDOT inhibited MT-induced luminescence, the action of this hormone is likely to be mediated through binding to the MT2 receptor subtype, which probably decreases the intracellular concentration of cyclic AMP (cAMP) because forskolin (a cAMP donor) strongly inhibits the light response to MT. However, PRL seems to achieve its effects via janus kinase 2 (JAK2) after binding to its receptor because a specific JAK2 inhibitor inhibits PRL-induced luminescence. The two stimulating hormones showed different kinetics as well as a seasonal variation of light intensity, which was higher in summer (April) than in winter (December and February). All of these results strongly suggest that, contrary to self-luminescent bony fishes, which harbour a nervous control mechanism of their photophore luminescence, the light emission is under hormonal control in the cartilaginous E. spinax. This clearly highlights the diversity of fish luminescence and confirms its multiple independent apparitions during the course of evolution.

  13. Tuning luminescence intensity of RHO6G dye using silver ...

    Indian Academy of Sciences (India)

    Wintec

    in the presence of different amounts of citrate stabilized silver nanoparticles of size, ∼10 nm. Enhancement as well as quenching of luminescence intensity has been observed and it was found that luminescence intensity can be tuned by adding various amounts of silver nanoparticles to the RHO6G dye dispersion.

  14. Thermoluminescence as a Research Tool to Investigate Luminescence Mechanisms.

    Science.gov (United States)

    Bos, Adrie J J

    2017-11-26

    Thermally stimulated luminescence (TSL) is known as a technique used in radiation dosimetry and dating. However, since the luminescence is very sensitive to the defects in a solid, it can also be used in material research. In this review, it is shown how TSL can be used as a research tool to investigate luminescent characteristics and underlying luminescent mechanisms. First, some basic characteristics and a theoretical background of the phenomenon are given. Next, methods and difficulties in extracting trapping parameters are addressed. Then, the instrumentation needed to measure the luminescence, both as a function of temperature and wavelength, is described. Finally, a series of very diverse examples is given to illustrate how TSL has been used in the determination of energy levels of defects, in the research of persistent luminescence phosphors, and in phenomena like band gap engineering, tunnelling, photosynthesis, and thermal quenching. It is concluded that in the field of luminescence spectroscopy, thermally stimulated luminescence has proven to be an experimental technique with unique properties to study defects in solids.

  15. Performance of Harshaw 6600 thermo-luminescence dosimeter (TLD)

    African Journals Online (AJOL)

    Performance of Harshaw 6600 thermo-luminescence dosimeter (TLD) system for personal monitoring. ... Fading of 19 % of thermo-luminescence (TL) readout was observed in 90 days when TLD chips were stored at room temperature (~ 27º C). The TL sensitivities of chips in three holder types were close to that for Cs-137 ...

  16. Luminescent studies of impurity doped SrS phosphors

    Indian Academy of Sciences (India)

    Unknown

    lated luminescence imaging (Gaslot et al 1982). Recently,. ZnS phosphors prepared by Davies et al (2001) for cathode ray tube showed potential luminescence properties .... (1949) in neutron irradiated LiF. In LiF, a single broad line (linewidth, ~ 100 gauss) with a g-factor of 2⋅008 was observed. A similar centre has been ...

  17. Bright stable luminescent yeast using bacterial luciferase as a sensor.

    NARCIS (Netherlands)

    Szittner, R; Jansen, G.; Thomas, DY; Meighen, E

    2003-01-01

    24h while luminescence of yeast with decanal decayed to less than 0.01% of that with Z-9-tetradecenal after 2min. Moreover, yeast survived in 0.5% (v/v) Z-9-tetradecenal while 0.005% (v/v) decanal was lethal. Luminescence of yeast (+luxAB) was also stimulated 100-fold by transformation with the

  18. Luminescence performance of Eu -doped lead-free zinc phosphate ...

    Indian Academy of Sciences (India)

    These glasses were characterized by several spectroscopic techniques at room temperature. All the glasses showed relatively broad fluorescence excitation and luminescence spectra. Luminescence spectra of these glasses exhibit characteristic emission of Eu3+ ion with an intense and most prominent red emission (614 ...

  19. Tuning luminescence intensity of RHO6G dye using silver ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. The photoluminescence (PL) from rhodamine (RHO6G) dye dispersed in ethanol has been studied in the presence of different amounts of citrate stabilized silver nanoparticles of size, ∼10 nm. Enhancement as well as quenching of luminescence intensity has been observed and it was found that luminescence ...

  20. Method for altering the luminescence of a semiconductor

    Science.gov (United States)

    Barbour, J.C.; Dimos, D.B.

    1999-01-12

    A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region. 4 figs.

  1. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  2. Thermoluminescence as a Research Tool to Investigate Luminescence Mechanisms

    Science.gov (United States)

    2017-01-01

    Thermally stimulated luminescence (TSL) is known as a technique used in radiation dosimetry and dating. However, since the luminescence is very sensitive to the defects in a solid, it can also be used in material research. In this review, it is shown how TSL can be used as a research tool to investigate luminescent characteristics and underlying luminescent mechanisms. First, some basic characteristics and a theoretical background of the phenomenon are given. Next, methods and difficulties in extracting trapping parameters are addressed. Then, the instrumentation needed to measure the luminescence, both as a function of temperature and wavelength, is described. Finally, a series of very diverse examples is given to illustrate how TSL has been used in the determination of energy levels of defects, in the research of persistent luminescence phosphors, and in phenomena like band gap engineering, tunnelling, photosynthesis, and thermal quenching. It is concluded that in the field of luminescence spectroscopy, thermally stimulated luminescence has proven to be an experimental technique with unique properties to study defects in solids. PMID:29186873

  3. Thermoluminescence as a Research Tool to Investigate Luminescence Mechanisms

    NARCIS (Netherlands)

    Bos, A.J.J.

    2017-01-01

    Thermally stimulated luminescence (TSL) is known as a technique used in radiation dosimetry and dating. However, since the luminescence is very sensitive to the defects in a solid, it can also be used in material research. In this review, it is shown how TSL can be used as a research tool to

  4. Luminescence imaging using radionuclides: a potential application in molecular imaging.

    Science.gov (United States)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J; Yoo, Jeongsoo

    2011-04-01

    Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [(32)P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Radionuclides emitting high energy β(+)/β(-) particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [(32)P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Many radionuclides with high energetic β(+) or β(-) particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Preparation and characterization of rare earth luminescent compounds

    International Nuclear Information System (INIS)

    Niinistoe, L.

    1984-01-01

    The luminescence of rare earths and its industrial applications are briefly discussed. The synthesis of activated rare earth oxysulfides and oxyhalides is described. Following analytical techniques for the characterization of the phosphors are discussed: thermal analysis, spark source mass spectrometry, fluorescence spectroscopy, X-ray diffraction, electron microscopy and luminescence lifetime measurements. (Author) [pt

  6. Thermoluminescence as a Research Tool to Investigate Luminescence Mechanisms

    Directory of Open Access Journals (Sweden)

    Adrie J. J. Bos

    2017-11-01

    Full Text Available Thermally stimulated luminescence (TSL is known as a technique used in radiation dosimetry and dating. However, since the luminescence is very sensitive to the defects in a solid, it can also be used in material research. In this review, it is shown how TSL can be used as a research tool to investigate luminescent characteristics and underlying luminescent mechanisms. First, some basic characteristics and a theoretical background of the phenomenon are given. Next, methods and difficulties in extracting trapping parameters are addressed. Then, the instrumentation needed to measure the luminescence, both as a function of temperature and wavelength, is described. Finally, a series of very diverse examples is given to illustrate how TSL has been used in the determination of energy levels of defects, in the research of persistent luminescence phosphors, and in phenomena like band gap engineering, tunnelling, photosynthesis, and thermal quenching. It is concluded that in the field of luminescence spectroscopy, thermally stimulated luminescence has proven to be an experimental technique with unique properties to study defects in solids.

  7. Quantum picturalism

    Science.gov (United States)

    Coecke, Bob

    2010-01-01

    Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly

  8. Quantum Mechanics

    CERN Document Server

    Schwabl, Franz

    2007-01-01

    This represents the introductory course which would precede and so complements the author's book on Advanced Quantum Mechanics. The new edition has been up-dated and thoroughly revised throughout and now includes many new or newly drawn figures which will facilitate an easier understanding of subtle topics. The book meets students' needs in providing detailed mathematical steps along the way, with worked examples and applications throughout the text, and many problems for the reader at the end of each chapter. It contains nonrelativistic quantum mechanics and a short treatment of the quantization of the radiation field. In addition to the essentials, topics such as the theory of measurement, the Bell inequality, decoherence, entanglement and supersymmetric quantum mechanics are discussed. "Any student wishing to develop mathematical skills and deepen their understanding of the technical side of quantum theory will find Schwabl's Quantum Mechanics very helpful". Contemporary Physics

  9. Quantum mechanics

    CERN Document Server

    Rae, Alastair I M

    2016-01-01

    A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...

  10. Quantum gravity

    CERN Document Server

    Kiefer, Claus

    2012-01-01

    The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...

  11. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  12. Quantum computing

    International Nuclear Information System (INIS)

    Steane, Andrew

    1998-01-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from

  13. Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.

    Science.gov (United States)

    He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue

    2015-03-01

    An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses.

    Science.gov (United States)

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A

    2011-08-15

    Visible luminescence of Dy(3+) ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) transitions of Dy(3+). Luminescence decays from (4)F(9/2) state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX(2) (X=F, Cl) content. An introduction of PbX(2) to the borate glass results in the increasing of (4)F(9/2) lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy(3+) and O(2-)/X(-) ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. On the relationship between luminescence excitation spectra and feldspar mineralogy

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnsen, O.

    1996-01-01

    Feldspar minerals can be used as naturally occurring radiation dosemeters, with dose assessment commonly using luminescence techniques. Since many feldspars contain radioactive K-40, knowledge of the mineralogy of the luminescent samples being measured is of high importance. Most feldspars contain...... more than trace amounts of highly luminescent Fe3+ impurities, and this article examines the relationship between features of the luminescence excitation spectrum of this ion with sample mineralogy. It is demonstrated that there is a near linear correspondence between the plagioclase feldspar...... groups. The results are compared with properties of the excitation spectra dose-dependent optically stimulated luminescence (OSL) in order to compare the chemical environment of the OSL donor defect, and the isolated Fe3+ centres....

  16. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  17. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  18. Generalization of secure quantum information exchange to quantum ...

    Indian Academy of Sciences (India)

    Quantum entanglement makes possible many quantum information processing tasks, which are otherwise impossible in classical information theory. Quantum entanglement is widely used in quantum information processing tasks such as quantum teleportation. [5], quantum cryptography [6], quantum superdense coding [7], ...

  19. Thermal luminescence spectroscopy chemical imaging sensor.

    Science.gov (United States)

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

  20. Luminescent properties of praseodymium in some fluorides

    International Nuclear Information System (INIS)

    Potapov, A.S.; Rodnyj, P.A.; Mikhrin, S.B.; Magunov, I.R.

    2005-01-01

    Influence of diverse factors on efficiency of the Pr 3+ cascade emission in BaF 2 : Pr and SrAlF 5 : Pr. The effect of the environment of the luminescence center on the mutual position of the lowest 5d and the 4f level 1 S 0 of Pr 3+ ion is considered. PrF 3 clustering in BaF 2 is observed at a high praseodymium concentration. The promising potential of magnesium as a charge compensator for praseodymium in SrAlF 5 is demonstrated [ru

  1. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  2. Research Update: Luminescence in lead halide perovskites

    Science.gov (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  3. Laser-induced luminescence in hybrid nanofilms

    Science.gov (United States)

    Saifutyarov, R. R.; Khomyakov, A. V.; Akkuzina, A. A.; Avetisov, R. I.; Petrova, O. B.; Avetisov, I. Kh.; Kravchenko, S. V.

    2015-07-01

    Tris(8-hydroxyquinoline) boron (Bq3) was synthesized by a high-temperature exchange reaction. Bq3 powders containing various polymorphous modifications were synthesized, and their photoluminescent characteristics were analyzed. Films of Alq3/B2O3/Al hybrid materials (HMs) were deposited on glass substrates by vacuum thermal evaporation. It is shown that local heating by a diode laser (785 nm) with an intensity of 150 W/cm2 for one second causes irreversible transformation in the HM film structure. The chromaticity coordinates of the photoluminescence of laser-irradiated regions considerably differ from those of the initial HM film luminescence.

  4. Optically Stimulated Luminescence Fundamentals and Applications

    CERN Document Server

    McKeever, Stephen

    2011-01-01

    The book discusses advanced modern applications of optically stimulated luminescence including the appropriate fundamentals of the process. It features major chapters on the use of OSL in space radiation dosimetry, medical physics, personnel dosimetry, security, solid-state physics and other related applications. In each case, the underlying theory is discussed on an as-needed basis for a complete understanding of the phenomena, but with an emphasis of the practical applications of the technique. After an introductory chapter, Chapters 2 to 6 cover basic theory and practical aspects, personal

  5. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  6. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  7. Quantum physics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibart, J.

    1997-01-01

    This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)

  8. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  9. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  10. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  11. Quantum mechanics

    CERN Document Server

    Powell, John L

    2015-01-01

    Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ

  12. Quantum mechanics

    International Nuclear Information System (INIS)

    Rae, A.I.M.

    1981-01-01

    This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)

  13. Quantum Optics

    CERN Document Server

    Garrison, J C

    2008-01-01

    Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor

  14. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  15. Quantum mechanics

    CERN Document Server

    Chowdhury, Sujaul

    2014-01-01

    This book presents comprehensive account of the course for undergraduate students with thorough and complete calculations. The book has been written with the notion that a wave is associated with a material particle i.e. wave and particle coexist. Heisenberg's uncertainty principle has been described in light of this. A chapter is dedicated to mathematical structure of Quantum Mechanics followed by applications to one-dimensional (1D) problems. Orbital and general angular momentum are treated in two separate chapters, the latter also treats addition of angular momentum. Quantum theory of scattering, matrix formulation of Quantum Mechanics variational method and WKB approximation method have also been discussed.

  16. Facile labeling of lipoglycans with quantum dots

    International Nuclear Information System (INIS)

    Morales Betanzos, Carlos; Gonzalez-Moa, Maria; Johnston, Stephen Albert; Svarovsky, Sergei A.

    2009-01-01

    Bacterial endotoxins or lipopolysaccharides (LPS) are among the most potent activators of the innate immune system, yet mechanisms of their action and in particular the role of glycans remain elusive. Efficient non-invasive labeling strategies are necessary for studying interactions of LPS glycans with biological systems. Here we report a new method for labeling LPS and other lipoglycans with luminescent quantum dots. The labeling is achieved by partitioning of hydrophobic quantum dots into the core of various LPS aggregates without disturbing the native LPS structure. The biofunctionality of the LPS-Qdot conjugates is demonstrated by the labeling of mouse monocytes. This simple method should find broad applicability in studies concerned with visualization of LPS biodistribution and identification of LPS binding agents.

  17. Optical quantum memory

    OpenAIRE

    Lvovsky, A. I.; Sanders, B. C.; Tittel, W.

    2010-01-01

    Quantum memory is important to quantum information processing in many ways: a synchronization device to match various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a tool to convert heralded photons to photons-on-demand. In addition to quantum computing, quantum memory would be instrumental for the implementation of long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the m...

  18. Comparison of ZrO2:Y nanocrystals and macroscopic single crystal luminescence

    International Nuclear Information System (INIS)

    Smits, K; Millers, D; Grigorjeva, L; Fidelus, J D; Lojkowski, W

    2007-01-01

    The luminescence spectra of a tetragonally structured ZrO 2 :Y single crystal and nanocrystals were compared. It was found that the number of luminescence centers contributed to the spectra. The excitation of luminescence within the band gap region led to different luminescence spectra for the single crystal and nanocrystal samples, whereas recombinative luminescence spectra were the same for both samples. The origin of this difference is that in the nanocrystals, even under excitation within the band gap, charge carriers were created. Zirconium- oxygen complexes distorted by intrinsic defects were proposed to be the luminescence centres responsible for the wide luminescence band observed

  19. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bromm, A.J. Jr.; Vallarino, L.M. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Chemistry; Leif, R.C. [Newport Instruments, San Diego, CA (United States); Quagliano, J.R. [Los Alamos National Lab., NM (United States)

    1998-12-29

    At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emission of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.

  20. A generalized 2D and 3D white LED device simulator integrating photon recycling and luminescent spectral conversion effects

    Science.gov (United States)

    Ng, Wei-Choon; Letay, Gergö

    2007-02-01

    We report new capabilities in our Sentaurus-Device1 simulator for modeling arbitrarily shaped 2D/3D white LEDs by coupling novel photon recycling, luminescent spectral conversion effects and electrical transport self consistently. In our simulator, the spontaneous emission spectra are embedded in ray tracing, and are allowed to evolve as the rays traverse regions of stimulated gain, absorption, and luminescence. In the active quantum well (QW), the spontaneous emission spectrum can be partially amplified by stimulated gain within a certain energy range and absorbed at higher energies, resulting in a modified spontaneous spectrum. The amplified and absorbed parts of the spectrum give a net recombination/generation rate that is feedback to the electrical transport via the continuity equations. This conceives a novel photon recycling model that includes amplified spontaneous emission. The modified spontaneous spectrum can further be altered by spectral conversion in the luminescent region. In this manner, we capture the important physical effects in white LED structures in a fully coupled and self-consistent electro-opto-thermal simulation.