WorldWideScience

Sample records for biotin protein ligase

  1. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian;

    2015-01-01

    was cultivated without biotin, indicating a suboptimal intracellular concentration of biotin. In an attempt to locate the potential bottleneck, we added pimelic acid, an early biotin precursor, and found that growth rate could be restored fully, which demonstrates that the bottleneck is in pimeloyl-CoA (or...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...

  2. Ligand specificity of group I biotin protein ligase of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sudha Purushothaman

    Full Text Available BACKGROUND: Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP provides the co-factor for catalytic activity of ACC. METHODOLOGY/PRINCIPAL FINDINGS: BPL/BirA (Biotin Protein Ligase, and its substrate, biotin carboxyl carrier protein (BCCP of Mycobacterium tuberculosis (Mt were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the approximately 29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5'AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS. Computational docking of biotin and bio-5'AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5'AMP. Docking simulations also suggest that bio-5'AMP hydrogen bonds to the conserved 'GRGRRG' sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The K(m for BCCP was approximately 5.2 microM and approximately 420 nM for biotin. MtBPL has low affinity (K(b = 1.06x10(-6 M for biotin relative to EcBirA but their K(m are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5'AMP by EcBirA is channeled for its repressor activity. CONCLUSIONS/SIGNIFICANCE: These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.

  3. Diversity in functional organization of class I and class II biotin protein ligase.

    Directory of Open Access Journals (Sweden)

    Sudha Purushothaman

    Full Text Available The cell envelope of Mycobacterium tuberculosis (M. tuberculosis is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA activates apo-biotin carboxyl carrier protein (BCCP by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz, an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL. MtBPL specifically biotinylates homologous BCCP domain, MtBCCP(87, but not EcBCCP(87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the self-biotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over self-biotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-5' AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis.

  4. Structural and functional studies of the biotin protein ligase from Aquifex aeolicus reveal a critical role for a conserved residue in target specificity

    OpenAIRE

    Tron, Cecile M; McNae, Iain W.; Nutley, Margaret; Clarke, David J; Cooper, Alan; Walkinshaw, Malcolm D.; Baxter, Robert L.; Campopiano, Dominic J.

    2009-01-01

    Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5'-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 A resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed β- and γ-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal dom...

  5. An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae.

    Science.gov (United States)

    Parthasarathy, Ranganath; Bajaj, Jitin; Boder, Eric T

    2005-01-01

    The Escherichia coli biotin ligase enzyme BirA has been extensively used in recent years to generate site-specifically biotinylated proteins via a biotin acceptor peptide tag. In the present study, BirA was displayed for the first time on the yeast Saccharomyces cerevisiae using the Aga1p-Aga2p platform and assayed using a peptide-tagged protein as the substrate. The enzyme is fully functional and resembles the soluble form in many of its properties, but the yeast-displayed enzyme demonstrates stability and reusability on the time scale of weeks. Thus, the yeast-displayed BirA system represents a facile and highly economical alternative for producing site-specifically biotinylated proteins.

  6. Force dependent biotinylation of myosin IIA by α-catenin tagged with a promiscuous biotin ligase.

    Directory of Open Access Journals (Sweden)

    Shuji Ueda

    Full Text Available Tissues and organs undergo constant physical perturbations and individual cells must respond to mechanical forces to maintain tissue integrity. However, molecular interactions underlying mechano-transduction are not fully defined at cell-cell junctions. This is in part due to weak and transient interactions that are likely prevalent in force-induced protein complexes. Using in situ proximal biotinylation by the promiscuous biotin ligase BirA tagged to α-catenin and a substrate stretch cell chamber, we sought to identify force-dependent molecular interactions surrounding α-catenin, an actin regulator at the sites of cadherin mediated cell-cell adhesion. While E-cadherin, β-catenin, vinculin and actin localize with α-catenin at cell-cell contacts in immuno-fluorescent staining, only β-catenin and plakoglobin were biotinylated, suggesting that this proximal biotinylation is limited to the molecules that are in the immediate vicinity of α-catenin. In mechanically stretched samples, increased biotinylation of non-muscle myosin IIA, but not myosin IIB, suggests close spatial proximity between α-catenin and myosin IIA during substrate stretching. This force-induced biotinylation diminished as myosin II activity was inhibited by blebbistatin. Taken together, this promising technique enables us to identify force sensitive complexes that may be essential for mechano-responses in force bearing cell adhesion.

  7. Instability of the biotin-protein bond in human plasma.

    Science.gov (United States)

    Bogusiewicz, Anna; Mock, Nell I; Mock, Donald M

    2004-04-15

    Labeling proteins with biotin offers an alternative to labeling with radioisotopes for pharmacokinetic studies in humans. However, stability of the biotin-protein bond is a critical tacit assumption. Using release of biotin from immunoglobulin G as the outcome, we individually evaluated stability of the biotin label produced by six biotinylation agents: biotin PEO-amine, 5-(biotinamido)-pentylamine, iodoacetyl-LC-biotin, NHS-LC-biotin, sulfo-NHS-LC-biotin, and biotin-LC-hydrazide. Each of the six biotinylated proteins was incubated at room temperature for 4h in human plasma or in phosphate-buffered saline (control). Free biotin was separated from the biotinylated protein by ultrafiltration and quantitated by avidin-binding assay. For each biotinylation reagent, biotin release was significantly increased by plasma (p europium-streptavidin by the immobilized biotinylated immunoglobulin G. Consistent with biotin release data, streptavidin capture was reduced by plasma to 8% of control. We conclude that all of the biotinylating agents produce biotin-protein bonds that are susceptible to hydrolysis by factors present in human plasma; five of six are stable in buffer. PMID:15051531

  8. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  9. Protein labelling with avidin-biotin systems

    International Nuclear Information System (INIS)

    The stability of connection in avidin-biotin system is very important due to the quadruple connections with avidin established with the same number of biotin molecules, which can amplify damage on cancer cells and increase specific activity of radio immuno conjugate in white cell. If between the first and second step (Ac Mo-biotin + avidin) enough time is left so that the monoclonal antibody accumulates in a therapeutic concentration required for the tumor or cancerous cells, then upon application of the third step (biotin-DTPA-153 Sm) it is hoped that in the first 30 minutes after application, only radioactivity remains with tumor. However, so that the amount radioactivity is enough to destroy a tumor, it would be necessary to use 153 Sm with an activity of approximately 370 GBq (10 Ci)/ (mg). Since 99m Tc has similar chemistry to that of the 188 Re, it is possible to propose their conjugates with biotin-avidin-Ac Mo-188 Re as a powerful option for therapeutic applications, this is, recommending the use of biotinylated labelled monoclonal antibody and the further injection of avidin to decrease of desirable effects on several other organs and bone marrow and high specific and selective action on tumor. On the other hand, we postulate the hypothesis in the sense that 188 Re complexes tend to be more stable than those of 99m Tc, probably due to their metabolism, in which radioactivity of 188 Re, not captured by tumor, is cleared easily from blood stream which results in a decrease of total and liver total dose in patient. (Author)

  10. Structure and characterization of a novel chicken biotin-binding protein A (BBP-A)

    OpenAIRE

    Johnson Mark S; Rissanen Kari; Nordlund Henri R; Halling Katrin K; Helttunen Kaisa J; Huuskonen Juhani; Niskanen Einari A; Määttä Juha AE; Hytönen Vesa P; Salminen Tiina A; Kulomaa Markku S; Laitinen Olli H; Airenne Tomi T

    2007-01-01

    Abstract Background The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. Results Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A) from ...

  11. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection

    OpenAIRE

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective col...

  12. Structure and characterization of a novel chicken biotin-binding protein A (BBP-A

    Directory of Open Access Journals (Sweden)

    Johnson Mark S

    2007-03-01

    Full Text Available Abstract Background The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. Results Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A from chicken. The BBP-A recombinant protein was expressed using two different expression systems and purified with affinity chromatography, biochemically characterized and two X-ray structures were solved – in complex with D-biotin (BTN and in complex with D-biotin D-sulfoxide (BSO. The BBP-A protein binds free biotin with high, "streptavidin-like" affinity (Kd ~ 10-13 M, which is about 50 times lower than that of chicken avidin. Surprisingly, the affinity of BBP-A for BSO is even higher than the affinity for BTN. Furthermore, the solved structures of the BBP-A – BTN and BBP-A – BSO complexes, which share the fold with the members of the avidin and lipocalin protein families, are extremely similar to each other. Conclusion BBP-A is an avidin-like protein having a β-barrel fold and high affinity towards BTN. However, BBP-A differs from the other known members of the avidin protein family in thermal stability and immunological properties. BBP-A also has a unique ligand-binding property, the ability to bind BTN and BSO at comparable affinities. BBP-A may have use as a novel material in, e.g. modern bio(nanotechnological applications.

  13. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    Science.gov (United States)

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  14. Protein assemblies by site-specific avidin-biotin interactions.

    Science.gov (United States)

    Mori, Yutaro; Minamihata, Kosuke; Abe, Hiroki; Goto, Masahiro; Kamiya, Noriho

    2011-08-21

    Exploiting self-assembly systems with biological building blocks is of significant interest in the fabrication of advanced biomaterials. We assessed the potential use of site-specific ligand labeling of protein building blocks in designing functional protein self-assemblies by combining site-specifically biotinylated bacterial alkaline phosphatase (as a bidentate or tetradentate ligand unit) and streptavidin (as a tetrameric receptor). PMID:21731938

  15. Structural Adaptation of a Thermostable Biotin-binding Protein in a Psychrophilic Environment

    Science.gov (United States)

    Meir, Amit; Bayer, Edward A.; Livnah, Oded

    2012-01-01

    Shwanavidin is an avidin-like protein from the marine proteobactrium Shewanella denitrificans, which exhibits an innate dimeric structure while maintaining high affinity toward biotin. A unique residue (Phe-43) from the L3,4 loop and a distinctive disulfide bridge were shown to account for the high affinity toward biotin. Phe-43 emulates the function and position of the critical intermonomeric Trp that characterizes the tetrameric avidins but is lacking in shwanavidin. The 18 copies of the apo-monomer revealed distinctive snapshots of L3,4 and Phe-43, providing rare insight into loop flexibility, binding site accessibility, and psychrophilic adaptation. Nevertheless, as in all avidins, shwanavidin also displays high thermostability properties. The unique features of shwanavidin may provide a platform for the design of a long sought after monovalent form of avidin, which would be ideal for novel types of biotechnological application. PMID:22493427

  16. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  17. Immobilized sialyltransferase fused to a fungal biotin-binding protein: Production, properties, and applications.

    Science.gov (United States)

    Kajiwara, Hitomi; Tsunashima, Masako; Mine, Toshiki; Takakura, Yoshimitsu; Yamamoto, Takeshi

    2016-04-01

    A β-galactoside α2,6-sialyltransferase (ST) from the marine bacterium Photobacterium sp. JT-ISH-224 with a broad acceptor substrate specificity was fused to a fungal biotin-binding protein tamavidin 2 (TM2) to produce immobilized enzyme. Specifically, a gene for the fusion protein, in which ST from Photobacterium sp. JT-ISH-224 and TM2 were connected via a peptide linker (ST-L-TM2) was constructed and expressed in Escherichia coli. The ST-L-TM2 was produced in the soluble form with a yield of approximately 15,000 unit/300 ml of the E. coli culture. The ST-L-TM2 was partially purified and part of it was immobilized onto biotin-bearing magnetic microbeads. The immobilized ST-L-TM2 onto microbeads could be used at least seven consecutive reaction cycles with no observed decrease in enzymatic activity. In addition, the optimum pH and temperature of the immobilized enzyme were changed compared to those of a free form of the ST. Considering these results, it was strongly expected that the immobilized ST-L-TM2 was a promising tool for the production of various kind of sialoligosaccharides. PMID:26476897

  18. Chicken avidin-related proteins show altered biotin-binding and physico-chemical properties as compared with avidin.

    Science.gov (United States)

    Laitinen, Olli H; Hytönen, Vesa P; Ahlroth, Mervi K; Pentikäinen, Olli T; Gallagher, Ciara; Nordlund, Henri R; Ovod, Vladimir; Marttila, Ari T; Porkka, Eevaleena; Heino, Sanna; Johnson, Mark S; Airenne, Kari J; Kulomaa, Markku S

    2002-01-01

    Chicken avidin and bacterial streptavidin are proteins familiar from their use in various (strept)avidin-biotin technological applications. Avidin binds the vitamin biotin with the highest affinity known for non-covalent interactions found in nature. The gene encoding avidin (AVD) has homologues in chicken, named avidin-related genes (AVRs). In the present study we used the AVR genes to produce recombinant AVR proteins (AVRs 1, 2, 3, 4/5, 6 and 7) in insect cell cultures and characterized their biotin-binding affinity and biochemical properties. Amino acid sequence analysis and molecular modelling were also used to predict and explain the properties of the AVRs. We found that the AVR proteins are very similar to avidin, both structurally and functionally. Despite the numerous amino acid substitutions in the subunit interface regions, the AVRs form extremely stable tetramers similar to those of avidin. Differences were found in some physico-chemical properties of the AVRs as compared with avidin, including lowered pI, increased glycosylation and, most notably, reversible biotin binding for two AVRs (AVR1 and AVR2). Molecular modelling showed how the replacement Lys(111)-->isoleucine in AVR2 alters the shape of the biotin-binding pocket and thus results in reversible binding. Both modelling and biochemical analyses showed that disulphide bonds can form and link monomers in AVR4/5, a property not found in avidin. These, together with the other properties of the AVRs described in the present paper, may offer advantages over avidin and streptavidin, making the AVRs applicable for improved avidin-biotin technological applications. PMID:11964162

  19. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity

    Directory of Open Access Journals (Sweden)

    Vincent eDuplan

    2014-02-01

    Full Text Available Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease.

  20. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity.

    Science.gov (United States)

    Duplan, Vincent; Rivas, Susana

    2014-01-01

    Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease. PMID:24592270

  1. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis.

    Science.gov (United States)

    Ye, Huiyan; Cai, Mingzhu; Zhang, Huimin; Li, Zhencui; Wen, Ronghui; Feng, Youjun

    2016-01-01

    Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus. PMID:27217336

  2. E3Miner: a text mining tool for ubiquitin-protein ligases

    OpenAIRE

    Lee, Hodong; Yi, Gwan-Su; Park, Jong C.

    2008-01-01

    Ubiquitination is a regulatory process critically involved in the degradation of >80% of cellular proteins, where such proteins are specifically recognized by a key enzyme, or a ubiquitin-protein ligase (E3). Because of this important role of E3s, a rapidly growing body of the published literature in biology and biomedical fields reports novel findings about various E3s and their molecular mechanisms. However, such findings are neither adequately retrieved by general text-mining tools nor sys...

  3. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  4. Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ming Xie; Wenyi Wei; Yi Sun

    2013-01-01

    Many biological processes such as cell proliferation,differentiation,and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins.While protein synthesis can be regulated at multiple levels,protein degradation is mainly controlled by the ubiquitin-proteasome system (UPS),which consists of two distinct steps:(1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme,E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase,and (2) subsequent degradation by the 26S proteasome.Among all E3 ubiquitin ligases,the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins.Aberrant regulation of SCF E3 ligases is associated with various human diseases,such as cancers,including skin cancer.In this review,we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer.The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer.Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.

  5. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.

    Science.gov (United States)

    Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng

    2016-03-15

    The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods.

  6. Protein detection on biotin-derivatized polyallylamine by optical microring resonators

    NARCIS (Netherlands)

    Ullien, D.; Harmsma, P.J.; Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Bosma, D.; Sudhölter, E.J.R.; Smet, L.C.P.M. de; Jager, W.F.

    2014-01-01

    Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies v

  7. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  8. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  9. Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation.

    Directory of Open Access Journals (Sweden)

    Jia Shao

    Full Text Available Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis.

  10. Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation.

    Science.gov (United States)

    Shao, Jia; Choe, Vitnary; Cheng, Haili; Tsai, Yien Che; Weissman, Allan M; Luo, Shiwen; Rao, Hai

    2014-01-01

    Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis. PMID:24714645

  11. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  12. Reproductive performance and oviductal expression of avidin and avidin-related protein-2 in young and old broiler breeder hens orally exposed to supplementary biotin.

    Science.gov (United States)

    Daryabari, H; Akhlaghi, A; Zamiri, M J; Mianji, G Rahimi; Pirsaraei, Z Ansari; Deldar, H; Eghbalian, A N

    2014-09-01

    Published data on the probable involvement of avidin and avidin-related protein-2 (AVR2) in sustaining sperm viability in sperm storage tubules in 38-wk-old turkeys, and the high affinity of avidin or its analogs to biotin suggest that supplementary biotin may increase oviductal avidin and AVR2 expression, thereby attenuating the adverse effect of aging on hen reproductive performance. Broiler breeder hens (n = 120) were randomly assigned to receive 0 (T0), 0.30 (T1), or 0.45 (T2) mg of biotin/L of drinking water from 30 to 33 (young) and 53 to 56 (old) wk of age, and artificially inseminated to determine their reproductive performance. At the end of each period of biotin administration, 8 hens from each treatment group were killed for RNA extraction from the uterovaginal junction. Egg production was lower in the old hens (44%) compared with the young ones (82%), and biotin supplementation increased egg production only in the latter. Administering supplementary biotin to young hens increased their oviductal expression of AVR2, which was much higher in the old hens (1.0 and 4.6 for young and old groups, respectively). Fertility rate was not different between young and old hens, and was increased (4.4%) at the higher level of biotin supplementation. Hatchability and hatchling quality were not affected by biotin supplementation. Embryonic mortality between 17 to 21 d of incubation was higher in young (5.2%) compared with old (1.4%) birds. Egg fertility rate showed a moderate correlation (P old-age group (0.04 and 0.17). Regardless of the hen's age, the correlation coefficient of hatchability with avidin or AVR2 expression was very low (-0.16 and 0.18). Overall, the effect of biotin supplementation on AVR2 expression, and the relationship between biotin administration and oviductal expression of avidin and AVR2 was dependent on the hen's age, being higher in the young hens.

  13. Allosteric Transitions Direct Protein Tagging by PafA, the Prokaryotic Ubiquitin-like Protein (Pup) Ligase*

    Science.gov (United States)

    Ofer, Naomi; Forer, Nadav; Korman, Maayan; Vishkautzan, Marina; Khalaila, Isam; Gur, Eyal

    2013-01-01

    Protein degradation via prokaryotic ubiquitin-like protein (Pup) tagging is conserved in bacteria belonging to the phyla Actinobacteria and Nitrospira. The physiological role of this novel proteolytic pathway is not yet clear, although in Mycobacterium tuberculosis, the world's most threatening bacterial pathogen, Pup tagging is important for virulence. PafA, the Pup ligase, couples ATP hydrolysis with Pup conjugation to lysine side chains of protein substrates. PafA is the sole Pup ligase in M. tuberculosis and apparently, in other bacteria. Thus, whereas PafA is a key player in the Pup tagging (i.e. pupylation) system, control of its activity and interactions with target protein substrates remain poorly understood. In this study, we examined the mechanism of protein pupylation by PafA in Mycobacterium smegmatis, a model mycobacterial organism. We report that PafA is an allosteric enzyme that binds its target substrates cooperatively and find that PafA allostery is controlled by the binding of target protein substrates, yet is unaffected by Pup binding. Analysis of PafA pupylation using engineered substrates differing in the number of pupylation sites points to PafA acting as a dimer. These findings suggest that protein pupylation can be regulated at the level of PafA allostery. PMID:23471967

  14. Allosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase.

    Science.gov (United States)

    Ofer, Naomi; Forer, Nadav; Korman, Maayan; Vishkautzan, Marina; Khalaila, Isam; Gur, Eyal

    2013-04-19

    Protein degradation via prokaryotic ubiquitin-like protein (Pup) tagging is conserved in bacteria belonging to the phyla Actinobacteria and Nitrospira. The physiological role of this novel proteolytic pathway is not yet clear, although in Mycobacterium tuberculosis, the world's most threatening bacterial pathogen, Pup tagging is important for virulence. PafA, the Pup ligase, couples ATP hydrolysis with Pup conjugation to lysine side chains of protein substrates. PafA is the sole Pup ligase in M. tuberculosis and apparently, in other bacteria. Thus, whereas PafA is a key player in the Pup tagging (i.e. pupylation) system, control of its activity and interactions with target protein substrates remain poorly understood. In this study, we examined the mechanism of protein pupylation by PafA in Mycobacterium smegmatis, a model mycobacterial organism. We report that PafA is an allosteric enzyme that binds its target substrates cooperatively and find that PafA allostery is controlled by the binding of target protein substrates, yet is unaffected by Pup binding. Analysis of PafA pupylation using engineered substrates differing in the number of pupylation sites points to PafA acting as a dimer. These findings suggest that protein pupylation can be regulated at the level of PafA allostery. PMID:23471967

  15. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Sylvestersen, Kathrine Beck; Young, Clifford;

    2015-01-01

    cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin...... deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p...

  16. The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7

    OpenAIRE

    Tron, Adriana E.; Arai, Takehiro; Duda, David M.; Kuwabara, Hiroshi; Olszewski, Jennifer L.; Fujiwara, Yuko; Bahamon, Brittany N.; Signoretti, Sabina; Schulman, Brenda A.; DeCaprio, James A.

    2012-01-01

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here we show that Glomulin (Glmn), a protein found mutated in the vascular disorder Glomuvenous Malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues and GVM ...

  17. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    International Nuclear Information System (INIS)

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches

  18. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells

    Science.gov (United States)

    Choi, Seung H.; Wright, Jason B.; Gerber, Scott A.; Cole, Michael D.

    2010-01-01

    Rapid Myc protein turnover is critical for maintaining basal levels of Myc activity in normal cells and a prompt response to changing growth signals. We characterize a new Myc-interacting factor, TRPC4AP (transient receptor potential cation channel, subfamily C, member 4-associated protein)/TRUSS (tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein), which is the receptor for a DDB1 (damage-specific DNA-binding protein 1)–CUL4 (Cullin 4) E3 ligase complex for selective Myc degradation through the proteasome. TRPC4AP/TRUSS binds specifically to the Myc C terminus and promotes its ubiquitination and destruction through the recognition of evolutionarily conserved domains in the Myc N terminus. TRPC4AP/TRUSS suppresses Myc-mediated transactivation and transformation in a dose-dependent manner. Finally, we found that TRPC4AP/TRUSS expression is strongly down-regulated in most cancer cell lines, leading to Myc protein stabilization. These studies identify a novel pathway targeting Myc degradation that is suppressed in cancer cells. PMID:20551172

  19. Classificati,Expression Patter,and E3 Ligase Activity Assay of Rice U-Box-Containing Proteins

    Institute of Scientific and Technical Information of China (English)

    Li-Rong Zeng; Chan Ho Park; R.C.Venu; Julian Gough; Guo-Liang Wang

    2008-01-01

    Ubiquitin ligases play a central role in determining the specificity of the ubiquitination system by selecting a myriad of appropriate candidate proteins for modification.The U-box is a recently identified,ubiquitin ligase activityrelated protein domain that shows greater presence in plants than in other organisms.In this study,we identified 77 putative U-box proteins from the rice genome using a battery of whole genome analysis algorithms.Most of the U-box protein genes are expressed,as supported by the identification of their corresponding expressed sequence tags (ESTs),full-length cDNAs,or massively parallel signature sequencing(MPSS)tags.Using the same algorithms,we identified 61 U-box proteins from the Arabidopsis genome.The rice and Arabidopsis U-box proteins were classified into nine major classes based on their domain compositions.Comparison between rice and Arabidopsis U-box proteins indicates that the majority of rice and Arabidopsis U-box proteins have the same domain organizations.The inferred phylogeny established the homology between rice and Arabidopsis U-box/ARM proteins.Cell death assay using the rice protoplast system suggests that one rice U-box gene,OsPU851,might act as a negative regulator of cell death signaling.In addition,the selected U-box proteins were found to be functional E3 ubiquitin ligases.The identification and analysis of rice U-box proteins hereby at the genomic level will help functionally characterize this class of E3 ubiquitin ligase in the future.

  20. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  1. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients. PMID:27295345

  2. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck;

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...... in vivo. In summary, we provide a comprehensive protein-protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases....

  3. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    Science.gov (United States)

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. PMID:22405651

  4. The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7

    Science.gov (United States)

    Tron, Adriana E.; Arai, Takehiro; Duda, David M.; Kuwabara, Hiroshi; Olszewski, Jennifer L.; Fujiwara, Yuko; Bahamon, Brittany N.; Signoretti, Sabina; Schulman, Brenda A.; DeCaprio, James A.

    2012-01-01

    SUMMARY Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here we show that Glomulin (Glmn), a protein found mutated in the vascular disorder Glomuvenous Malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity indicating that Glmn modulates the E3 activity of CRL1Fbw7. These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. PMID:22405651

  5. Overexpression of denticleless E3 ubiquitin protein ligase homolog (DTL) is related to poor outcome in gastric carcinoma

    OpenAIRE

    Kobayashi, Hiroki; Komatsu, Shuhei; Ichikawa, Daisuke; Kawaguchi, Tsutomu; Hirajima, Shoji; Miyamae, Mahito; Okajima, Wataru; Ohashi, Takuma; Kosuga, Toshiyuki; Konishi, Hirotaka; Shiozaki, Atsushi; FUJIWARA, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo

    2015-01-01

    Background Denticleless E3 ubiquitin protein ligase homolog (DTL) has been identified in amplified region (1q32) of several cancers and has an oncogenic function. In this study, we tested whether DTL acts as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). Methods We analyzed 7 GC cell lines and 100 primary tumors that were curatively resected in our hospital between 2001 and 2003. Results Overexpression of the DTL protein was detected in GC cell lines (4/...

  6. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Nielsen, Sofie V; Lindorff-Larsen, Kresten;

    2016-01-01

    conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology...

  7. The Polycomb protein and E3 ubiquitin ligase Ring1B harbors an IRES in its highly conserved 5' UTR.

    Directory of Open Access Journals (Sweden)

    Erwin Boutsma

    Full Text Available Ring1B is an essential member of the highly conserved Polycomb group proteins, which orchestrate developmental processes, cell growth and stem cell fate by modifying local chromatin structure. Ring1B was found to be the E3 ligase that monoubiquitinates histone H2A, which adds a new level of chromatin modification to Polycomb group proteins. Here we report that Ring1B belongs to the exclusive group of proteins that for their translation depend on a stable 5' UTR sequence in their mRNA known as an Internal Ribosome Entry Site (IRES. In cell transfection assays the Ring1B IRES confers significantly higher expression levels of Ring1B than a Ring1B cDNA without the IRES. Also, dual luciferase assays show strong activity of the Ring1B IRES. Although our findings indicate Ring1B can be translated under conditions where cap-dependent translation is impaired, we found the Ring1B IRES to be cap-dependent. This raises the possibility that translational control of Ring1B is a multi-layered process and that translation of Ring1B needs to be maintained under varying conditions, which is in line with its essential role as an E3 ligase for monoubiquitination of histone H2A in the PRC1 Polycomb protein complex.

  8. Synthesis of Biotinylated Inositol Hexakisphosphate To Study DNA Double-Strand Break Repair and Affinity Capture of IP6-Binding Proteins.

    Science.gov (United States)

    Jiao, Chensong; Summerlin, Matthew; Bruzik, Karol S; Hanakahi, Leslyn

    2015-10-20

    Inositol hexakisphosphate (IP6) is a soluble inositol polyphosphate, which is abundant in mammalian cells. Despite the participation of IP6 in critical cellular functions, few IP6-binding proteins have been characterized. We report on the synthesis, characterization, and application of biotin-labeled IP6 (IP6-biotin), which has biotin attached at position 2 of the myo-inositol ring via an aminohexyl linker. Like natural IP6, IP6-biotin stimulated DNA ligation by nonhomologous end joining (NHEJ) in vitro. The Ku protein is a required NHEJ factor that has been shown to bind IP6. We found that IP6-biotin could affinity capture Ku and other required NHEJ factors from human cell extracts, including the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and XLF. Direct binding studies with recombinant proteins show that Ku is the only NHEJ factor with affinity for IP6-biotin. DNA-PKcs, XLF, and the XRCC4:ligase IV complex interact with Ku in cell extracts and likely interact indirectly with IP6-biotin. IP6-biotin was used to tether streptavidin to Ku, which inhibited NHEJ in vitro. These proof-of-concept experiments suggest that molecules like IP6-biotin might be used to molecularly target biologically important proteins that bind IP6. IP6-biotin affinity capture experiments show that numerous proteins specifically bind IP6-biotin, including casein kinase 2, which is known to bind IP6, and nucleolin. Protein binding to IP6-biotin is selective, as IP3, IP4, and IP5 did not compete for binding of proteins to IP6-biotin. Our results document IP6-biotin as a useful tool for investigating the role of IP6 in biological systems. PMID:26397942

  9. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  10. Regulation of immunological and inflammatory functions by biotin.

    Science.gov (United States)

    Kuroishi, Toshinobu

    2015-12-01

    Biotin is a water-soluble B-complex vitamin and is well-known as a co-factor for 5 indispensable carboxylases. Holocarboxylase synthetase (HLCS) catalyzes the biotinylation of carboxylases and other proteins, whereas biotinidase catalyzes the release of biotin from biotinylated peptides. Previous studies have reported that nutritional biotin deficiency and genetic defects in either HLCS or biotinidase induces cutaneous inflammation and immunological disorders. Since biotin-dependent carboxylases involve various cellular metabolic pathways including gluconeogenesis, fatty acid synthesis, and the metabolism of branched-chain amino acids and odd-chain fatty acids, metabolic abnormalities may play important roles in immunological and inflammatory disorders caused by biotin deficiency. Transcriptional factors, including NF-κB and Sp1/3, are also affected by the status of biotin, indicating that biotin regulates immunological and inflammatory functions independently of biotin-dependent carboxylases. An in-vivo analysis with a murine model revealed the therapeutic effects of biotin supplementation on metal allergies. The novel roles of biotinylated proteins and their related enzymes have recently been reported. Non-carboxylase biotinylated proteins induce chemokine production. HLCS is a nuclear protein involved in epigenetic and chromatin regulation. In this review, comprehensive knowledge on the regulation of immunological and inflammatory functions by biotin and its potential as a therapeutic agent is discussed. PMID:26168302

  11. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases

    Institute of Scientific and Technical Information of China (English)

    Weihua Zhou; Wenyi Wei; Yi Sun

    2013-01-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1),Cullin-1,F-box protein) E3 ubiquitin ligases,the founding member of Cullin-RING ligases (CRLs),are the largest family of E3 ubiquitin ligases in mammals.Each individual SCF E3 ligase consists of one adaptor protein SKP1,one scaffold protein cullin-1 (the first family member of the eight cullins),one F-box protein out of 69 family members,and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7.Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context,temporally,and spatially dependent manners,thus controlling precisely numerous important cellular processes,including cell cycle progression,apoptosis,gene transcription,signal transduction,DNA replication,maintenance of genome integrity,and tumorigenesis.To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions,a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized.In this review,we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases,followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s,and discuss the role of each component in mouse embryogenesis,cell proliferation,apoptosis,carcinogenesis,as well as other pathogenic processes associated with human diseases.We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  12. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    Science.gov (United States)

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  13. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3.

    Directory of Open Access Journals (Sweden)

    Nicholas M Chesarino

    2015-08-01

    Full Text Available Interferon (IFN-induced transmembrane protein 3 (IFITM3 is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection.

  14. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  15. A HECT ubiquitin-protein ligase as a novel candidate gene for altered quinine and quinidine responses in Plasmodium falciparum.

    Science.gov (United States)

    Sanchez, Cecilia P; Liu, Chia-Hao; Mayer, Sybille; Nurhasanah, Astutiati; Cyrklaff, Marek; Mu, Jianbing; Ferdig, Michael T; Stein, Wilfred D; Lanzer, Michael

    2014-05-01

    The emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.19 (encoding a HECT ubiquitin ligase). Despite a strong likelihood of association, episomal transfections demonstrated a role for the HECT ubiquitin-protein ligase in quinine and quinidine sensitivity in only a subset of genetic backgrounds, and here the changes in IC50 values were moderate (approximately 2-fold). These data show that quinine responsiveness is a complex genetic trait with multiple alleles playing a role and that more experiments are needed to unravel the role of the contributing factors.

  16. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  17. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B.

    Science.gov (United States)

    Hannah, Jeffrey; Zhou, Pengbo

    2015-11-15

    The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention. PMID:26344709

  18. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M. (WU); (Danforth)

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  19. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA.

    Science.gov (United States)

    Zhong, Bo; Zhang, Lu; Lei, Caoqi; Li, Ying; Mao, Ai-Ping; Yang, Yan; Wang, Yan-Yi; Zhang, Xiao-Lian; Shu, Hong-Bing

    2009-03-20

    Viral infection activates transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. MITA (also known as STING) has recently been identified as an adaptor that links virus-sensing receptors to IRF3 activation. Here, we showed that the E3 ubiquitin ligase RNF5 interacted with MITA in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFNB1 expression, and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. These findings suggest that RNF5 negatively regulates virus-triggered signaling by targeting MITA for ubiquitination and degradation at the mitochondria.

  20. Rice RING protein OSBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Zuhua He; Sihui Zhong; Guojun Li; Qun Li; Bizeng Mao; Yiwen Deng; Huijuan Zhang; Longjun Zeng; Fengming Song

    2011-01-01

    Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including innate immune responses in plants. However, the mechanism of the E3 ligase involvement in plant innate immunity is unclear.We report that a rice gene, OsBBI1, encoding a RING finger protein with E3 ligase activity, mediates broad-spectrum disease resistance. The expression of OSBBI1 was induced by rice blast fungus Magnaporthe oryzae, as well as chemical inducers, benzothiadiazole and salicylic acid. Biochemical analysis revealed that OsBBI1 protein possesses E3ubiquitin ligase activity in vitro. Genetic analysis revealed that the loss of OsBBI1 function in a Tos17-insertion line increased susceptibility, while the overexpression of OsBBI1 in transgenic plants conferred enhanced resistance to multiple races of M.oryzae. This indicates that OsBBI1 modulates broad-spectrum resistance against the blast fungus. The OsBBII-overexpressing plants showed higher levels of H,O, accumulation in cells and higher levels of phenolic compounds and cross-linking of proteins in cell walls at infection sites by M. Oryzae compared with wild-type(WT)plants. The cell walls were thicker in the OsBB11-overexpressing plants and thinner in the mutant plants than in the WT plants. Our results suggest that OsBBH modulates broad-spectrum resistance to blast fungus by modifying cell wall defence responses. The functional characterization of OsBBI1 provides insight into the E3 ligase-mediated innate immunity, and a practical tool for constructing broad-spectrum resistance against the most destructive disease in rice.

  1. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes

    Institute of Scientific and Technical Information of China (English)

    Lei Nie; Ying Zhao; Wei Wu; Yuan-Zheng Yang; Hong-Cheng Wang; Xiao-Hong Sun

    2011-01-01

    Notch signaling controls multiple developmental processes, thus demanding versatile functions. We have previously shown that this may be partly achieved by accelerating ubiquitin-mediated degradation of important regulators of differentiation. However, the underlying mechanism was unknown. We now find that Notch signaling transcriptionally activates the gene encoding ankyrin-repeat SOCS box-containing protein 2(Asb2). Asb2 promotes the ubiquidnation of Notch targets such as E2A and Janus kinase(Jak)2, and a dominant-negative(DN)mutant of Asb2blocks Notch-induced degradation of these proteins. Asb2 likely binds Jak2 directly but associates with E2A through Skp2. We next provide evidence to suggest that Asb2 bridges the formation of non-canonical cullin-based complexes through interaction with not only ElonginB/C and Cullin(Cul)5, but also the F-box-containing protein, Skp2, which is known to associate with Skpl and Cull. Consistently, ablating the function of Cull or Cu15 using DN mutants or siRNAs protected both E2A and Jak2 from Asb2-mediated or Notch-induced degradation. By shifting monomeric E3ligase complexes to dimeric forms through activation of Asb2 transcription, Notch could effectively control the turnover of a variety of substrates and it exerts diverse effects on cell proliferation and differentiation.

  2. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.

    Science.gov (United States)

    Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro

    2015-09-01

    Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70.

  3. Ubiquitin ligase RNF20/40 facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor protein Eg5.

    Science.gov (United States)

    Duan, Yang; Huo, Dawei; Gao, Jie; Wu, Heng; Ye, Zheng; Liu, Zhe; Zhang, Kai; Shan, Lin; Zhou, Xing; Wang, Yue; Su, Dongxue; Ding, Xiang; Shi, Lei; Wang, Yan; Shang, Yongfeng; Xuan, Chenghao

    2016-01-01

    Whether transcriptional regulators are functionally involved in mitosis is a fundamental question in cell biology. Here we report that the RNF20/40 complex, a major ubiquitin ligase catalysing histone H2B monoubiquitination, interacts with the motor protein Eg5 during mitosis and participates in spindle assembly. We show that the RNF20/40 complex monoubiquitinates and stabilizes Eg5. Loss of RNF20/40 results in spindle assembly defects, cell cycle arrest and apoptosis. Consistently, depletion of either RNF20/40 or Eg5 suppresses breast cancer in vivo. Significantly, RNF20/40 and Eg5 are concurrently upregulated in human breast carcinomas and high Eg5 expression is associated with poorer overall survival of patients with luminal A, or B, breast cancer. Our study uncovers an important spindle assembly role of the RNF20/40 complex, and implicates the RNF20/40-Eg5 axis in breast carcinogenesis, supporting the pursuit of these proteins as potential targets for breast cancer therapeutic interventions. PMID:27557628

  4. Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1.

    Directory of Open Access Journals (Sweden)

    Sylvain Gross

    Full Text Available The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1. As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs, namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR. The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated and CAD (CENP-A Distal complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs, we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR.

  5. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase.

    Science.gov (United States)

    Zhou, Yunlei; Yin, Huanshun; Li, Xue; Li, Zhi; Ai, Shiyun; Lin, Hai

    2016-12-15

    A sensitive and selective electrochemical biosensor was fabricated for protein kinase A (PKA) activity assay. Multiple signal amplification techniques were employed including the nanocomposite of gold nanoparticles and carbon nanospheres (Au@C), the biocomposite of SiO2 and streptavidin (SiO2-SA), the composite of AuNPs and biotinylated β-galactosidase (AuNPs-B-Gal) and in situ enzymatic generation of electrochemical activity molecule of p-aminophenol. After peptides were assembled on Au@C modified electrode surface, they were phosphorylated by PKA in the presence of ATP. Then, biotinylated Phos-tag was modified on electrode surface through the specific interaction between Phos-tag and phosphate group. Finally, SiO2-SA and AuNPs-B-Gal were captured through the specific interaction between biotin and streptavidin. Because the electrochemical response of p-aminophenol was directly related to PKA concentration, an innovative electrochemical assay could be realized for PKA detection. The detection limit was 0.014unit/mL. The developed method showed high detection sensitivity and selectivity. In addition, the fabricated biosensor can be also applied to detect PKA in human normal gastricepithelial cell line and human gastric carcinoma cell line with satisfactory results.

  6. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

    NARCIS (Netherlands)

    Reggiori, Fulvio; Pelham, Hugh R B; Reggiori, Fulvio

    2002-01-01

    Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. W

  7. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase.

    Science.gov (United States)

    Matsumura, Yoshihiro; Sakai, Juro; Skach, William R

    2013-10-25

    The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.

  8. Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates.

    Science.gov (United States)

    Loch, Christian M; Eddins, Michael J; Strickler, James E

    2011-06-01

    Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3's profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3's, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2's to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme's function.

  9. Targeted ubiquitination and degradation of G-protein-coupled receptor kinase 5 by the DDB1-CUL4 ubiquitin ligase complex.

    Directory of Open Access Journals (Sweden)

    Ziyan Wu

    Full Text Available The G protein-coupled receptor kinases (GRKs phosphorylate agonist occupied G protein-coupled receptors (GPCRs and desensitize GPCR-mediated signaling. Recent studies indicate they also function non-catalytically via interaction with other proteins. In this study, a proteomic approach was used to screen interacting proteins of GRK5 in MDA-MB-231 cells and HUVEC cells. Mass spectrometry analysis reveals several proteins in the GRK5 immunocomplex including damaged DNA-binding protein 1 (DDB1, an adaptor subunit of the CUL4-ROC1 E3 ubiquitin ligase complex. Co-immunoprecipitation experiments confirmed the association of GRK5 with DDB1-CUL4 complex, and reveal that DDB1 acts as an adapter to link GRK5 to CUL4 to form the complex. Overexpression of DDB1 promoted, whereas knockdown of DDB1 inhibited the ubiquitination of GRK5, and the degradation of GRK5 was reduced in cells deficient of DDB1. Furthermore, the depletion of DDB1 decreased Hsp90 inhibitor-induced GRK5 destabilization and UV irradiation-induced GRK5 degradation. Thus, our study identified potential GRK5 interacting proteins, and reveals the association of GRK5 with DDB1 in cell and the regulation of GRK5 level by DDB1-CUL4 ubiquitin ligase complex-dependent proteolysis pathway.

  10. Evidence Implicating CCNB1IP1, a RING Domain-Containing Protein Required for Meiotic Crossing Over in Mice, as an E3 SUMO Ligase

    Directory of Open Access Journals (Sweden)

    John C. Schimenti

    2010-12-01

    Full Text Available The RING domain-containing protein CCNB1IP1 (Cyclin B1 Interacting Protein 1 is a putative ubiquitin E3 ligase that is essential for chiasmata formation, and hence fertility, in mice. Previous studies in cultured cells indicated that CCNB1IP1 targets Cyclin B for degradation, thus playing a role in cell cycle regulation. Mice homozygous for a mutant allele (mei4 of Ccnb1ip1 display no detectable phenotype other than meiotic failure from an absence of chiasmata. CCNB1IP1 is not conserved in key model organisms such as yeast and Drosophila, and there are no features of the protein that implicate clear mechanisms for a role in recombination. To gain insight into CCNB1IP1’s function in meiotic cells, we raised a specific antibody and determined that the protein appears in pachynema. This indicates that CCNB1IP1 is involved with crossover intermediate maturation, rather than early (leptotene specification of a subset of SPO11-induced double strand breaks towards the crossover pathway. Additionally, a yeast 2-hybrid (Y2H screen revealed that CCNB1IP1 interacts with SUMO2 and a set of proteins enriched for consensus sumoylation sites. The Y2H studies, combined with scrutiny of CCNB1IP1 domains, implicate this protein as an E3 ligase of the sumoylation cascade. We hypothesize CCNB1IP1 represents a novel meiosis-specific SUMO E3 ligase critical to resolution of recombination intermediates into mature chiasmata.

  11. A novel missense mutation of the ubiquitin protein ligase E3A gene in a patient with Angelman syndrome

    Institute of Scientific and Technical Information of China (English)

    BAI Jin-li; QU Yu-jin; ZOU Li-ping; YANG Xin-ying; LIU Li-jun; SONG Fang

    2011-01-01

    Background Angelman syndrome (AS) is a neurogenetic disorder caused by an expression defect of the maternally inherited copy of ubiquitin protein ligase E3A (UBE3A) gene from chromosome 15. Although the most common genetic defects include maternal deletions of chromosome 15q11-13, paternal uniparental disomy and imprinting defect,mutations in the UBE3A gene have been identified in approximately 10% of AS patients.Methods A Chinese girl of 28 months presented clinical manifestation of AS. Genetic diagnosis and molecular genetic defects were studied by methylation-specific PCR (MS-PCR) and linkage analysis by short tandem repeat (STR). We further performed sequence analysis of all the coding exons and flanking sequences of the UBE3A gene. The novel mutation screening was also performed in 100 unrelated healthy individuals to exclude the possibility of identifying a polymorphism variation.Results The MS-PCR analysis of the patient showed biparental inheritance of chromosome 15 with a normal methylation pattern in the 15q11-q13 region. And STR analysis revealed that the patient also inherited biparental alleles for six microsatellites. A novel mutation, cDNA1199 C>A (p. P400H), in exon 9 of the maternal UBE3A gene, was identified in the patient. Meanwhile, the mutation was observed in the patient's mother who had a normal phenotype.Conclusions It is necessary to perform the UBE3A gene mutation analysis in non-deletion/non-UPD/non-ID patients with AS. The clinical picture of the patient is concordant with that observed in previously reported AS patients with UBE3A mutation.

  12. Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2009-10-01

    Full Text Available Abstract Background The ubiquitin system functions in a variety of cellular processes including protein turnover, protein sorting and trafficking. Many viruses exploit the cellular ubiquitin system to facilitate viral replication. In fact, herpes simplex virus (HSV encodes a ubiquitin ligase (E3 and a de-ubiquitinating enzyme to modify the host's ubiquitin system. We have previously reported HSV type 2 (HSV-2 tegument protein UL56 as a putative adaptor protein of neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4 E3 ligase, which has been shown to be involved in protein sorting and trafficking. Results In this study, we visualized and characterized the dynamic intracellular localization of UL56 and Nedd4 using live-cell imaging and immunofluorescence analysis. UL56 was distributed to cytoplasmic vesicles, primarily to the trans-Golgi network (TGN, and trafficked actively throughout the cytoplasm. Moreover, UL56 relocalized Nedd4 to the vesicles in cells transiently expressing UL56 and in cells infected with HSV-2. We also investigated whether UL56 influenced the efficiency of viral replication, and found that extracellular infectious viruses were reduced in the absence of UL56. Conclusion These data suggest that UL56 regulates Nedd4 and functions to facilitate the cytoplasmic transport of virions from TGN to the plasma membrane and/or release of virions from the cell surface.

  13. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  14. Tamavidin 2-REV: an engineered tamavidin with reversible biotin-binding capability.

    Science.gov (United States)

    Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako

    2013-03-10

    A biotin-binding protein with reversible biotin-binding capability is of great technical value in the affinity purification of biotinylated biomolecules. Although several proteins, chemically or genetically modified from avidin or streptavidin, with reversible biotin-binding have been reported, they have been problematic in one way or another. Tamavidin 2 is a fungal protein similar to avidin and streptavidin in biotin-binding. Here, a mutein, tamavidin 2-REV, was engineered from tamavidin 2 by replacing the serine at position 36 (S36) with alanine. S36 is thought to form a hydrogen bond with biotin in tamavidin 2/biotin complexes and two hydrogen bonds with V38 within the protein. Tamavidin 2-REV bound to biotin-agarose and was eluted with excess free biotin at a neutral pH. In addition, the model substrate biotinylated bovine serum albumin was efficiently purified from a crude extract from Escherichia coli by means of single-step affinity chromatography with tamavidin 2-REV-immobilized resin. Tamavidin 2-REV thus demonstrated reversible biotin-binding capability. The Kd value of tamavidin 2-REV to biotin was 2.8-4.4×10(-7)M.Tamavidin 2-REV retained other convenient characteristics of tamavidin 2, such as high-level expression in E. coli, resistance to proteases, and a neutral isoelectric point, demonstrating that tamavidin 2-REV is a powerful tool for the purification of biotinylated biomolecules. PMID:23333918

  15. Effects of RING-SH2Grb², a chimeric protein containing the E3 ligase domain of Cbl, on the EGFR pathway.

    Science.gov (United States)

    Lee, Wei-Hao; Wang, Pei-Yu; Lin, Yu-Hung; Chou, He-Yen; Lee, Yen-Hsien; Lee, Chien-Kuo; Pai, Li-Mei

    2014-12-31

    The E3 ubiquitin-protein ligase Casitas B-lineage lymphoma protein (Cbl) negatively regulates epidermal growth factor receptor (EGFR) signaling pathway in many organisms, and has crucial roles in cell growth, development and human pathologies, including lung cancers. RING-SH2Grb² a chimeric protein of 215 amino acids containing the RING domain of Cbl that provides E3 ligase activity, and the SH2 domain of Grb2 that serves as an adaptor for EGFR. In this study, we demonstrated that RING-SH2Grb² could promote the ubiquitinylation and degradation of EGFR in a human non-small cell lung carcinoma cell line H1299. Moreover, we discovered that the RING-SH2Grb² chimera promoted the internalization of ligand-bound EGFR, inhibited the growth of H1299 cells, and significantly suppressed tumor growth in a xenograft mouse model. In summary, our results revealed a potential new cancer therapeutic approach for non-small cell lung cancer. PMID:25575524

  16. Effects of Nephrolithiasis on Serum DNase (Deoxyribonuclease I and II) Activity and E3 SUMO-Protein Ligase NSE2 (NSMCE2) in Malaysian Individuals

    Institute of Scientific and Technical Information of China (English)

    Faridah Yusof; Atheer Awad Mehde; Wesen Adel Mehdi; Raha Ahmed Raus; Hamid Ghazali; Azlina Abd Rahman

    2015-01-01

    Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase I/II activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase I/II activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase (P Conclusion This study suggests that an increase in serum concentrations of DNase I/II and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.

  17. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus

    Science.gov (United States)

    Jöhnk, Bastian; Bayram, Özgür; Heinekamp, Thorsten; Mattern, Derek J.; Brakhage, Axel A.; Jacobsen, Ilse D.; Valerius, Oliver; Braus, Gerhard H.

    2016-01-01

    F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus. PMID:27649508

  18. A Sensitive Competitive ELISA for Determination of Biotin in Transformed Yeast Culture Media

    Institute of Scientific and Technical Information of China (English)

    YANGHong

    2003-01-01

    Aim To develop a sensitive competitive ELISA for the determination of biotin in transformed yeast culture media.Methods The ELISA plate was firstly coated with Mycoplasma hyopneumoniae, and then successively incubated with rabbit ami-Mycoplasma hyopneumoniae serum and goat anti-rabbit IgG-biotin to form the solid biotin, which competed with the biotin in the solution (standard or sample) for the limited streptavidin-horse radish peroxidase conjugate. The standard calibration curve for biotin analysis was constructed in the range of 50-2000ng·L-1. Results The detection limit for biotin was found to be 83 ng·L-1 , which waa about 1000 times lower than the lowest determination concenlration in the reported ELISA for biotin analysis. The relative standard deviations for the spiked samples at biotin concerarations of 200 ng·L-1, 500 ng·L-1 , and 1000 ng·L-1 were 24.87%, 6.15%, and 7.86%, respectively, with the average recovery of 101.13%. The wild yeast and its sixty-three transformed yeast culture media were applied to the developed ELISA for the determination of biotin. It was found that the biotin concentrations in more than 85 % of the tested samples were enhanced with different increase factors after transformation. Conclusion Utilization of Mycoplasma hyopnetunoniae as the coating protein improves the precision and accmacy oftbe ELISA assay, which might be used for the biotin assay in other media.

  19. Modulation of the Rat Hepatic Cytochrome P4501A Subfamily Using Biotin Supplementation

    Directory of Open Access Journals (Sweden)

    M. D. Ronquillo-Sánchez

    2013-01-01

    Full Text Available Studies have found that biotin favors glucose and lipid metabolism, and medications containing biotin have been developed. Despite the use of biotin as a pharmacological agent, few studies have addressed toxicity aspects including the possible interaction with cytochrome P450 enzyme family. This study analyzed the effects of pharmacological doses of biotin on the expression and activity of the cytochrome P4501A subfamily involved in the metabolism of xenobiotics. Wistar rats were treated daily with biotin (2 mg/kg, i.p., while the control groups were treated with saline. All of the rats were sacrificed by cervical dislocation after 1, 3, 5, or 7 days of treatment. CYP1A1 and CYP1A2 mRNAs were modified by biotin while enzyme activity and protein concentration were not affected. The lack of an effect of biotin on CYP1A activity was confirmed using other experimental strategies, including (i cotreatment of the animals with biotin and a known CYP1A inducer; (ii the addition of biotin to the reaction mixtures for the measurement of CYP1A1 and CYP1A2 activities; and (iii the use of an S9 mixture that was prepared from control and biotin-treated rats to analyze the activation of benzo[a]pyrene (BaP into mutagenic metabolites using the Ames test. The results suggest that biotin does not influence the CYP1A-mediated metabolism of xenobiotics.

  20. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    Full Text Available BACKGROUND: The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1. However, the pathways of proteasomal degradation have not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells. CONCLUSIONS/SIGNIFICANCE: Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of

  1. Absence of Association between Polymorphisms in the RING E3 Ubiquitin Protein Ligase Gene and Ex Vivo Susceptibility to Conventional Antimalarial Drugs in Plasmodium falciparum Isolates from Dakar, Senegal.

    Science.gov (United States)

    Gendrot, Mathieu; Fall, Bécaye; Madamet, Marylin; Fall, Mansour; Wade, Khalifa Ababacar; Amalvict, Rémy; Nakoulima, Aminata; Benoit, Nicolas; Diawara, Silman; Diémé, Yaya; Diatta, Bakary; Wade, Boubacar; Pradines, Bruno

    2016-08-01

    The RING E3 ubiquitin protein ligase is crucial for facilitating the transfer of ubiquitin. The only polymorphism identified in the E3 ubiquitin protein ligase gene was the D113N mutation (62.5%) but was not significantly associated with the 50% inhibitory concentration (IC50) of conventional antimalarial drugs. However, some mutated isolates (D113N) present a trend of reduced susceptibility to piperaquine (P = 0.0938). To evaluate the association of D113N polymorphism with susceptibility to antimalarials, more isolates are necessary. PMID:27185795

  2. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses.

    Science.gov (United States)

    Xu, Jianing; Xing, Shanshan; Cui, Haoran; Chen, Xuesen; Wang, Xiaoyun

    2016-04-01

    The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.

  3. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair.

    OpenAIRE

    Teo, S H; Jackson, S P

    1997-01-01

    DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I-IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification and characterization of a novel gene, LIG4, which encodes a protein with strong homology to mammalian ...

  4. The Role of E3 Ubiquitin Ligase Cbl Proteins in Interleukin-2-Induced Jurkat T-Cell Activation

    OpenAIRE

    Ming-Fang Zhao; Xiu-Juan Qu; Jing-Lei Qu; You-Hong Jiang; Ye Zhang; Ke-Zuo Hou; Hao Deng; Yun-Peng Liu

    2013-01-01

    Interleukin- (IL-) 2 is the major growth factor for T-cell activation and proliferation. IL-2 has multiple functions in the regulation of immunological processes. Although most studies focus on T-cell immunomodulation, T-cell activation by IL-2 is the foundation of priming the feedback loop. Here, we investigated the effect of MAPK/ERK and PI3K/Akt signaling pathways on IL-2-induced cell activation and the regulatory mechanisms of upstream ubiquitin ligase Cbl-b and c-Cbl. Morphological analy...

  5. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.

    Science.gov (United States)

    Stewart, Emerson V; Lloyd, S Julie-Ann; Burg, John S; Nwosu, Christine C; Lintner, Robert E; Daza, Riza; Russ, Carsten; Ponchner, Karen; Nusbaum, Chad; Espenshade, Peter J

    2012-01-01

    Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.

  6. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    International Nuclear Information System (INIS)

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  7. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  8. Dual Topology of the Melanocortin-2 Receptor Accessory Protein Is Stable.

    Science.gov (United States)

    Maben, Zachary J; Malik, Sundeep; Jiang, Liyi H; Hinkle, Patricia M

    2016-01-01

    Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated.

  9. Fluorescence Enhancement of Fluorescent Unnatural Streptavidin by Binding of a Biotin Analogue with Spacer Tail and Its Application to Biotin Sensing

    Directory of Open Access Journals (Sweden)

    Xianwei Zhu

    2014-01-01

    Full Text Available We designed a novel molecular biosensing system for the detection of biotin, an important vitamin by the combination of fluorescent unnatural streptavidin with a commercialized biotin-(AC52-hydrazide. A fluorescent unnatural amino acid, BODIPY-FL-aminophenylalanine (BFLAF, was position-specifically incorporated into Trp120 of streptavidin by four-base codon method. Fluorescence of the Trp120BFLAF mutant streptavidin was enhanced by the addition of biotin-(AC52-hydrazide with the concentration dependent, whereas fluorescence enhancement was not observed at all by the addition of natural biotin. It was considered that the spacer tail of biotin-(AC52-hydrazide may disturb the fluorescence quenching of the Trp120BFLAF by Trp79 and Trp108 of the neighbor subunit. Therefore, biotin sensing was carried out by the competitive binding reaction of biotin-(AC52-hydrazide and natural biotin to the fluorescent mutant streptavidin. The fluorescence intensity decreased by increasing free biotin concentration. The result suggested that molecular biosensor for small ligand could be successfully designed by the pair of fluorescent mutant binding protein and ligand analogue.

  10. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice.

    Science.gov (United States)

    Morishita, Masaki; Takahashi, Yuki; Nishikawa, Makiya; Sano, Kohei; Kato, Kana; Yamashita, Takuma; Imai, Takafumi; Saji, Hideo; Takakura, Yoshinobu

    2015-02-01

    We previously succeeded in the visualization of tissue distribution of B16BL6 cells-derived exosomes by labeling with Gaussia luciferase (gLuc)-LA, a fusion protein of gLuc (a reporter protein) and lactadherin (LA; an exosome-tropic protein). However, total amount of B16BL6-derived exosomes delivered to each organ could not be evaluated because of the reduction of luminescent signal from gLuc-LA. The aim of the present study was to quantitatively evaluate the tissue distribution of B16BL6-derived exosomes. To this end, we labeled B16BL6-derived exosomes with iodine-125 ((125) I) based on streptavidin (SAV)-biotin system. A plasmid vector encoding fusion protein, SAV-LA, was constructed, and B16BL6 cells were transfected with the plasmid to obtain SAV-LA-coupled exosomes. SAV-LA-coupled exosomes were incubated with (3-(125) I-iodobenzoyl) norbiotinamide ((125) I-IBB) to obtain (125) I-labeled B16BL6 exosomes. After intravenous injection of (125) I-labeled B16BL6 exosomes into mice, radioactivity quickly disappeared from the blood circulation. At 4 h, 28%, 1.6%, and 7% of the injected radioactivity/organ was detected in the liver, spleen, and lung, respectively. These results indicate that (125) I-labeling of exosomes using SAV-biotin system is a useful method to quantitatively evaluate the amount of exogenously administered exosomes delivered to each organ and that the liver is the major organ in the clearance of exogenously administered B16BL6-derived exosomes. PMID:25393546

  11. BioID Identification of Lamin-Associated Proteins.

    Science.gov (United States)

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications.

  12. BioID Identification of Lamin-Associated Proteins.

    Science.gov (United States)

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications. PMID:26778550

  13. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  14. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling.

    Science.gov (United States)

    Chen, Hsi-Chuan; Song, Jina; Wang, Jack P; Lin, Ying-Chung; Ducoste, Joel; Shuford, Christopher M; Liu, Jie; Li, Quanzi; Shi, Rui; Nepomuceno, Angelito; Isik, Fikret; Muddiman, David C; Williams, Cranos; Sederoff, Ronald R; Chiang, Vincent L

    2014-03-01

    As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein-protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.

  15. Haploinsufficiency of the E3 ubiquitin ligase C-terminus of heat shock cognate 70 interacting protein (CHIP produces specific behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Bethann McLaughlin

    Full Text Available The multifunctional E3 ubiquitin ligase CHIP is an essential interacting partner of HSP70, which together promote the proteasomal degradation of client proteins. Acute CHIP overexpression provides neuroprotection against neurotoxic mitochondrial stress, glucocorticoids, and accumulation of toxic amyloid fragments, as well as genetic mutations in other E3 ligases, which have been shown to result in familial Parkinson's disease. These studies have created a great deal of interest in understanding CHIP activity, expression and modulation. While CHIP knockout mice have the potential to provide essential insights into the molecular control of cell fate and survival, the animals have been difficult to characterize in vivo due to severe phenotypic and behavioral dysfunction, which have thus far been poorly characterized. Therefore, in the present study we conducted a battery of neurobehavioral and physiological assays of adult CHIP heterozygotic (HET mutant mice to provide a better understanding of the functional consequence of CHIP deficiency. We found that CHIP HET mice had normal body and brain weight, body temperature, muscle tone and breathing patterns, but do have a significant elevation in baseline heart rate. Meanwhile basic behavioral screens of sensory, motor, emotional and cognitive functions were normative. We observed no alterations in performance in the elevated plus maze, light-dark preference and tail suspension assays, or two simple cognitive tasks: novel object recognition and spontaneous alternation in a Y maze. Significant deficits were found, however, when CHIP HET mice performed wire hang, inverted screen, wire maneuver, and open field tasks. Taken together, our data indicate a clear subset of behaviors that are altered at baseline in CHIP deficient animals, which will further guide whole animal studies of the effects of CHIP dysregulation on cardiac function, brain circuitry and function, and responsiveness to environmental and

  16. Optimization of biotin labeling of antibodies using mouse IgG and goat anti-mouse IgG-conjugated fluorescent beads and their application as capture probes on protein chip.

    Science.gov (United States)

    Lee, Jin Hyung; Choi, Hong Kyung; Chang, Jeong Ho

    2010-10-31

    This study shows the optimization of biotin labeling to antibodies using mouse IgG. Several parameters of the biotin labeling, including the molar ratio of biotin to antibody, the coupling time and the dialysis time, were studied to optimum conditions. The biotin-tagged mouse IgGs were immobilized on avidin-coated PMMA (Polymethyl Methacrylate) plates via a biotin-avidin linkage. The immobilization of the IgG to the chip was quantified using goat anti-mouse IgG bound fluorescent beads. It was found that the binding of the fluorescent beads saturated when a 10-fold or higher molar ratio of biotin to antibody was used. In biotin coupling time tests, sixty minutes was sufficient for the capture probes to bind to the surface. However, the results from the dialysis experiments showed no difference, indicating that 2 hours was sufficient to remove any unbound biotin. Finally, to prove the universality of this protocol using mouse antibodies, the optimum conditions were successfully applied in sandwich immunoassays designed to detect troponin I (TnI) and N-terminal probrain natriuretic peptide (NT-proBNP). PMID:20804762

  17. Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide.

    Science.gov (United States)

    Nguyen, Giang K T; Cao, Yuan; Wang, Wei; Liu, Chuan Fa; Tam, James P

    2015-12-21

    An efficient ligase with exquisite site-specificity is highly desirable for protein modification. Recently, we discovered the fastest known ligase called butelase 1 from Clitoria ternatea for intramolecular cyclization. For intermolecular ligation, butelase 1 requires an excess amount of a substrate to suppress the reverse reaction, a feature similar to other ligases. Herein, we describe the use of thiodepsipeptide substrates with a thiol as a leaving group and an unacceptable nucleophile to render the butelase-mediated ligation reactions irreversible and in high yields. Butelase 1 also accepted depsipeptides as substrates, but unlike a thiodesipeptide, the desipeptide ligation was partially reversible as butelase 1 can tolerate an alcohol group as a poor nucleophile. The thiodesipeptide method was successfully applied in N-terminal labeling of ubiquitin and green fluorescent protein using substrates with or without a biotin group in high yields. PMID:26563575

  18. Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer.

    Science.gov (United States)

    Brahemi, Ghali; Kona, Fathima R; Fiasella, Annalisa; Buac, Daniela; Soukupová, Jitka; Brancale, Andrea; Burger, Angelika M; Westwell, Andrew D

    2010-04-01

    The zinc-ejecting aldehyde dehydrogenase (ALDH) inhibitory drug disulfiram (DSF) was found to be a breast cancer-associated protein 2 (BCA2) inhibitor with potent antitumor activity. We herein describe our work in the synthesis and evaluation of new series of zinc-affinic molecules to explore the structural requirements for selective BCA2-inhibitory antitumor activity. An N(C=S)S-S motif was found to be required, based on selective activity in BCA2-expressing breast cancer cell lines and against recombinant BCA2 protein. Notably, the DSF analogs (3a and 3c) and dithio(peroxo)thioate compounds (5d and 5f) were found to have potent activity (submicromolar IC(50)) in BCA2 positive MCF-7 and T47D cells but were inactive (IC(50) > 10 microM) in BCA2 negative MDA-MB-231 breast cancer cells and the normal breast epithelial cell line MCF10A. Testing in the isogenic BCA2 +ve MDA-MB-231/ER cell line restored antitumor activity for compounds that were inactive in the BCA2 -ve MDA-MB-231 cell line. In contrast, structurally related dithiocarbamates and benzisothiazolones (lacking the disulfide bond) were all inactive. Compounds 5d and 5f were additionally found to lack ALDH-inhibitory activity, suggestive of selective E3 ligase-inhibitory activity and worthy of further development. PMID:20222671

  19. Intestinal absorption of biotin in the rat

    International Nuclear Information System (INIS)

    We examined the absorption of biotin using the in vivo intestinal loop technique. Jejunal segments from male rats were filled with solutions containing [3H]biotin and [14C]inulin in Krebs-Ringer phosphate buffer, pH 6.5. Absorption was determined on the basis of luminal tritium disappearance after correction for inulin recovery. At biotin concentrations of 0.1 and 5.0 microM, luminal biotin disappearance was linear for at least 10 min. At biotin concentrations ranging from 2.3 nM to 75 microM, 10-28% of the administered dose was absorbed in 10 min. The concentration dependence of luminal biotin disappearance is consistent with the presence of both saturable and nonsaturable (linear) components of biotin uptake, with estimated Km = 9.6 microM and Jmax = 75.2 pmol/(2.5 cm loop X min). The rate constant for nonsaturable uptake is 3.1 pmol/(2.5 cm loop X min X microM). We conclude that at biotin concentrations less than 5 microM, biotin absorption proceeds largely by the saturable process, whereas at concentrations above 25 microM, nonsaturable uptake predominates. Additional studies demonstrated significantly less biotin uptake in the ileum than in the jejunum, a finding in agreement with previous in vitro studies

  20. In silico analysis identifies a C3HC4-RING finger domain of a putative E3 ubiquitin-protein ligase located at the C-terminus of a polyglutamine-containing protein

    Directory of Open Access Journals (Sweden)

    T. Scior

    2007-03-01

    Full Text Available Almost identical polyglutamine-containing proteins with unknown structures have been found in human, mouse and rat genomes (GenBank AJ277365, AF525300, AY879229. We infer that an identical new gene (RING finger domain of real interest is located in each C-terminal segment. A three-dimensional (3-D model was generated by remote homology modeling and the functional implications are discussed. The model consists of 65 residues from terminal position 707 to 772 of the human protein with a total length of 796 residues. The 3-D model predicts a ubiquitin-protein ligase (E3 as a binding site for ubiquitin-conjugating enzyme (E2. Both enzymes are part of the ubiquitin pathway to label unwanted proteins for subsequent enzymatic degradation. The molecular contact specificities are suggested for both the substrate recognition and the residues at the possible E2-binding surface. The predicted structure, of a ubiquitin-protein ligase (E3, enzyme class number 6.3.2.19, CATH code 3.30.40.10.4 may contribute to explain the process of ubiquitination. The 3-D model supports the idea of a C3HC4-RING finger with a partially new pattern. The putative E2-binding site is formed by a shallow hydrophobic groove on the surface adjacent to the helix and one zinc finger (L722, C739, P740, P741, R744. Solvent-exposed hydrophobic amino acids lie around both zinc fingers (I717, L722, F738, or P765, L766, V767, V733, P734. The 3-D structure was deposited in the protein databank theoretical model repository (2B9G, RCSB Protein Data Bank, NJ.

  1. Effect of endogenous biotin on the applications of streptavidin and biotin in mice

    International Nuclear Information System (INIS)

    The use of streptavidin-conjugated antibody to pretarget tumors in animals and patients, prior to administration of radiolabeled biotin, has provided encouraging results, in part because of the high affinity of biotin for streptavidin and the rapid whole-body clearance of biotin. However, binding of endogenous biotin to streptavidin may interfere with the clinical potential of this approach. This report evaluates the effect of endogenous biotin on an antibody-streptavidin conjugate in a mouse tumor model. Tumored nude mice were depleted of endogenous biotin by sequential intraperitoneal injections of streptavidin. The assay of serum biotin levels indicated less than 0.5 ng of biotin per mL of serum in treated mice versus 4 ng per mL in untreated animals. Flow cytometric analysis was used on single-cell suspensions of tumor from animals receiving streptavidin-conjugated IgG to detect the presence of the antibody on the cell membrane (with fluoroisothiocyanate-conjugated goat anti-mouse antibody), and to detect biotin binding sites on streptavidin (with biotin-phycoerythrin). Both treated and untreated mice demonstrated the presence of antibody on tumor cells through 48 h postadministration, but only in treated animals were biotin binding sites observed. These results in the mouse model suggest that the small concentration of streptavidin delivered to a tumor via a specific antibody may be saturated with endogenous biotin and therefore not able to be targeted subsequently with radiolabeled biotin

  2. Identifying Protein-Protein Associations at the Nuclear Envelope with BioID.

    Science.gov (United States)

    Kim, Dae In; Jensen, Samuel C; Roux, Kyle J

    2016-01-01

    The nuclear envelope (NE) is a critical cellular structure whose constituents and roles in a myriad of cellular processes seem ever expanding. To determine the underlying mechanisms by which the NE constituents participate in various cellular events, it is necessary to understand the nature of their protein-protein associations. BioID (proximity-dependent biotin identification) is a recently established method to generate a history of protein-protein associations as they occur over time in living cells. BioID is based on fusion of a bait protein to a promiscuous biotin ligase. Expression of the BioID fusion protein in a relevant cellular environment enables biotinylation of vicinal and interacting proteins of the bait protein, permitting isolation and identification by conventional biotin-affinity capture and mass-spec analysis. In this way, BioID provides unique capabilities to identify protein-protein associations at the NE. In this chapter we provide a detailed protocol for the application of BioID to the study of NE proteins.

  3. Biotin

    Science.gov (United States)

    ... cyclobenzaprine (Flexeril), fluvoxamine (Luvox), haloperidol (Haldol), imipramine (Tofranil), mexiletine (Mexitil), olanzapine (Zyprexa), pentazocine (Talwin), propranolol (Inderal), tacrine ( ...

  4. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    Science.gov (United States)

    Bharaj, Preeti; Wang, Yao E; Dawes, Brian E; Yun, Tatyana E; Park, Arnold; Yen, Benjamin; Basler, Christopher F; Freiberg, Alexander N; Lee, Benhur; Rajsbaum, Ricardo

    2016-09-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  5. Virtual Screening Against Mycobacterium tuberculosisLipoate Protein Ligase B (MtbLipBand In SilicoADMETEvaluation of Top Hits

    Directory of Open Access Journals (Sweden)

    Junie B. Billones

    2014-01-01

    Full Text Available The emergence of drug resistant strains of Mycobacterium tuberculosis(Mtb has spurred the search for new therapeutic targets for the development of more efficient anti-tuberculosis drugs. Lipoate protein ligase B (LipB, an enzyme involved in the biosynthesis of the lipoic acid cofactor, is considered as a very promising drug target in M. tuberculosis, since the bacteria has no known substitute enzyme that can take over the role of LipB in its metabolic system. Hence, apharmacophore-based screening, docking, and ADMET evaluation of compounds obtained from the National Cancer Institute (NCI Database were performed against the MtbLipB enzyme. Consequently,nine compounds with superior binding energies compared to its known inhibitor (decanoic acid have been identified. Moreover, among these nine compounds, NSC164080 (methyl 2-(2-(((benzyloxycarbonylaminopropanamido-3-(4-hydroxyphenylpropanoate displayed the most favorable ADMETproperties. The results in this work may pave the way for the development of a novel class of antituberculosis agents.

  6. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  7. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine.

    Science.gov (United States)

    Forer, Nadav; Korman, Maayan; Elharar, Yifat; Vishkautzan, Marina; Gur, Eyal

    2013-12-17

    Proteasome-containing bacteria possess a tagging system that directs proteins to proteasomal degradation by conjugating them to a prokaryotic ubiquitin-like protein (Pup). A single ligating enzyme, PafA, is responsible for Pup conjugation to lysine side chains of protein substrates. As Pup is recognized by the regulatory subunit of the proteasome, Pup functions as a degradation tag. Pup presents overlapping regions for binding of the proteasome and PafA. It was, therefore, unclear whether Pup binding by the proteasome regulatory subunit, Mpa, and by PafA are mutually exclusive events. The work presented here provides evidence for the simultaneous interaction of Pup with both Mpa and PafA. Surprisingly, we found that PafA and Mpa can form a complex both in vitro and in vivo. Our results thus suggest that PafA and the proteasome can function as a modular machine for the tagging and degradation of cytoplasmic proteins. PMID:24228735

  8. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine beta-synthase sumoylation.

    Directory of Open Access Journals (Sweden)

    Nitish Agrawal

    Full Text Available Human cystathionine beta-synthase (CBS catalyzes the first irreversible step in the transsulfuration pathway and commits homocysteine to the synthesis of cysteine. Mutations in CBS are the most common cause of severe hereditary hyperhomocysteinemia. A yeast two-hybrid approach to screen for proteins that interact with CBS had previously identified several components of the sumoylation pathway and resulted in the demonstration that CBS is a substrate for sumoylation. In this study, we demonstrate that sumoylation of CBS is enhanced in the presence of human polycomb group protein 2 (hPc2, an interacting partner that was identified in the initial yeast two-hybrid screen. When the substrates for CBS, homocysteine and serine for cystathionine generation and homocysteine and cysteine for H(2S generation, are added to the sumoylation mixture, they inhibit the sumoylation reaction, but only in the absence of hPc2. Similarly, the product of the CBS reaction, cystathionine, inhibits sumoylation in the absence of hPc2. Sumoylation in turn decreases CBS activity by approximately 28% in the absence of hPc2 and by 70% in its presence. Based on these results, we conclude that hPc2 serves as a SUMO E3 ligase for CBS, increasing the efficiency of sumoylation. We also demonstrate that gamma-cystathionase, the second enzyme in the transsulfuration pathway is a substrate for sumoylation under in vitro conditions. We speculate that the role of this modification may be for nuclear localization of the cysteine-generating pathway under conditions where nuclear glutathione demand is high.

  9. Recognition of Biotin-functionalized Liposomes

    Institute of Scientific and Technical Information of China (English)

    Hai Feng ZHU; Jun Bai LI

    2003-01-01

    Functionalized liposomes were prepared by mixing the biotin in the lipid vesicle suspensions. The experiments through immersing streptavidin deposited mica into the biotin modified liposome solution testify the specifically biological binding interaction and extend the function of liposomes as a biosensor or drug carrier.

  10. Mouse RING finger protein Rnf133 is a testis-specific endoplasmic reticulum-associated E3 ubiquitin ligase

    Institute of Scientific and Technical Information of China (English)

    Hong Nian; Chunsheng Han; Wei Zhang; Hexin Shi; Qingzhen Zhao; Qi Xie; Shangying Liao; Yan Zhang; Zhuqiang Zhang; Chen Wang

    2008-01-01

    @@ Dear Editor, Spermatogenesis, the process by which sperms are generated within the male gonads, involves a number of events that occur only in the testis. Examples include the nucleus condensation as a result of histone sequential replacement by transition proteins 1, 2 and protamin, the formation of sperm-specific organelles such as acrosomes and sperm tails, and the shedding of majority of the cytoplasm as residual bodies.

  11. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    Science.gov (United States)

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. PMID:26719340

  12. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    Science.gov (United States)

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.

  13. Interplays between Sumoylation, SUMO-Targeted Ubiquitin Ligases, and the Ubiquitin-Adaptor Protein Ufd1 in Fission Yeast

    DEFF Research Database (Denmark)

    Køhler, Julie Bonne

    and the specific molecular interactions and sequence of events linking sumoylation, ubiquitylation and substrate degradation, has been largely uncovered. Using the fission yeast model organism I here present evidence for a role of the Ufd1 (ubiquitinfusion degradation 1) protein, and by extension of the Cdc48-Ufd1...... other downstream fates. My work provides insight into how Cdc48-Ufd1-Npl4 also contributes to the processing of SUMO conjugates and suggests that at least some of these activities are coordinated with STUbL function. To gain insight into the sumoylated species regulated by Ufd1 and/or by STUbLs, I made......-Npl4 activities are coupled to dynamically regulate cellular processes....

  14. A Francisella Virulence Factor Catalyzes an Essential Reaction of Biotin Synthesis

    Science.gov (United States)

    Feng, Youjun; Napier, Brooke A.; Manandhar, Miglena; Henke, Sarah K; Weiss, David S.; Cronan, John E.

    2014-01-01

    Summary We recently identified a gene (FTN_0818) required for Francisella virulence that seemed likely involved in biotin metabolism. However, the molecular function of this virulence determinant was unclear. Here we show that this protein named BioJ is the enzyme of the biotin biosynthesis pathway that determines the chain length of the biotin valeryl side chain. Expression of bioJ allows growth of an E. coli bioH strain on biotin-free medium, indicating functional equivalence of BioJ to the paradigm pimeloyl-ACP methyl ester carboxyl-esterase, BioH. BioJ was purified to homogeneity, shown to be monomeric and capable of hydrolysis of its physiological substrate methyl pimeloyl-ACP to pimeloyl-ACP, the precursor required to begin formation of the fused heterocyclic rings of biotin. Phylogenetic analyses confirmed that distinct from BioH, BioJ represents a novel sub-clade of the α/β-hydrolase family. Structure-guided mapping combined with site-directed mutagenesis revealed that the BioJ catalytic triad consists of Ser151, Asp248 and His278, all of which are essential for activity and virulence. The biotin synthesis pathway was reconstituted in vitro and the physiological role of BioJ directly assayed. To the best of our knowledge, these data represent further evidence linking biotin synthesis to bacterial virulence. PMID:24313380

  15. Novel RING E3 Ubiquitin Ligases in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Angelika Burger

    2006-08-01

    Full Text Available Defects in ubiquitin E3 ligases are implicated in the pathogenesis of several human diseases, including cancer, because of their central role in the control of diverse signaling pathways. RING E3 ligases promote the ubiquitination of proteins that are essential to a variety of cellular events. Identification of which ubiquitin ligases specifically affect distinct cellular processes is essential to the development of targeted therapeutics for these diseases. Here we discuss two novel RING E3 ligases, BCA2 and RNF11, that are closely linked to human breast cancer. BCA2 E3 ligase is coregulated with estrogen receptor and plays a role in the regulation of epidermal growth factor receptor (EGF-R trafficking. RNF11 is a small RING E3 ligase that affects transforming growth factorβ and EGF-R signaling and is overexpressed in invasive breast cancers. These two proteins demonstrate the complexity of RING E3 ligase interactions in breast cancer and are potential targets for therapeutic interventions.

  16. Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention

    OpenAIRE

    Salaemae, Wanisa; Azhar, Al; Booker, Grant W.; Polyak, Steven W

    2011-01-01

    Biotin is an important micronutrient that serves as an essential enzyme cofactor. Bacteria obtain biotin either through de novo synthesis or by active uptake from exogenous sources. Mycobacteria are unusual amongst bacteria in that their primary source of biotin is through de novo synthesis. Here we review the importance of biotin biosynthesis in the lifecycle of Mycobacteria. Genetic screens designed to identify key metabolic processes have highlighted a role for the biotin biosynthesis in b...

  17. Determination of biotin content in beet molasses by Lactobacillus plantarum

    OpenAIRE

    Lončar Eva S.; Došenović Irena S.; Markov Siniša L.; Malbaša Radomir V.; Kolarov Ljiljana A.

    2005-01-01

    D-biotin content in beet molasses was determined by microbiological method using Lactobacillus plantarum, based on the comparison of the growth of this microorganism in molasses solutions with those in standard solutions of biotin. Incubation of the microorganism was performed on original Vitamin Biotin Testbouillon and laboratory prepared liquid culture medias. The amount of "real" biotin in molasses is low. The results depend upon the sample and volume of molasses solutions. Biotin contents...

  18. Ubiquitination and Degradation of CFTR by the E3 Ubiquitin Ligase MARCH2 through Its Association with Adaptor Proteins CAL and STX6

    OpenAIRE

    Jie Cheng; William Guggino

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent bindin...

  19. Defining interactions between DNA-PK and ligase IV/XRCC4

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Ling; Yannone, Steven M.; Chen, David J.

    2001-04-10

    Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks in mammalian cells. DNA-dependent protein kinase (DNA-PK), ligase IV, and XRCC4 are all critical components of the NHEJ repair pathway. DNA-PK is composed of a heterodimeric DNA-binding component, Ku, and a large catalytic subunit, DNA-PKcs. Ligase IV and XRCC4 associate to form a multimeric complex that is also essential for NHEJ. DNA-PK and ligase IV/XRCC4 interact at DNA termini which results in stimulated ligase activity. Here we define interactions between the components of these two essential complexes, DNA-PK and ligase IV/XRCC4. We find that ligase IV/XRCC4 associates with DNA-PK in a DNA-independent manner. The specific protein-protein interactions that mediate the interaction between these two complexes are further identified. Direct physical interactions between ligase IV and Ku as well as between XRCC4 and DNA-PKcs are shown. No direct interactions are observed between ligase IV and DNA-PKcs or between XRCC4 and Ku. Our data defines the specific protein pairs involved in the association of DNA-PK and ligase IV/XRCC4, and suggests a molecular mechanism for coordinating the assembly of the DNA repair complex at DNA breaks.

  20. Activity-based in vitro selection of T4 DNA ligase

    International Nuclear Information System (INIS)

    Recent in vitro methodologies for selection and directed evolution of proteins have concentrated not only on proteins with affinity such as single-chain antibody but also on enzymes. We developed a display technology for selection of T4 DNA ligase on ribosome because an in vitro selection method for DNA ligase had never been developed. The 3' end of mRNA encoding the gene of active or inactive T4 DNA ligase-spacer peptide fusion protein was hybridized to dsDNA fragments with cohesive ends, the substrate of T4 DNA ligase. After in vitro translation of the mRNA-dsDNA complex in a rabbit reticulocyte system, a mRNA-dsDNA-ribosome-ligase complex was produced. T4 DNA ligase enzyme displayed on a ribosome, through addition of a spacer peptide, is able to react with dsDNA in the complex. The complex expressing active ligase was biotinylated by ligation with another biotinylated dsDNA probe and selected with streptavidin-coated magnetic beads. We effectively selected active T4 DNA ligase from a small amount of protein. The gene of the active T4 DNA ligase was enriched 40 times from a mixture of active and inactive genes using this selection strategy. This ribosomal display strategy may have high potential to be useful for selection of other enzymes associated with DNA

  1. Human Immunodeficiency Virus Type 1 Vpr-Binding Protein VprBP, a WD40 Protein Associated with the DDB1-CUL4 E3 Ubiquitin Ligase, Is Essential for DNA Replication and Embryonic Development▿

    Science.gov (United States)

    McCall, Chad M.; Miliani de Marval, Paula L.; Chastain, Paul D.; Jackson, Sarah C.; He, Yizhou J.; Kotake, Yojiro; Cook, Jeanette Gowen; Xiong, Yue

    2008-01-01

    Damaged DNA binding protein 1, DDB1, bridges an estimated 90 or more WD40 repeats (DDB1-binding WD40, or DWD proteins) to the CUL4-ROC1 catalytic core to constitute a potentially large number of E3 ligase complexes. Among these DWD proteins is the human immunodeficiency virus type 1 (HIV-1) Vpr-binding protein VprBP, whose cellular function has yet to be characterized but has recently been found to mediate Vpr-induced G2 cell cycle arrest. We demonstrate here that VprBP binds stoichiometrically with DDB1 through its WD40 domain and through DDB1 to CUL4A, subunits of the COP9/signalsome, and DDA1. The steady-state level of VprBP remains constant during interphase and decreases during mitosis. VprBP binds to chromatin in a DDB1-independent and cell cycle-dependent manner, increasing from early S through G2 before decreasing to undetectable levels in mitotic and G1 cells. Silencing VprBP reduced the rate of DNA replication, blocked cells from progressing through the S phase, and inhibited proliferation. VprBP ablation in mice results in early embryonic lethality. Conditional deletion of the VprBP gene in mouse embryonic fibroblasts results in severely defective progression through S phase and subsequent apoptosis. Our studies identify a previously unknown function of VprBP in S-phase progression and suggest the possibility that HIV-1 Vpr may divert an ongoing chromosomal replication activity to facilitate viral replication. PMID:18606781

  2. Origin and diversification of TRIM ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Ignacio Marín

    Full Text Available Most proteins of the TRIM family (also known as RBCC family are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.

  3. {sup 18}F-PEG-biotin: Precursor (boroaryl-PEG-biotin) synthesis, {sup 18}F-labelling and an in-vitro assessment of its binding with Neutravidin{sup TM}-trastuzumab pre-treated cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tim A.D., E-mail: t.smith@abdn.ac.uk [Biomedical Physics Building, John Mallard PET Unit, Aberdeen Biomedical Imaging Centre, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Simpson, Michael; Cheyne, Richard [Biomedical Physics Building, John Mallard PET Unit, Aberdeen Biomedical Imaging Centre, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Trembleau, Laurent [School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2011-10-15

    In terms of nuclear decay {sup 18}F is the most ideal PET nuclide but its short t{sub 1/2} precludes its use for directly labelling whole antibodies due to their long blood residence times. Pre-targeted imaging using affinity systems such as Neutravidin{sup TM}-biotin facilitates the application of short-lived nuclides by their attachment to biotin for imaging cell surface proteins targeted with Neutravidin{sup TM}-conjugated antibodies. Methods: Boroaryl functionalised biotin was prepared with a PEG linker and radiolabelled by incubation with {sup 18}F in acidified aqueous solution. Cells expressing high (SKBr3), medium (MDA-MB-453) and low (MDA-MB-468) levels of HER-2 were pre-incubated with Neutravidin{sup TM}-conjugated trastuzumab, washed, and then incubated with {sup 18}F-PEG-biotin. Results: The {sup 18}F-fluorination of boroaryl-PEG-biotin was much more efficient than reported for other versions of boroaryl-biotin. The novel {sup 18}F-PEG-biotin was demonstrated to bind to HER-2-expressing cells in-vitro pre-incubated with Neutravidin{sup TM}-conjugated trastuzumab. Conclusion: Biotin can be functionalised with boroaryl and readily {sup 18}F-radiolabelled in aqueous solution and will bind to cells pre-incubated with Neutravidin{sup TM}-antibody conjugates. - Highlights: > Boroaryl-biotin precursor is prepared. > Rapid {sup 18}F-fluorination is demonstrated. > HER-2 expressing breast cancer cells pre-treated with trastuzumab-Neutravidin{sup TM}. > {sup 18}F-PEG-biotin binding to pre-treated cells corresponds with HER-2 expression.

  4. Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention.

    Science.gov (United States)

    Salaemae, Wanisa; Azhar, Al; Booker, Grant W; Polyak, Steven W

    2011-09-01

    Biotin is an important micronutrient that serves as an essential enzyme cofactor. Bacteria obtain biotin either through de novo synthesis or by active uptake from exogenous sources. Mycobacteria are unusual amongst bacteria in that their primary source of biotin is through de novo synthesis. Here we review the importance of biotin biosynthesis in the lifecycle of Mycobacteria. Genetic screens designed to identify key metabolic processes have highlighted a role for the biotin biosynthesis in bacilli growth, infection and survival during the latency phase. These studies help to establish the biotin biosynthetic pathway as a potential drug target for new anti-tuberculosis agents. PMID:21976058

  5. Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention

    Institute of Scientific and Technical Information of China (English)

    Wanisa Salaemae; Al Azhar; Grant W. Booker; Steven W. Polyak

    2011-01-01

    Biotin is an important micronutrient that serves as an essential enzyme cofactor.Bacteria obtain biotin either through de novo synthesis or by active uptake from exogenous sources.Mycobacteria are unusual amongst bacteria in that their primary source of biotin is through de novo synthesis.Here we review the importance of biotin biosynthesis in the lifecycle of Mycobacteria.Genetic screens designed to identify key metabolic processes have highlighted a role for the biotin biosynthesis in bacilli growth,infection and survival during the latency phase.These studies help to establish the biotin biosynthetic pathway as a potential drug target for new anti-tuberculosis agents.

  6. Photoactivatable protein labeling by singlet oxygen mediated reactions.

    Science.gov (United States)

    To, Tsz-Leung; Medzihradszky, Katalin F; Burlingame, Alma L; DeGrado, William F; Jo, Hyunil; Shu, Xiaokun

    2016-07-15

    Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. PMID:27220724

  7. Serum Biotin Levels in Women Complaining of Hair Loss.

    Science.gov (United States)

    Trüeb, Ralph M

    2016-01-01

    Biotin is a coenzyme for carboxylase enzymes that assist various metabolic reactions involved in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis important for maintenance of healthy skin and hair. Due to its availability, affordability, and effective marketing for this purpose, biotin is a popular nutritional supplement for treatment of hair loss. However, there are little data on the frequency of biotin deficiency in patients complaining of hair loss and on the value of oral biotin for treatment of hair loss that is not due to an inborn error of biotin metabolism or deficiency. The aim of this study was to determine the frequency and significance of biotin deficiency in women complaining of hair loss. Biotin deficiency was found in 38% of women complaining of hair loss. Of those showing diffuse telogen effluvium in trichograms (24%), 35% had evidence of associated seborrheic-like dermatitis. About 11% of patients with biotin deficiency had a positive personal history for risk factors for biotin deficiency. The custom of treating women complaining of hair loss in an indiscriminate manner with oral biotin supplementation is to be rejected, unless biotin deficiency and its significance for the complaint of hair loss in an individual has been demonstrated on the basis of a careful patient history, clinical examination, determination of serum biotin levels, and exclusion of alternative factors responsible for hair loss. PMID:27601860

  8. The Role of E3 Ubiquitin Ligase Cbl Proteins in β-Elemene Reversing Multi-Drug Resistance of Human Gastric Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Xue-Jun Hu

    2013-05-01

    Full Text Available Recent studies indicate that β-elemene, a compound isolated from the Chinese herbal medicine Curcuma wenyujin, is capable of reversing tumor MDR, although the mechanism remains elusive. In this study, β-Elemene treatment markedly increased the intracellular accumulation of doxorubicin (DOX and rhodamine 123 in both K562/DNR and SGC7901/ADR cells and significantly inhibited the expression of P-gp. Treatment of SGC7901/ADR cells with β-elemene led to downregulation of Akt phosphorylation and significant upregulation of the E3 ubiquitin ligases, c-Cbl and Cbl-b. Importantly, β-elemene significantly enhanced the anti-tumor activity of DOX in nude mice bearing SGC7901/ADR xenografts. Taken together, our results suggest that β-elemene may target P-gp-overexpressing leukemia and gastric cancer cells to enhance the efficacy of DOX treatment.

  9. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.

    Science.gov (United States)

    Cheng, Jie; Guggino, William

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.

  10. Study the effect of kidney stones on serum xanthine oxidase, ecto-5’-nucleotidase activity and E3 SUMO-protein ligase NSE2(NSMCE2) in Malaysian individuals

    Institute of Scientific and Technical Information of China (English)

    Faridah; Yusof; Atheer; Awad; Mehde; Wesen; Adel; Mehdi; Hamid; Ghazali; Azlina; Abd; Rahman

    2015-01-01

    Objective: To verify possible relations between 5’-nucleotidase, xanthine oxidase to E3 small ubiquitin-like modifier-protein ligase non structural maintenance of chromosomes elements 2 in sera patients with kidney stones and to evaluate the possibility of a new biomarker for the evaluation of kidney damage. Methods: A sixty patients with known kidney stones who appeared the government health clinics in Kuantan–Pahang and fifty apparently healthy were taken as control group. The 5’-nucleotidase,xanthine oxidase and other biochemical parameters were measured by colorimetric tests. The serum NSMCE2 were measured by enzyme linked immunosorbent assay.Results: The mean serum xanthine oxidase [(39.98±19.70) IU/L] and ecto-5’-nucleotidase activity(40.03±9.53 IU/L) were significantly higher than the controls’ levels of(18.04 ±6.26) and(16.06 ±4.61) IU/L respectively. There were 85.00% and 83.33%, of patients with kidney stones who had abnormal ecto-5’-nucleotidase activity and uric acid respectively while xanthine oxidase activity was less sensitive 58.33%.Conclusions: The present study suggests that the increase in serum of xanthine oxidase,ecto-5’-nucleotidase activities E3 small ubiquitin-like modifier-protein ligase NSE2 concentration can be used as biomarkers for diagnosis of kidney damage in patients with kidney stone,also in developments of change DNA damage and inflammation disorders in these patients.

  11. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption.

    Science.gov (United States)

    Ghosal, Abhisek; Lambrecht, Nils; Subramanya, Sandeep B; Kapadia, Rubina; Said, Hamid M

    2013-01-01

    The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue. The KO mice exhibited absence of expression of SMVT in the intestine compared with sex-matched littermates as well as the expected normal SMVT expression in other tissues. About two-thirds of the KO mice died prematurely between the age of 6 and 10 wk. Growth retardation, decreased bone density, decreased bone length, and decreased biotin status were observed in the KO mice. Microscopic analysis showed histological abnormalities in the small bowel (shortened villi, dysplasia) and cecum (chronic active inflammation, dysplasia) of the KO mice. In vivo (and in vitro) transport studies showed complete inhibition in carrier-mediated biotin uptake in the intestine of the KO mice compared with their control littermates. These studies provide the first in vivo confirmation in native intestine that SMVT is solely responsible for intestinal biotin uptake. These studies also provide evidence for a casual association between SMVT function and normal intestinal health.

  12. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  13. Eukaryotic DNA Ligases: Structural and Functional Insights

    OpenAIRE

    Ellenberger, Tom; Tomkinson, Alan E.

    2008-01-01

    DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encirc...

  14. Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins

    OpenAIRE

    Englert, Markus; Beier, Hildburg

    2005-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. It requires the concerted action of an endonuclease to remove the intron and a ligase for joining the resulting tRNA halves as studied best in the yeast Saccharomyces cerevisiae. Here, we report the first characterization of an RNA ligase protein and its gene from a higher eukaryotic organism that is an essential component of the pre-tRNA splicing process. Purification of tRNA ligase from wheat germ by successive column chromatograp...

  15. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.

    Science.gov (United States)

    Raychaudhuri, Sumana; Espenshade, Peter J

    2015-06-01

    Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.

  16. Biotin nutritional status of vegans, lactoovovegetarians, and nonvegetarians.

    Science.gov (United States)

    Lombard, K A; Mock, D M

    1989-09-01

    Urinary excretion of biotin (total avidin-binding substances) was measured in adults and children who were adhering to one of the following self-selected diets: strict vegetarian (vegan), lactoovovegetarian, or mixed (containing meat and dairy products as well as plant-derived foods). In a subset of subjects, plasma biotin concentrations were also measured. In adults the biotin excretion rate was significantly greater in the vegan group than in either the lactoovovegetarian or the mixed-diet groups; the latter were not significantly different from one another. In children the biotin excretion rates in both the vegan group and the lactoovovegetarin group were significantly greater than in the mixed-diet group. A similar trend (vegan greater than lactoovovegetarian greater than mixed) was detected in the plasma concentrations of biotin of adults and children but differences were not generally statistically significant. These observations provide evidence that the biotin nutritional status of vegans is not impaired.

  17. Scientific Opinion on Dietary Reference Values for biotin

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2014-02-01

    Full Text Available Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA derived Dietary Reference Values (DRVs for biotin. Biotin is a water-soluble vitamin which serves as a co-factor for several carboxylases that play critical roles in the synthesis of fatty acids, the catabolism of branched-chain amino acids and gluconeogenesis. Dietary biotin deficiency is rare. Data on biomarkers of biotin intake or status are insufficient to be used in determining the requirement for biotin. Data available on biotin intakes and health consequences are very limited and cannot be used for deriving DRVs for biotin. As there is insufficient evidence available to derive an Average Requirement and a Population Reference Intake, an Adequate Intake (AI is proposed. The setting of AIs is based on observed biotin intakes with a mixed diet and the apparent absence of signs of deficiency in the EU, suggesting that current intake levels are adequate. The AI for adults is set at 40 µg/day. The AI for adults also applies to pregnant women. For lactating women, an additional 5 µg biotin/day over and above the AI for adults is proposed, to compensate for biotin losses through breast milk. For infants over six months, an AI of 6 µg/day is proposed by extrapolating from the biotin intake of exclusively breastfed infants aged zero to six months, using allometric scaling and reference body weight for each age group, in order to account for the role of biotin in energy metabolism. The AIs for children aged 1–3 and 4–10 years are set at 20 and 25 µg/day, respectively, and for adolescents at 35 µg/day, based on observed intakes in the EU.

  18. Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation.

    Science.gov (United States)

    Medvar, Barbara; Raghuram, Viswanathan; Pisitkun, Trairak; Sarkar, Abhijit; Knepper, Mark A

    2016-07-01

    Aquaporin-2 (AQP2) is regulated in part via vasopressin-mediated changes in protein half-life that are in turn dependent on AQP2 ubiquitination. Here we addressed the question, "What E3 ubiquitin ligase is most likely to be responsible for AQP2 ubiquitination?" using large-scale data integration based on Bayes' rule. The first step was to bioinformatically identify all E3 ligase genes coded by the human genome. The 377 E3 ubiquitin ligases identified in the human genome, consisting predominant of HECT, RING, and U-box proteins, have been used to create a publically accessible and downloadable online database (https://hpcwebapps.cit.nih.gov/ESBL/Database/E3-ligases/). We also curated a second database of E3 ligase accessory proteins that included BTB domain proteins, cullins, SOCS-box proteins, and F-box proteins. Using Bayes' theorem to integrate information from multiple large-scale proteomic and transcriptomic datasets, we ranked these 377 E3 ligases with respect to their probability of interaction with AQP2. Application of Bayes' rule identified the E3 ligases most likely to interact with AQP2 as (in order of probability): NEDD4 and NEDD4L (tied for first), AMFR, STUB1, ITCH, ZFPL1. Significantly, the two E3 ligases tied for top rank have also been studied extensively in the reductionist literature as regulatory proteins in renal tubule epithelia. The concordance of conclusions from reductionist and systems-level data provides strong motivation for further studies of the roles of NEDD4 and NEDD4L in the regulation of AQP2 protein turnover. PMID:27199454

  19. Preparation and isolation of neoglycoconjugates using biotin-streptavidin complexes.

    Science.gov (United States)

    Kuberan, B; Gunay, N S; Dordick, J S; Linhardt, R J

    1999-06-01

    Glycoproteins commercially available in multi-gram quantities, were used to prepare milligram amounts of neoglycoproteins. The glycoproteins bromelain and bovine gamma-globulin were proteolyzed to obtain glycopeptides or converted to a mixture of glycans through hydrazinolysis. The glycan mixture was structurally simplified by carbohydrate remodeling using exoglycosidases. Glycopeptides were biotinylated using N-hydroxysuccinimide activated-long chain biotin while glycoprotein-derived glycans were first reductively aminated with ammonium bicarbonate and then biotinylated. The resulting biotinylated carbohydrates were structurally characterized and then bound to streptavidin to afford neoglycoproteins. The peptidoglycan component of raw, unbleached heparin (an intermediate in the manufacture of heparin) was similarly biotinylated and bound to streptavidin to obtain milligram amounts of a heparin neoproteoglycan. The neoglycoconjugates prepared contain well defined glycan chains at specific locations on the streptavidin core and should be useful for the study of protein-carbohydrate interactions and affinity separations.

  20. Ancient origin of animal U-box ubiquitin ligases

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2010-10-01

    Full Text Available Abstract Background The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. Results Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4 were already present in the ancestor of all current metazoans and the seventh (WDSUB1 is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT of ubiquitin ligases. Conclusions Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system.

  1. Reconstitution of CHIP E3 Ubiquitin Ligase Activity

    OpenAIRE

    Ren, Hong Yu; Patterson, Cam; Cyr, Douglas M.; Rosser, Meredith F. N.

    2011-01-01

    CHIP, the carboxyl-terminus of Hsp70 interacting protein, is both an E3 ubiquitin ligase and an Hsp70 co-chaperone and is implicated in the degradation of cytosolic quality control and numerous disease substrates. CHIP has been shown to monitor the folding status of the CFTR protein, and we have successfully reconstituted this activity using a recombinant CFTR fragment consisting of the cytosolic NBD1 and R domains. We have found that efficient ubiquitination of substrates requires chaperone ...

  2. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    Science.gov (United States)

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  3. Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus [v1; ref status: indexed, http://f1000r.es/3dx

    Directory of Open Access Journals (Sweden)

    Liqin Du

    2014-05-01

    Full Text Available D-alanylation of the lipoteichoic acid on Gram-positive cell wall is dependent on dlt gene-encoded proteins DltA, DltB, DltC and DltD. The D-alanyl carrier protein ligase DltA, as a remote homolog of acyl-(coenzyme A (CoA synthetase, cycles through two active conformations for the catalysis of adenylation and subsequent thiolation of D-alanine (D-Ala. The crystal structure of DltA in the absence of any substrate was observed to have a noticeably more disordered pocket for ATP which would explain why DltA has relatively low affinity for ATP in the absence of any D-alanyl carrier. We have previously enabled the thiolation of D-alanine in the presence of CoA as the mimic of D-alanyl carrier protein DltC which carries a 4’-phosphopantetheine group on a serine residue. Here we show that the resulting Michaelis constants in the presence of saturating CoA for both ATP and D-alanine were reduced more than 10 fold as compared to the values obtained in the absence of CoA. The presence of CoA also made DltA ~100-fold more selective on D-alanine over L-alanine. The CoA-enhanced substrate recognition further implies that the ATP and D-alanine substrates of the adenylation reaction are incorporated when the DltA enzyme cycles through its thiolation conformation.

  4. Design of Biotin-Functionalized Luminescent Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kimihiro Susumu

    2007-01-01

    Full Text Available We report the design and synthesis of a tetraethylene glycol- (TEG- based bidentate ligand functionalized with dihydrolipoic acid (DHLA and biotin (DHLA—TEG—biotin to promote biocompatibility of luminescent quantum dots (QD's. This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG- (molecular weight average ∼600 modified DHLA (DHLA—PEG600 and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.

  5. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai;

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  6. The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A.

    Science.gov (United States)

    Moghe, Saili; Jiang, Fei; Miura, Yoshie; Cerny, Ronald L; Tsai, Ming-Ying; Furukawa, Manabu

    2012-02-15

    The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.

  7. The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A

    Directory of Open Access Journals (Sweden)

    Saili Moghe

    2012-02-01

    The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.

  8. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining.

    Science.gov (United States)

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-02-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4(-/-) cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  9. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    Science.gov (United States)

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  10. Human Polycomb 2 Protein Is a SUMO E3 Ligase and Alleviates Substrate-Induced Inhibition of Cystathionine β-Synthase Sumoylation

    OpenAIRE

    Nitish Agrawal; Ruma Banerjee

    2008-01-01

    Human cystathionine beta-synthase (CBS) catalyzes the first irreversible step in the transsulfuration pathway and commits homocysteine to the synthesis of cysteine. Mutations in CBS are the most common cause of severe hereditary hyperhomocysteinemia. A yeast two-hybrid approach to screen for proteins that interact with CBS had previously identified several components of the sumoylation pathway and resulted in the demonstration that CBS is a substrate for sumoylation. In this study, we demonst...

  11. Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylamino)toluic Acid] (PATA) for Efficient Biotinylation of Peptides and Oligonucleotides

    OpenAIRE

    Martina Jezowska; Joanna Romanowska; Burcu Bestas; Ulf Tedebark; Malgorzata Honcharenko

    2012-01-01

    Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemist...

  12. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development.

    Science.gov (United States)

    Kinsella, Elaine; Dora, Natalie; Mellis, David; Lettice, Laura; Deveney, Paul; Hill, Robert; Ditzel, Mark

    2016-01-01

    Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling. PMID:27299863

  13. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development.

    Directory of Open Access Journals (Sweden)

    Elaine Kinsella

    Full Text Available Hedgehog (Hh signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd, a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous or indirect (non-cell-autonomous. Elaboration of the cellular/molecular mechanism(s involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling.

  14. Synthesis of 6-PEtN-α-D-GalpNAc-(1–>6-β-D-Galp-(1–>4-β-D-GlcpNAc-(1–>3-β-D-Galp-(1–>4-β-D-Glcp, a Haemophilus influenzae lipopolysacharide structure, and biotin and protein conjugates thereof

    Directory of Open Access Journals (Sweden)

    Andreas Sundgren

    2010-07-01

    Full Text Available Background: In bacteria with truncated lipopolysaccharide structures, i.e., lacking the O-antigen polysaccharide part, core structures are exposed to the immune system upon infection and thus their use as carbohydrate surface antigens in glycoconjugate vaccines can be considered and investigated. One such suggested structure from Haemophilus influenzae LPS is the phosphorylated pentasaccharide 6-PEtN-α-D-GalpNAc-(1→6-β-D-Galp-(1→4-β-D-GlcpNAc-(1→3-β-D-Galp-(1→4-β-D-Glcp.Results: Starting from a spacer-containing lactose derivative a suitably protected lacto-N-neotetraose tetrasaccharide structure was constructed through subsequential couplings with two thioglycoside donors, a glucosamine residue followed by a galactose derivative, using NIS/AgOTf as promoter. Removal of a silyl protecting group at the primary position of the non-reducing end residue afforded an acceptor to which the terminal α-galactosamine moiety was introduced using a 2-azido bromo sugar and halide assisted coupling conditions. Global deprotection afforded the non-phosphorylated target pentasaccharide, whereas removal of a silyl group from the primary position of the non-reducing end residue produced a free hydroxy group which was phosphorylated using H-phosphonate chemistry to yield the phosphoethanolamine-containing protected pentasaccharide. Partial deprotection afforded the phosphorylated target pentasaccharide with a free spacer amino group but with a protected phosphoethanolamino group. Conjugation of the spacer amino group to biotin or dimethyl squarate followed by deprotection of the phosphoethanolamino group and, in the case of the squarate derivative, further reaction with a protein then afforded the title conjugates.Conclusion: An effective synthesis of a biologically interesting pentasaccharide structure has been accomplished. The target pentasaccharide, an α-GalNAc substituted lacto-N-neotetraose structure, comprises a phosphoethanolamine motif and

  15. Biotin-specific synthetic receptors prepared using molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-02-16

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label.

  16. The auto-ubiquitylation of E3 ubiquitin-protein ligase Chfr at G2 phase is required for accumulation of polo-like kinase 1 and mitotic entry in mammalian cells.

    Science.gov (United States)

    Kim, Jo-Sun; Park, Yong-Yea; Park, Sun-Yi; Cho, Hyeseon; Kang, Dongmin; Cho, Hyeseong

    2011-09-01

    The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G(2)/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G(2)/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G(2) phase, but not at S phase, were ∼2-3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G(2) phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G(2)/M transition.

  17. Inhibition of Ubiquitin Ligase F-box and WD Repeat Domain-containing 7α (Fbw7α) Causes Hepatosteatosis through Krüppel-like Factor 5 (KLF5)/Peroxisome Proliferator-activated Receptor γ2 (PPARγ2) Pathway but Not SREBP-1c Protein in Mice*

    OpenAIRE

    Kumadaki, Shin; Karasawa, Tadayoshi; Matsuzaka, Takashi; Ema, Masatsugu; Nakagawa, Yoshimi; Nakakuki, Masanori; Saito, Ryo; Yahagi, Naoya; Iwasaki, Hitoshi; Sone, Hirohito; Takekoshi, Kazuhiro; Yatoh, Shigeru; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki

    2011-01-01

    F-box and WD repeat domain-containing 7α (Fbw7α) is the substrate recognition component of a ubiquitin ligase that controls the degradation of factors involved in cellular growth, including c-Myc, cyclin E, and c-Jun. In addition, Fbw7α degrades the nuclear form of sterol regulatory element-binding protein (SREBP)-1a, a global regulator of lipid synthesis, particularly during mitosis in cultured cells. This study investigated the in vivo role of Fbw7α in hepatic lipid metabolism. siRNA knockd...

  18. Inhibition of Ubiquitin Ligase F-box and WD Repeat Domain-containing 7α (Fbw7α) Causes Hepatosteatosis through Krüppel-like Factor 5 (KLF5)/Peroxisome Proliferator-activated Receptor γ2 (PPARγ2) Pathway but Not SREBP-1c Protein in Mice

    OpenAIRE

    Kumadaki, Shin; Karasawa, Tadayoshi; Matsuzaka, Takashi; Ema, Masatsugu; Nakagawa, Yoshimi; Nakakuki, Masanori; Saito, Ryo; Yahagi, Naoya; Iwasaki, Hitoshi; Sone, Hirohito; Takekoshi, Kazuhiro; Yatoh, Shigeru; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki

    2011-01-01

    F-box and WD repeat domain-containing 7α (Fbw7α) is the substrate recognition component of a ubiquitin ligase that controls the degradation of factors involved in cellular growth, including c-Myc, cyclin E, and c-Jun. In addition, Fbw7α degrades the nuclear form of sterol regulatory element-binding protein (SREBP)-1a, a global regulator of lipid synthesis, particularly during mitosis in cultured cells. This study investigated the in vivo role of Fbw7α in hepatic lipid metabolism. siRNA knockd...

  19. Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4.

    Science.gov (United States)

    Lear, Travis; McKelvey, Alison C; Rajbhandari, Shristi; Dunn, Sarah R; Coon, Tiffany A; Connelly, William; Zhao, Joe Y; Kass, Daniel J; Zhang, Yingze; Liu, Yuan; Chen, Bill B

    2016-05-30

    The E3 small ubiquitin-like modifier (SUMO) protein ligase protein inhibitor of activated STAT 4 (PIAS4) is a pivotal protein in regulating the TGFβ pathway. In this study, we discovered a new protein isoform encoded by KIAA0317, termed fibrosis-inducing E3 ligase 1 (FIEL1), which potently stimulates the TGFβ signaling pathway through the site-specific ubiquitination of PIAS4. FIEL1 targets PIAS4 using a double locking mechanism that is facilitated by the kinases PKCζ and GSK3β. Specifically, PKCζ phosphorylation of PIAS4 and GSK3β phosphorylation of FIEL1 are both essential for the degradation of PIAS4. FIEL1 protein is highly expressed in lung tissues from patients with idiopathic pulmonary fibrosis (IPF), whereas PIAS4 protein levels are significantly reduced. FIEL1 overexpression significantly increases fibrosis in a bleomycin murine model, whereas FIEL1 knockdown attenuates fibrotic conditions. Further, we developed a first-in-class small molecule inhibitor toward FIEL1 that is highly effective in ameliorating fibrosis in mice. This study provides a basis for IPF therapeutic intervention by modulating PIAS4 protein abundance.

  20. RBR E3 ubiquitin ligases: new structures, new insights, new questions.

    Science.gov (United States)

    Spratt, Donald E; Walden, Helen; Shaw, Gary S

    2014-03-15

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

  1. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  2. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  3. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.

    Science.gov (United States)

    Heinisch, Tillmann; Ward, Thomas R

    2016-09-20

    The biotin-streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin-(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as "molecular velcro", allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes. For this purpose, a biotinylated organometallic catalyst is introduced within (strept)avidin to afford a hybrid catalyst that combines features reminiscent of both enzymes and organometallic catalysts. Importantly, ArMs can be optimized by chemogenetic means. Combining a small collection of biotinylated organometallic catalysts with streptavidin mutants allows generation of significant diversity, thus allowing optimization of the catalytic performance of ArMs. Pursuing this strategy, the following reactions have been implemented: hydrogenation, alcohol oxidation, sulfoxidation, dihydroxylation, allylic alkylation, transfer hydrogenation, Suzuki cross-coupling, C-H activation, and metathesis. In this Account, we summarize our efforts in the latter four reactions. X-ray analysis of various ArMs based on the biotin-streptavidin technology reveals the versatility and commensurability of the biotin-binding vestibule to accommodate and interact with transition states of the scrutinized organometallic transformations. In particular, streptavidin residues at positions 112 and 121 recurrently lie in close proximity to the biotinylated metal cofactor. This observation led us to develop a streamlined 24-well plate streptavidin production and screening platform to optimize the performance of ArMs. To date, most of the efforts in the field of ArMs have focused on the use of purified

  4. ATPase-dependent control of the Mms21 SUMO ligase during DNA repair.

    Directory of Open Access Journals (Sweden)

    Marcelino Bermúdez-López

    2015-03-01

    Full Text Available Modification of proteins by SUMO is essential for the maintenance of genome integrity. During DNA replication, the Mms21-branch of the SUMO pathway counteracts recombination intermediates at damaged replication forks, thus facilitating sister chromatid disjunction. The Mms21 SUMO ligase docks to the arm region of the Smc5 protein in the Smc5/6 complex; together, they cooperate during recombinational DNA repair. Yet how the activity of the SUMO ligase is controlled remains unknown. Here we show that the SUMO ligase and the chromosome disjunction functions of Mms21 depend on its docking to an intact and active Smc5/6 complex, indicating that the Smc5/6-Mms21 complex operates as a large SUMO ligase in vivo. In spite of the physical distance separating the E3 and the nucleotide-binding domains in Smc5/6, Mms21-dependent sumoylation requires binding of ATP to Smc5, a step that is part of the ligase mechanism that assists Ubc9 function. The communication is enabled by the presence of a conserved disruption in the coiled coil domain of Smc5, pointing to potential conformational changes for SUMO ligase activation. In accordance, scanning force microscopy of the Smc5-Mms21 heterodimer shows that the molecule is physically remodeled in an ATP-dependent manner. Our results demonstrate that the ATP-binding activity of the Smc5/6 complex is coordinated with its SUMO ligase, through the coiled coil domain of Smc5 and the physical remodeling of the molecule, to promote sumoylation and chromosome disjunction during DNA repair.

  5. Structure of 5-formyltetrahydrofolate cyclo-ligase from Bacillus anthracis (BA4489)

    International Nuclear Information System (INIS)

    The structure of 5-formyltetrahydrofolate cyclo-ligase from B. anthracis determined by X-ray crystallography at a resolution of 1.6 Å is described. Bacillus anthracis is a spore-forming bacterium and the causative agent of the disease anthrax. The Oxford Protein Production Facility has been targeting proteins from B. anthracis in order to develop high-throughput technologies within the Structural Proteomics in Europe project. As part of this work, the structure of 5-formyltetrahydrofolate cyclo-ligase (BA4489) has been determined by X-ray crystallography to 1.6 Å resolution. The structure, solved in complex with magnesium-ion-bound ADP and phosphate, gives a detailed picture of the proposed catalytic mechanism of the enzyme. Chemical differences from other cyclo-ligase structures close to the active site that could be exploited to design specific inhibitors are also highlighted

  6. A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes.

    Science.gov (United States)

    Araki, Kazuaki; Kawamura, Meiko; Suzuki, Toshiaki; Matsuda, Noriyuki; Kanbe, Daiji; Ishii, Kyoko; Ichikawa, Tomio; Kumanishi, Toshiro; Chiba, Tomoki; Tanaka, Keiji; Nawa, Hiroyuki

    2003-08-01

    Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).

  7. 高能量低蛋白质日粮中添加生物素对蛋鸡脂类代谢的影响%Effect of high-energy low-protein diet supplemented with biotin on fat metabolism of laying hens

    Institute of Scientific and Technical Information of China (English)

    郭小权; 曹华斌; 胡国良; 张彩英; 李浩棠; 曹洪峰; 黄爱民; 罗军荣; 李麟

    2012-01-01

    The experiment was conducted to investigate the influence of biotin on fat metabolism and fatty liver hemorrhagic syndrome(FLHS) in laying hens.One hundred and thirty five healthy birds(Hy-line Variety Brown laying hens,Gallus domesticus) aged 300 days were randomly allotted into 3 dietary treatments of 45 broilers each.The groups were:1) group 1(control,semisynthetic commercial layer standard diet in accordance with the nutrient requirements of poultry(National Research Councile,1998));2) group 2(high energy-low protein diet which were partially formulated in accordance with controls;3) group 3(the high energy-low protein diet supplemented with 0.3 mg biotin/kg DM).All birds were reared for 60 days.Nine hens from each group were selected to collecte samples including serum and liver on 1,30,60 day,respectively.The serum indexs relevant to fat metabolism in serum and/or liver were investigated.The results as follows:as compared to the control,laying performance and HDL-C on the 30th and 60th day in the group 2 decreased.TG,TC,LDL-C,ALT,AST in serum and the ratio of liver fat and abdominal fat increased.Laying performance,HDL-C,TG,TC,LDL-C,ALT,AST in serum and the ratio of liver fat and abdominal fat in the group 3 on the 30th day have no difference.Laying performance and HDL-C on the 60th day in the group 3 decreased.TG,TC,LDL-C,ALT,AST in serum and the ratio of liver fat and abdominal fat increased.As compared to group 2,laying performance and HDL-C on the 30th and 60th day in the group 3 decreased.TG,TC,LDLC,ALT,AST in serum and the ratio of liver fat and abdominal fat increased.The results suggested that high energy-low protein diet can be used for the pathology model building of FLHS.The high energy-low protein diet supplemented with 0.3 mg biotin/kg DM may affect fat metabolism in laying hen and prevent FLHS.%选用300日龄健康海蓝褐蛋鸡90羽,随机分为对照组、病理组、防治组3组(每组3

  8. Labelling of Biotin with 188Re. Chapter 8

    International Nuclear Information System (INIS)

    Different chemical strategies have been employed for labelling biotin using 188Re with the aim to develop a sterile and pyrogen free kit formulation that is suitable for clinical use. A number of biotin conjugated 188Re complexes were prepared and evaluated to determine their affinity for avidin. The most difficult challenge was to devise an efficient reaction pathway that was able to obtain the final radiocompounds in a high radiochemical yield. This work describes the molecular design and the chemical strategy that were followed to obtain reliable preparation of the new radiopharmaceuticals starting from generator produced [188ReO4]–. (author)

  9. Improved avidin-biotin-peroxidase complex (ABC) staining.

    Science.gov (United States)

    Cattoretti, G; Berti, E; Schiró, R; D'Amato, L; Valeggio, C; Rilke, F

    1988-02-01

    A considerable intensification of the avidin-biotin-peroxidase complex staining system (ABC) was obtained by sequentially overlaying the sections to be immunostained with an avidin-rich and a biotin-rich complex. Each sequential addition contributed to the deposition of horseradish peroxidase on the immunostained site and allowed the subsequent binding of a complementary complex. With this technique a higher dilution of the antisera could be used and minute amounts of antigen masked by the fixative could be demonstrated on paraffin sections.

  10. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Eli Arama

    2007-10-01

    Full Text Available In both insects and mammals, spermatids eliminate their bulk cytoplasm as they undergo terminal differentiation. In Drosophila, this process of dramatic cellular remodeling requires apoptotic proteins, including caspases. To gain further insight into the regulation of caspases, we screened a large collection of sterile male flies for mutants that block effector caspase activation at the onset of spermatid individualization. Here, we describe the identification and characterization of a testis-specific, Cullin-3-dependent ubiquitin ligase complex that is required for caspase activation in spermatids. Mutations in either a testis-specific isoform of Cullin-3 (Cul3(Testis, the small RING protein Roc1b, or a Drosophila orthologue of the mammalian BTB-Kelch protein Klhl10 all reduce or eliminate effector caspase activation in spermatids. Importantly, all three genes encode proteins that can physically interact to form a ubiquitin ligase complex. Roc1b binds to the catalytic core of Cullin-3, and Klhl10 binds specifically to a unique testis-specific N-terminal Cullin-3 (TeNC domain of Cul3(Testis that is required for activation of effector caspase in spermatids. Finally, the BIR domain region of the giant inhibitor of apoptosis-like protein dBruce is sufficient to bind to Klhl10, which is consistent with the idea that dBruce is a substrate for the Cullin-3-based E3-ligase complex. These findings reveal a novel role of Cullin-based ubiquitin ligases in caspase regulation.

  11. Modulation of the Rat Hepatic Cytochrome P4501A Subfamily Using Biotin Supplementation

    OpenAIRE

    Ronquillo-Sánchez, M. D.; Camacho-Carranza, R.; C. Fernandez-Mejia; S. Hernández-Ojeda; Elinos-Baez, M.; Espinosa-Aguirre, J. J.

    2013-01-01

    Studies have found that biotin favors glucose and lipid metabolism, and medications containing biotin have been developed. Despite the use of biotin as a pharmacological agent, few studies have addressed toxicity aspects including the possible interaction with cytochrome P450 enzyme family. This study analyzed the effects of pharmacological doses of biotin on the expression and activity of the cytochrome P4501A subfamily involved in the metabolism of xenobiotics. Wistar rats were treated dail...

  12. File list: Oth.ALL.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX218273,SRX148...57047,SRX148805,SRX1057049,SRX1057041,SRX1057051,SRX1057043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Biotin.AllCell.bed ...

  13. File list: Oth.PSC.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX477548...68,SRX172568,SRX218274,SRX327702,SRX213792,SRX213794,SRX172567,SRX312228,SRX327701 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Biotin.AllCell.bed ...

  14. File list: Oth.ALL.10.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673714,SRX673717,SRX673719,SRX673720,SRX673711,SRX673713,SRX1091033 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.Biotin.AllCell.bed ...

  15. File list: Oth.ALL.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673717,SRX673711,SRX673719,SRX673720,SRX673713,SRX673714,SRX1091033 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.Biotin.AllCell.bed ...

  16. File list: Oth.PSC.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX477548...44,SRX115145,SRX984568,SRX172568,SRX218274,SRX327702,SRX312228,SRX213794,SRX327701 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.Biotin.AllCell.bed ...

  17. File list: Oth.ALL.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673711,SRX673716,SRX673717,SRX673719,SRX673713,SRX673714,SRX1091033 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.Biotin.AllCell.bed ...

  18. File list: Oth.ALL.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673719,SRX673717,SRX673711,SRX673714,SRX1091033,SRX673713,SRX315187 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.50.Biotin.AllCell.bed ...

  19. File list: Oth.Brs.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.Biotin.AllCell hg19 TFs and others Biotin Breast SRX673718,SRX673712,SRX...RX673714 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.Biotin.AllCell.bed ...

  20. File list: Oth.ALL.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX477548,SRX312...7041,SRX1057049,SRX1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Biotin.AllCell.bed ...

  1. File list: Oth.ALL.10.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX218273,SRX477...7041,SRX1057049,SRX1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.10.Biotin.AllCell.bed ...

  2. File list: Oth.PSC.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX218273...67,SRX115147,SRX312228,SRX984569,SRX984573,SRX984572,SRX984568,SRX218274,SRX172568 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Biotin.AllCell.bed ...

  3. File list: Oth.Neu.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.Biotin.AllCell mm9 TFs and others Biotin Neural SRX1057041,SRX1057049,SR...X1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.Biotin.AllCell.bed ...

  4. File list: Oth.Neu.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.Biotin.AllCell mm9 TFs and others Biotin Neural SRX1057041,SRX1057049,SR...X1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.Biotin.AllCell.bed ...

  5. File list: Oth.Brs.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.Biotin.AllCell hg19 TFs and others Biotin Breast SRX673718,SRX673721,SRX...RX673714 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.Biotin.AllCell.bed ...

  6. File list: Oth.ALL.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX477548,SRX273...57049,SRX1057045,SRX1057047,SRX019779,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Biotin.AllCell.bed ...

  7. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K;

    2013-01-01

    ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  8. Influences of dietary biotin and avidin on growth, survival, deficiency syndrome and hepatic gene expression of juvenile Nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Sarker, Pallab Kumer; Yossa, Rodrigue; Karanth, Santhosh; Ekker, Marc; Vandenberg, Grant W

    2012-08-01

    This study was undertaken to assess the interactive effects of dietary biotin and avidin on growth, feed conversion, survival and deficiency syndrome of tilapia and to determine the influence of dietary biotin deficiency on the expression of key genes related to biotin metabolism in tilapia. Six iso-nitrogenous and iso-energetic diets based on a common purified basal diet (vitamin-free casein as the protein source) were prepared for this study. The six dietary groups were 0 g avidin with 0 mg biotin (A0B0), 0 g avidin with 0.06 mg biotin/kg diet (A0B1), four avidin-supplemented diets incorporating at a incremental concentrations 0.25, 0.5, 1.0 and 2.0 g/kg diet with 0.06 mg biotin/kg diet (A15B1, A30B1, A60B1 and A120B1). Fish were hand-fed three times a day to apparent satiation for 12 weeks. Each diet was fed to three replicate groups of fish. Fish were kept in glass aquaria in a recirculating aquaculture system under standardized environmental conditions. Growth was significantly higher in fish that received the biotin-supplemented diet (A0B1), compared to diets lacking biotin or supplemented with avidin. Tilapia fed higher concentration of avidin-supplemented diets (A60B1 and A120B1) showed significant growth depression and displayed severe deficiency syndromes such as lethargy, anorexia, circular swimming and convulsions, which ultimately lead to death. There was a strong proportional linear relationship between the avidin content of the diet and feed conversion ratio, FCR (y = 0.43x + 0.135; r = 0.960; P < 0.001) and strong inverse relationship with protein efficiency ratio, PER (y = -0.309x + 2.195; r = 0.961; P < 0.0001). Elevated levels of biotinidase, pyruvate carboxylase, propionyl-CoA carboxylase-A and propionyl-CoA carboxylase-B transcripts were noted in fish fed all graded level of avidin-supplemented diets. A broken-line analysis indicated that feeding tilapia a diet with 44.5 times more avidin than the dietary biotin

  9. Influences of dietary biotin and avidin on growth, survival, deficiency syndrome and hepatic gene expression of juvenile Nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Sarker, Pallab Kumer; Yossa, Rodrigue; Karanth, Santhosh; Ekker, Marc; Vandenberg, Grant W

    2012-08-01

    This study was undertaken to assess the interactive effects of dietary biotin and avidin on growth, feed conversion, survival and deficiency syndrome of tilapia and to determine the influence of dietary biotin deficiency on the expression of key genes related to biotin metabolism in tilapia. Six iso-nitrogenous and iso-energetic diets based on a common purified basal diet (vitamin-free casein as the protein source) were prepared for this study. The six dietary groups were 0 g avidin with 0 mg biotin (A0B0), 0 g avidin with 0.06 mg biotin/kg diet (A0B1), four avidin-supplemented diets incorporating at a incremental concentrations 0.25, 0.5, 1.0 and 2.0 g/kg diet with 0.06 mg biotin/kg diet (A15B1, A30B1, A60B1 and A120B1). Fish were hand-fed three times a day to apparent satiation for 12 weeks. Each diet was fed to three replicate groups of fish. Fish were kept in glass aquaria in a recirculating aquaculture system under standardized environmental conditions. Growth was significantly higher in fish that received the biotin-supplemented diet (A0B1), compared to diets lacking biotin or supplemented with avidin. Tilapia fed higher concentration of avidin-supplemented diets (A60B1 and A120B1) showed significant growth depression and displayed severe deficiency syndromes such as lethargy, anorexia, circular swimming and convulsions, which ultimately lead to death. There was a strong proportional linear relationship between the avidin content of the diet and feed conversion ratio, FCR (y = 0.43x + 0.135; r = 0.960; P protein efficiency ratio, PER (y = -0.309x + 2.195; r = 0.961; P levels of biotinidase, pyruvate carboxylase, propionyl-CoA carboxylase-A and propionyl-CoA carboxylase-B transcripts were noted in fish fed all graded level of avidin-supplemented diets. A broken-line analysis indicated that feeding tilapia a diet with 44.5 times more avidin than the dietary biotin requirement can induce deficiency syndromes including retarded growth, when

  10. Isolation and characterization of an Arabidopsis biotin carboxylase gene and its promoter.

    Science.gov (United States)

    Bao, X; Shorrosh, B S; Ohlrogge, J B

    1997-11-01

    In the plastids of most plants, acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a multisubunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protien (BCCP), and carboxytransferase (alpha-CT, beta-CT) subunits. To better understand the regulation of this enzyme, we have isolated and sequenced a BC genomic clone from Arabidopsis and partially characterized its promoter. Fifteen introns were identified. The deduced amino acid sequence of the mature BC protein is highly conserved between Arabidopsis and tobacco (92.6% identity). BC expression was evaluated using northern blots and BC/GUS fusion constructs in transgenic Arabidopsis. GUS activity in the BC/GUS transgenics as well as transcript level of the native gene were both found to be higher in silique and flower than in root and leaf. Analysis of tobacco suspension cells transformed with truncated BC promoter/GUS gene fusions indicated the region from -140 to +147 contained necessary promoter elements which supported basal gene expression. A positive regulatory region was found to be located between -2100 and -140, whereas a negative element was possibly located in the first intron. In addition, several conserved regulatory elements were identified in the BC promoter. Surprisingly, although BC is a low-abundance protein, the expression of BC/GUS fusion constructs was similar to 35S/GUS constructs.

  11. Amplified voltammetric detection of glycoproteins using 4-mercaptophenylboronic acid/biotin-modified multifunctional gold nanoparticles as labels

    Directory of Open Access Journals (Sweden)

    Liu L

    2014-05-01

    Full Text Available Lin Liu,1,2 Yun Xing,1 Hui Zhang,1 Ruili Liu,1 Huijing Liu,1 Ning Xia1,21College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China; 2College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of ChinaAbstract: Ultrasensitive detection of protein biomarkers is essential for early diagnosis and therapy of many diseases. Glycoproteins, differing from other types of proteins, contain carbohydrate moieties in the oligosaccharide chains. Boronic acid can form boronate ester covalent bonds with diol-containing species. Herein, we present a sensitive and cost-effective electrochemical method for glycoprotein detection using 4-mercaptophenylboronic acid (MBA/biotin-modified gold nanoparticles (AuNPs (MBA-biotin-AuNPs as labels. To demonstrate the feasibility and sensitivity of this method, recombinant human erythropoietin (rHuEPO was tested as a model analyte. Specifically, rHuEPO was captured by the anti-rHuEPO aptamer-covered electrode and then derivatized with MBA-biotin-AuNPs through the boronic acid–carbohydrate interaction. The MBA-biotin-AuNPs facilitated the attachment of streptavidin-conjugated alkaline phosphatase for the production of electroactive p-aminophenol from p-aminophenyl phosphate substrate. A detection limit of 8 fmol L-1 for rHuEPO detection was achieved. Other glycosylated and non-glycosylated proteins, such as horseradish peroxidase, prostate specific antigen, metallothionein, streptavidin, and thrombin showed no interference in the detection assay.Keywords: electrochemical biosensor, boronic acid, signal amplification, alkaline phosphatase

  12. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  13. Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylaminotoluic Acid] (PATA for Efficient Biotinylation of Peptides and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Martina Jezowska

    2012-11-01

    Full Text Available Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemistry”. As we reported recently, the activated triple bond donor p-(N-propynoylaminotoluic acid (PATA gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion.

  14. Immunoradiometric assay for carcinoembryonic antigenusing avidin-biotin separation technique

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A sensitive, specific, noncompetitive, sandwich-typeradioimmunoassay for carcinoembryonic antigen (CEA) has been developedin our laboratory, which can be performedconveniently. The assay involves two monoclonal antibodies, selected for highaffinity and specificity and also for reaction against antigenic sites on CEA that aredistal from each other. One of these antibodies was labeled with125I and the other wasconjugated covalently to biotin. Polystyrene tubes were conjugated covalently toavidin. These tubes represent a rapid, simple method for separating the CEA-boundantibody from the free antibody. The biotin-antibody-CEA-125I-labeled antibodycomplexes bind to the tubes and CEA concentration is directly related to counts perminute. This assay can detect the CEA at a concentration of 0.22 μg/L in serum.

  15. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    Energy Technology Data Exchange (ETDEWEB)

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  16. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaolian Zhang

    Full Text Available Ariadne (ARI subfamily of RBR (Ring Between Ring fingers proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L. Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.

  17. The discovery of niacin, biotin, and pantothenic acid.

    Science.gov (United States)

    Lanska, Douglas J

    2012-01-01

    The aim was to describe the discovery of niacin, biotin, and pantothenic acid. By the 1920s, it became apparent that 'water-soluble B' (vitamin B) is not a single substance. In particular, fresh yeast could prevent both beriberi and pellagra, but the 'antipolyneuritis factor' in yeast is thermolabile, while the antipellagra factor is heat stable, suggesting that there are at least two water-soluble vitamins. Various terms were proposed for these water-soluble factors, but vitamins B(1) and B(2) were most widely used to refer to the thermolabile and heat-stable factors, respectively. Although vitamin B(1) proved to be a single chemical substance (thiamin), vitamin B(2) was ultimately found to be a complex of several chemically unrelated heat-stable factors, including niacin, biotin, and pantothenic acid. Recognition that niacin is a vitamin in the early 20th century resulted from efforts to understand and treat a widespread human disease - pellagra. American epidemiologist and US Public Health Service officer Joseph Goldberger (1874-1929) had been instrumental to elucidating the nutritional basis for pellagra. Goldberger conducted a classic series of observational and experimental studies in humans, combined with an extensive series of experiments with an animal model of the condition (black tongue in dogs). In contrast, recognition that biotin and pantothenic acid are vitamins occurred somewhat later as a result of efforts to understand microbial growth factors. The metabolic roles in humans of these latter substances were ultimately elucidated by human experiments using particular toxins and by studies of rare inborn errors of metabolism. Symptomatic nutritional deficiencies of biotin and pantothenic acid were, and continue to be, rare.

  18. PARC and CUL7 form atypical cullin RING ligase complexes.

    Science.gov (United States)

    Skaar, Jeffrey R; Florens, Laurence; Tsutsumi, Takeya; Arai, Takehiro; Tron, Adriana; Swanson, Selene K; Washburn, Michael P; DeCaprio, James A

    2007-03-01

    CUL7 and the p53-associated, PARkin-like cytoplasmic protein (PARC) were previously reported to form homodimers and heterodimers, the first demonstration of cullin dimerization. Although a CUL7-based SKP1/CUL1/F-box (SCF)-like complex has been observed, little is known about the existence of a PARC-based SCF-like complex and how PARC interacts with CUL7-based complexes. To further characterize PARC-containing complexes, we examined the ability of PARC to form an SCF-like complex. PARC binds RBX1 and is covalently modified by NEDD8, defining PARC as a true cullin. However, PARC fails to bind SKP1 or F-box proteins, including the CUL7-associated FBXW8. To examine the assembly of PARC- and CUL7-containing complexes, tandem affinity purification followed by multidimensional protein identification technology were used. Multidimensional protein identification technology analysis revealed that the CUL7 interaction with FBXW8 was mutually exclusive of CUL7 binding to PARC or p53. Notably, although heterodimers of CUL7 and PARC bind p53, p53 is not required for the dimerization of CUL7 and PARC. The observed physical separation of FBXW8 and PARC is supported functionally by the generation of Parc-/-, Fbxw8-/- mice, which do not show exacerbation of the Fbxw8-/- phenotype. Finally, all of the PARC and CUL7 subcomplexes examined exhibit E3 ubiquitin ligase activity in vitro. Together, these findings indicate that the intricate assembly of PARC- and CUL7-containing complexes is highly regulated, and multiple subcomplexes may exhibit ubiquitin ligase activity. PMID:17332328

  19. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex.

    Science.gov (United States)

    Stewart, Emerson V; Nwosu, Christine C; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D; Kim, Dong-Uk; Hayles, Jacqueline; Park, Han-Oh; Hoe, Kwang-Lae; Powell, David W; Krogan, Nevan J; Espenshade, Peter J

    2011-04-22

    Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.

  20. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation

    DEFF Research Database (Denmark)

    Adhikary, Sovana; Marinoni, Federica; Hock, Andreas;

    2005-01-01

    The Myc oncoprotein forms a binary activating complex with its partner protein, Max, and a ternary repressive complex that, in addition to Max, contains the zinc finger protein Miz1. Here we show that the E3 ubiquitin ligase HectH9 ubiquitinates Myc in vivo and in vitro, forming a lysine 63-linke...

  1. The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.

    Science.gov (United States)

    Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki

    2016-01-01

    Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase. PMID:27117847

  2. Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi

    2005-11-01

    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae.

  3. Evolution of Plant HECT Ubiquitin Ligases

    OpenAIRE

    Ignacio Marín

    2013-01-01

    HECT ubiquitin ligases are key components of the ubiquitin-proteasome system, which is present in all eukaryotes. In this study, the patterns of emergence of HECT genes in plants are described. Phylogenetic and structural data indicate that viridiplantae have six main HECT subfamilies, which arose before the split that separated green algae from the rest of plants. It is estimated that the common ancestor of all plants contained seven HECT genes. Contrary to what happened in animals, the numb...

  4. The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations.

    Science.gov (United States)

    Liu, Fengjiao; Zhang, John Z H; Mei, Ye

    2016-06-01

    Previous experimental study measuring the binding affinities of biotin to the wild type streptavidin (WT) and three mutants (S45A, D128A and S45A/D128A double mutant) has shown that the loss of binding affinity from the double mutation is larger than the direct sum of those from two single mutations. The origin of this cooperativity has been investigated in this work through molecular dynamics simulations and the end-state free energy method using the polarized protein-specific charge. The results show that this cooperativity comes from both the enthalpy and entropy contributions. The former contribution mainly comes from the alternations of solvation free energy. Decomposition analysis shows that the mutated residues nearly have no contributions to the cooperativity. Instead, N49 and S88, which are located at the entry of the binding pocket and interact with the carboxyl group of biotin, make the dominant contribution among all the residues in the first binding shell around biotin.

  5. The electrochemical reduction of biotin (vitamin B7) and conversion into its ester

    International Nuclear Information System (INIS)

    Highlights: •Biotin can be reduced electrochemically, by one-electron, at a platinum electrode. •The reduction likely follows a direct discharge mechanism of the carboxyl group. •Electrochemically generated biotin carboxylate was reacted with iodomethane (91%). •ATR–FTIR characterization of biotin, its carboxylate anion, and its methyl ester. -- Abstract: An electrochemical study on biotin (vitamin B7), performed in aprotic solvents and at a platinum electrode, revealed that at approximately Ef0=−1.6to−1.8 vs. (Fc/Fc+)/V (Ef0=formal reduction potential and Fc=ferrocene), biotin is reduced by one-electron to form its carboxylate anion and dihydrogen via a direct discharge of the carboxylic acid at the platinum surface. The electrochemical reduction process appeared to be chemically reversible on the time-frame of cyclic voltammetry (CV) (t ≤ s), but not over the extended period of controlled potential electrolysis (CPE) (t ≥ min) where the conversion of biotin into its carboxylate anion was found to be chemically irreversible. A strategy to functionalize biotin's carboxyl group was established by performing a bulk reductive electrolysis, and then reacting the electrochemically generated carboxylate anion with iodomethane to afford biotin methyl ester in excellent yield (91%). Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy was successful in identifying several distinct and characteristic carbonyl absorbance peaks associated with the analogous forms of biotin available before electrolysis, after electrolysis, and after methylation

  6. The APC/C Ubiquitin Ligase: from Cell Biology to Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Clara ePenas

    2012-01-01

    Full Text Available The ubiquitin proteasome system (UPS is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5 kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box proteins (SCF ubiquitin ligases and the Anaphase Promoting Complex/cyclosome (APC/C are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, thus underscoring its possible contribution to transformation. We will also put forth the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  7. Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control.

    Science.gov (United States)

    Kim, Song-Hee; Park, Yong-Yea; Yoo, Young-Suk; Cho, Hyeseong

    2016-01-01

    MARCH5, a mitochondrial E3 ubiquitin ligase, controls mitochondrial dynamics proteins and misfolded proteins, and has been proposed to play a role in mitochondria quality control. However, it remains unclear how mutant MARCH5 found in cancer tissues is removed from cells. Here, we show that mutation in the MARCH5 ligase domain increased its half-life fourfold, resulting in a drastic increase in its protein level. Abnormal accumulation of the E3 ligase-defective MARCH5 mutants MARCH5(H43W) and MARCH5(C65/68S) was diminished by overexpression of active MARCH5(WT) ; the mutant proteins were degraded through the ubiquitin-proteasome pathway. Coimmunoprecipitation revealed that MARCH5 forms homodimers, and that substitution of Gly to Leu at the first putative GxxxG dimerization motif, but not the second, resulted in a loss of dimeric interaction. Moreover, overexpression of the dimerization-defective mutant MARCH5(4GL) could not decrease the level of accumulated MARCH5(H43W) , suggesting that dimerization of MARCH5 is necessary for self-clearance. Abnormal accumulation of MARCH5(H43W) and mitochondrial hyperfusion led to NF-ĸB activation, which was suppressed by overexpression of MARCH5(WT) . Together, the data reveal a self-protective mechanism involving MARCH5, which can target its own dysfunctional mutant for degradation in order to maintain mitochondrial homeostasis.

  8. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair.

    OpenAIRE

    Mossi, R; Ferrari, E.; Hübscher, U

    1998-01-01

    The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by th...

  9. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-09-11

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.

  10. Biotin-targeted Pluronic(®) P123/F127 mixed micelles delivering niclosamide: A repositioning strategy to treat drug-resistant lung cancer cells.

    Science.gov (United States)

    Russo, Annapina; Pellosi, Diogo Silva; Pagliara, Valentina; Milone, Maria Rita; Pucci, Biagio; Caetano, Wilker; Hioka, Noboru; Budillon, Alfredo; Ungaro, Francesca; Russo, Giulia; Quaglia, Fabiana

    2016-09-10

    With the aim to develop alternative therapeutic tools for the treatment of resistant cancers, here we propose targeted Pluronic(®) P123/F127 mixed micelles (PMM) delivering niclosamide (NCL) as a repositioning strategy to treat multidrug resistant non-small lung cancer cell lines. To build multifunctional PMM for targeting and imaging, Pluronic(®) F127 was conjugated with biotin, while Pluronic(®) P123 was fluorescently tagged with rhodamine B, in both cases at one of the two hydroxyl end groups. This design intended to avoid any interference of rhodamine B on biotin exposition on PMM surface, which is a key fundamental for cell trafficking studies. Biotin-decorated PMM were internalized more efficiently than non-targeted PMM in A549 lung cancer cells, while very low internalization was found in NHI3T3 normal fibroblasts. Biotin-decorated PMM entrapped NCL with good efficiency, displayed sustained drug release in protein-rich media and improved cytotoxicity in A549 cells as compared to free NCL (P<0.01). To go in depth into the actual therapeutic potential of NCL-loaded PMM, a cisplatin-resistant A549 lung cancer cell line (CPr-A549) was developed and its multidrug resistance tested against common chemotherapeutics. Free NCL was able to overcome chemoresistance showing cytotoxic effects in this cell line ascribable to nucleolar stress, which was associated to a significant increase of the ribosomal protein rpL3 and consequent up-regulation of p21. It is noteworthy that biotin-decorated PMM carrying NCL at low doses demonstrated a significantly higher cytotoxicity than free NCL in CPr-A549. These results point at NCL-based regimen with targeted PMM as a possible second-line chemotherapy for lung cancer showing cisplatin or multidrug resistance.

  11. Datasets from an interaction proteomics screen for substrates of the SCFβTrCP ubiquitin ligase

    NARCIS (Netherlands)

    Magliozzi, Roberto; Peng, Mao; Mohammed, Shabaz; Guardavaccaro, Daniele; Heck, Albert J R; Low, Teck Yew

    2015-01-01

    An affinity purification-mass spectrometry (AP-MS) method was employed to identify novel substrates of the SCFβTrCP ubiquitin ligase. A FLAG-HA tagged version of the F-box protein βTrCP2, the substrate recognition subunit of SCFβTrCP, was used as bait. βTrCP2 wild type and the two mutants βTrCP2-R44

  12. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  13. The E3 ubiquitin ligase activity of Trip12 is essential for mouse embryogenesis.

    Directory of Open Access Journals (Sweden)

    Masashi Kajiro

    Full Text Available Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/mt that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12(mt/mt embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16. In contrast, Trip12(mt/mt ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12(mt/mt ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.

  14. Requirement of the SCFPop1/Pop2 Ubiquitin Ligase for Degradation of the Fission Yeast S Phase Cyclin Cig2

    OpenAIRE

    Yamano, H; Kominami, K; Harrison, C; Kitamura, K.; Katayama, S; Dhut, S.; Hunt, T; Toda, T.

    2004-01-01

    Two multiprotein E3 (ubiquitin-protein ligase) ubiquitin ligases, the SCF (Skp1-Cullin-1-F-box) and the APC/C (anaphase promoting complex/cyclosome), are vital in ensuring the temporal order of the cell cycle. Particularly, timely destruction of cyclins via these two E3s is essential for down-regulation of cyclin-dependent kinase. In general, G(1) and S phase cyclins are ubiquitylated by the SCF, whereas ubiquitylation of mitotic cyclins is catalyzed by the APC/C. Here we show that fission ye...

  15. Structural and enzymatic characterization of BacD, an l-amino acid dipeptide ligase from Bacillus subtilis

    OpenAIRE

    Shomura, Yasuhito; Hinokuchi, Emi; Ikeda, Hajime; Senoo, Akihiro; Takahashi, Yuichi; Saito, Jun-ichi; Komori, Hirofumi; Shibata,Naoki; Yonetani, Yoshiyuki; Higuchi, Yoshiki

    2012-01-01

    BacD is an ATP-dependent dipeptide ligase responsible for the biosynthesis of l-alanyl-l-anticapsin, a precursor of an antibiotic produced by Bacillus spp. In contrast to the well-studied and phylogenetically related d-alanine: d-alanine ligase (Ddl), BacD synthesizes dipeptides using l-amino acids as substrates and has a low substrate specificity in vitro. The enzyme is of great interest because of its potential application in industrial protein engineering for the environmentally friendly b...

  16. Measurement of Acylcarnitine Substrate to Product Ratios Specific to Biotin-Dependent Carboxylases Offers a Combination of Indicators of Biotin Status in Humans12

    OpenAIRE

    Bogusiewicz, Anna; Horvath, Thomas D; Stratton, Shawna L.; Mock, Donald M; Boysen, Gunnar

    2012-01-01

    This work describes a novel liquid chromatography tandem MS (LC-MS/MS) method for the determination of ratios of acylcarnitines arising from acyl-CoA substrates and products that reflect metabolic disturbances caused by marginal biotin deficiency. The urinary ratios reflecting reduced activities of biotin-dependent enzymes include the following: 1) the ratio of 3-hydroxyisovalerylcarnitine : 3-methylglutarylcarnitine (3HIAc : MGc) for methylcrotonyl-CoA carboxylase; 2) the ratio of propionylc...

  17. Lack of Maternal Glutamate Cysteine Ligase Modifier Subunit (Gclm) Decreases Oocyte Glutathione Concentrations and Disrupts Preimplantation Development in Mice

    OpenAIRE

    Nakamura, Brooke N.; Fielder, Thomas J.; Hoang, Yvonne D.; Lim, Jinhwan; McConnachie, Lisa A.; Kavanagh, Terrance J.; Luderer, Ulrike

    2011-01-01

    Glutathione (GSH) is the most abundant intracellular thiol and an important regulator of cellular redox status. Mice that lack the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH synthesis. Nicotinamide nucleotide transhydrogenase, an inner mitochondrial membrane protein, catalyzes the interconversion of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate; reduced nicotinamide ade...

  18. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    Science.gov (United States)

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  19. Effects of biotin on growth performance and foot pad dermatitis of starter White Pekin ducklings.

    Science.gov (United States)

    Zhu, Y W; Xie, M; Huang, W; Yang, L; Hou, S S

    2012-01-01

    1. An experiment with 9 dietary supplemental biotin concentrations (0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 1.5 mg biotin/kg) was conducted to study the effects of supplementary dietary biotin on growth performance and foot pad dermatitis (FPD) of White Pekin ducklings from hatch to 21 d of age. 2. One-d-old male Pekin ducklings (n=576) were randomly divided into 9 dietary treatments, each containing 8 replicate pens with 8 birds per pen. Final weight, feed intake and body weight gain increased with increasing dietary biotin levels from hatch to 21 d of age. No differences were observed in feed conversion ratio. 3. The supplemental biotin requirement of ducklings for optimal body weight gain was estimated to be 0.180 mg/kg. 4. At 28 d of age, dehydration, cracks, bleeding and scab, and ulceration were observed in biotin-deficient ducks. The external scores for FPD decreased from 17.50 to 1.00 with increasing dietary biotin. It was concluded that supplemental dietary biotin should not be less than 0.21 mg/kg to minimise the incidence of FPD.

  20. Structure And Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p

    Energy Technology Data Exchange (ETDEWEB)

    Tu, D.; Li, W.; Ye, Y.; Brunger, A.T.

    2009-06-04

    Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-{beta}-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.

  1. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1.

    Science.gov (United States)

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant's resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.

  2. Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY and a host-cell transporter (SMVT.

    Directory of Open Access Journals (Sweden)

    Derek J Fisher

    Full Text Available Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB and/or transport (bioY. Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613 from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF. Type II ECFs are typically composed of a transport specific component (S and a chromosomally unlinked energy module (AT. Intriguingly, Chlamydia lack recognizable AT modules. Using (3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module and capacity (apparent K(m of 3.35 nM and V(max of 55.1 pmol×min(-1×mg(-1. Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT, which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin

  3. 3-Hydroxybenzoate:coenzyme A ligase and 4-coumarate:coenzyme A ligase from cultured cells of Centaurium erythraea.

    Science.gov (United States)

    Barillas, W; Beerhues, L

    1997-01-01

    3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. PMID:9177055

  4. RPM-1 uses both ubiquitin ligase and phosphatase-based mechanisms to regulate DLK-1 during neuronal development.

    Directory of Open Access Journals (Sweden)

    Scott T Baker

    2014-05-01

    Full Text Available The Pam/Highwire/RPM-1 (PHR proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK. Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1, also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2 as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S. Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development.

  5. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

    Science.gov (United States)

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J; Schmidt, Wolfgang

    2015-10-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  6. Characterization of the Arabidopsis thaliana E3 ubiquitin-ligase AtSINAL7 and identification of the ubiquitination sites.

    Directory of Open Access Journals (Sweden)

    Diego A Peralta

    Full Text Available Protein ubiquitination leading to degradation by the proteasome is an important mechanism in regulating key cellular functions. Protein ubiquitination is carried out by a three step process involving ubiquitin (Ub activation by a E1 enzyme, the transfer of Ub to a protein E2, finally an ubiquitin ligase E3 catalyzes the transfer of the Ub peptide to an acceptor protein. The E3 component is responsible for the specific recognition of the target, making the unveiling of E3 components essential to understand the mechanisms regulating fundamental cell processes through the protein degradation pathways. The Arabidopsis thaliana seven in absentia-like 7 (AtSINAL7 gene encodes for a protein with characteristics from a C3HC4-type E3 ubiquitin ligase. We demonstrate here that AtSINAL7 protein is indeed an E3 protein ligase based on the self-ubiquitination in vitro assay. This activity is dependent of the presence of a Lys residue in position 124. We also found that higher AtSINAL7 transcript levels are present in tissues undergoing active cell division during floral development. An interesting observation is the circadian expression pattern of AtSINAL7 mRNA in floral buds. Furthermore, UV-B irradiation induces the expression of this transcript indicating that AtSINAL7 may be involved in a wide range of different cell processes.

  7. UHRF2, another E3 ubiquitin ligase for p53

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua [Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing (China); Duan, Changzhu, E-mail: duanchzhu@cqmu.edu.cn [Key Laboratory of Clinical Laboratory Diagnostics of Ministry of Education, Faculty of Laboratory Medicine, Chongqing Medical University, Chongqing (China); Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  8. Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway.

    Science.gov (United States)

    Yang, Yunpeng; Lang, Nannan; Yang, Gaohua; Yang, Sheng; Jiang, Weihong; Gu, Yang

    2016-05-01

    An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of solventogenic clostridia, we revealed that the insufficient biosynthesis of biotin, a pivotal coenzyme for many important biological processes, is a major limiting bottleneck in this anaerobe's performance. To address this problem, we strengthened the biotin synthesis of C. acetobutylicum by overexpressing four relevant genes involved in biotin transport and biosynthesis. This strategy led to faster growth and improved the titer and productivity of acetone, butanol and ethanol (ABE solvents) of C. acetobutylicum in both biotin-containing and biotin-free media. Expressionally modulating these four genes by modifying the ribosome binding site further promoted cellular performance, achieving ABE solvent titer and productivity as high as 21.9g/L and 0.30g/L/h, respectively, in biotin-free medium; these values exceeded those of the wild-type strain by over 30%. More importantly, biotin synthesis reinforcement also conferred improved ability of C. acetobutylicum to use hexose and pentose sugars, further demonstrating the potential of this metabolic-engineering strategy in solventogenic clostridia. PMID:26924180

  9. Determination of Biotin in Pharmaceutical Formulations by Potassium Permanganate-luminol-CdTe Nanoparticles Chemiluminescence System

    Institute of Scientific and Technical Information of China (English)

    TRAORE Zoumana Sékou; SU Xing-guang

    2012-01-01

    A sensitive flow-injection chemiluminescence method was developed for the determination of biotin in the pharmaceutical formulations.The affinity between avidin and biotin was used to adsorb biotin on the polystyrene,with subsequent quantification of biotin based on its ability to enhance the chemiluminescence(CL) signal generated by the redox reaction of potassium permanganate-luminol-CdTe nanoparticles CL system.The investigations prove that apart from 3-aminophthalate,the CdTe quantum dots(QDs) play both catalytic and emitter roles.Under optimum conditions,the linear range for the determination of biotin was 0.01-25 ng/mL with a detection limit of 7.3×10-3ng/mL(S/N=3).The relative standard deviation of 5 ng/L biotin was 2.06%(n=7).The proposed method was used to determine the biotin concentration in the pharmaceutical formulations and the recovery was between 96.4% and 104%.The proposed method is simple,convenient,rapid and sensitive.

  10. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A;

    2013-01-01

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs......)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response....

  11. Mutational Analysis of Bacterial NAD+-dependent DNA Ligase:Role of Motif Ⅳ in Ligation Catalysis

    Institute of Scientific and Technical Information of China (English)

    Hong FENG

    2007-01-01

    The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif Ⅳ in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif Ⅳ had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.

  12. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.

    Science.gov (United States)

    Fischer, Eric S; Böhm, Kerstin; Lydeard, John R; Yang, Haidi; Stadler, Michael B; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M; Tichkule, Ritesh B; Schebesta, Michael; Forrester, William C; Schirle, Markus; Hassiepen, Ulrich; Ottl, Johannes; Hild, Marc; Beckwith, Rohan E J; Harper, J Wade; Jenkins, Jeremy L; Thomä, Nicolas H

    2014-08-01

    In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.

  13. Exon structure requirements for yeast tRNA ligase

    Institute of Scientific and Technical Information of China (English)

    刘建华; 金由辛; 王德宝

    1997-01-01

    Different nucleotides were introduced into nucleotides 32, 37 and 38 of yeast tRNAphe precursors via oligonucleotide directed mutations. Pre-tRNAs were prepared using T7-transcription in vitro and spliced with the purified yeast tRNA endonuclease and tRNA ligase. It is demonstrated that tRNA ligase activities will be inhibited by the 5’-double-stranded end of 3’-halves.

  14. Total synthesis of amiclenomycin, an inhibitor of biotin biosynthesis.

    Science.gov (United States)

    Mann, Stéphane; Carillon, Sophie; Breyne, Olivier; Marquet, Andrée

    2002-01-18

    We describe the first synthesis of amiclenomycin, a natural product that has been found to inhibit biotin biosynthesis and, as a consequence, to exhibit antibiotic properties. Structure 1, with a trans relationship between the ring substituents. had previously been proposed for amiclenomycin on the basis of its 1H NMR spectrum. We have prepared the trans and cis isomers 1 and 2 by unequivocal routes and we conclude that the natural product is in fact the cis isomer 2. The properly substituted cyclohexadienyl rings were constructed first. A cycloaddition reaction between 1,2-di(phenylsulfonyl)ethylene and the N-allyloxycarbonyl diene 13, followed by reductive elimination of the phenylsulfinyl groups, gave the cis isomer 15. To obtain the trans isomer, the O-trimethylsilyl diene was used to give the cis hydroxylated Diels-Alder adduct 33, which was transformed into the corresponding trans amino derivative by means of a Mitsunobu reaction. The L-alpha-amino acid functionality was introduced by means of a Strecker reaction on the aldehydes 16 and 42, followed by enzymatic hydrolysis with immobilised pronase. PMID:11843156

  15. Proximity Utilizing Biotinylation of Nuclear Proteins in vivo

    Directory of Open Access Journals (Sweden)

    Arman Kulyyassov

    2015-06-01

    Full Text Available Introduction. The human genome consists of roughly 30,000 genes coding for over 500,000 different proteins, of which more than 10,000 proteins can be produced by the cell at any given time (the cellular “proteome”. It has been estimated that over 80% of proteins do not operate alone, but in complexes. These protein-protein interactions (PPI are regulated by several mechanisms. For example, post-translational modifications (methylation, acetylation, phosphorylation, or ubiquitination or metal-binding can lead to conformational changes that alter the affinity and kinetic parameters of the interaction. Many PPIs are part of larger cellular networks of interactions or interactomes. Indeed, these interactions are at the core of the entire interactomics system of any living cell, and so, aberrant PPIs are the basis of multiple diseases, such as neurodegenerative diseases and cancer. The objective of this study was to develop a method of monitoring protein-protein interactions and proximity dependence in vivo.Methods. The biotin ligase BirA was fused to the protein of interest, and the Biotin Acceptor Peptide (BAP was fused to an interacting partner to make the detection of its biotinylation possible by western blot or mass spectrometry.Results. Using several experimental systems (BirA.A + BAP.B, we showed that the biotinylation is interaction/proximity dependent. Here, A and B are the next nuclear proteins used in the experiments – 3 paralogues of heterochromatin protein HP1a (CBX5, HP1b (CBX1, HP1g (CBX3, wild type and transcription mutant factor Kap1, translesion DNA polymerase PolH and E3, ubiquitin ligase RAD18, Proliferative Cell Nuclear Antigen (PCNA, ubiquitin Ub, SUMO-2/3, different types and isoforms of histones H2A, H2Az, H3.1, H3.3, CenpA, H2A.BBD, and macroH2A. The variant of this approach is termed PUB-NChIP (Proximity Utilizing Biotinylation with Native Chromatin Immuno-precipitation and is designed to purify and study the protein

  16. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Science.gov (United States)

    Ihalainen, Petri; Pesonen, Markus; Sund, Pernilla; Viitala, Tapani; Määttänen, Anni; Sarfraz, Jawad; Wilén, Carl-Erik; Österbacka, Ronald; Peltonen, Jouko

    2016-02-01

    The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody-antigen complexes.

  17. Determination of pantothenic acid, biotin, and vitamin B12 in nutritional products.

    Science.gov (United States)

    Hudson, T S; Subramanian, S; Allen, R J

    1984-01-01

    Until recently, liquid chromatographic (LC) methodology for pantothenic acid, biotin, and B12 (cyanocobalamin) has been only marginally successful. These vitamins are difficult to determine by conventional LC techniques and UV detection at 254 or 280 nm, because either the chromophore is inadequate for detection or interference from co-eluting vitamins is overwhelming. Biotin and B12 are usually present in pharmaceutical products at concentrations 100-1000 times lower than other commonly occurring water-soluble vitamins. Co-extraction of all water-soluble vitamins results in gross interferences, especially in LC when the interfering vitamins co-elute with biotin or B12. In addition, pantothenic acid and biotin are colorless in solution and do not exhibit strong UV absorption above 240 nm. As a result, they must be quantitated either by using a low UV wavelength for detection or by derivatizing the vitamin to obtain an adequate chromophore. A description of procedures for LC determination of pantothenic acid, panthenol, cyanocobalamin, and biotin in pharmaceutical products is presented. Pantothenic acid has been measured by using both a derivatization technique and low UV wavelength detection. Biotin has been quantitated by using low UV wavelength detection. The limitations of these techniques are also discussed. Chromatographic separation of cyanocobalamin is complicated by co-eluting vitamins such as riboflavin. It is detected by using the 546 nm wavelength where riboflavin does not interfere. PMID:6501166

  18. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    Directory of Open Access Journals (Sweden)

    Tomoki Abe

    2013-01-01

    Full Text Available Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA, IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice.

  19. Avidin-biotin interaction mediated peptide assemblies as efficient gene delivery vectors for cancer therapy.

    Science.gov (United States)

    Qu, Wei; Chen, Wei-Hai; Kuang, Ying; Zeng, Xuan; Cheng, Si-Xue; Zhou, Xiang; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-01-01

    Gene therapy offers a bright future for the treatment of cancers. One of the research highlights focuses on smart gene delivery vectors with good biocompatibility and tumor-targeting ability. Here, a novel gene vector self-assembled through avidin-biotin interaction with optimized targeting functionality, biotinylated tumor-targeting peptide/avidin/biotinylated cell-penetrating peptide (TAC), was designed and prepared to mediate the in vitro and in vivo delivery of p53 gene. TAC exhibited efficient DNA-binding ability and low cytotoxicity. In in vitro transfection assay, TAC/p53 complexes showed higher transfection efficiency and expression amount of p53 protein in MCF-7 cells as compared with 293T and HeLa cells, primarily due to the specific recognition between tumor-targeting peptides and receptors on MCF-7 cells. Additionally, by in situ administration of TAC/p53 complexes into tumor-bearing mice, the expression of p53 gene was obviously upregulated in tumor cells, and the tumor growth was significantly suppressed. This study provides an alternative and unique strategy to assemble functionalized peptides, and the novel self-assembled vector TAC developed is a promising gene vector for cancer therapy.

  20. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    Directory of Open Access Journals (Sweden)

    Taheri A

    2011-09-01

    Full Text Available Azade Taheri1, Rassoul Dinarvand1,2, Faranak Salman Nouri1, Mohammad Reza Khorramizadeh3, Atefeh Taheri Borougeni4, Pooria Mansoori5, Fatemeh Atyabi1,21Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran; 3Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; 5Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranAbstract: Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA as a carrier. Methotrexate (MTX molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8% 21 days after treatment, whereas non-targeted MTX

  1. Synthetic assembly of novel avidin-biotin-GlcNAc (ABG) complex as an attractive bio-probe and its interaction with wheat germ agglutinin (WGA).

    Science.gov (United States)

    Kumari, Amrita; Koyama, Tetsuo; Hatano, Ken; Matsuoka, Koji

    2016-10-01

    A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295nm and it was found to be very high Ka∼1.39×10(7) M(-1) in case of ABG complex as compared to GlcNAc only Ka∼1.01×10(4) M(-1) with the phenomenon proven to be due to glycocluster effect. PMID:27565114

  2. The E3 ubiquitin ligase RNF8 stabilizes TPP1 to promote telomere end protection

    OpenAIRE

    Rai, Rekha; Li, Ju-mei; Zheng, Hong; Lok, Gabriel Tsz-Mei; Deng, Yu; Huen, Michael; Chen, Junjie; Jin, Jianping; Chang, Sandy

    2011-01-01

    TPP1, a component of the mammalian shelterin complex, plays essential roles in telomere maintenance. It forms a heterodimer with POT1 to repress ATR-dependent DNA damage signaling at telomeres, and recruits telomerase to chromosome ends. Here we show that the E3 ubiquitin ligase RNF8 localizes to and promotes the accumulation of DNA damage proteins 53BP1 and γ-H2AX to uncapped telomeres. TPP1 is unstable in the absence of RNF8, resulting in telomere shortening and chromosome fusions via the a...

  3. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast

    OpenAIRE

    Osaka, Fumio; Saeki, Mihoro; Katayama, Satoshi; Aida, Noriko; Toh-e, Akio; Kominami, Kin-ichiro; Toda, Takashi; Suzuki, Toshiaki; Chiba, Tomoki; Tanaka, Keiji; Kato, Seishi

    2000-01-01

    A ubiquitin-like modifier, NEDD8, is covalently attached to cullin-family proteins, but its physiological role is poorly understood. Here we report that the NEDD8-modifying pathway is essential for cell viability and function of Pcu1 (cullin-1 orthologue) in fission yeast. Pcu1 assembled on SCF ubiquitin-ligase was completely modified by NEDD8. Pcu1K713R defective for NEDD8 conjugation lost the ability to complement lethality due to pcu1 deletion. Forced expression of Pcu1K713R or depletion o...

  4. An exonic splicing silencer in the testes-specific DNA ligase III β exon

    OpenAIRE

    Chew, Shern L; Baginsky, Lysa; Eperon, Ian C.

    2000-01-01

    Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion ...

  5. Effect of supplementing zinc oxide and biotin with or without carbadox on nursery pig performance.

    Science.gov (United States)

    Wilt, H D; Carlson, M S

    2009-10-01

    A 28-d nursery experiment was conducted to evaluate the effects of supplementing zinc oxide and biotin with or without a feed-grade antimicrobial agent (carbadox) on nursery pig performance, and plasma and fecal Zn concentrations. One hundred ninety-two crossbred pigs (initial BW = 5.94 +/- 0.03 kg; age = 17 +/- 2 d) were weaned and allotted to 1 of 8 dietary treatments based on BW, sex, and ancestry in a randomized complete block design (3 pigs/pen and 8 replications). Dietary treatments consisted of supplementation of ZnO at 0 or 3,000 mg/kg, d-biotin at 0 or 440 microg/kg, and carbadox at 0 or 55 mg/kg of diets in a 2 x 2 x 2 factorial arrangement of treatments. Phase 1 (d 0 to 14) and phase 2 (d 14 to 28) nursery diets were fed in meal form. Fecal samples were collected weekly, and blood samples were collected at d 0, 14, and 28 to determine fecal and plasma Zn concentrations, respectively. The basal diet contained 165 mg/kg of Zn as ZnSO(4) and 220 microg/kg biotin as d-biotin. Pigs supplemented with 440 microg/kg of d-biotin, independent of antibiotic and ZnO additions, had greater overall ADG (P = 0.02) than pigs fed no supplemental d-biotin postweaning. Overall ADG, ADFI, and G:F were not affected when pigs were supplemented with 3,000 mg/kg of Zn as ZnO or 55 mg/kg of carbadox. When pigs were fed 55 mg/kg of carbadox without supplemental biotin, plasma Zn concentration was less, whereas when biotin and carbadox were supplemented to nursery pig diets, plasma Zn concentrations did not decrease as with feeding carbadox alone (biotin x carbadox, P pigs fed 3,000 mg/kg of Zn as ZnO and 440 microg/kg of d-biotin had greater fecal Zn concentrations than pigs fed diets with only 3,000 mg/kg of Zn as ZnO (Zn x biotin, P = 0.04). In addition, pigs supplemented with 3,000 mg/kg of Zn as ZnO in combination with carbadox and d-biotin had greater fecal Zn concentrations compared with pigs fed diets containing no additional Zn during wk 2 (Zn x biotin x carbadox, P = 0

  6. Tetracycline is back. Three-step tetracycline-biotin tumour targeting

    International Nuclear Information System (INIS)

    Full text: In the 1960s, investigators attempted to use radiolabelled tetracycline for the detection of tumours. This was limited by bone and gastrointestinal uptake. The monoclonal antibody Avidin Biotin technology has been used for 10 years to target tumours. We have improved a novel mechanism using three step targeting, to demonstrate tumour cells in (C57B1/6X balb-c) F1 mice with subcutaneously implanted E-3 thymoma. The three steps were (1) i.p. injection of Biotin Tetracycline conjugate (t:1) ratio, (2) 96 h later Avidin was injected, and (3) 24 h after (2) 99mTc-CDTPA-Biotin was injected. Avidin has four high affinity (Km 10-15) Biotin binding sites, hence step (2) couples the Avidin to Tetracycline-Biotin in the tumour. The Avidin then provides a high affinity target for the otherwise rapidly urinary excreted 99mTc-CDTPA-Biotin. Mice were sacrificed 16-24h after (3) by cervical dislocation. Biodistribution of radioactivity tumour to blood, liver, bone and stomach were: T:BL= 7.2, T:LI= 3.35, TBO= 9.65, T:ST= 0.93. The percentage of injected dose/g was T = 4.49%, BL = 0.62%. E-3 Thymoma is a rapid growing tumour. At day 1 (step 1) the tumour size was 0.45 cm, six days later (step 3) each dimension was doubled. Hence, percentage of injected dose per gram is artefactually reduced eight-fold. With a slowly growing tumour using the same method the results may be better. The conclusions reached are that Tetracycline-Biotin 3-stage method of tumour targeting is worthy of further development

  7. Characterization of amyloid-β precursor protein intracellular domain-associated transcriptional complexes in SH-SY5Y neurocytes

    Institute of Scientific and Technical Information of China (English)

    Wulin Yang; Amy Yong Chen Lau; Shuizhong Luo; Qian Zhu3; Li Lu

    2012-01-01

    [Objective] Alzheimer's disease (AD) is one of the major disorders worldwide.Recent research suggests that the amyloid-β precursor protein intracellular domain (AICD) is a potential contributor to AD development and progression.The small AICD is rapidly degraded after processing from the full-length protein.The present study aimed to apply a highly efficient biotinylation approach in vitro to study AICD-associated complexes in neurocytes.[Methods] By coexpressing Escherichia coli biotin ligase with biotinyl-tagged AICD in the SH-SY5Y neuronal cell line,the effects of AICD overexpression on cell proliferation and apoptosis were analyzed.Besides,AICD-associated nuclear transcriptional complexes were purified and then examined by mass spectrometry.[Results] Our data showed that AICD overexpression not only affected cell proliferation but also led to apoptosis in differentiated SH-SY5Y cells.Moreover,biotinylation allowed single-step purification of biotinylated AICD-associated complexes from total nuclear extract via high-affinity biotin-streptavidin binding.Following this by mass spectrometry,we identified physically associated proteins,some reported previously and other novel binding partners,CUX1 and SPT5.[Conclusion]Based on these [Results],a map of theAICD-associated nuclear interactome was depicted.Specifically,AICD can activate CUXI transcriptional activity,which may be associated with AICD-dependent neuronal cell death.This work helps to understand the AICD-associated biologicalevents in AD progression and provides novel insights into the development of AD.

  8. Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligases Siah2 and POSH

    Directory of Open Access Journals (Sweden)

    Schwarze Steven R

    2011-05-01

    Full Text Available Abstract Background A functioning ubiquitin proteasome system (UPS is essential for a number of diverse cellular processes and maintenance of overall cellular homeostasis. The ability of proteasome inhibitors, such as Velcade, to promote extrinsic apoptotic effects illustrates the importance of the ubiquitin proteasome system in the regulation of death receptor signaling. Here, we set out to define the UPS machinery, particularly the E3 ubiquitin ligases, that repress apoptosis through the extrinsic pathway. A cell-based genome-wide E3 ligase siRNA screen was established to monitor caspase-8 activity following the addition of TRAIL. Results Data from the high-throughput screen revealed that targeting the RING-finger containing E3 ligase Siah2 as well as the signaling platform molecule POSH (SH3RF1 conferred robust caspase-8 activation in response to TRAIL stimulus. Silencing Siah2 or POSH in prostate cancer cells led to increased caspase activity and apoptosis in response to both TRAIL and Fas ligand. The E3 activity of Siah2 was responsible for mediating apoptosis resistance; while POSH protein levels were critical for maintaining viability. Further characterization of Siah2 revealed it to function downstream of early death receptor events in the apoptotic pathway. The observed apoptosis resistance provides one biological explanation for the induction of Siah2 and POSH reported in lung and prostate cancer, respectively. Expanding on an initial yeast-two-hybrid screen we have confirmed a physical interaction between E3 ligases Siah2 and POSH. Utilizing a yeast-two-hybrid mapping approach we have defined the spacer region of POSH, more specifically the RPxAxVxP motif encompassing amino acids 601-607, to be the site of Siah2 binding. Conclusions The data presented here define POSH and Siah2 as important mediators of death receptor mediated apoptosis and suggest targeting the interaction of these two E3 ligases is a promising novel cancer

  9. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function.

    Science.gov (United States)

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R; Xu, Guoqiang

    2015-12-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.

  10. Lentiavidins: Novel avidin-like proteins with low isoelectric points from shiitake mushroom (Lentinula edodes).

    Science.gov (United States)

    Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako; Kuwata, Shigeru

    2016-04-01

    A biotin-binding protein with a low isoelectric point (pI), which minimizes electrostatic non-specific binding to substances other than biotin, is potentially valuable. To obtain such a protein, we screened hundreds of mushrooms, and detected strong biotin-binding activity in the fruit bodies of Lentinula edodes, shiitake mushroom. Two cDNAs, each encoding a protein of 152 amino acids, termed lentiavidin 1 and lentiavidin 2 were cloned from L. edodes. The proteins shared sequence identities of 27%-49% with other biotin-binding proteins, and many residues that directly associate with biotin in streptavidin were conserved in lentiavidins. The pI values of lentiavidin 1 and lentiavidin 2 were 3.9 and 4.4, respectively; the former is the lowest pI of the known biotin-binding proteins. Lentiavidin 1 was expressed as a tetrameric protein with a molecular mass of 60 kDa in an insect cell-free expression system and showed biotin-binding activity. Lentiavidin 1, with its pI of 3.9, has a potential for broad applications as a novel biotin-binding protein. PMID:26467695

  11. Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii

    Energy Technology Data Exchange (ETDEWEB)

    Hung Lee; Atkin, A.L.; Barbosa, M.F.S.; Dorscheid, D.R.; Schneider, Henry

    1988-02-01

    The relative amount of ethanol and xylitol accumulated in aerobic batch cultures of Pachysolen tannophilus and Candida guilliermondii on D-xylose depended on the extent of limitation by biotin. In high biotin media P. tannophilus favored ethanol production over that of xylitol while C. guilliermondii favoured xylitol formation. However, as the extent of biotin limitation increased, the ratio of ethanol to xylitol produced by both organisms increased. The results are of interest in efforts to control such ratios.

  12. Biotin derivatives carrying two chelating DOTA units. Synthesis, in vitro evaluation of biotinidases resistance, avidin binding, and radiolabeling tests

    OpenAIRE

    Pratesi, Alessandro; Bucelli, Francesca; Mori, Ilaria; Chinol, Marco; Verdoliva, Antonio; Paganelli, Giovanni; Rivieccio, Vincenzo; Gariboldi, Lucia; Ginanneschi, Mauro

    2010-01-01

    The synthesis of four biotin derivatives carrying two DOTA moieties for each ligand (BisDOTA set) is reported, for increasing radiation/dose ratio and improving efficiency in the pretargeted avidin-biotin radioimmunotherapy. The biotin-containing scaffold of two BisDOTA was similar to the mono-DOTA derivative previously described. Then the scaffold was elongated by trifunctionalized spacers of different length and conjugated with one of the COOH groups of two DOTA. Two others were prepared st...

  13. Datasets from an interaction proteomics screen for substrates of the SCF(βTrCP) ubiquitin ligase

    NARCIS (Netherlands)

    Magliozzi, Roberto; Peng, Mao; Mohammed, Shabaz; Guardavaccaro, Daniele; Heck, Albert J R; Low, Teck Yew

    2015-01-01

    An affinity purification-mass spectrometry (AP-MS) method was employed to identify novel substrates of the SCF(βTrCP) ubiquitin ligase. A FLAG-HA tagged version of the F-box protein βTrCP2, the substrate recognition subunit of SCF(βTrCP), was used as bait. βTrCP2 wild type and the two mutants βTrCP2

  14. Effects of Oxidative Stress on the Solubility of HRD1, a Ubiquitin Ligase Implicated in Alzheimer’s Disease

    OpenAIRE

    Ryo Saito; Masayuki Kaneko; Yoshihisa Kitamura; Kazuyuki Takata; Koichi Kawada; Yasunobu Okuma; Yasuyuki Nomura

    2014-01-01

    The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 levels are significantly decreased in the cerebral cortex of Alzheimer's disease patients because of it...

  15. Tubulin Tyrosine Ligase-like Genes ttll3 and ttll6 Maintain Zebrafish Cilia Structure and Motility*

    OpenAIRE

    Pathak, Narendra; Austin, Christina A.; Drummond, Iain A.

    2011-01-01

    Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. ...

  16. The Transmembrane E3 Ligase GRAIL Ubiquitinates and Degrades CD83 on CD4 T Cells1

    OpenAIRE

    Su, Leon L.; Iwai, Hideyuki; Lin, Jack T; Fathman, C. Garrison

    2009-01-01

    Ubiquitination of eukaryotic proteins regulates a broad range of cellular processes, including T cell activation and tolerance. We have previously demonstrated that GRAIL (gene related to anergy in lymphocytes), a transmembrane RING finger ubiquitin E3 ligase, initially described as induced during the induction of CD4 T cell anergy, is also expressed in resting CD4 T cells. In this study, we show that GRAIL can down-modulate the expression of CD83 (previously described as a cell surface marke...

  17. Labeling of biotin with 166Dy/166Ho as a stable in vivo generator system

    International Nuclear Information System (INIS)

    Biotin (cis-tetrahydro-2-oxothieno[3,4-d]imidazoline-4-valeric acid) is a 244 Da vitamin found in low concentration in blood and tissue (vitamin H). The aim of this work was to synthesize 166Dy/166Ho-DTPA-bisBiotin to evaluate its potential as a new radiopharmaceutical for targeted radiotherapy. Dysprosium-166/ holmium-166 chloride was obtained by neutron irradiation of 20 mg of enriched Dy2O3 (164Dy, 99 %, from Oak Ridge NL) in a Triga Mark III reactor at a flux in the central thimble of 3.1013 n. cm-2 s-1 for 20 h. Following irradiation, the target was allowed to decay for 2 days, then 100 μL of 12 N chloride acid were added and stirred for 1 min. To this solution was added 500 μL of injectable water and the whole was also stirred for 2 min. The average radioactive concentration was 332 MBq/ml. The biotin used in this investigation was covalently conjugated to diethylenetriamine pentaacetic acid (DTPA) through the use of the cyclic anhydride and lysine conjugate to biotin (biocytin) to produce DTPA-α,ω-bis(biocytin amide)(DTPA-bisBiotin). Sterile and apyrogenic V-vial was prepared to contain 2.0 mg (1.9 x 10-3 mmol) of the DTPA-bisbiotin compound in 1.0 ml of 0.05 M bicarbonate buffer (pH 8.0) and then 20 μL of 166Dy2Cl3 solution were added to the preparation. Thin Layer Chromatography aluminum cellulose sheets were utilised as the stationary phase and a ternary mixture of methanol:water:ammonium hydroxide (20:40:2) as the mobile phase. 166Dy/166Ho-DTPA-bisBiotin travelled with the solvent front Rf 0.9-1.0 and the Dy+3/Ho+3 species remained at the origin (Rf = 0). The biological integrity of labelled biotin was achieved evaluating its avidity for avidin in an agarose column. Stability studies against dilution were carried out by diluting the radiocomplex solution with saline and with human serum at 310 K. After 10 min and 24 h the radiochemical purity of each 166Dy/166Ho complex solution was determined by TLC. The complex 166Dy/166Ho-DTPA-bisBiotin was

  18. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on Dietary Reference Values for biotin

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) derived Dietary Reference Values (DRVs) for biotin. Biotin is a water-soluble vitamin which serves as a co-factor for several carboxylases that play critical roles in the synthesis...... of deficiency in the EU, suggesting that current intake levels are adequate. The AI for adults is set at 40 µg/day. The AI for adults also applies to pregnant women. For lactating women, an additional 5 µg biotin/day over and above the AI for adults is proposed, to compensate for biotin losses through breast...

  19. [Construction of biotin-modified polymeric micelles for pancreatic cancer targeted photodynamic therapy].

    Science.gov (United States)

    Deng, Chun-yue; Long, Ying-ying; Liu, Sha; Chen, Zhang-bao; Li, Chong

    2015-08-01

    In this study, we explored the feasibility of biotin-mediated modified polymeric micelles for pancreatic cancer targeted photodynamic therapy. Poly (ethylene glycol)-distearoyl phosphatidyl ethanolamine (mPEG2000-DSPE) served as the drug-loaded material, biotin-poly(ethylene glycol)-distearoyl phosphatidyl ethanolamine (Biotin-PEG3400-DSPE) as the functional material and the polymeric micelles were prepared by a thin-film hydration method. The targeting capability of micelles was investigated by cell uptake assay in vitro and fluorescence imaging in vivo and the amounts of Biotin-PEG-DSPE were optimized accordingly. Hypocrellin B (HB), a novel photosensitizer was then encapsulated in biotinylated polymeric micelles and the anti-tumor efficacy was evaluated systemically in vitro and in vivo. The results showed that micelles with 5 mol % Biotin-PEG-DSPE demonstrated the best targeting capability than those with 20 mol % or 0.5 mol % of corresponding materials. This formulation has a small particle size [mean diameter of (36.74 ± 2.16) nm] with a homogeneous distribution and high encapsulation efficiency (80.06 ± 0.19) %. The following pharmacodynamics assays showed that the biotinylated micelles significantly enhanced the cytotoxicity of HB against tumor cells in vitro and inhibited tumor growth in vivo, suggesting a promising potential of this formulation for treatment of pancreatic cancer, especially those poorly permeable, or insensitive to radiotherapy and chemotherapy. PMID:26669006

  20. A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin

    Science.gov (United States)

    Sung, Tzu-Cheng; Chen, Wen-Yih; Shah, Pramod; Chen, Chien-Sheng

    2016-02-01

    Biotin is an essential vitamin which plays an important role for maintaining normal physiological function. A rapid, sensitive, and simple method is necessary to monitor the biotin level. Here, we reported a replacement assay for the detection of biotin using a replaceable liposomal aptamer. Replacement assay is a competitive assay where a sample analyte replaces the labeled competitor of analyte out of its biorecognition element on a surface. It is user friendly and time-saving because of washing free. We used aptamer as a competitor, not a biorecognition element as tradition. To label aptamers, we used cholesterol-conjugated aptamers to tag signal-amplifying-liposomes. Without the need of conjugation procedure, aptamers can be easily incorporated into the surface of dye-encapsulating liposomes. Two aptamers as competitors of biotin, ST-21 and ST-21M with different affinities to streptavidin, were studied in parallel for the detection of biotin using replacement assays. ST-21 and ST-21M aptamers reached to limits of detection of 1.32 pg/80 μl and 0.47 pg/80 μl, respectively. The dynamic ranges of our assays using ST-21 and ST-21M aptamers were seven and four orders of magnitude, respectively. This assay can be completed in 20 minutes without washing steps. These results were overall better than previous reported assays.

  1. Biotin deficiency in the cat and the effect on hepatic propionyl CoA carboxylase.

    Science.gov (United States)

    Carey, C J; Morris, J G

    1977-02-01

    Biotin deficiency was produced in growing kittens by feeding a diet containing dried, raw egg white. After receiving either an 18.5% egg white diet for 25 weeks, or a 32% egg white diet for 12 weeks, they exhibited dermal lesions characterized by alopecia, scaly dermatitis and achromotrichia, which increased in severity with the deficiency. Females developed accumulations of dried salivary, nasal and lacrymal secretions in the facial region although a male did not. There was a loss of body weight in all cats as the deficiency progressed. Hepatic propionyl CoA carboxylase activities were measured on biopsy samples of liver during biotin deficiency and after biotin supplementation. In the deficient state, activities were 4% and 24% of that following biotin supplementation. Propionyl carboxylase activity in the liver of the cat was comparable to that reported in the rat and chick in the deficient and normal states. Subcutaneous injection of 0.25 mg biotin every other day while continuing to receive the egg white diet caused remission of clinical signs, a body weight gain and increased food intake.

  2. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis

    Institute of Scientific and Technical Information of China (English)

    Guocan Wang; Chia-Hsin Chan; Yuan Gao; Hui-Kuan Lin

    2012-01-01

    S-phase kinase-associated protein 2 (Skp2) belongs to the F-box protein family.It is a component of the SCF E3 ubiquitin ligase complex.Skp2 has been shown to regulate cellular proliferation by targeting several cell cycle-regulated proteins for ubiquitination and degradation,including cyclin-dependent kinase inhibitor p27.Skp2 has also been demonstrated to display an oncogenic function since its overexpression has been observed in many human cancers.This review discusses the recent discoveries on the novel roles of Skp2 in regulating cellular senescence,cancer progression,and metastasis,as well as the therapeutic potential of targeting Skp2 for human cancer treatment.

  3. Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4.

    Directory of Open Access Journals (Sweden)

    Birgit L Aerne

    Full Text Available Signalling through the Hippo (Hpo pathway involves a kinase cascade, which leads to the phosphorylation and inactivation of the pro-growth transcriptional co-activator Yorkie (Yki. Despite the identification of a large number of pathway members and modulators, our understanding of the molecular events that lead to activation of Hpo and the downstream kinase Warts (Wts remain incomplete. Recently, targeted degradation of several Hpo pathway components has been demonstrated as a means of regulating pathway activity. In particular, the stability of scaffold protein Salvador (Sav, which is believed to promote Hpo/Wts association, is crucially dependent on its binding partner Hpo. In a cell-based RNAi screen for ubiquitin regulators involved in Sav stability, we identify the HECT domain protein Herc4 (HECT and RLD domain containing E3 ligase as a Sav E3 ligase. Herc4 expression promotes Sav ubiquitylation and degradation, while Herc4 depletion stabilises Sav. Interestingly, Hpo reduces Sav/Herc4 interaction in a kinase-dependent manner. This suggests the existence of a positive feedback loop, where Hpo stabilises its own positive regulator by antagonising Herc4-mediated degradation of Sav.

  4. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans

    Science.gov (United States)

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    Background: We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. Methods: In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. Results: In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. Conclusions: These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin. PMID:27648003

  5. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    International Nuclear Information System (INIS)

    Highlights: → Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). → Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. → HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  6. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Baolong [Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE (United States); Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education (China); Wijeratne, Subhashinee S.K.; Rodriguez-Melendez, Rocio [Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE (United States); Zempleni, Janos, E-mail: jzempleni2@unl.edu [Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE (United States)

    2011-08-19

    Highlights: {yields} Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). {yields} Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. {yields} HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  7. Discovery of a cyclic 6 + 6 hexamer of d-biotin and formaldehyde

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Jessen, Bo M.; Rasmussen, Brian;

    2014-01-01

    The discovery of receptors using templated synthesis enables the selection of strong receptors from complex mixtures. In this contribution we describe a study of the condensation of d-biotin and formaldehyde in acidic water. We have discovered that halide anions template the formation of a single...... isomer of a 6 + 6 macrocycle. The macrocycle (biotin[6]uril) is water-soluble, chiral and binds halide anions (iodide, bromide and chloride) with selectivity for iodide in water, and it can be isolated on a gram scale in a one-pot reaction in 63% yield. © 2014 the Partner Organisations....

  8. Plasmid containing a DNA ligase gene from Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Griffin, K.; Setlow, J.K.

    1984-05-01

    A ligase gene from Haemophilus influenzae was cloned into the shuttle vector pDM2. Although the plasmid did not affect X-ray sensitivity, it caused an increase in UV sensitivity of the wild-type but not excision-defective H. influenzae and a decrease in UV sensitivity of the rec-1 mutant. 14 references, 2 figures.

  9. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    OpenAIRE

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2014-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy.

  10. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kanei-Ishii, Chie; Nomura, Teruaki; Egoh, Ayako [Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan); Ishii, Shunsuke, E-mail: sishii@rtc.riken.jp [Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Fbxw5 enhances sumoylation of c-Myb. Black-Right-Pointing-Pointer The DDB1-Cul4A-Rbx1 complex mediates c-Myb sumoylation. Black-Right-Pointing-Pointer The Fbxw5-DDB1-Cul4A-Rdx1 complex is a dual SUMO/ubiquitin ligase. Black-Right-Pointing-Pointer Fbxw5 suppresses the c-Myb trans-activating capacity. -- Abstract: The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7{alpha}, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.

  11. Preparation of 166 Dy/166 Ho DTPA-bis biotin as a system of In vivo generator

    International Nuclear Information System (INIS)

    The objective of this work was to synthesize the complex 166 Dy/166 Ho - diethylen triamine pentaacetic-bis Biotin (166 Dy/166 Ho DTPA-bis Biotin) to evaluate its potential as a new radiopharmaceutical in directed radiotherapy. The Dysprosium-166 was obtained for neutron irradiation of 164 Dy203 in the TRIGA Mark III reactor. The labelled was carried out in aqueous solution to p H 8.0 for addition of 166 Dy Cl3 to the diethylen triamine pentaacetic-α, ω-bis Biotin (DTPA-bis Biotin). The radiochemical purity was determined for HPLC and ITLC. The biological integrity of the marked biotin is evaluated by the biological recognition of the avidin for HPLC - molecular exclusion with and without avidin addition. The studies of stability in vitro were made in dilutions of saline solution to 0.9% and with human serum at 37 C incubated 1 and 24 hours. The complex 166 Dy/166 Ho DTPA-bis Biotin was obtained with a radiochemical purity of 99.1 ± 0.6%. The biological recognition of the complex 166 Dy/166 Ho DTPA-bis Biotin for the avidin it doesn't affect the labelling procedure. The studies in vitro demonstrated that the 166 Dy/166 Ho DTPA-bis Biotin is stable after the dilution in saline solution and in human serum that there is not translocation of the one radionuclide subsequent son to the beta decay of the 166 Dy that could produce the 166 Ho3+ liberation. The studies of Biodistribution in healthy mice demonstrated that the one complex 166 Dy/166 Ho DTPA-bis Biotin have a high renal distribution. In conclusion the radiolabelled biotin in this investigation has the appropriate properties to be used as an In vivo generator system stable for directed radiotherapy. (Author)

  12. Datasets from an interaction proteomics screen for substrates of the SCFβTrCP ubiquitin ligase

    Directory of Open Access Journals (Sweden)

    Roberto Magliozzi

    2015-09-01

    Full Text Available An affinity purification-mass spectrometry (AP-MS method was employed to identify novel substrates of the SCFβTrCP ubiquitin ligase. A FLAG-HA tagged version of the F-box protein βTrCP2, the substrate recognition subunit of SCFβTrCP, was used as bait. βTrCP2 wild type and the two mutants βTrCP2-R447A and βTrCP2-ΔF were expressed and purified from HEK293T cells to be able to discriminate between potential substrates of SCFβTrCP and unspecific binders. Affinity-purified samples were analyzed by mass spectrometry-based proteomics, applying ultra-high performance liquid chromatography (UHPLC coupled to high-resolution tandem mass spectrometry. The raw mass spectrometry data have been deposited to the PRIDE partner repository with the identifiers PXD001088 and PXD001224. The present dataset is associated with a research resource published in T.Y. Low, M. Peng, R. Magliozzi, S. Mohammed, D. Guardavaccaro, A.J.R. Heck, A systems-wide screen identifies substrates of the SCFβTrCP ubiquitin ligase. Sci. Signal. 7 (2014 rs8–rs8, 10.1126/scisignal.2005882.

  13. 3-Hydroxybenzoate:coenzyme A ligase from cell cultures of Centaurium erythraea: isolation and characterization.

    Science.gov (United States)

    Barillas, W; Beerhues, L

    2000-02-01

    In xanthone biosynthesis, 3-hydroxybenzoate:coenzyme A ligase (3HBL) supplies the starter substrate for the formation of an intermediate benzophenone. 3HBL from cell cultures of the medicinal plant Centaurium erythraea was purified to apparent homogeneity using a seven-step-procedure. The enzyme was an AMP-forming CoA ligase with a Km = 14.7 microM for 3-hydroxybenzoic acid, 8.5 microM for coenzyme A and 229 microM for ATP. The pH and temperature optima were 7.5 and 35 degrees C, respectively. In SDS-PAGE, two polypeptides of Mr 41,500 and 40,500 were detected. Both proteins were structurally related to each other as shown by tryptic digestion. Their N-termini were blocked. The difference in their apparent molecular masses could not be attributed to glycosylation. 3HBL had a native Mr of approx. 50,000 and is thus active as a monomer. PMID:10746747

  14. Structural Basis of DNA Ligase IV-Artemis Interaction in Nonhomologous End-Joining

    Directory of Open Access Journals (Sweden)

    Pablo De Ioannes

    2012-12-01

    Full Text Available DNA ligase IV (LigIV and Artemis are central components of the nonhomologous end-joining (NHEJ machinery that is required for V(DJ recombination and the maintenance of genomic integrity in mammalian cells. We report here crystal structures of the LigIV DNA binding domain (DBD in both its apo form and in complex with a peptide derived from the Artemis C-terminal region. We show that LigIV interacts with Artemis through an extended hydrophobic surface. In particular, we find that the helix α2 in LigIV-DBD is longer than in other mammalian ligases and presents residues that specifically interact with the Artemis peptide, which adopts a partially helical conformation on binding. Mutations of key residues on the LigIV-DBD hydrophobic surface abolish the interaction. Together, our results provide structural insights into the specificity of the LigIV-Artemis interaction and how the enzymatic activities of the two proteins may be coordinated during NHEJ.

  15. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  16. Development of a formulation for the preparation of 99m Tc-Ida-bis-Biotin complex

    International Nuclear Information System (INIS)

    The radiopharmaceuticals of diagnostic use incorporate the radioisotope to an organic or inorganic molecule which goes selectively to the interest organ, to an a physiologic or metabolic process of the body with a simple and quantitatively interpretable kinetics. The 99m Tc occupies 80% from total of the studies realized in the world by the optimum combination of physical half-life (6 h), radionuclide quantity (ng) and high energy emission which allows to obtain results with the greatest information. Actually, in Nuclear Medicine, the research strategies are directed to the use of 'premarkers systems' based in the antibody administration, separated from radionuclide through the use of the avidin/biotin system. According to these considerations it was developed the 99m Tc-IDA-bis-Biotine complex as a new radiopharmaceutical which improves the diagnostic image of infectious core and tumorals. The IDA-biotin compound was synthesised and characterized by its melting point, IR spectroscopy, NMR, MS, UV and High-resolution liquid chromatography (HRLC). With base in an experimental factorial design those variables were established which influence in the radiochemical purity of the radiopharmaceutical which allowed to determine the reaction conditions, pH 9 at environmental temperature (22 Celsius degrees) and the optimum concentrations of the formulation components. IDA-biotine 1.0 mg, stannous chloride 0.1 mg and gluconate 15 mg as weak binding linking were realized to the lyophilized product quality control tests like: stability and radiochemical purity. The analytical techniques used UV spectrophotometry and HRLC were validated. The studies of biodistribution of the 99m Tc-Ida-bis-biotin complex were realized in healthy laboratory animals, showing stability 'In vivo' with renal purification. (Author)

  17. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase.

    Science.gov (United States)

    Petzold, Georg; Fischer, Eric S; Thomä, Nicolas H

    2016-04-01

    Thalidomide and its derivatives, lenalidomide and pomalidomide, are immune modulatory drugs (IMiDs) used in the treatment of haematologic malignancies. IMiDs bind CRBN, the substrate receptor of the CUL4-RBX1-DDB1-CRBN (also known as CRL4(CRBN)) E3 ubiquitin ligase, and inhibit ubiquitination of endogenous CRL4(CRBN) substrates. Unexpectedly, IMiDs also repurpose the ligase to target new proteins for degradation. Lenalidomide induces degradation of the lymphoid transcription factors Ikaros and Aiolos (also known as IKZF1 and IKZF3), and casein kinase 1α (CK1α), which contributes to its clinical efficacy in the treatment of multiple myeloma and 5q-deletion associated myelodysplastic syndrome (del(5q) MDS), respectively. How lenalidomide alters the specificity of the ligase to degrade these proteins remains elusive. Here we present the 2.45 Å crystal structure of DDB1-CRBN bound to lenalidomide and CK1α. CRBN and lenalidomide jointly provide the binding interface for a CK1α β-hairpin-loop located in the kinase N-lobe. We show that CK1α binding to CRL4(CRBN) is strictly dependent on the presence of an IMiD. Binding of IKZF1 to CRBN similarly requires the compound and both, IKZF1 and CK1α, use a related binding mode. Our study provides a mechanistic explanation for the selective efficacy of lenalidomide in del(5q) MDS therapy. We anticipate that high-affinity protein-protein interactions induced by small molecules will provide opportunities for drug development, particularly for targeted protein degradation.

  18. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  19. Labeling of biotin with [166Dy]Dy/166Ho as a stable in vivo generator system.

    Science.gov (United States)

    Ferro-Flores, G; Arteaga de Murphy, C; Pedraza-López, M; Monroy-Guzmán, F; Meléndez-Alafort, L; Tendilla, J I; Jiménez-Varela, R

    2003-04-14

    The aim of this work was to synthesize [166Dy]Dy/166Ho-DTPA-Biotin to evaluate its potential as a new radiopharmaceutical for targeted radiotherapy. Dysprosium-166 (166Dy) was obtained by neutron irradiation of enriched 164Dy(2)O(3) in a Triga Mark III reactor. The labeling was carried out in aqueous media at pH 8.0 by addition of [166Dy]DyCl(3) to diethylenetriaminepentaacetic-alpha,omega-bis(biocytinamide) (DTPA-Biotin). Radiochemical purity was determined by high-performance liquid chromatography (HPLC) and TLC. The biological integrity of labeled biotin was studied evaluating its avidity for avidin in an agarose column and by size-exclusion HPLC analysis of the radiolabeled DTPA-Biotin with and without the addition of avidin. Stability studies against dilution were carried out by diluting the radiocomplex solution with saline solution and with human serum at 37 degrees C for 24 h. The [166Dy]Dy/166Ho-labeled biotin was obtained with a 99.1+/-0.6% radiochemical purity. In vitro studies demonstrated that [166Dy]Dy/166Ho-DTPA-Biotin is stable after dilution in saline and in human serum and no translocation of the daughter nucleus occurs subsequent to beta(-) decay of 166Dy that could produce release of 166Ho(3+). Avidity of labeled biotin for avidin was not affected by the labeling procedure. Biodistribution studies in normal mice showed that the [166Dy]Dy/166Ho-DTPA-Biotin has a high renal clearance. In conclusion, the radiolabeled biotin prepared in this investigation has adequate properties to work as a stable in vivo generator system for targeted radiotherapy. PMID:12672609

  20. Akt is negatively regulated by the MULAN E3 ligase

    OpenAIRE

    Bae, Seunghee; Kim, Sun-Yong; Jung, Jin Hyuk; Yoon, Yeongmin; CHA, HWA JUN; Lee, Hyunjin; Kim, Karam; Kim, Jongran; An, In-Sook; Kim, Jongdoo; UM, HONG-DUCK; Park, In-Chul; Lee, Su-Jae; Nam, Seon Young; Jin, Young-Woo

    2012-01-01

    The serine/threonine kinase Akt functions in multiple cellular processes, including cell survival and tumor development. Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation. In this study, we identified a negative regulator of Akt, MULAN, which possesses both a RING finger domain and E3 ubiquitin ligase activity. Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo. Other molecular assays...

  1. Dyrk1A phosphorylates parkin at Ser-131 and negatively regulates its ubiquitin E3 ligase activity.

    Science.gov (United States)

    Im, Eunju; Chung, Kwang Chul

    2015-08-01

    Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady-state levels through the ubiquitin-proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co-localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser-131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A-mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin-conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A-mediated phosphorylation inhibited the neuroprotective action of parkin against 6-hydroxydopamine toxicity in dopaminergic SH-SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD-inducing pathological conditions. Mutations of parkin are linked to autosomal recessive forms of familial Parkinson's disease (PD). According to its functional relevance in abnormal protein aggregation and neuronal cell death, a number of post-translational modifications regulate the ubiquitin E3 ligase activity of parkin. Here we propose a novel inhibitory mechanism of parkin E3 ubiquitin ligase through dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A)-mediated phosphorylation as well as its neuroprotective action against 6-hydroxydopamine (6-OHDA)-induced cell death

  2. Kinetic framework for ligation by an efficient RNA ligase ribozyme.

    Science.gov (United States)

    Bergman, N H; Johnston, W K; Bartel, D P

    2000-03-21

    The class I RNA ligase ribozyme, isolated previously from random sequences, performs an efficient RNA ligation reaction. It ligates two substrate RNAs, promoting the attack of the 3'-hydroxyl of one substrate upon the 5'-triphosphate of the other substrate with release of pyrophosphate. This ligation reaction has similarities to the reaction catalyzed by RNA polymerases. Using data from steady-state kinetic measurements and pulse-chase/pH-jump experiments, we have constructed minimal kinetic frameworks for two versions of the class I ligase, named 207t and 210t. For both ligases, as well as for the self-ligating parent ribozyme, the rate constant for the chemical step (k(c)) is log-linear with pH in the range 5.7-8.0. At physiological pH, the k(c) is 100 min(-1), a value similar to those reported for the fastest naturally occurring ribozymes. At higher pH, product release is limiting for both 207t and 210t. The 210t ribozyme, with its faster product release, attains multiple-turnover rates (k(cat) = 360 min(-1), pH 9.0) exceeding those of 207t and other reported ribozyme reactions. The kinetic framework for the 210t ribozyme describes the limits of this catalysis and suggests how key steps can be targeted for improvement using design or combinatorial approaches. PMID:10715133

  3. Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid.

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    Full Text Available Sensitive to Apoptosis Gene (SAG, also known as RBX2 (RING box protein-2, is the RING component of SCF (SKP1, Cullin, and F-box protein E3 ubiquitin ligase. Our previous studies have demonstrated that SAG is an anti-apoptotic protein and an attractive anti-cancer target. We also found recently that Sag knockout sensitized mouse embryonic stem cells (mES to radiation and blocked mES cells to undergo endothelial differentiation. Here, we reported that compared to wild-type mES cells, the Sag(-/- mES cells were much more sensitive to all-trans retinoic acid (RA-induced suppression of cell proliferation and survival. While wild-type mES cells underwent differentiation upon exposure to RA, Sag(-/- mES cells were induced to death via apoptosis instead. The cell fate change, reflected by cellular stiffness, can be detected as early as 12 hrs post RA exposure by AFM (Atomic Force Microscopy. We then extended this novel finding to RA differentiation therapy of leukemia, in which the resistance often develops, by testing our hypothesis that SAG inhibition would sensitize leukemia to RA. Indeed, we found a direct correlation between SAG overexpression and RA resistance in multiple leukemia lines. By using MLN4924, a small molecule inhibitor of NEDD8-Activating Enzyme (NAE, that inactivates SAG-SCF E3 ligase by blocking cullin neddylation, we were able to sensitize two otherwise resistant leukemia cell lines, HL-60 and KG-1 to RA. Mechanistically, RA sensitization by MLN4924 was mediated via enhanced apoptosis, likely through accumulation of pro-apoptotic proteins NOXA and c-JUN, two well-known substrates of SAG-SCF E3 ligase. Taken together, our study provides the proof-of-concept evidence for effective treatment of leukemia patients by RA-MLN4924 combination.

  4. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase.

    Science.gov (United States)

    Wiśniewski, Marcin; Lapiński, Maciej; Zdziarska, Anna; Długosz, Ewa; Bąska, Piotr

    2014-08-01

    Glutamate-cysteine ligase (GCL) is a heterodimer enzyme composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). This enzyme catalyses the synthesis of γ-glutamylcysteine, a precursor of glutathione. cDNAs of the putative glutamate-cysteine ligase catalytic (Ace-GCLC) and modifier subunits (Ace-GCLM) of Ancylostoma ceylanicum were cloned using the RACE-PCR amplification method. The Ace-gclc and Ace-gclm cDNAs encode proteins with 655 and 254 amino acids and calculated molecular masses of 74.76 and 28.51kDa, respectively. The Ace-GCLC amino acid sequence shares about 70% identity and 80% sequence similarity with orthologs in Loa loa, Onchocerca volvulus, Brugia malayi, and Ascaris suum, whereas the Ace-GCLM amino acid sequence has only about 30% sequence identity and 50% similarity to homologous proteins in those species. Real-time PCR analysis of mRNA expression in L3, serum stimulated L3 and adult stages of A. ceylanicum showed the highest level of Ace-GCLC and Ace-GCLM expression occurred in adult worms. No differences were detected among adult hookworms harvested 21 and 35dpi indicating expression of Ace-gclc and Ace-gclm in adult worms is constant during the course of infection. Positive interaction between two subunits of glutamate-cysteine ligase was detected using the yeast two-hybrid system, and by specific enzymatic reaction. Ace-GCL is an intracellular enzyme and is not exposed to the host immune system. Thus, as expected, we did not detect IgG antibodies against Ace-GCLC or Ace-GCLM on days 21, 60 and 120 of A. ceylanicum infection in hamsters. Furthermore, vaccination with one or both antigens did not reduce worm burdens, and resulted in no improvement of clinical parameters (hematocrit and hemoglobin) of infected hamsters. Therefore, due to the significant role of the enzyme in parasite metabolism, our analyses raises hope for the development of a successful new drug against ancylostomiasis based on the specific GCL inhibitor. PMID

  5. The SOCS2 Ubiquitin Ligase Complex Regulates Growth Hormone Receptor Levels

    DEFF Research Database (Denmark)

    Vesterlund, Mattias; Zadjali, Fahad; Persson, Torbjörn;

    2011-01-01

    to GH is under regulatory control to avoid excessive and off-target effects upon GHR activation. The suppressor of cytokine signalling 2 (SOCS) is a key regulator of GHR sensitivity. This is clearly shown in mice where the SOCS2 gene has been inactivated, which show 30-40% increase in body length, a...... phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated that...... SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2(-/-) mice and in the absence of...

  6. Electrochemical Study of Biotin-Modified Self-Assembled Monolayers: Recommendations for Robust Preparation

    Directory of Open Access Journals (Sweden)

    Richard J.C. Brown

    2006-01-01

    Full Text Available The development of the underpinning methodology for the production of robust, well-formed, and densely packed biotin-HPDP functionalised gold surfaces, the crucial first step in immobilising bimolecules on surfaces, is described. Self-assembled monolayers (SAMs with biotin end-groups were prepared on polycrystalline gold surfaces according to a published method. The layers formed were studied using cyclic voltammetry to determine the composition of the layer and its quality. Crystal impedance spectroscopy was also applied as a complimentary indicator of the composition of the layer.For the first time, the effect of assembly time on the properties of the layer was studied along with the composition of the layer and the ability of the precursor molecule to self-assemble by oxidative addition.

  7. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    International Nuclear Information System (INIS)

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR

  8. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    Science.gov (United States)

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-01

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  9. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions.

    Science.gov (United States)

    Reches, Meital; Gazit, Ehud

    2007-07-01

    Novel architectures with nanometric dimensions hold an immense promise as building blocks for future nanotechnological applications. Biological nanostructures are of special interest due to their biocompatibility and because they allow the utilization of biochemical recognition interfaces. The ability to decorate bio-nanostructures with functional groups is highly important in order to utilize them in several applications including ultrasensitive sensors, drug delivery systems, and tissue engineering. Peptide-based nanostructures have a distinct advantage over other assemblies because they can be easily modified with chemical and biological elements. Aromatic dipeptide nanotubes (ADNT) are formed by the self-assembly of a very simple building block, the diphenylalanine peptide. These nanotubes have remarkable chemical and mechanical properties and their utilization in various applications has previously been demonstrated. Here we report on the chemical modification of ADNT with biotin moieties, in order to enable the selective decoration of the tubes with avidin-labeled species. First, ADNT were prepared in aqueous solution by self-assembly of the dipeptide building blocks. Next, they were modified using N-hydroxysuccinimido-biotin. The level of biotinylation was assessed by the interaction of the tubes with gold-labeled strepavidin and ultrastructural analysis by electron microscopy. The ability of the modified assemblies to serve as a generic functional platform was demonstrated by avidin-mediated conjugation. Avidin was added as a molecular linker to allow the decoration with biotin-labeled quantum dots. The efficient decoration was again probed by the imaging of the modified tubes using laser confocal microscopy. Taken together, we demonstrated the ability to decorate ADNT using a generic avidin-biotin adaptor. This decoration should lead to the integration and utilization of the tubes in various applications. PMID:17663236

  10. Sinorhizobium meliloti Cells Require Biotin and either Cobalt or Methionine for Growth

    OpenAIRE

    Watson, Robert J.; Heys, Roselyn; Martin, Teresa; Savard, Marc

    2001-01-01

    Sinorhizobium meliloti is usually cultured in rich media containing yeast extract. It has been suggested that some components of yeast extract are also required for growth in minimal medium. We tested 27 strains of this bacterium and found that none were able to grow in minimal medium when methods to limit carryover of yeast extract were used during inoculation. By fractionation of yeast extract, two required growth factors were identified. Biotin was found to be absolutely required for growt...

  11. Revisiting the streptavidin-biotin binding by using an aptamer and displacement isothermal calorimetry titration.

    Science.gov (United States)

    Kuo, Tai-Chih; Tsai, Ching-Wei; Lee, Peng-Chen; Chen, Wen-Yih

    2015-03-01

    The association constant of a well-known streptavidin-biotin binding has only been inferred from separately measured kinetic parameters. In a single experiment, we obtained Ka 1 × 10(12)  M(-1) by using a streptavidin-binding aptamer and ligand-displacement isothermal titration calorimetry. This study explores the challenges of determining thermodynamic parameters and the derived equilibrium binding affinity of tight ligand-receptor binding.

  12. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca (Romania); Liebscher, Jürgen [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca, Romania and Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor 2, D-12489 Berlin (Germany)

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  13. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    OpenAIRE

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2011-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excisio...

  14. Interaction between Mnk2 and CBCVHL ubiquitin ligase E3 complex

    Institute of Scientific and Technical Information of China (English)

    WANG; Pingzhang; WANG; Xin; WANG; Feng; CAI; Tianjing; LUO; Ying

    2006-01-01

    MAP kinase-interacting kinase-2 (Mnk2) is one of the downstream kinases activated by MAP kinases. It phosphorylates the eukaryotic initiation factor 4E (eIF4E), although the role of eIF4E phosphorylation and the role of Mnk2 in the process of protein translation are not well understood. Except for eIF4E, other physiological substrates of Mnk2 are still unidentified. To look for these unidentified substrates and to reveal the physiological function of Mnk2, we performed a yeast two-hybrid screening with Mnk2 as the bait. The results demonstrated Mnk2 could interact with VHL (von Hippel-Lindau tumor suppressor), Rbx1 (ring-box 1) and Cul2 (Cullin2) proteins in yeast cells. Furthermore, we validated the interaction between Mnk2 and VHL proteins in mammalian cells by co-immunoprecipitation analysis. Because the three proteins VHL, Rbx1 and Cul2 are all components of the CBCVHL ubiquitin ligase E3 complex, it has been shown that Mnk2 can interact with CBCVHL complex, and is probably one of the new substrates of the CBCVHL complex. Furthermore, during the interaction of Mnk2 with von Hippel-Lindau (VHL) tumor suppressor- binding protein 1 (VBP1), it appears that Mnk2 also joins to modulate cell shape as VBP1 plays an important role in the process of the maturation of the cytoskeleton and in the process of morphogenesis.

  15. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes

    International Nuclear Information System (INIS)

    The avidin-biotin interaction on 11-mercaptoundecanoic acid self-assembled gold electrodes was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interfacial properties of the modified electrodes were evaluated in the presence of the Fe(China)63-/4- couple redox as a probe. A simple equivalent circuit model with a constant phase element was used to interpret the obtained impedance spectra. The results of cyclic voltammetry showed that the voltammetric behavior of the redox probe was influenced by the electrode surface modification. It is evident that the accumulation of treated substances and the binding of biotin to avidin on the electrode surface resulted in the increasing electron-transfer resistance and the decreasing capacitance. The changes in the electron-transfer resistance on the avidin-modified electrodes were more sensitive than that in the capacitance while detecting biotin over the 2-10 μg/mL concentration. The detection amount can be as low as 20 ng/mL based on the electron-transfer resistance that presented the change of 4.3 kΩ without the use of labels. The development of a rapid, facile, and sensitive method for the quantitation of nanogram quantities of biomolecules utilizing EIS may be achieved

  16. The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels

    Science.gov (United States)

    Malý, J.; Lampová, H.; Semerádtová, A.; Štofik, M.; Kováčik, L.

    2009-09-01

    This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH4 silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.

  17. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4–Ddb1–CSN ubiquitin ligase

    OpenAIRE

    Liu, Cong; Poitelea, Marius; Watson, Adam; Yoshida, Shu-hei; Shimoda, Chikashi; Holmberg, Christian; Nielsen, Olaf; Carr, Antony M.

    2005-01-01

    Cullin-4 forms a scaffold for multiple ubiquitin ligases. In Schizosaccharomyces pombe, the Cullin-4 homologue (Pcu4) physically associates with Ddb1 and the COP9 signalosome (CSN). One target of this complex is Spd1. Spd1 regulates ribonucleotide reductase (RNR) activity. Spd1 degradation during S phase, or following DNA damage of G2 cells, results in the nuclear export of the small RNR subunit. We demonstrate that Cdt2, an unstable WD40 protein, is a regulatory subunit of Pcu4–Ddb1–CSN ubiq...

  18. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Pike, Ashley C W; Vesterlund, Mattias;

    2011-01-01

    The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor...... to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6...

  19. In vitro cytotoxicity of the ternary PAMAM G3–pyridoxal–biotin bioconjugate

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2013-12-01

    Full Text Available Łukasz Uram, Magdalena Szuster, Krzysztof Gargasz, Aleksandra Filipowicz, Elżbieta Wałajtys-Rode, Stanisław Wołowiec Cosmetology Department, University of Information Technology and Management in Rzeszów, Rzeszów, Poland Abstract: A third-generation polyamidoamine dendrimer (PAMAM G3 was used as a macromolecular carrier for pyridoxal and biotin. The binary covalent bioconjugate of G3, with nine molecules of biotin per one molecule of G3 (G39B, and the ternary covalent bioconjugate of G3, with nine biotin and ten pyridoxal molecules (G39B10P, were synthesized. The biotin and pyridoxal residues of the bioconjugate were available for carboxylase and transaminase enzymes, as demonstrated in the conversion of pyruvate to oxaloacetate and alanine to pyruvate, respectively, by in vitro monitoring of the reactions, using 1H nuclear magnetic resonance spectroscopy. The toxicity of the ternary bioconjugate (BC-PAMAM was studied in vitro on BJ human normal skin fibroblasts and human squamous cell carcinoma (SCC-15 cell cultures in comparison with PAMAM G3, using three cytotoxicity assays (XTT, neutral red, and crystal violet and an estimation of apoptosis by confocal microscopy detection. The tests have shown that BC-PAMAM has significantly lower cytotoxicity compared with PAMAM. Nonconjugated PAMAM was not cytotoxic at concentrations up to 5 µM (NR and 10 µM (XTT, and BC-PAMAM was not cytotoxic up to 50 µM (both assays for both cell lines. It has been also found that normal fibroblasts were more sensitive than SCC to both PAMAM and BC-PAMAM. The effect of PAMAM and BC-PAMAM on the initiation of apoptosis (PAMAM in fibroblasts at 5 µM and BC-PAMAM at 10 µM in both cell lines corresponded with cytotoxicity assays for both cell lines. We concluded that normal fibroblasts are more sensitive to the cytotoxic effects of the PAMAM G3 dendrimer and that modification of its surface cationic groups by substitution with biologically active molecules

  20. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.

    Science.gov (United States)

    Swaroop, Manju; Sun, Yi

    2003-01-01

    Mdm2 (murine double minute 2) is an oncogene, first identified in BALB/c 3T3 cells. Over-expression and gene amplification of Mdm2 were found in a variety of human cancers. Recently, Mdm2 was found to be an E3 ubiquitin ligase that promotes degradation of p53, which contributes significantly to its oncogenic activity. In this study, we test a hypothesis that Mdm2 ligase dead mutants, which retained p53 binding activity but lost degradation activity, would act in a dominant negative manner to re-activate p53, especially upon stressed conditions. Five Mdm2 constructs expressing wild-type and E3 ligase-dead Mdm2 proteins were generated in a Tet-Off system and transfected into MCF-7 breast cancer cells (p53+/+ with Mdm2 overexpression) as well as MCF10A immortalized breast cells (p53+/+ without Mdm2 overexpression) as a normal control. We found that expression of Mdm2 mutants were tightly regulated by doxycycline. Withdrawal of doxycycline in culture medium triggered overexpression of Mdm2 mutants. However, expression of ligase dead mutants in MCF7 and MCF10A cells did not reactivate p53 as shown by a luciferase-reporter transcription assay and Western blot of p53 and its downstream target p21 under either unstressed condition or after exposure to DNA damaging agents. Biologically, over-expression of Mdm2 mutants had no effect on p53-induced apoptosis following DNA damage. Interestingly, over-expression of Mdm2 mutants promoted growth of MCF7 tumor cells probably via a p53-independent mechanism. Over-expression of Mdm2 mutants, however, had no effect on the growth of normal MCF10A cells and did not cause their transformation. Thus, ligase dead mutants of Mdm2 did not act in a dominant negative manner to reactivate p53 and they are not oncogenes in MCF10A cells.

  1. Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity.

    Directory of Open Access Journals (Sweden)

    Johannes Mathieu

    2014-07-01

    Full Text Available The tomato--Pseudomonas syringae pv. tomato (Pst--pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI. AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450 in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.

  2. Amine coupling versus biotin capture for the assessment of sulfonamide as ligands of hCA isoforms.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Goossens, Laurence; Drucbert, Anne-Sophie; Duban-Deweer, Sophie; Six, Perrine; Depreux, Patrick; Danzé, Pierre-Marie; Goossens, Jean-François; Foulon, Catherine

    2016-10-15

    This work was dedicated to the development of a reliable SPR method allowing the simultaneous and quick determination of the affinity and selectivity of designed sulfonamide derivatives for hCAIX and hCAXII versus hCAII, in order to provide an efficient tool to discover drugs for anticancer therapy of solid tumors. We performed for the first time a comparison of two immobilization approaches of hCA isoforms. First one relies on the use of an amine coupling strategy, using a CM7 chip to obtain higher immobilization levels than with a CM5 chip and consequently the affinity with an higher precision (CV% chip, named CAP chip, after optimization of biotinylation conditions (amine versus carboxyl coupling, biotin to protein ratio). Thanks to the amine coupling approach, only hCAII and hCAXII isoforms were efficiently biotinylated to reach relevant immobilization (3000 RU and 2700 RU, respectively) to perform affinity studies. For hCAIX, despite a successful biotinylation, capture on the CAP chip was a failure. Finally, concordance between affinities obtained for the three derivatives to CAs isozymes on both chips has allowed to valid the approaches for a further screening of new derivatives. PMID:27485269

  3. Molecular characterization of NAD+-dependent DNA ligase from Wolbachia endosymbiont of lymphatic filarial parasite Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Nidhi Shrivastava

    Full Text Available The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD(+-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD(+-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.

  4. Rapid Assembly of DNA via Ligase Cycling Reaction (LCR).

    Science.gov (United States)

    Chandran, Sunil

    2017-01-01

    The assembly of multiple DNA parts into a larger DNA construct is a requirement in most synthetic biology laboratories. Here we describe a method for the efficient, high-throughput, assembly of DNA utilizing the ligase chain reaction (LCR). The LCR method utilizes non-overlapping DNA parts that are ligated together with the guidance of bridging oligos. Using this method, we have successfully assembled up to 20 DNA parts in a single reaction or DNA constructs up to 26 kb in size. PMID:27671935

  5. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    OpenAIRE

    Fabrizio Anella; Christophe Danelon

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristol...

  6. Identification of Erwinia stewartii by a ligase chain reaction assay.

    OpenAIRE

    Wilson, W.J.; Wiedmann, M; Dillard, H. R.; Batt, C A

    1994-01-01

    A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed...

  7. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  8. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    Science.gov (United States)

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  9. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing.

    Science.gov (United States)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  10. Identification of an unconventional E3 binding surface on the UbcH5 Ub conjugate recognized by a pathogenic bacterial E3 ligase.

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I.; Eakin, C.; Blanc, M. -P.; Klevit, R. E.; Miller, S. I.; Brzovic, P. S.

    2010-02-01

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5Ubn). Rapid generation of UbcH5Ubn may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction.

  11. Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase.

    Science.gov (United States)

    Levin, Itay; Eakin, Catherine; Blanc, Marie-Pierre; Klevit, Rachel E; Miller, Samuel I; Brzovic, Peter S

    2010-02-16

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5 ~ Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5 ~ Ub(n)). Rapid generation of UbcH5 ~ Ub(n) may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction. PMID:20133640

  12. The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    BACKGROUND: The ligase chain reaction Mycobacterium tuberculosis assay uses ligase chain reaction technology to detect tuberculous DNA sequences in clinical specimens. A study was undertaken to determine its sensitivity and specificity as a primary screening tool for the detection of culture positive tuberculosis. METHODS: The study was conducted on 2420 clinical specimens (sputum, bronchoalveolar lavage fluid, pleural fluid, urine) submitted for primary screening for Mycobacterium tuberculosis to a regional medical microbiology laboratory. Specimens were tested in parallel with smear, ligase chain reaction, and culture. RESULTS: Thirty nine patients had specimens testing positive by the ligase chain reaction assay. Thirty two patients had newly diagnosed tuberculosis, one had a tuberculosis relapse, three had tuberculosis (on antituberculous therapy when tested), and three had healed tuberculosis. In the newly diagnosed group specimens were smear positive in 21 cases (66%), ligase chain reaction positive in 30 cases (94%), and culture positive in 32 cases (100%). Using a positive culture to diagnose active tuberculosis, the ligase chain reaction assay had a sensitivity of 93.9%, a specificity of 99.8%, a positive predictive value of 83.8%, and a negative predictive value of 99.9%. CONCLUSIONS: This study is the largest clinical trial to date to report the efficacy of the ligase chain reaction as a primary screening tool to detect Mycobacterium tuberculosis infection. The authors conclude that ligase chain reaction is a useful primary screening test for tuberculosis, offering speed and discrimination in the early stages of diagnosis and complementing traditional smear and culture techniques.

  13. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    Science.gov (United States)

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.

  14. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  15. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    Science.gov (United States)

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-07-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.

  16. Kaposi's sarcoma-associated herpesvirus K-Rta exhibits SUMO-targeting ubiquitin ligase (STUbL like activity and is essential for viral reactivation.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Izumiya

    Full Text Available The small ubiquitin-like modifier (SUMO is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML and K-bZIP. PML-NBs (nuclear bodies or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate

  17. Cullin-RING Ubiquitin Ligases in Salicylic Acid-Mediated Plant Immune Signaling

    Directory of Open Access Journals (Sweden)

    James J. Furniss

    2015-03-01

    Full Text Available Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA. SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e. the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs, which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing (NLR immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.

  18. Regulation of a Spindle Positioning Factor at Kinetochores by SUMO-Targeted Ubiquitin Ligases.

    Science.gov (United States)

    Schweiggert, Jörg; Stevermann, Lea; Panigada, Davide; Kammerer, Daniel; Liakopoulos, Dimitris

    2016-02-22

    Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins. PMID:26906737

  19. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    Science.gov (United States)

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-03-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.

  20. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    Science.gov (United States)

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.

  1. Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility.

    Science.gov (United States)

    Pathak, Narendra; Austin, Christina A; Drummond, Iain A

    2011-04-01

    Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. Expression screening of all zebrafish tubulin tyrosine ligase-like genes revealed additional tissue-specific expression of ttll1 in brain neurons, ttll4 in muscle, and ttll7 in otic placodes. Knockdown of ttll3 eliminated cilia tubulin glycylation but had surprisingly mild effects on cilia structure and motility. Similarly, knockdown of ttll6 strongly reduced cilia tubulin glutamylation but only partially affected cilia structure and motility. Combined loss of function of ttll3 and ttll6 caused near complete loss of cilia motility and induced a variety of axonemal ultrastructural defects similar to defects previously observed in zebrafish fleer mutants, which were shown to lack tubulin glutamylation. Consistently, we find that fleer mutants also lack tubulin glycylation. These results indicate that tubulin glycylation and glutamylation have overlapping functions in maintaining cilia structure and motility and that the fleer/dyf-1 TPR protein is required for both types of tubulin post-translational modification. PMID:21262966

  2. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    Science.gov (United States)

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  3. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yan [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Kwon, Yong Tae [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); An, Jee Young [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Eller, Danny [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tsai, S.-C. [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Diaz-Perez, Silvia [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Troke, Joshua J. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Marahrens, York [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)]. E-mail: ymarahrens@mednet.ucla.edu

    2006-04-11

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2{sup -/-} male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2{sup -/-} embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2{sup -/-} fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2{sup -/-} cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2{sup -/-} cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2{sup -/-} cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2{sup -/-} cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.

  4. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase.

    Science.gov (United States)

    Hudson, Andrew M; Mannix, Katelynn M; Cooley, Lynn

    2015-11-01

    The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.

  5. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR).

    Science.gov (United States)

    El Khouri, Elma; Le Pavec, Gwenaëlle; Toledano, Michel B; Delaunay-Moisan, Agnès

    2013-10-25

    In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.

  6. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis.

    Science.gov (United States)

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  7. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Richard T Timms

    Full Text Available The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2, a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.

  8. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    Energy Technology Data Exchange (ETDEWEB)

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom (Scripps); (Maryland-MED); (WU-MED); (LBNL)

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  9. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    Science.gov (United States)

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom

    2010-07-27

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers. PMID:20518483

  10. PHOTOPROBER® Biotin: An Alternative Method for Labeling Archival DNA for Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Dirk Korinth

    2004-01-01

    Full Text Available Comparative genomic hybridization (CGH represents a powerful method for screening the entire genome of solid tumors for chromosomal imbalances. Particularly it enabled the molecular cytogenetic analysis of archival, formalin‐fixed, paraffin‐embedded (FFPE tissue. A well‐known dilemma, however, is the poor DNA quality of this material with fragment sizes below 1000 bp. Nick translation, the conventionally used enzymatic DNA labeling method in CGH, leads to even shorter fragments often below a critical limit for successful analysis. In this study we report the alternative application of non‐enzymatic, PHOTOPROBE® biotin labeling for conjugation of the hapten to the DNA prior to in situ hybridization and fluorescence detection. We analyzed 51 FFPE tumor samples mainly from the upper respiratory tract by both labeling methods. In 19 cases, both approaches were successful. The comparison of hybridized metaphases showed a distinct higher fluorescence signal of the PHOTOPROBE® samples sometimes with a discrete cytoplasm background which however did not interfere with specificity and sensitivity of the detected chromosomal imbalances. For further 32 cases characterized by an average DNA fragment size below 1000 bp, PHOTOPROBE® biotin was the only successful labeling technique thus offering a new option for CGH analysis of highly degraded DNA from archival material.

  11. Akt is negatively regulated by the MULAN E3 ligase

    Institute of Scientific and Technical Information of China (English)

    Seunghee Bae; Jongdoo Kim; Hong-Duck Um; In-Chul Park; Su-Jae Lee; Seon Young Nam; Young-Woo Jin; Jae Ho Lee; Sungkwan An; Sun-Yong Kim; Jin Hyuk Jung; Yeongmin Yoon; Hwa Jun Cha; Hyunjin Lee; Karam Kim; Jongran Kim; In-Sook An

    2012-01-01

    The serine/threonine kinase Akt functions in multiple cellular processes,including cell survival and tumor development.Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation.In this study,we identified a negative regulator of Akt,MULAN,which possesses both a RING finger domain and E3 ubiquitin ligase activity.Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo.Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN.The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability.These data provide insight into the Akt ubiquitination signaling network.

  12. Point Mutation Identification Using On-Chip Ligase Detection Reaction

    Institute of Scientific and Technical Information of China (English)

    李艳; 曾令文; 程京

    2004-01-01

    An efficient method was developed to detect point mutations using oligonucleotide microarrays and the ligase detection reaction (LDR).Allele-specific LDR primers were immobilized on polylysine-coated glass slides to perform LDR on a chip.The spotting concentration and detection limit were analyzed using a synthesized oligonucleotide as a template.The optimal primer spotting concentration was 20 (mol/L and the lowest detectable template concentration was 0.33 nmol/L.The method was successfully employed to identify malignant mutations of hypertrophic cardiomyopathy.Asymmetric polymerase chain reaction was employed to prepare single stranded DNA as LDR templates from cloned plasmids.The discrimination ratios for AC,TC,GT,TT,GA,and AA mismatches are 32.82,44.24,17.75,18.34,11.66,and 8.91,respectively.This method may allow construction of multiple mutation detection systems.

  13. Detection of Neisseria Gonorrhoeae from Urine with Ligase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    曹经江; 郑和义; 胡维

    2003-01-01

    Objective: To evaluate the value of ligase chain reaction(LCR) in the diagnosis of diplococcus gonorrhoeae in urine.Methods: LCR detection of the urine for Neisseria gonorrhoeae and bacteria culture of discharge was per-formed simultaneously to 276 patients with urethritis or cervicitis seeking treatment in sex transmitted dis-eases (STDs) outpatient clinic. For specimens with discordant results, polymerase chain reaction was conducted. The purpose was to detect the respective sensitivity and specificity of bacteria culture and LCR. Results: 24 of 276(8.7%) patients had positive LCR results and 21 of 276(7.6%) were positive for culture.5 specimens had discordant results from LCR and bacteria culture. The sensitivity and specificity of LCR in the diagnosis of gonorrhoeae were 92.3% and 100% respectively. Conclusion: This study showed that LCR had a higher sensitivity and specificity for the diagnosis of gonorrhoeae from urine.

  14. Transcription factor RFX1 is ubiquitinated by E3 ligase STUB1 in systemic lupus erythematosus.

    Science.gov (United States)

    Guo, Yu; Zhao, Ming; Lu, Qianjin

    2016-08-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease caused by complex interactions between genes and the environment. The expression level of transcription factor regulatory factor X 1 (RFX1) is reduced in T cells from SLE patients. RFX1 can regulate epigenetic modifications of CD70 and CD11a and plays an important role in the development of SLE. However, the mechanisms that mediate reduction of RFX1 in SLE are unclear. Here, we demonstrate that RFX1 protein expression can be tightly regulated by polyubiquitination-mediated proteosomal degradation via STIP1 homology and U-box containing protein 1 (STUB1). The E3 ligase STUB1 is upregulated in CD4(+)T cells of SLE patients compared to healthy subjects. Overexpression of STUB1 in CD4(+)T cells leads to upregulation of levels of CD70 and CD11a in T cells. The modulation of STUB1 activity may provide a novel therapeutic approach for SLE. PMID:27283392

  15. Whole exome sequencing reveals compound heterozygous mutations in SLC19A3 causing biotin-thiamine responsive basal ganglia disease

    Directory of Open Access Journals (Sweden)

    L.J. Sremba

    2014-01-01

    Full Text Available Biotin-thiamine responsive basal ganglia disease (BTBGD is a rare metabolic condition caused by mutations in the SLC19A3 gene. BTBGD presents with encephalopathy and significant disease progression when not treated with biotin and/or thiamine. We present a patient of Mexican and European ancestry diagnosed with BTBGD found to have compound heterozygous frameshift mutations, one novel. Our report adds to the genotype-phenotype correlation, highlighting the clinical importance of considering SLC19A3 gene defects as part of the differential diagnosis for Leigh syndrome.

  16. SLI-1 Cbl inhibits the engulfment of apoptotic cells in C. elegans through a ligase-independent function.

    Directory of Open Access Journals (Sweden)

    Courtney Anderson

    Full Text Available The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway, which includes the small GTPase CED-10 Rac and the cytoskeletal regulator ABI-1, acts to rearrange the cytoskeleton of the engulfing cell. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs during the development of the C. elegans gonad. The second pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Cbl, the mammalian homolog of the C. elegans E3 ubiquitin ligase and adaptor protein SLI-1, interacts with Rac and Abi2 and modulates the actin cytoskeleton, suggesting it might act in engulfment. Our genetic studies indicate that SLI-1 inhibits apoptotic cell engulfment and DTC migration independently of the CED-10 Rac and CED-1 pathways. We found that the RING finger domain of SLI-1 is not essential to rescue the effects of SLI-1 deletion on cell migration, suggesting that its role in this process is ubiquitin ligase-independent. We propose that SLI-1 opposes the engulfment of apoptotic cells via a previously unidentified pathway.

  17. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases

    Science.gov (United States)

    Zimmermann, Stephan; Hall, Laurence; Riley, Sean; Sørensen, Jesper; Amaro, Rommie E.; Schnaufer, Achim

    2016-01-01

    The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds. PMID:26400159

  18. Ezrin ubiquitylation by the E3 ubiquitin ligase, WWP1, and consequent regulation of hepatocyte growth factor receptor activity.

    Directory of Open Access Journals (Sweden)

    Rania F Zaarour

    Full Text Available The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477 present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477 motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.

  19. Herpes virus deneddylases interrupt the cullin-RING ligase neddylation cycle by inhibiting the binding of CAND1

    Institute of Scientific and Technical Information of China (English)

    Stefano Gastaldello; Simone Callegari; Giuseppe Coppotelli; Sebastian Hildebrand; Moshi Song; Maria G.Masucci

    2012-01-01

    The conserved N-terminal domains of the major tegument proteins of herpes viridae encode cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activity.Here we show that the Epstein-Barr virus-encoded member of this enzyme family,BPLF1,is targeted to cullin-RING ubiquitin ligases (CRLs) via the interaction of the conserved helix-2 with helix-23 of the C-terminal domain (CTD) of cullins,at a site involved in electrostatic interaction with helix-8 of the CRL regulator CAND1.Mutation of the solventexposed Asp86 and Asp90 of helix-2 to Arg does not affect the enzymatic activity of BPLF1 but abolishes cullin binding and prevents CRL inactivation.The binding of the catalytically active BPLF1 to cullins inhibits the recruitment of CAND1 to the deneddylated CRLs and promotes the selective degradation of cullins by the proteasome.Cullin proteolysis is rescued by the overexpression of CAND1 or its CTD-binding N-terminal domain.These findings illustrate a new strategy for viral modulation of CRL activity where the combined effects of cullin deneddylation and their targeting for proteasomal degradation drive stable inactivation of the ligases.

  20. Purification, crystallization and preliminary crystallographic analysis of a multiple cofactor-dependent DNA ligase from Sulfophobococcus zilligii

    International Nuclear Information System (INIS)

    A recombinant multiple cofactor-dependent DNA ligase from S. zilligii has been purified and crystallized. X-ray diffraction data were collected to 2.9 Å resolution and the crystals belonged to space group P1. A recombinant DNA ligase from Sulfophobococcus zilligii that shows multiple cofactor specificity (ATP, ADP and GTP) was expressed in Escherichia coli and purified under reducing conditions. Crystals were obtained by the microbatch crystallization method at 295 K in a drop containing 1 µl protein solution (10 mg ml−1) and an equal volume of mother liquor [0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 10 000]. A data set was collected to 2.9 Å resolution using synchrotron radiation. The crystals belonged to space group P1, with unit-cell parameters a = 63.7, b = 77.1, c = 77.8 Å, α = 83.4, β = 82.4, γ = 74.6°. Assuming the presence of two molecules in the unit cell, the solvent content was estimated to be about 53.4%

  1. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis.

    Science.gov (United States)

    Li, Wei; Ahn, Il-Pyung; Ning, Yuese; Park, Chan-Ho; Zeng, Lirong; Whitehill, Justin G A; Lu, Haibin; Zhao, Qingzhen; Ding, Bo; Xie, Qi; Zhou, Jian-Min; Dai, Liangying; Wang, Guo-Liang

    2012-05-01

    The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.

  2. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases

    DEFF Research Database (Denmark)

    Mosbech, Anna; Lukas, Claudia; Bekker-Jensen, Simon;

    2013-01-01

    Protein recruitment to DNA double-strand breaks (DSBs) relies on ubiquitylation of the surrounding chromatin by the RING finger ubiquitin ligases RNF8 and RNF168. Flux through this pathway is opposed by several deubiquitylating enzymes (DUBs), including OTUB1 and USP3. By analyzing the effect...... considerable functional redundancy among cellular DUBs that restrict ubiquitin-dependent protein assembly at DSBs. Our findings implicate USP44 in negative regulation of the RNF8/RNF168 pathway and illustrate the usefulness of DUB overexpression screens for identification of antagonizers of ubiquitin...

  3. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is mediated by CUL7 E3 ligase.

    Directory of Open Access Journals (Sweden)

    Chen Kong

    Full Text Available Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8, the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8.

  4. Both Rbx1 and Rbx2 exhibit a functional role in the HIV-1 Vif-Cullin5 E3 ligase complex in vitro.

    Science.gov (United States)

    Wang, Xiaodan; Wang, Xiaoying; Wang, Weiran; Zhang, Jingyao; Wang, Jiawen; Wang, Chu; Lv, Mingyu; Zuo, Tao; Liu, Donglai; Zhang, Haihong; Wu, Jiaxin; Yu, Bin; Kong, Wei; Wu, Hui; Yu, Xianghui

    2015-06-12

    Rbx1 and Rbx2 are essential components of Cullin-RING E3 Ligases. Vif is generally believed to preferentially recruit the Cul5-Rbx2 module to induce proteasomal degradation of antiretroviral enzyme APOBEC3G, although some investigators have found that the Cul5-Rbx1 module is recruited. Here, to investigate the function of the two Rbx proteins in the Vif-Cul5 complex, we analyzed the performance of Cul5-Rbx1/Cul5-Rbx2 module in the activity of Vif E3 ligase and evaluated the interactions between Rbx1/Rbx2 and Cul5. We found that either Rbx1 or Rbx2 could promote ubiquitination of APOBE3G (A3G) in vitro. We also found that both Rbx1 and Rbx2 could bind Cul5 in cells and Rbx2 could dose-dependently inhibit the interaction of Rbx1 with Cul5. Furthermore, only the decrease of endogenous Rbx2 but not Rbx1 could impair the Vif-induced A3G degradation in cells. These findings indicate that Rbx1 and Rbx2 can both activate Cul5-Vif E3 ligase in vitro, but they may undergo a more delicate selection mechanism in vivo. PMID:25912140

  5. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  6. Sequencing of the ddl gene and modeling of the mutated D-alanine:D-alanine ligase in glycopeptide-dependent strains of Enterococcus faecium.

    Science.gov (United States)

    Gholizadeh, Y; Prevost, M; Van Bambeke, F; Casadewall, B; Tulkens, P M; Courvalin, P

    2001-04-01

    Glycopeptide dependence for growth in enterococci results from mutations in the ddl gene that inactivate the host D-Ala:D-Ala ligase. The strains require glycopeptides as inducers for synthesis of resistance proteins, which allows for the production of peptidoglycan precursors ending in D-Ala-D-Lac instead of D-Ala-D-Ala. The sequences of the ddl gene from nine glycopeptide-dependent Enterococcus faecium clinical isolates were determined. Each one had a mutation consisting either in a 5-bp insertion at position 41 leading to an early stop codon, an in-frame 6-bp deletion causing the loss of two residues (KDVA243-246 to KA), or single base-pair changes resulting in an amino acid substitution (E13 --> G, G99 --> R, V241 --> D, D295 --> G, P313 --> L). The potential consequences of the deletion and point mutations on the 3-D structure of the enzyme were evaluated by comparative molecular modeling of the E. faecium enzyme, using the X-ray structure of the homologous Escherichia coli D-Ala:D-Ala ligase DdlB as a template. All mutated residues were found either to interact directly with one of the substrates of the enzymatic reaction (E13 and D295) or to stabilize the position of critical residues in the active site. Maintenance of the 3-D structure in the vicinity of these mutations in the active site appears critical for D-Ala:D-Ala ligase activity.

  7. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.

    Science.gov (United States)

    Zattas, Dimitrios; Berk, Jason M; Kreft, Stefan G; Hochstrasser, Mark

    2016-06-01

    Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. PMID:27068744

  8. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    Science.gov (United States)

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-01

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action.

  9. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    Science.gov (United States)

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-01

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action. PMID:27015018

  10. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    Science.gov (United States)

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2012-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation. PMID:22127868

  11. Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase – engineering a thermostable ATP independent enzyme

    Directory of Open Access Journals (Sweden)

    Zhelkovsky Alexander M

    2012-07-01

    Full Text Available Abstract Background RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers. Results To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5’ pre-adenylated donor substrate. The motif V lysine mutant (K246A showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors. Conclusions

  12. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    OpenAIRE

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a lo...

  13. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    OpenAIRE

    Deniz Simsek; Erika Brunet; Sunnie Yan-Wai Wong; Sachin Katyal; Yankun Gao; McKinnon, Peter J.; Jacqueline Lou; Lei Zhang; James Li; Rebar, Edward J; Gregory, Philip D.; Michael C. Holmes; Maria Jasin

    2011-01-01

    International audience Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translo...

  14. A novel DNA joining activity catalyzed by T4 DNA ligase.

    OpenAIRE

    Western, L M; Rose, S. J.

    1991-01-01

    The use of T4 and E. coli DNA ligases in genetic engineering technology is usually associated with nick-closing activity in double stranded DNA or ligation of 'sticky-ends' to produce recombinant DNA molecules. We describe in this communication the ability of T4 DNA ligase to catalyze intramolecular loop formation between annealed oligodeoxyribonucleotides wherein Watson-Crick base pairing is absent on one side of the ligation site. Enzyme concentration, loop size, substrate specificity, and ...

  15. Aryl chain analogues of the biotin vitamers as potential herbicides. Part 3.

    Science.gov (United States)

    Ashkenazi, Tali; Pinkert, Dalia; Nudelman, Ayelet; Widberg, Ayala; Wexler, Barry; Wittenbach, Vernon; Flint, Dennis; Nudelman, Abraham

    2007-10-01

    Novel aryl chain isosters and analogues of 7-keto-8-aminopelargonic acid (KAPA) and 7,8-diaminopelargonic acid (DAPA), the vitamer intermediates involved in the biosynthetic pathway of biotin, possessing chain lengths of eight carbon atoms, were prepared and evaluated as potential herbicides. In the greenhouse test the most active compounds were the fluorinated derivative 9d and the selenophenyl/furan mixture 17m/17p, which were most active against Foxtail millet. In the more sensitive Arabidopsis test the most active substances were 9a and 17m, which displayed GR(50) (concentration of active compound causing 50% growth inhibition) values of 0.2 and 0.5 mg kg(-1) respectively (values of < 50 mg kg(-1) are considered herbicidal).

  16. Unusually divergent 4-coumarate:CoA-ligases from Ruta graveolens L.

    Science.gov (United States)

    Endler, Alexander; Martens, Stefan; Wellmann, Frank; Matern, Ulrich

    2008-07-01

    Most angiosperms encode a small family of 4-coumarate:CoA-ligases (4CLs) activating hydroxycinnamic acids for lignin and flavonoid pathways. The common rue, Ruta graveolens L., additionally produces coumarins by cyclization of the 4-coumaroyl moiety, possibly involving the CoA-ester, as well as acridone and furoquinoline alkaloids relying on (N-methyl)anthraniloyl-CoA as the starter substrate for polyketide synthase condensation. The accumulation of alkaloids and coumarins, but not flavonoids, was enhanced in Ruta graveolens suspension cultures upon the addition of fungal elicitor. Total RNA of elicitor-treated Ruta cells was used as template for RT-PCR amplification with degenerate oligonucleotide primers inferred from conserved motifs in AMP-binding proteins, and two full-size cDNAs were generated through RACE and identified as 4-coumarate:CoA-ligases, Rg4CL1 and Rg4CL2, by functional expression in yeast cells. The recombinant enzymes differed considerably in their preferential affinities to cinnamate (Rg4CL1) or ferulate (RgCL2) besides 4-coumarate, but did not activate hydroxybenzoic or (N-methyl)anthranilic acid. Most notably, the Rg4CL1 polypeptide included an N-terminal extension suggesting a chloroplast transit peptide. The genes were cloned and revealed four exons, separated by 1056, 94 and 54 bp introns for RgCL1, while Rg4CL2 was composed of five exons interupted by four introns from 113 to 350 bp, and the divergent heritage of these genes was substantiated by phylogenetic analysis. Both genes were expressed in shoot, leaf and flower tissues of adult Ruta plants with preference in shoot and flower, whereas negligible expression occurred in the root. However, Rg4CL1 was expressed much stronger in the flower, while Rg4CL2 was expressed mostly in the shoot. Furthermore, considerable transient induction of only Rg4CL1 was observed upon elicitation of Ruta cells, which seems to support a role of Rg4CL1 in coumarin biosynthesis.

  17. Quantum dot-fluorescence in situ hybridisation for Ectromelia virus detection based on biotin-streptavidin interactions.

    Science.gov (United States)

    Wang, Ting; Zheng, Zhenhua; Zhang, Xian-En; Wang, Hanzhong

    2016-09-01

    Ectromelia virus (ECTV) is an pathogen that can lead to a lethal, acute toxic disease known as mousepox in mice. Prevention and control of ECTV infection requires the establishment of a rapid and sensitive diagnostic system for detecting the virus. In the present study, we developed a method of quantum-dot-fluorescence based in situ hybridisation for detecting ECTV genome DNA. Using biotin-dUTP to replace dTTP, biotin was incorporated into a DNA probe during polymerase chain reaction. High sensitivity and specificity of ECTV DNA detection were displayed by fluorescent quantum dots based on biotin-streptavidin interactions. ECTV DNA was then detected by streptavidin-conjugated quantum dots that bound the biotin-labelled probe. Results indicated that the established method can visualise ECTV genomic DNA in both infected cells and mouse tissues. To our knowledge, this is the first study reporting quantum-dot-fluorescence based in situ hybridisation for the detection of viral nucleic acids, providing a reference for the identification and detection of other viruses. PMID:27343592

  18. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms

    Science.gov (United States)

    Swift, Robert V.; Amaro, Rommie E.

    2009-01-01

    Background Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. Objective In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD+-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. Conclusion High quality crystal structures of both NAD+-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity. PMID:20354588

  19. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.

    Science.gov (United States)

    Scott, Daniel C; Rhee, David Y; Duda, David M; Kelsall, Ian R; Olszewski, Jennifer L; Paulo, Joao A; de Jong, Annemieke; Ovaa, Huib; Alpi, Arno F; Harper, J Wade; Schulman, Brenda A

    2016-08-25

    Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates. Our data define ARIH1 as a component of the human CRL system, demonstrate that ARIH1 can efficiently and specifically mediate monoubiquitylation of several CRL substrates, and establish principles for how two distinctive E3s can reciprocally control each other for simultaneous and joint regulation of substrate ubiquitylation. These studies have broad implications for CRL-dependent proteostasis and mechanisms of E3-mediated UB ligation. PMID:27565346

  20. BICP0 and its RING finger domain act as ubiquitin E3 ligases in vitro

    Institute of Scientific and Technical Information of China (English)

    DIAO Lirong; QIAO Wentao; CHEN Qimin; WANG Chen; GENG Yunqi

    2005-01-01

    Bovine infected-cell protein 0 (BICP0) encoded by bovine herpes virus 1 (BHV-1) immediate early gene is necessary for efficient productive infection, in a large part because it activates all 3 classes of BHV-1 genes. It also has the ability to efficiently transactivate promoters that are not derived from BHV-1. To investigate the mechanism by which BICP0 achieves these effects, we expressed and purified BICP0 and its different mutants in E. coli. In vitro assays showed that both full-length BICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in BICP0 activity in other assays. Based on these, we conclude that BICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and its RING finger domain is necessary for this function. These strongly support the hypothesis that BICP0 might influence virus infection through its ability to interact with the ubiquitin-proteasome pathway.

  1. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels.

    Science.gov (United States)

    Schreiber, Joerg; Végh, Marlene J; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T; De Zeeuw, Chris I; Kneussel, Matthias; Meredith, Rhiannon M; Smit, August B; Van Kesteren, Ronald E

    2015-11-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3(-/-) mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  2. Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α.

    Science.gov (United States)

    Yamashita, Daisuke; Moriuchi, Takanobu; Osumi, Takashi; Hirose, Fumiko

    2016-05-27

    The human transcription factor DNA replication-related element-binding factor (hDREF) is essential for the transcription of a number of housekeeping genes. The mechanisms underlying constitutively active transcription by hDREF were unclear. Here, we provide evidence that hDREF possesses small ubiquitin-like modifier (SUMO) ligase activity and can specifically SUMOylate Mi2α, an ATP-dependent DNA helicase in the nucleosome remodeling and deacetylation complex. Moreover, immunofluorescent staining and biochemical analyses showed that coexpression of hDREF and SUMO-1 resulted in dissociation of Mi2α from chromatin, whereas a SUMOylation-defective Mi2α mutant remained tightly bound to chromatin. Chromatin immunoprecipitation and quantitative RT-PCR analysis demonstrated that Mi2α expression diminished transcription of the ribosomal protein genes, which are positively regulated by hDREF. In contrast, coexpression of hDREF and SUMO-1 suppressed the transcriptional repression by Mi2α. These data indicate that hDREF might incite transcriptional activation by SUMOylating Mi2α, resulting in the dissociation of Mi2α from the gene loci. We propose a novel mechanism for maintaining constitutively active states of a number of hDREF target genes through SUMOylation. PMID:27068747

  3. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells.

    Science.gov (United States)

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  4. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells.

    Directory of Open Access Journals (Sweden)

    Jan Teuber

    Full Text Available Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF-induced differentiation of rat pheochromocytoma (PC12 cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE. We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect.

  5. RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity

    Science.gov (United States)

    McKelvey, Alison C; Lear, Travis B; Dunn, Sarah R; Evankovich, John; Londino, James D; Bednash, Joseph S; Zhang, Yingze; McVerry, Bryan J; Liu, Yuan; Chen, Bill B

    2016-01-01

    Toll-like receptor 2 (TLR2) is a pattern recognition receptor that recognizes many types of PAMPs that originate from gram-positive bacteria. Here we describe a novel mechanism regulating TLR2 protein expression and subsequent cytokine release through the ubiquitination and degradation of the receptor in response to ligand stimulation. We show a new mechanism in which an uncharacterized RING finger E3 ligase, PPP1R11, directly ubiquitinates TLR2 both in vitro and in vivo, which leads to TLR2 degradation and disruption of the signaling cascade. Lentiviral gene transfer or knockdown of PPP1R11 in mouse lungs significantly affects lung inflammation and the clearance of Staphylococcus aureus. There is a negative correlation between PPP1R11 and TLR2 levels in white blood cell samples isolated from patients with Staphylococcus aureus infections. These results suggest that PPP1R11 plays an important role in regulating innate immunity and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2. DOI: http://dx.doi.org/10.7554/eLife.18496.001 PMID:27805901

  6. DNA double-strand break repair, DNA-PK, and DNA ligases in two human squamous carcinoma cell lines with different radiosensitivity

    International Nuclear Information System (INIS)

    Purpose: Variation in sensitivity to radiotherapy among tumors has been related to the capacity of cells to repair radiation-induced DNA double-strand breaks (DSBs). DNA-dependent protein kinase (DNA-PK) and DNA ligases may affect DNA dsb rejoining. This study was performed to compare rate of rejoining of radiation-induced DSBs, DNA-PK, and DNA ligase activities in two human squamous carcinoma cell lines with different sensitivity to ionizing radiation. Methods and Materials: Cell survival of two human squamous carcinoma cell lines, UM-SCC-1 and UM-SCC-14A, was determined by an in vitro clonogenic assay. DSB rejoining was studied using pulsed field gel electrophoresis (PFGE). DNA-PK activity was determined using BIOTRAK DNA-PK enzyme assay system (Amersham). DNA ligase activity in crude cell extracts was measured using [5'-33P] Poly (dA)·(oligo (dT) as a substrate. Proteolytic degradation of proteins was analyzed by means of Western blotting. Results: Applying the commonly used linear-quadratic equation to describe cell survival, S = e-αD-βD2, the two cell lines roughly have the same α value (∼0.40 Gy-1) whereas the β value was considerably higher in UM-SCC-14A (0.067 Gy-2 ± 0.007 Gy-2 [SEM]) as compared to UM-SCC-1 (0.013 Gy-2 ± 0.004 Gy-2 [SEM]). Furthermore, UM-SCC-1 was more proficient in rejoining of X-ray-induced DSBs as compared to UM-SCC-14A as quantified by PFGE. The constitutive level of DNA-PK activity was 1.6 times higher in UM-SCC-1 as compared to UM-SCC-14A (p < 0.05). The constitutive level of DNA ligase activity was similar in the two cell lines. Conclusions: The results suggest that the proficiency in rejoining of DSBs is associated with DNA-PK activity but not with total DNA ligase activity

  7. The role of the e3 ligase cbl-B in murine dendritic cells.

    Directory of Open Access Journals (Sweden)

    Stephanie Wallner

    Full Text Available Dendritic cells (DCs are potent antigen-presenting cells with a promising potential in cancer immunotherapy. Cbl proteins are E3 ubiquitin ligases and have been implicated in regulating the functional activity of various immune cells. As an example, c-Cbl negatively affects DC activation. We here describe that another member of the Cbl-protein family (i.e. Cbl-b is highly expressed in murine bone-marrow-derived DCs (BMDCs. Differentiation of cblb-/- bone marrow mononuclear cells into classical BMDCs is unaltered, except enhanced induction of DEC-205 (CD205 expression. When tested in mixed-lymphocyte reaction (MLR, cblb-/- BMDCs exhibit increased allo-stimulatory capacity in vitro. BMDCs were next in vitro stimulated by various toll like receptor (TLR-agonists (LPS, Poly(I:C, CpG and exposed to FITC-labeled dextran. Upon TLR-stimulation, cblb-/- BMDCs produce higher levels of proinflammatory cytokines (IL-1α, IL-6 and TNF-α and exhibit a slightly higher level of FITC-dextran uptake. To further characterize the functional significance of cblb-/- BMDCs we tested them in antigen-specific T cell responses against ovalbumin (OVA protein and peptides, activating either CD8(+ OT-I or CD4(+ OT-II transgenic T cells. However, cblb-/- BMDCs are equally effective in inducing antigen-specific T cell responses when compared to wildtype BMDCs both in vitro and in vivo. The migratory capacity into lymph nodes during inflammation was similarly not affected by the absence of Cbl-b. In line with these observations, cblb-/- peptide-pulsed BMDCs are equally effective vaccines against OVA-expressing B16 tumors in vivo when compared to wildtype BMDCs. We conclude that in contrast to c-Cbl, Cbl-b plays only a limited role in the induction of Ag-specific T cell responses by murine BMDCs in vitro and in vivo.

  8. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2.

    Science.gov (United States)

    García-Limones, C; Lara-Chica, M; Jiménez-Jiménez, C; Pérez, M; Moreno, P; Muñoz, E; Calzado, M A

    2016-08-18

    The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.

  9. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  10. PUB13, a U-box/ARM E3 ligase, regulates plant defense, cell death, and flowering time.

    Science.gov (United States)

    Li, Wei; Dai, Liangying; Wang, Guo-Liang

    2012-08-01

    The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.

  11. What determines the strength of noncovalent association of ligands to proteins in aqueous solution?

    OpenAIRE

    Miyamoto, S; Kollman, P A

    1993-01-01

    Free energy perturbation methods using molecular dynamics have been used to calculate the absolute free energy of association of two ligand-protein complexes. The calculations reproduce the significantly more negative free energy of association of biotin to streptavidin, compared to N-L-acetyltryptophanamide/alpha-chymotrypsin. This difference in free energy of association is due to van der Waals/dispersion effects in the nearly ideally performed cavity that streptavidin presents to biotin, w...

  12. The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses.

    Science.gov (United States)

    Sadhukhan, Ayan; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2014-10-01

    Cowpea (Vigna unguiculata L. Walp) is an important grain legume cultivated in drought-prone parts of the world, having higher tolerance to heat and drought than many other crops. The transcription factor, Dehydration-Responsive Element-Binding protein 2A (DREB2A), controls expression of many genes involved in osmotic and heat stress responses of plants. In Arabidopsis, DREB2A-interacting proteins (DRIPs), which function as E3 ubiquitin ligases (EC 6.3.2.19), regulate the stability of DREB2A by targeting it for proteasome-mediated degradation. In this study, we cloned the cowpea ortholog of DRIP (VuDRIP) using PCR based methods. The 1614 bp long VuDRIP mRNA encoded a protein of 433 amino acids having a C3HC4-type Really Interesting New Gene (RING) domain in the N-terminus and a C-terminal conserved region, similar to Arabidopsis DRIP1 and DRIP2. We found VuDRIP up-regulation in response to various abiotic stresses and phytohormones. Using yeast (Saccharomyces cerevisae) two-hybrid analysis, VuDRIP was identified as a VuDREB2A-interacting protein. The results indicate negative regulation of VuDREB2A by ubiquitin ligases in cowpea similar to Arabidopsis along with their other unknown roles in stress and hormone signaling pathways. PMID:25090086

  13. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule pathway, stabilizes Tex19.1 during spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Fang Yang

    Full Text Available Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19 has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway.

  14. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Angela Liao

    Full Text Available Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.

  15. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Science.gov (United States)

    Liao, Ting-Yu Angela; Lau, Alice; Joseph, Sunil; Hytönen, Vesa; Hmama, Zakaria

    2015-01-01

    Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine. PMID:26716832

  16. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    Science.gov (United States)

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway.

  17. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas.

    Science.gov (United States)

    Won, Minho; Ro, Hyunju; Dawid, Igor B

    2015-10-01

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.

  18. SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shengchun Zhang; Yanli Qi; Ming Liu; ChengweiYang

    2013-01-01

    Post-translational modifications of proteins by small ubiquitin-like modifiers (SUMOs) play crucial roles in plant growth and development,and in stress responses.The MMS21 is a newly-identified Arabidopsis thaliana L.SUMO E3 ligase gene aside from the SIZ1,and its function requires further elucidation.Here,we show that MMS21 deficient plants display improved drought tolerance,and constitutive expression of MMS21 reduces drought tolerance.The expression of MMS21 was reduced by abscisic acid (ABA),polyethylene glycol (PEG) or drought stress.Under drought conditions,mms21 mutants showed the highest survival rate and the slowest water loss,and accumulated a higher level of free proline compared to wild-type (WT) and MMS21 over-expression plants.Stomatal aperture,seed germination and cotyledon greening analysis indicated that mms21 was hypersensitive to ABA.Molecular genetic analysis revealed that MMS21 deficiency led to elevated expression of a series of ABA-mediated stress-responsive genes,including COR15A,RD22,and P5CS1 The ABA and drought-induced stress-responsive genes,including RAB18,RD29A and RD29B,were inhibited by constitutive expression of MMS21.Moreover,ABA-induced accumulation of SUMO-protein conjugates was blocked in the mms21 mutant.We thus conclude that MMS21 plays a role in the drought stress response,likely through regulation of gene expression in an ABA-dependent pathway.

  19. Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy.

    Science.gov (United States)

    Olaso-Gonzalez, Gloria; Ferrando, Beatriz; Derbre, Frederic; Salvador-Pascual, Andrea; Cabo, Helena; Pareja-Galeano, Helios; Sabater-Pastor, Frederic; Gomez-Cabrera, Mari Carmen; Vina, Jose

    2014-10-01

    Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients. PMID:26461377

  20. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    Science.gov (United States)

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway. PMID:23677922

  1. Evaluation of the avidin/biotin-liposome system injected in pleural space and peritoneum for drug delivery to mediastinal lymph nodes

    Science.gov (United States)

    Medina-Velazquez, Luis Alberto

    The avidin/biotin-liposome system is a new modality recently developed for targeting lymph nodes through the lymphatic system after local injection in a cavity as the route of delivery. In this dissertation we show that the avidin/biotin-liposome system has potential advantages over the injection of only liposomes for targeting lymph nodes. A goal of this dissertation was to evaluate the potential of pleural space as a route of transport for the targeting of mediastinal nodes. Another objective was to study the role of the injected dose of the avidin/biotin-liposome system for targeting mediastinal nodes. Dose, volume, site and sequence of injection of the agents were studied as factors that play an important role in the lymphatic targeting and in the organ distribution of liposomes after intracavitary injection of the avidin/biotin-liposome system. The hypothesis tested in this dissertation was that intracavitary injection of the avidin/biotin-liposome system in pleural space and/or peritoneum results in high levels of mediastinal node targeting with a significant reduction of unfavorable organ distribution when compared with the injection of only liposomes. The specific aims of this dissertation were: (1) to determine the pharmacokinetics, mediastinal node targeting, and biodistribution of avidin and biotin-liposomes injected individually in pleural and peritoneal space, (2) to determine the effect of injected dose and volume on the targeting of mediastinal nodes after intrapleural injection of the avidin/biotin-liposome system, and (3) to evaluate the dose effect of the avidin/biotin-liposome system on the targeting of mediastinal nodes and the lymphatics that drain the peritoneum and pleural space by injecting one agent in peritoneum and the corresponding agent in pleural space, and vice versa. To perform these studies, scintigraphic images were acquired with a gamma camera to non-invasively follow the pharmacokinetics and organ uptake of the avidin/biotin

  2. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    OpenAIRE

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adop...

  3. Overexpression, purification and crystallization of an archaeal DNA ligase from Pyrococcus furiosus

    International Nuclear Information System (INIS)

    Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. DNA ligases seal single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome during various aspects of DNA metabolism, such as replication, excision repair and recombination. DNA-strand breaks are frequently generated as reaction intermediates in these events and the sealing of these breaks depends solely on the proper function of DNA ligase. Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. They belong to the monoclinic space group P21, with unit-cell parameters a = 61.1, b = 88.3, c = 63.4 Å, β = 108.9°. The asymmetric unit contains one ligase molecule

  4. OX133, a monoclonal antibody recognizing protein-bound N-ethylmaleimide for the identification of reduced disulfide bonds in proteins.

    Science.gov (United States)

    Holbrook, Lisa-Marie; Kwong, Lai-Shan; Metcalfe, Clive L; Fenouillet, Emmanuel; Jones, Ian M; Barclay, A Neil

    2016-01-01

    In vivo, enzymatic reduction of some protein disulfide bonds, allosteric disulfide bonds, provides an important level of structural and functional regulation. The free cysteine residues generated can be labeled by maleimide reagents, including biotin derivatives, allowing the reduced protein to be detected or purified. During the screening of monoclonal antibodies for those specific for the reduced forms of proteins, we isolated OX133, a unique antibody that recognizes polypeptide resident, N-ethylmaleimide (NEM)-modified cysteine residues in a sequence-independent manner. OX133 offers an alternative to biotin-maleimide reagents for labeling reduced/alkylated antigens and capturing reduced/alkylated proteins with the advantage that NEM-modified proteins are more easily detected in mass spectrometry, and may be more easily recovered than is the case following capture with biotin based reagents. PMID:26986548

  5. Detection of viral genomes in the liver by in situ hybridization using 35S-, bromodeoxyuridine-, and biotin-labeled probes

    International Nuclear Information System (INIS)

    Methods employing 35S-, biotin-, and bromodeoxyuridine (BrdUrd)-labeled DNA probes were compared for the detection of hepatitis B virus (HBV) and cytomegalovirus (CMV) in the liver. The results demonstrate that: 1) HBV can be detected reliably only by the use of radiolabeled probes, whereas methods employing nonradioactive probes obviously are not sensitive enough for this virus. The use of 35S-labeled probes shortens the exposure times considerably in comparison to tritiated probes. 2) Biotin-labeled probes are of limited value for in situ hybridization on liver tissues because the presence of endogenous avidin-binding activity often leads to false positive results. 3) Brd-Urd-labeled probes are a useful alternative to biotinylated probes for the detection of CMV. In comparison with biotinylated probes, BrdUrd-labeled probes produce a specific signal of similar staining intensity in the absence of background staining in the liver

  6. XBAT35, a Novel Arabidopsis RING E3 Ligase Exhibiting Dual Targeting of Its Splice Isoforms,Is Involved in Ethylene-Mediated Regulation of Apical Hook Curvature

    Institute of Scientific and Technical Information of China (English)

    Sofia D.Carvalho; Rita Saraiva; Teresa M.Maia; Isabel A.Abreu; Paula Duque

    2012-01-01

    The Arabidopsis XBAT35 is one of five structurally related ankyrin repeat-containing Really interesting New Gene (RING) E3 ligases involved in ubiquitin-mediated protein degradation,which plays key roles in a wide range of cellular processes.Here,we show that the XBAT35 gene undergoes alternative splicing,generating two transcripts that are constitutively expressed in all plant tissues.The two splice variants derive from an exon skipping event that excludes an in-frame segment from the XBAT35 precursor mRNA,giving rise to two protein isoforms that differ solely in the presence of a nuclear localization signal (NLS).Transient expression assays indicate that the isoform lacking the NLS localizes in the cytoplasm of plant cells,whereas the other is targeted to the nucleus,accumulating in nuclear speckles.Both isoforms are functional E3 ligases,as assessed by in vitro ubiquitination assays.Two insertion mutant alleles and RNA-interference (RNAi) silencing lines for XBAT35 display no evident phenotypes under normal growth conditions,but exhibit hypersensitivity to the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) during apical hook exaggeration in the dark,which is rescued by an inhibitor of ethylene perception.Independent expression of each XBAT35 splice variant in the mutant background indicates that the two isoforms may differentially contribute to apical hook formation but are both functional in this ethylene-mediated response.Thus,XBAT35 defines a novel player in ethylene signaling involved in negatively regulating apical hook curvature,with alternative splicing controlling dual targeting of this E3 ubiquitin ligase to the nuclear and cytoplasmic compartments.

  7. Progressive Purkinje cell degeneration in tambaleante mutant mice is a consequence of a missense mutation in HERC1 E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Tomoji Mashimo

    2009-12-01

    Full Text Available The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2 and small (HERC3-6. The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein

  8. Skp1, a component of E3 ubiquitin ligase, is necessary for growth, sporulation, development and pathogenicity in rice blast fungus (Magnaporthe oryzae).

    Science.gov (United States)

    Prakash, Chandra; Manjrekar, Johannes; Chattoo, Bharat B

    2016-08-01

    Ubiqitination is an important process in eukaryotic cells involving E3 ubiquitin ligase, which co-ordinates with cell cycle proteins and controls various cell functions. Skp1 (S-phase kinase-associated protein 1) is a core component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin ligase complex necessary for protein degradation by the 26S proteasomal pathway. The rice blast fungus Magnaporthe oryzae has a single MoSKP1(MGG_04978) required for viability. Skp1 has multiple functions; however, its roles in growth, sporulation and appressorial development are not understood. MoSKP1 complements Skp1 function in the fission yeast temperature-sensitive mutant skp1 A7, restoring the normal length of yeast cells at restrictive temperature. The MoSkp1 protein in M. oryzae is present in spores and germ tubes, and is abundantly expressed in appressoria. Various RNA interference (RNAi) and antisense transformants of MoSKP1 in B157 show reduced sporulation, defective spore morphology, lesser septation and diffuse nuclei. Further, they show elongated germ tubes and are unable to form appressoria. Transformants arrested in G1/S stage during initial spore germination show a similar phenotype to wild-type spores treated with hydroxyurea (HU). Reduced MoSkp1 transcript and protein levels in knockdown transformants result in atypical germ tube development. MoSkp1 interacts with the putative F-box protein (MGG_06351) revealing the ability to form protein complexes. Our investigation of the role of MoSKP1 suggests that a decrease in MoSkp1 manifests in decreased total protein ubiquitination and, consequently, defective cell cycle and appressorial development. Thus, MoSKP1 plays important roles in growth, sporulation, appressorial development and pathogenicity of M. oryzae. PMID:26575697

  9. Vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E.

    Science.gov (United States)

    Baumgartner, Matthias R

    2013-01-01

    The catalytic properties of many enzymes depend on the participation of vitamins as obligatory cofactors. Vitamin B12 (cobalamin) and folic acid (folate) deficiencies in infants and children classically present with megaloblastic anemia and are often accompanied by neurological signs. A number of rare inborn errors of cobalamin and folate absorption, transport, cellular uptake, and intracellular metabolism have been delineated and identification of disease-causing mutations has improved our ability to diagnose and treat many of these conditions. Two inherited defects in biotin metabolism are known, holocarboxylase synthetase and biotinidase deficiency. Both lead to multiple carboxylase deficiency manifesting with metabolic acidosis, neurological abnormalities, and skin rash. Thiamine-responsive megaloblastic anemia is characterized by megaloblastic anemia, non-type I diabetes, and sensorineural deafness that responds to pharmacological doses of thiamine (vitamin B1). Individuals affected with inherited vitamin E deficiencies including ataxia with isolated vitamin E deficiency and abetalipoproteinemia present with a spinocerebellar syndrome similar to patients with Friedreich's ataxia. If started early, treatment of these defects by oral or parenteral administration of the relevant vitamin often results in correction of the metabolic defect and reversal of the signs of disease, stressing the importance of early and correct diagnosis in these treatable conditions.

  10. Biotin-Avidin ELISA Detection of Grapevine Fanleaf Virus in the Vector Nematode Xiphinema index.

    Science.gov (United States)

    Esmenjaud, D; Walter, B; Minot, J C; Voisin, R; Cornuet, P

    1993-09-01

    The value of biotin-avidin (B-A) ELISA for the detection of grapevine fanleaf virus (GFLV) in Xiphinema was estimated with field populations and greenhouse subpopulations. Samples consisted of increasing numbers of adults ranging from 1 to 64 in multiples of two. Tests with virus-free X. index populations reared on grapevine and fig plants as negative controls did not reveal a noticeable effect of the host plant. ELISA absorbances of virus-free X. index samples were greater than corresponding absorbances of X. pachtaicum samples. Differences occurred between two X. index field populations from GFLV-infected grapevines in Champagne and Languedoc. In most tests, 1-, 2-, 4-, and 8-nematode samples of virus-free and virus-infected populations, respectively, could not be separated. Consequently, B-A ELISA was not a reliable method for GFLV detection in samples of less than 10 X. index adults, but comparison of the absorbances obtained with increasing numbers may allow differentiation of the viral infectious potential of several populations.

  11. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin-Biotin Binding System.

    Science.gov (United States)

    Kim, Min-Chul; Hong, Min-Ho; Lee, Byung-Hyun; Choi, Heon-Jin; Ko, Yeong-Mu; Lee, Yong-Keun

    2015-12-01

    Highly porous and interconnected scaffolds were fabricated using calcium phosphate glass (CPG) for bone tissue engineering. An avidin-biotin binding system was used to improve osteoblast-like cell adhesion to the scaffold. The scaffolds had open macro- and micro-scale pores, and continuous struts without cracks or defects. Scaffolds prepared using a mixture (amorphous and crystalline CPG) were stronger than amorphous group and crystalline group. Cell adhesion assays showed that more cells adhered, with increasing cell seeding efficiency to the avidin-adsorbed scaffolds, and that cell attachment to the highly porous scaffolds significantly differed between avidin-adsorbed scaffolds and other scaffolds. Proliferation was also significantly higher for avidin-adsorbed scaffolds. Osteoblastic differentiation of MG-63 cells was observed at 3 days, and MG-63 cells in direct contact with avidin-adsorbed scaffolds were positive for type I collagen, osteopontin, and alkaline phosphatase gene expression. Osteocalcin expression was observed in the avidin-adsorbed scaffolds at 7 days, indicating that cell differentiation in avidin-adsorbed scaffolds occurred faster than the other scaffolds. Thus, these CPG scaffolds have excellent biological properties suitable for use in bone tissue engineering.

  12. Detection antigen virus den on monocyts by streptavidin biotin test as early diagnostic for dengue fever hemorrhagic

    Directory of Open Access Journals (Sweden)

    Y NINING SRI WURYANINGSIH

    2007-07-01

    Full Text Available Dengue virus infection is the main cause of morbidity and mortality in the tropical and sub-tropical countries of the world. Clinically it may manifest as asymtomastic,undifferentiated fever,dengue ever,dengue haemorrhagic fever and dengue shock syndrome cases. The mechanism underlying the disease with severe complication is not clear yet,however it has been previosus reported that primary and secondary infections of dengue virus play an important role in the patogenesis of this diseases. Early diagnosis of dengue virus infection has a great contribution for appropriate management of the disease, especialy for the prognosis of the patient. Laboratory investigations for such cases will be methods on serological investigation as well as virus isolation and identification.of dengue virus infection could be made by detection of specific virus ,viral antigen,genomic sequence and or detection of antibodies. These methods are sensitive and precise for detecting dengue virus infection,but there need special equipment,costly and detection of IgM and IgG often positive or negative false the dengue virus in the blood stream There for, this study was performed in order to develop a method to detect dengue virus antigen on the monocytes using Streptavidin biotin technique. The result of Streptavidin biotin study demonstrated that 32 sera from patient suspected with DHF 78,1% were positive DHF,and 21,9% were negative DHF. These results are consistent with the result from WHO criteria as standard .The Chi Square analysis showed that the presentage of sensitivity and specificity of Streptavidin biotin methode were 88% and 87,7% respectively. In conclusions, immunocytochemistry method using streptavidin biotin technique could be used as a method to detect antigen dengue virus on monocytes in the serum patient suspected with DHF. This technique has high sensitivity and specivicity and consistent with the clinical WHO criteria for DHF.

  13. Design and synthesis of fluorescent and biotin tagged probes for the study of molecular actions of FAF1 inhibitor.

    Science.gov (United States)

    Yoo, Sung-eun; Yu, Changsun; Jung, SeoHee; Kim, Eunhee; Kang, Nam Sook

    2016-02-15

    To study the molecular action of ischemic Fas-mediated cell death inhibitor, we prepared fluorescent-tagged and biotin-tagged probes of the potent inhibitor, KR-33494, of ischemic cell death. We used the molecular modeling technique to find the proper position for attaching those probes with minimum interference in the binding process of probes with Fas-mediated cell death target, FAF1.

  14. A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation

    OpenAIRE

    Rekharsky, Mikhail V.; Mori, Tadashi; Yang, Cheng; Ko, Young Ho; Selvapalam, N.; Kim, Hyunuk; Sobransingh, David; Kaifer, Angel E.; Liu, Simin; Isaacs, Lyle; Chen, Wei; Moghaddam, Sarvin; Gilson, Michael K.; Kim, Kimoon; Inoue, Yoshihisa

    2007-01-01

    The molecular host cucurbit[7]uril forms an extremely stable inclusion complex with the dicationic ferrocene derivative bis(trimethylammoniomethyl)ferrocene in aqueous solution. The equilibrium association constant for this host-guest pair is 3 × 1015 M−1 (Kd = 3 × 10−16 M), equivalent to that exhibited by the avidin–biotin pair. Although purely synthetic systems with larger association constants have been reported, the present one is unique because it does not rely on polyvalency. Instead, i...

  15. Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2.

    Science.gov (United States)

    Juanes, M Angeles; Piatti, Simonetta

    2016-09-01

    Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1 dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1 dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.

  16. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.

    Science.gov (United States)

    Nguyen, Giang K T; Wang, Shujing; Qiu, Yibo; Hemu, Xinya; Lian, Yilong; Tam, James P

    2014-09-01

    Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations. PMID:25038786

  17. Avidin-biotin-based approach to forming heterotypic cell clusters and cell sheets on a gas-permeable membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, M; Ozawa, T; Montagne, K; Kojima, N; Ishii, R; Sakai, Y [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yamaguchi, S; Nagamune, T [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ushida, T, E-mail: mzh0026@auburn.edu [Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2011-09-15

    Implantation of sheet-like liver tissues is a promising method in hepatocyte-based therapies, because angiogenesis is expected to occur upon implantation from the surrounding tissues. In this context, we introduce here a new methodology for the formation of a functional thick hepatic tissue usable for cell sheet technology. First, we report the formation of composite tissue elements in suspension culture. Composite elements were composed of human hepatoma Hep G2 cells and mouse NIH/3T3 fibroblasts which are important modulators for thick-tissue formation. To overcome the very low attachment and organization capability between different cells in suspension, we synthesized a new cell-to-cell binding molecule based on the avidin-biotin binding system that we previously applied to attach hepatocytes on artificial substrata. This newly synthesized biotin-conjugated biocompatible anchoring molecule was inserted in the plasma membrane of both cell types. NIH/3T3 cells were further conjugated with avidin and incubated with biotin-presenting Hep G2 cells to form highly composite tissue elements. Then, we seeded those elements on highly gas-permeable membranes at their closest packing density to induce the formation of a thick, composite, functional hepatic tissue without any perfusion. This methodology could open a new way to engineer implantable thick liver tissue sheets where different cell types are spatially organized and well supplied with oxygen.

  18. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy.

    Directory of Open Access Journals (Sweden)

    Irene Flønes

    Full Text Available Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment.In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C. Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy.We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements.

  19. Biochemical and structural characterization of DNA ligases from bacteria and archaea

    Science.gov (United States)

    Pergolizzi, Giulia; Wagner, Gerd K.; Bowater, Richard P.

    2016-01-01

    DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterization. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5′-phosphate of the DNA end that will ultimately be joined to the 3′-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use β-nicotinamide adenine dinucleotide (β-NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5′-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β-NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesized novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes. PMID:27582505

  20. The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking.

    Directory of Open Access Journals (Sweden)

    Eun Chan Park

    Full Text Available Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP, an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP, which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses.

  1. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena;

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensatio...

  2. E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance

    OpenAIRE

    Kriegel, Martin A.; Rathinam, Chozhavendan; Richard A Flavell

    2009-01-01

    T cell unresponsiveness or anergy is one of the mechanisms that maintain inactivity of self-reactive lymphocytes. E3 ubiquitin ligases are important mediators of the anergic state. The RING finger E3 ligase GRAIL is thought to selectively function in anergic T cells but its mechanism of action and its role in vivo are largely unknown. We show here that genetic deletion of Grail in mice leads not only to loss of an anergic phenotype in various models but also to hyperactivation of primary CD4+...

  3. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Ding, Nan [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Qi, Yongmei; Zhang, Yingmei [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Jufang [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Huang, Dejun, E-mail: huangdj@lzu.edu.cn [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China)

    2015-09-15

    Highlights: • Cadmium (Cd) exposure delayed the repair of DNA damage induced by X-ray. • Cd exposure altered the phosphorylation of DNA-PKcs on Thr-2609 and Ser-2056 sites. • Cd impaired the formation of XRCC4 and Ligase IV foci, and down-regulated their protein expression. • Zinc mitigated the effects of Cd on DDR by regulating pDNA-PKcs (Thr-2609), XRCC4 and Ligase IV. - Abstract: Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1–8 h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  4. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV

    International Nuclear Information System (INIS)

    Highlights: • Cadmium (Cd) exposure delayed the repair of DNA damage induced by X-ray. • Cd exposure altered the phosphorylation of DNA-PKcs on Thr-2609 and Ser-2056 sites. • Cd impaired the formation of XRCC4 and Ligase IV foci, and down-regulated their protein expression. • Zinc mitigated the effects of Cd on DDR by regulating pDNA-PKcs (Thr-2609), XRCC4 and Ligase IV. - Abstract: Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1–8 h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells

  5. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    Science.gov (United States)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  6. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface.

    Science.gov (United States)

    Duda, David M; Olszewski, Jennifer L; Tron, Adriana E; Hammel, Michal; Lambert, Lester J; Waddell, M Brett; Mittag, Tanja; DeCaprio, James A; Schulman, Brenda A

    2012-08-10

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF(FBW7) complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  7. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    Energy Technology Data Exchange (ETDEWEB)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A. (BWH); (LBNL); (SJCH); (DFCI)

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.

  8. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase

    DEFF Research Database (Denmark)

    Hernández-Muñoz, Inmaculada; Lund, Anders H; van der Stoop, Petra;

    2005-01-01

    X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins...... inactivation in somatic cells. We further demonstrate that MACROH2A1 deposition is regulated by the CULLIN3/SPOP ligase complex and is actively involved in stable X inactivation, likely through the formation of an additional layer of epigenetic silencing.......X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins....... This recruitment results in an inactive state that is initially labile but is further locked in by epigenetic marks such as DNA methylation, histone hypoacetylation, and MACROH2A deposition. Here, we report that the E3 ubiquitin ligase consisting of SPOP and CULLIN3 is able to ubiquitinate the Polycomb...

  9. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    Science.gov (United States)

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. PMID:26786853

  10. A non-proteolytic role for ubiquitin in deadenylation of MHC-I mRNA by the RNA-binding E3-ligase MEX-3C

    Science.gov (United States)

    Cano, Florencia; Rapiteanu, Radu; Sebastiaan Winkler, G.; Lehner, Paul J.

    2015-01-01

    The regulation of protein and mRNA turnover is essential for many cellular processes. We recently showed that ubiquitin—traditionally linked to protein degradation—directly regulates the degradation of mRNAs through the action of a newly identified family of RNA-binding E3 ubiquitin ligases. How ubiquitin regulates mRNA decay remains unclear. Here, we identify a new role for ubiquitin in regulating deadenylation, the initial and often rate-limiting step in mRNA degradation. MEX-3C, a canonical member of this family of RNA-binding ubiquitin ligases, associates with the cytoplasmic deadenylation complexes and ubiquitinates CNOT7(Caf1), the main catalytic subunit of the CCR4-NOT deadenylation machinery. We establish a new role for ubiquitin in regulating MHC-I mRNA deadenylation as ubiquitination of CNOT7 by MEX-3C regulates its deadenylation activity and is required for MHC-I mRNA degradation. Since neither proteasome nor lysosome inhibitors rescued MEX-3C-mediated MHC-I mRNA degradation, our findings suggest a new non-proteolytic function for ubiquitin in the regulation of mRNA decay. PMID:26471122

  11. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag.

    Directory of Open Access Journals (Sweden)

    Eric R Weiss

    Full Text Available Retroviruses engage the ESCRT pathway through late assembly (L domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA. The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.

  12. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    Science.gov (United States)

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  13. Identification of dynamical hinge points of the L1 ligase molecular switch.

    Science.gov (United States)

    Giambasu, George M; Lee, Tai-Sung; Sosa, Carlos P; Robertson, Michael P; Scott, William G; York, Darrin M

    2010-04-01

    The L1 ligase is an in vitro selected ribozyme that uses a noncanonically base-paired ligation site to catalyze regioselectively and regiospecifically the 5' to 3' phosphodiester bond ligation, a reaction relevant to origin of life hypotheses that invoke an RNA world scenario. The L1 ligase crystal structure revealed two different conformational states that were proposed to represent the active and inactive forms. It remains an open question as to what degree these two conformers persist as stable conformational intermediates in solution, and along what pathway are they able to interconvert. To explore these questions, we have performed a series of molecular dynamics simulations in explicit solvent of the inactive-active conformational switch in L1 ligase. Four simulations were performed departing from both conformers in both the reactant and product states, in addition to a simulation where local unfolding in the active state was induced. From these simulations, along with crystallographic data, a set of four virtual torsion angles that span two evolutionarily conserved and restricted regions were identified as dynamical hinge points in the conformational switch transition. The ligation site visits three distinct states characterized by hydrogen bond patterns that are correlated with the formation of specific contacts that may promote catalysis. The insights gained from these simulations contribute to a more detailed understanding of the coupled catalytic/conformational switch mechanism of L1 ligase that may facilitate the design and engineering of new catalytic riboswitches.

  14. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene

    DEFF Research Database (Denmark)

    Tosic, Mirjana; Ott, Jurg; Barral, Sandra;

    2006-01-01

    Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCLM...

  15. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori.

    Science.gov (United States)

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; Kumari, Nilima; Gourinath, Samudrala

    2016-08-08

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp.

  16. The SOCS-box of HIV-1 Vif interacts with ElonginBC by induced-folding to recruit its Cul5-containing ubiquitin ligase complex.

    Directory of Open Access Journals (Sweden)

    Julien R C Bergeron

    Full Text Available The HIV-1 viral infectivity factor (Vif protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC, cullin 5 (Cul5 and RING-box 2 (Rbx2, to the anti-viral proteins APOBEC3G (A3G and APOBEC3F (A3F and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif's BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.

  17. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation.

    Science.gov (United States)

    Hochrainer, Karin; Pejanovic, Nadja; Olaseun, Victoria A; Zhang, Sheng; Iadecola, Costantino; Anrather, Josef

    2015-11-16

    Activation of NF-κB-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-κB activity is limited by cytoplasmic retention of the NF-κB dimer through binding to inhibitory IκB proteins. However, increasing evidence suggests that NF-κB activity can also be efficiently contained by direct ubiquitination of NF-κB subunits. Here, we identify the HECT-domain ubiquitin ligase HERC3 as novel negative regulator of NF-κB activity. We find that HERC3 restricts NF-κB nuclear import and DNA binding without affecting IκBα degradation. Instead HERC3 indirectly binds to the NF-κB RelA subunit after liberation from IκBα inhibitor leading to its ubiquitination and protein destabilization. Remarkably, the regulation of RelA activity by HERC3 is independent of its inherent ubiquitin ligase activity. Rather, we show that HERC3 and RelA are part of a multi-protein complex containing the proteasome as well as the ubiquitin-like protein ubiquilin-1 (UBQLN1). We present evidence that HERC3 and UBQLN1 provide a link between NF-κB RelA and the 26S proteasome, thereby facilitating RelA protein degradation. Our findings establish HERC3 as novel candidate regulating the inflammatory response initiated by NF-κB. PMID:26476452

  18. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  19. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S

    2016-01-01

    The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710.

  20. Antibody-Mediated Targeting of siRNA Via the Human Insulin Receptor Using Avidin-Biotin Technology

    Science.gov (United States)

    Xia, Chun-Fang; Boado, Ruben J.; Pardridge, William M.

    2013-01-01

    Delivery of short interfering RNA (siRNA) to cells in culture, and in vivo, is possible with combined use of a receptor-specific monoclonal antibody (MAb) and avidin-biotin technology. In the present studies, the luciferase gene is transiently expressed in human 293 epithelial cells. The siRNA delivery system is comprised of the siRNA, mono-biotinylated on the 3′-terminus of the sense strand, and a conjugate of streptavidin (SA) and a MAb to the human insulin receptor (HIR). Exposure of cells to 3′-biotinyl-siRNA bound to the HIRMAb/SA conjugate, but not to unconjugated SA, avidin, or the HIRMAb, causes a >90% reduction in luciferase gene expression. The receptor-targeted siRNA effect is maximal at 48 hours after delivery of the siRNA to the cells, and the effect is lost by 7 days after a single application of the targeted siRNA in culture. The KI of the receptor-targeted siRNA inhibition of gene expresssion is 30.5 ± 11.7 nM, and significant inhibition is observed with siRNA concentrations as low as 3 nM. In conclusion, the combination of a receptor-specific targeting ligand, such as the HIRMAb, and avidin-biotin technology, allows for high affinity capture of the mono-biotinylated siRNA by the targeting MAb. The siRNA is effectively delivered to the cytosol of cells and knockdown of gene expression with the HIRMAb/SA delivery system is comparable to RNA interference effects obtained with cationic polyplexes. Whereas the use of cationic polyplexes in vivo is problematic, the bond between the targeting MAb and the siRNA is stable with avidin-biotin technology, and RNAi effects at distant sites such as brain are observed in vivo following an intravenous administration of the targeted siRNA. PMID:19093871

  1. Immunoradiometric assay of human proinsulin and partially processed proinsulin with use of monoclonal antibody and streptavidin-biotin labeling.

    OpenAIRE

    Kim, J Q; Cho, H. I.; Kim, S. I.; Lee, H. K.; Hales, C. N.

    1989-01-01

    The sensitive and specific immunoradiometric assay is described for human proinsulin and its intermediate peptides (65-66 split and 32-33 split proinsulin). We developed a monoclonal antibody-based two-site immunoradiometric assay with use of streptavidin-biotin labeling. The detection limits of the assays lie in the range of 0.5-2.0 pM. In the proinsulin assay proinsulin cross-reacted 66% with 65-66 split proinsulin but not with insulin or 32-33 split proinsulin. In the assay of 65-66 split ...

  2. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    DEFF Research Database (Denmark)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza;

    2013-01-01

    results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role...... in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer.......SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28...

  3. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    Science.gov (United States)

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling.

  4. AtPUB 19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Liu; Yao-Rong Wu; Xia-He Huang; Jie Sun; Qi Xie

    2011-01-01

    Ubiquitination is an important protein post-translational modification,which is involved in various cellular processes in higher plants,and U-box E3 ligases play important roles in diverse functions in eukaryotes.Here,we describe the functions of Arabidopsis thaliana PUB19 (AtPUB19),which we demonstrated in an in vitro assay to encode a U-box type E3 ubiquitin ligase.AtPUB19 was up-regulated by drought,salt,cold,and abscisic acid (ABA).Down-regulation of AtPUB19led to hypersensitivity to ABA,enhanced ABA-induced stomatal closing,and enhanced drought tolerance,while AtPUB 19overexpression resulted in the reverse phenotypes.Molecular analysis showed that the expression levels of a number of ABA and stress marker genes were altered in both AtPUB 19 overexpressing and atpub 19-1 mutant plants.In summary,our data show that AtPUB19 negatively regulates ABA and drought responses in A.thaliana.

  5. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  6. Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging

    Science.gov (United States)

    Singh, Sweta; Tiwari, Anjani K.; Varshney, Raunak; Mathur, R.; Shukla, Gauri; Bag, N.; Singh, B.; Mishra, Anil K.

    2016-01-01

    2,2‧,2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of 99mTc Met-ac-TE3A/99mTc Bis(thiosemicarbazone)-Biotin after 24 h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging.

  7. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    Science.gov (United States)

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer. PMID:27058756

  8. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin.

    Science.gov (United States)

    Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning

    2016-09-01

    Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. PMID:27209461

  9. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2 Is Increased in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Paula Moreno

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry in human non-small cell lung cancer (NSCLC samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features.One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables.The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry in non-small cell lung cancer (NSCLC. We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC and squamous cell lung cancer (SCC. Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(18Ffluoro-D-glucose uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates, the serine/threonine kinase

  10. The Function of DNA Ligase Ⅲ in Maintenance of Mitochondrial DNA Integrity%DNA连接酶Ⅲ在线粒体基因组完整性保持中的作用

    Institute of Scientific and Technical Information of China (English)

    郭晓强; 沈永青; 郭振清; 常彦忠; 段相林

    2012-01-01

    Eukaryotic DNA ligases play vital roles in DNA replication, recombination and repair through catalyzing ligation of nick in double-stranded DNA with an ATP-dependent reaction. DNA ligase IH (Lig3) is a unique ligase which is located in both nucleus and mitochondrion. Lig3 plays important roles in base excision repair and other single-stranded break repairs with its DNA repair protein XRCC1. But Lig3 is more important in maintenance of mitochondrial DNA (mtDNA) integrity without XRCC1-dependent DNA repair. These researches provide new perspective for Lig3 function and DNA repair.%真核DNA连接酶(DNA ligase)通过催化ATP依赖的双链DNA切口连接而在DNA复制、重组和修复过程中发挥了重要作用.DNA连接酶Ⅲ(Lig3)是一种独特性的连接酶,既可定位于细胞核,又可定位于线粒体.Lig3通过与DNA修复蛋白XRCC1作用而参与了碱基切除修复和其他单链断裂修复.但Lig3以XRCC1不依赖方式在线粒体DNA完整性保持方面发挥了更为重要的作用.这些研究为Lig3功能和DNA修复研究提供了新的视野.

  11. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties.

    Science.gov (United States)

    Miyachi, Ayaka; Takahashi, Tsuyoshi; Matsumura, Sachiko; Mihara, Hisakazu

    2010-06-11

    Self-assembly of peptides and proteins is a key feature of biological functions. Short amphiphilic peptides designed with a beta-sheet structure can form sophisticated nanofiber structures, and the fibers are available as nanomaterials for arranging biomolecules. Peptide FI (H-PKFKIIEFEP-OH) self-assembles into nanofibers with a coiled fine structure, as reported in our previous work. We have constructed anchor molecules that have both a binding moiety for the fiber structure and a functional unit capable of capturing target molecules, with the purpose of arranging proteins on the designed peptide nanofibers. Designed anchors containing an alkyl chain as a binding unit and biotin as a functional moiety were found to bind to peptide fibers FI and F2i (H-ALEAKFAAFEAKLA-NH(2)). The surface-exposed biotin moiety on the fibers could capture an anti-biotin antibody. Moreover, hydrophobic dipeptide anchor units composed of iminodiacetate connected to Phe-Phe or Ile-Ile and a peptide composed of six histidine residues connected to biotin could also connect FI peptide fibers to the anti-biotin antibody through the chelation of Ni(2+) ions. This strategy of using designed anchors opens a novel approach to constructing nanoscale protein arrays on peptide nanomaterials. PMID:20419712

  12. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1

    DEFF Research Database (Denmark)

    Carrozzo, Rosalba; Verrigni, Daniela; Rasmussen, Magnhild;

    2016-01-01

    BACKGROUND: The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings...... in these and 46 previously reported patients. PATIENTS AND RESULTS: Of the 71 patients, 50 had SUCLA2 mutations and 21 had SUCLG1 mutations. In the newly-reported 20 SUCLA2 patients we found 16 different mutations, of which nine were novel: two large gene deletions, a 1 bp duplication, two 1 bp deletions, a 3 bp...... insertion, a nonsense mutation and two missense mutations. In the newly-reported SUCLG1 patients, five missense mutations were identified, of which two were novel. The median onset of symptoms was two months for patients with SUCLA2 mutations and at birth for SUCLG1 patients. Median survival was 20 years...

  13. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke;

    2016-01-01

    , allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes......Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks...... ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...

  14. Targeting of the retroviral envelope protein SL3-2 towards the human G-Protein coupled receptor hAPJ

    DEFF Research Database (Denmark)

    Pagh, Kristina

    overflade protein af SL3-2 har indsat en naturlig ligand for et humant protein. Det er apelin receptoren, APJ, som findes på overfladen af forskellige humane celletyper. Gennem de beskrevne forsøg er det lykkedes os at få SL3-2 til at inficere celler via APJ. Det har vist sig, at SL3-2 er en fremragende...... enzym, der så kobler biotin til virus partiklen, mens peptid 2 tidligere har vist sig at binde sig til biotin. Det første peptid er også blevet sat ind i apelin receptoren. Gennem disse forsøg kan vi konstatere, at det er muligt at binde biotin til både virus og apelin receptoren, uden at dette påvirker...

  15. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass.

    Science.gov (United States)

    Rom, Oren; Reznick, Abraham Z

    2016-09-01

    The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored. PMID:26738803

  16. Structural Basis of the Cks1-Dependent Recognition of P27Kip1 by the SCF skp2 Ubiquitin Ligase

    Energy Technology Data Exchange (ETDEWEB)

    Hao,B.; Zheng, N.; Schulman, B.; Wu, G.; Miller, J.; Pagano, M.; Pavletich, N.

    2005-01-01

    The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex.

  17. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Roland Le Borgne

    2005-04-01

    Full Text Available Signaling by the Notch ligands Delta (Dl and Serrate (Ser regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur and Mind bomb (Mib, have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.

  18. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.

    Science.gov (United States)

    Gao, Jie; Buckley, Shannon M; Cimmino, Luisa; Guillamot, Maria; Strikoudis, Alexandros; Cang, Yong; Goff, Stephen P; Aifantis, Iannis

    2015-11-27

    Little is known on post-transcriptional regulation of adult and embryonic stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ubiquitin ligase complex. Ddb1 is highly expressed in multipotent hematopoietic progenitors and its deletion leads to abrogation of both adult and fetal hematopoiesis, targeting specifically transiently amplifying progenitor subsets. However, Ddb1 deletion in non-dividing lymphocytes has no discernible phenotypes. Ddb1 silencing activates Trp53 pathway and leads to significant effects on cell cycle progression and rapid apoptosis. The abrogation of hematopoietic progenitor cells can be partially rescued by simultaneous deletion of Trp53. Conversely, depletion of DDB1 in embryonic stem cell (ESC) leads to differentiation albeit negative effects on cell cycle and apoptosis. Mass spectrometry reveals differing protein interactions between DDB1 and distinct DCAFs, the substrate recognizing components of the E3 complex, between cell types. Our studies identify CUL4-DDB1 complex as a novel post-translational regulator of stem and progenitor maintenance and differentiation.

  19. The CUL4A ubiquitin ligase is a potential therapeutic target in skin cancer and other malignancies

    Institute of Scientific and Technical Information of China (English)

    Jeffrey Hannah; Peng-Bo Zhou

    2013-01-01

    Cullin 4A (CUL4A) is an E3 ubiquitin ligase that directly affects DNA repair and cel cycle progression by targeting substrates including damage-specific DNA-binding protein 2 (DDB2), xeroderma pigmentosum complementation group C (XPC), chromatin licensing and DNA replication factor 1 (Cdt1), and p21. Recent work from our laboratory has shown that Cul4a-deficient mice have greatly reduced rates of ultraviolet-induced skin carcinomas. On a cel ular level, Cul4a-deficient cel s have great capacity for DNA repair and demonstrate a slow rate of proliferation due primarily to increased expression of DDB2 and p21, respectively. This suggests that CUL4A promotes tumorigenesis (as well as accumulation of skin damage and subsequent premature aging) by limiting DNA repair activity and expediting S phase entry. In addition, CUL4A has been found to be up-regulated via gene amplification or overexpression in breast cancers, hepatocellular carcinomas, squamous cell carcinomas, adrenocortical carcinomas, childhood medulloblastomas, and malignant pleural mesotheliomas. Because of its oncogenic activity in skin cancer and up-regulation in other malignancies, CUL4A has arisen as a potential candidate for targeted therapeutic approaches. In this review, we outline the established functions of CUL4A and discuss the E3 ligase’s emergence as a potential driver of tumorigenesis.

  20. E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells.

    Science.gov (United States)

    Sun, Jianbo; Keim, Celia D; Wang, Jiguang; Kazadi, David; Oliver, Paula M; Rabadan, Raul; Basu, Uttiya

    2013-08-15

    Programmed mutagenesis of the immunoglobulin locus of B lymphocytes during class switch recombination (CSR) and somatic hypermutation requires RNA polymerase II (polII) transcription complex-dependent targeting of the DNA mutator activation-induced cytidine deaminase (AID). AID deaminates cytidine residues on substrate sequences in the immunoglobulin (Ig) locus via a transcription-dependent mechanism, and this activity is stimulated by the RNA polII stalling cofactor Spt5 and the 11-subunit cellular noncoding RNA 3'-5' exonucleolytic processing complex RNA exosome. The mechanism by which the RNA exosome recognizes immunoglobulin locus RNA substrates to stimulate AID DNA deamination activity on its in vivo substrate sequences is an important question. Here we report that E3-ubiquitin ligase Nedd4 destabilizes AID-associated RNA polII by a ubiquitination event, leading to generation of 3' end free RNA exosome RNA substrates at the Ig locus and other AID target sequences genome-wide. We found that lack of Nedd4 activity in B cells leads to accumulation of RNA exosome substrates at AID target genes and defective CSR. Taken together, our study links noncoding RNA processing following RNA polII pausing with regulation of the mutator AID protein. Our study also identifies Nedd4 as a regulator of noncoding RNAs that are generated by stalled RNA polII genome-wide. PMID:23964096

  1. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene

    DEFF Research Database (Denmark)

    Tosic, Mirjana; Ott, Jurg; Barral, Sandra;

    2006-01-01

    Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCLM......) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia....

  2. The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity

    DEFF Research Database (Denmark)

    Damgaard, Rune Busk; Nachbur, Ueli; Yabal, Monica;

    2012-01-01

    -linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly...... signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis....

  3. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    Directory of Open Access Journals (Sweden)

    Deniz Simsek

    2011-06-01

    Full Text Available Nonhomologous end-joining (NHEJ is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4, suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.

  4. Homology modeling, molecular docking and electrostatic potential analysis of MurF ligase from Klebsiella pneumonia.

    Science.gov (United States)

    Sivaramakrishnan, Venkatabalasubramanian; Thiyagarajan, Chinnaiyan; Kalaivanan, Sivakumaran; Selvakumar, Raj; Anusuyadevi, Muthuswamy; Jayachandran, Kesavan Swaminathan

    2012-01-01

    In spite of availability of moderately protective vaccine and antibiotics, new antibacterial agents are urgently needed to decrease the global incidence of Klebsiella pneumonia infections. MurF ligase, a key enzyme, which participates in the bacterial cell wall assembly, is indispensable to existence of K. pneumonia. MurF ligase lack mammalian vis-à-vis and have high specificity, uniqueness, and occurrence only in eubacteria, epitomizing them as promising therapeutic targets for intervention. In this study, we present a unified approach involving homology modeling and molecular docking studies on MurF ligase enzyme. As part of this study, a homology model of K. pneumonia (MurF ligase) enzyme was predicted for the first time in order to carry out structurebased drug design. The accuracy of the model was further validated using different computational approaches. The comparative molecular docking study on this enzyme was undertaken using different phyto-ligands from Desmodium sp. and a known antibiotic Ciprofloxacin. The docking analysis indicated the importance of hotspots (HIS 281 and ASN 282) within the MurF binding pocket. The Lipinski's rule of five was analyzed for all ligands considered for this study by calculating the ADME/Tox, drug likeliness using Qikprop simulation. Only ten ligands were found to comply with the Lipinski rule of five. Based on the molecular docking results and Lipinki values 6-Methyltetrapterol A was confirmed as a promising lead compound. The present study should therefore play a guiding role in the experimental design and development of 6-Methyltetrapterol A as a bactericidal agent. PMID:22715301

  5. Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae.

    OpenAIRE

    Birkenmeyer, L; Armstrong, A S

    1992-01-01

    Rapid identification of Neisseria gonorrhoeae in clinical specimens is essential for effective control. Traditional culture requires a minimum of 24 h, and for some specimens harboring gonococci, the gonococci fail to grow or are misidentified. The recently described ligase chain reaction (LCR) is a highly specific and sensitive DNA amplification technique which was evaluated as an alternative to routine culture. Three LCR probe sets were used. Two of the probe sets were directed against the ...

  6. A vital role of tubulin-tyrosine-ligase for neuronal organization

    OpenAIRE

    Erck, Christian; Peris, Leticia; Andrieux, Annie; Meissirel, Claire; Gruber, Achim; Vernet, Muriel; Schweitzer, Annie; Saoudi, Yasmina; Pointu, Hervé; Bosc, Christophe; Salin, Paul; Job, Didier; Wehland, Juergen

    2005-01-01

    http://www.pnas.org/content/102/22/7853.long International audience Tubulin is subject to a special cycle of detyrosination/tyrosination in which the C-terminal tyrosine of alpha-tubulin is cyclically removed by a carboxypeptidase and readded by a tubulin-tyrosine-ligase (TTL). This tyrosination cycle is conserved in evolution, yet its physiological importance is unknown. Here, we find that TTL suppression in mice causes perinatal death. A minor pool of tyrosinated (Tyr-)tubulin persist...

  7. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction.

    Science.gov (United States)

    Wang, Xiaolong; Bao, Zhenmin; Hu, Jingjie; Wang, Shi; Zhan, Aibin

    2008-01-01

    A new DNA computing algorithm based on a ligase chain reaction is demonstrated to solve an SAT problem. The proposed DNA algorithm can solve an n-variable m-clause SAT problem in m steps and the computation time required is O (3m+n). Instead of generating the full-solution DNA library, we start with an empty test tube and then generate solutions that partially satisfy the SAT formula. These partial solutions are then extended step by step by the ligation of new variables using Taq DNA ligase. Correct strands are amplified and false strands are pruned by a ligase chain reaction (LCR) as soon as they fail to satisfy the conditions. If we score and sort the clauses, we can use this algorithm to markedly reduce the number of DNA strands required throughout the computing process. In a computer simulation, the maximum number of DNA strands required was 2(0.48n) when n=50, and the exponent ratio varied inversely with the number of variables n and the clause/variable ratio m/n. This algorithm is highly space-efficient and error-tolerant compared to conventional brute-force searching, and thus can be scaled-up to solve large and hard SAT problems. PMID:17904730

  8. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses.

    Science.gov (United States)

    Medvedev, Andrei E; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-07-01

    Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.

  9. Expression, purification, and immobilization of recombinant tamavidin 2 fusion proteins.

    Science.gov (United States)

    Takakura, Yoshimitsu; Oka, Naomi; Tsunashima, Masako

    2014-01-01

    Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity. Unlike avidin or streptavidin, tamavidin 2 in soluble form is produced at high levels in Escherichia coli. In this chapter, we describe a method for immobilization and purification of recombinant proteins with the use of tamavidin 2 as an affinity tag. The protein fused to tamavidin 2 is tightly immobilized and simultaneously purified on biotinylated magnetic microbeads without loss of activity. PMID:24943317

  10. Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases.

    Science.gov (United States)

    Klecker, Maria; Dissmeyer, Nico

    2016-01-01

    The automated SPOT (synthetic peptide arrays on membrane support technique) synthesis technology has entrenched as a rapid and robust method to generate peptide libraries on cellulose membrane supports. The synthesis method is based on conventional Fmoc chemistry building up peptides with free N-terminal amino acids starting at their cellulose-coupled C-termini. Several hundreds of peptide sequences can be assembled with this technique on one membrane comprising a strong binding potential due to high local peptide concentrations. Peptide orientation on SPOT membranes qualifies this array type for assaying substrate specificities of N-recognins, the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Pioneer studies described binding capability of mammalian and yeast enzymes depending on a peptide's N-terminus. SPOT arrays have been successfully used to describe substrate specificity of N-recognins which are the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Here, we describe the implementation of SPOT binding assays with focus on the identification of N-recognin substrates, applicable also for plant NERD enzymes. PMID:27424747

  11. Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Jørgensen, Thomas J. D.; Koefoed, Klaus;

    2013-01-01

    in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads...... prior to the HDX-MS experiment. However, when studying protein complexes of more than two proteins, immobilization can possibly introduce steric limitations to the interactions. Here, we present a method based on the high affinity biotin-streptavidin interaction that allows selective capture...... of biotinylated proteins even under the extreme conditions for hydrogen/deuterium exchange quenching i.e. pH 2.5 and 0 °C. This biotin-streptavidin capture strategy allows hydrogen/deuterium exchange to occur in proteins in solution and enables characterization of specific proteins in heteromultimeric protein...

  12. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome.

    Directory of Open Access Journals (Sweden)

    Cheol-Sang Hwang

    Full Text Available BACKGROUND: Johanson-Blizzard syndrome (JBS; OMIM 243800 is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons recognized by UBR1 are destabilizing N-terminal residues of protein substrates. METHODOLOGY/PRINCIPAL FINDINGS: Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R was inactive in yeast-based activity assays, the other one (Q1224E had a detectable but weak activity, and the third one (V146L exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients. CONCLUSIONS/SIGNIFICANCE: These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS.

  13. Development of a formulation for the preparation of sup 9 sup 9 sup m Tc-Ida-bis-Biotin complex

    CERN Document Server

    Gutíerrez, L C

    2000-01-01

    linking were realized to the lyophilized product quality control tests like: stability and radiochemical purity. The analytical techniques used UV spectrophotometry and HRLC were validated. The studies of biodistribution of the sup 9 sup 9 sup m Tc-Ida-bis-biotin complex were realized in healthy laboratory animals, showing stability 'In vivo' with renal purification. (Author) The radiopharmaceuticals of diagnostic use incorporate the radioisotope to an organic or inorganic molecule which goes selectively to the interest organ, to an a physiologic or metabolic process of the body with a simple and quantitatively interpretable kinetics. The sup 9 sup 9 sup m Tc occupies 80% from total of the studies realized in the world by the optimum combination of physical half-life (6 h), radionuclide quantity (ng) and high energy emission which allows to obtain results with the greatest information. Actually, in Nuclear Medicine, the research strategies are directed to the use of 'premarkers systems' based in the antibody ...

  14. Mechanism-based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in Mycobaterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ce; Geders, Todd W.; Park, Sae Woong; Wilson, Daniel J.; Boshoff, Helena I.; Abayomi, Orishadipe; Barry, III, Clifton E.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C. (Weill-Med); (UMM); (NIAID)

    2011-11-16

    BioA catalyzes the second step of biotin biosynthesis, and this enzyme represents a potential target to develop new antitubercular agents. Herein we report the design, synthesis, and biochemical characterization of a mechanism-based inhibitor (1) featuring a 3,6-dihydropyrid-2-one heterocycle that covalently modifies the pyridoxal 5'-phosphate (PLP) cofactor of BioA through aromatization. The structure of the PLP adduct was confirmed by MS/MS and X-ray crystallography at 1.94 {angstrom} resolution. Inactivation of BioA by 1 was time- and concentration-dependent and protected by substrate. We used a conditional knock-down mutant of M. tuberculosis to demonstrate the antitubercular activity of 1 correlated with BioA expression, and these results provide support for the designed mechanism of action.

  15. Solid-phase synthesis of Biotin-S-Farnesyl-L-Cysteine, a surrogate substrate for isoprenylcysteine Carboxylmethyltransferase (ICMT).

    Science.gov (United States)

    Stevenson, Graeme I; Yong, Sarah; Fechner, Gregory A; Neve, Juliette; Lock, Aaron; Avery, Vicky M

    2013-10-15

    Inhibition of isoprenylcysteine Carboxylmethyltransferase (ICMT) is of particular interest as a potential target for the development of cancer chemotherapeutic agents. Screening for inhibitors of ICMT utilises a scintillation proximity assay (SPA) in which Biotin-S-Farnesyl-L-Cysteine (BFC) acts as a surrogate substrate. A solid-phase synthesis protocol for the preparation of BFC using 2-chlorotrityl chloride resin as a solid support has been developed to provide sufficient supply of BFC for high throughput screening (HTS) and subsequent chemistry campaigns to target inhibitors of ICMT. The BFC prepared by this method can be produced quickly on large scale and is stable when stored at -20 °C as a solid, in solution, or on the resin.

  16. Advantages of detecting monoclonal antibody binding to tissue sections with biotin and avidin reagents in Coplin jars.

    Science.gov (United States)

    Bindl, J M; Warnke, R A

    1986-04-01

    We describe a method of biotin/avidin-peroxidase detection using second and third stage reagents in Coplin jars. This method allows a large quantity of sections to be stained simultaneously with a minimal amount of technical time involved. A wide range of mouse monoclonal antibodies of varying specificities and isotypes were used to stain both frozen and paraffin-embedded sections of various normal and neoplastic tissues. Three different biotinylated anti-mouse antibodies were tested, including F(ab')2 antibody fragments of one, followed by horseradish peroxidase conjugated avidin. All monoclonal antibodies employed gave good staining, using incubation times of 30-50 minutes. The staining was done during a mean period of 25 to 27 days with an average staining load of 500 sections per Coplin jar. PMID:2420169

  17. Magnetic detection of biotin-streptavidin binding using InAs quantum well μ-Hall sensor

    Science.gov (United States)

    Aledealat, Khaled; Chen, K.; Mihajlovic, G.; Xiong, P.; Strouse, G.; Chase, P. B.; von Molnár, S.; Field, M.; Sullivan, G. J.

    2009-03-01

    Magnetic sensors are a key component in any high-sensitivity, rapid-response, and portable platform for magnetic biosensing. InAs quantum well micro-Hall sensors have shown high potential for such a role due to their low noise level and capability to detect single micron- sized or smaller superparamagnetic beads suitable for biosensing^1. Here we present successful selective biotinylation of InAs micro-Hall sensors and directed self-assembly of 350 nm streptavidin-coated superparamagnetic beads via the biotin-streptavidin interaction. Two Hall crosses with three and two beads produced detection signals with S/N ratio of 21.3 dB and 18.4 dB respectively. In addition, our progress for in situ detection of micron-sized magnetic beads using microfluidic channel will be presented. ^1G. Mihajlovic et al., APL 87, 112502 (2005) This work was supported by NIH NIGMS GM079592.

  18. Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis.

    Science.gov (United States)

    Wang, Ning; Liu, Yaping; Cong, Yahui; Wang, Tingting; Zhong, Xiujuan; Yang, Shouping; Li, Yan; Gai, Junyi

    2016-06-01

    Plant U-box (PUB) E3 ubiquitin ligases play important roles in hormone signaling pathways and response to abiotic stresses, but little is known about them in soybean, Glycine max. Here, we identified and characterized 125 PUB genes from the soybean genome, which were classified into eight groups according to their protein domains. Soybean PUB genes (GmPUB genes) are broadly expressed in many tissues and are a little more abundant in the roots than in the other tissues. Nine GmPUB genes, GmPUB1-GmPUB9, showed induced expression patterns by drought, and the expression of GmPUB8 was also induced by exogenous ABA and NaCl. GmPUB8 was localized to post-Golgi compartments, interacting with GmE2 protein as demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments, and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. Heterogeneous overexpression of GmPUB8 in Arabidopsis showed decreased drought tolerance, enhanced sensitivity with respect to osmotic and salt stress inhibition of seed germination and seedling growth, and inhibited ABA- and mannitol-mediated stomatal closure. Eight drought stress-related genes were less induced in GmPUB8-overexpressing Arabidopsis after drought treatment compared with the wild type and the pub23 mutant. Taken together, our results suggested that GmPUB8 might negatively regulate plant response to drought stress. In addition, Y2H and BiFC showed that GmPUB8 interacted with soybean COL (CONSTANS LIKE) protein. GmPUB8-overexpressing Arabidopsis flowered earlier under middle- and short-day conditions but later under long-day conditions, indicating that GmPUB8 might regulate flowering time in the photoperiod pathway. This study helps us to understand the functions of PUB E3 ubiquitin ligases in soybean.

  19. Four Closely-related RING-type E3 Ligases, APD1-4,are Involved in Pollen Mitosis Ⅱ Regulation in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Guo Luo; Hongya Gu; Jingjing Liu; Li-Jia Qu

    2012-01-01

    Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes.In higher plants,protein ubiquitination plays an essential role in many biological processes,including hormone signaling,photomorphogenesis,and pathogen defense.However,the roles of protein ubiquitination in the reproductive process are not clear.In this study,we identified four plant-specific RING-finger genes designated (A)berrant (P)ollen (D)evelopment (1) (APD1) to APD4,as regulators of pollen mitosis Ⅱ (PMII) in Arabidopsis thaliana (L.).The apd1 apd2 double mutant showed a significantly increased percentage of bicellular-like pollen at the mature pollen stage.Further downregulation of the APD3 and APD4 transcripts in apd1 apd2 by RNA interference (RNAi) resulted in more severe abnormal bicellular-like pollen phenotypes than in apd1 apd2,suggesting that cell division was defective in male gametogenesis.All of the four genes were expressed in multiple stages at different levels during male gametophyte development.Confocal analysis using green florescence fusion proteins (GFP) GFP-APD1 and GFP-APD2 showed that APDs are associated with intracellular membranes.Furthermore,APD2 had E2-dependent E3 ligase activity in vitro,and five APD2-interacting proteins were identified.Our results suggest that these four genes may be involved,redundantly,in regulating the PMII process during male gametogenesis.

  20. Selective cell-surface labeling of the molecular motor protein prestin

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Ryan M. [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Silberg, Jonathan J., E-mail: joff@rice.edu [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 (United States); Pereira, Fred A. [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Raphael, Robert M., E-mail: rraphael@rice.edu [Department of Bioengineering, Rice University, Houston, TX 77251 (United States)

    2011-06-24

    Highlights: {yields} Trafficking to the plasma membrane is required for prestin function. {yields} Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. {yields} BAP-prestin can be metabolically labeled with biotin in HEK293 cells. {yields} Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. {yields} The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  1. Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.

    Science.gov (United States)

    Wang, Li Kai; Nair, Pravin A; Shuman, Stewart

    2008-08-22

    NAD(+)-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains. The OB and HhH domains contribute prominently to the protein clamp formed by LigA around nicked duplex DNA. Here we conducted a structure-function analysis of the OB and HhH domains of Escherichia coli LigA by alanine scanning and conservative substitutions, entailing 43 mutations at 22 amino acids. We thereby identified essential functional groups in the OB domain that engage the DNA phosphodiester backbone flanking the nick (Arg(333)); penetrate the minor grove and distort the nick (Val(383) and Ile(384)); or stabilize the OB fold (Arg(379)). The essential constituents of the HhH domain include: four glycines (Gly(455), Gly(489), Gly(521), Gly(553)), which bind the phosphate backbone across the minor groove at the outer margins of the LigA-DNA interface; Arg(487), which penetrates the minor groove at the outer margin on the 3 (R)-OH side of the nick; and Arg(446), which promotes protein clamp formation via contacts to the nucleotidyltransferase domain. We find that the BRCT domain is required in its entirety for effective nick sealing and AMP-dependent supercoil relaxation.

  2. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation.

    Science.gov (United States)

    Anand, Ajith; Rojas, Clemencia M; Tang, Yuhong; Mysore, Kirankumar S

    2012-07-01

    • Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome. PMID:22486382

  3. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  4. The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection

    Science.gov (United States)

    Wang, Jing; Teng, Jade L. L.; Zhao, Dongdong; Ge, Pupu; Li, Bingxi; Woo, Patrick C. Y.; Liu, Cui Hua

    2016-01-01

    Macrophage-mediated innate immune responses play crucial roles in host defense against pathogens. Recent years have seen an explosion of host proteins that act as restriction factors blocking viral replication in infected cells. However, the essential factors restricting Mycobacterium tuberculosis (Mtb) and their regulatory roles during mycobacterial infection remain largely unknown. We previously reported that Mtb tyrosine phosphatase PtpA, a secreted effector protein required for intracellular survival of Mtb, inhibits innate immunity by co-opting the host ubiquitin system. Here, we identified a new PtpA-interacting host protein TRIM27, which is reported to possess a conserved RING domain and usually acts as an E3 ubiquitin ligase that interferes with various cellular processes. We further demonstrated that TRIM27 restricts survival of mycobacteria in macrophages by promoting innate immune responses and cell apoptosis. Interestingly, Mtb PtpA could antagonize TRIM27-promoted JNK/p38 MAPK pathway activation and cell apoptosis through competitively binding to the RING domain of TRIM27. TRIM27 probably works as a potential restriction factor for Mtb and its function is counteracted by Mtb effector proteins such as PtpA. Our study suggests a potential tuberculosis treatment via targeting of the TRIM27-PtpA interfaces. PMID:27698396

  5. Crystallization and preliminary X-ray crystallographic studies of VibE, a vibriobactin-specific 2,3-dihydroxybenzoate-AMP ligase from Vibrio cholerae

    International Nuclear Information System (INIS)

    This article reports the molecular cloning, protein expression and purification, crystallization and preliminary X-ray crystallographic analysis of the vibriobactin synthetase VibE from V. cholerae. Vibriobactin synthetases (VibABCDEFH) catalyze the biosynthesis of vibriobactin in the pathogenic bacterium Vibrio cholerae. VibE, a vibriobactin-specific 2,3-dihydroxybenzoate-AMP ligase, plays a critical role in the transfer of 2,3-dihydroxybenzoate to the aryl carrier protein domain of holo VibB. Here, the cloning, protein expression and purification, crystallization and preliminary X-ray crystallographic analysis of VibE from V. cholerae are reported. The VibE crystal diffracted to 2.3 Å resolution. The crystal belonged to space group P21, with unit-cell parameters a = 56.471, b = 45.927, c = 77.014 Å, β = 95.895°. There is one protein molecule in the asymmetric unit, with a corresponding Matthews coefficient of 1.63 Å3 Da−1 and solvent content of 24.41%

  6. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    Science.gov (United States)

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. PMID:27443248

  7. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    Science.gov (United States)

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response.

  8. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  9. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    Science.gov (United States)

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-01-01

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML. PMID:27329306

  10. Ligation reaction specificities of an NAD+-dependent DNA ligase from the hyperthermophile Aquifex aeolicus

    OpenAIRE

    Tong, Jie; Barany, Francis; Cao, Weiguo

    2000-01-01

    An NAD+-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg2+ or Mn2+ as the metal cofactor. Ca2+ and Ni2+ mainly support formation of DNA–adenylate intermediates. The catalytic cycle is characterized by a low kcat value of 2 min–1 with concomitant accumulation of the DNA–adenylate intermediate when Mg2+ is used as the metal ...

  11. Cullin-RING Ubiquitin Ligase Family in Plant Abiotic Stress Pathways

    Institute of Scientific and Technical Information of China (English)

    Liquan Guo; Cynthia D.Nezames; Lianxi Sheng; Xingwang Deng; Ning Wei

    2013-01-01

    The ubiquitin-proteasome system is a key mechanism that plants use to generate adaptive responses in coping with various environmental stresses.Cullin-RING (CRL) complexes represent a predominant group of ubiquitin E3 ligases in this system.In this review,we focus on the CRL E3s that have been implicated in abiotic stress signaling pathways in Arabidopsis.By comparing and analyzing these cases,we hope to gain a better understanding on how CRL complexes work under various settings in an attempt to decipher the clues about the regulatory mechanism of CRL E3s.

  12. Biochemical characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE from Verrucomicrobium spinosum DSM 4136(T..

    Directory of Open Access Journals (Sweden)

    Sean E McGroty

    Full Text Available Verrucomicrobium spinosum is a Gram-negative bacterium that is related to bacteria from the genus Chlamydia. The bacterium is pathogenic towards Drosophila melanogaster and Caenorhabditis elegans, using a type III secretion system to facilitate pathogenicity. V. spinosum employs the recently discovered l,l-diaminopimelate aminotransferase biosynthetic pathway to generate the bacterial cell wall and protein precursors diaminopimelate and lysine. A survey of the V. spinosum genome provides evidence that the bacterium should be able to synthesize peptidoglycan de novo, since all of the necessary genes are present. The enzyme UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-2,6-diaminopimelate ligase (MurE (E.C. 6.3.2.15 catalyzes a reaction in the cytoplasmic step of peptidoglycan biosynthesis by adding the third amino acid residue to the peptide stem. The murE ortholog from V. spinosum (murE Vs was cloned and was shown to possess UDP-MurNAc-l-Ala-d-Glu:meso-2,6-diaminopimelate ligase activity in vivo using functional complementation. In vitro analysis using the purified recombinant enzyme demonstrated that MurEVs has a pH optimum of 9.6 and a magnesium optimum of 30 mM. meso-Diaminopimelate was the preferred substrate with a K m of 17 µM, when compared to other substrates that are structurally related. Sequence alignment and structural analysis using homology modeling suggest that key residues that make up the active site of the enzyme are conserved in MurEVs. Our kinetic analysis and structural model of MurEVs is consistent with other MurE enzymes from Gram-negative bacteria that have been characterized. To verify that V. spinosum incorporates diaminopimelate into its cell wall, we purified peptidoglycan from a V. spinosum culture; analysis revealed the presence of diaminopimelate, consistent with that of a bona fide peptidoglycan from Gram-negative bacteria.

  13. M. tuberculosis sliding β-clamp does not interact directly with the NAD+-dependent DNA ligase.

    Directory of Open Access Journals (Sweden)

    Vandna Kukshal

    Full Text Available The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp to 3.0 Å resolution. The protein crystallized in the space group C222(1 with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent K(d of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD(+-dependent DNA ligase (LigA and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria.

  14. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Frederic Derbre

    Full Text Available Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO. The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1 and Muscle RING (Really Interesting New Gene Finger-1 (MuRF-1. We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.

  15. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy

    Science.gov (United States)

    Shibata, Tatsuhiro; Ohta, Tsutomu; Tong, Kit I.; Kokubu, Akiko; Odogawa, Reiko; Tsuta, Koji; Asamura, Hisao; Yamamoto, Masayuki; Hirohashi, Setsuo

    2008-01-01

    The nuclear factor E2-related factor 2 (Nrf2) is a master transcriptional activator of genes encoding numerous cytoprotective enzymes that are induced in response to environmental and endogenously derived oxidative/electrophilic agents. Under normal, nonstressed circumstances, low cellular concentrations of Nrf2 are maintained by proteasomal degradation through a Keap1-Cul3-Roc1-dependent mechanism. A model for Nrf2 activation has been proposed in which two amino-terminal motifs, DLG and ETGE, promote efficient ubiquitination and rapid turnover; known as the two-site substrate recognition/hinge and latch model. Here, we show that in human cancer, somatic mutations occur in the coding region of NRF2, especially among patients with a history of smoking or suffering from squamous cell carcinoma; in the latter case, this leads to poor prognosis. These mutations specifically alter amino acids in the DLG or ETGE motifs, resulting in aberrant cellular accumulation of Nrf2. Mutant Nrf2 cells display constitutive induction of cytoprotective enzymes and drug efflux pumps, which are insensitive to Keap1-mediated regulation. Suppression of Nrf2 protein levels by siRNA knockdown sensitized cancer cells to oxidative stress and chemotherapeutic reagents. Our results strongly support the contention that constitutive Nrf2 activation affords cancer cells with undue protection from their inherently stressed microenvironment and anti-cancer treatments. Hence, inactivation of the Nrf2 pathway may represent a therapeutic strategy to reinforce current treatments for malignancy. Congruously, the present study also provides in vivo validation of the two-site substrate recognition model for Nrf2 activation by the Keap1-Cul3-based E3 ligase. PMID:18757741

  16. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    a biotin ligase acceptor peptide (BLAP) or an acyl carrier protein (ACP) tag, respectively. Trajectories of the differently labeled GPI-anchored molecules were recorded simultaneously in dual-color experiments at rates of ~25 -~1500 Hz. Knowing the effect of different labels is of utmost importance...

  17. [The applications of thermostable ligase chain reaction in facilitating DNA recombination].

    Science.gov (United States)

    Xiangda, Zhou; Xiao, Song; Cong, Huai; Haiyan, Sun; Hongyan, Chen; Daru, Lu

    2016-02-01

    The traditional Type Ⅱ restriction enzyme-based method is restricted by the purification steps, and therefore, cannot be applied to specific DNA assembly in chaotic system. To solve this problem, Thermostable Ligase Chain Reaction (TLCR) was introduced in the process of DNA assembly and capture. This technique combines the feature of thermostable DNA ligase and sequence specific oligo ligation template, "Helper", to achieve specific assembly of target fragments and exponential increase of products in multiple thermocyclings. Two plasmid construction experiments were carried out in order to test the feasibility and practical performance of TLCR. One was that, TLCR was used to specifically capture a 1.5 kb fragment into vector from an unpurified chaotic system which contained 7 different sizes of fragments. The results showed that the capturing accuracy was around 80%, which proved the feasibility and accuracy of using TLCR to specific assembly of DNA fragments in a complicated mixed system. In the other experiment, TLCR was used to capture two fragments (total length was 27 kb) from Hind Ⅲ digestion of Lambda genome into vector by order. The results also showed an accuracy of around 80%. As demonstrated in the results, TLCR can simplify the process of DNA recombination experiments and is suitable for the assembly of multiple and large DNA fragments. This technique can provide convenience to biological experiments.

  18. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    Science.gov (United States)

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. PMID:26567315

  19. Probes of Ubiquitin E3 ligases distinguish different stages of Parkin activation

    Science.gov (United States)

    Pao, Kuan-Chuan; Stanley, Mathew; Han, Cong; Lai, Yu-Chiang; Murphy, Paul; Balk, Kristin; Wood, Nicola T.; Corti, Olga; Corvol, Jean-Christophe; Muqit, Miratul M.K.; Virdee, Satpal

    2016-01-01

    E3 ligases represent an important class of enzymes, yet there are currently no chemical probes to profile their activity. We develop a new class of activity-based probe by reengineering of a ubiquitin-charged E2 conjugating enzyme and demonstrate their utility by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase Parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in Parkin activation. We also profile Parkin patient disease-associated mutations and strikingly demonstrate that they largely mediate their effect by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous Parkin activity revealing that endogenous Parkin is activated in neuronal cell lines (≥75 %) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-Parkin signalling as demonstrated by compatibility with Parkinson’s disease patient-derived samples. PMID:26928937

  20. [Cloning and tissue expression of 4-coumarate coenzyme A ligase gene in Angelica sinensis].

    Science.gov (United States)

    Wen, Sui-chao; Wang, Yin-quan; Luo, Jun; Xia, Qi; Fan, Qin; Li, Shu-nan; Wang, Zhen-heng

    2015-12-01

    4-coumarate coenzyme A ligase is a key enzyme of phenylpropanoid metabolic pathway in higher plant and may regulate the biosynthesis of ferulic acid in Angelica sinensis. In this study, the homology-based cloning and rapid amplification of cDNA ends (RACE) technique were used to clone a full length cDNA encoding 4-coumarate coenzyme A ligase gene (4CL), and then qRT-PCR was taken for analyzing 4CL gene expression levels in the root, stem and root tissue at different growth stages of seedlings of A. sinensis. The results showed that a full-length 4CL cDNA (1,815 bp) was obtained (GenBank accession number: KT880508) which shares an open reading frame (ORF) of 1 632 bp, encodes 544 amino acid polypeptides. We found 4CL gene was expressed in all tissues including leaf, stem and root of seedlings of A. sinensis. The expressions in the leave and stem were increased significantly with the growth of seedlings of A. sinensis (P space pattern of 4CL gene expression in seedlings of A. sinensis. These findings will be useful for establishing an experiment basis for studying the structure and function of 4CL gene and elucidating mechanism of ferulic acid biosynthesis and space-time regulation in A. sinensis. PMID:27245029

  1. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface

    Energy Technology Data Exchange (ETDEWEB)

    Gorelik, Maryna; Orlicky, Stephen; Sartori, Maria A.; Tang, Xiaojing; Marcon, Edyta; Kurinov, Igor; Greenblatt, Jack F.; Tyers, Mike; Moffat, Jason; Sicheri, Frank; Sidhu, Sachdev S.

    2016-03-14

    The ubiquitin proteasome components are often misregulated in numerous diseases, encouraging the search for drug targets and inhibitors. E3 ligases that specify ubiquitination targets are of particular interest. Multimeric Skp1–Cul1–F-box (SCF) E3 ligases constitute one of the largest E3 families connected to every cellular process and multiple diseases; however, their characterization as therapeutic targets is impeded by functional diversity and poor characterization of its members. Herein we describe a strategy to inhibit SCF E3 ligases using engineered ubiquitin-based binders. We identify a previously uncharacterized inhibitory site and design ubiquitin-based libraries targeting this site. Our strategy to target SCF E3 ligases with small-molecule–like agents will have broad applications for basic research and drug development relating to SCF E3 ligase function.

  2. Lineage-Specific Viral Hijacking of Non-canonical E3 Ubiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity

    Directory of Open Access Journals (Sweden)

    Joshua R. Kane

    2015-05-01

    Full Text Available HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL complex as well as the non-canonical cofactor CBFβ, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac] and non-primate (FIV, BIV, and MVV viruses. We find that CBFβ is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA, for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.

  3. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function.

    Science.gov (United States)

    Wu, X; Chang, A; Sudol, M; Hanes, S D

    2001-12-01

    Transcription of protein-coding genes by RNA polymerase II (pol II) is a highly coordinated process that requires the stepwise association of distinct protein complexes with the C-terminal domain (CTD) of Rpbl, the largest subunit of RNA pol II. Interaction of these complexes with the CTD might be subject to regulation by proteins such as Ess1 and Rsp5. Ess1, a prolyl-isomerase, binds the CTD and is thought to play a positive role in pol II transcription by generating conformational isomers of the CTD. Rsp5, a ubiquitin ligase, binds the CTD and is thought to play a negative role in transcription by mediating Rpbl ubiquitination and degradation. In this paper, we demonstrate that ESS1 and RSP5 interact genetically and that these interactions occur via RPBI. We show that over-expression of RSP5 enhances the growth defect of ess1ts cells and this effect is reversed by introducing extra copies of RPB1. Over-expression of RSP5 also mimics the sensitivity of ess1ts mutant cells to the toxicity of plasmids carrying dominant-negative CTD mutations, whereas mutations in RSP5 suppress this effect. Using a modified two-hybrid assay, we also demonstrate that Essl and Rsp5 compete directly for binding to the CTD. The results suggest a model in which Essl and Rsp5 act opposingly on pol II function to control the level of pol II available for transcription.

  4. Rhizavidin from Rhizobium etli: the first natural dimer in the avidin protein family

    Science.gov (United States)

    Helppolainen, Satu H.; Nurminen, Kirsi P.; Määttä, Juha A. E.; Halling, Katrin K.; Slotte, J. Peter; Huhtala, Tuulia; Liimatainen, Timo; Ylä-Herttuala, Seppo; Airenne, Kari J.; Närvänen, Ale; Jänis, Janne; Vainiotalo, Pirjo; Valjakka, Jarkko; Kulomaa, Markku S.; Nordlund, Henri R.

    2007-01-01

    Rhizobium etli CFN42 is a symbiotic nitrogen-fixing bacterium of the common bean Phaseolus vulgaris. The symbiotic plasmid p42d of R. etli comprises a gene encoding a putative (strept)avidin-like protein, named rhizavidin. The amino acid sequence identity of rhizavidin in relation to other known avidin-like proteins is 20–30%. The amino acid residues involved in the (strept)avidin–biotin interaction are well conserved in rhizavidin. The structural and functional properties of rhizavidin were carefully studied, and we found that rhizavidin shares characteristics with bradavidin, streptavidin and avidin. However, we found that it is the first naturally occurring dimeric protein in the avidin protein family, in contrast with tetrameric (strept)avidin and bradavidin. Moreover, it possesses a proline residue after a flexible loop (GGSG) in a position close to Trp-110 in avidin, which is an important biotin-binding residue. [3H]Biotin dissociation and ITC (isothermal titration calorimetry) experiments showed dimeric rhizavidin to be a high-affinity biotin-binding protein. Its thermal stability was lower than that of avidin; although similar to streptavidin, it was insensitive to proteinase K. The immunological cross-reactivity of rhizavidin was tested with human serum samples obtained from cancer patients exposed to (strept)avidin. No significant cross-reactivity was observed. The biodistribution of the protein was studied by SPECT (single-photon emission computed tomography) imaging in rats. Similarly to avidin, rhizavidin was observed to accumulate rapidly, mainly in the liver. Evidently, rhizavidin could be used as a complement to (strept)avidin in (strept)avidin–biotin technology. PMID:17447892

  5. THE CLONING OF HRNT-1 USING A COMBINATION OF cDNA LIBRARY SCREENING WITH BIOTIN-LABELED PROBE AND RAPID AMPLIFICATION OF cDNA ENDS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To clone the human counterpart of rat ZA73, EST cloned from rat tracheal epithelial (RTE) neoplastic transformed cell model induced by (a-particles radiation by using mRNA differential display. Methods: According to the sequence of rat ZA73, a probe was biotin-labeled to screen human cDNA library, and then the gene sequence was extended by RACE (rapid amplification of cDNA ends). Result: Human gene HRNT-1 (GenBank Accession Number: AF223393) is 4.256 kb in length, with an ORF located in the region between 254 and 3013 bp. 5' UTS (untranslated sequences) is 253 bp, 3' UTS is 1243 bp. Conclusion: The combination of cDNA library screening with biotin-labeled probes and RACE is an effective method to clone full-length cDNA, especially for sequences longer than 2 kb.

  6. Introduction of new derivatives of biotin and DTPA for labeling of antibodies with 111 In ti detect malignant tumors

    International Nuclear Information System (INIS)

    Radiolabeled monoclonal antibodies, have created new innovations in diagnosis, research, and therapy of diseases in last 2 decades. One of the serious limitations of applications of radiolabeled antibodies in vivo is relatively low target to background activity. Various strategies have been proposed to solve this problem including pre-targeting methods that was suggested in 1989. Regarding importance of monoclonal antibodies and radioisotopes, based on pre-targeting strategy, we have introduced new derivative of biotin and DTPA to decrease background activity. DTPA-bio and new derivative (DTPA-bio-1 OX) were labeled with 111 In, labeled compounds and injected through tail veins into Balb/c mice, and percent of injected dose per gram of blood (% ID/g of blood ) was determined at 15, 30, 60, 120, 180 and 240 min after injection. Based on results, 111 In-DTPA-bio rapidly cleared from serum, indicating activity not bound to the target. While in the case of new derivative, by attaching 10 Adenine base (IOX) molecular weight of label is increased causing delayed clearance from serum. Therefore, there is enough time for label to accumulate in the target tissues. With advent of second generation of monoclonal antibodies and antibody engineering, pre targeting methods have changed greatly. It seems that derivatives we introduced will have and important role in new pre-targeting methods

  7. Intraoperative avidination for radionuclide treatment as a radiotherapy boost in breast cancer: results of a phase II study with 90Y-labeled biotin

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT) after conservative surgery for early breast cancer requires 5-7 weeks. For elderly patients and those distant from an RT center, attending for EBRT may be difficult or impossible. We investigated local toxicity, cosmetic outcomes, and quality of life in a new breast irradiation technique - intraoperative avidination for radionuclide therapy (IART) - in which avidin is administered to the tumor bed and 90Y-labelled biotin later administered intravenously to bind the avidin and provide irradiation. Reduced duration EBRT (40 Gy) is given subsequently. After surgery, 50 (ten patients), 100 (15 patients) or 150 mg (ten patients) of avidin was injected into the tumor bed. After 12-24 h, 3.7 GBq 90Y-biotin (beta source for therapeutic effect) plus 185 MBq 111In-biotin (gamma source for imaging and dosimetry) was infused slowly. Whole-body scintigraphy and SPECT/CT images were taken for up to 30 h. Shortened EBRT started 4 weeks later. Local toxicity was assessed by RTOG scale; quality of life was assessed by EORTC QOL-30. Of 35 patients recruited (mean age 63 years; range 42-74) 32 received IART plus EBRT. 100 mg avidin provided 19.5 ± 4.0 Gy to the tumor bed and was considered the optimum dose. No side-effects of avidin or 90Y-biotin occurred, with no hematological or local toxicity. Local G3 toxicity occurred in 3/32 patients during EBRT. IART plus EBRT was well accepted, with good cosmetic outcomes and maintained quality of life. IART plus reduced EBRT can accelerate irradiation after conservative breast surgery. (orig.)

  8. Intraoperative avidination for radionuclide treatment as a radiotherapy boost in breast cancer: results of a phase II study with {sup 90}Y-labeled biotin

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Giovanni; De Cicco, Concetta; Carbone, Giuseppe; Pacifici, Monica [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia [European Institute of Oncology, Division of Medical Physics, Milan (Italy); Pagani, Gianmatteo; Galimberti, Viviana; Luini, Alberto [European Institute of Oncology, Division of Senology, Milan (Italy); Leonardi, Maria Cristina; Ferrari, Annamaria; Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy); De Santis, Rita [Sigma-Tau SpA R and D, Rome (Italy); Zurrida, Stefano [European Institute of Oncology, Division of Senology, Milan (Italy); University of Milan School of Medicine, Milan (Italy); Veronesi, Umberto [European Institute of Oncology, Scientific Director, Milan (Italy)

    2010-02-15

    External beam radiotherapy (EBRT) after conservative surgery for early breast cancer requires 5-7 weeks. For elderly patients and those distant from an RT center, attending for EBRT may be difficult or impossible. We investigated local toxicity, cosmetic outcomes, and quality of life in a new breast irradiation technique - intraoperative avidination for radionuclide therapy (IART) - in which avidin is administered to the tumor bed and {sup 90}Y-labelled biotin later administered intravenously to bind the avidin and provide irradiation. Reduced duration EBRT (40 Gy) is given subsequently. After surgery, 50 (ten patients), 100 (15 patients) or 150 mg (ten patients) of avidin was injected into the tumor bed. After 12-24 h, 3.7 GBq {sup 90}Y-biotin (beta source for therapeutic effect) plus 185 MBq {sup 111}In-biotin (gamma source for imaging and dosimetry) was infused slowly. Whole-body scintigraphy and SPECT/CT images were taken for up to 30 h. Shortened EBRT started 4 weeks later. Local toxicity was assessed by RTOG scale; quality of life was assessed by EORTC QOL-30. Of 35 patients recruited (mean age 63 years; range 42-74) 32 received IART plus EBRT. 100 mg avidin provided 19.5 {+-} 4.0 Gy to the tumor bed and was considered the optimum dose. No side-effects of avidin or {sup 90}Y-biotin occurred, with no hematological or local toxicity. Local G3 toxicity occurred in 3/32 patients during EBRT. IART plus EBRT was well accepted, with good cosmetic outcomes and maintained quality of life. IART plus reduced EBRT can accelerate irradiation after conservative breast surgery. (orig.)

  9. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015. Scientific opinion on biotin and contribution to normal energy-yielding metabolism: evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    deliver an opinion on the scientific substantiation of a health claim related to biotin and contribution to normal energy-yielding metabolism. The Panel considers that biotin, the food constituent that is the subject of the health claim, is sufficiently characterised. Contribution to normal energy......-yielding metabolism applies to all ages, including infants and young children (from birth to three years). The Panel concludes that a cause and effect relationship has been established between the dietary intake of biotin and contribution to normal energy-yielding metabolism. The following wording reflects the...... scientific evidence: ‘Biotin contributes to normal energy-yielding metabolism.’ The target population is infants and young children up to three years of age....

  10. Genetically encoded cleavable protein photo-cross-linker.

    Science.gov (United States)

    Lin, Shixian; He, Dan; Long, Teng; Zhang, Shuai; Meng, Rong; Chen, Peng R

    2014-08-27

    We have developed a genetically encoded, selenium-based cleavable photo-cross-linker that allows for the separation of bait and prey proteins after protein photo-cross-linking. We have further demonstrated the efficient capture of the in situ generated selenenic acid on the cleaved prey proteins. Our strategy involves tagging the selenenic acid with an alkyne-containing dimethoxyaniline molecule and subsequently labeling with an azide-bearing fluorophore or biotin probe. This cleavage-and-capture after protein photo-cross-linking strategy allows for the efficient capture of prey proteins that are readily accessible by two-dimensional gel-based proteomics and mass spectrometry analysis.

  11. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice

    KAUST Repository

    Park, Hyeongcheol

    2010-06-18

    Sumoylation is a post-translational regulatory process in diverse cellular processes in eukaryotes, involving conjugation/deconjugation of small ubiquitin-like modifier (SUMO) proteins to other proteins thus modifying their function. The PIAS [protein inhibitor of activated signal transducers and activators of transcription (STAT)] and SAP (scaffold attachment factor A/B/acinus/PIAS)/MIZ (SIZ) proteins exhibit SUMO E3-ligase activity that facilitates the conjugation of SUMO proteins to target substrates. Here, we report the isolation and molecular characterization of Oryza sativa SIZ1 (OsSIZ1) and SIZ2 (OsSIZ2), rice homologs of Arabidopsis SIZ1. The rice SIZ proteins are localized to the nucleus and showed sumoylation activities in a tobacco system. Our analysis showed increased amounts of SUMO conjugates associated with environmental stresses such as high and low temperature, NaCl and abscisic acid (ABA) in rice plants. The expression of OsSIZ1 and OsSIZ2 in siz1-2 Arabidopsis plants partially complemented the morphological mutant phenotype and enhanced levels of SUMO conjugates under heat shock conditions. In addition, ABA-hypersensitivity of siz1-2 seed germination was partially suppressed by OsSIZ1 and OsSIZ2. The results suggest that rice SIZ1 and SIZ2 are able to functionally complement Arabidopsis SIZ1 in the SUMO conjugation pathway. Their effects on the Arabidopsis mutant suggest a function for these genes related to stress responses and stress adaptation. © 2010 Blackwell Publishing Ltd.

  12. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.

    Science.gov (United States)

    Park, Jihye; Welner, Robert S; Chan, Mei-Yee; Troppito, Logan; Staber, Philipp B; Tenen, Daniel G; Yan, Catherine T

    2016-01-01

    Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients. PMID:26608917

  13. Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”

    Directory of Open Access Journals (Sweden)

    Yuki Fujita

    2010-08-01

    Full Text Available In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed “design and selection,” new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.

  14. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase.

    Science.gov (United States)

    Groh, Beezly S; Yan, Feng; Smith, Matthew D; Yu, Yanbao; Chen, Xian; Xiong, Yue

    2016-05-01

    WDTC1/Adp encodes an evolutionarily conserved suppressor of lipid accumulation. While reduced WDTC1 expression is associated with obesity in mice and humans, its cellular function is unknown. Here, we demonstrate that WDTC1 is a component of a DDB1-CUL4-ROC1 (CRL4) E3 ligase. Using 3T3-L1 cell culture model of adipogenesis, we show that disrupting the interaction between WDTC1 and DDB1 leads to a loss of adipogenic suppression by WDTC1, increased triglyceride accumulation and adipogenic gene expression. We show that the CRL4(WDTC) (1) complex promotes histone H2AK119 monoubiquitylation, thus suggesting a role for this complex in transcriptional repression during adipogenesis. Our results identify a biochemical role for WDTC1 and extend the functional range of the CRL4 complex to the suppression of fat accumulation. PMID:27113764

  15. Cullin4B/E3-ubiquitin ligase negatively regulates -catenin

    Indian Academy of Sciences (India)

    Rachana Tripathi; Satya Keerthi Kota; Usha K Srinivas

    2007-09-01

    -catenin is the key transducer of Wingless-type MMTV integration site family member (Wnt) signalling, upregulation of which is the cause of cancer of the colon and other tissues. In the absence of Wnt signals, -catenin is targeted to ubiquitin–proteasome-mediated degradation. Here we present the functional characterization of E3-ubiquitin ligase encoded by cul4B. RNAi-mediated knock-down of Cul4B in a mouse cell line C3H T10 (1/2) results in an increase in -catenin levels. Loss-of-function mutation in Drosophila cul4 also shows increased -catenin/Armadillo levels in developing embryos and displays a characteristic naked-cuticle phenotype. Immunoprecipitation experiments suggest that Cul4B and -catenin are part of a signal complex in Drosophila, mouse and human. These preliminary results suggest a conserved role for Cul4B in the regulation of -catenin levels.

  16. Investigation of the molecular mechanism of δ-catenin ubiquitination: Implication of β-TrCP-1 as a potential E3 ligase.

    Science.gov (United States)

    Shrestha, Hridaya; Yuan, Tingting; He, Yongfeng; Moon, Pyong-Gon; Shrestha, Nensi; Ryu, Taeyong; Park, So-Yeon; Cho, Young-Chang; Lee, Chan-Hyeong; Baek, Moon-Chang; Cho, Sayeon; Simkhada, Shishli; Kim, Hangun; Kim, Kwonseop

    2016-09-01

    Ubiquitination, a post-translational modification, involves the covalent attachment of ubiquitin to the target protein. The ubiquitin-proteasome pathway and the endosome-lysosome pathway control the degradation of the majority of eukaryotic proteins. Our previous study illustrated that δ-catenin ubiquitination occurs in a glycogen synthase kinase-3 (GSK-3) phosphorylation-dependent manner. However, the molecular mechanism of δ-catenin ubiquitination is still unknown. Here, we show that the lysine residues required for ubiquitination are located mainly in the C-terminal portion of δ-catenin. In addition, we provide evidence that β-TrCP-1 interacts with δ-catenin and functions as an E3 ligase, mediating δ-catenin ubiquitin-proteasome degradation. Furthermore, we prove that both the ubiquitin-proteasome pathway and the lysosome degradation pathway are involved in δ-catenin degradation. Our novel findings on the mechanism of δ-catenin ubiquitination will add a new perspective to δ-catenin degradation and the effects of δ-catenin on E-cadherin involved in epithelial cell-cell adhesion, which is implicated in prostate cancer progression. PMID:27316454

  17. CDK1-dependent inhibition of the E3 ubiquitin ligase CRL4CDT2 ensures robust transition from S Phase to Mitosis.

    Science.gov (United States)

    Rizzardi, Lindsay F; Coleman, Kate E; Varma, Dileep; Matson, Jacob P; Oh, Seeun; Cook, Jeanette Gowen

    2015-01-01

    Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.

  18. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Can [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Zhang, Li-Yang [Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, 110 Xiang Ya Road, Changsha 410078 (China); Chen, Hong [Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Xiao, Ling [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Liu, Xian-Peng, E-mail: xliu@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 (United States); Zhang, Jian-Xiang, E-mail: jianxiangzhang@yahoo.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  19. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  20. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41.

    Science.gov (United States)

    Basiorka, Ashley A; McGraw, Kathy L; De Ceuninck, Leentje; Griner, Lori N; Zhang, Ling; Clark, Justine A; Caceres, Gisela; Sokol, Lubomir; Komrokji, Rami S; Reuther, Gary W; Wei, Sheng; Tavernier, Jan; List, Alan F

    2016-06-15

    In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR. PMID:27197154