WorldWideScience

Sample records for biotin protein ligase

  1. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  2. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    Science.gov (United States)

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  3. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus

    International Nuclear Information System (INIS)

    Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.

    2008-01-01

    The biotin protein ligase from S. aureus has been overexpressed in E. coli, purified, crystallized by the hanging-drop vapour-diffusion method and analysed using X-ray diffraction. Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4 2 2 1 2, with unit-cell parameters a = b = 93.665, c = 131.95

  4. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  5. Microbial biotin protein ligases aid in understanding holocarboxylase synthetase deficiency.

    Science.gov (United States)

    Pendini, Nicole R; Bailey, Lisa M; Booker, Grant W; Wilce, Matthew C; Wallace, John C; Polyak, Steven W

    2008-01-01

    The attachment of biotin onto the biotin-dependent enzymes is catalysed by biotin protein ligase (BPL), also known as holocarboxylase synthase HCS in mammals. Mammals contain five biotin-enzymes that participate in a number of important metabolic pathways such as fatty acid biogenesis, gluconeogenesis and amino acid catabolism. All mammalian biotin-enzymes are post-translationally biotinylated, and therefore activated, through the action of a single HCS. Substrate recognition by BPLs occurs through conserved structural cues that govern the specificity of biotinylation. Defects in biotin metabolism, including HCS, give rise to multiple carboxylase deficiency (MCD). Here we review the literature on this important enzyme. In particular, we focus on the new information that has been learned about BPL's from a number of recently published protein structures. Through molecular modelling studies insights into the structural basis of HCS deficiency in MCD are discussed.

  6. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: An antibiotic target

    OpenAIRE

    Pendini, Nicole R; Yap, Min Y; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-01-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present ...

  7. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus.

    Science.gov (United States)

    Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J

    2008-06-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.

  8. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: an antibiotic target.

    Science.gov (United States)

    Pendini, Nicole R; Yap, Min Y; Traore, D A K; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-06-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present small-angle X-ray scattering data of SaBPL in complex with its biotin-carboxyl carrier protein substrate as well as the SaBPL:DNA complex that underlies repression. This has revealed the molecular basis of ligand (biotinyl-5'-AMP) binding and conformational changes associated with catalysis and repressor function. These data provide new information to better understand the bifunctional activities of SaBPL and to inform future strategies for antibiotic discovery. © 2013 The Protein Society.

  9. Crystallization and preliminary X-ray crystallographic studies of the biotin carboxyl carrier protein and biotin protein ligase complex from Pyrococcus horikoshii OT3

    International Nuclear Information System (INIS)

    Bagautdinov, Bagautdin; Matsuura, Yoshinori; Bagautdinova, Svetlana; Kunishima, Naoki

    2007-01-01

    A truncated form of biotin carboxyl carrier protein containing the C-terminal half fragment (BCCPΔN76) and the biotin protein ligase (BPL) with the mutation R48A (BPL*) or the double mutation R48A K111A (BPL**) were successfully cocrystallized in the presence of ATP and biotin. The BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals belong to space group P2 1 and diffract X-rays to 2.7 and 2.0 Å resolution, respectively. Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. To elucidate the exact details of the protein–protein interactions in the biotinylation function, the C-terminal half fragment of BCCP (BCCPΔN76), the R48A mutant of BPL (BPL*) and the R48A K111A double mutant of BPL (BPL**), all of which are from Pyrococcus horikoshii OT3, have been expressed, purified and successfully cocrystallized. Cocrystals of the BPL*–BCCPΔN76 and BPL**–BCCPΔN76 complexes as well as crystals of BPL*, BPL** and BCCPΔN76 were obtained by the oil-microbatch method using PEG 20 000 as a precipitant at 295 K. Complete X-ray diffraction data sets for BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals were collected at 100 K to 2.7 and 2.0 Å resolution, respectively, using synchrotron radiation. They belong to the monoclinic space group P2 1 , with similar unit-cell parameters a = 69.85, b = 63.12, c = 75.64 Å, β = 95.9°. Assuming two subunits of the complex per asymmetric unit gives a V M value of 2.45 Å 3 Da −1 and a solvent content of 50%

  10. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    , and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...... dismutase (sod) promoter, to see whether growth could be restored. Neither pycA nor birA overexpression, whether alone or in combination, had an effect on specific growth rate, but they did have a positive effect on lysine yield, which increased by 55% in the strain overexpressing both enzymes....

  11. Biotin protein ligase from Candida albicans: expression, purification and development of a novel assay.

    Science.gov (United States)

    Pendini, Nicole R; Bailey, Lisa M; Booker, Grant W; Wilce, Matthew C J; Wallace, John C; Polyak, Steven W

    2008-11-15

    Biotin protein ligase (BPL) is an essential enzyme responsible for the activation of biotin-dependent enzymes through the covalent attachment of biotin. In yeast, disruption of BPL affects important metabolic pathways such as fatty acid biosynthesis and gluconeogenesis. This makes BPL an attractive drug target for new antifungal agents. Here we report the cloning, recombinant expression and purification of BPL from the fungal pathogen Candida albicans. The biotin domains of acetyl CoA carboxylase and pyruvate carboxylase were also cloned and characterised as substrates for BPL. A novel assay was established thereby allowing examination of the enzyme's properties. These findings will facilitate future structural studies as well as screening efforts to identify potential inhibitors.

  12. Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*

    Science.gov (United States)

    Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.

    2012-01-01

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830

  13. Selective inhibition of biotin protein ligase from Staphylococcus aureus.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Tieu, William; Yap, Min Y; Pendini, Nicole R; Polyak, Steven W; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D; Wallace, John C; Wilce, Matthew C J; Booker, Grant W; Abell, Andrew D

    2012-05-18

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (K(i) 90 nM) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class.

  14. Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli.

    Science.gov (United States)

    Delli-Bovi, Teegan A; Spalding, Maroya D; Prigge, Sean T

    2010-10-11

    Biotin is an essential enzyme cofactor that acts as a CO2 carrier in carboxylation and decarboxylation reactions. The E. coli genome encodes a biosynthetic pathway that produces biotin from pimeloyl-CoA in four enzymatic steps. The final step, insertion of sulfur into desthiobiotin to form biotin, is catalyzed by the biotin synthase, BioB. A dedicated biotin ligase (BirA) catalyzes the covalent attachment of biotin to biotin-dependent enzymes. Isotopic labeling has been a valuable tool for probing the details of the biosynthetic process and assaying the activity of biotin-dependent enzymes, however there is currently no established method for 35S labeling of biotin. In this study, we produced [35S]-biotin from Na35SO4 and desthiobiotin with a specific activity of 30.7 Ci/mmol, two orders of magnitude higher than previously published methods. The biotinylation domain (PfBCCP-79) from the Plasmodium falciparum acetyl-CoA carboxylase (ACC) was expressed in E. coli as a biotinylation substrate. We found that overexpression of the E. coli biotin synthase, BioB, and biotin ligase, BirA, increased PfBCCP-79 biotinylation 160-fold over basal levels. Biotinylated PfBCCP-79 was purified by affinity chromatography, and free biotin was liberated using acid hydrolysis. We verified that we had produced radiolabeled biologically active [D]-biotin that specifically labels biotinylated proteins through reuptake in E. coli. The strategy described in our report provides a simple and effective method for the production of [35S]-biotin in E. coli based on affinity chromatography.

  15. The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity.

    Science.gov (United States)

    Henke, Sarah K; Cronan, John E

    2016-11-01

    Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that functions in transcriptional regulation of the genes of biotin biosynthesis and transport. The Staphylococcus aureus Group II BPL which is called BirA has been reported to bind an imperfect inverted repeat located upstream of the biotin synthesis operon. DNA binding by other Group II BPLs requires dimerization of the protein which is triggered by synthesis of biotinoyl-AMP (biotinoyl-adenylate), the intermediate in the ligation of biotin to its cognate target proteins. However, the S. aureus BirA was reported to dimerize and bind DNA in the absence of biotin or biotinoyl-AMP (Soares da Costa et al. (2014) Mol Microbiol 91: 110-120). These in vitro results argued that the protein would be unable to respond to the levels of biotin or acceptor proteins and thus would lack the regulatory properties of the other characterized BirA proteins. We tested the regulatory function of the protein using an in vivo model system and examined its DNA binding properties in vitro using electrophoretic mobility shift and fluorescence anisotropy analyses. We report that the S. aureus BirA is an effective regulator of biotin operon transcription and that the prior data can be attributed to artifacts of mobility shift analyses. We also report that deletion of the DNA binding domain of the S. aureus BirA results in loss of virtually all of its ligation activity. © 2016 John Wiley & Sons Ltd.

  16. Functional characterisation of Burkholderia pseudomallei biotin protein ligase: A toolkit for anti-melioidosis drug development.

    Science.gov (United States)

    Bond, Thomas E H; Sorenson, Alanna E; Schaeffer, Patrick M

    2017-06-01

    Burkholderia pseudomallei (Bp) is the causative agent of melioidosis. The bacterium is responsible for 20% of community-acquired sepsis cases and 40% of sepsis-related mortalities in northeast Thailand, and is intrinsically resistant to aminoglycosides, macrolides, rifamycins, cephalosporins, and nonureidopenicillins. There is no vaccine and its diagnosis is problematic. Biotin protein ligase (BirA) which is essential for fatty acid synthesis has been proposed as a drug target in bacteria. Very few bacterial BirA have been characterized, and a better understanding of these enzymes is necessary to further assess their value as drug targets. BirA within the Burkholderia genus have not yet been investigated. We present for the first time the cloning, expression, purification and functional characterisation of the putative Bp BirA and orthologous B. thailandensis (Bt) biotin carboxyl carrier protein (BCCP) substrate. A GFP-tagged Bp BirA was produced and applied for the development of a high-throughput (HT) assay based on our differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP) principle as well as an electrophoretic mobility shift assay. Our biochemical data in combination with the new HT DSF-GTP and biotinylation activity assay could facilitate future drug screening efforts against this drug-resistant organism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Structural and functional studies of the biotin protein ligase from Aquifex aeolicus reveal a critical role for a conserved residue in target specificity.

    Science.gov (United States)

    Tron, Cecile M; McNae, Iain W; Nutley, Margaret; Clarke, David J; Cooper, Alan; Walkinshaw, Malcolm D; Baxter, Robert L; Campopiano, Dominic J

    2009-03-20

    Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5'-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 A resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed beta- and gamma-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal domains. The Arg40 residue from the conserved GXGRXG motif is shown to interact with the carboxyl group of biotin and to stabilise the alpha- and beta-phosphates of the nucleotide. The structure of the mutant AaBPL R40G in both the ligand-free and biotin-bound forms reveals that the mutated loop has collapsed, thus hindering ATP binding. Isothermal titration calorimetry indicated that the presence of biotin is not required for ATP binding to wild-type AaBPL in the absence of Mg(2+), and the binding of biotin and ATP has been determined to occur via a random but cooperative process. The affinity for biotin is relatively unaffected by the R40G mutation. In contrast, the thermodynamic data indicate that binding of ATP to AaBPL R40G is very weak in the absence or in the presence of biotin. The AaBPL R40G mutant remains catalytically active but shows poor substrate specificity; mass spectrometry and Western blot studies revealed that the mutant biotinylates both the target A. aeolicus BCCPDelta67 fragment and BSA, and is subject to self-biotinylation.

  18. Profligate Biotin Synthesis in α-Proteobacteria – A Developing or Degenerating Regulatory System?

    Science.gov (United States)

    Feng, Youjun; Zhang, Huimin; Cronan, John E.

    2013-01-01

    Summary Biotin (vitamin H) is a key enzyme cofactor required in all three domains of life. Although this cofactor was discovered over 70 years ago and has long been recognized as an essential nutrient for animals, our knowledge of the strategies bacteria use to sense biotin demand is very limited. The paradigm mechanism is that of Escherichia coli in which BirA protein, the prototypical bi-functional biotin protein ligase, both covalently attaches biotin to the acceptor proteins of central metabolism and represses transcription of the biotin biosynthetic pathway in response to biotin demand. However, in other bacteria the biotin protein ligase lacks a DNA-binding domain which raises the question of how these bacteria regulate the synthesis of biotin, an energetically expensive molecule. A bioinformatic study by Rodionov and Gelfand (FEMS Microbiol Lett. (2006) 255:102–107) identified a protein termed BioR in α-proteobacteria and predicted that BioR would have the biotin operon regulatory role that in most other bacteria is fulfilled by the BirA DNA-binding domain. We have now tested this prediction in the plant pathogen Agrobacterium tumefaciens. As predicted the A. tumefaciens biotin protein ligase is a fully functional ligase that has no role in regulation of biotin synthesis whereas BioR represses transcription of the biotin synthesis genes. Moreover, as determined by electrophoretic mobility shift assays, BioR binds the predicted operator site, which is located downstream of the mapped transcription start site. qPCR measurements indicated that deletion of BioR resulted in a ca.15-fold increase of bio operon transcription in the presence of high biotin levels. Effective repression of a plasmid-borne bioB-lacZ reporter was seen only upon the overproduction of BioR. In contrast to E. coli and Bacillus subtilis where biotin synthesis is tightly controlled, A. tumefaciens synthesizes much more biotin than needed for modification of the biotin-requiring enzymes

  19. A simple elution strategy for biotinylated proteins bound to streptavidin conjugated beads using excess biotin and heat.

    Science.gov (United States)

    Cheah, Joleen S; Yamada, Soichiro

    2017-12-02

    Protein-protein interactions are the molecular basis of cell signaling. Recently, proximity based biotin identification (BioID) has emerged as an alternative approach to traditional co-immunoprecipitation. In this protocol, a mutant biotin ligase promiscuously labels proximal binding partners with biotin, and resulting biotinylated proteins are purified using streptavidin conjugated beads. This approach does not require preservation of protein complexes in vitro, making it an ideal approach to identify transient or weak protein complexes. However, due to the high affinity bond between streptavidin and biotin, elution of biotinylated proteins from streptavidin conjugated beads requires harsh denaturing conditions, which are often incompatible with downstream processing. To effectively release biotinylated proteins bound to streptavidin conjugated beads, we designed a series of experiments to determine optimal binding and elution conditions. Interestingly, the concentrations of SDS and IGEPAL-CA630 during the incubation with streptavidin conjugated beads were the key to effective elution of biotinylated proteins using excess biotin and heating. This protocol provides an alternative method to isolate biotinylated proteins from streptavidin conjugated beads that is suitable for further downstream analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    Full Text Available Mycobacterium tuberculosis (Mtb, a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC, an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA. The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of approximately 3.5 A in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In

  1. Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

    Science.gov (United States)

    Chakravartty, Vandana

    2012-01-01

    Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoyl-5′-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues

  2. An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex.

    Science.gov (United States)

    Sueda, Shinji; Shinboku, Yuki; Kusaba, Takeshi

    2013-01-01

    Src homology 2 (SH2) domains are modules of approximately 100 amino acids and are known to bind phosphotyrosine-containing sequences with high affinity and specificity. In the present work, we developed an SH2 domain-based assay for Src tyrosine kinase using a unique biotinylation reaction from archaeon Sulfolobus tokodaii. S. tokodaii biotinylation has a unique property that biotin protein ligase (BPL) forms a stable complex with its biotinylated substrate protein (BCCP). Here, an SH2 domain from lymphocyte-specific tyrosine kinase was genetically fused to a truncated BCCP, and the resulting fusion protein was labeled through biotinylation with BPL carrying multiple copies of a luminescent Tb(3+) complex. The labeled SH2 fusion proteins were employed to detect a phosphorylated peptide immobilized on the surface of the microtiter plate, where the phosphorylated peptide was produced by phosphorylation to the substrate peptide by Src tyrosine kinase. Our assay allows for a reliable determination of the activity of Src kinase lower than 10 pg/μL by a simple procedure.

  3. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    Science.gov (United States)

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  4. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  5. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis.

    Science.gov (United States)

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O; Feng, Youjun

    2016-05-10

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.

  6. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus.

    Science.gov (United States)

    Lian, Hong; Zeldes, Benjamin M; Lipscomb, Gina L; Hawkins, Aaron B; Han, Yejun; Loder, Andrew J; Nishiyama, Declan; Adams, Michael W W; Kelly, Robert M

    2016-12-01

    Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO 3 - and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO 2 . Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, while the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the β-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO 2 -sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. While further efforts to improve 3HP production by regulating gene dosage, improving carbon flux and optimizing bioreactor operation are needed, these results illustrate the ancillary benefits of accessory enzymes for incorporating CO 2 into 3HP production in metabolically engineered P

  7. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.

    Science.gov (United States)

    León-Del-Río, Alfonso; Valadez-Graham, Viviana; Gravel, Roy A

    2017-08-21

    The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

  8. Biotin

    OpenAIRE

    Zempleni, Janos; Wijeratne, Subhashinee S.K.; Hassan, Yousef I.

    2009-01-01

    Biotin is a water-soluble vitamin and serves as a coenzyme for five carboxylases in humans. Biotin is also covalently attached to distinct lysine residues in histones, affecting chromatin structure and mediating gene regulation. This review describes mammalian biotin metabolism, biotin analysis, markers of biotin status, and biological functions of biotin. Proteins such as holocarboxylase synthetase, biotinidase, and the biotin transporters SMVT and MCT1 play crucial roles in biotin homeostas...

  9. Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin.

    Science.gov (United States)

    Monteiro, Ricardo; Chafsey, Ingrid; Leroy, Sabine; Chambon, Christophe; Hébraud, Michel; Livrelli, Valérie; Pizza, Mariagrazia; Pezzicoli, Alfredo; Desvaux, Mickaël

    2018-06-15

    Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. While generally pass over in silence, some periplasmic proteins

  10. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection

    Science.gov (United States)

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans. PMID:25791315

  11. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    Science.gov (United States)

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  12. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    Science.gov (United States)

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  13. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.

    Science.gov (United States)

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.

  14. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  15. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    Czech Academy of Sciences Publication Activity Database

    Tykvart, Jan; Šácha, Pavel; Bařinka, Cyril; Knedlík, Tomáš; Starková, Jana; Lubkowski, J.; Konvalinka, Jan

    2012-01-01

    Roč. 82, č. 1 (2012), s. 106-115 ISSN 1046-5928 R&D Projects: GA MŠk 1M0508; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : affinity purification * biotin acceptor peptide * recombinant protein expression * biotin -protein ligase (BirA) * co-localization * PSMA Subject RIV: CE - Biochemistry Impact factor: 1.429, year: 2012

  16. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  17. Studying Protein-Protein Interactions by Biotin AP-Tagged Pulldown and LTQ-Orbitrap Mass Spectrometry.

    Science.gov (United States)

    Xie, Zhongqiu; Jia, Yuemeng; Li, Hui

    2017-01-01

    The study of protein-protein interactions represents a key aspect of biological research. Identifying unknown protein binding partners using mass spectrometry (MS)-based proteomics has evolved into an indispensable strategy in drug discovery. The classic approach of immunoprecipitation with specific antibodies against the proteins of interest has limitations, such as the need for immunoprecipitation-qualified antibody. The biotin AP-tag pull-down system has the advantage of high specificity, ease of use, and no requirement for antibody. It is based on the high specificity, high affinity interaction between biotin and streptavidin. After pulldown, in-gel tryptic digestion and tandem mass spectrometry (MS/MS) analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein bands can be performed. In this work, we provide protocols that can be used for the identification of proteins that interact with FOXM1, a protein that has recently emerged as a potential biomarker and drug target in oncotherapy, as an example. We focus on the pull-down procedure and assess the efficacy of the pulldown with known FOXM1 interactors such as β-catenin. We use a high performance LTQ Orbitrap MSn system that combines rapid LTQ ion trap data acquisition with high mass accuracy Orbitrap analysis to identify the interacting proteins.

  18. Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Svenja Günther

    2007-12-01

    Full Text Available Lipoic acid (LA is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1. Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%. Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2. Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.

  19. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Regulation of immunological and inflammatory functions by biotin.

    Science.gov (United States)

    Kuroishi, Toshinobu

    2015-12-01

    Biotin is a water-soluble B-complex vitamin and is well-known as a co-factor for 5 indispensable carboxylases. Holocarboxylase synthetase (HLCS) catalyzes the biotinylation of carboxylases and other proteins, whereas biotinidase catalyzes the release of biotin from biotinylated peptides. Previous studies have reported that nutritional biotin deficiency and genetic defects in either HLCS or biotinidase induces cutaneous inflammation and immunological disorders. Since biotin-dependent carboxylases involve various cellular metabolic pathways including gluconeogenesis, fatty acid synthesis, and the metabolism of branched-chain amino acids and odd-chain fatty acids, metabolic abnormalities may play important roles in immunological and inflammatory disorders caused by biotin deficiency. Transcriptional factors, including NF-κB and Sp1/3, are also affected by the status of biotin, indicating that biotin regulates immunological and inflammatory functions independently of biotin-dependent carboxylases. An in-vivo analysis with a murine model revealed the therapeutic effects of biotin supplementation on metal allergies. The novel roles of biotinylated proteins and their related enzymes have recently been reported. Non-carboxylase biotinylated proteins induce chemokine production. HLCS is a nuclear protein involved in epigenetic and chromatin regulation. In this review, comprehensive knowledge on the regulation of immunological and inflammatory functions by biotin and its potential as a therapeutic agent is discussed.

  1. Biotin: From Nutrition to Therapeutics.

    Science.gov (United States)

    Mock, Donald M

    2017-08-01

    Although frank symptomatic biotin deficiency is rare, some evidence suggests that marginal biotin deficiency occurs spontaneously in a substantial proportion of women during normal human pregnancy and might confer an increased risk of birth defects. Herein I review 1 ) advances in assessing biotin status, including the relation between acylcarnitine excretion and biotin status; 2 ) recent studies of biotin status in pregnancy; 3 ) advances in understanding the role of biotin in gene expression and the potential roles of biotinylated proteins that are neither histones nor carboxylases; and 4 ) novel large-dose biotin supplementation as therapy for multiple sclerosis. The review concludes with a summary of recent studies that have reported potentially dangerous erroneous results in individuals consuming large amounts of biotin for measurements of various plasma hormones for common clinical assays that use streptavidin-biotin technology. © 2017 American Society for Nutrition.

  2. A versatile Escherichia coli strain for identification of biotin transporters and for biotin quantification

    Science.gov (United States)

    Finkenwirth, Friedrich; Kirsch, Franziska; Eitinger, Thomas

    2014-01-01

    Biotin is an essential cofactor of carboxylase enzymes in all kingdoms of life. The vitamin is produced by many prokaryotes, certain fungi, and plants. Animals depend on biotin uptake from their diet and in humans lack of the vitamin is associated with serious disorders. Many aspects of biotin metabolism, uptake, and intracellular transport remain to be elucidated. In order to characterize the activity of novel biotin transporters by a sensitive assay, an Escherichia coli strain lacking both biotin synthesis and its endogenous high-affinity biotin importer was constructed. This strain requires artificially high biotin concentrations for growth. When only trace levels of biotin are available, it is viable only if equipped with a heterologous high-affinity biotin transporter. This feature was used to ascribe transport activity to members of the BioY protein family in previous work. Here we show that this strain together with its parent is also useful as a diagnostic tool for wide-concentration-range bioassays. PMID:24256712

  3. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Science.gov (United States)

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  4. Protein labelling with avidin-biotin systems

    International Nuclear Information System (INIS)

    Hernandez B, B.E.

    1998-01-01

    The stability of connection in avidin-biotin system is very important due to the quadruple connections with avidin established with the same number of biotin molecules, which can amplify damage on cancer cells and increase specific activity of radio immuno conjugate in white cell. If between the first and second step (Ac Mo-biotin + avidin) enough time is left so that the monoclonal antibody accumulates in a therapeutic concentration required for the tumor or cancerous cells, then upon application of the third step (biotin-DTPA- 153 Sm) it is hoped that in the first 30 minutes after application, only radioactivity remains with tumor. However, so that the amount radioactivity is enough to destroy a tumor, it would be necessary to use 153 Sm with an activity of approximately 370 GBq (10 Ci)/ (mg). Since 99m Tc has similar chemistry to that of the 188 Re, it is possible to propose their conjugates with biotin-avidin-Ac Mo- 188 Re as a powerful option for therapeutic applications, this is, recommending the use of biotinylated labelled monoclonal antibody and the further injection of avidin to decrease of desirable effects on several other organs and bone marrow and high specific and selective action on tumor. On the other hand, we postulate the hypothesis in the sense that 188 Re complexes tend to be more stable than those of 99m Tc, probably due to their metabolism, in which radioactivity of 188 Re, not captured by tumor, is cleared easily from blood stream which results in a decrease of total and liver total dose in patient. (Author)

  5. A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation

    DEFF Research Database (Denmark)

    Pirone, Lucia; Xolalpa, Wendy; Sigurdsson, Jón Otti

    2017-01-01

    L conjugates from interactors, and low quantities of modified substrates. Here we describe bioUbLs, a comprehensive set of tools for studying modifications in Drosophila and mammals, based on multicistronic expression and in vivo biotinylation using the E. coli biotin protein ligase BirA. While the bio...

  6. Brucella BioR Regulator Defines a Complex Regulatory Mechanism for Bacterial Biotin Metabolism

    Science.gov (United States)

    Xu, Jie; Zhang, Huimin; Srinivas, Swaminath

    2013-01-01

    The enzyme cofactor biotin (vitamin H or B7) is an energetically expensive molecule whose de novo biosynthesis requires 20 ATP equivalents. It seems quite likely that diverse mechanisms have evolved to tightly regulate its biosynthesis. Unlike the model regulator BirA, a bifunctional biotin protein ligase with the capability of repressing the biotin biosynthetic pathway, BioR has been recently reported by us as an alternative machinery and a new type of GntR family transcriptional factor that can repress the expression of the bioBFDAZ operon in the plant pathogen Agrobacterium tumefaciens. However, quite unusually, a closely related human pathogen, Brucella melitensis, has four putative BioR-binding sites (both bioR and bioY possess one site in the promoter region, whereas the bioBFDAZ [bio] operon contains two tandem BioR boxes). This raised the question of whether BioR mediates the complex regulatory network of biotin metabolism. Here, we report that this is the case. The B. melitensis BioR ortholog was overexpressed and purified to homogeneity, and its solution structure was found to be dimeric. Functional complementation in a bioR isogenic mutant of A. tumefaciens elucidated that Brucella BioR is a functional repressor. Electrophoretic mobility shift assays demonstrated that the four predicted BioR sites of Brucella plus the BioR site of A. tumefaciens can all interact with the Brucella BioR protein. In a reporter strain that we developed on the basis of a double mutant of A. tumefaciens (the ΔbioR ΔbioBFDA mutant), the β-galactosidase (β-Gal) activity of three plasmid-borne transcriptional fusions (bioBbme-lacZ, bioYbme-lacZ, and bioRbme-lacZ) was dramatically decreased upon overexpression of Brucella bioR. Real-time quantitative PCR analyses showed that the expression of bioBFDA and bioY is significantly elevated upon removal of bioR from B. melitensis. Together, we conclude that Brucella BioR is not only a negative autoregulator but also a repressor of

  7. The biotin repressor: modulation of allostery by corepressor analogs.

    Science.gov (United States)

    Brown, Patrick H; Cronan, John E; Grøtli, Morten; Beckett, Dorothy

    2004-04-02

    The Escherichia coli biotin repressor functions in biotin retention and regulation of biotin biosynthesis. Biotin retention is accomplished via the two-step biotinylation of the biotin-dependent enzyme, acetyl-CoA carboxylase. In the first step of this reaction the substrates biotin and ATP are utilized in synthesis of the activated biotin, biotinyl-5'-AMP, while in the second step this activated biotin is transferred to a unique lysine residue of the biotin carboxyl carrier protein subunit of the carboxylase. Regulation of biotin biosynthesis is accomplished through binding of the repressor to the transcription control region of the biotin biosynthetic operon. The adenylated or activated biotin functions as the corepressor in this DNA binding process. The activated biotin is a mixed anhydride and thus labile. In efforts to develop tools for structural and thermodynamic studies of the biotin regulatory interactions, two analogs of the adenylate, a sulfamoyl derivative and an ester derivative, have been synthesized and functionally characterized. Results of fluorescence measurements indicate that both analogs bind with high affinity to the repressor and that both are inactive in biotin transfer to the acceptor protein. Functional studies of their corepressor properties indicate that while the sulfamoyl is a weak allosteric activator, the ester closely mimics the physiological corepressor in activation of assembly of the transcription repression complex. Results of these studies also provide further insight into the allosteric mechanism of the biotin repressor.

  8. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    Science.gov (United States)

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  9. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum

    Science.gov (United States)

    2012-01-01

    Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation. PMID:22243621

  10. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.

    Science.gov (United States)

    Schneider, Jens; Peters-Wendisch, Petra; Stansen, K Corinna; Götker, Susanne; Maximow, Stanislav; Krämer, Reinhard; Wendisch, Volker F

    2012-01-13

    The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.

  11. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  12. Engineering of biotin-prototrophy in Pichia pastoris for robust production processes.

    Science.gov (United States)

    Gasser, Brigitte; Dragosits, Martin; Mattanovich, Diethard

    2010-11-01

    Biotin plays an essential role as cofactor for biotin-dependent carboxylases involved in essential metabolic pathways. The cultivation of Pichia pastoris, a methylotrophic yeast that is successfully used as host for the production of recombinant proteins, requires addition of high dosage of biotin. As biotin is the only non-salt media component used during P. pastoris fermentation (apart from the carbon source), nonconformities during protein production processes are usually attributed to poor quality of the added biotin. In order to avoid dismissed production runs due to biotin quality issues, we engineered the biotin-requiring yeast P. pastoris to become a biotin-prototrophic yeast. Integration of four genes involved in the biotin biosynthesis from brewing yeast into the P. pastoris genome rendered P. pastoris biotin-prototrophic. The engineered strain has successfully been used as production host for both intracellular and secreted heterologous proteins in fed-batch processes, employing mineral media without vitamins. Another field of application for these truly prototrophic hosts is the production of biochemicals and small metabolites, where defined mineral media leads to easier purification procedures. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Streptavidin and its biotin complex at atomic resolution

    International Nuclear Information System (INIS)

    Le Trong, Isolde; Wang, Zhizhi; Hyre, David E.; Lybrand, Terry P.; Stayton, Patrick S.; Stenkamp, Ronald E.

    2011-01-01

    Analysis of atomic resolution crystal structures of wild-type streptavidin (1.03 Å) and its biotin complex (0.95 Å) indicate the range of conformational states taken on by this protein in the solid state. Most of the structural variation is found in the polypeptide loops between the strands in this β-sandwich protein. Atomic resolution crystallographic studies of streptavidin and its biotin complex have been carried out at 1.03 and 0.95 Å, respectively. The wild-type protein crystallized with a tetramer in the asymmetric unit, while the crystals of the biotin complex contained two subunits in the asymmetric unit. Comparison of the six subunits shows the various ways in which the protein accommodates ligand binding and different crystal-packing environments. Conformational variation is found in each of the polypeptide loops connecting the eight strands in the β-sandwich subunit, but the largest differences are found in the flexible binding loop (residues 45–52). In three of the unliganded subunits the loop is in an ‘open’ conformation, while in the two subunits binding biotin, as well as in one of the unliganded subunits, this loop ‘closes’ over the biotin–binding site. The ‘closed’ loop contributes to the protein’s high affinity for biotin. Analysis of the anisotropic displacement parameters included in the crystallographic models is consistent with the variation found in the loop structures and the view that the dynamic nature of the protein structure contributes to the ability of the protein to bind biotin so tightly

  14. Pharmacological Effects of Biotin in Animals.

    Science.gov (United States)

    Riveron-Negrete, Leticia; Fernandez-Mejia, Cristina

    2017-01-01

    In recent decades, it was found that vitamins affect biological functions in ways other than their long-known functions; niacin is the best example of a water-soluble vitamin known to possess multiple actions. Biotin, also known as vitamin B7 or vitamin H, is a water-soluble B-complex vitamin that serves as a covalently-bound coenzyme of carboxylases. It is now well documented that biotin has actions other than participating in classical enzyme catalysis reactions. Several lines of evidence have demonstrated that pharmacological concentrations of biotin affect glucose and lipid metabolism, hypertension, reproduction, development, and immunity. The effect of biotin on these functions is related to its actions at the transcriptional, translational, and post-translational levels. The bestsupported mechanism involved in the genetic effects of biotin is the soluble guanylate cyclase/protein kinase G (PKG) signaling cascade. Although there are commercially-available products containing pharmacological concentrations of biotin, the toxic effects of biotin have been poorly studied. This review summarizes the known actions and molecular mechanisms of pharmacological doses of biotin in animals and current information regarding biotin toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Periodic protein adsorption at the gold/biotin aqueous solution interface: evidence of kinetics with time delay

    Science.gov (United States)

    Neff, H.; Laborde, H. M.; Lima, A. M. N.

    2016-11-01

    An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.

  16. Use of a sensitive EnVision +-based detection system for Western blotting: avoidance of streptavidin binding to endogenous biotin and biotin-containing proteins in kidney and other tissues.

    Science.gov (United States)

    Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J

    2003-04-01

    Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.

  17. Radioimmunocytochemistry with [3H]biotin

    International Nuclear Information System (INIS)

    Hunt, S.P.; Mantyh, P.W.

    1984-01-01

    The authors exploit the high affinity of biotin for avidin in the design of radioimmunocytochemical methods using [ 3 H]biotin. [ 3 H]Biotin and avidin D form a radioactive complex which can be linked onto a primary antibody by means of a biotinylated anti-rabbit IgG or biotinylated protein A link. With both approaches it was possible to localize a number of antigens such as somatostatin, substance P, avian pancreatic polypeptide, tyrosine hydroxylase, and enkephalin-like immunoreactivity in various regions of the rat and human brain. By using tritium-sensitive film, large regions of the brain could be studied and analyzed semiquantitatively using computerized microdensitometry. The technique was also taken to the electron microscope level, and in the case of substance P immunoreactivity within the rat substantia nigra silver grains were found to be highly localized over axons and axon terminals. It was also possible to demonstrate co-existence or lack of co-existence of a number of different antigens within neurones. The first primary antibody was localized with biotinylated protein A followed by avidin-peroxidase, while the second primary antibody was linked to the [ 3 H]biotin again with biotinylated protein A. As an example of the potential of these methods for semiquantification, the distribution of substance P within postmortem human spinal cord was examined 24 months after amputation. A 49% loss of peptide was found in the corresponding dorsal horn. In summary these methods using [ 3 H]biotin have proved successful in quantification, electron microscopy and double labelling studies. (Auth.)

  18. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Science.gov (United States)

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  19. Biotin conjugated organic molecules and proteins for cancer therapy: A review.

    Science.gov (United States)

    Maiti, Santanu; Paira, Priyankar

    2018-02-10

    The main transporter for biotin is sodium dependent multivitamin transporter (SMVT), which is overexpressed in various aggressive cancer cell lines such as ovarian (OV 2008, ID8), leukemia (L1210FR), mastocytoma (P815), colon (Colo-26), breast (4T1, JC, MMT06056), renal (RENCA, RD0995), and lung (M109) cancer cell lines. Furthermore, its overexpression was found higher to that of folate receptor. Therefore, biotin demand in the rapidly growing tumors is higher than normal tissues. Several biotin conjugated organic molecules has been reported here for selective delivery of the drug in cancer cell. Biotin conjugated molecules are showing higher fold of cytotoxicity in biotin positive cancer cell lines than the normal cell. Nanoparticles and polymer surface modified drugs and biotin mediated cancer theranostic strategy was highlighted in this review. The cytotoxicity and selectivity of the drug in cancer cells has enhanced after biotin conjugation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  1. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  2. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  3. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  4. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  5. Biotin dependency due to a defect in biotin transport

    OpenAIRE

    Mardach, Rebecca; Zempleni, Janos; Wolf, Barry; Cannon, Martin J.; Jennings, Michael L.; Cress, Sally; Boylan, Jane; Roth, Susan; Cederbaum, Stephen; Mock, Donald M.

    2002-01-01

    We describe a 3-year-old boy with biotin dependency not caused by biotinidase, holocarboxylase synthetase, or nutritional biotin deficiency. We sought to define the mechanism of his biotin dependency. The child became acutely encephalopathic at age 18 months. Urinary organic acids indicated deficiency of several biotin-dependent carboxylases. Symptoms improved rapidly following biotin supplementation. Serum biotinidase activity and Biotinidase gene sequence were normal. Activities of biotin-d...

  6. Biotin-independent strains of Escherichia coli for enhanced streptavidin production.

    Science.gov (United States)

    Jeschek, Markus; Bahls, Maximilian O; Schneider, Veronika; Marlière, Philippe; Ward, Thomas R; Panke, Sven

    2017-03-01

    Biotin is an archetypal vitamin used as cofactor for carboxylation reactions found in all forms of life. However, biotin biosynthesis is an elaborate multi-enzymatic process and metabolically costly. Moreover, many industrially relevant organisms are incapable of biotin synthesis resulting in the requirement to supplement defined media. Here we describe the creation of biotin-independent strains of Escherichia coli and Corynebacterium glutamicum through installation of an optimized malonyl-CoA bypass, which re-routes natural fatty acid synthesis, rendering the previously essential vitamin completely obsolete. We utilize biotin-independent E. coli for the production of the high-value protein streptavidin which was hitherto restricted because of toxic effects due to biotin depletion. The engineered strain revealed significantly improved streptavidin production resulting in the highest titers and productivities reported for this protein to date. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biotin radioligand assay with an 125I-labeled biotin derivative, avidin, and avidin double-antibody reagents

    International Nuclear Information System (INIS)

    Livaniou, E.; Evangelatos, G.P.; Ithakissios, D.S.

    1987-01-01

    We describe a new radioligand assay for determining biotin in biological fluids by using a mixture of N-[beta-(4-OH-3-125I-phenyl)ethyl]- and N-[beta-(4-OH-3,5-di-125I-phenyl)ethyl]biotinamides as radiotracer, avidin as a binding protein, and an avidin double-antibody as a separation reagent. The radiotracer is synthesized by coupling (at pH 8.5, 20-22 degrees C, 90 min) N-hydroxysuccinimidobiotin to radioiodinated tyramine. The assay curve is linear and the assay itself is sensitive (less than 10 ng/L), reproducible (intra- and interassay CVs 4.1% and 7.0%, respectively), and allows the simultaneous handling of more than 100 samples in less than 4 h. Serum samples from apparently normal subjects contained 100-840 ng of biotin per liter (mean 340 ng/L). Pregnant women had low concentrations of biotin (100-300 ng/L) in their serum. Patients undergoing chronic hemodialysis treatment showed high concentrations (0.5-3.0 micrograms/L), which may be ascribable to the inability of avidin, which was used as the assay binding protein, to distinguish biotin from biotinyl derivatives with an intact ureido ring

  9. SUMO-targeted ubiquitin ligases.

    Science.gov (United States)

    Sriramachandran, Annie M; Dohmen, R Jürgen

    2014-01-01

    Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. © 2013. Published by Elsevier B.V. All rights reserved.

  10. Fluorescence Enhancement of Fluorescent Unnatural Streptavidin by Binding of a Biotin Analogue with Spacer Tail and Its Application to Biotin Sensing

    Directory of Open Access Journals (Sweden)

    Xianwei Zhu

    2014-01-01

    Full Text Available We designed a novel molecular biosensing system for the detection of biotin, an important vitamin by the combination of fluorescent unnatural streptavidin with a commercialized biotin-(AC52-hydrazide. A fluorescent unnatural amino acid, BODIPY-FL-aminophenylalanine (BFLAF, was position-specifically incorporated into Trp120 of streptavidin by four-base codon method. Fluorescence of the Trp120BFLAF mutant streptavidin was enhanced by the addition of biotin-(AC52-hydrazide with the concentration dependent, whereas fluorescence enhancement was not observed at all by the addition of natural biotin. It was considered that the spacer tail of biotin-(AC52-hydrazide may disturb the fluorescence quenching of the Trp120BFLAF by Trp79 and Trp108 of the neighbor subunit. Therefore, biotin sensing was carried out by the competitive binding reaction of biotin-(AC52-hydrazide and natural biotin to the fluorescent mutant streptavidin. The fluorescence intensity decreased by increasing free biotin concentration. The result suggested that molecular biosensor for small ligand could be successfully designed by the pair of fluorescent mutant binding protein and ligand analogue.

  11. Development of Biotin-Prototrophic and -Hyperauxotrophic Corynebacterium glutamicum Strains

    Science.gov (United States)

    Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-01-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally

  12. Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum strains.

    Science.gov (United States)

    Ikeda, Masato; Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-08-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally

  13. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  14. Activity-based in vitro selection of T4 DNA ligase

    International Nuclear Information System (INIS)

    Takahashi, Fumio; Funabashi, Hisakage; Mie, Masayasu; Endo, Yaeta; Sawasaki, Tatsuya; Aizawa, Masuo; Kobatake, Eiry

    2005-01-01

    Recent in vitro methodologies for selection and directed evolution of proteins have concentrated not only on proteins with affinity such as single-chain antibody but also on enzymes. We developed a display technology for selection of T4 DNA ligase on ribosome because an in vitro selection method for DNA ligase had never been developed. The 3' end of mRNA encoding the gene of active or inactive T4 DNA ligase-spacer peptide fusion protein was hybridized to dsDNA fragments with cohesive ends, the substrate of T4 DNA ligase. After in vitro translation of the mRNA-dsDNA complex in a rabbit reticulocyte system, a mRNA-dsDNA-ribosome-ligase complex was produced. T4 DNA ligase enzyme displayed on a ribosome, through addition of a spacer peptide, is able to react with dsDNA in the complex. The complex expressing active ligase was biotinylated by ligation with another biotinylated dsDNA probe and selected with streptavidin-coated magnetic beads. We effectively selected active T4 DNA ligase from a small amount of protein. The gene of the active T4 DNA ligase was enriched 40 times from a mixture of active and inactive genes using this selection strategy. This ribosomal display strategy may have high potential to be useful for selection of other enzymes associated with DNA

  15. Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin

    International Nuclear Information System (INIS)

    Rosebrough, S.F.

    1993-01-01

    The extraordinarily high affinity of avidin and streptavidin for biotin may be exploited in a two-step approach for delivering radiolabeled biotin derivatives suitable for imaging and therapy to target-bound streptavidin or avidin conjugated monoclonal antibodies (MAbs). The in vivo pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin (SA) and DTPA-biocytinamide (DTPA-biotin) were studied in the rabbit and dog. SA circulated in the blood similar to other 60 kDa proteins, avidin cleared immediately and DTPA-biotin exhibited plasma clearance by glomerular filtration. (author)

  16. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling.

    Science.gov (United States)

    Schumacher, Dominik; Lemke, Oliver; Helma, Jonas; Gerszonowicz, Lena; Waller, Verena; Stoschek, Tina; Durkin, Patrick M; Budisa, Nediljko; Leonhardt, Heinrich; Keller, Bettina G; Hackenberger, Christian P R

    2017-05-01

    The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

  17. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  18. Neuroprotective potential of high-dose biotin.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J

    2017-11-01

    A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain

  19. A Rhizavidin Monomer with Nearly Multimeric Avidin-Like Binding Stability Against Biotin Conjugates.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Jung A; Yen, Tzu-Chi; Lee, In Hwan; Ahn, Byungjun; Lee, Younghoon; Hsieh, Chia-Lung; Kim, Ho Min; Jung, Yongwon

    2016-03-01

    Developing a monomeric form of an avidin-like protein with highly stable biotin binding properties has been a major challenge in biotin-avidin linking technology. Here we report a monomeric avidin-like protein-enhanced monoavidin-with off-rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head-group-biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24-meric avidin probe by fusing eMA to a multimeric cage protein. The 24-meric avidin and eMA were utilized to demonstrate how artificial clustering of cell-surface proteins greatly enhances the internalization rates of assembled proteins on live cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets.

    Science.gov (United States)

    Vilches-Flores, Alonso; Tovar, Armando R; Marin-Hernandez, Alvaro; Rojas-Ochoa, Alberto; Fernandez-Mejia, Cristina

    2010-07-01

    Besides its role as a carboxylase prosthetic group, biotin has important effects on gene expression. However, the molecular mechanisms through which biotin exerts these effects are largely unknown. We previously found that biotin increases pancreatic glucokinase expression. We have now explored the mechanisms underlying this effect. Pancreatic islets from Wistar rats were treated with biotin, in the presence or absence of different types of inhibitors. Glucokinase mRNA and 18s rRNA abundance were determined by real-time PCR. Adenosine triphosphate (ATP) content was analyzed by fluorometry. Biotin treatment increased glucokinase mRNA abundance approximately one fold after 2 h; the effect was sustained up to 24 h. Inhibition of soluble guanylate cyclase or protein kinase G (PKG) signalling suppressed biotin-induced glucokinase expression. The cascade of events downstream of PKG in biotin-mediated gene transcription is not known. We found that inhibition of insulin secretion with diazoxide or nifedipine prevented biotin-stimulated glucokinase mRNA increase. Biotin treatment increased islet ATP content (control: 4.68+/-0.28; biotin treated: 6.62+/-0.26 pmol/islet) at 30 min. Inhibition of PKG activity suppressed the effects of biotin on ATP content. Insulin antibodies or inhibitors of phosphoinositol-3-kinase/Akt insulin signalling pathway prevented biotin-induced glucokinase expression. The nucleotide 8-Br-cGMP mimicked the biotin effects. We propose that the induction of pancreatic glucokinase mRNA by biotin involves guanylate cyclase and PKG activation, which leads to an increase in ATP content. This induces insulin secretion via ATP-sensitive potassium channels. Autocrine insulin, in turn, activates phosphoinositol-3-kinase/Akt signalling. Our results offer new insights into the pathways that participate in biotin-mediated gene expression. (c) 2010 Elsevier Inc. All rights reserved.

  1. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  2. Biosynthesis of biotin from dethiobiotin by the biotin auxotroph Lactobacillus plantarum.

    OpenAIRE

    Bowman, W C; DeMoll, E

    1993-01-01

    Lactobacillus plantarum requires biotin for growth. We show that in the presence of high levels of the biotin biosynthetic precursor, dethiobiotin, L. plantarum synthesizes biotin and grows in medium with dethiobiotin but without biotin. Lactobacillus casei also grew under similar conditions.

  3. Immobilized sialyltransferase fused to a fungal biotin-binding protein: Production, properties, and applications.

    Science.gov (United States)

    Kajiwara, Hitomi; Tsunashima, Masako; Mine, Toshiki; Takakura, Yoshimitsu; Yamamoto, Takeshi

    2016-04-01

    A β-galactoside α2,6-sialyltransferase (ST) from the marine bacterium Photobacterium sp. JT-ISH-224 with a broad acceptor substrate specificity was fused to a fungal biotin-binding protein tamavidin 2 (TM2) to produce immobilized enzyme. Specifically, a gene for the fusion protein, in which ST from Photobacterium sp. JT-ISH-224 and TM2 were connected via a peptide linker (ST-L-TM2) was constructed and expressed in Escherichia coli. The ST-L-TM2 was produced in the soluble form with a yield of approximately 15,000 unit/300 ml of the E. coli culture. The ST-L-TM2 was partially purified and part of it was immobilized onto biotin-bearing magnetic microbeads. The immobilized ST-L-TM2 onto microbeads could be used at least seven consecutive reaction cycles with no observed decrease in enzymatic activity. In addition, the optimum pH and temperature of the immobilized enzyme were changed compared to those of a free form of the ST. Considering these results, it was strongly expected that the immobilized ST-L-TM2 was a promising tool for the production of various kind of sialoligosaccharides. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Nitric oxide signaling depends on biotin in Jurkat human lymphoma cells.

    Science.gov (United States)

    Rodriguez-Melendez, Rocio; Zempleni, Janos

    2009-03-01

    Biotin affects gene expression through a diverse array of cell signaling pathways. Previous studies provided evidence that cGMP-dependent signaling also depends on biotin, but the mechanistic sequence of cGMP regulation by biotin is unknown. Here we tested the hypothesis that the effects of biotin in cGMP-dependent cell signaling are mediated by nitric oxide (NO). Human lymphoid (Jurkat) cells were cultured in media containing deficient (0.025 nmol/L), physiological (0.25 nmol/L), and pharmacological (10 nmol/L) concentrations of biotin for 5 wk. Both levels of intracellular biotin and NO exhibited a dose-dependent relationship in regard to biotin concentrations in culture media. Effects of biotin on NO levels were disrupted by the NO synthase (NOS) inhibitor N-monomethyl-arginine. Biotin-dependent production of NO was linked with biotin-dependent expression of endothelial and neuronal NOS, but not inducible NOS. Previous studies revealed that NO is an activator of guanylate cyclase. Consistent with these previous observations, biotin-dependent generation of NO increased the abundance of cGMP in Jurkat cells. Finally, the biotin-dependent generation of cGMP increased protein kinase G activity. Collectively, the results of this study are consistent with the hypothesis that biotin-dependent cGMP signaling in human lymphoid cells is mediated by NO.

  5. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma

    Directory of Open Access Journals (Sweden)

    Kristina Bielskienė

    2015-01-01

    E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas.

  6. Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice.

    Science.gov (United States)

    Takakura, Yoshimitsu; Oka, Naomi; Suzuki, Junko; Tsukamoto, Hiroshi; Ishida, Yuji

    2012-05-01

    The blast fungus Magnaporthe oryzae, one of the most devastating rice pathogens in the world, shows biotin-dependent growth. We have developed a strategy for creating disease resistance to M. oryzae whereby intercellular production of tamavidin 1, a biotin-binding protein from Pleurotus cornucopiae occurs in transgenic rice plants. The gene that encodes tamavidin 1, fused to the sequence for a secretion signal peptide derived from rice chitinase gene, was connected to the Cauliflower mosaic virus 35S promoter, and the resultant construct was introduced into rice. The tamavidin 1 was accumulated at levels of 0.1-0.2% of total soluble leaf proteins in the transgenic rice and it was localized in the intercellular space of rice leaves. The tamavidin 1 purified from the transgenic rice was active, it bound to biotin and inhibited in vitro growth of M. oryzae by causing biotin deficiency. The transgenic rice plants showed a significant resistance to M. oryzae. This study shows the possibility of a new strategy to engineer disease resistance in higher plants by taking advantage of a pathogen's auxotrophy.

  7. Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats.

    Science.gov (United States)

    Dakshinamurti, Krishnamurti; Bagchi, Rushita A; Abrenica, Bernard; Czubryt, Michael P

    2015-12-01

    Biotin is a B vitamin involved in multiple metabolic pathways. In humans, biotin deficiency is relatively rare but can cause dermatitis, alopecia, and perosis. Low biotin levels occur in individuals with type-2 diabetes, and supplementation with biotin plus chromium may improve blood sugar control. The acute effect on pancreatic gene expression of biotin repletion following chronic deficiency is unclear, therefore we induced biotin deficiency in adult male rats by feeding them a 20% raw egg white diet for 6 weeks. Animals were then randomized into 2 groups: one group received a single biotin supplement and returned to normal chow lacking egg white, while the second group remained on the depletion diet. After 1 week, pancreata were removed from biotin-deficient (BD) and biotin-repleted (BR) animals and RNA was isolated for microarray analysis. Biotin depletion altered gene expression in a manner indicative of inflammation, fibrosis, and defective pancreatic function. Conversely, biotin repletion activated numerous repair and anti-inflammatory pathways, reduced fibrotic gene expression, and induced multiple genes involved in pancreatic endocrine and exocrine function. A subset of the results was confirmed by quantitative real-time PCR analysis, as well as by treatment of pancreatic AR42J cells with biotin. The results indicate that biotin repletion, even after lengthy deficiency, results in the rapid induction of repair processes in the pancreas.

  8. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    Science.gov (United States)

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  9. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.

    Science.gov (United States)

    Baalmann, Mathis; Best, Marcel; Wombacher, Richard

    2018-01-01

    Here, we describe a two-step protocol for selective protein labeling based on enzyme-mediated peptide labeling utilizing lipoic acid ligase (LplA) and bioorthogonal chemistry. The method can be applied to purified proteins, protein in cell lysates, as well as living cells. In a first step a W37V mutant of the lipoic acid ligase (LplA W37V ) from Escherichia coli is utilized to ligate a synthetic chemical handle site-specifically to a lysine residue in a 13 amino acid peptide motif-a short sequence that can be genetically expressed as a fusion with any protein of interest. In a second step, a molecular probe can be attached to the chemical handle in a bioorthogonal Diels-Alder reaction with inverse electron demand (DA inv ). This method is a complementary approach to protein labeling using genetic code expansion and circumvents larger protein tags while maintaining label specificity, providing experimental flexibility and straightforwardness.

  10. Effect of endogenous biotin on the applications of streptavidin and biotin in mice

    International Nuclear Information System (INIS)

    Rusckowski, Mary; Fogarasi, Miklos; Fritz, Benjamin; Hnatowich, Donald J.

    1997-01-01

    The use of streptavidin-conjugated antibody to pretarget tumors in animals and patients, prior to administration of radiolabeled biotin, has provided encouraging results, in part because of the high affinity of biotin for streptavidin and the rapid whole-body clearance of biotin. However, binding of endogenous biotin to streptavidin may interfere with the clinical potential of this approach. This report evaluates the effect of endogenous biotin on an antibody-streptavidin conjugate in a mouse tumor model. Tumored nude mice were depleted of endogenous biotin by sequential intraperitoneal injections of streptavidin. The assay of serum biotin levels indicated less than 0.5 ng of biotin per mL of serum in treated mice versus 4 ng per mL in untreated animals. Flow cytometric analysis was used on single-cell suspensions of tumor from animals receiving streptavidin-conjugated IgG to detect the presence of the antibody on the cell membrane (with fluoroisothiocyanate-conjugated goat anti-mouse antibody), and to detect biotin binding sites on streptavidin (with biotin-phycoerythrin). Both treated and untreated mice demonstrated the presence of antibody on tumor cells through 48 h postadministration, but only in treated animals were biotin binding sites observed. These results in the mouse model suggest that the small concentration of streptavidin delivered to a tumor via a specific antibody may be saturated with endogenous biotin and therefore not able to be targeted subsequently with radiolabeled biotin

  11. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  12. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    Science.gov (United States)

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  13. A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95

    International Nuclear Information System (INIS)

    Sugiura, Takeyuki; Yamaguchi, Aya; Miyamoto, Kentaro

    2008-01-01

    RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95

  14. Triazole biotin: a tight-binding biotinidase-resistant conjugate.

    Science.gov (United States)

    Germeroth, Anne I; Hanna, Jill R; Karim, Rehana; Kundel, Franziska; Lowther, Jonathan; Neate, Peter G N; Blackburn, Elizabeth A; Wear, Martin A; Campopiano, Dominic J; Hulme, Alison N

    2013-11-28

    The natural amide bond found in all biotinylated proteins has been replaced with a triazole through CuAAC reaction of an alkynyl biotin derivative. The resultant triazole-linked adducts are shown to be highly resistant to the ubiquitous hydrolytic enzyme biotinidase and to bind avidin with dissociation constants in the low pM range. Application of this strategy to the production of a series of biotinidase-resistant biotin-Gd-DOTA contrast agents is demonstrated.

  15. Conformational flexibility of avidin: the influence of biotin binding

    International Nuclear Information System (INIS)

    Soledad Celej, M.; Montich, Guillermo G.; Fidelio, Gerardo D.

    2004-01-01

    Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex

  16. Dual functionalized graphene oxide serves as a carrier for delivering oligohistidine- and biotin-tagged biomolecules into cells.

    Science.gov (United States)

    Jana, Batakrishna; Mondal, Goutam; Biswas, Atanu; Chakraborty, Indrani; Saha, Abhijit; Kurkute, Prashant; Ghosh, Surajit

    2013-11-01

    A versatile method of dual chemical functionalization of graphene oxide (GO) with Tris-[nitrilotris(acetic acid)] (Tris-NTA) and biotin for cellular delivery of oligohistidine- and biotin-tagged biomolecules is reported. Orthogonally functionalized GO surfaces with Tris-NTA and biotin to obtain a dual-functionalized GO (DFGO) are prepared and characterized by various spectroscopic and microscopic techniques. Fluorescence microscopic images reveal that DFGO surfaces are capable of binding oligohistidine-tagged biomolecules/proteins and avidin/biotin-tagged biomolecules/proteins orthogonally. The DFGO nanoparticles are non-cytotoxic in nature and can deliver oligohistidine- and biotin-tagged biomolecules simultaneously into the cell. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pharmacological effects of biotin.

    Science.gov (United States)

    Fernandez-Mejia, Cristina

    2005-07-01

    In the last few decades, more vitamin-mediated effects have been discovered at the level of gene expression. Increasing knowledge on the molecular mechanisms of these vitamins has opened new perspectives that form a connection between nutritional signals and the development of new therapeutic agents. Besides its role as a carboxylase prosthetic group, biotin regulates gene expression and has a wide repertoire of effects on systemic processes. The vitamin regulates genes that are critical in the regulation of intermediary metabolism: Biotin has stimulatory effects on genes whose action favors hypoglycemia (insulin, insulin receptor, pancreatic and hepatic glucokinase); on the contrary, biotin decreases the expression of hepatic phosphoenolpyruvate carboxykinase, a key gluconeogenic enzyme that stimulates glucose production by the liver. The findings that biotin regulates the expression of genes that are critical in the regulation of intermediary metabolism are in agreement with several observations that indicate that biotin supply is involved in glucose and lipid homeostasis. Biotin deficiency has been linked to impaired glucose tolerance and decreased utilization of glucose. On the other hand, the diabetic state appears to be ameliorated by pharmacological doses of biotin. Likewise, pharmacological doses of biotin appear to decrease plasma lipid concentrations and modify lipid metabolism. The effects of biotin on carbohydrate metabolism and the lack of toxic effects of the vitamin at pharmacological doses suggest that biotin could be used in the development of new therapeutics in the treatment of hyperglycemia and hyperlipidemia, an area that we are actively investigating.

  18. An improved synthesis of a fluorophosphonate–polyethylene glycol–biotin probe and its use against competitive substrates

    Science.gov (United States)

    Amidon, Gordon L

    2013-01-01

    Summary The fluorophosphonate (FP) moiety attached to a biotin tag is a prototype chemical probe used to quantitatively analyze and enrich active serine hydrolases in complex proteomes in an approach called activity-based protein profiling (ABPP). In this study we have designed a novel synthetic route to a known FP probe linked by polyethylene glycol to a biotin tag (FP–PEG–biotin). Our route markedly increases the efficiency of the probe synthesis and overcomes several problems of a prior synthesis. As a proof of principle, FP–PEG–biotin was evaluated against isolated protein mixtures and different rat-tissue homogenates, showing its ability to specifically target serine hydrolases. We also assessed the ability of FP–PEG–biotin to compete with substrates that have high enzyme turnover rates. The reduced protein-band intensities resulting in these competition studies demonstrate a new application of FP-based probes seldom explored before. PMID:23400700

  19. An improved synthesis of a fluorophosphonate–polyethylene glycol–biotin probe and its use against competitive substrates

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2013-01-01

    Full Text Available The fluorophosphonate (FP moiety attached to a biotin tag is a prototype chemical probe used to quantitatively analyze and enrich active serine hydrolases in complex proteomes in an approach called activity-based protein profiling (ABPP. In this study we have designed a novel synthetic route to a known FP probe linked by polyethylene glycol to a biotin tag (FP–PEG–biotin. Our route markedly increases the efficiency of the probe synthesis and overcomes several problems of a prior synthesis. As a proof of principle, FP–PEG–biotin was evaluated against isolated protein mixtures and different rat-tissue homogenates, showing its ability to specifically target serine hydrolases. We also assessed the ability of FP–PEG–biotin to compete with substrates that have high enzyme turnover rates. The reduced protein-band intensities resulting in these competition studies demonstrate a new application of FP-based probes seldom explored before.

  20. Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin.

    Directory of Open Access Journals (Sweden)

    Valerie J O'Sullivan

    Full Text Available A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop(3-4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop(3-4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop(7-8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop(7-8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (k(off of 4.28×10(-4 s(-1 and K(d of 1.9×10(-8 M make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.

  1. Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Science.gov (United States)

    O'Sullivan, Valerie J.; Barrette-Ng, Isabelle; Hommema, Eric; Hermanson, Greg T.; Schofield, Mark; Wu, Sau-Ching; Honetschlaeger, Claudia; Ng, Kenneth K.-S.; Wong, Sui-Lam

    2012-01-01

    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible. PMID:22536357

  2. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers

    Directory of Open Access Journals (Sweden)

    Leticia Riverón-Negrete

    2016-01-01

    Full Text Available Pharmacological concentrations of biotin have pleiotropic effects. Several reports have documented that biotin supplementation decreases hyperglycemia. We have shown that a biotin-supplemented diet increased insulin secretion and the mRNA abundance of proteins regulating insulin transcription and secretion. We also found enlarged pancreatic islets and modified islet morphology. Other studies have shown that pharmacological concentrations of biotin modify tissue structure. Although biotin administration is considered safe, little attention has been given to its effect on tissue structure. In this study, we investigated the effect of biotin supplementation on hepatic morphology and liver toxicity markers. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 8 weeks. Versus the control mice, biotin-supplemented mice had an altered portal triad with dilated sinusoids, increased vascularity, and bile conducts. Furthermore, we observed an increased proportion of nucleomegaly and binucleated hepatocytes. In spite of the liver morphological changes, no differences were observed in the serum liver damage indicators, oxidative stress markers, or antioxidant enzymes. Our data demonstrate for the first time that biotin supplementation affects liver morphology in normal mice, and that these modifications are not paralleled with damage markers.

  3. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers.

    Science.gov (United States)

    Riverón-Negrete, Leticia; Sicilia-Argumedo, Gloria; Álvarez-Delgado, Carolina; Coballase-Urrutia, Elvia; Alcántar-Fernández, Jonathan; Fernandez-Mejia, Cristina

    2016-01-01

    Pharmacological concentrations of biotin have pleiotropic effects. Several reports have documented that biotin supplementation decreases hyperglycemia. We have shown that a biotin-supplemented diet increased insulin secretion and the mRNA abundance of proteins regulating insulin transcription and secretion. We also found enlarged pancreatic islets and modified islet morphology. Other studies have shown that pharmacological concentrations of biotin modify tissue structure. Although biotin administration is considered safe, little attention has been given to its effect on tissue structure. In this study, we investigated the effect of biotin supplementation on hepatic morphology and liver toxicity markers. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 8 weeks. Versus the control mice, biotin-supplemented mice had an altered portal triad with dilated sinusoids, increased vascularity, and bile conducts. Furthermore, we observed an increased proportion of nucleomegaly and binucleated hepatocytes. In spite of the liver morphological changes, no differences were observed in the serum liver damage indicators, oxidative stress markers, or antioxidant enzymes. Our data demonstrate for the first time that biotin supplementation affects liver morphology in normal mice, and that these modifications are not paralleled with damage markers.

  4. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Science.gov (United States)

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  5. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  6. Structural characterization of core-bradavidin in complex with biotin

    Science.gov (United States)

    Agrawal, Nitin; Määttä, Juha A. E.; Kulomaa, Markku S.; Hytönen, Vesa P.; Johnson, Mark S.; Airenne, Tomi T.

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin. PMID:28426764

  7. Structural characterization of core-bradavidin in complex with biotin.

    Directory of Open Access Journals (Sweden)

    Nitin Agrawal

    Full Text Available Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 ("Brad-tag" act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala of core-bradavidin (CC mutant. Our data help us to further engineer the core-bradavidin-Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.

  8. Reproductive performance and oviductal expression of avidin and avidin-related protein-2 in young and old broiler breeder hens orally exposed to supplementary biotin.

    Science.gov (United States)

    Daryabari, H; Akhlaghi, A; Zamiri, M J; Mianji, G Rahimi; Pirsaraei, Z Ansari; Deldar, H; Eghbalian, A N

    2014-09-01

    Published data on the probable involvement of avidin and avidin-related protein-2 (AVR2) in sustaining sperm viability in sperm storage tubules in 38-wk-old turkeys, and the high affinity of avidin or its analogs to biotin suggest that supplementary biotin may increase oviductal avidin and AVR2 expression, thereby attenuating the adverse effect of aging on hen reproductive performance. Broiler breeder hens (n = 120) were randomly assigned to receive 0 (T0), 0.30 (T1), or 0.45 (T2) mg of biotin/L of drinking water from 30 to 33 (young) and 53 to 56 (old) wk of age, and artificially inseminated to determine their reproductive performance. At the end of each period of biotin administration, 8 hens from each treatment group were killed for RNA extraction from the uterovaginal junction. Egg production was lower in the old hens (44%) compared with the young ones (82%), and biotin supplementation increased egg production only in the latter. Administering supplementary biotin to young hens increased their oviductal expression of AVR2, which was much higher in the old hens (1.0 and 4.6 for young and old groups, respectively). Fertility rate was not different between young and old hens, and was increased (4.4%) at the higher level of biotin supplementation. Hatchability and hatchling quality were not affected by biotin supplementation. Embryonic mortality between 17 to 21 d of incubation was higher in young (5.2%) compared with old (1.4%) birds. Egg fertility rate showed a moderate correlation (P biotin supplementation on AVR2 expression, and the relationship between biotin administration and oviductal expression of avidin and AVR2 was dependent on the hen's age, being higher in the young hens. © 2014 Poultry Science Association Inc.

  9. Faradaic Impedance Spectroscopy for Detection of Small Molecules Binding using the Avidin-Biotin Model

    International Nuclear Information System (INIS)

    Yoetz-Kopelman, Tal; Ram, Yaron; Freeman, Amihay; Shacham-Diamand, Yosi

    2015-01-01

    The changes in the Faradaic impedance of gold/biomolecules system due to specific binding of small molecule to a significantly larger binding protein molecule were investigated. The biotin (244.31 Da) - avidin (66000 Da) couple was used as a model for small ligand - binding protein biorecognition. The study was carried out under open circuit potential in the presence of [Fe(CN) 6 ] −3/−4 redox couple. An equivalent electrical circuit was proposed and used for the interpretation of the recorded impedance spectra. Adsorption of thiolated avidin increased the electron transfer resistance, R ct , by a factor of about 7.5 while subsequent addition of biotin within the concentration range of 4.1-40.9 nM reduced the value of R ct by amount proportional to the biotin concentration. The addition of biotin did not affect, however, the equivalent double layer capacitance or other equivalent circuit parameters. A simple model based on effective surface coverage by the avidin molecules and the effect of the added biotin on electron transfer through the coated surface is proposed. A model for the minimum detection limit based on the random distribution of the binding protein and its dimensions is proposed

  10. 18F-PEG-biotin: Precursor (boroaryl-PEG-biotin) synthesis, 18F-labelling and an in-vitro assessment of its binding with NeutravidinTM-trastuzumab pre-treated cells

    International Nuclear Information System (INIS)

    Smith, Tim A.D.; Simpson, Michael; Cheyne, Richard; Trembleau, Laurent

    2011-01-01

    In terms of nuclear decay 18 F is the most ideal PET nuclide but its short t 1/2 precludes its use for directly labelling whole antibodies due to their long blood residence times. Pre-targeted imaging using affinity systems such as Neutravidin TM -biotin facilitates the application of short-lived nuclides by their attachment to biotin for imaging cell surface proteins targeted with Neutravidin TM -conjugated antibodies. Methods: Boroaryl functionalised biotin was prepared with a PEG linker and radiolabelled by incubation with 18 F in acidified aqueous solution. Cells expressing high (SKBr3), medium (MDA-MB-453) and low (MDA-MB-468) levels of HER-2 were pre-incubated with Neutravidin TM -conjugated trastuzumab, washed, and then incubated with 18 F-PEG-biotin. Results: The 18 F-fluorination of boroaryl-PEG-biotin was much more efficient than reported for other versions of boroaryl-biotin. The novel 18 F-PEG-biotin was demonstrated to bind to HER-2-expressing cells in-vitro pre-incubated with Neutravidin TM -conjugated trastuzumab. Conclusion: Biotin can be functionalised with boroaryl and readily 18 F-radiolabelled in aqueous solution and will bind to cells pre-incubated with Neutravidin TM -antibody conjugates. - Highlights: → Boroaryl-biotin precursor is prepared. → Rapid 18 F-fluorination is demonstrated. → HER-2 expressing breast cancer cells pre-treated with trastuzumab-Neutravidin TM . → 18 F-PEG-biotin binding to pre-treated cells corresponds with HER-2 expression.

  11. Biotin and biotinidase deficiency

    OpenAIRE

    Zempleni, Janos; Hassan, Yousef I; Wijeratne, Subhashinee SK

    2008-01-01

    Biotin is a water-soluble vitamin that serves as an essential coenzyme for five carboxylases in mammals. Biotin-dependent carboxylases catalyze the fixation of bicarbonate in organic acids and play crucial roles in the metabolism of fatty acids, amino acids and glucose. Carboxylase activities decrease substantially in response to biotin deficiency. Biotin is also covalently attached to histones; biotinylated histones are enriched in repeat regions in the human genome and appear to play a role...

  12. Functionality screen of streptavidin mutants by non-denaturing SDS-PAGE using biotin-4-fluorescein.

    Science.gov (United States)

    Humbert, Nicolas; Ward, Thomas R

    2008-01-01

    Site-directed mutagenesis or directed evolution of proteins often leads to the production of inactive mutants. For streptavidin and related proteins, mutations may lead to the loss of their biotin-binding properties. With high-throughput screening methodologies in mind, it is imperative to detect, prior to the high-density protein production, the bacteria that produce non-functional streptavidin isoforms. Based on the incorporation of biotin-4-fluorescein in streptavidin mutants present in Escherichia coli bacterial extracts, we detail a functional screen that allows the identification of biotin-binding streptavidin variants. Bacteria are cultivated in a small volume, followed by a rapid treatment of the cells; biotin-4-fluorescein is added to the bacterial extract and loaded on an Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) under non-denaturing conditions. Revealing is performed using a UV transilluminator. This screen is thus easy to implement, cheap and requires only readily available equipment.

  13. Sequential, solid-phase assay for biotin in physiologic fluids that correlates with expected biotin status

    International Nuclear Information System (INIS)

    Mock, D.M.; DuBois, D.B.

    1986-01-01

    Interest in accurate measurement of biotin concentrations in plasma and urine has been stimulated by recent advances in the understanding of biotin-responsive inborn errors of metabolism and by several reports describing acquired biotin deficiency during parenteral alimentation. This paper presents a biotin assay utilizing radiolabeled avidin in a sequential, solid-phase method; the assay has increased sensitivity compared to previous methods (greater than or equal to 10 fmol/tube), correlates with expected trends in biotin concentrations in blood and urine in a rat model of biotin deficiency, and can utilize commercially available radiolabeled avidin

  14. Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion.

    Science.gov (United States)

    Ortega-Sáenz, Patricia; Macías, David; Levitsky, Konstantin L; Rodríguez-Gómez, José A; González-Rodríguez, Patricia; Bonilla-Henao, Victoria; Arias-Mayenco, Ignacio; López-Barneo, José

    2016-12-15

    Biotin, a vitamin whose main role is as a coenzyme for carboxylases, accumulates at unusually large amounts within cells of the carotid body (CB). In biotin-deficient rats biotin rapidly disappears from the blood; however, it remains at relatively high levels in CB glomus cells. The CB contains high levels of mRNA for SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Animals with biotin deficiency exhibit pronounced metabolic lactic acidosis. Remarkably, glomus cells from these animals have normal electrical and neurochemical properties. However, they show a marked decrease in the size of quantal dopaminergic secretory events. Inhibitors of the vesicular monoamine transporter 2 (VMAT2) mimic the effect of biotin deficiency. In biotin-deficient animals, VMAT2 protein expression decreases in parallel with biotin depletion in CB cells. These data suggest that dopamine transport and/or storage in small secretory granules in glomus cells depend on biotin. Biotin is a water-soluble vitamin required for the function of carboxylases as well as for the regulation of gene expression. Here, we report that biotin accumulates in unusually large amounts in cells of arterial chemoreceptors, carotid body (CB) and adrenal medulla (AM). We show in a biotin-deficient rat model that the vitamin rapidly disappears from the blood and other tissues (including the AM), while remaining at relatively high levels in the CB. We have also observed that, in comparison with other peripheral neural tissues, CB cells contain high levels of SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Biotin-deficient rats show a syndrome characterized by marked weight loss, metabolic lactic acidosis, aciduria and accelerated breathing with normal responsiveness to hypoxia. Remarkably, CB cells from biotin-deficient animals have normal electrophysiological and neurochemical (ATP levels and catecholamine synthesis) properties; however

  15. Effects of biotin supplementation on peripartum performance and metabolites of Holstein cows.

    Science.gov (United States)

    Rosendo, O; Staples, C R; McDowell, L R; McMahon, R; Badinga, L; Martin, F G; Shearer, J F; Seymour, W M; Wilkinson, N S

    2004-08-01

    Fifty-two multiparous Holstein cows were randomly assigned to receive 0 or 20 mg of biotin/d starting at an average of 16 d prepartum and then switched to 0 or 30 mg of biotin/d from calving through 70 d postpartum to determine whether supplemental biotin would affect cow performance, hepatic lipidosis, and plasma metabolites. Mean concentration of biotin in plasma sampled weekly was greater in cows fed biotin (4.3 vs. 9.4 nmol/L). Postpartum dry matter intake as a percentage of body weight (3.9% vs. 4.0%), milk production (35.8 vs. 34.8 kg/d), and milk fat concentrations (3.59% vs. 3.69%) were similar between treatment groups. Milk from biotin-supplemented cows tended to have a greater concentration of protein (2.73% vs. 2.83%). Concentrations of plasma nonesterified fatty acids were lower at wk 2 (652 vs. 413 microEq/mL) and 4 (381 vs. 196 microEq/mL) postpartum in cows fed supplemental biotin. However, mean plasma concentrations of beta-hydroxybutyric acid were not affected by biotin supplementation. Mean concentration of plasma glucose was greater for lactating cows fed supplemental biotin (63.4 vs. 66.6 mg/dL). Biopsies of liver were taken at 2, 16, and 30 d postpartum. The triacylglycerol concentration in liver (wet basis) tended to decrease at a faster rate after d 2 postpartum with biotin supplementation compared with control cows. The potential mechanisms that link improved glucose status and decreased lipid mobilization in cows supplemented with biotin warrant further investigation.

  16. Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin.

    Science.gov (United States)

    Wu, Sau-Ching; Wong, Sui-Lam

    2002-03-01

    Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.

  17. Biotin-dependent functions in adiposity: a study of monozygotic twin pairs.

    Science.gov (United States)

    Järvinen, E; Ismail, K; Muniandy, M; Bogl, L H; Heinonen, S; Tummers, M; Miettinen, S; Kaprio, J; Rissanen, A; Ollikainen, M; Pietiläinen, K H

    2016-05-01

    Biotin acts as a coenzyme for carboxylases regulating lipid and amino-acid metabolism. We investigated alterations of the biotin-dependent functions in obesity and the downstream effects of biotin restriction in adipocytes in vitro. Twenty-four monozygotic twin pairs discordant for body mass index (BMI). Mean within-pair difference (heavy-lean co-twin, Δ) of BMI was 6.0 kg m(-2) (range 3.1-15.2 kg m(-)(2)). Adipose tissue (AT) DNA methylation, gene expression of AT and adipocytes, and leukocytes (real-time quantitative PCR), serum biotin, C-reactive protein (CRP) and triglycerides were measured in the twins. Human adipocytes were cultured in low and control biotin concentrations and analyzed for lipid droplet content, mitochondrial morphology and mitochondrial respiration. The gene expression levels of carboxylases, PCCB and MCCC1, were upregulated in the heavier co-twins' leukocytes. ΔPCCB (r=0.91, P=0.0046) and ΔMCCC1 (r=0.79, P=0.036) correlated with ΔCRP within-pairs. Serum biotin levels were lower in the heavier (274 ng l(-1)) than in the lean co-twins (390 ng l(-1), P=0.034). ΔBiotin correlated negatively with Δtriglycerides (r=-0.56, P=0.045) within-pairs. In AT, HLCS and ACACB were hypermethylated and biotin cycle genes HLCS and BTD were downregulated (PBiotin-dependent carboxylases were downregulated (ACACA, ACACB, PCCB, MCCC2 and PC; Pbiotin had decreased lipid accumulation, altered mitochondrial morphology and deficient mitochondrial respiration. Biotin-dependent functions are modified by adiposity independent of genetic effects, and correlate with inflammation and hypertriglyceridemia. Biotin restriction decreases lipid accumulation and respiration, and alters mitochondrial morphology in adipocytes.

  18. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation

    Science.gov (United States)

    Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert

    2013-01-01

    The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218

  19. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.

    Science.gov (United States)

    Rosebrock, Tracy R; Zeng, Lirong; Brady, Jennifer J; Abramovitch, Robert B; Xiao, Fangming; Martin, Gregory B

    2007-07-19

    Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.

  20. Study on synthesis, kit formulation and chemical kinetics of dissociation of 99mTc labeled PnAO biotin complex

    International Nuclear Information System (INIS)

    Afshan, A.; Jafri, S.R.A.; Maecke, H.

    2004-01-01

    Full text: A bifunctional ligand of PnAO-biotin has recently been synthesized, with a better percentage yield of 63% in the presence of newly developed coupling agent 0-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexaflorophos phate (HATU). Then lyophilized kit with 150μg of PnAObiotin has been developed and labeled with high specific activity of technetium-99m (2500-3000MBq) to get maximum radiochemical purity of 99mTc-PnAO-biotin complex i.e. > 97%. The association of avidin and streptavidin is among the strongest known non-covalent protein ligand interaction Ka 1015 M-1 and 1013 M-1 respectively. We measured the dissociation rate constant of PnAO-biotin from avidin and streptavidin challenged with excess of cold biotin. For the separation of bound and free-labeled biotin we employed ultrafilteration technique. The results of these experiments demonstrated that the non-covalent binding between 99mTc-PnAO-biotin with avidin and 99mTc-PnAO-biotin with streptavidin is more than 99%. Both biotin-binding proteins exhibited a faster initial phase and the rate of dissociation of 99mTc-PnAO-biotin with avidin is found to be 8.2x10-8 at 250C and 2.6x10-7 at 370C while the rate of dissociation 99mTc-PnAO-biotin from streptavidin is found to be 6x10-7 at 250C and 1.06x10-6 at 370C. The in-vitro study of the kinetics of dissociation exhibits the strong interaction of 99mTc-PnAO-biotin complex with both proteins, which suggests that this bifunctional PnAO-biotin ligand can be used for tumor localization with monoclonal antibodies to achieve high tumor to non-tumor ratio. (author)

  1. Differential recruitment of DNA Ligase I and III to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Rothbauer, Ulrich; Cardoso, M. Cristina; Leonhardt, Heinrich

    2006-01-01

    DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair. PMID:16855289

  2. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    Science.gov (United States)

    Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.

    2015-01-01

    The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509

  3. Origin and diversification of TRIM ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Ignacio Marín

    Full Text Available Most proteins of the TRIM family (also known as RBCC family are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.

  4. Autodisplay of an avidin with biotin-binding activity on the surface of Escherichia coli.

    Science.gov (United States)

    Pardavé-Alejandre, H D; Alvarado-Yaah, J E; Pompa-Mera, E N; Muñoz-Medina, J E; Sárquiz-Martínez, B; Santacruz-Tinoco, C E; Manning-Cela, R G; Ortíz-Navarrete, V; López-Macías, C; González-Bonilla, C R

    2018-03-01

    To display a recombinant avidin fused to the autotransporter ShdA to bind biotinylated molecules on the surface of Escherichia coli. Two chimeric protein constructs containing avidin fused to the autotransporter ShdA were expressed on the surface of Escherichia coli DH5α. One fusion protein contained 476 amino acids of the ShdA α and β domains, whereas the second consisted of a 314 amino acid from α and truncated β domains. Protein production was verified by SDS-PAGE using an antibody to the molecular FLAG-tag. The surface display of the avidin-shdA fusion protein was confirmed by confocal microscopy and flow cytometry analysis, and the biotin-binding activity was evaluated by fluorescence microscopy and flow cytometry using biotin-4-fluorescein and biotinylated-ovalbumin (OVA). Expression of a recombinant avidin with biotin-binding activity on the surface of E. coli was achieved using the autotransporter ShdA. This system is an alternative to bind biotinylated molecules to E. coli.

  5. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  6. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    International Nuclear Information System (INIS)

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-01-01

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  7. High-dose biotin therapy leading to false biochemical endocrine profiles: validation of a simple method to overcome biotin interference.

    Science.gov (United States)

    Piketty, Marie-Liesse; Prie, Dominique; Sedel, Frederic; Bernard, Delphine; Hercend, Claude; Chanson, Philippe; Souberbielle, Jean-Claude

    2017-05-01

    High-dose biotin therapy is beneficial in progressive multiple sclerosis (MS) and is expected to be adopted by a large number of patients. Biotin therapy leads to analytical interference in many immunoassays that utilize streptavidin-biotin capture techniques, yielding skewed results that can mimic various endocrine disorders. We aimed at exploring this interference, to be able to remove biotin and avoid misleading results. We measured free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), parathyroid homrone (PTH), 25-hydroxyvitamin D (25OHD), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, C-peptide, cortisol (Roche Diagnostics assays), biotin and its main metabolites (liquid chromatography tandem mass spectrometry) in 23 plasmas from MS patients and healthy volunteers receiving high-dose biotin, and in 39 biotin-unsupplemented patients, before and after a simple procedure (designated N5) designed to remove biotin by means of streptavidin-coated microparticles. We also assayed fT4, TSH and PTH in the 23 high-biotin plasmas using assays not employing streptavidin-biotin binding. The biotin concentration ranged from 31.7 to 1160 µg/L in the 23 high-biotin plasmas samples. After the N5 protocol, the biotin concentration was below the detection limit in all but two samples (8.3 and 27.6 μg/L). Most hormones results were abnormal, but normalized after N5. All results with the alternative methods were normal except two slight PTH elevations. In the 39 biotin-unsupplemented patients, the N5 protocol did not affect the results for any of the hormones, apart from an 8.4% decrease in PTH. We confirm that most streptavidin-biotin hormone immunoassays are affected by high biotin concentrations, leading to a risk of misdiagnosis. Our simple neutralization method efficiently suppresses biotin interference.

  8. Protein labelling with avidin-biotin systems; Radiomarcado de proteinas con sistemas avidina-biotina

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez B, B E

    1998-06-01

    The stability of connection in avidin-biotin system is very important due to the quadruple connections with avidin established with the same number of biotin molecules, which can amplify damage on cancer cells and increase specific activity of radio immuno conjugate in white cell. If between the first and second step (Ac Mo-biotin + avidin) enough time is left so that the monoclonal antibody accumulates in a therapeutic concentration required for the tumor or cancerous cells, then upon application of the third step (biotin-DTPA-{sup 153} Sm) it is hoped that in the first 30 minutes after application, only radioactivity remains with tumor. However, so that the amount radioactivity is enough to destroy a tumor, it would be necessary to use {sup 153} Sm with an activity of approximately 370 GBq (10 Ci)/ (mg). Since {sup 99m} Tc has similar chemistry to that of the {sup 188} Re, it is possible to propose their conjugates with biotin-avidin-Ac Mo-{sup 188} Re as a powerful option for therapeutic applications, this is, recommending the use of biotinylated labelled monoclonal antibody and the further injection of avidin to decrease of desirable effects on several other organs and bone marrow and high specific and selective action on tumor. On the other hand, we postulate the hypothesis in the sense that {sup 188} Re complexes tend to be more stable than those of {sup 99m} Tc, probably due to their metabolism, in which radioactivity of {sup 188} Re, not captured by tumor, is cleared easily from blood stream which results in a decrease of total and liver total dose in patient. (Author).

  9. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    Science.gov (United States)

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. {sup 18}F-PEG-biotin: Precursor (boroaryl-PEG-biotin) synthesis, {sup 18}F-labelling and an in-vitro assessment of its binding with Neutravidin{sup TM}-trastuzumab pre-treated cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tim A.D., E-mail: t.smith@abdn.ac.uk [Biomedical Physics Building, John Mallard PET Unit, Aberdeen Biomedical Imaging Centre, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Simpson, Michael; Cheyne, Richard [Biomedical Physics Building, John Mallard PET Unit, Aberdeen Biomedical Imaging Centre, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Trembleau, Laurent [School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2011-10-15

    In terms of nuclear decay {sup 18}F is the most ideal PET nuclide but its short t{sub 1/2} precludes its use for directly labelling whole antibodies due to their long blood residence times. Pre-targeted imaging using affinity systems such as Neutravidin{sup TM}-biotin facilitates the application of short-lived nuclides by their attachment to biotin for imaging cell surface proteins targeted with Neutravidin{sup TM}-conjugated antibodies. Methods: Boroaryl functionalised biotin was prepared with a PEG linker and radiolabelled by incubation with {sup 18}F in acidified aqueous solution. Cells expressing high (SKBr3), medium (MDA-MB-453) and low (MDA-MB-468) levels of HER-2 were pre-incubated with Neutravidin{sup TM}-conjugated trastuzumab, washed, and then incubated with {sup 18}F-PEG-biotin. Results: The {sup 18}F-fluorination of boroaryl-PEG-biotin was much more efficient than reported for other versions of boroaryl-biotin. The novel {sup 18}F-PEG-biotin was demonstrated to bind to HER-2-expressing cells in-vitro pre-incubated with Neutravidin{sup TM}-conjugated trastuzumab. Conclusion: Biotin can be functionalised with boroaryl and readily {sup 18}F-radiolabelled in aqueous solution and will bind to cells pre-incubated with Neutravidin{sup TM}-antibody conjugates. - Highlights: > Boroaryl-biotin precursor is prepared. > Rapid {sup 18}F-fluorination is demonstrated. > HER-2 expressing breast cancer cells pre-treated with trastuzumab-Neutravidin{sup TM}. > {sup 18}F-PEG-biotin binding to pre-treated cells corresponds with HER-2 expression.

  11. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  12. The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum.

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A

    2008-12-26

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.

  13. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    International Nuclear Information System (INIS)

    Nordlund, Henri R.; Laitinen, Olli H.; Uotila, Sanna T.H.; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S.

    2005-01-01

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches

  14. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    Science.gov (United States)

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  15. 21 CFR 182.8159 - Biotin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Biotin. 182.8159 Section 182.8159 Food and Drugs... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8159 Biotin. (a) Product. Biotin. (b) Conditions of use. This substance is generally recognized as safe when used in accordance...

  16. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  17. 21 CFR 582.5159 - Biotin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Biotin. 582.5159 Section 582.5159 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... § 582.5159 Biotin. (a) Product. Biotin. (b) Conditions of use. This substance is generally recognized as...

  18. Novel multi-biotin grafted poly(lactic acid) and its self-assembling nanoparticles capable of binding to streptavidin

    Science.gov (United States)

    Yan, Hao; Jiang, Weimin; Zhang, Yinxing; Liu, Ying; Wang, Bin; Yang, Li; Deng, Lihong; Singh, Gurinder K; Pan, Jun

    2012-01-01

    Targeted drug delivery requires novel biodegradable, specific binding systems with longer circulation time. The aim of this study was to prepare biotinylated poly(lactic acid) (PLA) nanoparticles (NPs) which can meet regular requirements as well conjugate more biotins in the polymer to provide better binding with streptavidin. A biotin-graft-PLA was synthesized based on previously published biodegradable poly(ethylene glycol) (PEG)-graft-PLA, with one polymer molecule containing three PEG molecules. Newly synthesized biotin-graft-PLA had three biotins per polymer molecule, higher than the previous biotinylated PLA (≤1 biotin per polymer molecule). A PEG with a much lower molecular weight (MW ~1900) than the previous biotinylated PLA (PEG MW ≥ 3800), and thus more biocompatible, was used which supplied good nonspecific protein-resistant property compatible to PEG-graft-PLA, suggesting its possible longer stay in the bloodstream. Biotin-graft-PLA specifically bound to streptavidin and self-assembled into NPs, during which naproxen, a model small molecule (MW 230 Da) and hydrophobic drug, was encapsulated (encapsulation efficiency 51.88%). The naproxen-loaded NPs with particle size and zeta potential of 175 nm and −27.35 mV realized controlled release within 170 hours, comparable to previous studies. The biotin-graft-PLA NPs adhered approximately two-fold more on streptavidin film and on biotin film via a streptavidin arm both in static and dynamic conditions compared with PEG-graft-PLA NPs, the proven nonspecific protein-resistant NPs. The specific binding of biotin-graft-PLA NPs with streptavidin and with biotin using streptavidin arm, as well as its entrapment and controlled release for naproxen, suggest potential applications in targeted drug delivery. PMID:22334778

  19. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.

    Science.gov (United States)

    Bracher, Jasmine M; de Hulster, Erik; Koster, Charlotte C; van den Broek, Marcel; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2017-08-15

    Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is extremely slow (specific growth rate [μ] ≈ 0.01 h -1 ). Four independent evolution experiments in repeated batch cultures and accelerostats yielded strains whose growth rates (μ ≤ 0.36 h -1 ) in biotin-free and biotin-supplemented media were similar. Whole-genome resequencing of these evolved strains revealed up to 40-fold amplification of BIO1 , which encodes pimeloyl-coenzyme A (CoA) synthetase. The additional copies of BIO1 were found on different chromosomes, and its amplification coincided with substantial chromosomal rearrangements. A key role of this gene amplification was confirmed by overexpression of BIO1 in strain CEN.PK113-7D, which enabled growth in biotin-free medium (μ = 0.15 h -1 ). Mutations in the membrane transporter genes TPO1 and/or PDR12 were found in several of the evolved strains. Deletion of TPO1 and PDR12 in a BIO1 -overexpressing strain increased its specific growth rate to 0.25 h -1 The effects of null mutations in these genes, which have not been previously associated with biotin metabolism, were nonadditive. This study demonstrates that S. cerevisiae strains that carry the basic genetic information for biotin synthesis can be evolved for full biotin prototrophy and identifies new targets for engineering biotin prototrophy into laboratory and industrial strains of this yeast. IMPORTANCE Although biotin (vitamin H) plays essential roles in all organisms, not all organisms can synthesize this vitamin. Many strains of baker's yeast, an important microorganism in industrial biotechnology, contain at least some of the genes required for biotin synthesis. However, most of these strains cannot synthesize biotin at all or do so at rates that are

  20. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations

    Science.gov (United States)

    de Hulster, Erik; Koster, Charlotte C.; van den Broek, Marcel; van Maris, Antonius J. A.

    2017-01-01

    ABSTRACT Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is extremely slow (specific growth rate [μ] ≈ 0.01 h−1). Four independent evolution experiments in repeated batch cultures and accelerostats yielded strains whose growth rates (μ ≤ 0.36 h−1) in biotin-free and biotin-supplemented media were similar. Whole-genome resequencing of these evolved strains revealed up to 40-fold amplification of BIO1, which encodes pimeloyl-coenzyme A (CoA) synthetase. The additional copies of BIO1 were found on different chromosomes, and its amplification coincided with substantial chromosomal rearrangements. A key role of this gene amplification was confirmed by overexpression of BIO1 in strain CEN.PK113-7D, which enabled growth in biotin-free medium (μ = 0.15 h−1). Mutations in the membrane transporter genes TPO1 and/or PDR12 were found in several of the evolved strains. Deletion of TPO1 and PDR12 in a BIO1-overexpressing strain increased its specific growth rate to 0.25 h−1. The effects of null mutations in these genes, which have not been previously associated with biotin metabolism, were nonadditive. This study demonstrates that S. cerevisiae strains that carry the basic genetic information for biotin synthesis can be evolved for full biotin prototrophy and identifies new targets for engineering biotin prototrophy into laboratory and industrial strains of this yeast. IMPORTANCE Although biotin (vitamin H) plays essential roles in all organisms, not all organisms can synthesize this vitamin. Many strains of baker's yeast, an important microorganism in industrial biotechnology, contain at least some of the genes required for biotin synthesis. However, most of these strains cannot synthesize biotin at all or do so at rates

  1. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.

    Science.gov (United States)

    McCoy, Andrea J; Maurelli, Anthony T

    2005-07-01

    Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.

  2. Fake news? Biotin interference in thyroid immunoassays.

    Science.gov (United States)

    Koehler, Viktoria F; Mann, Ulrike; Nassour, Ayham; Alexander Mann, W

    2018-05-29

    We report on a 47 year old male patient with multiple sclerosis (MS) presenting in our outpatient neurology clinic in Frankfurt/Main for therapy evaluation. Before change of treatment laboratory investigations were performed. Thyroid function tests (TFTs) with a streptavidin/biotin based immunoassay revealed severe hyperthyroidism with positive thyroid autoantibodies suggestive for Graves' disease. Clinical presentation and thyroid sonography were unremarkable. Due to the discordance between clinical presentation and TFTs, we repeated medical history, in which the patient reported taking high-doses of biotin (300 mg/day) for MS. Recent studies with patients suffering from primary and secondary progressive MS, indicated promising effects of high-dose biotin on MS-related disability. In immunoassays relaying on streptavidin-biotin interaction, biotin intake can cause falsely high or low results. Two weeks after withdrawing biotin, biotin/streptavidin dependant assays showed no longer the biochemical picture of severe hyperthyroidism. Biotin intake should be paused for at least two to five days prior to the use of biotin/streptavidin dependant assays. Alternatively, non-biotin/streptavidin dependant assays (radioimmunoassay, gas chromatography-mass spectrometry/liquid chromatography-mass spectrometry) may be used. Copyright © 2017. Published by Elsevier B.V.

  3. Medium composition influence on Biotin and Riboflavin production by newly isolated Candida sp.

    Science.gov (United States)

    Suzuki, Gaby Tiemi; Macedo, Juliana Alves; Macedo, Gabriela Alves

    2011-07-01

    Complex B vitamins as Biotin and Riboflavin are required by living organisms, not only for growth but also for metabolite production, and the feed market classifies them as growth promoters. Since Brazil will soon be one of the world's biggest animal protein producers, feed production is a large consumer of vitamins and micronutrients. The industry requires 10 mg riboflavin/0.2 mg biotin per kilogram of feed; a ratio of 40 ~ 50:1. Although few studies have been conducted specifically on riboflavin production using factorial design and surface response method as an optimization strategy, it is a common practice in biotechnology with many research reports available. However, there are no reports on the use of statistical design for biotin production. This study set out to evaluate medium composition influence on biotin and riboflavin production using a statistical design. There are no studies relating biotin and riboflavin production by Candida sp LEB 130. In this preliminary study to improve the simultaneous production of biotin and riboflavin, the maximum riboflavin/biotin ratio of 8.3 μg/mL was achieved with medium component concentrations of: sucrose 30 g/L, KH2PO4 2 g/L, MgSO4 1 g/L and ZnSO4 0.5mL/L.

  4. A biotin-drug extraction and acid dissociation (BEAD) procedure to eliminate matrix and drug interference in a protein complex anti-drug antibody (ADA) isotype specific assay.

    Science.gov (United States)

    Niu, Hongmei; Klem, Thomas; Yang, Jinsong; Qiu, Yongchang; Pan, Luying

    2017-07-01

    Monitoring anti-drug antibody (ADA) responses in patients receiving protein therapeutics treatment is an important safety assessment for regulatory agencies, drug manufacturers, clinicians and patients. Recombinant human IGF-1/IGFBP-3 (rhIGF-1/rhIGFBP-3) is a 1:1 formulation of naturally occurring protein complex. The individual IGF-1 and IGFBP-3 proteins have multiple binding partners in serum matrix with high binding affinity to each other, which presents challenges in ADA assay development. We have developed a biotin-drug extraction with acid dissociation (BEAD) procedure followed by an electrochemiluminescence (ECL) direct assay to overcome matrix and drug interference. The method utilizes two step acid dissociation and excess biotin-drug to extract total ADA, which are further captured by soluble biotin-drug and detected in an ECL semi-homogeneous direct assay format. The pre-treatment method effectively eliminates interference by serum matrix and free drug, and enhances assay sensitivity. The assays passed acceptance criteria for all validation parameters, and have been used for clinical sample Ab testing. This method principle exemplifies a new approach for anti-isotype ADA assays, and could be an effective strategy for neutralizing antibody (NAb), pharmacokinetic (PK) and biomarker analysis in need of overcoming interference factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of feeding biotin on milk production and hoof health in lactating dairy cows: a quantitative assessment.

    Science.gov (United States)

    Lean, I J; Rabiee, A R

    2011-03-01

    Objectives of this study were to critically review randomized controlled trials, evaluate the effectiveness of supplementation with biotin on milk yield and composition and hoof health in lactating dairy cows, explore sources of heterogeneity among studies, and evaluate publication bias. Quantitative assessments can increase the statistical power with which we study the effect of treatments, such as biotin, on outcomes. A total of 9 papers, with 6 production and 3 hoof health studies, met the eligibility criteria for meta-analysis. Eight studies evaluated various hoof lesions in biotin-supplemented cows that did not meet the inclusion criteria. Eleven comparisons were made of milk production responses to biotin treatment. Data extracted included the number of cows in control and treatment groups, measures of variance of responses (standard error or standard deviation) and P-values. Other data obtained included the duration of treatment before and after calving, parity, breed of cow, type and dose of biotin, delivery method of supplementation, and types of diets. Biotin increased milk production by 1.29 kg per head per day (95% confidence interval=0.35 to 2.18 kg) with no evidence of heterogeneity (I(2)=0.0%). Treatment did not affect milk fat or protein percentages, and a trend to increase fat and protein yields was observed. Milk production and composition results were not influenced by duration of treatment before calving, parity, or diet type. Assessment of biotin supplementation on hoof health indicated that more studies had improved rather than negative or neutral outcomes. The effect of biotin treatment on milk production was relatively large and the effects on fat and protein yields, although not significant, were consistent in direction and magnitude with the milk response. The hoof health responses to biotin should encourage further studies to more effectively define the nature of these responses using consistent criteria for examination of hoof conditions

  6. Radioligand assay for biotin in liver tissues

    International Nuclear Information System (INIS)

    Rettenmaier, R.

    1979-01-01

    A radioligand assay for biotin in liver tissue is described. 3 H-biotin is used as tracer and avidin as binder. The biotin-loaded avidin is separated from free biotin on dextran-coated charcoal, which leaves the avidin-biotin complex in the supernatant liquid. Thus, the avidin-biotin complex can easily be utilized for determination of the radioactivity. Calibration with known additions of biotin in the range 0.25-8.0 ng per assay sample yields a linear logit-log plot. The biotin is extracted from liver tissues by enzymatic proteolysis with papain. This treatment is optimized to liberate the bound forms of the vitamin. Microbiological parallel assays with Lactobacillus plantarum were in good agreement with the radioligand assay giving a regression coefficient of 0.974(n=44). The coefficient of variation was found to be 4.2% in the range 500-1200 ng of biotin per g of liver tissue (n=46). The method is simple and reliable and allows the simultaneous analysis of a considerable number of samples. (Auth.)

  7. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis. PMID:18974047

  8. Protein detection on biotin-derivatized polyallylamine by optical microring resonators

    NARCIS (Netherlands)

    Ullien, D.; Harmsma, P.J.; Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Bosma, D.; Sudhölter, E.J.R.; Smet, L.C.P.M. de; Jager, W.F.

    2014-01-01

    Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies

  9. Efficient synthesis of a fluorine-18 labeled biotin derivative

    International Nuclear Information System (INIS)

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-01-01

    Introduction: The natural occurring vitamin biotin, also known as vitamin H or vitamin B 7 , plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10 -15 M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [ 18 F]4 for a potential application in positron emission tomography (PET). Methods: Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [ 18 F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Results: Compound [ 18 F]4 was obtained from precursor compound 3 with an average specific activity of 16 GBq/μmol within 45 min and a radiochemical yield of 45 ± 5% (decay corrected). [ 18 F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [ 18 F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. Conclusion: An efficient synthesis for [ 18 F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [ 18 F]4.

  10. Biotin absorption by distal rat intestine

    International Nuclear Information System (INIS)

    Bowman, B.B.; Rosenberg, I.H.

    1987-01-01

    We used the in vivo intestinal loop approach, with short (10-min) and long (3-h) incubations, to examine biotin absorption in proximal jejunum, distal ileum, cecum and proximal colon. In short-term studies, luminal biotin disappearance from rat ileum was about half that observed in the jejunum, whereas absorption by proximal colon was about 12% of that in the jejunum. In 3-h closed-loop studies, the absorption of 1.0 microM biotin varied regionally. Biotin absorption was nearly complete in the small intestine after 3 h; however, only about 15% of the dose had been absorbed in the cecum and 27% in the proximal colon after 3 h. Independent of site of administration, the major fraction of absorbed biotin was recovered in the liver; measurable amounts of radioactive biotin were also present in kidney and plasma. The results support the potential nutritional significance for the rat of biotin synthesized by bacteria in the distal intestine, by demonstrating directly an absorptive capability of mammalian large bowel for this vitamin

  11. Intestinal absorption of biotin in the rat

    International Nuclear Information System (INIS)

    Bowman, B.B.; Selhub, J.; Rosenberg, I.H.

    1986-01-01

    We examined the absorption of biotin using the in vivo intestinal loop technique. Jejunal segments from male rats were filled with solutions containing [ 3 H]biotin and [ 14 C]inulin in Krebs-Ringer phosphate buffer, pH 6.5. Absorption was determined on the basis of luminal tritium disappearance after correction for inulin recovery. At biotin concentrations of 0.1 and 5.0 microM, luminal biotin disappearance was linear for at least 10 min. At biotin concentrations ranging from 2.3 nM to 75 microM, 10-28% of the administered dose was absorbed in 10 min. The concentration dependence of luminal biotin disappearance is consistent with the presence of both saturable and nonsaturable (linear) components of biotin uptake, with estimated Km = 9.6 microM and Jmax = 75.2 pmol/(2.5 cm loop X min). The rate constant for nonsaturable uptake is 3.1 pmol/(2.5 cm loop X min X microM). We conclude that at biotin concentrations less than 5 microM, biotin absorption proceeds largely by the saturable process, whereas at concentrations above 25 microM, nonsaturable uptake predominates. Additional studies demonstrated significantly less biotin uptake in the ileum than in the jejunum, a finding in agreement with previous in vitro studies

  12. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay.

    Science.gov (United States)

    Lakshmipriya, Thangavel; Gopinath, Subash C B; Tang, Thean-Hock

    2016-01-01

    Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors.

  13. Design of Biotin-Functionalized Luminescent Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kimihiro Susumu

    2007-01-01

    Full Text Available We report the design and synthesis of a tetraethylene glycol- (TEG- based bidentate ligand functionalized with dihydrolipoic acid (DHLA and biotin (DHLA—TEG—biotin to promote biocompatibility of luminescent quantum dots (QD's. This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG- (molecular weight average ∼600 modified DHLA (DHLA—PEG600 and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.

  14. Fingerprinting of near-homogeneous DNA ligase I and II from human cells. Similarity of their AMP-binding domains.

    Science.gov (United States)

    Yang, S W; Becker, F F; Chan, J Y

    1990-10-25

    DNA ligases play obligatory roles during replication, repair, and recombination. Multiple forms of DNA ligase have been reported in mammalian cells including DNA ligase I, the high molecular mass species which functions during replication, and DNA ligase II, the low molecular mass species which is associated with repair. In addition, alterations in DNA ligase activities have been reported in acute lymphocytic leukemia cells, Bloom's syndrome cells, and cells undergoing differentiation and development. To better distinguish the biochemical and molecular properties of the various DNA ligases from human cells, we have developed a method of purifying multiple species of DNA ligase from HeLa cells by chromatography through DEAE-Bio-Gel, CM-Bio-Gel, hydroxylapatite, Sephacryl S-300, Mono P, and DNA-cellulose. DNA-cellulose chromatography of the partially purified enzymes resolved multiple species of DNA ligase after labeling the enzyme with [alpha-32P]ATP to form the ligase-[32P]AMP adduct. The early eluting enzyme activity (0.25 M NaCl) contained a major 67-kDa-labeled protein, while the late eluting activity (0.48 M NaCl) contained two major labeled proteins of 90 and 78 kDa. Neutralization experiments with antiligase I antibodies indicated that the early and late eluting activity peaks were DNA ligase II and I, respectively. The three major ligase-[32P]AMP polypeptides (90, 78, and 67 kDa) were subsequently purified to near homogeneity by elution from preparative sodium dodecyl sulfate-polyacrylamide gels. All three polypeptides retained DNA ligase activities after gel elution and renaturation. To further reveal the relationship between these enzymes, partial digestion by V8-protease was performed. All three purified polypeptides gave rise to a common 22-kDa-labeled fragment for their AMP-binding domains, indicating that the catalytic sites of ligase I and II are quite similar, if not identical. Similar findings were obtained from the two-dimensional gel

  15. A biotin-triggered genetic switch in mammalian cells and mice.

    Science.gov (United States)

    Weber, Wilfried; Lienhart, Cédric; Baba, Marie Daoud-El; Fussenegger, Martin

    2009-03-01

    Adjustable and reversible transgene expression systems enabling precise control of metabolic pathways and tunable production of specific target proteins have been essential for conditional reprogramming of mammalian cells to achieve progress in basic and applied bioengineering disciplines. Most of the currently available transgene control modalities have been designed to be responsive to clinically licensed pharmacologically active drugs which were expected to prevail in future clinical trials yet raised concerns about side effects when administered long term at subclinical doses. We have chosen vitamin H, also known as biotin, to control target gene transcription in mammalian cells in a potentially side effect-free manner. BirA, the Escherichia coli repressor of the biotin biosynthesis operon, was fused to the Herpes simplex transactivation domain to generate a biotin-dependent transactivator(BIT), which, in the presence of biotin, binds and activates chimeric target promoters (P(BIT)) harboring BirA-specific operator sites 5' of a minimal promoter. Biotin-inducible transgene expression was functional in a variety of rodent, monkey and human cell lines, showed excellent adjustability and reversibility in transgenic Chinese hamster ovary cell lines, provided precise product gene control in standard bioreactor cultures and enabled dose-dependent vitamin H control of a human glycoprotein in mice. The combination of a side effect-free inducer, precise and reversible transcription tunability and broad functionality in different cell types as well as in entire animals represents a unique asset for the use of biotin-inducible transgene control in future gene therapy, tissue engineering and biopharmaceutical manufacturing scenarios.

  16. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Sylvestersen, Kathrine Beck; Young, Clifford

    2015-01-01

    deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p...... cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin...

  17. Semi-synthetic biotin imprinting onto avidin crosslinked gold-silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    At Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I r Oezcan, Ayca, E-mail: aatilir@anadolu.edu.tr; Ersoez, Arzu; Huer, Deniz; Y Latin-Small-Letter-Dotless-I lmaz, Filiz [Anadolu University, Department of Chemistry (Turkey); Gueltekin, Aytac [Karamanoglu Mehmetbey University, Department of Engineering of Energy Systems (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Say, R Latin-Small-Letter-Dotless-I dvan [Anadolu University, Department of Chemistry (Turkey)

    2012-06-15

    This study is a different and new application of molecular imprinted polymers (MIPs) based on sensor technologies. In this study, semi-synthetic biotin imprinted polymeric shell has been decorated onto the surface of avidin crosslinked Au/Ag nanoclusters using bis (2-2 Prime -bipyridyl) MATyr-MATrp-ruthenium(II) (MATyr-Ru-MATrp) as photosensitive monomer. The synthesized nanoclusters have been used the recognition of biotin by flourometric method. Synthesis of the photosensitive monomers has been realized by AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. This method provides a strategy for the preparation of photosensitive ruthenium based aminoacid monomers and oligomers, aminoacid monomer-protein crosslinking using photosensitation and conjugation approach on micro and nano-structures by ruthenium-chelate based monomers. The affinity constant (K{sub a}) of biotin imprinted Au/Ag nanoclusters has been determined using the Scatchard method and found to be 3.89 Multiplication-Sign 10{sup 5} M{sup -1}. The obtained calibration graph is linear for the range of 0.051 and 2.50 {mu}M of biotin. The detection limit of biotin has been found to be 15 nM. Also, the reusability of these nanoclusters has been investigated and it has been observed that the same clusters could be used 10 times during a long period without any binding capacity decreasing.

  18. Semi-synthetic biotin imprinting onto avidin crosslinked gold–silver nanoparticles

    International Nuclear Information System (INIS)

    Atılır Özcan, Ayça; Ersöz, Arzu; Hür, Deniz; Yılmaz, Filiz; Gültekin, Aytaç; Denizli, Adil; Say, Rıdvan

    2012-01-01

    This study is a different and new application of molecular imprinted polymers (MIPs) based on sensor technologies. In this study, semi-synthetic biotin imprinted polymeric shell has been decorated onto the surface of avidin crosslinked Au/Ag nanoclusters using bis (2-2′-bipyridyl) MATyr-MATrp-ruthenium(II) (MATyr-Ru-MATrp) as photosensitive monomer. The synthesized nanoclusters have been used the recognition of biotin by flourometric method. Synthesis of the photosensitive monomers has been realized by AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. This method provides a strategy for the preparation of photosensitive ruthenium based aminoacid monomers and oligomers, aminoacid monomer-protein crosslinking using photosensitation and conjugation approach on micro and nano-structures by ruthenium-chelate based monomers. The affinity constant (K a ) of biotin imprinted Au/Ag nanoclusters has been determined using the Scatchard method and found to be 3.89 × 10 5 M −1 . The obtained calibration graph is linear for the range of 0.051 and 2.50 μM of biotin. The detection limit of biotin has been found to be 15 nM. Also, the reusability of these nanoclusters has been investigated and it has been observed that the same clusters could be used 10 times during a long period without any binding capacity decreasing.

  19. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis......The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were...... analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s...

  20. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    Full Text Available The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1. However, the pathways of proteasomal degradation have not been well characterized.To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells.Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.

  1. Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.

    Science.gov (United States)

    Li, R; Kast, J

    2017-01-01

    Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.

  2. Amplified voltammetric detection of glycoproteins using 4-mercaptophenylboronic acid/biotin-modified multifunctional gold nanoparticles as labels.

    Science.gov (United States)

    Liu, Lin; Xing, Yun; Zhang, Hui; Liu, Ruili; Liu, Huijing; Xia, Ning

    2014-01-01

    Ultrasensitive detection of protein biomarkers is essential for early diagnosis and therapy of many diseases. Glycoproteins, differing from other types of proteins, contain carbohydrate moieties in the oligosaccharide chains. Boronic acid can form boronate ester covalent bonds with diol-containing species. Herein, we present a sensitive and cost-effective electrochemical method for glycoprotein detection using 4-mercaptophenylboronic acid (MBA)/biotin-modified gold nanoparticles (AuNPs) (MBA-biotin-AuNPs) as labels. To demonstrate the feasibility and sensitivity of this method, recombinant human erythropoietin (rHuEPO) was tested as a model analyte. Specifically, rHuEPO was captured by the anti-rHuEPO aptamer-covered electrode and then derivatized with MBA-biotin-AuNPs through the boronic acid-carbohydrate interaction. The MBA-biotin-AuNPs facilitated the attachment of streptavidin-conjugated alkaline phosphatase for the production of electroactive p-aminophenol from p-aminophenyl phosphate substrate. A detection limit of 8 fmol L(-1) for rHuEPO detection was achieved. Other glycosylated and non-glycosylated proteins, such as horseradish peroxidase, prostate specific antigen, metallothionein, streptavidin, and thrombin showed no interference in the detection assay.

  3. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase.

    Science.gov (United States)

    Mudhasani, Rajini; Tran, Julie P; Retterer, Cary; Kota, Krishna P; Whitehouse, Chris A; Bavari, Sina

    2016-02-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

  4. Optimisation of culture conditions with respect to biotin requirement for the production of recombinant avidin in Pichia pastoris.

    Science.gov (United States)

    Jungo, Carmen; Urfer, Julien; Zocchi, Andrea; Marison, Ian; von Stockar, Urs

    2007-01-20

    Due to its very high affinity to biotin, avidin is one of the most widely exploited proteins in modern biotechnological and biomedical applications. Since biotin is an essential vitamin for the growth of many microorganisms, we examined the effect of biotin deficiency on growth for a recombinant Pichia pastoris strain expressing and secreting a recombinant glycosylated avidin. The results showed that biotin deficiency lowers growth rate and biomass yield for P. pastoris. Substitution of biotin in the medium by the two structurally unrelated compounds, aspartic acid and oleic acid, which do not bind to recombinant avidin was analyzed quantitatively. These two compounds had a growth promoting effect in biotin-deficient medium, but did not replace biotin completely. Indeed, in chemostat culture, wash-out occurred after about six liquid residence times and recombinant avidin productivity was lowered. However, addition of low amounts of biotin (20 microg L(-1) of biotin for a cell density of 8 g L(-1)) resulted in stable chemostat cultures on methanol with the production of recombinant biotin-free avidin. The specific avidin production rate was 22 microg g(-1) h(-1) at a dilution rate of 0.06 h(-1).

  5. Efficient synthesis of a fluorine-18 labeled biotin derivative.

    Science.gov (United States)

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-11-01

    The natural occurring vitamin biotin, also known as vitamin H or vitamin B(7), plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10(-15)M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [(18)F]4 for a potential application in positron emission tomography (PET). Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [(18)F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Compound [(18)F]4 was obtained from precursor compound 3 with an average specific activity of 16GBq/μmol within 45min and a radiochemical yield of 45±5% (decay corrected). [(18)F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [(18)F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. An efficient synthesis for [(18)F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [(18)F]4. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Sculpting ion channel functional expression with engineered ubiquitin ligases

    Science.gov (United States)

    Kanner, Scott A; Morgenstern, Travis

    2017-01-01

    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  7. The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms

    Science.gov (United States)

    Waldrop, Grover L; Holden, Hazel M; Maurice, Martin St

    2012-01-01

    Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis. PMID:22969052

  8. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  9. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He; Su, Xiao-Dong

    2007-01-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni 2+ -chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit

  10. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    Energy Technology Data Exchange (ETDEWEB)

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  11. Effect of biotin and pantothenic acid on performance and concentrations of avidin-binding substances in blood and milk of lactating dairy cows.

    Science.gov (United States)

    Ferreira, Gonzalo; Brown, Alston N; Teets, Christy L

    2015-09-01

    We hypothesized that pantothenic acid reduces the absorption of biotin in lactating dairy cows. Therefore, the objective of this study was to evaluate the plausible interaction between biotin and pantothenic acid on production performance and concentration of avidin-binding substances (ABS), an indicator of biotin concentration, in blood and milk of lactating dairy cows. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diet sequences in a replicated 4×4 Latin square design with 18-d periods. Cows were housed in a freestall barn and fed once daily (0730 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). Treatments consisted of a control diet that contained no B-vitamins, a biotin diet that contained 0.87 mg of biotin per kilogram of dry matter (DM), a pantothenic acid diet that contained 21 mg of pantothenic acid per kilogram of DM, and a biotin plus pantothenic acid diet that contained 0.87 mg of biotin and 21 mg of calcium pantothenic acid per kilogram of DM. Four different concentrates were prepared in a commercial feed mill. These concentrates were mixed with corn silage and grass hay and delivered ad libitum as a total mixed ration. Biotin supplementation did not affect DM intake, milk yield, or milk fat, protein, lactose, and milk-urea-nitrogen concentrations. Fat, protein, and lactose yields were not affected by treatments. The fat-to-protein ratio was Biotin supplementation did not increase the concentration of ABS in plasma. The supplementation of pantothenic acid did not affect the concentration of ABS in plasma when either supplemented alone or in combination with biotin. Biotin supplementation increased the concentration of ABS in milk relative to control. Contrary to our hypothesis, the supplementation of pantothenic acid did not decrease the concentration of ABS in milk relative to the control. When cows were supplemented with both biotin and pantothenic acid, the concentration of ABS in milk was similar

  12. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    Science.gov (United States)

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML

  13. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations

    NARCIS (Netherlands)

    Bracher, J.M.; de Hulster, A.F.; van den Broek, M.A.; Daran, J.G.; van Maris, A.J.A.; Pronk, J.T.

    2017-01-01

    Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is

  15. Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Pitcher, Robert S; Tonkin, Louise M; Green, Andrew J; Doherty, Aidan J

    2005-08-19

    A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.

  16. Pseudo-immunolabelling with the avidin-biotin-peroxidase complex (ABC) due to the presence of endogenous biotin in retinal Müller cells of goldfish and salamander

    NARCIS (Netherlands)

    Bhattacharjee, J.; Nunes Cardozo, B.; Kamphuis, W.; Kamermans, M.; Vrensen, G. F.

    1997-01-01

    Immunodetection techniques are dependent on enzyme-protein conjugates for the visualisation of antigen-antibody complexes. One of the most widely used is the avidin-biotin-peroxidase complex (ABC) method. The present study demonstrates that direct treatment of goldfish and salamander retinal

  17. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    Science.gov (United States)

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment. PMID:27721409

  18. Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing.

    Science.gov (United States)

    Pierre, Sandra; Maeurer, Christian; Coste, Ovidiu; Becker, Wiebke; Schmidtko, Achim; Holland, Sabrina; Wittpoth, Claus; Geisslinger, Gerd; Scholich, Klaus

    2008-12-01

    Protein associated with Myc (PAM) is a giant E3 ubiquitin ligase of 510 kDa. Although the role of PAM during neuronal development is well established, very little is known about its function in the regulation of synaptic strength. Here we used multiepitope ligand cartography (MELC) to study protein network profiles associated with PAM during the modulation of synaptic strength. MELC is a novel imaging technology that utilizes biomathematical tools to describe protein networks after consecutive immunohistochemical visualization of up to 100 proteins on the same sample. As an in vivo model to modulate synaptic strength we used the formalin test, a common model for acute and inflammatory pain. MELC analysis was performed with 37 different antibodies or fluorescence tags on spinal cord slices and led to the identification of 1390 PAM-related motifs that distinguish untreated and formalin-treated spinal cords. The majority of these motifs related to ubiquitin-dependent processes and/or the actin cytoskeleton. We detected an intermittent colocalization of PAM and ubiquitin with TSC2, a known substrate of PAM, and the glutamate receptors mGluR5 and GLUR1. Importantly these complexes were detected exclusively in the presence of F-actin. A direct PAM/F-actin interaction was confirmed by colocalization and cosedimentation. The binding of PAM toward F-actin varied strongly between the PAM splice forms found in rat spinal cords. PAM did not ubiquitylate actin or alter actin polymerization and depolymerization. However, F-actin decreased the ubiquitin ligase activity of purified PAM. Because PAM activation is known to involve its translocation, the binding of PAM to F-actin may serve to control its subcellular localization as well as its activity. Taken together we show that defining protein network profiles by topological proteomics analysis is a useful tool to identify previously unknown protein/protein interactions that underlie synaptic processes.

  19. Effect of biotin on activity and gene expression of biotin-dependent carboxylases in the liver of dairy cows.

    Science.gov (United States)

    Ferreira, G; Weiss, W P

    2007-03-01

    Biotin is a cofactor of the gluconeogenic enzymes pyruvate carboxylase (PC) and propionyl-coenzyme A carboxylase (PCC). We hypothesized that biotin supplementation increases the activity and gene expression of PC and PCC and the gene expression of phosphoenol-pyruvate carboxykinase (PEPCK) in the liver of lactating dairy cows. Eight multiparous Holstein cows (40 +/- 2 kg/d of milk yield and 162 +/- 35 d in milk) were randomly assigned to 1 of 2 diet sequences in a crossover design with two 22-d periods. Treatments consisted of a basal diet (60% concentrate) containing 0 or 0.96 mg/kg of supplemental biotin. On d 21 of each period, liver tissue was collected by percutaneous liver biopsy. Activities of PC and PCC were determined by measuring the fixation of [14C]O2 in liver homogenates. Abundance of mRNA for PCC, PC, and PEPCK was determined by quantitative reverse-transcription PCR. Biotin supplementation did not affect milk production or composition. Biotin supplementation increased the activity of PC but had no effect on PCC activity. Biotin supplementation did not affect the gene expression of PC, PCC, and PEPCK. The increased activity of PC without changes in mRNA abundance may have been caused by increased activation of the apoenzymes by holocarboxylase synthetase. In conclusion, biotin supplementation affected the activity of PC in the liver of lactating dairy cows, but whether biotin supplementation increases glucose production in the liver remains to be determined.

  20. Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody Detection

    Directory of Open Access Journals (Sweden)

    Christoph Gerber

    2013-04-01

    Full Text Available A cantilever-based protein biosensor has been developed providing a customizable multilayer platform for the detection of antibodies. It consists of a biotin-terminated PEG layer pre-functionalized on the gold-coated cantilever surface, onto which NeutrAvidin is adsorbed through biotin/NeutrAvidin specific binding. NeutrAvidin is used as a bridge layer between the biotin-coated surface and the biotinylated biomolecules, such as biotinylated bovine serum albumin (biotinylated BSA, forming a multilayer sensor for direct antibody capture. The cantilever biosensor has been successfully applied to the detection of mouse anti-BSA (m-IgG and sheep anti-BSA(s-IgG antibodies. As expected, the average differential surface stress signals of about 5.7 ± 0.8 ´ 10−3 N/m are very similar for BSA/m-IgG and BSA/s-IgG binding, i.e., they are independent of the origin of the antibody. A statistic evaluation of 112 response curves confirms that the multilayer protein cantilever biosensor shows high reproducibility. As a control test, a biotinylated maltose binding protein was used for detecting specificity of IgG, the result shows a signal of bBSA layer in response to antibody is 5.8 ´ 10−3 N/m compared to bMBP. The pre-functionalized biotin/PEG cantilever surface is found to show a long shelf-life of at least 40 days and retains its responsivity of above 70% of the signal when stored in PBS buffer at 4 °C. The protein cantilever biosensor represents a rapid, label-free, sensitive and reliable detection technique for a real-time protein assay.

  1. Recombinant Candida utilis for the production of biotin.

    Science.gov (United States)

    Hong, Yi-Ren; Chen, Ya-Lei; Farh, Lynn; Yang, Wen-Jen; Liao, Chen-Hua; Shiuan, David

    2006-06-01

    Biotin is an important nutritional supplement but is difficult to manufacture effectively. Here we present a trial of biotin production using the food yeast Candida utilis. In this system, we cloned the C. utilis biotin synthase (BIO2) gene, the gene of the rate-limiting enzyme for biotin biosynthesis, and assembled it under the control of a strong promoter. A series of plasmids were constructed to direct the integration of the BIO2 gene, either high-copy integration with 18S rDNA fragment or low-copy integration with URA3 or HIS3 fragment. The BIO2 gene can be successfully integrated into the C. utilis chromosome and can drive biotin production using these plasmids. The biotin yield in this system can reach 100-fold above the endogenous level in a small-scale culture. Although the biotin production is not stable if the selection pressure is removed, this system has the potential to produce biotin-rich feed or food additives directly without the requirement of further purification.

  2. Serum Biotin Levels in Women Complaining of Hair Loss.

    Science.gov (United States)

    Trüeb, Ralph M

    2016-01-01

    Biotin is a coenzyme for carboxylase enzymes that assist various metabolic reactions involved in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis important for maintenance of healthy skin and hair. Due to its availability, affordability, and effective marketing for this purpose, biotin is a popular nutritional supplement for treatment of hair loss. However, there are little data on the frequency of biotin deficiency in patients complaining of hair loss and on the value of oral biotin for treatment of hair loss that is not due to an inborn error of biotin metabolism or deficiency. The aim of this study was to determine the frequency and significance of biotin deficiency in women complaining of hair loss. Biotin deficiency was found in 38% of women complaining of hair loss. Of those showing diffuse telogen effluvium in trichograms (24%), 35% had evidence of associated seborrheic-like dermatitis. About 11% of patients with biotin deficiency had a positive personal history for risk factors for biotin deficiency. The custom of treating women complaining of hair loss in an indiscriminate manner with oral biotin supplementation is to be rejected, unless biotin deficiency and its significance for the complaint of hair loss in an individual has been demonstrated on the basis of a careful patient history, clinical examination, determination of serum biotin levels, and exclusion of alternative factors responsible for hair loss.

  3. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    International Nuclear Information System (INIS)

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-01-01

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ

  4. Marginal Biotin Deficiency Is Teratogenic in ICR Mice1,2

    OpenAIRE

    Mock, Donald M.; Mock, Nell I.; Stewart, Christopher W.; LaBorde, James B.; Hansen, Deborah K.

    2003-01-01

    The incidence of marginal biotin deficiency in normal human gestation is approximately one in three. In ICR mice, maternal biotin deficiency results in cleft palate, micrognathia, microglossia and limb hypoplasia. However, the relationships among the severity of maternal biotin deficiency, fetal biotin status and malformations have not been reported. This study utilized validated indices of biotin status to investigate the relationships among maternal biotin status, fetal biotin status and th...

  5. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  6. ATP- and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii

    DEFF Research Database (Denmark)

    Zhao, A.; Gray, F. C; MacNeill, S. A.

    2006-01-01

    DNA ligases join the ends of DNA molecules during replication, repair and recombination. ATP-dependent ligases are found predominantly in the eukarya and archaea whereas NAD+-dependent DNA ligases are found only in the eubacteria and in entomopoxviruses. Using the genetically tractable halophile....... volcanii also encodes an NAD+-dependent DNA ligase family member, LigN, the first such enzyme to be identified in the archaea, and present phylogenetic analysis indicating that the gene encoding this protein has been acquired by lateral gene transfer (LGT) from eubacteria. As with LigA, we show that Lig...

  7. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    OpenAIRE

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recen...

  8. Identification and assessment of markers of biotin status in healthy adults

    Science.gov (United States)

    Eng, Wei Kay; Giraud, David; Schlegel, Vicki L.; Wang, Dong; Lee, Bo Hyun; Zempleni, Janos

    2016-01-01

    Human biotin requirements are unknown and the identification of reliable markers of biotin status is necessary to fill this knowledge gap. Here, we used an outpatient feeding protocol to create states of biotin deficiency, sufficiency and supplementation in sixteen healthy men and women. A total of twenty possible markers of biotin status were assessed, including the abundance of biotinylated carboxylases in lymphocytes, the expression of genes from biotin metabolism and the urinary excretion of biotin and organic acids. Only the abundance of biotinylated 3-methylcrotonyl-CoA carboxylase (holo-MCC) and propionyl-CoA carboxylase (holo-PCC) allowed for distinguishing biotin-deficient and biotin-sufficient individuals. The urinary excretion of biotin reliably identified biotin-supplemented subjects, but did not distinguish between biotin-depleted and biotin-sufficient individuals. The urinary excretion of 3-hydroxyisovaleric acid detected some biotin-deficient subjects, but produced a meaningful number of false-negative results and did not distinguish between biotin-sufficient and biotin-supplemented individuals. None of the other organic acids that were tested were useful markers of biotin status. Likewise, the abundance of mRNA coding for biotin transporters, holocarboxylase synthetase and biotin-dependent carboxylases in lymphocytes were not different among the treatment groups. Generally, datasets were characterised by variations that exceeded those seen in studies in cell cultures. We conclude that holo-MCC and holo-PCC are the most reliable, single markers of biotin status tested in the present study. PMID:23302490

  9. Ultrastructural and biochemical detection of biotin and biotinylated polypeptides in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Santos P.R.P.

    1997-01-01

    Full Text Available Biotinylation is proposed for the identification of surface proteins in Schistosoma mansoni using the streptavidin-HRP conjugate for the detection of labeled polypeptides. However, control samples also showed several endogenous biotinylated polypeptides. In an attempt to determine the possibility of nonspecific binding between the streptavidin-HRP conjugate and polypeptides from S. mansoni, the conjugate was blocked with biotinamidecaproate-N-hydroxysuccinimide ester (BcapNHS before biotin-streptavidin blotting. No bands were detected on the nitrocellulose sheet, demonstrating the specific recognition of biotin by the streptavidin present in the conjugate. Whole cercariae and cercarial bodies and tails showed several endogenous biotinylated polypeptides. The biotin concentration was 13 µg/190,000 cercariae. Adult worms presented less endogenous biotinylated polypeptides than cercariae. These results may be due to changes in the environment from aerobic to anaerobic conditions when cercarial bodies (schistosomula are transformed into adult worms and a decrease in CO2 production may occur. Cercariae, cercarial bodies and adult male worms were examined by transmission electron microscopy employing an avidin-colloidal gold conjugate for the detection of endogenous biotin. Gold particles were distributed mainly on the muscle fibers, but dispersed granules were observed in the tegument, mitochondria and cytosol. The discovery of endogenous biotin in S. mansoni should be investigated in order to clarify the function of this vitamin in the parasite

  10. Thermodiffusion as a probe of protein hydration for streptavidin and the streptavidin-biotin complex

    Science.gov (United States)

    Niether, Doreen; Sarter, Mona; König, Bernd; Zamponi, Michaela; Fitter, Jörg; Stadler, Andreas; Wiegand, Simone

    2018-01-01

    Molecular recognition via protein-ligand interactions is of fundamental importance to numerous processes in living organisms. Microscale thermophoresis (MST) uses the sensitivity of the thermophoretic response upon ligand binding to access information on the reaction kinetics. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data from literature. However, preliminary results show that replacing water with deuterated water leads to changes of the thermophoretic measurements, which are similar to the changes observed upon binding by biotin. In order to gain a better understanding of the hydration layer all measurements need to be performed in heavy water. This will open a route to develop a microscopic understanding of the correlation between the strength and number of hydrogen bonds and the thermophoretic behaviour.

  11. Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism.

    Science.gov (United States)

    Feng, Youjun; Kumar, Ritesh; Ravcheev, Dmitry A; Zhang, Huimin

    2015-08-01

    Recently, we determined that BioR, the GntR family of transcription factor, acts as a repressor for biotin metabolism exclusively distributed in certain species of α-proteobacteria, including the zoonotic agent Brucella melitensis and the plant pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Paracoccus denitrificans, another closely related member of the same phylum α-proteobacteria featuring with denitrification. Not only does it encode two BioR homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respectively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each contains two tandem BioR boxes). It raised the possibility that unexpected complexity is present in BioR-mediated biotin regulation. Here we report that this is the case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed with LC-QToF-MS. Phylogenetic analyses combined with GC percentage raised a possibility that the bioR2 gene might be acquired by horizontal gene transfer. Gel shift assays revealed that the predicted BioR-binding sites are functional for the two BioR homologs, in much similarity to the scenario seen with the BioR site of A. tumefaciens bioBFDAZ. Using the A. tumefaciens reporter system carrying a plasmid-borne LacZ fusion, we revealed that the two homologs of P. denitrificans BioR are functional repressors for biotin metabolism. As anticipated, not only does the addition of exogenous biotin stimulate efficiently the expression of bioYB operon encoding biotin transport/uptake system BioY, but also inhibits the transcription of the bioBFDAGC operon resembling the de novo biotin synthetic pathway. EMSA-based screening failed to demonstrate that the biotin-related metabolite is involved in BioR-DNA interplay, which is consistent with our former observation with Brucella BioR. Our finding defined a complex regulatory network for biotin

  12. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins.

    Directory of Open Access Journals (Sweden)

    Hirotaka Takahashi

    Full Text Available Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3. Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1 targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3-which there have been no report to bind p53-were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein.

  13. Effect of biotin on milk performance of dairy cattle: a meta-analysis.

    Science.gov (United States)

    Chen, B; Wang, C; Wang, Y M; Liu, J X

    2011-07-01

    A meta-analysis of the effect of biotin on production outcomes of dairy cattle was conducted following a literature review. A total of 11 studies from 9 papers, with information on the milk production and composition data from a total number of 238 cows were extracted and analyzed using meta-analysis software in Stata. Estimated size of effect of biotin was calculated for dry matter intake (DMI), milk production, and composition. Heterogeneity was not significant for all of the parameters (the highest I(2)=12%). Therefore, fixed effects models were used for analysis. With the addition of biotin to lactating dairy cattle, DMI and milk production increased by 0.87 and 1.66 kg/d. No significant effect on percentage of milk fat and milk protein was observed. Additionally, Begg's test indicated no evidence of substantial publication bias for all variables. The influence analysis shows that the removal of any study did not change the direction or significance of the point estimates. It can be concluded that the use of biotin supplements increases DMI and milk yield in lactating dairy cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations

    International Nuclear Information System (INIS)

    Ogita, Takeshi; Knowles, J.R.

    1988-01-01

    In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). The authors have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18 O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-([α,β- 18 O,β,β- 18 O 2 ]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, they showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18 O label directly from [ 18 O]bicarbonate into the product P i . This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously

  15. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers.

    Science.gov (United States)

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A; Widhalm, Joshua R; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M; Cooper, Bruce R; D'Auria, John C; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-05-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.

  16. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Low serum biotin in Japanese children fed with hydrolysate formula.

    Science.gov (United States)

    Sato, Yasuhiro; Wakabayashi, Kenji; Ogawa, Eishin; Kodama, Hiroko; Mimaki, Masakazu

    2016-09-01

    Given that nutritional biotin deficiency in Japanese infants has been reported, a straightforward method for estimating biotin level is needed. The biotin content in infant formula, breast milk, and the sera of infants fed with various types of formula were measured using avidin-binding assay. A commercially available ELISA kit was used for the measurement of biotin in 54 types of formula, including hydrolysate formulas for milk allergy, as well as in breast milk and in the sera of 27 infants fed with these formulas. The biotin content reached the recommended value in only five formulas. All of the hydrolysate formulas and more than half of the special formulas contained biotin biotin was low in infants fed only with the hydrolysate formulas, and one of them had alopecia related to biotin deficiency. While many were asymptomatic, infants fed with formulas lacking biotin are at risk of developing symptomatic disease. The addition of biotin to breast milk substitutes was finally approved in the middle of 2014, however pediatricians in Japan should still be vigilant with regard to nutritional biotin deficiency in infants for the time being. © 2016 Japan Pediatric Society.

  18. Design and synthesis of biotin analogues reversibly binding with streptavidin.

    Science.gov (United States)

    Yamamoto, Tomohiro; Aoki, Kiyoshi; Sugiyama, Akira; Doi, Hirofumi; Kodama, Tatsuhiko; Shimizu, Yohei; Kanai, Motomu

    2015-04-01

    Two new biotin analogues, biotin carbonate 5 and biotin carbamate 6, have been synthesized. These molecules were designed to reversibly bind with streptavidin by replacing the hydrogen-bond donor NH group(s) of biotin's cyclic urea moiety with oxygen. Biotin carbonate 5 was synthesized from L-arabinose (7), which furnishes the desired stereochemistry at the 3,4-cis-dihydroxy groups, in 11% overall yield (over 10 steps). Synthesis of biotin carbamate 6 was accomplished from L-cysteine-derived chiral aldehyde 33 in 11% overall yield (over 7 steps). Surface plasmon resonance analysis of water-soluble biotin carbonate analogue 46 and biotin carbamate analogue 47 revealed that KD values of these compounds for binding to streptavidin were 6.7×10(-6)  M and 1.7×10(-10)  M, respectively. These values were remarkably greater than that of biotin (KD =10(-15)  M), and thus indicate the importance of the nitrogen atoms for the strong binding between biotin and streptavidin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. KF-1 ubiquitin ligase: an anxiety suppressor

    Directory of Open Access Journals (Sweden)

    Tamotsu Hashimoto-Gotoh

    2009-05-01

    Full Text Available Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located to the endoplasmic reticulum (ER, may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. Thus, KF-1 may degrade some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD. Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice, be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.

  20. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels.

    Science.gov (United States)

    Boone-Villa, Daniel; Aguilera-Méndez, Asdrubal; Miranda-Cervantes, Adriana; Fernandez-Mejia, Cristina

    2015-10-01

    Several studies have shown that pharmacological concentrations of biotin decrease hyperlipidemia. The molecular mechanisms by which pharmacological concentrations of biotin modify lipid metabolism are largely unknown. Adipose tissue plays a central role in lipid homeostasis. In the present study, we analyzed the effects of biotin supplementation in adipose tissue on signaling pathways and critical proteins that regulate lipid metabolism, as well as on lipolysis. In addition, we assessed serum fatty acid concentrations. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (control: 1.76 mg biotin/kg; supplemented: 97.7 mg biotin/kg diet) over 8 weeks postweaning. Compared with the control group, biotin-supplemented mice showed an increase in the levels of adipose guanosine 3',5'-cyclic monophosphate (cGMP) (control: 30.3±3.27 pmol/g wet tissue; supplemented: 49.5±3.44 pmol/g wet tissue) and of phosphorylated forms of adenosine 5'-monophosphate-activated protein kinase (AMPK; 65.2%±1.06%), acetyl-coenzyme A (CoA), carboxylase-1 (196%±68%), and acetyl-CoA carboxylase-2 (78.1%±18%). Serum fatty acid concentrations were decreased (control: 1.12±0.04 mM; supplemented: 0.91±0.03 mM), and no change in lipolysis was found (control: 0.29±0.05 μmol/mL; supplemented: 0.33±0.08 μmol/mL). In conclusion, 8 weeks of dietary biotin supplementation increased adipose tissue cGMP content and protein expression of the active form of AMPK and of the inactive forms of acetyl-CoA carboxylase-1 and acetyl-CoA carboxylase-2. Serum fatty acid levels fell, and no change in lipolysis was observed. These findings provide insight into the effects of biotin supplementation on adipose tissue and support its use in the treatment of dyslipidemia.

  1. Uptake of 153Sm-DTPA-bis-biotin and 99mTc-DTPA-bis-biotin in rat as-30D-hepatoma cells

    International Nuclear Information System (INIS)

    Correa-Gonzalez, Luis; Arteaga de Murphy, Consuelo; Ferro-Flores, Guillermina; Pedraza-Lopez, Martha; Murphy-Stack, Eduardo; Mino-Leon, Dolores; Perez-Villasenor, Graciela; Diaz-Torres, Yaneth; Munoz-Olvera, Rodrigo

    2003-01-01

    Labeled biotin has been used mainly for pretargeted therapy, an approach for increasing the amount of radioactivity delivered to a cancer cell. The aim of this investigation was to prepare 153 Sm-DTPA-bis-biotin and 99m Tc-DTPA-bis-biotin in order to study their in vitro and in vivo uptake in rat AS-30D hepatoma cells found in ascites and in implanted tumor. DTPA-bis-biotin (pH 8) was 153 Sm labeled with 153 SmCl 3 and 99m Tc-DTPA-bis-biotin was prepared via SnCl 2 reduction. Radiochemical purity was >98% in both cases. AS-30D hepatoma cells were obtained from ascites of a rat with hepatoma and were propagated in the peritoneum cavity of normal rats. In vitro ascites cell 153 Sm-DTPA-bis-biotin uptake was compared with 153 SmCl 3 cell uptake. The ratio cell 153 Sm-DTPA-bis-biotin/ 153 SmCl 3 was 39.6 and when avidin was added it increased to 50. The ratio 99m Tc-DTPA-bis-biotin/TcO 4 Na was 8.7. Concentration of 153 Sm-DTPA-bis-biotin in tumor 2, 3 and 24 h after administration, was 5, 15 and 3 times higher than in normal muscle (T/nT). Biodistribution in a 0.083-24 h time period showed that 153 Sm-DTPA-bis-biotin was taken up only by ascites tumor cells and hepatoma cells. Two and 3 h ratio ascites/liver (As/Lv) was 6.4 and 6.0. For 99m Tc-DTPA-bis-biotin 2 and 3 h T/nT was 15.7 and 4.7 and 2 h As/Lv was 1.4. In conclusion, both radiopharmaceuticals show high uptake in rat AS-30D hepatoma cells in ascites and in implanted tumor. Since lung, thyroid, kidney, liver or pancreas carcinomas are ascites producing cancers 153 Sm-DTPA-bis-biotin would be an adequate therapeutic radiopharmaceutical for these patients whose life quality would be enhanced with control of ascites, and a reduction of the primary tumor and its metastases

  2. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    Science.gov (United States)

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  3. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    2011-03-01

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  4. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    Science.gov (United States)

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence.

    Directory of Open Access Journals (Sweden)

    Sadia Bekal

    Full Text Available Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis to associate single nucleotide polymorphisms (SNPs with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN. To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB, and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1. The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.

  6. In vivo studies of biotin absorption in distal rat intestine

    International Nuclear Information System (INIS)

    Bowman, B.B.; Rosenberg, I.H.

    1986-01-01

    The authors have extended their previous studies of biotin absorption in rat proximal jejunum (PJ) to examine biotin absorptive capacity of rat ileum (I) and proximal colon (PC) using in vivo intestinal loop technique. Intestinal loops (2.5 cm) were filled with 0.3 ml of solution containing ( 3 H)-biotin and ( 14 C)-inulin in phosphate buffer, pH 6.5. Biotin absorption was determined on the basis of luminal biotin disappearance after correction for inulin recovery and averaged (pmol/loop-10 min; X +/- SEM). In related experiments, 5-cm loops of PJ, distal I (DI), or PC were filled with 0.5 ml of solution of similar composition (1.0 μM biotin). The abdominal cavity was closed and the rats were allowed to recover from anesthesia, then sacrificed 3 hr after injection. Biotin absorption averaged 96.2% (PJ), 93.2% (DI), and 25.8% (PC) of the dose administered. These differences were reflected in the radioactive biotin content of plasma and intestinal loop, kidney, and liver. These data demonstrate significant biotin absorption in rat DI and PC, as required if the intestinal microflora are to be considered as a source of biotin for the host

  7. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2015-02-01

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. The photostability of the commonly used biotin-4-fluorescein probe.

    Science.gov (United States)

    Haack, Richard A; Swift, Kerry M; Ruan, Qiaoqiao; Himmelsbach, Richard J; Tetin, Sergey Y

    2017-08-15

    Biotin-4-fluorescein (B4F) is a commonly used fluorescent probe for studying biotin-(strept)avidin interactions. During a characterization study of an anti-biotin antibody, using B4F as the probe, we noticed a discrepancy in the expected and experimentally determined number of biotin binding sites. Analytical testing showed that the biotin moiety in the probe undergoes a photosensitized oxidation to produce a mixture of biotin sulfoxides which has the potential to impact the quantitation of binding sites using this fluorescent probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oral administration of supplementary biotin differentially influences the fertility rate and oviductal expression of avidin and avidin-related protein-2 in low- and high-fertility broiler line hens.

    Science.gov (United States)

    Daryabari, H; Akhlaghi, A; Zamiri, M J; Pirsaraei, Z Ansari; Mianji, G Rahimi; Deldar, H; Eghbalian, A N

    2015-02-01

    Probable involvement of avidin and avidin-related protein-2 (AVR2) in sperm viability in the sperm storage tubules of turkeys has been suggested. The high affinity of biotin to avidin and its analogs is also well documented. The present study aimed to determine the effect of oral biotin on reproductive performance and oviductal mRNA expression of avidin and AVR2 in 2 broiler hen lines with different fertility rates. Low-fertility (line B) and high-fertility (line D) hens (n=144) were randomly allotted to receive 0 (T0), 0.30 (T1), or 0.45 (T2) mg/L biotin in drinking water from 30 through 33 wk of age. The reproductive performance of the hens was evaluated using artificial insemination. At the end of the treatment period, 24 hens per line were killed to assay the expression of avidin and AVR2 in the uterovaginal junction. Supplementary biotin increased egg production from 73.5% for T0 to 87.8% for T2. Hens administered with biotin in line B, but not in line D, showed an increase (8.4%) in fertility rate. Hatchability, chick quality, and overall embryonic mortality were not different among the experimental groups. Real-time PCR data showed that both avidin (P=0.0013) and AVR2 (Pbiotin×line interaction effect, where low-fertility line B hens receiving the high biotin level recorded respectively a 3.9 and 15.3% increase in avidin and AVR2 mRNA expression, although biotin did not affect these traits in line D hens. Control hens in line D had a dramatically higher AVR2 expression record (7.4-fold) compared with the control hens in line B. The correlation coefficients of fertility rate and avidin expression were 0.73 and 0.66 in lines B and D, respectively. However, the correlation of fertility and AVR2 (r=0.65) was significant for line D hens only. Overall, fertility rate and oviductal expression of avidin and AVR2 were dichotomously affected by oral biotin in low- and high-fertility line hens, where only low-fertility birds showed improvements in these attributes.

  10. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    Science.gov (United States)

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  11. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair.

    Science.gov (United States)

    Densham, Ruth M; Morris, Joanna R

    2017-03-04

    The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.

  12. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    Science.gov (United States)

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  13. An efficient synthesis of 1α,25-dihydroxyvitamin D3 LC-biotin.

    Science.gov (United States)

    Kattner, Lars; Bernardi, Dan

    2017-10-01

    In recent years the apparent impact of vitamin D deficiency on human health has gained increased awareness. Consequently, the development of appropriate assays to measure the status of medicinally most relevant vitamin D metabolites in human blood, serum or relevant tissue is continuously being improved. Particularly, assaying of 1α,25-dihydroxyvitamin D 3 , in turn considered as the most active metabolite, is mainly indicated in disorders leading to calcaemia or those resulting from an impaired 1α-hydroxylation of 25-hydroxyvitamin D 3 . Thus, in some competitive protein binding and ELISA assays, biotin-linked 1α,25-dihydroxyvitamin D 3 (1α,25-dihydroxyvitamin D 3 LC-biotin) is employed for measurement of actual calicitriol concentration. A new efficient synthesis of 1α,25-dihydroxyvitamin D 3 LC-biotin is described, starting with readily available vitamin D 2 , and combining a classical approach to access 1α,25-dihydroxyvitamin D 3 , appropriate OH-protective group transformations, and a C-3-O-alkylation, suitable to connect the biotin-linker in a reliable, selective and high yielding strategy. The developed methodology is applicable to the synthesis of a wide variety of C-3-OH-linked vitamin D 3 and D 2 derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  15. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    Science.gov (United States)

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway. PMID:22649270

  16. Genes encoding biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution

    Science.gov (United States)

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...

  17. Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2016-06-01

    Full Text Available Straightforward and effective methods are required for the bioconjugation of proteins to surfaces and particles. Previously we demonstrated that the fusion of a single domain antibody with the biotin binding molecule rhizavidin provided a facile method to coat biotin-modified surfaces with a highly active and oriented antibody. Here, we constructed similar single domain antibody—rhizavidin fusions as well as unfused rhizavidin with a His-tag. The unfused rhizavidin produced efficiently and its utility for assay development was demonstrated in surface plasmon resonance experiments. The single domain antibody-rhizavidin fusions were utilized to coat quantum dots that had been prepared with surface biotins. Preparation of antibody coated quantum dots by this means was found to be both easy and effective. The prepared single domain antibody-quantum dot reagent was characterized by surface plasmon resonance and applied to toxin detection in a fluoroimmunoassay sensing format.

  18. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  19. Biotin IgM Antibodies in Human Blood: A Previously Unknown Factor Eliciting False Results in Biotinylation-Based Immunoassays

    Science.gov (United States)

    Chen, Tingting; Hedman, Lea; Mattila, Petri S.; Jartti, Laura; Jartti, Tuomas; Ruuskanen, Olli; Söderlund-Venermo, Maria; Hedman, Klaus

    2012-01-01

    Biotin is an essential vitamin that binds streptavidin or avidin with high affinity and specificity. As biotin is a small molecule that can be linked to proteins without affecting their biological activity, biotinylation is applied widely in biochemical assays. In our laboratory, IgM enzyme immuno assays (EIAs) of µ-capture format have been set up against many viruses, using as antigen biotinylated virus like particles (VLPs) detected by horseradish peroxidase-conjugated streptavidin. We recently encountered one serum sample reacting with the biotinylated VLP but not with the unbiotinylated one, suggesting in human sera the occurrence of biotin-reactive antibodies. In the present study, we search the general population (612 serum samples from adults and 678 from children) for IgM antibodies reactive with biotin and develop an indirect EIA for quantification of their levels and assessment of their seroprevalence. These IgM antibodies were present in 3% adults regardless of age, but were rarely found in children. The adverse effects of the biotin IgM on biotinylation-based immunoassays were assessed, including four inhouse and one commercial virus IgM EIAs, showing that biotin IgM do cause false positivities. The biotin can not bind IgM and streptavidin or avidin simultaneously, suggesting that these biotin-interactive compounds compete for the common binding site. In competitive inhibition assays, the affinities of biotin IgM antibodies ranged from 2.1×10−3 to 1.7×10−4 mol/L. This is the first report on biotin antibodies found in humans, providing new information on biotinylation-based immunoassays as well as new insights into the biomedical effects of vitamins. PMID:22879954

  20. Serum biotin in Japanese children: Enzyme-linked immunosorbent assay measurement.

    Science.gov (United States)

    Wakabayashi, Kenji; Kodama, Hiroko; Ogawa, Eishin; Sato, Yasuhiro; Motoyama, Kahoko; Suzuki, Mitsuyoshi

    2016-09-01

    Biotin deficiency has been reported in Japanese infants fed special formulas for medical reasons, including those with milk allergy and congenital metabolic diseases, because these formulas contain little biotin. Serum biotin measurement is useful for diagnosing biotin deficiency. We applied a simple and rapid method to analyze serum biotin, and established normal ranges for children and adults. Serum biotin in 188 healthy Japanese children aged 0-4 years and in 25 healthy adults was analyzed using a Biotin ELISA Kit (immundiagnostik). The effects of various conditions on the measurement of serum biotin were also examined. Median biotin in children aged 0-4 years was 10.4 ng/dL (IQR, 7.9-13.4 ng/dL), and that in adults was 12.9 ng/dL (IQR, 10.8-15.8 ng/dL). Normal range was 4.7-22.0 ng/dL in children and 8.4-20.5 ng/dL in adults (calculated using two-sided 95%CI). Measurements obtained with this method were not affected by frozen storage, freeze-thaw, or hemolysis, indicating that serum biotin can be analyzed accurately under these conditions, with a possible application to plasma samples. Serum biotin was significantly lower in children than in adults, with the normal range being 4.7-22.0 ng/dL in children and 8.4-20.5 ng/dL in adults. This simple and accurate enzyme-linked immunosorbent assay method is useful for diagnosing biotin deficiency. © 2016 The Authors. Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society.

  1. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  2. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    Science.gov (United States)

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  3. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  4. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases

    Science.gov (United States)

    Lin, Yi-Han; Evans, Timothy R.; Doms, Alexandra G.; Beauchene, Nicole A.; Hierro, Aitor

    2018-01-01

    The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway. PMID:29415051

  5. Computational redesign of bacterial biotin carboxylase inhibitors using structure-based virtual screening of combinatorial libraries.

    Science.gov (United States)

    Brylinski, Michal; Waldrop, Grover L

    2014-04-02

    As the spread of antibiotic resistant bacteria steadily increases, there is an urgent need for new antibacterial agents. Because fatty acid synthesis is only used for membrane biogenesis in bacteria, the enzymes in this pathway are attractive targets for antibacterial agent development. Acetyl-CoA carboxylase catalyzes the committed and regulated step in fatty acid synthesis. In bacteria, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. Fragment-based screening revealed that amino-oxazole inhibits biotin carboxylase activity and also exhibits antibacterial activity against Gram-negative organisms. In this report, we redesigned previously identified lead inhibitors to expand the spectrum of bacteria sensitive to the amino-oxazole derivatives by including Gram-positive species. Using 9,411 small organic building blocks, we constructed a diverse combinatorial library of 1.2×10⁸ amino-oxazole derivatives. A subset of 9×10⁶ of these compounds were subjected to structure-based virtual screening against seven biotin carboxylase isoforms using similarity-based docking by eSimDock. Potentially broad-spectrum antibiotic candidates were selected based on the consensus ranking by several scoring functions including non-linear statistical models implemented in eSimDock and traditional molecular mechanics force fields. The analysis of binding poses of the top-ranked compounds docked to biotin carboxylase isoforms suggests that: (1) binding of the amino-oxazole anchor is stabilized by a network of hydrogen bonds to residues 201, 202 and 204; (2) halogenated aromatic moieties attached to the amino-oxazole scaffold enhance interactions with a hydrophobic pocket formed by residues 157, 169, 171 and 203; and (3) larger substituents reach deeper into the binding pocket to form additional hydrogen bonds with the side chains of residues 209 and 233. These structural insights into drug-biotin

  6. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  7. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  8. Plasma Levels of Biotin Metabolites Are Elevated in Hemodialysis Patients with Cramps.

    Science.gov (United States)

    Fujiwara, Masako; Ando, Itiro; Yagi, Shigeaki; Nishizawa, Manabu; Oguma, Shiro; Satoh, Keisuke; Sato, Hiroshi; Imai, Yutaka

    2016-08-01

    Patients with renal failure undergoing hemodialysis (HD) are susceptible to muscle cramps during and after HD. Muscle cramps are defined as the sudden onset of a prolonged involuntary muscle contraction accompanied by severe pain. Through HD, water-soluble vitamins are drawn out with water. Since biotin, a water-soluble vitamin, plays an essential role as one of the coenzymes in producing energy, we have hypothesized that deficiency of biotin may be responsible for HD-associated cramps. We previously reported that biotin administration ameliorated the muscle cramps, despite the elevated plasma biotin levels before HD and biotin administration, as judged by an enzyme-linked immunosorbent assay (ELISA). However, the ELISA measures not only biotin but also total avidin-binding substances (TABS) including biotin metabolites. In the present study, we determined biotin in HD patients as well as healthy controls, using a newly developed method with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The plasma samples were collected from 28 HD patients (16 patients with cramps and 12 patients without cramps) before HD and biotin administration and from 11 controls. The results showed that the accumulation of biotin and TABS in plasma of HD patients compared to controls. Importantly, the levels of biotin metabolites, i.e. TABS subtracted by biotin, increased significantly in patients with cramps over those without cramps. Moreover, the levels of biotin metabolites were significantly higher in patients with a poor response to administered biotin, compared to those with a good response. We propose that accumulated biotin metabolites impair biotin's functions as a coenzyme.

  9. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    Science.gov (United States)

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Interplays between Sumoylation, SUMO-Targeted Ubiquitin Ligases, and the Ubiquitin-Adaptor Protein Ufd1 in Fission Yeast

    DEFF Research Database (Denmark)

    Køhler, Julie Bonne

    and the specific molecular interactions and sequence of events linking sumoylation, ubiquitylation and substrate degradation, has been largely uncovered. Using the fission yeast model organism I here present evidence for a role of the Ufd1 (ubiquitinfusion degradation 1) protein, and by extension of the Cdc48-Ufd1...... proteasome mediates direct cross-talk between the two modification systems. By contributing to the dynamic turnover of SUMO conjugated species these SUMO-targeted ubiquitin ligases (STUbLs) fulfills essential roles in both yeast and man. However, the specific sumoylated proteins affected by STUbL activity...... either in STUbL or Ufd1 function. In addition to identifying more than 900 unique sumoylated sites, these efforts revealed a number of proteins with upregulated sumoylation either in STUbL and/or Ufd1 mutant cells. These findings propose specific candidate substrates through which STUbL and Cdc48-Ufd1...

  11. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M. (WU); (Danforth)

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  12. Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2014-10-24

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies pointed out that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling the flowering time point in plants. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  13. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.

    Science.gov (United States)

    Li, Ru; Huang, Jiqing; Kast, Juergen

    2015-05-01

    Oxidative stress due to the imbalance of reactive oxygen species (ROS) and the resulting reversible cysteine oxidation (CysOX) are involved in the early proatherogenic aspect of atherosclerosis. Given that the corresponding redox signaling pathways are still unclear, a modified biotin switch assay was developed to quantify the reversible CysOX in an atherosclerosis model established by using a monocytic cell line treated with platelet releasate. The accumulation of ROS was observed in the model system and validated in human primary monocytes. Through the application of the modified biotin switch assay, we obtained the first reversible CysOX proteome for this model. A total of 75 peptides, corresponding to 53 proteins, were quantified with oxidative modification. The bioinformatics analysis of these CysOX-containing proteins highlighted biological processes including glycolysis, cytoskeleton arrangement, and redox regulation. Moreover, the reversible oxidation of three glycolysis enzymes was observed using this method, and the regulation influence was verified by an enzyme activity assay. NADPH oxidase (NOX) inhibition treatment, in conjunction with the modified biotin switch method, was used to evaluate the global CysOX status. In conclusion, this versatile modified biotin switch assay provides an approach for the quantification of all reversible CysOX and for the study of redox signaling in atherosclerosis as well as in diseases in other biological systems.

  14. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.

    Science.gov (United States)

    Liu, Feng; Wang, Xiao; Su, Mengying; Yu, Mengyuan; Zhang, Shengchun; Lai, Jianbin; Yang, Chengwei; Wang, Yaqin

    2015-09-17

    SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.

  15. Binding interactions between yeast tRNA ligase and a precursor transfer ribonucleic acid containing two photoreactive uridine analogues

    International Nuclear Information System (INIS)

    Tanner, N.K.; Hanna, M.M.; Abelson, J.

    1988-01-01

    Yeast tRNA ligase, from Saccharomyces cerevisiae, is one of the protein components that is involved in the splicing reaction of intron-containing yeast precursor tRNAs. It is an unusual protein because it has three distinct catalytic activities. It functions as a polynucleotide kinase, as a cyclic phosphodiesterase, and as an RNA ligase. We have studied the binding interactions between ligase and precursor tRNAs containing two photoreactive uridine analogues, 4-thiouridine and 5-bromouridine. When irradiated with long ultraviolet light, RNA containing these analogues can form specific covalent bonds with associated proteins. In this paper, we show that 4-thiouridine triphosphate and 5-bromouridine triphosphate were readily incorporated into a precursor tRNA(Phe) that was synthesized, in vitro, with bacteriophage T7 RNA polymerase. The analogue-containing precursor tRNAs were authentic substrates for the two splicing enzymes that were tested (endonuclease and ligase), and they formed specific covalent bonds with ligase when they were irradiated with long-wavelength ultraviolet light. We have determined the position of three major cross-links and one minor cross-link on precursor tRNA(Phe) that were located within the intron and near the 3' splice site. On the basis of these data, we present a model for the in vivo splicing reaction of yeast precursor tRNAs

  16. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    Directory of Open Access Journals (Sweden)

    Tomoki Abe

    2013-01-01

    Full Text Available Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA, IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice.

  17. Dietary intake of high-dose biotin inhibits spermatogenesis in young rats.

    Science.gov (United States)

    Sawamura, Hiromi; Ikeda, Chieko; Shimada, Ryoko; Yoshii, Yui; Watanabe, Toshiaki

    2015-02-01

    To characterize a new function of the water-soluble vitamin, biotin, in reproduction and early growth in mammals, the effects of high dietary doses of biotin on early spermatogenesis were biochemically and histologically investigated in male rats. Weaned rats were fed a CE-2 (control) diet containing 0.00004% biotin, or a control diet supplemented with 0.01%, 0.1%, or 1.0% biotin. Pair-fed rats were fed a control diet that was equal in calories to the amount ingested by the 1.0% biotin group, because food intake was decreased in the 1.0% biotin group. Food intake and body weight gain were lower in the 1.0% biotin group than in the control group. The kidney, brain and testis weights were significantly lower in the 1.0% biotin group than in the pair-fed group after 6 weeks of feeding. The accumulation of biotin in the liver and testis increased in a dose-dependent manner. In the 1.0% biotin group, the number of mature sperm was markedly lower, that of sperm with morphologically abnormal heads, mainly consisting of round heads, had increased. In addition, the development of seminiferous tubules was inhibited, and few spermatogonia and no spermatocytes were histologically observed. These results demonstrated that the long-term intake of high-dose biotin inhibited spermatogenesis in young male rats. © 2014 Japanese Teratology Society.

  18. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  19. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Science.gov (United States)

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  1. NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching

    OpenAIRE

    Lippert, Lisa G.; Hallock, Jeffrey T.; Dadosh, Tali; Diroll, Benjamin T.; Murray, Christopher B.; Goldman, Yale E.

    2016-01-01

    We developed methods to solubilize, coat, and functionalize with NeutrAvidin elongated semiconductor nanocrystals (quantum nanorods, QRs) for use in single molecule polarized fluorescence microscopy. Three different ligands were compared with regard to efficacy for attaching NeutrAvidin using the “zero-length cross-linker” 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). Biotin-4-fluorescene (B4F), a fluorophore that is quenched when bound to avidin proteins, was used to quantify bioti...

  2. Changes in biotin levels during production of natto, Japanese fermented soybean

    Directory of Open Access Journals (Sweden)

    Makoto Muratsugu

    2017-09-01

    Full Text Available The change of biotin level during production of natto (Japanese fermented soybean was investigated in this study.  The total biotin level was measured by an agar plate bioassay using Lactobacillus plantarum ATCC 8014.  The total biotin level decreased during water soaking, but increased after the fermentation of soybeans using Bacillus subtilis var. natto (B. natto and reached a maximum level.  The increase of total biotin was not affected by Asp, Arg, and Ile which promoted the growth of L. plantarum in high concentrations.  The peak level of biotin in the fermented soybeans was significantly higher than that of dry soybeans.  The fermented soybeans at the biotin peak level were adequate for food.  In addition, we detected 9 and 4 biotinylated polypeptides in the soybeans and B. natto used in this study, respectively.  We speculated that the increase of biotin level may depend on the increase of the 4 biotinylated polypeptides and free biotin in B. natto.

  3. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  4. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.

    Science.gov (United States)

    Heinisch, Tillmann; Ward, Thomas R

    2016-09-20

    The biotin-streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin-(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as "molecular velcro", allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes. For this purpose, a biotinylated organometallic catalyst is introduced within (strept)avidin to afford a hybrid catalyst that combines features reminiscent of both enzymes and organometallic catalysts. Importantly, ArMs can be optimized by chemogenetic means. Combining a small collection of biotinylated organometallic catalysts with streptavidin mutants allows generation of significant diversity, thus allowing optimization of the catalytic performance of ArMs. Pursuing this strategy, the following reactions have been implemented: hydrogenation, alcohol oxidation, sulfoxidation, dihydroxylation, allylic alkylation, transfer hydrogenation, Suzuki cross-coupling, C-H activation, and metathesis. In this Account, we summarize our efforts in the latter four reactions. X-ray analysis of various ArMs based on the biotin-streptavidin technology reveals the versatility and commensurability of the biotin-binding vestibule to accommodate and interact with transition states of the scrutinized organometallic transformations. In particular, streptavidin residues at positions 112 and 121 recurrently lie in close proximity to the biotinylated metal cofactor. This observation led us to develop a streamlined 24-well plate streptavidin production and screening platform to optimize the performance of ArMs. To date, most of the efforts in the field of ArMs have focused on the use of purified

  5. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2016-09-01

    Full Text Available Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3 as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance.

  6. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis.

    Science.gov (United States)

    Bhattarai, Hitesh; Gupta, Richa; Glickman, Michael S

    2014-10-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3' phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. RMND5 from Xenopus laevis Is an E3 Ubiquitin-Ligase and Functions in Early Embryonic Forebrain Development

    OpenAIRE

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K.; Menssen, Ruth; Wolf, Dieter H.; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of t...

  8. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    Science.gov (United States)

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  9. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    Directory of Open Access Journals (Sweden)

    Thorsten Pfirrmann

    Full Text Available In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  10. Biotin-deficient diet induces chromosome misalignment and spindle defects in mouse oocytes.

    Science.gov (United States)

    Tsuji, Ai; Nakamura, Toshinobu; Shibata, Katsumi

    2015-01-01

    Increased abnormal oocytes due to meiotic chromosome misalignment and spindle defects lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Here, we investigated the effect of biotin deficiency on oocyte quality. Three-week-old female ICR mice were fed a biotin-deficient or control diet (0, 0.004 g biotin/kg diet) for 21 days. On day 22, these mouse oocytes were analyzed by immunofluorescence. Due to biotin, undernutrition increased the frequency of abnormal oocytes (the biotin deficient vs. control: 40 vs. 16%). Next, the remaining mice in the biotin-deficient group were fed a control or biotin-deficient diet from day 22 to 42. Although biotin nutritional status in the recovery group was restored, the frequency of abnormal oocytes in the recovery group was still higher than that in the control group (48 vs. 18%). Our results indicate that steady, sufficient biotin intake is required for the production of high-quality oocytes in mice.

  11. The Use of Biotin to Demonstrate Immunohistochemistry, Western Blotting, and Dot Blots in University Practical Classes

    Science.gov (United States)

    Millar, Thomas James; Knighton, Ronald; Chuck, Jo-Anne

    2012-01-01

    Immunological detection of proteins is an essential method to demonstrate to undergraduate biology students, however, is often difficult in resource and time poor student laboratory sessions. This method describes a failsafe method to rapidly and economically demonstrate this technique using biotinylated proteins or biotin itself as targets for…

  12. Avidin/PSS membrane microcapsules with biotin-binding activity.

    Science.gov (United States)

    Endo, Yoshihiro; Sato, Katsuhiko; Sugimoto, Kentaro; Anzai, Jun-ichi

    2011-08-15

    Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Implication of SUMO E3 ligases in nucleotide excision repair.

    Science.gov (United States)

    Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji

    2015-08-01

    Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

  14. Treatment of biotin-responsive basal ganglia disease: Open comparative study between the combination of biotin plus thiamine versus thiamine alone.

    Science.gov (United States)

    Tabarki, Brahim; Alfadhel, Majid; AlShahwan, Saad; Hundallah, Khaled; AlShafi, Shatha; AlHashem, Amel

    2015-09-01

    To compare the combination of biotin plus thiamine to thiamine alone in treating patients with biotin-responsive basal ganglia disease in an open-label prospective, comparative study. twenty patients with genetically proven biotin-responsive basal ganglia disease were enrolled, and received for at least 30 months a combination of biotin plus thiamine or thiamine alone. The outcome measures included duration of the crisis, number of recurrence/admissions, the last neurological examination, the severity of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and the brain MRI findings during the crisis and after 30 months of follow-up. Ten children with a mean age of 6 years(1/2) were recruited in the biotin plus thiamine group (group 1) and ten children (6 females and 4 males) with a mean age of 6 years and 2 months were recruited in the thiamine group (group 2). After 2 years of follow-up treatment, 6 of 20 children achieved complete remission, 10 had minimal sequelae in the form of mild dystonia and dysarthria (improvement of the BFMDRS, mean: 80%), and 4 had severe neurologic sequelae. All these 4 patients had delayed diagnosis and management. Regarding outcome measures, both groups have a similar outcome regarding the number of recurrences, the neurologic sequelae (mean BFMDS score between the groups, p = 0.84), and the brain MRI findings. The only difference was the duration of the acute crisis: group 1 had faster recovery (2 days), versus 3 days in group 2 (p = 0.005). Our study suggests that over 30 months of treatment, the combination of biotin plus thiamine is not superior to thiamine alone in the treatment of biotin-responsive basal ganglia disease. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. Targeting protein biotinylation enhances tuberculosis chemotherapy.

    Science.gov (United States)

    Tiwari, Divya; Park, Sae Woong; Essawy, Maram M; Dawadi, Surendra; Mason, Alan; Nandakumar, Madhumitha; Zimmerman, Matthew; Mina, Marizel; Ho, Hsin Pin; Engelhart, Curtis A; Ioerger, Thomas; Sacchettini, James C; Rhee, Kyu; Ehrt, Sabine; Aldrich, Courtney C; Dartois, Véronique; Schnappinger, Dirk

    2018-04-25

    Successful drug treatment for tuberculosis (TB) depends on the unique contributions of its component drugs. Drug resistance poses a threat to the efficacy of individual drugs and the regimens to which they contribute. Biologically and chemically validated targets capable of replacing individual components of current TB chemotherapy are a major unmet need in TB drug development. We demonstrate that chemical inhibition of the bacterial biotin protein ligase (BPL) with the inhibitor Bio-AMS (5'-[ N -(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine) killed Mycobacterium tuberculosis ( Mtb ), the bacterial pathogen causing TB. We also show that genetic silencing of BPL eliminated the pathogen efficiently from mice during acute and chronic infection with Mtb Partial chemical inactivation of BPL increased the potency of two first-line drugs, rifampicin and ethambutol, and genetic interference with protein biotinylation accelerated clearance of Mtb from mouse lungs and spleens by rifampicin. These studies validate BPL as a potential drug target that could serve as an alternate frontline target in the development of new drugs against Mtb . Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. BRCA1 Is a Histone-H2A-Specific Ubiquitin Ligase

    Directory of Open Access Journals (Sweden)

    Reinhard Kalb

    2014-08-01

    Full Text Available The RING domain proteins BRCA1 and BARD1 comprise a heterodimeric ubiquitin (E3 ligase that is required for the accumulation of ubiquitin conjugates at sites of DNA damage and for silencing at DNA satellite repeat regions. Despite its links to chromatin, the substrate and underlying function of the BRCA1/BARD1 ubiquitin ligase remain unclear. Here, we show that BRCA1/BARD1 specifically ubiquitylates histone H2A in its C-terminal tail on lysines 127 and 129 in vitro and in vivo. The specificity for K127-129 is acquired only when H2A is within a nucleosomal context. Moreover, site-specific targeting of the BRCA1/BARD1 RING domains to chromatin is sufficient for H2Aub foci formation in vivo. Our data establish BRCA1/BARD1 as a histone-H2A-specific E3 ligase, helping to explain its localization and activities on chromatin in cells.

  17. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases SMURF1 KIAA1625 SMURF1 E3 ubiquitin-protein ligase SMURF1 SM...AD ubiquitination regulatory factor 1, SMAD-specific E3 ubiquitin-protein ligase 1 9606 Homo sapiens Q9HCE7 57154 2LB1, 2LAZ, 2LB0, 3PYC 57154 Q9HCE7 ...

  18. Biotin-specific synthetic receptors prepared using molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-02-16

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label.

  19. Biotin-specific synthetic receptors prepared using molecular imprinting

    International Nuclear Information System (INIS)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-01-01

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label

  20. The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.

    Science.gov (United States)

    Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki

    2016-01-01

    Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase.

  1. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses.

    Science.gov (United States)

    Xu, Jianing; Xing, Shanshan; Cui, Haoran; Chen, Xuesen; Wang, Xiaoyun

    2016-04-01

    The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.

  2. Functional Dissection of the DNA Interface of the Nucleotidyltransferase Domain of Chlorella Virus DNA Ligase*

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3′-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3′-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3′-OH nucleoside in the catalysis of DNA 5′-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig. PMID:21335605

  3. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-04-15

    Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.

  4. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    Science.gov (United States)

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb.

  5. Preparation of 177Lu-DTPA-BIS-BIOTIN and biodistribution evaluation in normal mice

    International Nuclear Information System (INIS)

    Deng Xinrong; Luo Zhifu; Du Jin

    2010-01-01

    The labeling method for 177 Lu-DTPA-BIS-BIOTIN was established, and the biodistribution of 177 Lu-DTPA-BIS-BIOTIN in normal mice was carried out as well. Under the optimal experimental condition (DTPA-BIS-BIOTIN 25 μg, pH=4.5 reacting at 80 degree C for 20 min), the labeling yield of 177 Lu-DTPA-BIS-BIOTIN is more than 99.0%. 177 Lu-DTPA-BIS-BIOTIN shows pretty good in vitro stability. The biodistribution of 177 Lu-DTPA-BIS-BIOTIN in normal mice shows a rapid blood clearance. The uptake of 177 Lu-DTPA-BIS-BIOTIN is mainly accumulated in liver, spleen and kidney. 177 Lu-DTPA-BIS-BIOTIN is excreted by kidney. The results provide the basis for further study on 177 Lu-DTPA-BIS-BIOTIN used in pretargeted radioimage and radiotherapy of cancer. (authors)

  6. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Penas, Clara; Ramachandran, Vimal [John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL (United States); Ayad, Nagi George, E-mail: nayad@med.miami.edu [John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL (United States); Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL (United States)

    2012-01-09

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  7. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    International Nuclear Information System (INIS)

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2012-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  8. Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy.

    Science.gov (United States)

    Mehdizadeh, Mozhdeh; Rouhani, Hasti; Sepehri, Nima; Varshochian, Reyhaneh; Ghahremani, Mohammad Hossein; Amini, Mohsen; Gharghabi, Mehdi; Ostad, Seyed Nasser; Atyabi, Fatemeh; Baharian, Azin; Dinarvand, Rassoul

    2017-05-01

    Active targeted chemotherapy is expected to provide more specific delivery of cytotoxic drugs to the tumor cells and hence reducing the side effects on healthy tissues. Due to the over expression of biotin receptors on cancerous cells as a result of further requirement for rapid proliferations, biotin can be a good candidate as a targeting agent. In this study, biotin decorated PLGA nanoparticles (NPs) containing SN-38 were prepared and in vitro studies were evaluated for their improved anti-cancer properties. In conclusion, biotin targeted PLGA NPs containing SN-38 showed preferential anticancer properties against tumor cells with biotin receptor over expression.

  9. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.

    Science.gov (United States)

    Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F

    2014-12-20

    The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Reactivity comparison of biological material after radiolabeling with avidin-biotin system

    International Nuclear Information System (INIS)

    Fan Wo; Qian Jianhua; Zhu Benxing

    2003-01-01

    To find a method for determining the immunoreactivity of monoclonal antibodies after radiolabeling avidin is unlabeled and labeled with Rodamine, 131 I and 188 Re, respectively. The affinities and half-desorbed amounts of biotin and four kinds of avidin are determined by the biotin columns plus non-labeled avidin (cold avidin). The affinities of biotin and avidin unlabeled and labeled with Rodamine, 188 Re and 131 I are decreased in turn. Their half-desorbed amounts from biotin are 21.9, 19.5, 25.7 and 47.9 μg of cold avidin. Two kinds of radiolabeled avidin have lower affinity with biotin than that of avidin unlabeled and labeled with Rodamine. There is a possibility to evaluate the reactivity of biological materials with different labeling methods by avidin-biotin system

  11. A simple and rapid ultra-high-performance liquid chromatography-tandem mass spectrometry method to determine plasma biotin in hemodialysis patients.

    Science.gov (United States)

    Yagi, Shigeaki; Nishizawa, Manabu; Ando, Itiro; Oguma, Shiro; Sato, Emiko; Imai, Yutaka; Fujiwara, Masako

    2016-08-01

    A simple, rapid, and selective method for determination of plasma biotin was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After single-step protein precipitation with methanol, biotin and stable isotope-labeled biotin as an internal standard (IS) were chromatographed on a pentafluorophenyl stationary-phase column (2.1 × 100 mm, 2.7 μm) under isocratic conditions using 10 mm ammonium formate-acetonitrile (93:7, v/v) at a flow rate of 0.6 mL/min. The total chromatographic runtime was 5 min for each injection. Detection was performed in a positive electrospray ionization mode by monitoring selected ion transitions at m/z 245.1/227.0 and 249.1/231.0 for biotin and the IS, respectively. The calibration curve was linear in the range of 0.05-2 ng/mL using 300 μL of plasma. The intra- and inter-day precisions were all biotin concentrations in hemodialysis patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A radiochemical assay for biotin in biological materials

    International Nuclear Information System (INIS)

    Hood, R.L.

    1975-01-01

    A radiochemical assay for biotin is described. The assay was sensitive to one nanogram and simple enough for routine biotin analyses. The assay yielded results which were comparable to those obtained from a microbiological assay using Lactobacillus plantarum. (author)

  13. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Bastian Jöhnk

    2016-09-01

    Full Text Available F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus.

  14. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter Krogh; Nielsen, Sofie Vincents; Lindorff-Larsen, Kresten

    2016-01-01

    conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology...

  15. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  16. File list: Oth.Brs.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.Biotin.AllCell hg19 TFs and others Biotin Breast SRX673718,SRX673712,SRX...RX673713 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.Biotin.AllCell.bed ...

  17. File list: Oth.Brs.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.Biotin.AllCell hg19 TFs and others Biotin Breast SRX673718,SRX673712,SRX...RX673714 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.Biotin.AllCell.bed ...

  18. File list: Oth.Brs.10.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.Biotin.AllCell hg19 TFs and others Biotin Breast SRX673718,SRX673715,SRX...RX673713 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.Biotin.AllCell.bed ...

  19. Synthesis of a Cytokinin Linked by a Spacer to Dexamethasone and Biotin: Conjugates to Detect Cytokinin-Binding Proteins

    Directory of Open Access Journals (Sweden)

    You Wang

    2016-04-01

    Full Text Available Yeast cells expressing cDNA libraries have provided two new approaches to facilitate further identification of cytokinin-binding proteins and receptors. These are the yeast three hybrid (Y3H system and fluorescence activated cell sorting (FACS. The Y3H system requires a synthetic hybrid ligand comprising an “anchor” moiety (e.g., dexamethasone linked to a cytokinin via a spacer. In the yeast nucleus, this ligand by binding connects two fusion proteins leading to a reporter gene activation and detection and characterisation of cytokinin binding proteins. Herein is reported the first synthesis of dexamethasone-cytokinin ligands with a spacer linkage. This was attached to the purine ring of 6-benzylaminopurine (BAP at positions 2, 8 or 9. To achieve this, dexamethasone was modified by periodate oxidation yielding a carboxylic group used for conjugation to the spacer by amide formation. Biotinyl derivatives of cytokinins for FACS included those synthesised by reaction of an activated ester of biotin with 8-(10-amino-decylamino derivatives of BAP and BAP 9-riboside. Properties of the conjugates and some biological situations where they could be applicable are discussed briefly.

  20. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  1. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...

  2. File list: Oth.Neu.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.Biotin.AllCell mm9 TFs and others Biotin Neural SRX1057041,SRX1057049,SR...X1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.Biotin.AllCell.bed ...

  3. File list: Oth.Neu.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.Biotin.AllCell mm9 TFs and others Biotin Neural SRX1057041,SRX1057049,SR...X1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.Biotin.AllCell.bed ...

  4. File list: Oth.Neu.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.Biotin.AllCell mm9 TFs and others Biotin Neural SRX1057045,SRX1057047,SR...X1057049,SRX1057041,SRX1057051,SRX1057043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.Biotin.AllCell.bed ...

  5. Structure-Guided Design of an Engineered Streptavidin with Reusability to Purify Streptavidin-Binding Peptide Tagged Proteins or Biotinylated Proteins

    OpenAIRE

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin an...

  6. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  7. Tetracycline is back. Three-step tetracycline-biotin tumour targeting

    International Nuclear Information System (INIS)

    Salehi, N.; Lichtenstein, M.

    1998-01-01

    Full text: In the 1960s, investigators attempted to use radiolabelled tetracycline for the detection of tumours. This was limited by bone and gastrointestinal uptake. The monoclonal antibody Avidin Biotin technology has been used for 10 years to target tumours. We have improved a novel mechanism using three step targeting, to demonstrate tumour cells in (C57B1/6X balb-c) F1 mice with subcutaneously implanted E-3 thymoma. The three steps were (1) i.p. injection of Biotin Tetracycline conjugate (t:1) ratio, (2) 96 h later Avidin was injected, and (3) 24 h after (2) 99m Tc-CDTPA-Biotin was injected. Avidin has four high affinity (Km 10-15) Biotin binding sites, hence step (2) couples the Avidin to Tetracycline-Biotin in the tumour. The Avidin then provides a high affinity target for the otherwise rapidly urinary excreted 99m Tc-CDTPA-Biotin. Mice were sacrificed 16-24h after (3) by cervical dislocation. Biodistribution of radioactivity tumour to blood, liver, bone and stomach were: T:BL= 7.2, T:LI= 3.35, TBO= 9.65, T:ST= 0.93. The percentage of injected dose/g was T = 4.49%, BL = 0.62%. E-3 Thymoma is a rapid growing tumour. At day 1 (step 1) the tumour size was 0.45 cm, six days later (step 3) each dimension was doubled. Hence, percentage of injected dose per gram is artefactually reduced eight-fold. With a slowly growing tumour using the same method the results may be better. The conclusions reached are that Tetracycline-Biotin 3-stage method of tumour targeting is worthy of further development

  8. Carrier-mediated system for transport of biotin in rat intestine in vitro

    International Nuclear Information System (INIS)

    Said, H.M.; Redha, R.

    1987-01-01

    Transport of biotin was examined in rat intestine using the everted sac technique. Transport of 0.1 μM biotin was linear with time for at least 30 min of incubation and occurred at a rate 3.7 pmol g initial tissue wet wt -1 min -1 . Transport of biotin was higher in the jejunum than the ileum and was minimum in the colon (85 +/- 6, 36 +/- 6, and 2.8 +/- 0.6 pmol x g initial tissue wet wt -1 x 25 min -1 , respectively). In the jejunum, transport of biotin was saturable at low concentrations but linear at higher concentrations. The transport of low concentrations of biotin was 1) inhibited by structural analogues (desthiobiotin, biotin methyl ester, diaminobiotin, and biocytin), 2) Na + dependent, 3) energy dependent, 4) temperature dependent, and 5) proceeded against a concentration gradient in the serosal compartment. No metabolic alteration occurs to the biotin molecule during transport. This study demonstrates that biotin transport in rat intestine occurs by a carrier-mediated process at low concentrations and by simple diffusion at high concentrations. Furthermore, the carrier-mediated process is Na + , energy, and temperature dependent

  9. File list: Oth.ALL.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX477548,SRX273...57049,SRX1057045,SRX1057047,SRX019779,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Biotin.AllCell.bed ...

  10. File list: Oth.ALL.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX477548,SRX312...7041,SRX1057049,SRX1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Biotin.AllCell.bed ...

  11. File list: Oth.ALL.10.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX218273,SRX477...7041,SRX1057049,SRX1057045,SRX1057047,SRX1057043,SRX1057051 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.10.Biotin.AllCell.bed ...

  12. File list: Oth.ALL.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Biotin.AllCell mm9 TFs and others Biotin All cell types SRX218273,SRX148...57047,SRX148805,SRX1057049,SRX1057041,SRX1057051,SRX1057043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Biotin.AllCell.bed ...

  13. Discordant Analytical Results Caused by Biotin Interference on Diagnostic Immunoassays in a Pediatric Hospital.

    Science.gov (United States)

    Ali, Mahesheema; Rajapakshe, Deepthi; Cao, Liyun; Devaraj, Sridevi

    2017-09-01

    Recent studies have reported that biotin interferes with certain immunoassays. In this study, we evaluated the analytical interference of biotin on immunoassays that use streptavidin-biotin in our pediatric hospital. We tested the effect of different concentrations of biotin (1.5-200 ng/ml) on TSH, Prolactin, Ferritin, CK-MB, β-hCG, Troponin I, LH, FSH, Cortisol, Anti-HAV antibody (IgG and IgM), assays on Ortho Clinical Diagnostic Vitros 5600 Analyzer. Biotin (up to 200 ng/mL) did not significantly affect Troponin I and HAV assays. Biotin (up to 12.5 ng/ml) resulted in biotin >6.25 ng/mL significantly affected TSH (>20% bias) assay. Prolactin was significantly affected even at low levels (Biotin 1.5 ng/mL). Thus, we recommend educating physicians about biotin interference in common immunoassays and adding an electronic disclaimer. © 2017 by the Association of Clinical Scientists, Inc.

  14. Comparative analysis of the end-joining activity of several DNA ligases.

    Directory of Open Access Journals (Sweden)

    Robert J Bauer

    Full Text Available DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1 DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3'- and 5'- single base overhangs, and 5'-two base overhangs. This analysis revealed that T4 DNA ligase, the most common enzyme utilized for in vitro ligation, had its greatest activity on blunt- and 2-base overhangs, and poorest on 5'-single base overhangs. Other ligases had different substrate specificity: T3 DNA ligase ligated only blunt ends well; PBCV1 DNA ligase joined 3'-single base overhangs and 2-base overhangs effectively with little blunt or 5'- single base overhang activity; and human ligase 3 had highest activity on blunt ends and 5'-single base overhangs. There is no correlation of activity among ligases on blunt DNA ends with their activity on single base overhangs. In addition, DNA binding domains (Sso7d, hLig3 zinc finger, and T4 DNA ligase N-terminal domain were fused to PBCV1 DNA ligase to explore whether modified binding to DNA would lead to greater activity on these difficult to ligate substrates. These engineered ligases showed both an increased binding affinity for DNA and increased activity, but did not alter the relative substrate preferences of PBCV1 DNA ligase, indicating active site structure plays a role in determining substrate preference.

  15. Connecting DNA origami structures using the biotin- streptavidin ...

    African Journals Online (AJOL)

    Aghomotsegin

    carbon nanotubes on DNA origami. In order to reconfigure DNA origami pliers, Kuzuya (Kuzuya et al.,. 2011) and colleagues used the strong binding biotin- streptavidin interaction. All these researchers made use of the biotin- streptavidin interaction to functionalize the DNA strand or. DNA origami structures. In this work, we ...

  16. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    Science.gov (United States)

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  17. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    Science.gov (United States)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  18. BIOTIN INTERFERENCE WITH ROUTINE CLINICAL IMMUNOASSAYS: UNDERSTAND THE CAUSES AND MITIGATE THE RISKS.

    Science.gov (United States)

    Samarasinghe, Shanika; Meah, Farah; Singh, Vinita; Basit, Arshi; Emanuele, Nicholas; Emanuele, Mary Ann; Mazhari, Alaleh; Holmes, Earle W

    2017-08-01

    The objectives of this report are to review the mechanisms of biotin interference with streptavidin/biotin-based immunoassays, identify automated immunoassay systems vulnerable to biotin interference, describe how to estimate and minimize the risk of biotin interference in vulnerable assays, and review the literature pertaining to biotin interference in endocrine function tests. The data in the manufacturer's "Instructions for Use" for each of the methods utilized by seven immunoassay system were evaluated. We also conducted a systematic search of PubMed/MEDLINE for articles containing terms associated with biotin interference. Available original reports and case series were reviewed. Abstracts from recent scientific meetings were also identified and reviewed. The recent, marked, increase in the use of over-the-counter, high-dose biotin supplements has been accompanied by a steady increase in the number of reports of analytical interference by exogenous biotin in the immunoassays used to evaluate endocrine function. Since immunoassay methods of similar design are also used for the diagnosis and management of anemia, malignancies, autoimmune and infectious diseases, cardiac damage, etc., biotin-related analytical interference is a problem that touches every area of internal medicine. It is important for healthcare personnel to become more aware of immunoassay methods that are vulnerable to biotin interference and to consider biotin supplements as potential sources of falsely increased or decreased test results, especially in cases where a lab result does not correlate with the clinical scenario. FDA = U.S. Food & Drug Administration FT3 = free tri-iodothyronine FT4 = free thyroxine IFUs = instructions for use LH = luteinizing hormone PTH = parathyroid hormone SA/B = streptavidin/biotin TFT = thyroid function test TSH = thyroid-stimulating hormone.

  19. Biological behavior of 188Re-biotin chelate for multistep therapy with the avidin-biotin system

    International Nuclear Information System (INIS)

    Choi, T. H.; Ahn, S. H.; Choi, C. W.; Woo, K. S.; Jung, W. S.; Lim, S. J.; Lim, S. M.

    1999-01-01

    The purpose of this study was to test the three-step targeting of tumors in mice using biotinylated antibody, streptavidin and radiolabeled biotin for radioimmunotherapy (RAIT). Three-step pretargetting can potentially decreases harmful radiation to normal tissues in radioimmunotherapy. 188 Re from 188 W- 188 Re generator, is recently introduced in therapeutic nuclear medicine and made it possible to use whenever needed. We studied biotin-chelates MGB for use in the avidin/biotin pretargetting system. Chelates that hold radiometals with high stability under physiological conditions are essential to avoid excessive radiation damage to non-target cells. We synthesized MAG 2 GABA-Biocytin (MGB), labeled with 188 Re and evaluated biological behavior of 188 Re-MGB. biotinyl MAG 2 GABA bind the therapeutic radiometal 188 Re with excellent in vitro stability and have the required physiological properties for pretargetted therapy. In normal mice, 188 Re-MGB was excreted via hepatobiliary pathway, %ID/g of GI tract was 52.1 at 120min. In Raji cells tumor bearing nude mice, liver and colon were higher than those of normal mouse. Tumor uptake at 120min was 0.05%ID/g. 188 Re-MGB may have a role in pretargetted radioimmunotherapy

  20. NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching.

    Science.gov (United States)

    Lippert, Lisa G; Hallock, Jeffrey T; Dadosh, Tali; Diroll, Benjamin T; Murray, Christopher B; Goldman, Yale E

    2016-03-16

    We developed methods to solubilize, coat, and functionalize with NeutrAvidin elongated semiconductor nanocrystals (quantum nanorods, QRs) for use in single molecule polarized fluorescence microscopy. Three different ligands were compared with regard to efficacy for attaching NeutrAvidin using the "zero-length cross-linker" 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). Biotin-4-fluorescene (B4F), a fluorophore that is quenched when bound to avidin proteins, was used to quantify biotin binding activity of the NeutrAvidin coated QRs and biotin binding activity of commercially available streptavidin coated quantum dots (QDs). All three coating methods produced QRs with NeutrAvidin coating density comparable to the streptavidin coating density of the commercially available quantum dots (QDs) in the B4F assay. One type of QD available from the supplier (ITK QDs) exhibited ∼5-fold higher streptavidin surface density compared to our QRs, whereas the other type of QD (PEG QDs) had 5-fold lower density. The number of streptavidins per QD increased from ∼7 streptavidin tetramers for the smallest QDs emitting fluorescence at 525 nm (QD525) to ∼20 tetramers for larger, longer wavelength QDs (QD655, QD705, and QD800). QRs coated with NeutrAvidin using mercaptoundecanoicacid (MUA) and QDs coated with streptavidin bound to biotinylated cytoplasmic dynein in single molecule TIRF microscopy assays, whereas Poly(maleic anhydride-alt-1-ocatdecene) (PMAOD) or glutathione (GSH) QRs did not bind cytoplasmic dynein. The coating methods require optimization of conditions and concentrations to balance between substantial NeutrAvidin binding vs tendency of QRs to aggregate and degrade over time.

  1. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter.

    Science.gov (United States)

    Finkenwirth, Friedrich; Sippach, Michael; Landmesser, Heidi; Kirsch, Franziska; Ogienko, Anastasia; Grunzel, Miriam; Kiesler, Cornelia; Steinhoff, Heinz-Jürgen; Schneider, Erwin; Eitinger, Thomas

    2015-07-03

    Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [(3)H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Optimal use of tandem biotin and V5 tags in ChIP assays

    Directory of Open Access Journals (Sweden)

    Krpic Sanja

    2009-02-01

    Full Text Available Abstract Background Chromatin immunoprecipitation (ChIP assays coupled to genome arrays (Chip-on-chip or massive parallel sequencing (ChIP-seq lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies. Results Using the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking. Conclusion The combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes.

  3. Optimal use of tandem biotin and V5 tags in ChIP assays

    Science.gov (United States)

    Kolodziej, Katarzyna E; Pourfarzad, Farzin; de Boer, Ernie; Krpic, Sanja; Grosveld, Frank; Strouboulis, John

    2009-01-01

    Background Chromatin immunoprecipitation (ChIP) assays coupled to genome arrays (Chip-on-chip) or massive parallel sequencing (ChIP-seq) lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies. Results Using the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking. Conclusion The combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes. PMID:19196479

  4. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    Science.gov (United States)

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc

    Science.gov (United States)

    Kühnle, Simone; Mothes, Benedikt; Matentzoglu, Konstantin; Scheffner, Martin

    2013-01-01

    Inactivation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with development of the Angelman syndrome. Recently, it was reported that in mice, loss of E6AP expression results in increased levels of the synaptic protein Arc and a concomitant impaired synaptic function, providing an explanation for some phenotypic features of Angelman syndrome patients. Accordingly, E6AP has been shown to negatively regulate activity-regulated cytoskeleton-associated protein (Arc) and it has been suggested that E6AP targets Arc for ubiquitination and degradation. In our study, we provide evidence that Arc is not a direct substrate for E6AP and binds only weakly to E6AP, if at all. Furthermore, we show that down-regulation of E6AP expression stimulates estradiol-induced transcription of the Arc gene. Thus, we propose that Arc protein levels are controlled by E6AP at the transcriptional rather than at the posttranslational level. PMID:23671107

  6. File list: Oth.ALL.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673717,SRX673711,SRX673719,SRX673720,SRX673713,SRX673714,SRX1091033 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.Biotin.AllCell.bed ...

  7. File list: Oth.ALL.10.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673714,SRX673717,SRX673719,SRX673720,SRX673711,SRX673713,SRX1091033 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.Biotin.AllCell.bed ...

  8. File list: Oth.ALL.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673719,SRX673717,SRX673711,SRX673714,SRX1091033,SRX673713,SRX315187 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.50.Biotin.AllCell.bed ...

  9. File list: Oth.PSC.05.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX218273...67,SRX115147,SRX312228,SRX984569,SRX984573,SRX984572,SRX984568,SRX218274,SRX172568 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Biotin.AllCell.bed ...

  10. File list: Oth.PSC.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX477548...44,SRX115145,SRX984568,SRX172568,SRX218274,SRX327702,SRX312228,SRX213794,SRX327701 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.Biotin.AllCell.bed ...

  11. File list: Oth.ALL.20.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Biotin.AllCell hg19 TFs and others Biotin All cell types SRX731138,SRX31...X673711,SRX673716,SRX673717,SRX673719,SRX673713,SRX673714,SRX1091033 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.Biotin.AllCell.bed ...

  12. File list: Oth.PSC.50.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX477548...68,SRX172568,SRX218274,SRX327702,SRX213792,SRX213794,SRX172567,SRX312228,SRX327701 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Biotin.AllCell.bed ...

  13. File list: Oth.PSC.10.Biotin.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.Biotin.AllCell mm9 TFs and others Biotin Pluripotent stem cell SRX218273...69,SRX984573,SRX115147,SRX327702,SRX984572,SRX984568,SRX115145,SRX172568,SRX218274 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.Biotin.AllCell.bed ...

  14. Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase.

    Science.gov (United States)

    Jameson, Guy N L; Cosper, Michele Mader; Hernández, Heather L; Johnson, Michael K; Huynh, Boi Hanh

    2004-02-24

    biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.

  15. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases STUB1 CHIP STUB1 E3 ubiquitin-protein ligase CHIP Antigen NY...-CO-7, CLL-associated antigen KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing pr

  16. A Biotin Biosynthesis Gene Restricted to Helicobacter

    Science.gov (United States)

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  17. Effects of dietary biotin supplementation on glucagon production, secretion, and action.

    Science.gov (United States)

    Lazo-de-la-Vega-Monroy, Maria-Luisa; Larrieta, Elena; Tixi-Verdugo, Wilma; Ramírez-Mondragón, Rafael; Hernández-Araiza, Ileana; German, Michael S; Fernandez-Mejia, Cristina

    Despite increasing evidence that pharmacologic concentrations of biotin modify glucose metabolism, to our knowledge there have not been any studies addressing the effects of biotin supplementation on glucagon production and secretion, considering glucagon is one of the major hormones in maintaining glucose homeostasis. The aim of this study was to investigate the effects of dietary biotin supplementation on glucagon expression, secretion, and action. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg biotin/kg diet) for 8 wk postweaning. Glucagon gene mRNA expression was measured by the real-time polymerase chain reaction. Glucagon secretion was assessed in isolated islets and by glucagon concentration in plasma. Glucagon action was evaluated by glucagon tolerance tests, phosphoenolpyruvate carboxykinase (Pck1) mRNA expression, and glycogen degradation. Compared with the control group, glucagon mRNA and secretion were increased from the islets of the biotin-supplemented group. Fasting plasma glucagon levels were higher, but no differences between the groups were observed in nonfasting glucagon levels. Despite the elevated fasting glucagon levels, no differences were found in fasting blood glucose concentrations, fasting/fasting-refeeding glucagon tolerance tests, glycogen content and degradation, or mRNA expression of the hepatic gluconeogenic rate-limiting enzyme, Pck1. These results demonstrated that dietary biotin supplementation increased glucagon expression and secretion without affecting fasting blood glucose concentrations or glucagon tolerance and provided new insights into the effect of biotin supplementation on glucagon production and action. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  19. Pregnancy and lactation alter biomarkers of biotin metabolism in women consuming a controlled diet.

    Science.gov (United States)

    Perry, Cydne A; West, Allyson A; Gayle, Antoinette; Lucas, Lauren K; Yan, Jian; Jiang, Xinyin; Malysheva, Olga; Caudill, Marie A

    2014-12-01

    Biotin functions as a cofactor for several carboxylase enzymes with key roles in metabolism. At present, the dietary requirement for biotin is unknown and intake recommendations are provided as Adequate Intakes (AIs). The biotin AI for adults and pregnant women is 30 μg/d, whereas 35 μg/d is recommended for lactating women. However, pregnant and lactating women may require more biotin to meet the demands of these reproductive states. The current study sought to quantify the impact of reproductive state on biotin status response to a known dietary intake of biotin. To achieve this aim, we measured a panel of biotin biomarkers among pregnant (gestational week 27 at study entry; n = 26), lactating (postnatal week 5 at study entry; n = 28), and control (n = 21) women who participated in a 10- to 12-wk feeding study providing 57 μg of dietary biotin/d as part of a mixed diet. Over the course of the study, pregnant women excreted 69% more (vs. control; P biotin-dependent methylcrotonyl-coenzyme A carboxylase is impaired. Interestingly, urinary excretion of 3-hydroxyisovaleryl-carnitine (3-HIA-carnitine), a downstream metabolite of 3-HIA, was 27% lower (P = 0.05) among pregnant (vs. control) women, a finding that may arise from carnitine inadequacy during gestation. No differences (P > 0.05) were detected in plasma biotin, urinary biotin, or urinary bisnorbiotin between pregnant and control women. Lactating women excreted 76% more (vs. control; P = 0.001) of the biotin catabolite bisnorbiotin, indicating that lactation accelerates biotin turnover and loss. Notably, with respect to control women, lactating women excreted 23% less (P = 0.04) urinary 3-HIA and 26% less (P = 0.05) urinary 3-HIA-carnitine, suggesting that lactation reduces leucine catabolism and that these metabolites may not be useful indicators of biotin status during lactation. Overall, these data demonstrate significant alterations in markers of biotin metabolism during pregnancy and lactation and

  20. Pantothenic acid and biotin

    Science.gov (United States)

    Pantothenic acid and biotin are types of B vitamins. They are water-soluble, which means that the body can't store them. If the body can't use all of the vitamin, the extra vitamins leave the body through the ...

  1. Combined biotin-terpyridine systems : a new versatile bridge between biology, polymer science and metallo-supramolecular chemistry

    NARCIS (Netherlands)

    Hofmeier, H.; Pahnke, J.; Weidl, C.H.; Schubert, U.S.

    2004-01-01

    Biotin, a well-known binding unit for the proteins avidin and streptavidin, was combined with the chelating ligand terpyridine via polymeric and nonpolymeric spacers. An ¿-amino-functionalized terpyridyl-poly(ethylene glycol) was prepared and utilized for complex formation with iron(II), nickel(II),

  2. A simple and robust approach to immobilization of antibody fragments.

    Science.gov (United States)

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    Science.gov (United States)

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations

    Science.gov (United States)

    Liu, Fengjiao; Zhang, John Z. H.; Mei, Ye

    2016-06-01

    Previous experimental study measuring the binding affinities of biotin to the wild type streptavidin (WT) and three mutants (S45A, D128A and S45A/D128A double mutant) has shown that the loss of binding affinity from the double mutation is larger than the direct sum of those from two single mutations. The origin of this cooperativity has been investigated in this work through molecular dynamics simulations and the end-state free energy method using the polarized protein-specific charge. The results show that this cooperativity comes from both the enthalpy and entropy contributions. The former contribution mainly comes from the alternations of solvation free energy. Decomposition analysis shows that the mutated residues nearly have no contributions to the cooperativity. Instead, N49 and S88, which are located at the entry of the binding pocket and interact with the carboxyl group of biotin, make the dominant contribution among all the residues in the first binding shell around biotin.

  5. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    Science.gov (United States)

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  6. Radiolabeled biotin amides from triazenyl precursors: synthesis, binding, and in-vivo properties

    International Nuclear Information System (INIS)

    Kortylewicz, Z.P.; Baranowska-Kortylewicz, J.; Adelstein, S.J.; Carmel, A.D.; Kassis, A.I.

    1994-01-01

    The synthesis of N-(4-[ 127/125/123 I]iodobenzyl)biotin amides 4a - 4c performed by the direct decomposition of N-[4-(3',3'-dimethyltriazenyl)benzyl]biotin amide with sodium iodide in the presence of CF 3 COOH is described. Iodinated in this way biotin formed a stable complex with avidin (K d = 2.84 ± 0.45 x 10 -15 M, n = 3.9 ± 0.6) which dissociated in the presence of excess native biotin with a rate constant of 0.034 ± 0.006 hr -1 . Blood clearance studies and the lack of thyroid uptake indicated that this compound was not deiodinated in vivo and behaved in circulation much like native biotin. This aryltriazene precursor method is suitable for labeling with short-lived radiohalides. It can be used to produce no-carrier-added derivatives of biotin for use in biologic studies and assays involving avidin or streptavidin. (author)

  7. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  8. Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin.

    Science.gov (United States)

    Soural, Miroslav; Hodon, Jiri; Dickinson, Niall J; Sidova, Veronika; Gurska, Sona; Dzubak, Petr; Hajduch, Marian; Sarek, Jan; Urban, Milan

    2015-12-16

    To better understand the mechanism of action of antitumor triterpenes, we are developing methods to identify their molecular targets. A promising method is based on combination of quantitative proteomics with SILAC and uses active compounds anchored to magnetic beads via biotin-streptavidin interaction. We developed a simple and fast solid-phase synthetic technique to connect terpenes to biotin through a linker. Betulinic acid was biotinylated from three different conjugation sites for use as a standard validation tool since many molecular targets of this triterpene are already known. Then, a set of four other cytotoxic triterpenoids was biotinylated. Biotinylated terpenes were similarly cytotoxic to their nonbiotinylated parents, which suggests that the target identification should not be influenced by linker or biotin. The developed solid-phase synthetic approach is the first attempt to use solid-phase synthesis to connect active triterpenes to biotin and is applicable as a general procedure for routine conjugation of triterpenes with other molecules of choice.

  9. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    Science.gov (United States)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  10. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  11. The electrochemical reduction of biotin (vitamin B7) and conversion into its ester

    International Nuclear Information System (INIS)

    Lauw, Sherman J.L.; Ganguly, Rakesh; Webster, Richard D.

    2013-01-01

    Highlights: •Biotin can be reduced electrochemically, by one-electron, at a platinum electrode. •The reduction likely follows a direct discharge mechanism of the carboxyl group. •Electrochemically generated biotin carboxylate was reacted with iodomethane (91%). •ATR–FTIR characterization of biotin, its carboxylate anion, and its methyl ester. -- Abstract: An electrochemical study on biotin (vitamin B7), performed in aprotic solvents and at a platinum electrode, revealed that at approximately E f 0 =−1.6to−1.8 vs. (Fc/Fc + )/V (E f 0 =formal reduction potential and Fc=ferrocene), biotin is reduced by one-electron to form its carboxylate anion and dihydrogen via a direct discharge of the carboxylic acid at the platinum surface. The electrochemical reduction process appeared to be chemically reversible on the time-frame of cyclic voltammetry (CV) (t ≤ s), but not over the extended period of controlled potential electrolysis (CPE) (t ≥ min) where the conversion of biotin into its carboxylate anion was found to be chemically irreversible. A strategy to functionalize biotin's carboxyl group was established by performing a bulk reductive electrolysis, and then reacting the electrochemically generated carboxylate anion with iodomethane to afford biotin methyl ester in excellent yield (91%). Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy was successful in identifying several distinct and characteristic carbonyl absorbance peaks associated with the analogous forms of biotin available before electrolysis, after electrolysis, and after methylation

  12. Factitious Graves' Disease Due to Biotin Immunoassay Interference-A Case and Review of the Literature.

    Science.gov (United States)

    Elston, Marianne S; Sehgal, Shekhar; Du Toit, Stephen; Yarndley, Tania; Conaglen, John V

    2016-09-01

    Biotin (vitamin B7) is an essential co-factor for four carboxylases involved in fatty acid metabolism, leucine degradation, and gluconeogenesis. The recommended daily intake (RDI) of biotin is approximately 30 μg per day. Low-moderate dose biotin is a common component of multivitamin preparations, and high-dose biotin (10 000 times RDI) has been reported to improve clinical outcomes and quality of life in patients with progressive multiple sclerosis. Biotin is also a component of immunoassays, and supplementation may cause interference in both thyroid and non-thyroid immunoassays. To assess whether biotin ingestion caused abnormal thyroid function tests (TFTs) in a patient through assay interference. We report a patient with biotin-associated abnormal TFTs and a systematic review of the literature. A tertiary endocrine service in Hamilton, New Zealand. The patient had markedly abnormal TFTs that did not match the clinical context. After biotin cessation, TFTs normalized far more rapidly than possible given the half-life of T4, consistent with assay interference by biotin. Multiple other analytes also tested abnormal in the presence of biotin. Biotin ingested in moderate to high doses can cause immunoassay interference. Depending on the assay format, biotin interference can result in either falsely high or low values. Interference is not limited to thyroid tests and has the potential to affect a wide range of analytes. It is important for clinicians to be aware of this interaction to prevent misdiagnosis and inappropriate treatment.

  13. Pregnancy and Lactation Alter Biomarkers of Biotin Metabolism in Women Consuming a Controlled Diet123

    Science.gov (United States)

    Perry, Cydne A; West, Allyson A; Gayle, Antoinette; Lucas, Lauren K; Yan, Jian; Jiang, Xinyin; Malysheva, Olga; Caudill, Marie A

    2014-01-01

    Background: Biotin functions as a cofactor for several carboxylase enzymes with key roles in metabolism. At present, the dietary requirement for biotin is unknown and intake recommendations are provided as Adequate Intakes (AIs). The biotin AI for adults and pregnant women is 30 μg/d, whereas 35 μg/d is recommended for lactating women. However, pregnant and lactating women may require more biotin to meet the demands of these reproductive states. Objective: The current study sought to quantify the impact of reproductive state on biotin status response to a known dietary intake of biotin. Methods: To achieve this aim, we measured a panel of biotin biomarkers among pregnant (gestational week 27 at study entry; n = 26), lactating (postnatal week 5 at study entry; n = 28), and control (n = 21) women who participated in a 10- to 12-wk feeding study providing 57 μg of dietary biotin/d as part of a mixed diet. Results: Over the course of the study, pregnant women excreted 69% more (vs. control; P biotin-dependent methylcrotonyl–coenzyme A carboxylase is impaired. Interestingly, urinary excretion of 3-hydroxyisovaleryl-carnitine (3-HIA-carnitine), a downstream metabolite of 3-HIA, was 27% lower (P = 0.05) among pregnant (vs. control) women, a finding that may arise from carnitine inadequacy during gestation. No differences (P > 0.05) were detected in plasma biotin, urinary biotin, or urinary bisnorbiotin between pregnant and control women. Lactating women excreted 76% more (vs. control; P = 0.001) of the biotin catabolite bisnorbiotin, indicating that lactation accelerates biotin turnover and loss. Notably, with respect to control women, lactating women excreted 23% less (P = 0.04) urinary 3-HIA and 26% less (P = 0.05) urinary 3-HIA-carnitine, suggesting that lactation reduces leucine catabolism and that these metabolites may not be useful indicators of biotin status during lactation. Conclusions: Overall, these data demonstrate significant alterations in markers of

  14. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore.

    Science.gov (United States)

    Fahie, Monifa; Chisholm, Christina; Chen, Min

    2015-02-24

    Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.

  15. Pre-targeted tumor imaging with avidin-McAb and 99Tcm-DTPA-Biotin

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Wang Yuqi; Liu Xi; Sun Xin

    2002-01-01

    Objective: Biotin-avidin is used as pre-targeting system (BAS) in radioimmunoimaging in order to decrease radiation background and dose associated with the use of directly labelled McAb. The authors tried to use 99 Tc m to substitute 111 In to label DTPA-biotin to evaluate the value of the 99 Tc m -DTPA-biotin in BAS. Methods: DTPA-biotin solution was mixed with SnCl 2 and then fresh eluted 99 Tc m . The solution incubated for 10 min at room temperature. Mice bearing lung tumor (LA-795) with and without metastases in lung underwent 3-step pre-targeting test. Briefly, biotin-C50 was injected first, then avidin and 99 Tc m -DTPA-biotin was respectively given 1 day, 2 days later. Directly labelled C50 with 99 Tc m was used as control agent. Results: The labelling yield of 99 Tc m -DTPA-biotin was over 90%. The amount of SnCl 2 was the key feature in labelling. The tumor could be seen at 2 h after injection of 99 Tc m -DTPA-biotin with γ camera in 3- step groups. The tracer uptake in tumor was (1.35 +- 0.45)% ID/g at 2 h after injection, Tumor/Blood (T/B) was 5.86, T/Muscle (T/M) was 8.43. In control group which received 99 Tc m -DTPA-biotin only, the T/B was 0.85, T/M 1.1. For the directly labelled C50, the T/B was 1.65, T/M was 2.0 at 8 h after injection. Conclusion: Avidin-biotin pre-targeting system can be labelled with 99 Tc m , and the BAS can image the tumor as early as 2 h after injection

  16. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  17. Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway.

    Science.gov (United States)

    Yang, Yunpeng; Lang, Nannan; Yang, Gaohua; Yang, Sheng; Jiang, Weihong; Gu, Yang

    2016-05-01

    An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of solventogenic clostridia, we revealed that the insufficient biosynthesis of biotin, a pivotal coenzyme for many important biological processes, is a major limiting bottleneck in this anaerobe's performance. To address this problem, we strengthened the biotin synthesis of C. acetobutylicum by overexpressing four relevant genes involved in biotin transport and biosynthesis. This strategy led to faster growth and improved the titer and productivity of acetone, butanol and ethanol (ABE solvents) of C. acetobutylicum in both biotin-containing and biotin-free media. Expressionally modulating these four genes by modifying the ribosome binding site further promoted cellular performance, achieving ABE solvent titer and productivity as high as 21.9g/L and 0.30g/L/h, respectively, in biotin-free medium; these values exceeded those of the wild-type strain by over 30%. More importantly, biotin synthesis reinforcement also conferred improved ability of C. acetobutylicum to use hexose and pentose sugars, further demonstrating the potential of this metabolic-engineering strategy in solventogenic clostridia. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.

    Science.gov (United States)

    Nandakumar, Jayakrishnan; Nair, Pravin A; Shuman, Stewart

    2007-04-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.

  19. Effects of biotin supplementation on performance and claw lesions on a commercial dairy farm.

    Science.gov (United States)

    Bergsten, C; Greenough, P R; Gay, J M; Seymour, W M; Gay, C C

    2003-12-01

    A controlled 14-mo field trial was conducted to evaluate the effect of biotin supplementation on hoof lesions, milk production, and reproductive performance in a commercial dairy herd. One hundred seventy cows were studied and supplemented with either 0 or 20 mg/d of biotin by computer feeder. All were housed in the same free-stall facility with the same environment, base diet, and management. The feet of 99 cows were trimmed three times at 6-mo intervals, and hoof health was evaluated. Milk production and fertility data were captured monthly by the Dairy Herd Improvement Association. At the final hoof trimming, sole hemorrhages were significantly higher in control (50%) vs. biotin-supplemented animals (24%). The incidents of cows affected with double soles, hoof wall grooves, and heel horn erosion did not differ between control and biotin-supplemented animals. Biotin supplementation of trimmed cows resulted in 878 kg more milk than control cows when compared with previous lactation yield (n = 46 biotin supplemented, n = 48 control cows). At the end of the study, for both trimmed and untrimmed animals, biotin supplemented cows (n = 81) produced 481 kg more milk and 25 kg more fat than the controls (n = 81). There was no interaction between biotin supplementation and hoof trimming on milk production. There were variations in the response of fertility to biotin between age groups. First lactation heifers fed supplemental biotin had significantly fewer days from calving to conception and required fewer inseminations per pregnancy than controls of the same parity.

  20. The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations.

    Science.gov (United States)

    Bohlscheid, J C; Fellman, J K; Wang, X D; Ansen, D; Edwards, C G

    2007-02-01

    To study the impact of assimilable nitrogen, biotin and their interaction on growth, fermentation rate and volatile formation by Saccharomyces. Fermentations of synthetic grape juice media were conducted in a factorial design with yeast assimilable nitrogen (YAN) (60 or 250 mg l(-1)) and biotin (0, 1 or 10 microg l(-1)) as variables. All media contained 240 g l(-1) glucose + fructose (1 : 1) and were fermented using biotin-depleted Saccharomyces cerevisiae strains EC1118 or UCD 522. Both strains exhibited weak growth and sluggish fermentation rates without biotin. Increased nitrogen concentration resulted in higher maximum fermentation rates, while adjusting biotin from 1 to 10 microg l(-1) had no effect. Nitrogen x biotin interactions influenced fermentation time, production of higher alcohols and hydrogen sulfide (H(2)S). Maximum H(2)S production occurred in the medium containing 60 mg l(-1) YAN and 1 microg l(-1) biotin. Nitrogen x biotin interactions affect fermentation time and volatile production by Saccharomyces depending on strain. Biotin concentrations sufficient to complete fermentation may affect the organoleptic impact of wine. This study demonstrates the necessity to consider nutrient interactions when diagnosing problem fermentations.

  1. Photoacoustic imaging of tumor targeting with biotin conjugated nanostructured phthalocyanine assemblies

    Science.gov (United States)

    Lee, Seunghyun; Li, Xingshu; Lee, Dayoung; Yoon, Juyoung; Kim, Chulhong

    2018-02-01

    Visualizing biological markers and delivering bioactive agents to living organisms are important to biological research. In recent decades, photoacoustic imaging (PAI) has been significantly improved in the area of molecular imaging, which provides high-resolution volume imaging with high optical absorption contrast. To demonstrate the ability of nanoprobes to target tumors using PAI, we synthesize convertible nanostructured agents with strong photothermal and photoacoustic properties and linked the nanoprobe with biotin to target tumors in small animal model. Interestingly, these nanoprobes allow partial to disassemble in the presence of targeted proteins that switchable photoactivity, thus the nanoprobes provides a fluorescent-cancer imaging with high signal-to-background ratios. The proposed nanoprobe produce a much stronger PA signal compared to the same concentration of methylene blue (MB), which is widely used in clinical study and contrast agent for PAI. The biotin conjugated nanoprobe has high selectivity for biotin receptor positive cancer cells such as A549 (human lung cancer). Then we subsequently examined the PA properties of the nanoprobe that are inherently suitable for in vivo PAI. After injecting of the nanoprobe via intravenous method, we observed the mice's whole body by PA imaging and acquired the PA signal near the cancer. The PA signal increased linearly with time after injection and the fluorescence signal near the cancer was confirmed by fluorescence imaging. The ability to target a specific cancer of the nanoprobe was well verified by PA imaging. This study provides valuable perspective on the advancement of clinical translations and in the design of tumor-targeting phototheranostic agents that could act as new nanomedicines.

  2. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    Science.gov (United States)

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  3. Misdiagnosis of Graves' Disease with Apparent Severe Hyperthyroidism in a Patient Taking Biotin Megadoses.

    Science.gov (United States)

    Barbesino, Giuseppe

    2016-06-01

    Accurate immunoassays measuring minute quantities of hormones are the cornerstone of the practice of endocrinology. Despite tremendous advances in this field, novel pitfalls in these tests emerge from time to time. Oral biotin can interfere with immunoassays of several hormones. The purpose of this report is to relate an extreme case of such interference. A patient with progressive multiple sclerosis was found to have extremely elevated free thyroxine, triiodothyronine, and suppressed thyrotropin (TSH) levels. His TSH receptor binding inhibiting antibody level was also elevated. This constellation of laboratory findings suggested a diagnosis of severe Graves' disease. All of the assays yielding abnormal results employed the biotin-streptavidin affinity in their design. The patient had no symptoms of hyperthyroidism, and detailed review of his medications revealed intake of megadoses of biotin. Temporary discontinuation of biotin treatment resulted in complete resolution of the biochemical abnormalities. Non-physiologic biotin supplementation may interfere with several immunoassays, including thyroid hormones, TSH, thyroglobulin, and TSH receptor binding inhibiting antibody, leading to erroneous diagnoses. Questioning for biotin intake should be part of the evaluation for patients undergoing endocrine tests. Interruption of biotin supplementation for at least two days prior to biotin-sensitive tests should be sufficient to avoid major misdiagnoses.

  4. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  5. The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis.

    Science.gov (United States)

    Hermes, Fatemah A; Cronan, John E

    2013-10-01

    The covalent attachment of lipoate to the lipoyl domains (LDs) of the central metabolism enzymes pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) is essential for their activation and thus for respiratory growth in Saccharomyces cerevisiae. A third lipoate-dependent enzyme system, the glycine cleavage system (GCV), is required for utilization of glycine as a nitrogen source. Lipoate is synthesized by extraction of its precursor, octanoyl-acyl carrier protein (ACP), from the pool of fatty acid biosynthetic intermediates. Alternatively, lipoate is salvaged from previously modified proteins or from growth medium by lipoate protein ligases (Lpls). The first Lpl to be characterized, LplA of Escherichia coli, catalyses two partial reactions: activation of the acyl chain by formation of acyl-AMP, followed by transfer of the acyl chain to lipoyl domains (LDs). There is a surprising diversity within the Lpl family of enzymes, several of which catalyse reactions other than ligation reactions. For example, the Bacillus subtilis Lpl homologue LipM is an octanoyltransferase that transfers the octanoyl moiety from octanoyl-ACP to GCV. Another B. subtilis Lpl homologue, LipL, transfers octanoate from octanoyl-GCV to other LDs in an amido-transfer reaction. Study of eukaryotic Lpls has lagged behind studies of the bacterial enzymes. We report that the Lip3 Lpl homologue of the yeast S. cerevisiae has octanoyl-CoA-protein transferase activity, and discuss implications of this activity on the physiological role of Lip3 in lipoate synthesis. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis.

    Science.gov (United States)

    Salaemae, Wanisa; Booker, Grant W; Polyak, Steven W

    2016-04-01

    Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized de novo in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the Mycobacterium tuberculosis life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.

  7. The biodistribution and kinetics of the 153Sm labelled avidin, streptavidin and biotin

    International Nuclear Information System (INIS)

    Li Guiping; Zhu Chengmo; Jiang Xufeng; Feng Guowei; Zhang Shengguo

    1999-01-01

    Due to the high affinity of biotin to Av or SA. The authors labelled a biotin derivative (DTPA-biotin) with 153 Sm and then bound this 153 Sm labelled DTPA-biotin to Av or SA. The in vivo kinetics and biodistribution of 153 Sm labelled Av, SA and DTPA-biotin were studied in the rat and mice. The results demonstrated that 153 Sm-Av cleared from the blood rapidly with high liver and renal uptake; 153 Sm-SA cleared from blood slowly with high retention in liver, spleen and kidney, whereas 153 Sm metabolize more fast, and excreted mainly through the kidney. Thereby, the biodistribution difference of SA and Av mentioned above provided an experimental basis for the selection of different components of A-V system in pre-targeting radio-immuno imaging and radioimmunotherapy

  8. Association of Biotin Ingestion With Performance of Hormone and Nonhormone Assays in Healthy Adults.

    Science.gov (United States)

    Li, Danni; Radulescu, Angela; Shrestha, Rupendra T; Root, Matthew; Karger, Amy B; Killeen, Anthony A; Hodges, James S; Fan, Shu-Ling; Ferguson, Angela; Garg, Uttam; Sokoll, Lori J; Burmeister, Lynn A

    2017-09-26

    Biotinylated antibodies and analogues, with their strong binding to streptavidin, are used in many clinical laboratory tests. Excess biotin in blood due to supplemental biotin ingestion may affect biotin-streptavidin binding, leading to potential clinical misinterpretation. However, the degree of interference remains undefined in healthy adults. To assess performance of specific biotinylated immunoassays after 7 days of ingesting 10 mg/d of biotin, a dose common in over-the-counter supplements for healthy adults. Nonrandomized crossover trial involving 6 healthy adults who were treated at an academic medical center research laboratory. Administration of 10 mg/d of biotin supplementation for 7 days. Analyte concentrations were compared with baseline (day 0) measures on the seventh day of biotin treatment and 7 days after treatment had stopped (day 14). The 11 analytes included 9 hormones (ie, thyroid-stimulating hormone, total thyroxine, total triiodothyronine, free thyroxine, free triiodothyronine, parathyroid hormone, prolactin, N-terminal pro-brain natriuretic peptide, 25-hydroxyvitamin D) and 2 nonhormones (prostate-specific antigen and ferritin). A total of 37 immunoassays for the 11 analytes were evaluated on 4 diagnostic systems, including 23 assays that incorporated biotin and streptavidin components and 14 assays that did not include biotin and streptavidin components and served as negative controls. Among the 2 women and 4 men (mean age, 38 years [range, 31-45 years]) who took 10 mg/d of biotin for 7 days, biotin ingestion-associated interference was found in 9 of the 23 (39%) biotinylated assays compared with none of the 14 nonbiotinylated assays (P = .007). Results from 5 of 8 biotinylated (63%) competitive immunoassays tested falsely high and results from 4 out of 15 (27%) biotinylated sandwich immunoassays tested falsely low. In this preliminary study of 6 healthy adult participants and 11 hormone and nonhormone analytes measured by 37 immunoassays

  9. False biochemical diagnosis of hyperthyroidism in streptavidin-biotin-based immunoassays: the problem of biotin intake and related interferences.

    Science.gov (United States)

    Piketty, Marie-Liesse; Polak, Michel; Flechtner, Isabelle; Gonzales-Briceño, Laura; Souberbielle, Jean-Claude

    2017-05-01

    Immunoassays are now commonly used for hormone measurement, in high throughput analytical platforms. Immunoassays are generally robust to interference. However, endogenous analytical error may occur in some patients; this may be encountered in biotin supplementation or in the presence of anti-streptavidin antibody, in immunoassays involving streptavidin-biotin interaction. In these cases, the interference may induce both false positive and false negative results, and simulate a seemingly coherent hormonal profile. It is to be feared that this type of errors will be more frequently observed. This review underlines the importance of keeping close interactions between biologists and clinicians to be able to correlate the hormonal assay results with the clinical picture.

  10. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production.

    Science.gov (United States)

    Streit, W R; Entcheva, P

    2003-03-01

    Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.

  11. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  12. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice.

    Science.gov (United States)

    Hayashi, Atsushi; Mikami, Yohei; Miyamoto, Kentaro; Kamada, Nobuhiko; Sato, Toshiro; Mizuno, Shinta; Naganuma, Makoto; Teratani, Toshiaki; Aoki, Ryo; Fukuda, Shinji; Suda, Wataru; Hattori, Masahira; Amagai, Masayuki; Ohyama, Manabu; Kanai, Takanori

    2017-08-15

    Metabolism by the gut microbiota affects host physiology beyond the gastrointestinal tract. Here, we find that antibiotic-induced dysbiosis, in particular, overgrowth of Lactobacillus murinus (L. murinus), impaired gut metabolic function and led to the development of alopecia. While deprivation of dietary biotin per se did not affect skin physiology, its simultaneous treatment with vancomycin resulted in hair loss in specific pathogen-free (SPF) mice. Vancomycin treatment induced the accumulation of L. murinus in the gut, which consumes residual biotin and depletes available biotin in the gut. Consistently, L. murinus induced alopecia when monocolonized in germ-free mice fed a biotin-deficient diet. Supplementation of biotin can reverse established alopecia symptoms in the SPF condition, indicating that L. murinus plays a central role in the induction of hair loss via a biotin-dependent manner. Collectively, our results indicate that luminal metabolic alterations associated with gut dysbiosis and dietary modifications can compromise skin physiology. Copyright © 2017. Published by Elsevier Inc.

  13. Selective cell-surface labeling of the molecular motor protein prestin

    International Nuclear Information System (INIS)

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Highlights: → Trafficking to the plasma membrane is required for prestin function. → Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. → BAP-prestin can be metabolically labeled with biotin in HEK293 cells. → Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. → The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  14. Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylaminotoluic Acid] (PATA for Efficient Biotinylation of Peptides and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Martina Jezowska

    2012-11-01

    Full Text Available Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemistry”. As we reported recently, the activated triple bond donor p-(N-propynoylaminotoluic acid (PATA gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion.

  15. Biotin deprivation impairs mitochondrial structure and function and has implications for inherited metabolic disorders.

    Science.gov (United States)

    Ochoa-Ruiz, Estefanía; Díaz-Ruiz, Rodrigo; Hernández-Vázquez, Alaín de J; Ibarra-González, Isabel; Ortiz-Plata, Alma; Rembao, Daniel; Ortega-Cuéllar, Daniel; Viollet, Benoit; Uribe-Carvajal, Salvador; Corella, José Ahmed; Velázquez-Arellano, Antonio

    2015-11-01

    Certain inborn errors of metabolism result from deficiencies in biotin containing enzymes. These disorders are mimicked by dietary absence or insufficiency of biotin, ATP deficit being a major effect,whose responsible mechanisms have not been thoroughly studied. Here we show that in rats and cultured cells it is the result of reduced TCA cycle flow, partly due to deficient anaplerotic biotin-dependent pyruvate carboxylase. This is accompanied by diminished flow through the electron transport chain, augmented by deficient cytochrome c oxidase (complex IV) activity with decreased cytochromes and reduced oxidative phosphorylation. There was also severe mitochondrial damage accompanied by decrease of mitochondria, associated with toxic levels of propionyl CoA as shown by carnitine supplementation studies, which explains the apparently paradoxical mitochondrial diminution in the face of the energy sensor AMPK activation, known to induce mitochondria biogenesis. This idea was supported by experiments on AMPK knockout mouse embryonic fibroblasts (MEFs). The multifactorial ATP deficit also provides a plausible basis for the cardiomyopathy in patients with propionic acidemia, and other diseases.Additionally, systemic inflammation concomitant to the toxic state might explain our findings of enhanced IL-6, STAT3 and HIF-1α, associated with an increase of mitophagic BNIP3 and PINK proteins, which may further increase mitophagy. Together our results imply core mechanisms of energy deficit in several inherited metabolic disorders.

  16. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  17. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.

    Science.gov (United States)

    Best, Marcel; Degen, Anna; Baalmann, Mathis; Schmidt, Tobias T; Wombacher, Richard

    2015-05-26

    Inverse-electron-demand Diels-Alder cycloaddition (DAinv ) between strained alkenes and tetrazines is a highly bio-orthogonal reaction that has been applied in the specific labeling of biomolecules. In this work we present a two-step labeling protocol for the site-specific labeling of proteins based on attachment of a highly stable norbornene derivative to a specific peptide sequence by using a mutant of the enzyme lipoic acid ligase A (LplA(W37V) ), followed by the covalent attachment of tetrazine-modified fluorophores to the norbornene moiety through the bio-orthogonal DAinv  . We investigated 15 different norbornene derivatives for their selective enzymatic attachment to a 13-residue lipoic acid acceptor peptide (LAP) by using a standardized HPLC protocol. Finally, we used this two-step labeling strategy to label proteins in cell lysates in a site-specific manner and performed cell-surface labeling on living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    Directory of Open Access Journals (Sweden)

    Sau-Ching Wu

    Full Text Available Development of a high-affinity streptavidin-binding peptide (SBP tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine in this loop selectively reduces the biotin binding affinity (Kd from 4 × 10(-14 M to 4.45 × 10(-10 M without affecting the SBP binding affinity. Introduction of a second mutation (S27A to the first mutein (G48T results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable

  19. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    Science.gov (United States)

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4 × 10(-14) M to 4.45 × 10(-10) M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for

  20. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  1. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    Science.gov (United States)

    Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh

    2011-01-01

    Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482

  2. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    Energy Technology Data Exchange (ETDEWEB)

    Dawidziak, Daria M. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Sanchez, Jacint G. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Wagner, Jonathan M. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Ganser-Pornillos, Barbie K. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Pornillos, Owen [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia

    2017-07-24

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  3. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease.

    Science.gov (United States)

    Alfadhel, Majid; Al-Bluwi, Amal

    2017-01-01

    Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.

  4. Synthesis and detection of 3'-OH terminal biotin-labeled DNA probes

    International Nuclear Information System (INIS)

    Brakel, C.L.; Engelhardt, D.L.

    1985-01-01

    Nick translation has been used to prepare biotin-dUTP-containing DNA probes. These stable DNA probes have been identified, following hybridization to target DNA, by fluorescence using antibiotin antibodies or by enzyme reactions in which the enzyme has been linked to avidin or streptavidin. It is probable that this technology will be applicable to certain diagnostic determinations and that, with sufficient sensitivity, this technology might provide a system for obtaining rapid and specific diagnoses in situations presently requiring time-consuming growth assays. The sensitivity of this assay can be increased in two ways: (1) by increasing the amount of biotin contained in the DNA probes, and (2) by increasing the response to individual biotin molecules in the DNA probes. This report demonstrates that terminal deoxynucleotide transferase can be employed to increase the biotin content of DNA probes. We also introduce a new streptavidin-linked enzyme system that produces a greater response to biotinylated DNA probes than does streptavidin-linked horseradish peroxidase

  5. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    International Nuclear Information System (INIS)

    Bao, Baolong; Wijeratne, Subhashinee S.K.; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-01-01

    Highlights: → Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). → Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. → HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  6. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  7. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  8. Characterization of the scope and magnitude of biotin interference in susceptible Roche Elecsys competitive and sandwich immunoassays.

    Science.gov (United States)

    Trambas, Christina; Lu, Zhong; Yen, Tina; Sikaris, Ken

    2018-03-01

    Background Biotin interference is a significant problem to which at-risk laboratories must now be attuned. We sought to systematically characterize the nature of this interference in Roche immunoassays. Methods Known concentrations of biotin were titrated into serum samples and the effects on competitive and sandwich immunoassays were analysed. The maximum and minimum concentrations examined reflect those likely to be achieved in individuals on 5 to 10 mg supplements at the lower end, and 100 to 300 mg biotin at the high end. Results A high variability in biotin tolerance was observed. Some assays, such as troponin T, TSH and antithyroid antibodies, were extremely sensitive to the lower concentrations of biotin (15.6 and 31.3 ng/mL), whereas the majority of assays were relatively resistant. At concentrations ≥500 ng/mL, all assays showed significant interference from biotin but, again, the magnitude of the interference was variable. The more sensitive assays showed profound analytical bias at biotin concentrations that occur with high-dose therapy. Conclusion Our data demonstrate high variability in biotin tolerance across Roche immunoassays. The shape of the dose-response curves provides more detailed information than the single manufacturer-quoted figure for biotin tolerance. Accordingly, these data may be used by laboratories for more accurate risk assessment in predicting the effects of biotin. Our data may also be extrapolated to guide timing of blood tests in patients on high-dose biotin therapy: it demonstrates the number of half-lives required to withhold biotin in order to decrease its concentration to below a given assay tolerance.

  9. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility

    Directory of Open Access Journals (Sweden)

    Daphne eGoring

    2014-05-01

    Full Text Available Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family, self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus Cysteine Rich/S-locus Protein 11 (SCR/SP11 ligand and the pistil S Receptor Kinase (SRK. Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the ARM Repeat Containing 1 (ARC1 protein, a member of the Plant U-box (PUB family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1’s conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field.

  10. Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY and a host-cell transporter (SMVT.

    Directory of Open Access Journals (Sweden)

    Derek J Fisher

    Full Text Available Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB and/or transport (bioY. Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613 from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF. Type II ECFs are typically composed of a transport specific component (S and a chromosomally unlinked energy module (AT. Intriguingly, Chlamydia lack recognizable AT modules. Using (3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module and capacity (apparent K(m of 3.35 nM and V(max of 55.1 pmol×min(-1×mg(-1. Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT, which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin

  11. Uptake of Biotin by Chlamydia Spp. through the Use of a Bacterial Transporter (BioY) and a Host-Cell Transporter (SMVT)

    Science.gov (United States)

    Fisher, Derek J.; Fernández, Reinaldo E.; Adams, Nancy E.; Maurelli, Anthony T.

    2012-01-01

    Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB) and/or transport (bioY). Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613) from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF). Type II ECFs are typically composed of a transport specific component (S) and a chromosomally unlinked energy module (AT). Intriguingly, Chlamydia lack recognizable AT modules. Using 3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module) and capacity (apparent K(m) of 3.35 nM and V(max) of 55.1 pmol×min−1×mg−1). Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT), which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s) would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin from the

  12. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products.

    Science.gov (United States)

    Kurzchalia, T V; Wiedmann, M; Breter, H; Zimmermann, W; Bauschke, E; Rapoport, T A

    1988-03-15

    We have developed a new method for the rapid and sensitive detection of cell-free translation products. Biotinylated lysine is incorporated into newly synthesized proteins by means of lysyl-tRNA that is modified in the epsilon-position. After electrophoresis in a dodecyl sulfate gel and blotting onto nitrocellulose, the translation products can be identified by probing with streptavidin and biotinylated alkaline phosphatase, followed by incubation with a chromogenic enzyme substrate. The non-radioactive labelling by biotin approaches in its sensitivity that obtained by radioactive amino acids. The products are absolutely stable and can be rapidly identified. The new method has been tested with different mRNAs in the cell-free translation systems of wheat germ and reticulocytes. Neither the interaction of secretory proteins with the signal recognition particle nor the in vitro translocation across the endoplasmic reticulum membrane or core glycosylation of nascent polypeptides are prevented by the incorporation of biotinylated lysine residues. The results indicate that both the ribosome and the endoplasmic reticulum membrane permit the passage of polypeptides carrying bulky groups attached to the amino acids (by atomic models it was estimated that the size of the side chain of lysine changes from approximately equal to 0.8 nm to approximately equal to 2 nm after modification.

  13. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Pesonen, Markus [Physics, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Sund, Pernilla [Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Viitala, Tapani [Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki (Finland); Määttänen, Anni; Sarfraz, Jawad [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Wilén, Carl-Erik [Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Österbacka, Ronald [Physics, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Peltonen, Jouko [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland)

    2016-02-28

    Highlights: • Inkjet-printed polythiophene films show good adhesion on ultrathin gold films. • Biotin-functionalisation of polythiophene enables specificity towards streptavidin. • Supramolecular biorecognition architectures can be prepared by printing. • The addition of each printed layer can be followed by a change in capacitance. - Abstract: The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody–antigen complexes.

  14. Biotin status affects nickel allergy via regulation of interleukin-1beta production in mice.

    Science.gov (United States)

    Kuroishi, Toshinobu; Kinbara, Masayuki; Sato, Naoki; Tanaka, Yukinori; Nagai, Yasuhiro; Iwakura, Yoichiro; Endo, Yasuo; Sugawara, Shunji

    2009-05-01

    Biotin, a water-soluble B complex vitamin, is possibly involved in chronic inflammatory diseases, although the detailed mechanisms are unclear. In this study, we investigated the effects of biotin status on nickel (Ni) allergy in mice. Mice were fed a basal or biotin-deficient (BD) diet for 8 wk and sensitized with an intraperitoneal injection of NiCl(2) and lipopolysaccharide. Ten days after sensitization, NiCl(2) was intradermally injected into pinnas and ear swelling was measured. For in vitro analysis, we cultured a murine macrophage cell line, J774.1, under a biotin-sufficient (C, meaning control) or BD condition for 4 wk and analyzed interleukin (IL)-1 production. Significantly higher ear swelling was induced in BD mice than C mice. Adaptive transfer of splenocytes from both C and BD mice induced Ni allergy in unsensitized mice. Regardless of donor mice, ear swelling was significantly higher in BD recipient mice than C recipient mice. Ni allergy was not induced in either C or BD IL-1(-/-) mice. Splenocytes from BD mice produced a significantly higher amount of IL-1beta than those from C mice. Production and mRNA expression of IL-1beta were significantly higher in BD J774.1 cells than in C cells. Biotin supplementation inhibited the augmentation of IL-1beta production in vitro. In vivo supplementation of biotin in drinking water dose-dependently decreased ear swelling in C and BD mice. These results indicate that biotin status affects Ni allergy in the elicitation phase via the upregulation of IL-1beta production in mice, suggesting that biotin supplementation may have therapeutic effects on human metal allergy.

  15. Effects of various spacers between biotin and the phospholipid headgroup on immobilization and sedimentation of biotinylated phospholipid-containing liposomes facilitated by avidin-biotin interactions.

    Science.gov (United States)

    Sakamoto, Yasuhisa; Kikuchi, Koji; Umeda, Kazuaki; Nakanishi, Hiroyuki

    2017-09-01

    Immobilization and sedimentation of liposomes (lipid vesicles) are used in liposome-protein binding assays, facilitated by avidin/streptavidin/NeutrAvidin and biotinylated phospholipid-containing liposomes. Here, we examined the effects of three spacers [six-carbon (X), polyethylene glycol (PEG) 180 (molecular weight 180) and PEG2000 (molecular weight 2,000)] between biotin and the phospholipid headgroup on the immobilization and sedimentation of small unilamellar liposomes/vesicles (SUVs). PEG180 and PEG2000 showed more efficient immobilization of biotinylated SUVs on NeutrAvidin-coated plates than X, but X and PEG180 showed more efficient sedimentation of biotinylated SUVs upon NeutrAvidin addition than PEG2000. Thus, the most appropriate spacers differed between immobilization and sedimentation. A spacer for biotinylated SUVs must be selected according to the particular liposome-protein binding assays examined. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    Science.gov (United States)

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  17. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    Science.gov (United States)

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  18. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    Science.gov (United States)

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. One-step radiolabelled biotin scintigraphy in patients with suspected vertebral infections

    International Nuclear Information System (INIS)

    Lazzeri, E.; Erba, P.; Chinol, M.; Tascini, C.; Menichetti, F.; Paganelli, G.; Mariani, G.

    2003-01-01

    Full text: Biotin (B), or vitamin H, belonging to the B-complex group is utilized by bacteria for acid synthesis by acetyl-CoA carboxylase. We evaluated the diagnostic potential per se of radiolabeled biotin without avidin pre-targeting, in patients with suspected vertebral bacterial infections. We evaluated 31 patients for suspected spine infection. All patients were selected on clinical ground, blood chemistry findings, back pain and fever. Patients were injected i.v. with 500 μg of DTPA-conjugated Biotin labelled with 111In (110-130 MBq); planar and SPECT scans were recorded starting 90 min post-injection. All patients underwent MR, or CT and some patients were imaged with either 99mTc-HMPAO-WBC and/or 67Ga-citrate. Diagnostic-quality imaging was obtained at 90 min and 4 hr after 111In-DTPA-Biotin injection. We observed only 2 false-negative results, while 24 studies were true-positive (4 performed during follow-up) and 10 true-negative (1 during follow-up) (91% sensitivity, 100% specificity). Either MR, CT or 99mTc-HMPAO-WBC had high proportions of either false-negative, false-positive or equivocal results (sensitivity/specificity around 50%). These preliminary results outline the high diagnostic potential of one-step 111In-DTPA-Biotin scintigraphy without avidin pre-targeting) in patients with suspected vertebral infection. The high true-positive and true-negative rate suggests that this system displays some specificity for bacterial infections. The high diagnostic accuracy of 111In-Biotin scintigraphy seems to be independent from antibiotic therapy, thus making this method very helpful relative to other imaging modalities in the clinical decision on starting proper therapy and for monitoring the efficacy of treatment. (author)

  20. Endogenous biotin expression in renal and testicular tumours and literature review.

    Science.gov (United States)

    Fahmy, Nader; Woo, Mark; Alameldin, Mona; Lee, Joe King; MacDonald, Kyle; Goneau, Lee W; Cadieux, Peter; Burton, Jeremy; Pautler, Stephen

    2014-07-01

    The aim of this study was to examine endogenous biotin levels in tumour specimens collected from patients with renal and testicular tumours and compare them to the surrounding non-neoplastic surgical margin. Frozen samples were obtained from the Ontario Tumour Bank. Renal and testicular tumour tissue were included in this study. Normal tissue from the negative surgical margins of each tumour served as a control. Biotin detection in tissue specimens was determined using immunohistochemistry (IHC). Specimens collected from 56 patients (36 men and 20 women) were included in this study. Histopathology of the 52 renal tumours included 31 (60%) conventional type RCC, 5 (10%) chromophobe RCC, 5 (10%) papillary RCC, 1 (2%) oncocytoma and 10 (19%) upper tract urothelial carcinoma (UC). The 4 testicular tumours included 1 seminomatous (25%) germ cell tumour and 3 (75%) non seminomatous germ cell tumours. No biotin signal was perceived in all tested tumour samples. Endogenous biotin expression was detected in the matching non-neoplastic surgical margin of tested renal tissues. This lack of staining may prove to be a valuable tool in future studies.

  1. Highly stabilized and photoluminescence enhancement of ZnS:Mn2+ nanoparticles in biotin matrix

    International Nuclear Information System (INIS)

    Keshari, Ashish K.; Pandey, Avinash C.

    2009-01-01

    We synthesized the ZnS:Mn 2+ nanoparticles passivated by biocompatible layer, namely, biotin by chemical precipitation route and studied their temporal evolution for size, structure, optical, and photoluminescence stability. To monitor the structural and optoelectronic properties of the nanoparticles with time, we have characterized the grown product by x-ray diffraction, small angle x-ray scattering, UV visible, and photoluminescence spectroscopic techniques at a regular interval for a period of three months. Results showed that the properties of nanophosphors capped with biotin are remaining the same even after 3 months. Energy dispersive x-ray analysis of 3 month aged sample shows long time compatibility between ZnS:Mn 2+ nanoparticles and the biotin. This is also confirmed by electron microscopy that the growth of the nanoparticles is strongly arrested by the biotin. X-ray photoelectron spectra were also recorded to show the chemical state of the elements. Enhanced ratio of Zn 2p to Mn 2p peaks in the x-ray photoelectron spectra of ZnS:Mn 2+ nanoparticles shows that the Mn 2+ ions are incorporated within ZnS host matrix. We found that biotin capping will enhance the luminescence from ZnS:Mn 2+ nanoparticles as compared to without capped particles. Absence of biotin will gradually degrade the luminescence upon aging while drastic degradation in luminescence intensity was observed after annealing. Properties show that biotin also protected the nanoparticles from any environmental attack

  2. Biotin enhances ATP synthesis in pancreatic islets of the rat, resulting in reinforcement of glucose-induced insulin secretion.

    Science.gov (United States)

    Sone, Hideyuki; Sasaki, Yuka; Komai, Michio; Toyomizu, Masaaki; Kagawa, Yasuo; Furukawa, Yuji

    2004-02-13

    Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.

  3. Radioimmunoassay for chicken avidin. Comparison with a (/sup 14/C)biotin-binding method

    Energy Technology Data Exchange (ETDEWEB)

    Kulomaa, M S; Elo, H A; Tuohimaa, P J [Tampere Univ. of Tech. (Finland)

    1978-11-01

    A double-antibody solid-phase radioimmunoassay for chicken avidin is reported. Avidin was labelled with /sup 125/I by the chloramine-T method. The bound and free avidin were separated with a second antibody bound to a solid matrix. In the logit-log scale the standard curve was linear from 1-2 to 100-200ng of avidin/ml. Cross-reaction of ovalbumin was less than 0.015%. Saturation of biotin-binding sites of avidin with an excess of biotin decreased radioimmunoassay values by about 15%. Recovery studies indicated that avidin can be assayed from all chicken tissues studied with radioimmunoassay, whereas the (/sup 14/C)biotin/bentonite method gave poor recoveries for avidin in the liver and kidney. Radioimmunoassay and the (/sup 14/C)biotin/bentonite method gave similar concentrations for oviduct avidin.

  4. The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains.

    Science.gov (United States)

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F; Smith, Nicole; James, Marianne; Beauchamp, Roberta L; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-08-31

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

  5. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology.

    Science.gov (United States)

    Malyarchuk, Svitlana; Wright, Douglas; Castore, Reneau; Klepper, Emily; Weiss, Bernard; Doherty, Aidan J; Harrison, Lynn

    2007-10-01

    Unlike Escherichia coli, Mycobacterium tuberculosis (Mt) expresses a Ku-like protein and an ATP-dependent DNA ligase that can perform non-homologous end-joining (NHEJ). We have expressed the Mt-Ku and Mt-Ligase D in E. coli using an arabinose-inducible promoter and expression vectors that integrate into specific sites in the E. coli chromosome. E. coli strains have been generated that express the Mt-Ku and Mt-Ligase D on a genetic background that is wild-type for repair, or deficient in either the RecA or RecB protein. Transformation of these strains with linearized plasmid DNA containing a 2bp overhang has demonstrated that expression of both the Mt-Ku and Mt-Ligase D is required for DNA end-joining and that loss of RecA does not prevent this double-strand break repair. Analysis of the re-joined plasmid has shown that repair is predominantly inaccurate and results in the deletion of sequences. Loss of RecB did not prevent the formation of large deletions, but did increase the amount of end-joining. Sequencing the junctions has revealed that the majority of the ligations occurred at regions of microhomology (1-4bps), eliminating one copy of the homologous sequence at the junction. The Mt-Ku and Mt-Ligase D can therefore function in E. coli to re-circularize linear plasmid.

  6. Preparation of 166 Dy/166 Ho DTPA-bis biotin as a system of In vivo generator

    International Nuclear Information System (INIS)

    Jimenez V, M.R.

    2003-01-01

    The objective of this work was to synthesize the complex 166 Dy/ 166 Ho - diethylen triamine pentaacetic-bis Biotin ( 166 Dy/ 166 Ho DTPA-bis Biotin) to evaluate its potential as a new radiopharmaceutical in directed radiotherapy. The Dysprosium-166 was obtained for neutron irradiation of 164 Dy 2 0 3 in the TRIGA Mark III reactor. The labelled was carried out in aqueous solution to p H 8.0 for addition of 166 Dy Cl 3 to the diethylen triamine pentaacetic-α, ω-bis Biotin (DTPA-bis Biotin). The radiochemical purity was determined for HPLC and ITLC. The biological integrity of the marked biotin is evaluated by the biological recognition of the avidin for HPLC - molecular exclusion with and without avidin addition. The studies of stability in vitro were made in dilutions of saline solution to 0.9% and with human serum at 37 C incubated 1 and 24 hours. The complex 166 Dy/ 166 Ho DTPA-bis Biotin was obtained with a radiochemical purity of 99.1 ± 0.6%. The biological recognition of the complex 166 Dy/ 166 Ho DTPA-bis Biotin for the avidin it doesn't affect the labelling procedure. The studies in vitro demonstrated that the 166 Dy/ 166 Ho DTPA-bis Biotin is stable after the dilution in saline solution and in human serum that there is not translocation of the one radionuclide subsequent son to the beta decay of the 166 Dy that could produce the 166 Ho 3+ liberation. The studies of Biodistribution in healthy mice demonstrated that the one complex 166 Dy/ 166 Ho DTPA-bis Biotin have a high renal distribution. In conclusion the radiolabelled biotin in this investigation has the appropriate properties to be used as an In vivo generator system stable for directed radiotherapy. (Author)

  7. Infection imaging with 99mTc-biotin in patients with prosthetic hip replacement

    International Nuclear Information System (INIS)

    Villa, G.; Mariani, G.; Augeri, C.; Pipino, F.; Paganelli, G.; Chinol, M.

    2002-01-01

    Full text: Although the incidence of infection in prosthetic hip joint replacements has decreased from about 10-15 % to about 0.5-2 % over the last 20 years, the total number of infections has actually increased because of the large number of patients undergoing the procedure. The most frequent clinical presentation of this complication is functional impairment and pain, with or without fever and other signs and/or symptoms of infection. The main is differentiating true infection from simple loosening with inflammation of the implanted stem. Scintigraphy with radiolabeled autologous leukocytes (WBC) represents the 'gold standard' nuclear medicine procedure for imaging infection. However, this procedure is time-consuming, expensive, and involves some biological hazard. Preliminary data, obtained during validation of the avidin/111In-biotin approach, have suggested some potential of 111ln-biotin per se to accumulate at sites of infection. In this pilot study we explored the potential of 99mTc-biotin as an infection imaging agent in pts with orthopedic infections. N4-lys-biotin was labeled with 1110 MBq. Sixteen pts bearing a total of 20 prosthetic hip replacements were enrolled in the study (9 women and 7 men, mean age 73.2 yrs). Eight pts had previously undergone removal of their hip prosthesis because of infection, while infection was suspected in the remaining 8 pts. Scintigraphy was recorded 20 min, then 1, 4 and 24 hr after the i.v. injection of 99mTc-biotin. Within 48 hrs of the 99mTc-biotin study, all pts also underwent scintigraphy with 99mTc-HMPAO-WBC. Out of the 20 hips evaluated, 15 turned out to be infected while in the remaining 5 cases pain was only caused by bone-prosthetic loosening and/or conditions other than infection. In 12/15 infected sites scintigraphy was concordantly positive with both procedures, 99mTc-biotin yielding higher target-to-nontarget ratios than 99mTc-HMPAO-WBC in 4 cases and similar values in the other cases. Discordant patterns

  8. Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis.

    Science.gov (United States)

    Johnson, Jacque-Lynne F A; Lu, Chenggang; Raharjo, Eko; McNally, Karen; McNally, Francis J; Mains, Paul E

    2009-06-15

    The MEI-1/MEI-2 microtubule-severing complex, katanin, is required for oocyte meiotic spindle formation and function in C. elegans, but the microtubule-severing activity must be quickly downregulated so that it does not interfere with formation of the first mitotic spindle. Post-meiotic MEI-1 inactivation is accomplished by two parallel protein degradation pathways, one of which requires MEL-26, the substrate-specific adaptor that recruits MEI-1 to a CUL-3 based ubiquitin ligase. Here we address the question of how MEL-26 mediated MEI-1 degradation is triggered only after the completion of MEI-1's meiotic function. We find that MEL-26 is present only at low levels until the completion of meiosis, after which protein levels increase substantially, likely increasing the post-meiotic degradation of MEI-1. During meiosis, MEL-26 levels are kept low by the action of another type of ubiquitin ligase, which contains CUL-2. However, we find that the low levels of meiotic MEL-26 have a subtle function, acting to moderate MEI-1 activity during meiosis. We also show that MEI-1 is the only essential target for MEL-26, and possibly for the E3 ubiquitin ligase CUL-3, but the upstream ubiquitin ligase activating enzyme RFL-1 has additional essential targets.

  9. In vivo biotinylation of recombinant beta-glucosidase enables simultaneous purification and immobilization on streptavidin coated magnetic particles

    DEFF Research Database (Denmark)

    Alftrén, Johan; Ottow, Kim Ekelund; Hobley, Timothy John

    2013-01-01

    Beta-glucosidase from Bacillus licheniformis was in vivo biotinylated in Escherichia coli and subsequently immobilized directly from cell lysate on streptavidin coated magnetic particles. In vivo biotinylation was mediated by fusing the Biotin Acceptor Peptide to the C-terminal of beta......-glucosidase and co-expressing the BirA biotin ligase. The approach enabled simultaneous purification and immobilization of the enzyme from crude cell lysate on magnetic particles because of the high affinity and strong interaction between biotin and streptavidin. After immobilization of the biotinylated beta...

  10. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    Science.gov (United States)

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  11. Preparation and in vitro evaluation of ''no-carrier-added'' 18F-labeled biotin

    International Nuclear Information System (INIS)

    Najafi, A.; Peterson, A.

    1993-01-01

    This paper will describe the preparation of ''no-carrieradded'' 18 F-labeled biotin where the radiolabel bound to an aromatic moiety is described. This has been accomplished by preparation of [ 18 F]fluoro-benzylbromide (yield 20-30%) and its reaction with biotin-LC-hydrazide. This yielded ''no-carrier-added'' radiolabeled biotin (5-10%) which was then purified by reversed phase HPLC. The pure product was found to bind to avidin, thereby demonstrating retention of its biological integrity. Thus this product is potentially useful for imaging tumor tissue following injection of avidin coupled MoAbs. (author)

  12. Preparation and in vitro evaluation of ''no-carrier-added'' 18F-labeled biotin

    International Nuclear Information System (INIS)

    Najafi, A.; Peterson, A.

    1993-01-01

    This paper will describe the preparation of ''no-carrieradded'' 18 F-labeled biotin where the radiolabel bound to an aromatic moiety is described. This has been accomplished by preparation of [ 18 F]fluorobenzylbromide (yield 20-30%) and its reaction with biotin-LC-hydrazide. This yielded ''nocarrier-added'' radiolabeled biotin(5-10%) which was then purified by reversed phase HPLC. The pure product was found to bind to avidin, thereby demonstrating retention of its biological integrity. Thus this product is potentially useful for imaging tumor tissue following injection of avidin coupled MoAbs. (Author)

  13. Synthesis and evaluation of 99mTc/99Tc-MAG3-biotin conjugates for antibody pretargeting strategies

    International Nuclear Information System (INIS)

    Gog, Frank B. van; Visser, Gerard W.M.; Gowrising, Radjish W.A.; Snow, Gordon B.; Dongen, Guus A.M.S. van

    1998-01-01

    Four 99m Tc-MAG3-biotin conjugates were synthesized to determine their potential use in antibody pretargeting strategies for radioimmunoscintigraphy (RIS). To use these 99m Tc-MAG3-biotin conjugates as model compounds for 186 Re-MAG3-biotin conjugates for radioimmunotherapy (RIT), nanomolar amounts of 99 Tc were added as carrier to 99m Tc. The biotin derivatives used for the preparation of the conjugates - biocytin, biotin hydrazide, biotinyl-piperazine, and biotinyl-diaminosuccinic acid - differed at the site that is regarded to be susceptible to hydrolysis by biotinidase present in human plasma. All four conjugates were produced with high radiochemical purity, were stable in PBS, and demonstrated full binding capacity to streptavidin. The 99m Tc/ 99 Tc-MAG3-labeled biotinyl-piperazine and biotinyl-diaminosuccinic acid conjugates were stable in mouse as well as human plasma, whereas the corresponding biocytin and biotin hydrazide conjugates were rapidly degraded. The biodistribution in nude mice at 30 min after injection was similar for all conjugates, and a rapid blood clearance and high intestinal excretion were both observed. It is concluded that the metabolic routing of a conjugate containing biotin and MAG3 is dominated by these two moieties. For this reason, MAG3-biotin conjugates do not seem suited for pretargeted RIT, for which quantitative and fast renal excretion is a prerequisite to minimize radiation toxicity. However, in a pretargeted RIS approach the 99m Tc-MAG3-biotin conjugates might have potential

  14. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shirotori, Tatsuya; Hirabayashi, George; Kamiya, Naoto; Kuramitz, Hideki; Tanaka, Shunitz

    2004-01-01

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 10 12 M -1 , 3.2 x 10 12 M -1 and 4.0 x 10 12 M -1 , respectively

  15. A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin

    Science.gov (United States)

    Sung, Tzu-Cheng; Chen, Wen-Yih; Shah, Pramod; Chen, Chien-Sheng

    2016-02-01

    Biotin is an essential vitamin which plays an important role for maintaining normal physiological function. A rapid, sensitive, and simple method is necessary to monitor the biotin level. Here, we reported a replacement assay for the detection of biotin using a replaceable liposomal aptamer. Replacement assay is a competitive assay where a sample analyte replaces the labeled competitor of analyte out of its biorecognition element on a surface. It is user friendly and time-saving because of washing free. We used aptamer as a competitor, not a biorecognition element as tradition. To label aptamers, we used cholesterol-conjugated aptamers to tag signal-amplifying-liposomes. Without the need of conjugation procedure, aptamers can be easily incorporated into the surface of dye-encapsulating liposomes. Two aptamers as competitors of biotin, ST-21 and ST-21M with different affinities to streptavidin, were studied in parallel for the detection of biotin using replacement assays. ST-21 and ST-21M aptamers reached to limits of detection of 1.32 pg/80 μl and 0.47 pg/80 μl, respectively. The dynamic ranges of our assays using ST-21 and ST-21M aptamers were seven and four orders of magnitude, respectively. This assay can be completed in 20 minutes without washing steps. These results were overall better than previous reported assays.

  16. SAG/ROC-SCFβ-TrCP E3 Ubiquitin Ligase Promotes Pro-Caspase-3 Degradation as a Mechanism of Apoptosis Protection

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    2006-12-01

    Full Text Available Skp1-cullin-F-box protein (SCF is a multicomponent E3 ubiquitin (Ub ligase that ubiquitinates a number of important biologic molecules such as p27, β-catenin, and lκB for proteasomal degradation, thus regulating cell proliferation and survival. One SCF component, SAG/ROC2/Rbx2/Hrt2, a RING finger protein, was first identified as a redox-inducible protein, which, when overexpressed, inhibited apoptosis both in vitro and in vivo. We report here that sensitive to apoptosis gene (SAG, as well as its family member ROC1/Rbxi, bound to the proinactive form of caspase-3 (pro-caspase-3. Binding was likely mediated through F-box protein, β-transducin repeat-containing protein (β-TrCP, which binds to the first 38 amino acids of pro-caspase-3. Importantly, β-TrCP1 expression significantly shortened the protein half-life of pro-caspase-3, whereas expression of a dominant-negative β-TrCP1 mutant with the F-box domain deleted extended it. An in vitro ubiquitination assay showed that SAG/ROC-SCF -Trcp promoted ubiquitination of pro-caspase-3. Furthermore, endogenous levels of pro-caspase-3 were decreased by overexpression of SAG/ROC-SCFβ-TrCP E3 Ub ligases, but increased on siRNA silencing of SAG, regulator of cullin-1 (ROC1, or β-TrCPs, leading to increased apoptosis by etoposide and TNF-related apoptosis-inducing ligand through increased activation of caspase-3. Thus, pro-caspase-3 appears to be a substrate of SAG/ROC-SCFβ-TrCP E3 Ub ligase, which protects cells from apoptosis through increased apoptosis threshold by reducing the basal level of pro-caspase-3.

  17. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  18. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1.

    Science.gov (United States)

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-02-10

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering.

  19. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase

    International Nuclear Information System (INIS)

    Kallijaervi, Jukka; Lahtinen, Ulla; Haemaelaeinen, Riikka; Lipsanen-Nyman, Marita; Palvimo, Jorma J.; Lehesjoki, Anna-Elina

    2005-01-01

    Mulibrey nanism is an autosomal recessive prenatal-onset growth disorder characterized by dysmorphic features, cardiomyopathy, and hepatomegaly. Mutations in TRIM37 encoding a tripartite motif (TRIM, RING-B-box-coiled-coil)-family protein underlie mulibrey nanism. We investigated the ubiquitin ligase activity predicted for the RING domain of TRIM37 by analyzing its autoubiquitination. Full-length TRIM37 and its TRIM domain were highly polyubiquitinated when co-expressed with ubiquitin. Polyubiquitination was decreased in a mutant protein with disrupted RING domain (Cys35Ser;Cys36Ser) and in the Leu76Pro mutant protein, a disease-associated missense mutation affecting the TRIM domain of TRIM37. Bacterially produced GST-TRIM domain fusion protein, but not its Cys35Ser;Cys36Ser or Leu76Pro mutants, were polyubiquitinated in cell-free conditions, implying RING-dependent modification. Ubiquitin was also identified as an interaction partner for TRIM37 in a yeast two-hybrid screen. Ectopically expressed TRIM37 rapidly formed aggregates that were ubiquitin-, proteasome subunit-, and chaperone-positive in immunofluorescence analysis, defining them as aggresomes. The Cys35Ser;Cys36Ser mutant and the Leu76Pro and Gly322Val patient mutant proteins were markedly less prone to aggregation, implying that aggresomal targeting reflects a physiological function of TRIM37. These findings suggest that TRIM37 acts as a TRIM domain-dependent E3 ubiquitin ligase and imply defective ubiquitin-dependent degradation of an as-yet-unidentified target protein in the pathogenesis of mulibrey nanism

  20. Labeling of biotin with Dy-166/Ho-166 as a stable in vivo generator system

    International Nuclear Information System (INIS)

    Ferro-Flores, G.; Monroy-Guzman, F.; Jimenez-Varela, R.; Tendilla, J.I.; Arteaga-Murphy, C.; Pedraza-Lopez, M.

    2002-01-01

    Aim: Biotin is a vitamin found in low concentration in blood and tissue. In radioimmunodiagnosis and radioimmunotherapy practice, the pre-targeting avidin-biotin strategy has shown that target-to-nontarget radioactivity ratios can be significantly improved. In addition, the biotin content of cancerous tumors is higher than that of normal tissue and it has been found in the cellular nucleus due to a specific transfer of biotin to histones by human serum biotinidase. Because of its nuclear properties, the 166 Dy/ 166 Ho radionuclide pair can be considered as an in vivo generator system. The aim of this work was to synthesize 166 Dy/ 166 Ho-DTPA-bisBiotin to evaluate its potential as a new radiopharmaceutical for targeted radiotherapy. Material and Methods: Dysprosium-166/Holmium-166 chloride was obtained by neutron irradiation of 50 mg of 99% enriched 164 Dy 2 O 3 in a TRIGA Mark III reactor at a flux in the central thimble of 3.10 13 n. cm -2 s -1 for 20 h. Following irradiation, the target was allowed to decay for 2 days, 100 μL of 12 N chloride acid were added and the mixture stirred for 3 min. To this suspension 1.0 mL of injectable water were added and heated for 2 min at 90 0 C. The biotin used in this investigation was diethylenetriaminepentaacetic-α,ω-bis(biocytinamide)(DTPA-bisBiotin, Sigma). Sterile and apyrogenic V-vial was prepared to contain 16.0 mg (1.52 x 10 -4 mmol) of the DTPA-bisBiotin in 4.0 mL of 0.05 M bicarbonate buffer (pH 8.5), then 50 μL of the radiochloride solution were added to the preparation. TLC aluminum cellulose sheets were used as the stationary phase and a ternary mixture of methanol: water: ammonium hydroxide (20:40:2) as the mobile phase. 166 Dy/ 166 Ho-DTPA-bisBiotin traveled with the solvent front R f 0.9-1.0 and the Dy +3 /Ho +3 species remained at the origin (R f 0.0). HPLC reverse phase was also used to evaluate radiochemical purity. The biological integrity of labeled biotin was achieved evaluating its avidity for avidin

  1. Dsc E3 ligase localization to the Golgi requires the ATPase Cdc48 and cofactor Ufd1 for activation of sterol regulatory element-binding protein in fission yeast.

    Science.gov (United States)

    Burr, Risa; Ribbens, Diedre; Raychaudhuri, Sumana; Stewart, Emerson V; Ho, Jason; Espenshade, Peter J

    2017-09-29

    Sterol regulatory element-binding proteins (SREBPs) in the fission yeast Schizosaccharomyces pombe regulate lipid homeostasis and the hypoxic response under conditions of low sterol or oxygen availability. SREBPs are cleaved in the Golgi through the combined action of the Dsc E3 ligase complex, the rhomboid protease Rbd2, and the essential ATPases associated with diverse cellular activities (AAA + ) ATPase Cdc48. The soluble SREBP N-terminal transcription factor domain is then released into the cytosol to enter the nucleus and regulate gene expression. Previously, we reported that Cdc48 binding to Rbd2 is required for Rbd2-mediated SREBP cleavage. Here, using affinity chromatography and mass spectrometry experiments, we identified Cdc48-binding proteins in S. pombe , generating a list of many previously unknown potential Cdc48-binding partners. We show that the established Cdc48 cofactor Ufd1 is required for SREBP cleavage but does not interact with the Cdc48-Rbd2 complex. Cdc48-Ufd1 is instead required at a step prior to Rbd2 function, during Golgi localization of the Dsc E3 ligase complex. Together, these findings demonstrate that two distinct Cdc48 complexes, Cdc48-Ufd1 and Cdc48-Rbd2, are required for SREBP activation and low-oxygen adaptation in S. pombe . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Effects of excess biotin administration on the growth and urinary excretion of water-soluble vitamins in young rats.

    Science.gov (United States)

    Sawamura, Hiromi; Fukuwatari, Tsutomu; Shibata, Katsumi

    2007-12-01

    To determine the effects of excess biotin administration on growth and water-soluble vitamin metabolism, weaning rats were fed on a 20% casein diet containing 0.00002% biotin, or same diet with 0.04, 0.08, 0.10, 0.20, 0.50, 0.80 or 1.0% added biotin for 28 days. More than 0.08% biotin administration decreased the food intake and body weight gain compared with the levels in control rats. An accumulation of biotin in such tissues as the liver, brain and kidney increased in a dose-dependent manner, and the both bound and free biotin contents in the liver also increased in a dose-dependent manner. An excess administration of biotin did not affect the urinary excretion of other water-soluble vitamins, suggesting no effect on the metabolism of other water-soluble vitamins. The results of the food intake and body weight gain indicated that the lowest observed adverse effect level for young rats was 79.2 mg/kg body weight/day, while the no observed adverse effect level was 38.4 mg/kg/day. These results suggested immediately setting a tolerable upper intake level for biotin.

  3. m-[125I]iodoaniline: a useful reagent for radiolabeling biotin

    International Nuclear Information System (INIS)

    Khawli, L.A.; Kassis, A.I.

    1992-01-01

    Biotinyl-m-[ 125 I]iodoanilide (BIA) was synthesized by coupling biotin to m-[ 125 I]iodoaniline via a mixed anhydride reaction. m-[ 125 I]Iodoaniline was produced from the tin precursor, which was prepared using a palladium catalyzed reaction of hexabutylditin with m-bromoaniline. The radioiodinated BIA derivative is characterized by a stable amide and/or intact ureido group on the biotin molecule, it may thus be a useful carrier for targeting radionuclides to avidin-conjugated antibodies previously localized on tumors. (author)

  4. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells.

    Science.gov (United States)

    Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya

    2015-07-01

    The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2. © 2015

  5. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    Science.gov (United States)

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.

    Science.gov (United States)

    Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin

    2012-03-01

    Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.

  7. Biotin-targeted Pluronic(®) P123/F127 mixed micelles delivering niclosamide: A repositioning strategy to treat drug-resistant lung cancer cells.

    Science.gov (United States)

    Russo, Annapina; Pellosi, Diogo Silva; Pagliara, Valentina; Milone, Maria Rita; Pucci, Biagio; Caetano, Wilker; Hioka, Noboru; Budillon, Alfredo; Ungaro, Francesca; Russo, Giulia; Quaglia, Fabiana

    2016-09-10

    With the aim to develop alternative therapeutic tools for the treatment of resistant cancers, here we propose targeted Pluronic(®) P123/F127 mixed micelles (PMM) delivering niclosamide (NCL) as a repositioning strategy to treat multidrug resistant non-small lung cancer cell lines. To build multifunctional PMM for targeting and imaging, Pluronic(®) F127 was conjugated with biotin, while Pluronic(®) P123 was fluorescently tagged with rhodamine B, in both cases at one of the two hydroxyl end groups. This design intended to avoid any interference of rhodamine B on biotin exposition on PMM surface, which is a key fundamental for cell trafficking studies. Biotin-decorated PMM were internalized more efficiently than non-targeted PMM in A549 lung cancer cells, while very low internalization was found in NHI3T3 normal fibroblasts. Biotin-decorated PMM entrapped NCL with good efficiency, displayed sustained drug release in protein-rich media and improved cytotoxicity in A549 cells as compared to free NCL (Pbiotin-decorated PMM carrying NCL at low doses demonstrated a significantly higher cytotoxicity than free NCL in CPr-A549. These results point at NCL-based regimen with targeted PMM as a possible second-line chemotherapy for lung cancer showing cisplatin or multidrug resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  9. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  10. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis.

    Science.gov (United States)

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2016-12-01

    While there are a variety of therapies for relapsing remitting multiple sclerosis (MS), there is a lack of treatments for progressive MS. An early study indicated that high dose biotin therapy has beneficial effects in approximately 12-15% of patients with progressive MS. The mechanisms behind the putative improvements seen with biotin therapy are not well understood, but have been postulated to include: 1) improving mitochondrial function which is impaired in MS, 2) increasing synthesis of lipids and cholesterol to facilitate remyelination, and 3) affecting gene expression. We suggest one reason that a greater percentage of patients with MS didn't respond to biotin therapy is the inaccessibility or lack of other nutrients, such as iron. In addition to biotin, iron (or heme) is necessary for energy production, biosynthesis of cholesterol and lipids, and for some protective mechanisms. Both biotin and iron are required for myelination during development, and by inference, remyelination. However, iron can also play a role in the pathology of MS. Increased deposition of iron can occur in some CNS structures possibly promoting oxidative damage while low iron levels can occur in other areas. Thus, the potential, detrimental effects of iron need to be considered together with the need for iron to support metabolic demands associated with repair and/or protective processes. We propose the optimal utilization of iron may be necessary to maximize the beneficial effects of biotin. This review will examine the interactions between biotin and iron in pathways that may have therapeutic or pathogenic implications for MS.

  11. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Richard T Timms

    Full Text Available The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2, a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.

  12. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    Science.gov (United States)

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  13. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Science.gov (United States)

    Ihalainen, Petri; Pesonen, Markus; Sund, Pernilla; Viitala, Tapani; Määttänen, Anni; Sarfraz, Jawad; Wilén, Carl-Erik; Österbacka, Ronald; Peltonen, Jouko

    2016-02-01

    The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody-antigen complexes.

  14. Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding.

    Science.gov (United States)

    Strobel, Eric J; Watters, Kyle E; Nedialkov, Yuri; Artsimovitch, Irina; Lucks, Julius B

    2017-07-07

    RNA folding during transcription directs an order of folding that can determine RNA structure and function. However, the experimental study of cotranscriptional RNA folding has been limited by the lack of easily approachable methods that can interrogate nascent RNA structure at nucleotide resolution. To address this, we previously developed cotranscriptional selective 2΄-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) to simultaneously probe all intermediate RNA transcripts during transcription by stalling elongation complexes at catalytically dead EcoRIE111Q roadblocks. While effective, the distribution of elongation complexes using EcoRIE111Q requires laborious PCR using many different oligonucleotides for each sequence analyzed. Here, we improve the broad applicability of cotranscriptional SHAPE-Seq by developing a sequence-independent biotin-streptavidin (SAv) roadblocking strategy that simplifies the preparation of roadblocking DNA templates. We first determine the properties of biotin-SAv roadblocks. We then show that randomly distributed biotin-SAv roadblocks can be used in cotranscriptional SHAPE-Seq experiments to identify the same RNA structural transitions related to a riboswitch decision-making process that we previously identified using EcoRIE111Q. Lastly, we find that EcoRIE111Q maps nascent RNA structure to specific transcript lengths more precisely than biotin-SAv and propose guidelines to leverage the complementary strengths of each transcription roadblock in cotranscriptional SHAPE-Seq. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Clinical validation of the avidin/indium-111 biotin approach for imaging infection/inflammation in orthopaedic patients

    International Nuclear Information System (INIS)

    Lazzeri, E.; Molea, N.; Bodei, L.; Bianchi, R.; Manca, M.; Marchetti, S.; Consoli, V.; Chinol, M.; Paganelli, G.; Mariani, G.

    1999-01-01

    We report here the results of a validation study of the avidin/indium-111 biotin approach in patients with skeletal lesions. This study involved 54 patients with orthopaedic conditions: 20 patients with intermediate suspected osteomyelitis of the trunk, 19 patients with infection/inflammation of prosthetic joint replacements, and 15 patients with suspected osteomyelitis of appendicular bones. Avidin (3 mg) was injected as an i.v. bolus, followed 4 h later by 111 In-biotin; imaging was acquired 30 min and 16-18 h after administration of 111 In-biotin. Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO)-labelled leucocyte scintigraphy was performed in 39/54 patients. The overall sensitivity of the avidin/ 111 In-biotin scan was 97.7% (versus 88.9% for 99m Tc-HMPAO leucocyte scintigraphy). While the diagnostic performance of avidin/ 111 In-biotin scintigraphy was similar to that of 99m Tc-HMPAO leucocyte scintigraphy in patients with prosthetic joint replacements or osteomyelitis of appendicular bones, the avidin/ 111 In-biotin approach clearly performed better than 99m Tc-HMPAO leucocyte scintigraphy in patients with suspected osteomyelitis of the trunk (100% sensitivity, specificity and accuracy versus 50% sensitivity, 100% specificity and 66.7% accuracy for 99m Tc-HMPAO-leucocyte scintigraphy). These results demonstrate the feasibility of the avidin/ 111 In-biotin approach for imaging sites of infection/inflammation in the clinical setting. Although no systematic advantages of avidin/ 111 In-biotin scintigraphy were found versus 99m Tc-HMPAO leucocyte scintigraphy, the newer scintigraphic method is more practicable and involves lower biological risk for the operators. (orig.)

  16. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Pike, Ashley C W; Vesterlund, Mattias

    2011-01-01

    to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6...

  17. Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application

    International Nuclear Information System (INIS)

    Yang, Hong-Ming; Bao, Ru-Meng; Yu, Chang-Mei; Lv, Yan-Na; Zhang, Wei-Fen; Tang, Jin-Bao

    2017-01-01

    The development of a site-specific and covalent attachment methodology is crucial for antibody–biotin conjugates to preserve the antigen-binding ability of antibodies and yield homogeneous products. In this study, an engineered photoactivatable Z-domain variant [an UV-active amino acid benzoylphenylalanine (Bpa) was genetically incorporated into the Z-domain] carrying one biotin molecule (Z_B_p_a–Biotin) was prepared by employing aminoacyl-tRNA synthetase/suppressor tRNA and Avitag/BirA techniques. The site-specific and covalent attachment of IgG–biotin conjugates, viz. photo-biotinylated IgG, was successfully achieved after UV exposure by combining the inherent Fc-binding capability of the Z-domain with the formation of covalent bond by the photo-crosslinker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay showed that more than 90% of IgGs conjugated with Z_B_p_a–Biotin molecules suffered 3 h UV irradiation. Further pepsin digestion analysis confirmed that the Z_B_p_a–Biotin was conjugated to the Fc fragment of IgG without interference. We took the tumor biomarker carcinoembryoic antigen (CEA) as model to evaluate the detection efficiency of the site-specific photo-biotinylated IgG in biosensing application using surface plasmon resonance (SPR) technology. The photo-biotinylated IgG coated surface gave a limit of detection (LOD) of 2 ng mL"-"1, is 5-fold lower than that of the randomly NHS-biotinylated IgG (10 ng mL"-"1). Given that the (strept)avidin–biotin complex is extensively used in immunoassays, the proposed method for biotinylated IgG provides a powerful approach to further expand related applications. - Highlights: • A photoactivable Z_B_p_a–Biotin was fabricated by aaRS/tRNA and Avitag/BirA techniques. • A approach for Fc-specific photo-biotinylated IgG via Z_B_p_a–Biotin was proposed. • The photo-biotinylated IgG was used to fabricate an immunosensor for detecting CEA. • It gave a LOD of 2 ng mL"-"1 CEA

  18. Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-Ming; Bao, Ru-Meng; Yu, Chang-Mei; Lv, Yan-Na; Zhang, Wei-Fen; Tang, Jin-Bao, E-mail: tangjb@wfmc.edu.cn

    2017-01-01

    The development of a site-specific and covalent attachment methodology is crucial for antibody–biotin conjugates to preserve the antigen-binding ability of antibodies and yield homogeneous products. In this study, an engineered photoactivatable Z-domain variant [an UV-active amino acid benzoylphenylalanine (Bpa) was genetically incorporated into the Z-domain] carrying one biotin molecule (Z{sub Bpa}–Biotin) was prepared by employing aminoacyl-tRNA synthetase/suppressor tRNA and Avitag/BirA techniques. The site-specific and covalent attachment of IgG–biotin conjugates, viz. photo-biotinylated IgG, was successfully achieved after UV exposure by combining the inherent Fc-binding capability of the Z-domain with the formation of covalent bond by the photo-crosslinker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay showed that more than 90% of IgGs conjugated with Z{sub Bpa}–Biotin molecules suffered 3 h UV irradiation. Further pepsin digestion analysis confirmed that the Z{sub Bpa}–Biotin was conjugated to the Fc fragment of IgG without interference. We took the tumor biomarker carcinoembryoic antigen (CEA) as model to evaluate the detection efficiency of the site-specific photo-biotinylated IgG in biosensing application using surface plasmon resonance (SPR) technology. The photo-biotinylated IgG coated surface gave a limit of detection (LOD) of 2 ng mL{sup -1}, is 5-fold lower than that of the randomly NHS-biotinylated IgG (10 ng mL{sup -1}). Given that the (strept)avidin–biotin complex is extensively used in immunoassays, the proposed method for biotinylated IgG provides a powerful approach to further expand related applications. - Highlights: • A photoactivable Z{sub Bpa}–Biotin was fabricated by aaRS/tRNA and Avitag/BirA techniques. • A approach for Fc-specific photo-biotinylated IgG via Z{sub Bpa}–Biotin was proposed. • The photo-biotinylated IgG was used to fabricate an immunosensor for detecting CEA. • It gave a LOD

  19. Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa.

    Science.gov (United States)

    Pepper, Ian J; Van Sciver, Robert E; Tang, Amy H

    2017-08-07

    The RAS signaling pathway is a pivotal developmental pathway that controls many fundamental biological processes including cell proliferation, differentiation, movement and apoptosis. Drosophila Seven-IN-Absentia (SINA) is a ubiquitin E3 ligase that is the most downstream signaling "gatekeeper" whose biological activity is essential for proper RAS signal transduction. Vertebrate SINA homologs (SIAHs) share a high degree of amino acid identity with that of Drosophila SINA. SINA/SIAH is the most conserved signaling component in the canonical EGFR/RAS/RAF/MAPK signal transduction pathway. Vertebrate SIAH1, 2, and 3 are the three orthologs to invertebrate SINA protein. SINA and SIAH1 orthologs are found in all major taxa of metazoans. These proteins have four conserved functional domains, known as RING (Really Interesting New Gene), SZF (SIAH-type zinc finger), SBS (substrate binding site) and DIMER (Dimerization). In addition to the siah1 gene, most vertebrates encode two additional siah genes (siah2 and siah3) in their genomes. Vertebrate SIAH2 has a highly divergent and extended N-terminal sequence, while its RING, SZF, SBS and DIMER domains maintain high amino acid identity/similarity to that of SIAH1. But unlike vertebrate SIAH1 and SIAH2, SIAH3 lacks a functional RING domain, suggesting that SIAH3 may be an inactive E3 ligase. The SIAH3 subtree exhibits a high degree of amino acid divergence when compared to the SIAH1 and SIAH2 subtrees. We find that SIAH1 and SIAH2 are expressed in all human epithelial cell lines examined thus far, while SIAH3 is only expressed in a limited subset of cancer cell lines. Through phylogenetic analyses of metazoan SINA and SIAH E3 ligases, we identified many invariant and divergent amino acid residues, as well as the evolutionarily conserved functional motifs in this medically relevant gene family. Our phylomedicinal study of this unique metazoan SINA/SIAH protein family has provided invaluable evolution-based support towards future

  20. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    Science.gov (United States)

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  1. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  2. Fc-specific biotinylation of antibody using an engineered photoactivatable Z-Biotin and its biosensing application.

    Science.gov (United States)

    Yang, Hong-Ming; Bao, Ru-Meng; Yu, Chang-Mei; Lv, Yan-Na; Zhang, Wei-Fen; Tang, Jin-Bao

    2017-01-01

    The development of a site-specific and covalent attachment methodology is crucial for antibody-biotin conjugates to preserve the antigen-binding ability of antibodies and yield homogeneous products. In this study, an engineered photoactivatable Z-domain variant [an UV-active amino acid benzoylphenylalanine (Bpa) was genetically incorporated into the Z-domain] carrying one biotin molecule (Z Bpa -Biotin) was prepared by employing aminoacyl-tRNA synthetase/suppressor tRNA and Avitag/BirA techniques. The site-specific and covalent attachment of IgG-biotin conjugates, viz. photo-biotinylated IgG, was successfully achieved after UV exposure by combining the inherent Fc-binding capability of the Z-domain with the formation of covalent bond by the photo-crosslinker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay showed that more than 90% of IgGs conjugated with Z Bpa -Biotin molecules suffered 3 h UV irradiation. Further pepsin digestion analysis confirmed that the Z Bpa -Biotin was conjugated to the Fc fragment of IgG without interference. We took the tumor biomarker carcinoembryoic antigen (CEA) as model to evaluate the detection efficiency of the site-specific photo-biotinylated IgG in biosensing application using surface plasmon resonance (SPR) technology. The photo-biotinylated IgG coated surface gave a limit of detection (LOD) of 2 ng mL -1 , is 5-fold lower than that of the randomly NHS-biotinylated IgG (10 ng mL -1 ). Given that the (strept)avidin-biotin complex is extensively used in immunoassays, the proposed method for biotinylated IgG provides a powerful approach to further expand related applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  4. Clinical feasibility of two-step streptavidin/111In-biotin scintigraphy in patients with suspected vertebral osteomyelitis

    International Nuclear Information System (INIS)

    Lazzeri, Elena; Erba, Paola A.; Volterrani, Duccio; Bottoni, Antonio; Mariani, Giuliano; Pauwels, Ernest K.J.; Manca, Mario; Bodei, Lisa; Trippi, Donatella; Cristofani, Renza; Consoli, Vincenzo; Palestro, Christopher J.

    2004-01-01

    Streptavidin accumulates at sites of inflammation and infection as a result of increased capillary permeability. In addition to being utilised by bacteria for their own growth, biotin forms a stable, high-affinity non-covalent complex with avidin. The objective of this investigation was to determine the diagnostic performance of two-step streptavidin/ 111 In-biotin imaging for evaluating patients with suspected vertebral osteomyelitis. We evaluated 55 consecutive patients with suspected vertebral osteomyelitis (34 women and 21 men aged 27-86 years), within 2 weeks after the onset of clinical symptoms. Thirty-two of the patients underwent magnetic resonance imaging (MRI) and 24, computed tomography (CT). DTPA-conjugated biotin was radiolabelled by incubating 500 μg of DTPA-biotin with 111 MBq of 111 In-chloride. Two-step scintigraphy was performed by first infusing 3 mg streptavidin intravenously, followed 4 h later by 111 In-biotin. Imaging was begun 60 min later. Streptavidin/ 111 In-biotin scintigraphy was positive in 32/34 patients with spinal infection (94.12% sensitivity). The study was negative in 19/21 patients without infection (95.24% specificity). The corresponding results for MRI and CT were 54.17% and 35.29% (sensitivity), and 75% and 57.14% (specificity), respectively. All statistical parameters of diagnostic performance (Youden's J index, kappa measure of agreement with correct classification, accuracy, sensitivity, specificity, positive likelihood and negative likelihood) were clearly better for streptavidin/ 111 In-biotin scintigraphy than for either MRI or CT. Streptavidin/ 111 In-biotin scintigraphy is highly sensitive and specific for detecting vertebral osteomyelitis in the first 2 weeks after the onset of clinical symptoms, and is potentially very useful for guiding clinical decisions on instituting appropriate therapy. (orig.)

  5. Clinical validation of the avidin/indium-111 biotin approach for imaging infection/inflammation in orthopaedic patients

    Energy Technology Data Exchange (ETDEWEB)

    Lazzeri, E.; Molea, N.; Bodei, L.; Bianchi, R. [Regional Centre of Nuclear Medicine, University of Pisa, Pisa (Italy); Manca, M.; Marchetti, S.; Consoli, V. [Institute of Orthopedics, University of Pisa, Pisa (Italy); Chinol, M.; Paganelli, G. [Nuclear Medicine Service, European Institute of Oncology, Milan (Italy); Mariani, G. [Nuclear Medicine Service, DIMI, University of Genoa, Genoa (Italy)

    1999-06-01

    We report here the results of a validation study of the avidin/indium-111 biotin approach in patients with skeletal lesions. This study involved 54 patients with orthopaedic conditions: 20 patients with intermediate suspected osteomyelitis of the trunk, 19 patients with infection/inflammation of prosthetic joint replacements, and 15 patients with suspected osteomyelitis of appendicular bones. Avidin (3 mg) was injected as an i.v. bolus, followed 4 h later by {sup 111}In-biotin; imaging was acquired 30 min and 16-18 h after administration of {sup 111}In-biotin. Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO)-labelled leucocyte scintigraphy was performed in 39/54 patients. The overall sensitivity of the avidin/{sup 111}In-biotin scan was 97.7% (versus 88.9% for {sup 99m}Tc-HMPAO leucocyte scintigraphy). While the diagnostic performance of avidin/{sup 111}In-biotin scintigraphy was similar to that of {sup 99m}Tc-HMPAO leucocyte scintigraphy in patients with prosthetic joint replacements or osteomyelitis of appendicular bones, the avidin/{sup 111}In-biotin approach clearly performed better than {sup 99m}Tc-HMPAO leucocyte scintigraphy in patients with suspected osteomyelitis of the trunk (100% sensitivity, specificity and accuracy versus 50% sensitivity, 100% specificity and 66.7% accuracy for {sup 99m}Tc-HMPAO-leucocyte scintigraphy). These results demonstrate the feasibility of the avidin/{sup 111}In-biotin approach for imaging sites of infection/inflammation in the clinical setting. Although no systematic advantages of avidin/{sup 111}In-biotin scintigraphy were found versus {sup 99m}Tc-HMPAO leucocyte scintigraphy, the newer scintigraphic method is more practicable and involves lower biological risk for the operators. (orig.) With 3 figs., 2 tabs., 56 refs.

  6. Synthetic assembly of novel avidin-biotin-GlcNAc (ABG) complex as an attractive bio-probe and its interaction with wheat germ agglutinin (WGA).

    Science.gov (United States)

    Kumari, Amrita; Koyama, Tetsuo; Hatano, Ken; Matsuoka, Koji

    2016-10-01

    A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295nm and it was found to be very high Ka∼1.39×10(7) M(-1) in case of ABG complex as compared to GlcNAc only Ka∼1.01×10(4) M(-1) with the phenomenon proven to be due to glycocluster effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    Science.gov (United States)

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    Science.gov (United States)

    Hu, Wei-Wen; Wang, Zhuo; Krebsbach, Paul H

    2016-02-01

    To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin-biotin-material (VBABM) arrangement. The tethered viral particles were stably maintained within scaffolds and SEM images illustrated that viral particles were evenly distributed in three-dimensional (3D) gelatin sponges. An in vivo study demonstrated that transgene expression was restricted to the implant sites only and transduction efficiency was improved using this conjugation method. For an orthotopic bone regeneration model, adenovirus encoding BMP-2 (AdBMP2) was immobilized to gelatin sponges before implanting into critical-sized bone defects in rat calvaria. Compared to gelatin sponges with AdBMP2 loaded in a freely suspended form, the VBABM method enhanced gene transfer and bone regeneration was significantly improved. These results suggest that biotin-avidin immobilization of viral vectors to biomaterial scaffolds may be an effective strategy to facilitate tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens

    Directory of Open Access Journals (Sweden)

    Shimpei eMagori

    2011-11-01

    Full Text Available The SCF (SKP1-CUL1-F-box protein ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection. A recent bioinformatic analysis has identified more than 70 F-box proteins in 22 different bacterial species, suggesting that use of pathogen-encoded F-box effectors in the host cell may be a widespread infection strategy. In this review, we focus on plant pathogen-encoded F-box effectors, such as VirF of Agrobacterium tumefaciens, GALAs of Ralstonia solanacearum, and P0 of Poleroviruses, and discuss the molecular mechanism by which plant pathogens use these factors to manipulate the host cell for their own benefit.

  10. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213

    Science.gov (United States)

    Kotani, Yuri; Morito, Daisuke; Yamazaki, Satoru; Ogino, Kazutoyo; Kawakami, Koichi; Takashima, Seiji; Hirata, Hiromi; Nagata, Kazuhiro

    2015-01-01

    Mysterin (also known as RNF213) is a huge intracellular protein with two AAA+ ATPase modules and a RING finger ubiquitin ligase domain. Mysterin was originally isolated as a significant risk factor for the cryptogenic cerebrovascular disorder moyamoya disease, and was found to be involved in physiological angiogenesis in zebrafish. However, the function and the physiological significance of mysterin in other than blood vessels remain largely unknown, although mysterin is ubiquitously expressed in animal tissues. In this study, we performed antisense-mediated suppression of a mysterin orthologue in zebrafish larvae and revealed that mysterin-deficient larvae showed significant reduction in fast myofibrils and immature projection of primary motoneurons, leading to severe motor deficits. Fast muscle-specific restoration of mysterin expression cancelled these phenotypes, and interestingly both AAA+ ATPase and ubiquitin ligase activities of mysterin were indispensable for proper fast muscle formation, demonstrating an essential role of mysterin and its enzymatic activities in the neuromuscular regulation in zebrafish. PMID:26530008

  11. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.

    Science.gov (United States)

    Zattas, Dimitrios; Berk, Jason M; Kreft, Stefan G; Hochstrasser, Mark

    2016-06-03

    Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  13. The ubiquitin ligase Cullin5SOCS2 regulates NDR1/STK38 stability and NF-κB transactivation

    DEFF Research Database (Denmark)

    Paul, Indranil; Batth, Tanveer S; Iglesias-Gato, Diego

    2017-01-01

    SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic pro...

  14. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I.

    Science.gov (United States)

    van den Boomen, Dick J H; Timms, Richard T; Grice, Guinevere L; Stagg, Helen R; Skødt, Karsten; Dougan, Gordon; Nathan, James A; Lehner, Paul J

    2014-08-05

    The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forward genetic screen for host ERAD components hijacked by US11 in near-haploid KBM7 cells, we identified TMEM129, an uncharacterized polytopic membrane protein. TMEM129 is essential and rate-limiting for US11-mediated MHC-I degradation and acts as a novel ER resident E3 ubiquitin ligase. TMEM129 contains an unusual cysteine-only RING with intrinsic E3 ligase activity and is recruited to US11 via Derlin-1. Together with its E2 conjugase Ube2J2, TMEM129 is responsible for the ubiquitination, dislocation, and subsequent degradation of US11-associated MHC-I. US11 engages two degradation pathways: a Derlin-1/TMEM129-dependent pathway required for MHC-I degradation and a SEL1L/HRD1-dependent pathway required for "free" US11 degradation. Our data show that TMEM129 is a novel ERAD E3 ligase and the central component of a novel mammalian ERAD complex.

  15. Determination of local chromatin composition by CasID.

    Science.gov (United States)

    Schmidtmann, Elisabeth; Anton, Tobias; Rombaut, Pascaline; Herzog, Franz; Leonhardt, Heinrich

    2016-09-02

    Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and mass spectrometry identified both known and previously unknown chromatin factors associated with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy, we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-specific chromatin composition.

  16. Molecular Cloning and Characterization of Two Genes for the Biotin Carboxylase and Carboxyltransferase Subunits of Acetyl Coenzyme A Carboxylase in Myxococcus xanthus

    OpenAIRE

    Kimura, Yoshio; Miyake, Rina; Tokumasu, Yushi; Sato, Masayuki

    2000-01-01

    We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar t...

  17. Competitive enzyme immunoassay for human chorionic somatomammotropin using the avidin-biotin system

    International Nuclear Information System (INIS)

    Rappuoli, R.; Leoncini, P.; Tarli, P.; Neri, P.

    1981-01-01

    Human chorionic somatomammotropin (HCS) is determined by an enzyme immunoassay where HCS competes with biotin-labeled HCS for insolubilized anti-HCS antibodies. Enzyme-labeled avidin is then used to reveal the amount of bound HCS. The system proves to be sensitive (1 ng/ml of HCS can be detected) and results agree with radioimmunoassay determinations (correlation coefficient = 0.979). Kinetics of the avidin-biotin reaction and coating of polystyrene wells are also investigated

  18. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    Science.gov (United States)

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  19. Screening of carnitine and biotin deficiencies on tandem mass spectrometry.

    Science.gov (United States)

    Hagiwara, Shin-Ichiro; Kubota, Mitsuru; Nambu, Ryusuke; Kagimoto, Seiichi

    2017-04-01

    It is important to assess pediatric patients for nutritional deficiency when they are receiving specific interventions, such as enteral feeding. We focused on measurement of C0 and 3-hydroxyisovalerylcarnitine (C5-OH) with tandem mass spectrometry (MS/MS), which is performed as part of the newborn mass screening. The purpose of this study was to investigate the usefulness of MS/MS for screening carnitine and biotin deficiencies. Forty-two children (24 boys, 18 girls) were enrolled between December 2013 and December 2015. Blood tests, including measurement of serum free carnitine via the enzyme cycling method, and acylcarnitine analysis on MS/MS of dried blood spot (DBS), were performed for the evaluation of nutrition status. Median patient age was 2 years (range, 2 months-14 years). Mean serum free carnitine was 41.8 ± 19.2 μmol/L. In six of the 42 patients, serum free carnitine was 1.00 nmol/L. Therapy-resistant eczema was improved by treatment with additional biotin and a non-hydrolyzed formula. C0 and C5-OH, measured on MS/MS of DBS, were useful for screening carnitine and biotin deficiencies. © 2016 Japan Pediatric Society.

  20. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Vijai; Somvanshi, Pallavi

    2010-02-01

    DNA ligase is an important enzyme and it plays vital role in the replication and repair; also catalyzes nick joining between adjacent bases of DNA. The NAD(+) dependent DNA ligase is selectively present in eubacteria and few viruses; but missing in humans. Homology modeling was used to generate 3-D structure of NAD(+) dependent DNA ligase (LigA) of Mycobacterium tuberculosis using the known template (PDB: 2OWO). Furthermore, the stereochemical quality and torsion angle of 3-D structure was validated. Numerous effective drugs were selected and the active amino acid residue in LigA was targeted and virtual screening through molecular docking was done. In this analysis, four drugs Chloroquine, Hydroxychloroquine, Putrienscine and Adriamycin were found more potent in inhibition of M. tuberculosis through the robust binding affinity between protein-drug interactions in comparison with the other studied drugs. A phylogenetic tree was constructed and it was observed that homology of LigA in M. tuberculosis resembled with other Mycobacterium species. The conserved active amino acids of LigA may be useful to target these drugs. These findings could be used as the starting point of a rational design of novel antibacterial drugs and its analogs.

  1. Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP.

    Science.gov (United States)

    Sarkar, Sukumar; Brautigan, David L; Larner, James M

    2017-08-01

    Reducing the levels of the androgen receptor (AR) is one of the most viable approaches to combat castration-resistant prostate cancer. Previously, we observed that proteasomal-dependent degradation of AR in response to 2-methoxyestradiol (2-ME) depends primarily on the E3 ligase C-terminus of HSP70-interacting protein (STUB1/CHIP). Here, 2-ME stimulation activates CHIP by phosphorylation via Aurora kinase A (AURKA). Aurora A kinase inhibitors and RNAi knockdown of Aurora A transcript selectively blocked CHIP phosphorylation and AR degradation. Aurora A kinase is activated by 2-ME in the S-phase as well as during mitosis, and phosphorylates CHIP at S273. Prostate cancer cells expressing an S273A mutant of CHIP have attenuated AR degradation upon 2-ME treatment compared with cells expressing wild-type CHIP, supporting the idea that CHIP phosphorylation by Aurora A activates its E3 ligase activity for the AR. These results reveal a novel 2-ME→Aurora A→CHIP→AR pathway that promotes AR degradation via the proteasome that may offer novel therapeutic opportunities for prostate cancer. Mol Cancer Res; 15(8); 1063-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. High doses of biotin in chronic progressive multiple sclerosis: a pilot study.

    Science.gov (United States)

    Sedel, Frédéric; Papeix, Caroline; Bellanger, Agnès; Touitou, Valérie; Lebrun-Frenay, Christine; Galanaud, Damien; Gout, Olivier; Lyon-Caen, Olivier; Tourbah, Ayman

    2015-03-01

    No drug has been found to have any impact on progressive multiple sclerosis (MS). Biotin is a vitamin acting as a coenzyme for carboxylases involved in key steps of energy metabolism and fatty acids synthesis. Among others, biotin activates acetylCoA carboxylase, a potentially rate-limiting enzyme in myelin synthesis. The aim of this pilot study is to assess the clinical efficacy and safety of high doses of biotin in patients suffering from progressive MS. Uncontrolled, non-blinded proof of concept study 23 consecutive patients with primary and secondary progressive MS originated from three different French MS reference centers were treated with high doses of biotin (100-300mg/day) from 2 to 36 months (mean=9.2 months). Judgement criteria varied according to clinical presentations and included quantitative and qualitative measures. In four patients with prominent visual impairment related to optic nerve injury, visual acuity improved significantly. Visual evoked potentials in two patients exhibited progressive reappearance of P100 waves, with normalization of latencies in one case. Proton magnetic resonance spectroscopy (H-MRS) in one case showed a progressive normalization of the Choline/Creatine ratio. One patient with left homonymous hemianopia kept on improving from 2 to 16 months following treatment׳s onset. Sixteen patients out of 18 (89%) with prominent spinal cord involvement were considered as improved as confirmed by blinded review of videotaped clinical examination in 9 cases. In all cases improvement was delayed from 2 to 8 months following treatment׳s onset. These preliminary data suggest that high doses of biotin might have an impact on disability and progression in progressive MS. Two double-blind placebo-controlled trials are on going. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.

    Science.gov (United States)

    Jo, Sung-Jin; Leong, Chean Ring; Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2009-04-01

    We previously synthesized poly(3-hydroxybutyrate) [P(3HB)] in recombinant Corynebacterium glutamicum, a prominent producer of amino acids. In this study, a two-step cultivation was established for the dual production of glutamate and P(3HB) due to the differences in the optimal concentration of biotin. Glutamate was extracellularly produced first under the biotin-limited condition of 0.3 microg/L. Production was then shifted to P(3HB) by addition of biotin to a total concentration of 9 microg/L. The final products obtained were 18 g/L glutamate and 36 wt% of P(3HB).

  4. Labeling of biotin with 166Dy/166Ho as a stable in vivo generator system

    International Nuclear Information System (INIS)

    Ferro-Flores, G.; Monroy-Guzman, F.; Tendilla, J.I.; Garcia-Salinas, L.; Villarreal-Barajas, J.E.; Arteaga-Murphy, C.

    2002-01-01

    Biotin (cis-tetrahydro-2-oxothieno[3,4-d]imidazoline-4-valeric acid) is a 244 Da vitamin found in low concentration in blood and tissue (vitamin H). The aim of this work was to synthesize 166 Dy/ 166 Ho-DTPA-bisBiotin to evaluate its potential as a new radiopharmaceutical for targeted radiotherapy. Dysprosium-166/ holmium-166 chloride was obtained by neutron irradiation of 20 mg of enriched Dy 2 O 3 ( 164 Dy, 99 %, from Oak Ridge NL) in a Triga Mark III reactor at a flux in the central thimble of 3.10 13 n. cm -2 s -1 for 20 h. Following irradiation, the target was allowed to decay for 2 days, then 100 μL of 12 N chloride acid were added and stirred for 1 min. To this solution was added 500 μL of injectable water and the whole was also stirred for 2 min. The average radioactive concentration was 332 MBq/ml. The biotin used in this investigation was covalently conjugated to diethylenetriamine pentaacetic acid (DTPA) through the use of the cyclic anhydride and lysine conjugate to biotin (biocytin) to produce DTPA-α,ω-bis(biocytin amide)(DTPA-bisBiotin). Sterile and apyrogenic V-vial was prepared to contain 2.0 mg (1.9 x 10 -3 mmol) of the DTPA-bisbiotin compound in 1.0 ml of 0.05 M bicarbonate buffer (pH 8.0) and then 20 μL of 166 Dy2Cl3 solution were added to the preparation. Thin Layer Chromatography aluminum cellulose sheets were utilised as the stationary phase and a ternary mixture of methanol:water:ammonium hydroxide (20:40:2) as the mobile phase. 166 Dy/ 166 Ho-DTPA-bisBiotin travelled with the solvent front R f 0.9-1.0 and the Dy +3 /Ho +3 species remained at the origin (R f = 0). The biological integrity of labelled biotin was achieved evaluating its avidity for avidin in an agarose column. Stability studies against dilution were carried out by diluting the radiocomplex solution with saline and with human serum at 310 K. After 10 min and 24 h the radiochemical purity of each 166 Dy/ 166 Ho complex solution was determined by TLC. The complex 166 Dy/ 166

  5. On the radioprotective effect of biotin (vitamin H)

    International Nuclear Information System (INIS)

    Perepelkin, S.R.; Egorova, N.D.; Katsitadze, V.A.

    1977-01-01

    It has been shown on rats exposed to a whole-body X-irradiation with 600 R that food rich in vitamin H (biotin) causes a radioprotective effect. Most effective were the vitamin doses of 4.0 and 8.0 μg/rat

  6. Transcarboxylase (TC): demonstration by site-directed mutagenesis that methionines at the biotin site are essential for catalysis

    International Nuclear Information System (INIS)

    Wood, H.G.; Shenoy, B.C.; Kumar, G.K.; Paranjape, S.; Murtif, V.; Samols, D.

    1987-01-01

    All biotin enzymes that have thus far been sequenced contain a conserved region ALA MET BCT MET. Two possible roles of the conserved region are (i) for recognition of the specific lysine of the enzyme that is to be biotinated posttranslationally by the synthetase or (ii) for activation of the biotin to function as a carboxyl carrier. The BCT of TC is at residue 89 of the 1.3S subunit. By site-directed mutagenesis, single amino acid substitutions have been made giving LEU 88, THR 88 and LEU 90 and these mutant subunits have been expressed in E. coli and isolated. Catalysis by TC involves Partial Reactions: (1) - 00 14 CCH 2 COCOO - + 1.3S biotin pyruvate + 1.3S biotin-COO - catalyzed by the 5S subunit (2) 14 CH 3 CH( 14 COO - )COSCoA + 1.3S biotin CH 3 CH 2 COSCoA + 1.3S biotin- 14 COO - , catalyzed by the 12S subunit. The mutant subunits LEU 88 and THR 88 are inactive in Reaction 1. In Reaction 2, they are 8% as active as the 1.3S wild type. At 10 times the concentration of the wild type, they are 40% as active. The LEU 90 subunit is about 40% as active as wild type in both Reactions 1 and 2. Thus, the two METS are functionally not equivalent. What their catalytic roles are remains to be determined. Shenoy et al. have shown these modifications do not effect the synthetase reaction

  7. Evaluation of the avidin/biotin-liposome system injected in pleural space and peritoneum for drug delivery to mediastinal lymph nodes

    Science.gov (United States)

    Medina-Velazquez, Luis Alberto

    The avidin/biotin-liposome system is a new modality recently developed for targeting lymph nodes through the lymphatic system after local injection in a cavity as the route of delivery. In this dissertation we show that the avidin/biotin-liposome system has potential advantages over the injection of only liposomes for targeting lymph nodes. A goal of this dissertation was to evaluate the potential of pleural space as a route of transport for the targeting of mediastinal nodes. Another objective was to study the role of the injected dose of the avidin/biotin-liposome system for targeting mediastinal nodes. Dose, volume, site and sequence of injection of the agents were studied as factors that play an important role in the lymphatic targeting and in the organ distribution of liposomes after intracavitary injection of the avidin/biotin-liposome system. The hypothesis tested in this dissertation was that intracavitary injection of the avidin/biotin-liposome system in pleural space and/or peritoneum results in high levels of mediastinal node targeting with a significant reduction of unfavorable organ distribution when compared with the injection of only liposomes. The specific aims of this dissertation were: (1) to determine the pharmacokinetics, mediastinal node targeting, and biodistribution of avidin and biotin-liposomes injected individually in pleural and peritoneal space, (2) to determine the effect of injected dose and volume on the targeting of mediastinal nodes after intrapleural injection of the avidin/biotin-liposome system, and (3) to evaluate the dose effect of the avidin/biotin-liposome system on the targeting of mediastinal nodes and the lymphatics that drain the peritoneum and pleural space by injecting one agent in peritoneum and the corresponding agent in pleural space, and vice versa. To perform these studies, scintigraphic images were acquired with a gamma camera to non-invasively follow the pharmacokinetics and organ uptake of the avidin/biotin

  8. Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI.

    Science.gov (United States)

    Růžička, Kamil; Zhang, Mi; Campilho, Ana; Bodi, Zsuzsanna; Kashif, Muhammad; Saleh, Mária; Eeckhout, Dominique; El-Showk, Sedeer; Li, Hongying; Zhong, Silin; De Jaeger, Geert; Mongan, Nigel P; Hejátko, Jan; Helariutta, Ykä; Fray, Rupert G

    2017-07-01

    N6-adenosine methylation (m 6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m 6 A writer proteins in Arabidopsis thaliana. The components required for m 6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m 6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m 6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m 6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. DNA ligase III is involved in a DNA-PK independent pathway of NHEJ in human cells

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Qin, W.; Wang, H.; Iliakis, G.

    2003-01-01

    Full text: Double strand breaks (DSB) induced by ionizing radiation (IR) and other cytotoxic agents in the genome of higher eukaryotes are thought to be repaired either by homologous recombination repair (HRR), or non-homologous endjoining (NHEJ). We previously reported the operation of two components of NHEJ in vivo: a DNA-PK dependent component that operates with fast kinetics (D-NHEJ), and a DNA-PK independent component that acts as a backup (basic or B-NHEJ) and operates with kinetics an order of magnitude slower. To gain further insight into the mechanisms of B-NHEJ, we investigated DNA endjoining in extracts 180BR, a human cell line deficient in DNA ligase IV, using an in vitro plasmid-based DNA endjoining assay. An anti DNA ligase III antibody inhibited almost completely DNA endjoining activity in these extracts. On the other hand, an anti DNA ligase I antibody had no measurable effect in DNA endjoining activity. Immunodepletion of DNA ligase III from 180BR cell extracts abolished the DNA endjoining activity, which could be restored by addition of purified human DNA ligase IIIb. Full-length DNA ligase III bound to double stranded DNA and stimulated DNA endjoining in both intermolecular and intramolecular ligation. Furthermore, fractionation of HeLa cell extracts demonstrated the presence of an activity stimulating the function of DNA ligase III. Based on these observations we propose that DNA ligase III is the ligase operating in B-NHEJ

  10. The control of fruiting body formation in the ascomycete Sordaria macrospora Auersw. by arginine and biotin: a two-factor analysis.

    Science.gov (United States)

    Molowitz, R; Bahn, M; Hock, B

    1976-01-01

    Fruiting body formation of Sordaria macrospora Auersw. is controlled by L-arginine and biotin when the fungus is grown on a synthetic nutrient medium containing optimal concentrations of fructose, KNO3, KH2PO4, MgSO4, and ZnSO4. Arginine and biotin operate in very low concentrations which exclude unspecific nutrient effects. In spite of the complicated interactions of arginine and biotin which are shown qualitatively (Figs. 3 and 4a) and quantitatively (Figs. 2 and 4b), the following conclusions are reached: 1. In the absence of biotin, the development of Sordaria macrospora is blocked at the stage of small protoperithecia. The external addition of biotin (optimal concentration: 3-12 μg/l) allows the formation of fertile fruiting bodies. This effect cannot be imitated by arginine. The biotin effect is discussed in connection with stimulated RNA synthesis.-2. The developmental velocity is influenced by the external addition of arginine. Without arginine but at permissible biotin concentrations, the total life cycle takes about 10 days, in the presence of arginine (1 mM), however, about 6 days.-3. The hyphal density, as well as the total number of fruiting bodies being produced, is controlled in a similar manner by biotin and arginine. The induction of fruiting body formation obviously takes place after the transgression of a critical hyphal density.

  11. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum.

    Science.gov (United States)

    Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie

    2018-01-01

    Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients

  12. Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.

    Science.gov (United States)

    Chan, Bernard P; Reichert, William M; Truskey, George A

    2004-08-01

    The current study examines whether the adhesion promoting arginine-glycine-aspartate-streptavidin mutant (RGD-SA) also affects two important endothelial cell (EC) functions in vitro: vasoregulation and leukocyte adhesion. EC adherent to surfaces via fibronectin (Fn) or Fn plus RGD-SA were subjected to laminar shear flow and media samples were collected over a period of 4h to measure the concentration of nitric oxide (NO), prostacyclin (PGI(2)), and endothelin-1 (ET-1). Western blot analysis was used to quantify the levels of endothelial-derived nitric oxide synthase (eNOS) and cyclooxygenase II (COX II). In a separate set of experiments, fluorescent polymorphonuclear leukocyte (PMN) adhesion to EC was quantified for EC with and without exposure to flow preconditioning. When cell adhesion was supplemented with the SA-biotin system, flow-induced production of NO and PGI(2) increased significantly relative to cells adherent on Fn alone. Previous exposure of EC to shear flow also significantly decreased PMN attachment to SA-biotin supplemented EC, but only after 2h of exposure to shear flow. The observed decrease in PMN-EC adhesion was negated by NG-nitro-L-arginine methyl ester (L-NAME), an antagonist of NO synthesis, but not by indomethacin, an inhibitor to PGI(2) synthesis, indicating the induced effect of PMN-EC interaction is primarily NO-dependent. Results from this study suggest that the use of SA-biotin to supplement EC adhesion encourages vasodilation and PMN adhesion in vitro under physiological shear-stress conditions. We postulate that the presence of SA-biotin more efficiently transmits the shear-stress signal and amplifies the downstream events including the NO and PGI(2) release and leukocyte-EC inhibition. These results may have ramifications for reducing thrombus-induced vascular graft failure.

  13. Effect of exogenous fatty acids on biotin deprived death of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shimada, Shoji; Kuraishi, Hiroshi; Aida, Ko

    1978-01-01

    The effect of exogeneous fatty acids on cell growth and death of the biotin-requiring yeast Saccharomyces cerevisiae BA-1 was examined with respect to the mechanism of synthetic pathway of fatty acid under biotin starvation. At a growth temperature of 30 0 C, exogeneous unsaturated fatty acids, such as palmitoleic, oleic, linoleic, and linolenic acids which promote the cell growth and suppress death effectively, were incorporated intactly into the cellular fatty acids, whereas the saturated fatty acid, palmitic acid, which supports growth but some what inhibits death, was once incorporated, and about 60% of incorporated palmitic acid was found to be desaturated. However, at an elevated temperature of 36 0 C, even palmitic acid showed similar effects to unsaturated fatty acids in cell growth and death; following by an increased desaturation of palmitic acid. Thus the data indicate that palmitic aicd, as well as unsaturated fatty acids directly compensate for the deficiency of endogenously synthesized fatty acids caused by biotin starvation. (auth.)

  14. Haploinsufficiency of the E3 ubiquitin ligase C-terminus of heat shock cognate 70 interacting protein (CHIP produces specific behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Bethann McLaughlin

    Full Text Available The multifunctional E3 ubiquitin ligase CHIP is an essential interacting partner of HSP70, which together promote the proteasomal degradation of client proteins. Acute CHIP overexpression provides neuroprotection against neurotoxic mitochondrial stress, glucocorticoids, and accumulation of toxic amyloid fragments, as well as genetic mutations in other E3 ligases, which have been shown to result in familial Parkinson's disease. These studies have created a great deal of interest in understanding CHIP activity, expression and modulation. While CHIP knockout mice have the potential to provide essential insights into the molecular control of cell fate and survival, the animals have been difficult to characterize in vivo due to severe phenotypic and behavioral dysfunction, which have thus far been poorly characterized. Therefore, in the present study we conducted a battery of neurobehavioral and physiological assays of adult CHIP heterozygotic (HET mutant mice to provide a better understanding of the functional consequence of CHIP deficiency. We found that CHIP HET mice had normal body and brain weight, body temperature, muscle tone and breathing patterns, but do have a significant elevation in baseline heart rate. Meanwhile basic behavioral screens of sensory, motor, emotional and cognitive functions were normative. We observed no alterations in performance in the elevated plus maze, light-dark preference and tail suspension assays, or two simple cognitive tasks: novel object recognition and spontaneous alternation in a Y maze. Significant deficits were found, however, when CHIP HET mice performed wire hang, inverted screen, wire maneuver, and open field tasks. Taken together, our data indicate a clear subset of behaviors that are altered at baseline in CHIP deficient animals, which will further guide whole animal studies of the effects of CHIP dysregulation on cardiac function, brain circuitry and function, and responsiveness to environmental and

  15. Catalase coupled gold nanoparticles: Comparison between carbodiimide and biotin-streptavidin methods

    Science.gov (United States)

    Chirra, Hariharasudhan D.; Sexton, Travis; Biswal, Dipti; Hersh, Louis B.; Hilt, J. Zach

    2011-01-01

    The use of proteins for therapeutic applications requires the protein to maintain sufficient activity for the period of in vivo treatment. Many proteins exhibit a short half-life in vivo and, thus, require delivery systems for them to be applied as therapeutics. The relative biocompatibility and the ability to form functionalized bioconjugates via simple chemistry make gold nanoparticles excellent candidates as protein delivery systems. Herein, two protocols for coupling proteins to gold nanoparticles were compared. In the first, the strong biomolecular binding between biotin and streptavidin was used to couple catalase to the surface of gold nanoparticles. In the second protocol, the formation of an amide bond between carboxylic acid coated gold nanoparticles and free surface amines of catalase using carbodiimide chemistry was performed. The stability and kinetics of the different steps involved in these protocols were studied using UV-Visible spectroscopy, dynamic light scattering, and transmission electron microscopy. The addition of mercaptoundecanoic acid in conjugation with (N-(6-(biotinamido)hexyl)-3′-(2′-pyridyldithio)-propionamide increased the stability of biotinylated gold nanoparticles. Although the carbodiimide chemistry based bioconjugation approach exhibited a decrease in catalase activity, the carbodiimide chemistry based bioconjugation approach resulted in more active catalase per gold nanoparticle compared to that of mercaptoundecanoic acid stabilized biotinylated gold nanoparticles. Both coupling protocols resulted in gold nanoparticles loaded with active catalase. Thus, these gold nanoparticle systems and coupling protocols represent promising methods for the application of gold nanoparticles for protein delivery. PMID:21232642

  16. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode.

    Science.gov (United States)

    Biscay, Julien; González García, María Begoña; Costa García, Agustín

    2015-01-01

    The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 μL of the mixture is injected and after 30s 100 μL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fluorescent, thermo-responsive biotin-P(NIPAAm-co-NDAPM)- b-PCL micelles for cell-tracking and drug delivery

    International Nuclear Information System (INIS)

    Li Yongyong; Zhang Xianzheng; Cheng Han; Zhu Jingling; Li Unnam; Cheng Sixue; Zhuo Renxi

    2007-01-01

    An amphiphilic, biotinylated poly(N-isopropylacrylamide-co-N-(3-dimethylamino propyl)methacrylamide)-block- poly(ε-caprolactone) (biotin-P(NIPAAm-co-NDAPM)- b-PCL) block copolymer was synthesized. The cytotoxicity study showed that the copolymer exhibited no apparent cytotoxicity. In aqueous solution, biotin-P(NIPAAm-co-NDAPM)- b-PCL copolymer was able to self-assemble into micelles of around 60 nm in diameter with a critical micellar concentration (CMC) of 36 mg l -1 . Biotin-P(NIPAAm- co-NDAPM)-b-PCL micelles were thermo-responsive and the cloud point temperature was at 36.5 deg. C. The fluorescent group, fluorescein isothiocyanate (FITC) was further introduced to label the biotin-P(NIPAAm-co-NDAPM)- b-PCL copolymer. A cell internalization experiment was conducted and it was found that the fluorescent micelles could be internalized into the cells. The drug release behavior of drug-loading micelles was also examined and the drug-loaded biotin-P(NIPAAm-co-NDAPM)- b-PCL micelles showed slow drug release at 27 deg. C and fast drug release at 37 deg. C

  18. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    Science.gov (United States)

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Osseoconductivity of a Specific Streptavidin-Biotin-Fibronectin Surface Coating of Biotinylated Titanium Implants - A Rabbit Animal Study.

    Science.gov (United States)

    Kämmerer, Peer W; Lehnert, Michael; Al-Nawas, Bilal; Kumar, Vinay V; Hagmann, Sebastien; Alshihri, Abdulmonem; Frerich, Bernhard; Veith, Michael

    2015-10-01

    Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven. © 2015 Wiley Periodicals, Inc.

  20. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  1. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.

    Science.gov (United States)

    Sato, Hiroki; Orishimo, Keita; Shirai, Tomokazu; Hirasawa, Takashi; Nagahisa, Keisuke; Shimizu, Hiroshi; Wachi, Masaaki

    2008-07-01

    Corynebacterium glutamicum is a biotin auxotrophic bacterium in which glutamate production is induced under biotin-limited conditions. During glutamate production, anaplerotic reactions catalyzed by phosphoenolpyruvate carboxylase (PEPC) and a biotin-containing enzyme pyruvate carboxylase (PC) are believed to play an important role in supplying oxaloacetate in the tricarboxylic acid cycle. To understand the distinct roles of PEPC and PC on glutamate production by C. glutamicum, we observed glutamate production induced under biotin-limited conditions in the disruptants of the genes encoding PEPC (ppc) and PC (pyc), respectively. The pyc disruptant retained the ability to produce high amounts of glutamate, and lactate was simultaneously produced probably due to the increased intracellular pyruvate levels. On the other hand, the ppc knockout mutant could not produce glutamate. Additionally, glutamate production in the pyc disruptant was enhanced by overexpression of ppc rather than disruption of the lactate dehydrogenase gene (ldh), which is involved in lactate production. Metabolic flux analysis based on the 13C-labeling experiment and measurement of 13C-enrichment in glutamate using nuclear magnetic resonance spectroscopy revealed that the flux for anaplerotic reactions in the pyc disruptant was lower than that in the wild type, concomitantly increasing the flux for lactate formation. Moreover, overexpression of ppc increased this flux in both the pyc disruptant and the wild type. Our results suggest that the PEPC-catalyzed anaplerotic reaction is necessary for glutamate production induced under biotin-limited conditions, because PC is not active during glutamate production, and overexpression of ppc effectively enhances glutamate production under biotin-limited conditions.

  2. SYVN1, an ERAD E3 Ubiquitin Ligase, Is Involved in GABAAα1 Degradation Associated with Methamphetamine-Induced Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Dong-Liang Jiao

    2017-10-01

    Full Text Available Abuse of methamphetamine (METH, a powerful addictive amphetamine-type stimulants (ATS, is becoming a global public health problem. The gamma-aminobutyric acid (GABAergic system plays a critical role in METH use disorders. By using rat METH conditioned place preference (CPP model, we previously demonstrated that METH-associated rewarding memory formation was associated with the reduction of GABAAα1 expression in the dorsal straitum (Dstr, however, the underlying mechanism was unclear. In the present study, we found that METH-induced CPP formation was accompanied by a significant increase in the expression of Synovial apoptosis inhibitor 1 (SYVN1, an endoplasmic reticulum (ER-associated degradation (ERAD E3 ubiquitin ligase, in the Dstr. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in both primary cultured neurons and rodent Dstr. Inhibition of proteasomal activity by MG132 and Lactacystin significantly increased GABAAα1 protein levels. We further found that SYVN1 knockdown increased GABAAα1 in the intra-ER, but not in the extra-ER. Accordingly, endoplasmic reticulum stress (ERS-associated Glucose-regulated protein 78 (GRP78 and C/EBP homologous protein (CHOP increased. Thus, this study revealed that SYVN1, as the ERAD E3 ubiquitin ligase, was associated with Dstr GABAAα1 degradation induced by METH conditioned pairing.

  3. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection.

    Directory of Open Access Journals (Sweden)

    Smita Srivastava

    2008-05-01

    Full Text Available Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4-based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism.

  4. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S......-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were...

  5. Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation

    International Nuclear Information System (INIS)

    Eriksson, Olof; Carlsson, Fredrik; Blom, Elisabeth; Sundin, Anders; Långström, Bengt; Korsgren, Olle; Velikyan, Irina

    2012-01-01

    Introduction: Islet transplantation is a promising treatment for type 1 diabetes mellitus, but the fate of the cells after intraportal infusion is unclear. It is therefore imperative to develop novel techniques for noninvasive imaging and quantification of events following islet transplantation. Methods: Small islet-like microbeads, avidin-covered agarose resins (AARs), were used as a model system for islet transplantation. Capability for specific [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin uptake and retention for either AARs or human islets conjugated with avidin by means of a heparin scaffold was studied in vitro. Biodistribution of the novel positron emission tomography (PET) tracer [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin was evaluated in mice treated by intraportal transplantation of AARs by μPET/computed tomography and ex vivo organ distribution and compared with control mice. Results: AARs had high capability to bind [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin, close to 50% of administrated tracer/μl in vitro (>0.25 MBq/μl). Avidin-tagged human islets could bind on average 2.2% of administered tracer/μl. Specificity (>90%) and retention (>90% after 1 h) were high for both AARs and avidin-tagged islets. Hepatic tracer uptake and retention were increased in mice transplanted with AARs [standardized uptake value (SUV)=2.6] compared to the untreated group (SUV=1.4). In vivo uptake of tracer to AARs was blocked by preadministration of unlabeled biotin. Conclusions: Avidin-tagged islet-like objects can be tracked in hepatic volume after intraportal transplantation by using [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin and PET.

  6. Improved tumor localization with (strept)avidin and labeled biotin as a substitute for antibody

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Fritz, B.; Virzi, F.; Mardirossian, G.; Rusckowski, M.

    1993-01-01

    We have investigated tumor localization with labeled biotin administered subsequent to unlabeled and unconjugated streptavidin. Nude mice bearing anti-CEA tumors (LS174T) received 10 μg of 111 In-labeled anti-CEA antibody (C110) or 111 In-labeled streptavidin with sacrifice 5 h later. In an examination of pretargeting, other animals received 50 μg of unlabeled streptavidin followed 3 h later with 1 μg of 111 In-labeled biotin (EB 1 ) and sacrifice 2 h later. The biodistribution of labeled streptavidin was similar to that of labeled specific antibody except for lower blood and higher kidney levels. Tumor levels were also lower with labeled streptavidin but, because of still lower levels in liver and blood, the tumor/normal tissue ratios were improved. When unlabeled streptavidin was administered and followed by labeled biotin (pretargeting), tumor levels were further reduced modestly; however, normal tissue levels were greatly reduced such that the tumor/blood and tumor/liver ratios were 10.6 and 2.2 vs 1.5 and 0.5 for the specific antibody. Improvements were seen in all tissues sampled with the exception of kidney and muscle. A further control of labeled biotin alone showed minimal accumulation in all tissues with the exception of kidneys. In conclusion, the accumulation of (strept)avidin by passive diffusion in tumor may be comparable, at early times, to the accumulation of specific antibody. By combining the administration of unlabeled (strept)avidin with labeled biotin, tumor targeting may potentially be improved. (author)

  7. Pharmacokinetics and pharmacodynamics of MD1003 (high-dose biotin) in the treatment of progressive multiple sclerosis.

    Science.gov (United States)

    Peyro Saint Paul, Laure; Debruyne, Danièle; Bernard, Delphine; Mock, Donald M; Defer, Gilles L

    2016-01-01

    Multiple sclerosis (MS) is a chronic, potentially highly disabling neurological disorder. No disease-modifying treatments are approved in the progressive and not active forms of the disease. High doses of biotin were tested in an open-label pilot study involving 23 patients with progressive MS and reported positive results. A randomized, double-blind, placebo-controlled trial in 154 progressive MS patients confirmed the beneficial effect of MD1003 (high-dose biotin) on reversing or stabilizing disability progression, with a good safety profile. It is proposed that MD1003 in progressive MS 1) increases energy production in demyelinated axons and/or 2) enhances myelin synthesis in oligodendrocytes. Biotin is highly bioavailable; absorption and excretion are rapid. The major route of elimination is urinary excretion. A high oral dose of biotin seems generally well tolerated but a few important safety concerns were identified: 1) teratogenicity in one species and 2) interference with some biotin-based laboratory immunoassays. The animal toxicity data are limited at such high doses. Further preclinical studies would be useful to address the mechanism of action of MD1003. Assessment of clinical benefit duration in responders will be also very important to set. Results of randomized, placebo-controlled trial are reassuring and provide hope for the treatment of progressive MS.

  8. Discovery of a cyclic 6 + 6 hexamer of d-biotin and formaldehyde

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Jessen, Bo M.; Rasmussen, Brian

    2014-01-01

    The discovery of receptors using templated synthesis enables the selection of strong receptors from complex mixtures. In this contribution we describe a study of the condensation of d-biotin and formaldehyde in acidic water. We have discovered that halide anions template the formation of a single...... isomer of a 6 + 6 macrocycle. The macrocycle (biotin[6]uril) is water-soluble, chiral and binds halide anions (iodide, bromide and chloride) with selectivity for iodide in water, and it can be isolated on a gram scale in a one-pot reaction in 63% yield....

  9. Astatine-211-labeled biotin conjugates resistant to biotinidase for use in pretargeted radioimmunotherapy

    International Nuclear Information System (INIS)

    Foulon, Catherine F.; Alston, Kevin L.; Zalutsky, Michael R.

    1998-01-01

    We report herein the preparation and biological evaluation of two radioastatinated biotin conjugates, (3-[ 211 At]astatobenzoyl)norbiotinamide and ((5-[ 211 At]astato-3-pyridinyl)carbonyl)norbiotinamide. Both conjugates were stable in the presence of human serum and cerebrospinal fluid as well as murine serum, indicating a resistance to degradation to biotinidase. The normal tissue clearance of (3-[ 211 At]astatobenzoyl)norbiotinamide and ((5-[ 211 At]astato-3-pyridinyl)carbonyl)norbiotinamide was rapid, as observed previously with their iodo analogues. Also reported are the first syntheses of N-succinimidyl 5-[ 211 At]astato-3-pyridinecarboxylate and 3-[ 211 At]astatoaniline, two reagents of potential utility for labeling proteins and peptides with 211 At

  10. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans.

    Science.gov (United States)

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin.

  11. Studying DNA looping by single-molecule FRET.

    Science.gov (United States)

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  12. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    Science.gov (United States)

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. 177Lu-DTPA-BIS-BIOTIN Binding of Octreotide-dextran-avidinated PANC-1 Cell Lines in Vitro

    International Nuclear Information System (INIS)

    Deng Xinrong; Zhai Shizhen; Shen Yijia; Luo Zhifu; Du Jin

    2011-01-01

    Tyr3-octreotide, dextran-40 and avidin were used to prepare octreotide-dextran-avidin (TOC-Dx 40 -Av). DTPA-BIS-BIOTIN was labelled with 177 Lu. The in vitro somatostatin receptor binding study was carried out by pretargeted method using TOC-Dx 40 -Av and 177 Lu-DTPA-BIS-BIOTIN. The 24 well cell culture plates were prepared with PANC-1 cell monolayer and then incubated with TOC-Dx 40 -Av. After two washed with PBS, the cells were incubated with different concentration of 177 Lu-DTPA-BIS-BIOTIN (48.8 ∼ 391 pmol). Cells uptake was evaluated with γ counter. The results showed that the chemical purity of TOC-Dx 40 -Av was over 99%. The results also showed that TOC-Dx 40 -Av remained high receptor binding affinity to somatostatin receptor which indicated that TOC- Dx 40 -Av could bind to 177 Lu-DTPA-BIS-BIOTIN with the molar ratio of 1 : 1 on the cell surface. (authors)

  14. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  15. Connecting DNA Origami Structures Using the Biotin-Streptavidin ...

    African Journals Online (AJOL)

    Abstract. This work made use of the strong interaction between biotin and streptavidin to connect designed DNA origami structures. The caDNAno software was used to design a 6 layer 3D origami cross-like structure. Selected DNA strands at the engineered attachment sites on the DNA origami structure were biotinylated.

  16. Biotin carboxylases in mitochondria and the cytosol from skeletal and cardiac muscle as detected by avidin binding

    NARCIS (Netherlands)

    Kirkeby, S.; Moe, D.; Bøg-Hansen, T. C.; van Noorden, C. J.

    1993-01-01

    Biotin carboxylases in mammalian cells are regulatory enzymes in lipogenesis and gluconeogenesis. In this study, endogenous biotin in skeletal and cardiac muscle was detected using avidin conjugated with alkaline phosphatase and applied in high concentrations to muscle sections. The avidin binding

  17. Cell surface localization of the 78 kD glucose regulated protein (GRP 78) induced by thapsigargin.

    Science.gov (United States)

    Delpino, A; Piselli, P; Vismara, D; Vendetti, S; Colizzi, V

    1998-01-01

    In the present study it was found that the synthesis of the 78 kD glucose-regulated protein (GRP 78 or BIP) is vigorously induced in human rabdomiosarcoma cells (TE 671/RD) following both short-term (1 h) and prolonged (18 h) exposure to 100 nM thapsigargin (Tg). Flow cytometric analysis with a specific anti-GRP 78 polyclonal antibody showed that Tg-treated cells express the GRP 78 on the plasma membrane. Cell surface localization of the Tg-induced GRP 78 was confirmed by biotinylation of membrane-exposed proteins and subsequent isolation of the biotin-labelled proteins by streptavidin/agarose affinity chromatography. It was found that a fraction of the Tg-induced GRP 78 is present among the biotin-labelled, surface-exposed, proteins. Conversely, the GRP 78 immunoprecipitated from unfractionated lysates of Tg-treated and biotin-reacted cells was found to be biotinylated. This is the first report demonstrating surface expression of GRP 78 in cells exposed to a specific GRP 78-inducing stimulus.

  18. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins.

    Science.gov (United States)

    Cihil, Kristine M; Swiatecka-Urban, Agnieszka

    2013-12-13

    Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.

  19. Functional Characterization of the Apple RING E3 Ligase MdMIEL1 in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianping AN

    2017-03-01

    Full Text Available E3 ubiquitin ligases are involved in various physiological processes, and they play pivotal roles in growth and development. In this study, we identified a previously unknown gene in the apple fruit (Malus × domestica and named it MdMIEL1. The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus. To investigate MdMIEL1 functions, we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter. Interestingly, ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes, including early germination, early flowering and a lateral root number increase relative to wild-type plants. Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots. In a word, these results suggest that, MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development, and highlight that MdMIEL1 regulates lateral root growth.

  20. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis.

    Science.gov (United States)

    Sedel, Frédéric; Bernard, Delphine; Mock, Donald M; Tourbah, Ayman

    2016-11-01

    Progressive multiple sclerosis (MS) is a severely disabling neurological condition, and an effective treatment is urgently needed. Recently, high-dose biotin has emerged as a promising therapy for affected individuals. Initial clinical data have shown that daily doses of biotin of up to 300 mg can improve objective measures of MS-related disability. In this article, we review the biology of biotin and explore the properties of this ubiquitous coenzyme that may explain the encouraging responses seen in patients with progressive MS. The gradual worsening of neurological disability in patients with progressive MS is caused by progressive axonal loss or damage. The triggers for axonal loss in MS likely include both inflammatory demyelination of the myelin sheath and primary neurodegeneration caused by a state of virtual hypoxia within the neuron. Accordingly, targeting both these pathological processes could be effective in the treatment of progressive MS. Biotin is an essential co-factor for five carboxylases involved in fatty acid synthesis and energy production. We hypothesize that high-dose biotin is exerting a therapeutic effect in patients with progressive MS through two different and complementary mechanisms: by promoting axonal remyelination by enhancing myelin production and by reducing axonal hypoxia through enhanced energy production. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Characterization of bacteriophage KVP40 and T4 RNA ligase 2

    International Nuclear Information System (INIS)

    Yin Shenmin; Kiong Ho, C.; Miller, Eric S.; Shuman, Stewart

    2004-01-01

    Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a subfamily of RNA strand-joining enzymes that includes the trypanosome RNA editing ligases. A homolog of T4 Rnl2 is encoded in the 244-kbp DNA genome of vibriophage KVP40. We show that the 335-amino acid KVP40 Rnl2 is a monomeric protein that catalyzes RNA end-joining through ligase-adenylate and RNA-adenylate (AppRNA) intermediates. In the absence of ATP, pre-adenylated KVP40 Rnl2 reacts with an 18-mer 5'-PO 4 single-strand RNA (pRNA) to form an 18-mer RNA circle. In the presence of ATP, Rnl2 generates predominantly AppRNA. Isolated AppRNA can be circularized by KVP40 Rnl2 in the absence of ATP. The reactivity of phage Rnl2 and the distribution of the products are affected by the length of the pRNA substrate. Whereas 18-mer and 15-mer pRNAs undergo intramolecular sealing by T4 Rnl2 to form monomer circles, a 12-mer pRNA is ligated intermolecularly to form dimers, and a 9-mer pRNA is unreactive. In the presence of ATP, the 15-mer and 12-mer pRNAs are converted to AppRNAs, but the 9-mer pRNA is not. A single 5' deoxynucleotide substitution of an 18-mer pRNA substrate has no apparent effect on the 5' adenylation or circularization reactions of T4 Rnl2. In contrast, a single deoxyribonucleoside at the 3' terminus strongly and selectively suppresses the sealing step, thereby resulting in accumulation of high levels of AppRNA in the absence of ATP. The ATP-dependent 'capping' of RNA with AMP by Rnl2 is reminiscent of the capping of eukaryotic mRNA with GMP by GTP:RNA guanylyltransferase and suggests an evolutionary connection between bacteriophage Rnl2 and eukaryotic RNA capping enzymes

  2. The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    BACKGROUND: The ligase chain reaction Mycobacterium tuberculosis assay uses ligase chain reaction technology to detect tuberculous DNA sequences in clinical specimens. A study was undertaken to determine its sensitivity and specificity as a primary screening tool for the detection of culture positive tuberculosis. METHODS: The study was conducted on 2420 clinical specimens (sputum, bronchoalveolar lavage fluid, pleural fluid, urine) submitted for primary screening for Mycobacterium tuberculosis to a regional medical microbiology laboratory. Specimens were tested in parallel with smear, ligase chain reaction, and culture. RESULTS: Thirty nine patients had specimens testing positive by the ligase chain reaction assay. Thirty two patients had newly diagnosed tuberculosis, one had a tuberculosis relapse, three had tuberculosis (on antituberculous therapy when tested), and three had healed tuberculosis. In the newly diagnosed group specimens were smear positive in 21 cases (66%), ligase chain reaction positive in 30 cases (94%), and culture positive in 32 cases (100%). Using a positive culture to diagnose active tuberculosis, the ligase chain reaction assay had a sensitivity of 93.9%, a specificity of 99.8%, a positive predictive value of 83.8%, and a negative predictive value of 99.9%. CONCLUSIONS: This study is the largest clinical trial to date to report the efficacy of the ligase chain reaction as a primary screening tool to detect Mycobacterium tuberculosis infection. The authors conclude that ligase chain reaction is a useful primary screening test for tuberculosis, offering speed and discrimination in the early stages of diagnosis and complementing traditional smear and culture techniques.

  3. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress.

    Directory of Open Access Journals (Sweden)

    Raymond Buser

    2016-02-01

    Full Text Available Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4, but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101(Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101(Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1's replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS complex at stalled forks.

  4. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes

    International Nuclear Information System (INIS)

    Ding, S.-J.; Chang, B.-W.; Wu, C.-C.; Lai, M.-F.; Chang, H.-C.

    2005-01-01

    The avidin-biotin interaction on 11-mercaptoundecanoic acid self-assembled gold electrodes was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interfacial properties of the modified electrodes were evaluated in the presence of the Fe(China) 6 3-/4- couple redox as a probe. A simple equivalent circuit model with a constant phase element was used to interpret the obtained impedance spectra. The results of cyclic voltammetry showed that the voltammetric behavior of the redox probe was influenced by the electrode surface modification. It is evident that the accumulation of treated substances and the binding of biotin to avidin on the electrode surface resulted in the increasing electron-transfer resistance and the decreasing capacitance. The changes in the electron-transfer resistance on the avidin-modified electrodes were more sensitive than that in the capacitance while detecting biotin over the 2-10 μg/mL concentration. The detection amount can be as low as 20 ng/mL based on the electron-transfer resistance that presented the change of 4.3 kΩ without the use of labels. The development of a rapid, facile, and sensitive method for the quantitation of nanogram quantities of biomolecules utilizing EIS may be achieved

  5. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    Science.gov (United States)

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  6. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-06-24

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.

  7. Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*

    Science.gov (United States)

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793

  8. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  9. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  10. Effects of defaunation on fermentation characteristics and biotin balance in an artificial rumen-simulation system (RUSITEC) receiving diets with different amounts and types of cereal.

    Science.gov (United States)

    Abel, H; Schröder, B; Lebzien, P; Flachowsky, G

    2006-01-01

    Biotin is required by rumen microbes for efficient fermentation. To evaluate the role of protozoa in ruminal biotin metabolism, five diets composed of grass hay or of grass hay/cereal grain mixtures were supplied to faunated or defaunated RUSITEC fermenters. In the mixed diets, hay was replaced to 33:67 or 67:33 w/w on an air-dried basis by either wheat or maize grain in order to simulate different cellulolytic and amylolytic fermentation conditions. Defaunation increased SCFA production, whereas NH4 concentration and the release of CH4 were reduced. Biotin input declined when cereal grain was used to replace the hay. With the exception of the high-wheat treatment, defaunated fermenters yielded higher biotin outputs than faunated fermenters. The biotin balance, calculated as the difference between the total biotin output (biotin in the solid residue contained in the nylon bags after fermentation plus the biotin in the effluent) and the biotin input with the feed, was negative for all the dietary treatments apart from fermenters supplied with the high-maize diet. It was less negative or, in the case of the high-maize diets, more positive for defaunated compared with faunated fermenters. It was concluded that, under normal faunated conditions, protozoa directly utilise or indirectly affect the bacterial synthesis and/or utilisation of biotin. With diets of a high fermentation potential, as realised with the high-wheat diet, protozoa prevent the development of a bacterial population that would utilise high or synthesise low amounts of biotin.

  11. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    Science.gov (United States)

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-03

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action.

  12. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2017-05-01

    Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis. © 2017 John Wiley & Sons Ltd.

  13. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    Science.gov (United States)

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  14. Purification, crystallization and preliminary crystallographic analysis of a multiple cofactor-dependent DNA ligase from Sulfophobococcus zilligii

    International Nuclear Information System (INIS)

    Supangat, Supangat; An, Young Jun; Sun, Younguk; Kwon, Suk-Tae; Cha, Sun-Shin

    2010-01-01

    A recombinant multiple cofactor-dependent DNA ligase from S. zilligii has been purified and crystallized. X-ray diffraction data were collected to 2.9 Å resolution and the crystals belonged to space group P1. A recombinant DNA ligase from Sulfophobococcus zilligii that shows multiple cofactor specificity (ATP, ADP and GTP) was expressed in Escherichia coli and purified under reducing conditions. Crystals were obtained by the microbatch crystallization method at 295 K in a drop containing 1 µl protein solution (10 mg ml −1 ) and an equal volume of mother liquor [0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 10 000]. A data set was collected to 2.9 Å resolution using synchrotron radiation. The crystals belonged to space group P1, with unit-cell parameters a = 63.7, b = 77.1, c = 77.8 Å, α = 83.4, β = 82.4, γ = 74.6°. Assuming the presence of two molecules in the unit cell, the solvent content was estimated to be about 53.4%

  15. Biotin/Folate-decorated Human Serum Albumin Nanoparticles of Docetaxel: Comparison of Chemically Conjugated Nanostructures and Physically Loaded Nanoparticles for Targeting of Breast Cancer.

    Science.gov (United States)

    Nateghian, Navid; Goodarzi, Navid; Amini, Mohsen; Atyabi, Fatemeh; Khorramizadeh, Mohammad Reza; Dinarvand, Rassoul

    2016-01-01

    Docetaxel (DTX) is a widely used chemotherapeutic agent with very low water solubility. Conjugation of DTX to human serum albumin (HSA) is an effective way to increase its water solubility. Attachment of folic acid (FA) or biotin as targeting moieties to DTX-HSA conjugates may lead to active targeting and specific uptake by cancer cells with overexpressed FA or biotin receptors. In this study, FA or biotin molecules were attached to DTX-HSA conjugates by two different methods. In one method, FA or biotin molecules were attached to remaining NH2 residues of HSA in DTX-HSA conjugate by covalent bonds. In the second method, HSA-FA or HSA-biotin conjugates were synthesized separately and then combined by DTX-HSA conjugate in proper ratio to prepare nanoparticles containing DTX-HSA plus HSA-FA or HSA-biotin. Cell viability of different nanoparticle was evaluated on MDA-MB-231 (folate receptor positive), A549 (folate receptor negative), and 4T1 (biotin receptor positive) and showed superior cytotoxicity compared with free docetaxel (Taxotere). In vivo studies of DTX-HSA-FA and DTX-HSA-biotin conjugates in BULB/c mice, tumorized by 4T1 cell line, showed the conjugates prepared in this study were more powerful in the reduction in tumor size and increasing the survival rate when compared to free docetaxel. © 2015 John Wiley & Sons A/S.

  16. Terminating protein ubiquitination: Hasta la vista, ubiquitin.

    Science.gov (United States)

    Stringer, Daniel K; Piper, Robert C

    2011-09-15

    Ubiquitination is a post-translational modification that generally directs proteins for degradation by the proteasome or by lysosomes. However, ubiquitination has been implicated in many other cellular processes, including transcriptional regulation, DNA repair, regulation of protein-protein interactions and association with ubiquitin-binding scaffolds. Ubiquitination is a dynamic process. Ubiquitin is added to proteins by E3 ubiquitin ligases as a covalent modification to one or multiple lysine residues as well as non-lysine amino acids. Ubiquitin itself contains seven lysines, each of which can also be ubiquitinated, leading to polyubiquitin chains that are best characterized for linkages occurring through K48 and K63. Ubiquitination can also be reversed by the action of deubiquitination enzymes (DUbs). Like E3 ligases, DUbs play diverse and critical roles in cells. ( 1) Ubiquitin is expressed as a fusion protein, as a linear repeat or as a fusion to ribosomal subunits, and DUbs are necessary to liberate free ubiquitin, making them the first enzyme of the ubiquitin cascade. Proteins destined for degradation by the proteasome or by lysosomes are deubiquitinated prior to their degradation, which allows ubiquitin to be recycled by the cell, contributing to the steady-state pool of free ubiquitin. Proteins destined for degradation by lysosomes are also acted upon by both ligases and DUbs. Deubiquitination can also act as a means to prevent protein degradation, and many proteins are thought to undergo rounds of ubiquitination and deubiquitination, ultimately resulting in either the degradation or stabilization of those proteins. Despite years of study, examining the effects of the ubiquitination of proteins remains quite challenging. This is because the methods that are currently being employed to study ubiquitination are limiting. Here, we briefly examine current strategies to study the effects of ubiquitination and describe an additional novel approach that we have

  17. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    International Nuclear Information System (INIS)

    Ouyang, Yan; Kwon, Yong Tae; An, Jee Young; Eller, Danny; Tsai, S.-C.; Diaz-Perez, Silvia; Troke, Joshua J.; Teitell, Michael A.; Marahrens, York

    2006-01-01

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2 -/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2 -/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2 -/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2 -/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2 -/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2 -/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2 -/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair

  18. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yan [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Kwon, Yong Tae [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); An, Jee Young [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Eller, Danny [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tsai, S.-C. [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Diaz-Perez, Silvia [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Troke, Joshua J. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Marahrens, York [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)]. E-mail: ymarahrens@mednet.ucla.edu

    2006-04-11

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2{sup -/-} male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2{sup -/-} embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2{sup -/-} fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2{sup -/-} cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2{sup -/-} cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2{sup -/-} cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2{sup -/-} cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.

  19. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  20. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus.

    Science.gov (United States)

    Patin, Delphine; Boniface, Audrey; Kovač, Andreja; Hervé, Mireille; Dementin, Sébastien; Barreteau, Hélène; Mengin-Lecreulx, Dominique; Blanot, Didier

    2010-12-01

    The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis. Copyright © 2010 Elsevier Masson SAS. All rights reserved.